WO2021228442A1 - Lithiumkomplexhybridfett - Google Patents

Lithiumkomplexhybridfett Download PDF

Info

Publication number
WO2021228442A1
WO2021228442A1 PCT/EP2021/052523 EP2021052523W WO2021228442A1 WO 2021228442 A1 WO2021228442 A1 WO 2021228442A1 EP 2021052523 W EP2021052523 W EP 2021052523W WO 2021228442 A1 WO2021228442 A1 WO 2021228442A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
lithium complex
hydrogenated
bearings
group
Prior art date
Application number
PCT/EP2021/052523
Other languages
English (en)
French (fr)
Inventor
Stefan Grundei
Daniel CHALL
Stefan Seemeyer
Original Assignee
Klüber Lubrication München Se & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Klüber Lubrication München Se & Co. Kg filed Critical Klüber Lubrication München Se & Co. Kg
Priority to CN202180034746.2A priority Critical patent/CN115461434B/zh
Priority to US17/904,257 priority patent/US20230138681A1/en
Priority to EP21704440.3A priority patent/EP4090723B1/de
Publication of WO2021228442A1 publication Critical patent/WO2021228442A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/02Mixtures of base-materials and thickeners
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/18Ethers, e.g. epoxides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/32Esters
    • C10M105/36Esters of polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/02Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation
    • C10M107/08Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation containing butene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/38Lubricating compositions characterised by the base-material being a macromolecular compound containing halogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M111/00Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential
    • C10M111/04Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential at least one of them being a macromolecular organic compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M117/00Lubricating compositions characterised by the thickener being a non-macromolecular carboxylic acid or salt thereof
    • C10M117/06Lubricating compositions characterised by the thickener being a non-macromolecular carboxylic acid or salt thereof having more than one carboxyl group bound to an acyclic carbon atom or cycloaliphatic carbon atom
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/026Butene
    • C10M2205/0265Butene used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/06Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing conjugated dienes
    • C10M2205/063Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing conjugated dienes used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/04Ethers; Acetals; Ortho-esters; Ortho-carbonates
    • C10M2207/0406Ethers; Acetals; Ortho-esters; Ortho-carbonates used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • C10M2207/1256Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids used as thickening agent
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • C10M2207/127Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids polycarboxylic
    • C10M2207/1276Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids polycarboxylic used as thickening agent
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • C10M2207/128Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids containing hydroxy groups; Ethers thereof
    • C10M2207/1285Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids containing hydroxy groups; Ethers thereof used as thickening agents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/285Esters of aromatic polycarboxylic acids
    • C10M2207/2855Esters of aromatic polycarboxylic acids used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/286Esters of polymerised unsaturated acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/286Esters of polymerised unsaturated acids
    • C10M2207/2865Esters of polymerised unsaturated acids used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2213/00Organic macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2213/06Perfluoro polymers
    • C10M2213/0606Perfluoro polymers used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2213/00Organic macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2213/06Perfluoro polymers
    • C10M2213/062Polytetrafluoroethylene [PTFE]
    • C10M2213/0623Polytetrafluoroethylene [PTFE] used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/08Resistance to extreme temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/02Bearings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/30Refrigerators lubricants or compressors lubricants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/38Conveyors or chain belts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/10Semi-solids; greasy

Definitions

  • the present invention relates to the provision of a new lithium complex hybrid grease on the basis of a lithium complex grease in combination with a PFPE grease, which can be used at high temperature, is not laked and has a low tendency to harden.
  • the invention also relates to the use of the new lithium complex hybrid greases in components in the vehicle sector.
  • Hybrid fats are mixtures that consist of at least two base oils that cannot be mixed with one another.
  • Hybrid fats which contain urea or urea / PTFE mixtures as thickeners and ester / PFPE as immiscible base oil components, represent an important group of these fats fluorine-free fats can be reached up to 270 ° C, which is possible with pure PTPE / PFPE fats.
  • These products can also be adapted to specific requirements more easily than is possible with pure PFPE / PTFE greases.
  • Only very few soluble additives are known for PFPE oils, so that, for example, the corrosion protection properties of PFPE oils can only be improved to a limited extent.
  • PFPE / PTFE greases solid substances such as sodium nitrite or magnesium oxide are therefore used as corrosion protection.
  • the even distribution of a solid on the surface of a component is much more difficult to guarantee than the wetting of the surface of a component with an oil that contains a dissolved corrosion protection additive. Therefore, the additives contained in the non-fluorine-containing liquid phase of a hybrid grease can have properties such as Achieve corrosion protection better than is possible with a pure PFPE / PTFE grease.
  • the reduction in the content of PFPE oils in the hybrid fat and the lower density of the hybrid fat also result in significant cost advantages.
  • ester / PFPE / PTFE / urea fats which are described for example in EP0902828 IB1 or the ester / PTFE / urea fats, as described for example in US Pat. No. 6,063,743, have the disadvantage that these fats are used at high temperatures Tend to post-harden and have very little oil separation. In addition, they can sometimes be critical when used with certain elastomers, so that they cannot be used in a wide range, such as roller bearings, in corrugated cardboard plants. In addition, the fluorinated fats are very expensive, so that there is also a need for hybrid fats that can be produced inexpensively with the same or even better properties than the fluorinated fats.
  • Lithium complex greases have a higher oil separation and a lower tendency to harden at high temperatures compared to ester / urea greases.
  • the upper service temperature is significantly lower than with urea hybrid greases, which is often associated with excessive oil separation or is due to the use of base oils such as poly-alpha-olefins or mineral oils, which are less thermally stable.
  • One object of the present invention was therefore to provide a lithium complex hybrid grease with which the aforementioned disadvantages are overcome and which has correspondingly sufficient oil separation and low hardening even at high temperatures.
  • this object could be achieved in that lithium complex greases containing polyisobutylene and esters are combined with PFPE oils or PFPE greases, in particular PFPE / PTFE greases, and thus a high temperature performance can be achieved that is linked to the esters / urea / P FPE hybrid fats, but does not have their disadvantages.
  • the oil separation can be done by selecting the proportions of the two fats be set so that the oil separation is lower than with the two greases used for the mixture.
  • a method for lubricating or greasing components in particular in roller bearings, slide bearings, transport and control chains in vehicle technology, is provided that includes the application of the lubricant composition according to the invention.
  • a method for lubricating or greasing roller bearings in continuous casting plants, transport roller bearings in continuous ovens, open toothed rings in rotary kilns, tube mills, drums and mixers, bearings in corrugated cardboard plants or film stretching plants, bearings for plants for the production and transport of food is provided that the Comprises applying the lubricant composition according to the invention.
  • the lubricant composition according to the invention comprises
  • esters which are selected in particular from the group consisting of trimellitic acid esters, pyromellitic acid esters, dimer acid esters, estolides,
  • a preferred lubricant composition according to the invention comprises
  • esters which are selected in particular from the group consisting of trimellitic acid esters, pyromellitic acid esters, dimer acid esters, estolides,
  • a particularly preferred lubricant composition according to the invention comprises
  • esters which are selected in particular from the group consisting of trimellitic acid esters, pyromellitic acid esters, dimer acid esters, estolides,
  • a particularly preferred lubricant composition according to the invention comprises
  • esters which are selected in particular from the group consisting of trimellitic acid esters, pyromellitic acid esters, dimer acid esters, estolides,
  • Another preferred lubricant composition according to the invention comprises
  • esters which are selected in particular from the group consisting of trimellitic acid esters, pyromellitic acid esters, dimer acid esters, estolides,
  • the lubricants according to the invention can contain additives and (H) solid lubricants as further components (G).
  • Component (A) is contained in the lubricant composition according to the invention in an amount of 70 to 7% by weight, preferably 60 to 15% by weight.
  • Component (A) is an ester or a mixture of esters, the ester being selected from the group consisting of trimellitic acid esters which, as alkoxy groups, have linear or branched alkyl groups containing 6 to 18 carbon atoms, preferably 8 to 14 carbon atoms, the Alkoxy groups can be identical or different, pyromellitic acid esters, preferably tetrakis (2-ethylhexyl) pyromellitate, hydrogenated or unhydrogenated dimer acid esters, preferably bis (2-ethylhexyl) dimerate, estolides.
  • trimellitic acid esters which, as alkoxy groups, have linear or branched alkyl groups containing 6 to 18 carbon atoms, preferably 8 to 14 carbon atoms, the Alkoxy groups can be identical or different, pyromellitic acid esters, preferably tetrakis (2-ethylhexyl) pyromellitate, hydrogenated or unhydrogenated dimer
  • Estolides are understood as meaning esters which contain oligomeric units built up from homopolymers of hydroxycarboxylic acids, for example of 12-hydroxystearic acid, or unsaturated carboxylic acids, for example such as oleic acid. Suitable estolides are described, for example, in US 6,018,063, US 6,316,649, WO 2018/177588 A1 and US 2013/0261325 A1.
  • Component (B) is a polyisobutylene or polybutene and is present in the composition according to the invention in an amount of from 0.5 to 20% by weight, preferably from 1.5 to 15% by weight.
  • Component (B) is a polymer, as described, for example, in Synthetics, Mineral Oils And Bio Based Lubricants Chemistry And Technology, Second Edition, Editor Leslie R. Rudnik, authors M. Casserino, J. Corthouts, CRC Press 2013, Pages 273-300, (ISBN 978-1-4398-5537-9).
  • the properties of the fat according to the invention can be in be influenced in a desired manner.
  • the polyisobutylene can be used in non-hydrogenated, hydrogenated or fully hydrogenated form, and a mixture of non-hydrogenated, hydrogenated and fully hydrogenated polyisobutylene can also be used.
  • Fully hydrogenated polyisobutylenes are preferably used.
  • the non-hydrogenated polyisobutylenes contain an unsaturated end group due to the manufacturing process.
  • Hydrogenated or partially hydrogenated polyisobutylenes are understood as meaning those polymers whose bromine number is lower by at least 20% compared to unhydrogenated polyisobutylene of the same number-average molecular mass.
  • the bromine number for a non-hydrogenated polyisobutylene with Mn of 1300 g / mol is 14 g of bromine per 100 g of polyisobutylene.
  • the bromine number in fully hydrogenated polyisobutylenes is below 7 g of bromine per 100 g of polyisobutylene.
  • the bromine number is determined according to ASTM D2170-09 (reaproved 2018).
  • the polyisobutylene has a number average molecular weight from 115 to 10,000 g / mol, preferably from 500 to 5000 g / mol.
  • the number average molecular weight is determined according to ISO 16014-1, edition 2019-05 using gel permeation chromatography.
  • Component (C) is contained in the lubricant composition according to the invention in an amount of 1 to 18% by weight, preferably 4 to 14% by weight.
  • Component (C) is a lithium complex soap.
  • Lithium complex soaps are mixtures of lithium salts of monofunctional carboxylic acids, preferably carboxylic acids containing 8 to 22 carbon atoms, particularly preferably carboxylic acids containing 14 to 20 carbon atoms, particularly preferably 12-hydroxystearic acid and / or stearic acid with the lithium salts of higher functional carboxylic acids, preferably dicarboxylic acids with 6 to 14 carbon atoms, particularly preferably azelaic acid, sebacic acid and dodecanedioic acid.
  • Lithium complex soaps can additionally contain short-chain carboxylic acids such as acetic acid and lactic acid and / or phosphonic acids and / or boric acid as a further acid component.
  • Component (D) is a perfluoropolyether (PFPE) according to formula (I):
  • PFPE oils are sold, for example, under the brand name Aflunox ® , Krytox ® , Fomblin ® and Demnum ® .
  • the PFPE oils are contained in the lubricant composition according to the invention in amounts of 5 to 70% by weight, preferably 15 to 50% by weight.
  • the lithium complex hybrid grease according to the invention can in addition to
  • Lithium complex thickeners comprise further thickeners (E).
  • the further thickening agents (E) are contained in the lubricant composition according to the invention in amounts of 1 to 30% by weight, preferably 3 to 20% by weight.
  • the further thickening agents (E) in the hybrid grease according to the invention are selected from the group consisting of Al complex soaps, single metal soaps of the elements of the first and second main groups of the periodic table without lithium, metal complex soaps of the elements of the first and second main groups of the periodic table without lithium , Bentonites, sulfonates, silicates, Aerosil, polyimides or PTFE or a mixture of the aforementioned thickeners.
  • a particularly preferred further thickening agent is PTFE.
  • the preferred PTFE is called Micropowder used, which is produced thermally or by irradiating high molecular weight PTFE with a reduction in molecular weight.
  • the hybrid greases according to the invention can contain further oils (F) which are contained in the lubricant composition according to the invention in amounts of 0 to 20% by weight, preferably 2 to 20% by weight.
  • Component (F) is selected from the group consisting of mineral oil, alkylated benzenes, alkylated naphthalenes, aliphatic carboxylic acid and dicarboxylic acid esters, fatty acid triglycerides, alkylated diphenyl ethers, phloroglucinic esters, estolides and / or poly-alpha-olefins, alpha-olefin copolymers, metallocene catalyzed polyalfa-olefins.
  • Preferred further oils are alkylated diphenyl ether oils.
  • Alkylated Diphenyletheröle be marketed under the brand name Hilube ® by the company. Moresco.
  • the alkyl groups contain between 10 and 20 carbon atoms. On average, between one and three alkyl groups are bound to the basic diphenyl ether unit.
  • the lubricant composition according to the invention further comprises from 0 to 10% by weight, preferably from 0.1 to 10% by weight, of additives (G), which are used individually or in combination.
  • Component (G) is selected from the group consisting of corrosion protection additives, antioxidants, wear protection additives, UV stabilizers. It is possible to use both additives that are soluble in component (A) and additives that are soluble in the PFPE oils of component (D) or also insoluble in both oil phases.
  • antioxidants examples include styrenated diphenylamines, diaromatic amines, phenolic resins, thiophenolic resins, phosphites, butylated hydroxytoluene, butylated hydroxyanisole, phenyl-alpha-naphthylamine, phenyl-beta-naphthylamine, octylated / butylated diphenylamine, di-alpha-tocopherol, di-tert-butyl-phenol or di-tert-butyl-4-methylphenol, benzene propanoic acid, sulfur-containing phenolic compounds, phenolic compounds and mixtures of these components.
  • suitable anti-corrosion additives metal deactivators or ion complexing agents.
  • These include triazoles, imidazolines, N-methylglycine (sarcosine), benzotriazole derivatives, N, N-bis (2-ethylhexyl) -ar-methyl-1H-benzotriazole-1-methanamine; n-Methyl-N (1-oxo-9-octadecenyl) glycine, mixture of phosphoric acid and mono- and diisooctyl esters reacted with (Cn-14) -alkylamines, mixture of phosphoric acid and mono- and diisooctyl esters reacted with tert-alkylamine and primary (Ci2-14) amines, dodecanoic acid, triphenyl phosphorothionate and amine phosphates.
  • IRGAMET ® 39 IRGACOR ® DSS G, Amin O; Sarkosyl O ® (Ciba), COBRATEC ® 122, CUVAN ® 303, VANLUBE ® 9123, CI-426, CI-426EP, CI-429 and CI-498th
  • anti-wear additives are amines, amine phosphates, phosphates, thiophosphates and mixtures of these components. Most of the compounds mentioned have organic groups.
  • the commercially available anti-wear additives include IRGALUBE ® TPPT, IRGALUBE ® 232, IRGALUBE ® 349, IRGALUBE ® 211 and ADDITIN ® RC3760 Liq 3960, FIRC-SHUN ® FG 1505 and FG 1506, NA-LUBE ® KR-015FG, LUBEBOND ® , FLUORO ® ® FG, SYNALOX ® 40-D, ACHESON ® FGA 1820 and ACHESON ® FGA 1810.
  • PFPE derivatives can also be included as additives.
  • Further suitable substances are described, for example, in WO01 / 72759A1, WO 01 / 27916A1, EP1070074B1, EP1659165B1 and US2015011446A1.
  • the lubricant compositions according to the invention can contain solid lubricants (H) which are selected from the group consisting of BN, pyrophosphate, Zn oxide, Mg oxide, pyrophosphates, thiosulfates, Mg carbonate, Ca carbonate, Ca stearate, Zn sulfide, Mo sulfide, W sulfide, Sn sulfide, graphite, graphene, nanotubes, Si02 modifications or a mixture thereof.
  • the solid lubricants (H) are contained in the lubricant composition according to the invention in amounts of 0 to 10% by weight, preferably 2 to 5% by weight.
  • the lubricant composition according to the invention is used in the field of components, in particular in roller bearings, slide bearings, transport and timing chains in vehicle technology, rail vehicles, conveyor technology, film stretching systems, corrugated cardboard systems, roller bearings, fan bearings, bearings for traction motors, for the lubrication of bevel and bevel gears Helical gears, springs, screws and compressors, pneumatic components, fittings, and from machine components and in systems where there is occasional, unintentional contact with food.
  • Fig. 1 shows the worked penetration 60dT
  • Figure 2 shows the oil separation, i.e. the loss of oil from the grease.
  • the production of the lubricant composition according to the invention is not restricted and can be carried out by any suitable method.
  • the production of the lubricant production according to the invention can for example be carried out in such a way that a base oil mixture is produced with components (A) and / or (B) and / or (F).
  • the acids required for the lithium complex thickener (C) and an aqueous lithium hydroxide solution are melted in this base oil mixture, which is completely or only partially placed in a suitable reaction vessel containing heating, cooling and stirring equipment admitted.
  • the acids can be added individually and neutralized, or the monocarboxylic acid is first added and neutralized and, in a second step, the higher-functionality carboxylic acid is added and neutralized.
  • the brew is heated to 130 ° C to drive off water.
  • the swelling of the thickener is carried out by thermal treatment at 150 ° C to 210 ° C.
  • the thermally treated brew is then cooled, whereby part of the base oil mixture can also be used.
  • the components (D), (E), (G), (H) and possibly not used for the base oil mixture (A), (B) and (F) are added at a suitable temperature and prehomogenized by stirring.
  • Solid lubricant additives that are soluble in the base oil mixture are added, for example, at temperatures above their melting point.
  • Liquid additives or non-melting additives / solid lubricants / thickener components are added at temperatures below 80 ° C.
  • the lithium complex hybrid grease produced in this way can be homogenized using suitable equipment such as three-roll mills, colloid mills or Gaulin.
  • the lubricant composition according to the invention is produced in one process.
  • the addition of the PFPE oil (D) and the optional thickener component (E) in the process described above can be omitted, so that a lithium complex grease is produced.
  • Components (D) and (E) can be combined to a PFPE fat by stirring and homogenizing as described above.
  • Lithium complex grease and PFPE grease can be combined in a second process step and the lubricant composition according to the invention can be produced therefrom with stirring and homogenization.
  • Production can also be carried out using continuous processes, in which case Li-complex ready-made soap in powder form can also be used.
  • Lithium complex soap grease (fat A) and a PFPE / PTFE grease (fat B) are produced separately and the two fats A and B are mixed in different proportions, stirred and homogenized by rolling.
  • a lithium complex grease consisting of 77% of a mixture of an alkyl diphenyl ether (100 mm7sec / 40 ° C) and trimellitic acid ester as well as fully hydrogenated polyisobutylene (fully hydrogenated, Mn approx. 1300 g / mol) is used as the base oil, with a viscosity of 220 mm at 40 ° C 2 / sec results, then 15% lithium complex of azelaic acid and 12-hydroxystearic acid and 8% of an additive package consisting of amine antioxidants, phosphates, thiadiazoles, triazoles and amine phosphates are added.
  • the worked penetration is 270 1/10 mm (see table 1)
  • a PFPE / PTFE grease is used, containing 70% a mixture of linear and branched PFPE, kinematic viscosity 200 mm 2 / sec at 40 ° C, 26% PTFE micropowder, average particle size d 50 (laser diffraction, DIN ISO 9277) approx. 5 ⁇ m, specific surface (DIN ISO 9277) approx. 5 m 2 / g, and 4% disodium sebacate produced as an anti-corrosion additive.
  • the worked penetration is 286 1/10 mm (see table 1)
  • Example 2 (B2) Mixture of fat A and fat B in a ratio of 30% by weight to 70% by weight.
  • a urea hybrid fat consisting of 50% by weight of fat B and 50% by weight of a urea fat is produced.
  • the urea fat consists of a mixture of a trimellitic acid ester and a reaction product of octylamine and oleylamine with an MDI / TDI mixture as a urea thickener, as well as additives.
  • the base oil viscosity is approx. 80 mm 2 / sec.
  • the worked penetration is 265 mnrVsec (see Table 2)
  • a urea hybrid fat consisting of a complex ester, based on dimer acid, V 40 apr. 400 mm'Vsec at 40 ° C and branched PFPE oil with a kinematic viscosity of approx. 400 mm 2 / sec in a mass ratio of 2: 1.
  • the urea thickener is 10% contained and is a reaction product of octylamine and oleylamine with an MDI / TDI mixture. In addition, it contains 8% by weight of PTFE powder (as for fat B) and 5% by weight of soluble additives (antioxidants, amine phosphates). The worked penetration is 290 mm 2 / sec (see Table 2)
  • Table 1 shows the general characteristics of the lithium complex hybrid greases according to the invention of Examples B1 to B5 and the greases A and B, Table 1
  • Table 2 shows the data of comparative examples VG1 to 2.
  • the compositions according to the invention show a lower oil separation than the fats A and B from which they were produced.
  • This behavior shows the unexpected synergistic effect caused by the composition according to the invention.
  • the oil separation almost achieves the low values of the two comparison products VG1 and VG2.
  • the reduction in oil separation in comparison to grease B shows the advantage over pure PFPE / PTFE greases.
  • the lubricant compositions according to the invention were checked for their thermal stability and the results were compared primarily with those of the urea hybrid greases. For this purpose, investigations were carried out with regard to evaporation and viscosity under a temperature load of 5 g of fat weighed in in a stainless steel bowl at 200 ° C. The results are shown in Tables 3 and 4.
  • the evaporation loss is determined according to DIN standard 58397. Three stainless steel evaporation loss trays are required for each fat sample. The geometry of the bowls is described in the standard for determining the evaporation loss (DIN 58397). At the beginning, the respective empty weight of the bowls is determined. The three evaporation loss trays are then filled with the fat sample. It is important to ensure that the grease is applied without air bubbles. The surface is smoothed with a scraper and excess fat that has got into the recess on the edge of the bowl is removed. The dishes are then stored in a standard laboratory drying cabinet with convection with the flap closed at the appropriate test temperature (here 200 ° C).
  • the shear viscosity is determined according to DIN standard 53019 part 1 and part 3.
  • the fat samples are transferred to three stainless steel evaporation-loss trays.
  • the geometry of the bowls is described in the standard for determining the evaporation loss (DIN 58397).
  • the dishes are then stored in a standard laboratory drying cabinet with circulation at the appropriate test temperature (here 200 ° C). After the specified period of time (48h, 96h, 144h and 168h), the trays are removed from the drying cabinet and allowed to cool.
  • the starting value for the shear viscosity is determined for each grease before the thermal load.
  • the shear viscosity is measured with a device that is used as standard to determine theological parameters of lubricants (e.g. rheometer MCR 302 from Anton Paar).
  • a cone-plate system (DIN EN ISO 3219 and DIN 53019) is used, preferably with a measuring cone with a diameter of 25 mm.
  • the required amount of fat sample is based on typical amounts that are required for theological measurements.
  • the measurement duration is 120 s, of which 60 s are tempering or holding times. Measurements are made at a constant shear rate of 300 1 / s and a temperature of 25 ° C.
  • the value that can be read off after 90 s represents the shear viscosity for the respective fat sample.
  • the mean value is calculated from the three individual values determined and then given.
  • VG2 shows a shear viscosity of 100,000 mPas after just 96 hours and is no longer lubricious.
  • VG1 shows twice as high a shear viscosity than all compositions B1 to B5 according to the invention, see Table 4.
  • the PFPE / PTFE grease shows the lowest evaporation losses in the test.
  • the shear viscosity of Examples B1, B2 and B4 according to the invention after a test time of 168 hours is lower than that of fat B and thus shows more favorable hardening behavior.
  • the hardening behavior of the lubricants according to the invention is more favorable at high temperatures than in the case of urea hybrid greases. Surprisingly, it was even found that with some of the compositions according to the invention even less hardening occurs than with a PFPE / PTFE grease. Surprisingly, it was also found that the oil separation behavior of the lubricants according to the invention can be set and thus adapted to different requirements by selecting certain mixing ratios of greases A (lithium complex grease) and B (PTFE / PFPE grease).
  • a lubricant according to the invention can be produced in various ways.
  • a lithium complex grease (fat C) and a PFPE / PTFE grease (fat D) are produced separately and then mixed in a kettle at a ratio of 40 to 60% by weight while stirring.
  • the resulting lithium complex hybrid grease B6 is then homogenized using a three-roll mill.
  • the lithium complex grease is produced identically to fat C, but when it cools down, the components of fat D are added, so that the lubricant composition according to the invention is produced in one operation.
  • the lubricant composition B6 according to the invention is also finally rolled.
  • a lithium complex grease consisting of 80% by weight of a mixture of an alkyl diphenyl ether (100 mnfVsec at 40 ° C) and a trimellitic acid ester as well as fully hydrogenated polyisobutylene (fully hydrogenated, Mn approx. 1300 g / mol) is produced as the base oil, with a viscosity at 40 ° C of 100 mm 2 / sec results.
  • 15% by weight of a lithium complex of azelaic acid and 12-hydroxystearic acid and 5% by weight of an additive package consisting of amine antioxidants and phosphates are provided. The fulled penetration is 327 1/10 mm.
  • the fulled penetration is 286 1/10 mm
  • B6 can be used as a lubricant according to production example 1 and production example 2 with both production variants.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Lubricants (AREA)

Abstract

Die vorliegende Erfindung betrifft die Bereitstellung eines neuen Lithiumkomplexhybridfettes auf der Basis eines Lithiumkomplexfettes in Kombination mit einem PFPE-Fett, das bei hoher Temperatur eingesetzt werden kann, dabei nicht verlackt, und eine geringe Verhärtungstendenz zeigt. Des Weiteren betrifft die Erfindung die Verwendung der neuen Lithiumkomplexhybridfette in Bauteilen im Fahrzeugbereich und im Industriebereich.

Description

Lithiumkomplexhybridfett
Beschreibung
Die vorliegende Erfindung betrifft die Bereitstellung eines neuen Lithiumkomplexhybridfettes auf der Basis eines Lithiumkomplexfettes in Kombination mit einem PFPE-Fett, das bei hoher Temperatur eingesetzt werden kann, dabei nicht verlackt, und eine geringe Verhärtungstendenz zeigt. Des Weiteren betrifft die Erfindung die Verwendung der neuen Lithiumkomplexhybridfette in Bauteilen im Fahrzeugbereich.
Hybridfette sind Mischungen, die mindestens aus zwei Basisölen bestehen, die nicht miteinander mischbar sind. So stellen Hybridfette, die als Verdicker Harnstoff oder Harnstoff/PTFE-Gemische und Ester/PFPE als nicht mischbare Grundölkomponenten enthalten, eine wichtige Gruppe dieser Fette dar. Mit diesen Fetten ist es möglich, eine Temperaturlücke zwischen ca. 180°C, wie sie bei fluorfreien Fetten erreicht werden, bis zu 270°C, die mit reinen PTPE/PFPE-Fetten möglich sind, zu schließen. Auch können diese Produkte an bestimmte Anforderungen leichter angepasst werden, als dies mit reinen PFPE/PTFE-Fetten möglich ist. Für PFPE Öle sind nämlich nur sehr wenige lösliche Additive bekannt, sodass beispielsweise die Korrosionsschutzeigenschaften von PFPE Ölen nur bedingt verbessert werden können. Bei PFPE/PTFE Fetten werden daher feste Stoffe wie Natriumnitrit oder Magnesiumoxid als Korrosionsschutz eingesetzt. Die gleichmäßige Verteilung eines Feststoffes auf der Oberfläche eines Bauteiles ist aber viel schwieriger zu gewährleisten als die Benetzung der Oberfläche eines Bauteiles mit einem Öl, das ein gelöstes Korrosionsschutzadditiv enthält. Daher können die in der nicht fluorhaltigen flüssigen Phase enthaltenen Additive eines Hybridfettes Eigenschaften wie Korrosionsschutz besser bewerkstelligen als es bei einem reinen PFPE/PTFE Fett möglich ist. Durch die Reduktion des Gehaltes an PFPE Ölen im Hybridfett und die geringere Dichte des Hybridfettes ergeben sich zudem signifikante Kostenvorteile. Die Ester/PFPE/PTFE/Harnstoff-Fette, die beispielsweise in der EP0902828 IB1 beschrieben sind oder die Ester/PTFE/Harnstoff-Fette, wie sie beispielsweise in der US 6,063,743 beschrieben sind, haben den Nachteil, dass diese Fette bei hohen Temperaturen zur Nachhärtung neigen und sehr geringe Ölabscheidungen haben. Darüber hinaus können sie teilweise kritisch beim Einsatz mit bestimmten Elastomeren sein, so dass sie nicht in einem weiten Spektrum, wie z.B. Rollenlagern, in Wellpappenanlagen eingesetzt werden können. Darüber hinaus sind die fluorierten Fette sehr teuer, so dass auch ein Bedarf an Hybridfetten besteht, die kostengünstig mit den gleichen oder noch besseren Eigenschaften als die fluorierten Fette hergestellt werden können.
Lithiumkomplexfette weisen eine höhere Ölabscheidung und eine geringere Verhärtungstendenz bei hohen Temperaturen verglichen mit Ester/Harnstoff-Fetten auf. Allerdings ist die obere Gebrauchstemperatur deutlich niedriger als bei Harnstoffhybridfetten, was oft mit einer zu hohen Ölabscheidung in Zusammenhang gebracht wird oder aber auf die Verwendung von Grundölen wie Poly-alpha-olefinen oder Mineralölen, die thermisch weniger beständig sind, zurückzuführen ist.
Eine Aufgabe der vorliegenden Erfindung bestand daher darin, ein Lithiumkomplexhybridfett bereitzustellen, mit dem die vorstehend genannten Nachteile überwunden werden und das eine entsprechend ausreichende Ölabscheidung und eine geringe Verhärtung selbst bei hohen Temperaturen aufweist.
Diese Aufgabe konnte überraschenderweise dadurch gelöst werden, dass Lithiumkomplexfette, die Polyisobutylen und Ester enthalten mit PFPE-Ölen oder PFPE-Fetten, insbesondere PFPE/PTFE-Fetten kombiniert werden und so eine Hochtemperaturperformance erreicht werden kann, die an die Este r/Harn stoff/P FPE- Hybridfette heranreicht, aber nicht deren Nachteile aufweist. Überraschenderweise kann die Ölabscheidung durch Auswahl der Mengenanteile der beiden Fette so eingestellt werden, dass die Ölabscheidung niedriger als bei den beiden zur Mischung verwendeten Fetten liegt.
Des Weiteren wird ein Verfahren zur Schmierung oder zum Fetten von Bauteilen, insbesondere in Wälzlagern, Gleitlagern, Transport- und Steuerketten in der Fahrzeugtechnik bereitgestellt, dass das Aufträgen der erfindungsgemäßen Schmiermittelzusammensetzung umfasst.
Außerdem wird ein Verfahren zur Schmierung oder zum Fetten von Laufrollenlagern in Stranggießanlagen, Transportrollenlagern in Durchlauföfen, von offenen Zahnkränzen in Drehrohröfen, Rohrmühlen, Trommeln und Mischern, von Lagern in Wellpappanlagen oder Folienreckanlagen, Lagern zur Anlagen zur Herstellung und Transport von Lebensmitteln bereitgestellt, dass das Aufträgen der erfindungsgemäßen Schmiermittelzusammensetzung umfasst.
Die erfindungsgemäße Schmierstoffzusammensetzung umfasst
(A) einen Ester oder Mischung von Estern, die insbesondere ausgewählt werden aus der Gruppe bestehend aus Trimellithsäureestern, Pyromellithsäureestern, Dimersäureestern, Estoliden,
(B) Polyisobutylenen,
(C) Lithiumkomplexseifen und
(D) PFPE-Öle.
Eine bevorzugte erfindungsgemäße Schmierstoffzusammensetzung umfasst
(A) einen Ester oder Mischung von Estern, die insbesondere ausgewählt werden aus der Gruppe bestehend aus Trimellithsäureestern, Pyromellithsäureestern, Dimersäureestern, Estoliden,
(B) Polyisobutylenen,
(C) Lithiumkomplexseifen,
(D) PFPE-Öle und
(E) ein weiteres Verdickungsmittel. Eine besonders bevorzugte erfindungsgemäße Schmierstoffzusammensetzung umfasst
(A) einen Ester oder Mischung von Estern, die insbesondere ausgewählt werden aus der Gruppe bestehend aus Trimellithsäureestern, Pyromellithsäureestern, Dimersäureestern, Estoliden,
(B) Polyisobutylenen,
(C) Lithiumkomplexseifen,
(D) PFPE-Öle und
(E) PTFE als weiteres Verdickungsmittel.
Eine insbesonders bevorzugte erfindungsgemäße Schmierstoffzusammensetzung umfasst
(A) einen Ester oder Mischung von Estern, die insbesondere ausgewählt werden aus der Gruppe bestehend aus Trimellithsäureestern, Pyromellithsäureestern, Dimersäureestern, Estoliden,
(B) Polyisobutylenen,
(C) Lithiumkomplexseifen,
(D) PFPE-Öle und
(F) ein weiteres Grundöl, wobei akylierte Diphenylether bevorzugt sind.
Eine weitere bevorzugte erfindungsgemäße Schmierstoffzusammensetzung umfasst
(A) einen Ester oder Mischung von Estern, die insbesondere ausgewählt werden aus der Gruppe bestehend aus Trimellithsäureestern, Pyromellithsäureestern, Dimersäureestern, Estoliden,
(B) Polyisobutylenen,
(C) Lithiumkomplexseifen,
(D) PFPE-Öle,
(E) ein weiteres Verdickungsmittel und
(F) alkylierte Diphenylether.
Die erfindungsgemäßen Schmierstoffe können als weitere Komponente (G) Additive und (H) Festschmierstoffe enthalten. Komponente (A)
Die Komponente (A) ist in einer Menge von 70 bis 7 Gew.-%, bevorzugt 60 bis 15 Gew.-% in der erfindungsgemäßen Schmierstoffzusammensetzung enthalten.
Die Komponente (A) ist ein Ester oder ein Gemisch von Estern, wobei der Ester ausgewählt wird aus der Gruppe bestehend aus Trimellithsäureestern, die als Alkoxygruppen lineare oder verzweigte Alkylgruppen aufweisen, die 6 bis 18 Kohlenstoffatome enthalten, bevorzugt 8 bis 14 Kohlenstoffatome, wobei die Alkoxygruppen gleich oder verschieden sein können, Pyromellithsäureestern, bevorzugt Tetrakis(2-ethylhexyl)pyromellitat, hydrierte oder unhydrierte Dimersäureester, bevorzugt Bis(2-ethylhexyl)dimerat, Estolide.
Unter Estoliden versteht man Ester, die oligomere Einheiten aufgebaut aus Homopolymeren von Hydroxycarbonsäuren, beispielsweise von 12- Hydroxystearinsäure oder ungesättigten Carbonsäuren, beispielsweise wie Ölsäure enthalten. Geeignete Estolide sind beispielsweise in der US 6,018,063, US 6,316,649, WO 2018/177588 A1 und der US 2013/0261325 A1 beschrieben.
Komponente (B)
Die Komponente (B) ist ein Polyisobutylen oder Polybuten und in einer Menge von 0,5 bis 20 Gew.-% in der erfindungsgemäßen Zusammensetzung vorhanden, bevorzugt werden 1 ,5 bis 15 Gew.-% eingesetzt.
Bei Komponente (B) handelt es sich um ein Polymer, wie es beispielsweise in Synthetics, Mineral Oils And Bio Based Lubricants Chemistry And Technology, Second Edition, Editor Leslie R. Rudnik, Autoren M. Casserino, J. Corthouts, CRC Press 2013, Pages 273 - 300, (ISBN 978-1-4398-5537-9) beschrieben wird.
Durch geeignete Wahl des Polyisobutylens, insbesondere im Hinblick auf Hydrierungsgrad und Molekulargewicht, können die Eigenschaften des erfindungsgemäßen Fetts, beispielsweise deren kinematische Viskosität, in erwünschter Weise beeinflusst werden. Das Polyisobutylen kann in nicht hydrierter, hydrierter oder vollhydrierter Form eingesetzt werden, ebenso kann eine Mischung aus nicht hydriertem, hydriertem und vollhydriertem Polyisobutylen verwendet werden. Bevorzugt werden vollhydrierte Polyisobutylene eingesetzt. Die nicht hydrierten Polyisobutylene enthalten herstellungsbedingt eine ungesättigte Endgruppe. Unter hydrierten bzw. teilhydrierten Polyisobutylenen werden solche Polymere verstanden, deren Bromzahl im Vergleich zum unhydrierten Polyisobutylen gleicher zahlengemittelten Molekularmasse um mindestens 20% geringer ist. So beträgt die Bromzahl für ein nicht hydriertes Polyisobutylen mit Mn von 1300 g/mol 14 g Brom pro 100 g Polyisobutylen. Die Bromzahl bei vollhydrierten Polyisobutylenen liegt unter 7 g Brom pro 100 g Polyisobutylen. Die Bromzahl wird gemäß ASTM D2170-09 (reaproved 2018) bestimmt.
Gemäß einer weiteren bevorzugten Ausführungsform weist das Polyisobutylen ein zahlenmittleres Molekulargewicht von 115 bis 10000 g/mol, vorzugsweise von 500 bis 5000 g/mol auf. Das Zahlenmittlere Molekulargewicht wird nach ISO 16014-1 , Ausgabe 2019-05 mittels Gelpermeationschromatographie bestimmt.
Komponente (C)
Die Komponente (C) ist in einer Menge von 1 bis 18 Gew.-%, bevorzugt 4 bis 14 Gew.- % in der erfindungsgemäßen Schmierstoffzusammensetzung enthalten.
Bei der Komponente (C) handelt es sich um eine Lithiumkomplexseife. Unter Lithiumkomplexseifen versteht man Gemische von Lithiumsalzen aus monofunktionellen Carbonsäuren, bevorzugt Carbonsäuren die 8 bis 22 Kohlenstoffatome enthalten, insbesondere bevorzugt Carbonsäuren die 14 bis 20 Kohlenstoffatome enthalten, insbesondere bevorzugt 12-Hydroxystearinsäure und/oder Stearinsäure mit den Lithiumsalzen höherfunktionellen Carbonsäuren, bevorzugt Dicarbonsäuren mit 6 bis 14 Kohlenstoffatomen, insbesondere bevorzugt Azelainsäure, Sebacinsäure und Dodecandisäure. Lithiumkomplexseifen können zusätzlich kurzkettige Carbonsäuren wie Essigsäure und Milchsäure und/oder Phosphonsäuren und/oder Borsäure als weiter Säurekomponente enthalten.
Komponente (D)
Die Komponente (D) ist ein Perfluorpolyether (PFPE) gemäß der Formel (I):
RI-(0-CF2)V-(0-C2F4)W-(0- CsFeMO- CFCF3)y- (O- CF2CF(CF3)) z -O-R2 (I) wobei Ri und R2 identisch oder verschieden sind und ausgewählt werden aus -CF3, -C2F5, oder -C3F7 , v, w, x, y, z sind ganze Zahlen von > 0 bis 500. PFPE-Öle werden beispielsweise unter dem Markennamen Aflunox®, Krytox®, Fomblin® und Demnum® vertrieben.
Die PFPE Öle sind in Mengen von 5 bis 70 Gew.-%, bevorzugt zu 15 bis 50 Gew.-% in der erfindungsgemäßen Schmierstoffzusammensetzung enthalten.
Komponente (E)
Das erfindungsgemäße Lithiumkomplexhybridfett kann neben dem
Lithiumkomplexverdicker weitere Verdickungsmittel (E) umfassen.
Die weiteren Verdickungsmittel (E) sind in Mengen von 1 bis 30 Gew.-%, bevorzugt 3 bis 20 Gew.-% in der erfindungsgemäßen Schmierstoffzusammensetzung enthalten.
Die weiteren Verdickungsmittel (E) in dem erfindungsgemäßen Hybridfett werden ausgewählt aus der Gruppe bestehend aus Al-Komplexseifen, Metall-Einfachseifen der Elemente der ersten und zweiten Hauptgruppe des Periodensystems ohne Lithium, Metall-Komplexseifen der Elemente der ersten und zweiten Hauptgruppe des Periodensystems ohne Lithium, Bentonite, Sulfonate, Silikate, Aerosil, Polyimide oder PTFE oder einer Mischung der vorgenannten Verdickungsmittel. Ein besonders bevorzugtes weiteres Verdickungsmittel ist PTFE. Das bevorzugte PTFE wird als Mikropulver eingesetzt, das thermisch oder durch Bestrahlen von hochmolekularem PTFE unter Abbau des Molekulargewichtes hergestellt wird.
Komponente (F)
Die erfindungsgemäßen Hybridfette können weitere Öle (F) enthalten, die in Mengen von 0 bis 20 Gew.-%, bevorzugt zu 2 bis 20 Gew.-% in der erfindungsgemäßen Schmierstoffzusammensetzung enthalten sind.
Die Komponente (F) wird ausgewählt aus der Gruppe bestehend aus Mineralöl, alkylierten Benzolen, alkylierte Naphthaline, aliphatischen Carbonsäure- und Dicarbonsäureestern, Fettsäuretriglyceriden, alkylierte Diphenylether, Phloroglucinester, Estolide und/oder Poly-alpha-olefinen, alpha-Olefin-Copolymere, Metallocen katalysierte Poly-alfa-olefine. Bevorzugte weitere Öle sind alkylierte Diphenyletheröle. Alkylierte Diphenyletheröle werden beispielsweise unter dem Markennamen Hilube® von der Fa. Moresco vertrieben. Die Alkylgruppen enthalten zwischen 10 und 20 Kohlenstoffatome. Im Mittel sind zwischen einer und drei Alkylgruppen an die Diphenylether-Grundeinheit gebunden.
Komponente (G)
Das erfindungsgemäße Schmierstoffzusammensetzung umfasst des Weiteren von 0 bis 10 Gew.%, bevorzugt von 0,1 bis 10 Gew.-% Additive (G), die einzeln oder in Kombination eingesetzt werden.
Die Komponente (G) wird ausgewählt aus der Gruppe bestehend aus Korrosionsschutzadditiven, Antioxidantien, Verschleißschutzadditiven, UV- Stabilisatoren, ausgewählt werden. Es können sowohl Additive verwendet werden, die in der Komponente (A) löslich als auch Additive, die in den PFPE-Ölen der Komponente (D) löslich oder aber auch in beiden Ölphasen unlöslich sind.
Beispiele für Antioxidantien sind styrolisierte Diphenylamine, diaromatische Amine, Phenolharze, Thiophenolharze, Phosphite, butyliertes Hydroxytoluol, butyliertes Hydroxyanisol, Phenyl-alpha-naphthylamin, Phenyl-beta-naphthylamin, octyliertes/butyliertes Diphenylamin, di-alpha-Tocopherol, di-tert.-butyl-Phenol oderdi- tert.butyl-4-methylphenol, Benzolpropansäure, schwefelhaltige Phenolverbindungen, Phenolverbindungen und Mischungen dieser Komponenten.
Beispiele für geeignete Korrosionsschutzadditive, Metalldesaktivatoren oder lonen- Komplexbildner enthalten. Hierzu zählen Triazole, Imidazoline, N-Methylglycin (Sarcosin), Benzotriazolderivate, N,N-Bis(2-ethylhexyl)-ar-methyl-1 H-benzotriazol-1- methanamin; n-Methyl-N(1-oxo-9-octadecenyl)glycin, Gemisch aus Phosphorsäure und Mono-und Diisooctylester umgesetzt mit (Cn-14)-Alkylaminen, Gemisch aus Phosphorsäure und Mono-und Diisooctylester umgesetzt mit tert.-Alkylamin und primären (Ci2-14)-Aminen, Dodekansäure, Triphenylphosphorthionat und Aminphosphate. Kommerziell erhältliche Additive sind die folgenden: IRGAMET® 39, IRGACOR® DSS G, Amin O; SARKOSYL® O (Ciba), COBRATEC® 122, CUVAN® 303, VANLUBE® 9123, CI-426, CI-426EP, CI-429 und CI-498.
Weitere Verschleißschutzadditive sind Amine, Aminphosphate, Phosphate, Thiophosphate, und Mischungen dieser Komponenten. Meistens weisen die genannten Verbindungen organische Gruppen auf. Zu den kommerziell erhältlichen Verschleißschutzadditiven gehören IRGALUBE® TPPT, IRGALUBE® 232, IRGALUBE® 349, IRGALUBE® 211 und ADDITIN® RC3760 Liq 3960, FIRC-SHUN® FG 1505 und FG 1506, NA-LUBE® KR-015FG, LUBEBOND®, FLUORO® FG, SYNALOX® 40-D, ACHESON® FGA 1820 und ACHESON® FGA 1810.
Als Additive können auch PFPE-Derivate enthalten sein. Beispielsweise PFPE- Carbonsäuren, deren Metall- und Ammoniumsalze, deren Ester- und Amid-Derivate. Weitere geeignete Substanzen sind beispielsweise in WO01/72759A1 , WO 01/27916A1 , EP1070074B1 , EP1659165B1 und US2015011446A1 beschrieben.
Komponente (H)
Des Weiteren können die erfindungsgemäßen Schmierstoffzusammensetzungen Festschmierstoffe (H) enthalten, die ausgewählt werden aus der Gruppe bestehend aus BN, Pyrophosphat, Zn-Oxid, Mg-Oxid, Pyrophosphate, Thiosulfate, Mg-Carbonat, Ca-Carbonat, Ca-Stearat, Zn-Sulfid, Mo-sulfid, W-sulfid, Sn-Sulfid, Graphite, Graphen, Nano-Tubes, Si02-Modifikationen oder eine Mischung daraus enthalten. Die Festschmierstoffe (H) sind in Mengen von 0 bis 10 Gew.-%, bevorzugt 2 bis 5 Gew.- % in der erfindungsgemäßen Schmierstoffzusammensetzung enthalten.
Die erfindungsgemäße Schmierstoffzusammensetzung wird im Bereich von Bauteilen, insbesondere in Wälzlagern, Gleitlagern, Transport- und Steuerketten in der Fahrzeugtechnik, bei Schienenfahrzeugen, der Fördertechnik, bei Folienreckanlagen, bei Wellpappanlagen, von Laufrollenlagern, Lüfterlagern, Lagern von Traktionsmotoren, zur Schmierung von Kegelrad- und Stirnradgetrieben, Federn, Schrauben und Kompressoren, Pneumatikkomponenten, Armaturen, und von Maschinenbauteilen und in Anlagen, bei denen es zum gelegentlichen, unbeabsichtigten Kontakt mit Lebensmitteln kommt, eingesetzt.
Die beigefügten Figuren zeigen die Vorteile der erfindungsgemäßen Lithiumhybridkomplexfette:
Fig. 1 zeigt die Walkpenetration 60dT,
Fig. 2 zeigt die Ölabscheidung, d.h. den Verlust des Öls aus dem Schmierfett.
Die Erfindung nun anhand der folgenden Beispiele näher erläutert.
Herstellung der erfindungsgemäßen Schmierstoffzusammensetzunqen
Die Herstellung der erfindungsgemäßen Schmierstoffzusammensetzung ist nicht eingeschränkt und kann nach allen geeigneten Verfahren durchgeführt werden.
Die Herstellung der erfindungsgemäßen Schmierstoffherstellung kann beispielsweise so erfolgen, dass mit den Komponenten (A) und/oder (B) und/oder (F) ein Grundölgemisch hergestellt wird. In diesem Grundölgemisch, das komplett oder nur teilweise in einem geeigneten Reaktionsbehälter, der Heiz-, Kühl- und Rühreinrichtungen enthält, vorgelegt wird, werden die für den Lithiumkomplexverdicker (C) erforderlichen Säuren eingeschmolzen und eine wässrige Lithiumhydroxidlösung zugegeben. Dadurch bildet sich ein Sud, der die Lithiumseifen der Carbonsäuren enthält. Die Säuren können einzeln zugegeben und neutralisiert werden oder aber es wird erst die Monocarbonsäure zugegeben und neutralisiert und in einem zweiten Schritt die höherfunktionelle Carbonsäure zugegeben und neutralisiert. Der Sud wird auf 130°C erhitzt um Wasser auszutreiben. Die Quellung des Verdickers (Lithiumkomplexseife) wird durch thermische Behandlung bei 150°C bis 210°C durchgeführt. Der thermisch behandelte Sud wird dann abgekühlt, wobei auch ein Teil des Grundölgemisches verwendet werden kann. Die Komponenten (D), (E), (G), (H) und eventuell nicht für das Grundölgemisch verwendeten (A), (B) und (F) werden bei einer geeigneten Temperatur zugegeben und durch Rühren vorhomogenisiert.
Feste Schmierstoffadditive, die im Grundölgemisch löslich sind, werden beispielsweise bei Temperaturen oberhalb ihres Schmelzpunktes zugegeben. Flüssige Additive oder nicht schmelzende Additive/FestschmierstoffeA/erdickerkomponenten werden bei Temperaturen unter 80°C zugegeben. Das so hergestellte Lithiumkomplexhybridfett kann durch geeignete Geräte wie Dreiwalzwerke, Kolloidmühlen oder Gaulin homogenisiert werden.
In dem so beschriebenen Verfahren wird die erfindungsgemäße Schmierstoffzusammensetzung in einem Prozess hergestellt. Alternativ kann die Zugabe des PFPE-Öles (D) und der optionalen Verdickerkomponente (E) in dem oben beschriebenen Verfahren unterbleiben, so dass ein Lithiumkomplexfett entsteht. Die Komponenten (D) und (E) können durch Rühren, Homogenisieren wie oben beschrieben zu einem PFPE-Fett vereinigt werden. Lithiumkomplexfett und PFPE-Fett können in einem zweiten Verfahrensschritt vereinigt werden und daraus unter Rühren und Homogenisieren die erfindungsgemäße Schmierstoffzusammensetzung hergestellt werden.
Die Herstellung kann auch mit kontinuierlichen Verfahren erfolgen, wobei auch Li- Komplex-Fertigseife in Pulverform verwendet werden kann.
Beispiel 1 Herstellung mehrerer erfindungsgemäßer Schmierstoffzusammensetzungen, Vergleich mit den zur Herstellung verwendeten Lithiumkomplexfett bzw. PFPE/PTFE- Fett, Vergleich mit Harnstoff Hybridfetten
Herstellung
Lithiumkomplexseifenfett (Fett A) und ein PFPE/PTFE-Fett (Fett B) werden separat hergestellt und die beiden Fette A und B in unterschiedlichen Verhältnissen vermischt, gerührt und durch Walzen homogenisiert.
Fett A
Es wird ein Lithiumkomplexfett bestehend aus 77 % einer Mischung eines Alkyldiphenylether (100 mm7sec/40°C) und Trimellithsäureester sowie vollhydriertem Polyisobutylen (vollhydriert, Mn ca. 1300 g/mol) als Grundöl, wobei sich eine Viskosität bei 40°C von 220 mm2/sec ergibt, hergestellt, dann werden 15 % Lithiumkomplex aus Azelainsäure und 12-Hydroxystearinsäure, sowie 8 % eines Additivpackages bestehend aus aminischen Antioxidantien, Phosphaten, Thiadiazolen, Triazolen und Aminphosphaten zugegeben. Die Walkpenetration liegt bei 270 1/10 mm (siehe Tabelle 1)
Fett B
Es wird ein PFPE/PTFE-Fett, enthaltend zu 70 % eine Mischung aus linearem und verzweigtem PFPE, kinematische Viskosität 200 mm2/sec bei 40°C, 26 % PTFE- Mikropulver, durchschnittliche Teilchengröße d 50 (Laserbeugung, DIN ISO 9277) ca. 5 pm, spezifische Oberfläche (DIN ISO 9277) ca. 5 m2/g, und 4 % Dinatriumsebacat als Korrosionschutzadditiv hergestellt. Die Walkpenetration liegt bei 286 1/10 mm (siehe Tabelle 1)
Beispiel 1 (B1)
Mischung aus Fett A und Fett B im Verhältnis 10 Gew.-% zu 90 Gew.-%.
Beispiel 2 (B2) Mischung aus Fett A und Fett B im Verhältnis 30 Gew.-% zu 70 Gew.-%.
Beispiel 3 (B3)
Mischung aus Fett A und Fett B im Verhältnis 50 Gew.-% zu 50 Gew.-%.
Beispiel 4 (B4)
Mischung aus Fett A und Fett B im Verhältnis 70 Gew.-% zu 30 Gew.-%.
Beispiel 5 (B5)
Mischung aus Fett A und Fett B im Verhältnis 90 Gew.-% zu 10 Gew.-%. Verqleichsbeispiel 1 (VG1)
Es wird ein Harnstoffhybridfett bestehend zu 50 Gew.-% aus Fett B und zu 50 Gew.- % aus einem Harnstofffett hergestellt. Das Harnstofffett besteht aus einer Mischung eines Trimellitsäureesters und einem Reaktionsprodukt aus Octylamin und Oleylamin mit einem MDI/TDI-Gemisch als Harnstoffverdicker, sowie Additiven. Die Grundölviskosität liegt bei ca. 80 mm2/sec. Die Walkpenetration liegt bei 265 mnrVsec (siehe Tabelle 2)
Verqleichsbeispiel 2 (VG2)
Es wird ein Harnstoffhybridfett bestehend aus einem Komplexester, Dimersäure basiert, V 40 apr. 400 mm'Vsec bei 40°C und verzweigtem PFPE-ÖI mit einer kinematischen Viskosität von ca. 400 mm2/sec im Massenverhältnis 2:1 hergestellt. Der Harnstoffverdicker ist zu 10 % enthalten und ist ein Reaktionsprodukt aus Octylamin und Oleylamin mit einem MDI/TDI-Gemisch. Darüber hinaus sind 8 Gew.- % PTFE-Pulver (wie bei Fett B) und 5 Gew.-% lösliche Additive (Antioxidantien, Aminphosphate) enthalten. Die Walkpenetration liegt bei 290 mm2/sec (siehe Tabelle 2)
Tabelle 1 zeigt die allgemeinen Kenndaten der erfindungsgemäßen Lithumkomplexhybridfette der Beispiele B1 bis B5 und der Fette A und B, Tabelle 1
Figure imgf000016_0001
Tabelle 2 zeigt die Daten der Vergleichsbeispiele VG1 bis 2.
Tabelle 2
Figure imgf000017_0001
Wie in Figur 1 (Walkpenetration der erfindungsgemäßen Zusammensetzungen) zu erkennen ist, ergibt sich besonders für die Zusammensetzungen B2, B3 und B4 eine niedrigere Walkpenetration als für die beiden eingesetzten Fette A und B. Dies zeigt einen unerwarteten synergistischen Effekt durch die Kombination der beiden Fetttypen zu den erfindungsgemäßen Zusammensetzungen.
Wie in Figur 2 (Ölabscheidung der erfindungsgemäßen Zusammensetzungen im Vergleich) zu erkennen ist, zeigen die erfindungsgemäßen Zusammensetzungen eine niedrigere Ölabscheidung als die Fette A und B, aus denen sie hergestellt wurden. Dieses Verhalten zeigt den unerwarteten synergistischen Effekt, der durch die erfindungsgemäße Zusammensetzung hervorgerufen wird. Die Ölabscheidung erreicht nahezu die niedrigen Werte der beiden Vergleichsprodukte VG1 und VG2. Die Reduktion der Ölabscheidung im Vergleich Fett B zeigt den Vorteil gegenüber den reinen PFPE/PTFE Fetten auf.
Auch legen die Daten nahe, dass ein gewünschtes Ölabscheidungsverhalten durch Wahl der Menge an Fetten A und B eingestellt werden kann.
Bestimmung des Verdampfunqsverlustes
Die erfindungsgemäßen Schmierstoffzusammensetzungen wurden auf ihre thermische Beständigkeit überprüft und die Ergebnisse vor allem mit denen der Harnstoff-Hybridfette verglichen. Dazu wurden Untersuchungen hinsichtlich der Verdampfung und Viskosität unter Temperaturbelastung von 5 g Fett Einwaage in einem Edelstahl-Schälchen bei 200°C durchgeführt. Die Ergebnisse sind in den Tabellen 3 und 4 gezeigt.
Der Verdampfungsverlust wird nach der DIN-Norm 58397 bestimmt. Für jede Fettprobe werden jeweils drei Verdampfungsverlustschalen aus nicht-rostendem Stahl benötigt. Die Geometrie der Schalen ist in der Norm zur Bestimmung des Verdampfungsverlustes (DIN 58397) beschrieben. Zu Beginn wird das jeweilige Leergewicht der Schalen ermittelt. Im Anschluss werden die drei Verdampfungsverlustschalen mit der Fettprobe gefüllt. Dabei ist darauf zu achten, das Fett luftblasenfrei aufzubringen. Mit einem Abstreifer wird die Oberfläche glattgestrichen und überschüssiges Fett, das in die Randvertiefung der Schale gelangt ist, wird entfernt. Die Schalen werden anschließend in einem gängigen Labor- Trockenschrank mit Konvektion bei geschlossener Klappe bei entsprechender Prüftemperatur (hier 200°C) eingelagert. Nach der jeweils vorgegebenen Zeitdauer (48h, 96h, 144h und 168h) entnimmt man die Schalen aus dem Trockenschrank und lässt diese erkalten. Anschließend werden die Schalen gewogen. Der Verdampfungsverlust wird aus der Differenz von Einwaage zu gemessenem Wert ermittelt. Aus den drei Einzelwerten wird ein Mittelwert bestimmt (VM) Zusammen mit dem Mittelwert der drei Einwaagen (AM) lässt sich der Verdampfungsverlust berechnen. V = (VM / AM)*100 [% ]. Nach dem Auswiegen werden die Schalen bis zum nächsten Zeitpunkt in den Trockenschrank gestellt. Dies wird solange wiederholt, bis 168h vergangen sind.
Tabelle 3
Figure imgf000019_0001
Figure imgf000020_0001
Bestimmung der Scherviskosität
Die Scherviskosität wird nach der DIN-Norm 53019 Teil 1 und Teil 3 bestimmt. Die Fettproben werden in jeweils drei Verdampfungsverlustschalen aus nicht-rostendem Stahl überführt. Die Geometrie der Schalen ist in der Norm zur Bestimmung des Verdampfungsverlustes (DIN 58397) beschrieben. Die Schalen werden anschließend in einem gängigen Labor-Trockenschrank mit Umwälzung bei entsprechender Prüftemperatur (hier 200°C) eingelagert. Nach der jeweils vorgegebenen Zeitdauer (48h, 96h, 144h und 168h) entnimmt man die Schalen aus dem Trockenschrank und lässt diese erkalten. Der Startwert für die Scherviskosität wird von jedem Fett vor der thermischen Belastung bestimmt.
Die Messung der Scherviskosität erfolgt mit einem Gerät, das standardmäßig zur Bestimmung Theologischer Parameter von Schmierstoffen verwendet wird (z.B. Rheometer MCR 302 von Anton Paar).
Eingesetzt wird dabei ein Kegel-Platte-System (DIN EN ISO 3219 und DIN 53019), bevorzugt mit einem Messkegel, der einen Durchmesser von 25 mm aufweist. Die benötigte Menge an Fettprobe orientiert sich an typischen Mengen, die für Theologische Messungen erforderlich sind. Die Messdauer beträgt 120 s, wovon 60 s Temperier- bzw. Haltezeit sind. Gemessen wird bei einer konstanten Scherrate von 300 1/s und einer Temperatur von 25°C. Der Wert, der nach 90 s abgelesen werden kann, stellt die Scherviskosität für die jeweilige Fettprobe dar. Aus den drei ermittelten Einzelwerten wird der Mittelwert gebildet und final angegeben.
Tabelle 4
Figure imgf000020_0002
Figure imgf000021_0001
Die Fette der Beispiele 1 bis 5 wurden nun mit den Fetten der Vergleichsbeispiele 1 und 2 und den beiden Einzelfetten (A) und (B) hinsichtlich ihrer thermischen Beständigkeit verglichen. Die Ergebnisse sind in den Tabellen 5 und 6 gezeigt.
Tabelle 5
Figure imgf000021_0002
Tabelle 6
Figure imgf000022_0001
Die obigen Ergebnisse zeigen, dass mit den erfindungsgemäßen Lithiumkomplexhybridfetten der Anstieg der Scherviskosität deutlich niedriger ausfällt als bei den Vergleichsprodukten VG1 und VG2. VG2 zeigt bereits nach 96 h eine Scherviskosität von 100.000 mPas und ist nicht mehr schmierfähig. VG1 zeigt nach 168 h Prüfzeit eine doppelt so hohe Scherviskosität als alle erfindungsgemäßen Zusammensetzungen B1 bis B5, siehe Tabelle 4.
Das PFPE/PTFE-Fett (Fett B) zeigt in dem Test erwartungsgemäß die geringsten Verdampfungsverluste. Überraschenderweise liegt die Scherviskosität der erfindungsgemäßen Beispiele B1 , B2 und B4 nach 168 h Prüfzeit niedriger als bei Fett B und zeigt damit günstigeres Verhärtungsverhalten.
Insgesamt zeigt sich, dass das Verhärtungsverhalten der erfindungsgemäßen Schmierstoffe bei hohen Temperaturen günstiger ist als bei Harnstoff-Hybridfetten. Überraschenderweise wurde sogar gefunden, dass bei manchen der erfindungsgemäßen Zusammensetzungen sogar eine geringere Verhärtung auftritt als bei einem PFPE/PTFE-Fett. Überraschenderweise wurde auch gefunden, dass das Ölabscheidungsverhalten der erfindungsgemäßen Schmierstoffe durch Wahl von bestimmten Mischungsverhältnisses der Fette A (Lithiumkomplexfett) und B (PTFE/PFPE-Fett) eingestellt und somit auf unterschiedliche Anforderungen angepasst werden kann.
Beispiel 2
Herstellung eines erfindungsgemäßen Schmierstoffes mit unterschiedlichen Herstellverfahren Wie bereits beschrieben, können die erfindungsgemäßen Schmierstoffe auf verschiedene Weise hergestellt werden. Bei der Variante „im Kessel gemischt“ werden ein Lithiumkomplexfett (Fett C) und ein PFPE/PTFE-Fett (Fett D) getrennt hergestellt und dann in einem Kessel im Verhältnis 40 zu 60 Gew.-% unter Rühren gemischt. Das so entstehende Lithiumkomplexhybridfett B6 wird mit einem Dreiwalzwerk abschließend homogenisiert.
Bei der „in situ“ Herstellung wird das Lithiumkomplexfett identisch zum Fett C hergestellt, beim Abkühlen werden dann aber, abweichend auch die Bestandteile des Fettes D, zugegeben, sodass die erfindungsgemäße Schmierstoffzusammensetzung in einem Arbeitsgang hergestellt wird. Die erfindungsgemäße Schmierstoffzusammensetzung B6 wird ebenfalls abschließend gewalzt.
Fett C
Es wird ein Lithiumkomplexfett bestehend aus 80 Gew.-%% einer Mischung eines Alkyldiphenylether (100 mnfVsec bei 40°C) und eines Trimellitsäureesters sowie vollhydriertem Polyisobutylen (vollhydriert, Mn ca. 1300 g/mol) als Grundöl hergestellt, wobei sich eine Viskosität bei 40°C von 100 mm2/sec ergibt. 15 Gew.-% eines Lithiumkomplexes aus Azelainsäure und 12-Hydroxystearinsäure, sowie 5 Gew.-% eines Additivpackages bestehend aus aminischen Antioxidantien, Phosphaten werden bereitgestellt. Die Walkpenetration liegt bei 327 1/10 mm.
Fett D
Es wird ein PFPE/PTFE-Fett, enthaltend zu 65 Gew.-% eine Mischung aus linearem und verzweigtem PFPE, einer kinematischen Viskosität von 145 mm2/sec bei 40°C, 33 Gew.-% PTFE-Mikropulver, durchschnittliche Teilchengröße d 50 (Laserbeugung, DIN ISO 9277) ca. 5 miti, spezifische Oberfläche (DIN ISO 9277) ca. 5 m2/g, und 2 Gew.- % Dinatriumsebacat als Korrosionschutzadditiv hergestellt. Die Walkpenetration liegt bei 286 1/10 mm
Tabelle 7
Daten des erfindungsgemäßen Beispiels B6 nach Beispiel 2
Figure imgf000024_0001
Tabelle 8
Figure imgf000024_0002
Tabelle 9
Figure imgf000024_0003
Beide Herstellungsvarianten liefern im Rahmen der Messgenauigkeit gleiche Werte. Aufgrund der vorliegenden Daten kann B6, nach Herstellungsbeispiel 1 und Herstellungsbeispiel 2, mit beiden Herstellvarianten als Schmierstoff eingesetzt werden.
Somit ist gezeigt, dass die erfindungsgemäßen Schmierstoffzusammensetzungen mit unterschiedlichen Verfahren hergestellt werden können.

Claims

Patentansprüche
1. Lithiumkomplexhybridfett enthaltend
(A) 70 bis 7 Gew.-% eines Esters oder eines Estergemisches, ausgewählt aus der Gruppe bestehend aus Trimellithsäureestern, die als Alkoxygruppe lineare oder verzweigte Alkylgruppen aufweisen, die 6 bis 18 Kohlenstoffatome enthalten, bevorzugt 8 bis 14 Kohlenstoffatome, wobei die Alkoxygruppe gleich oder verschieden sein können, Pyromellithsäureestern, hydrierte oder unhydrierte Dimersäuren, Estoliden,
(B) 0,5 bis 20 Gew.-% nicht hydriertes, hydriertes oder vollhydriertes Polyisobutylen oder deren Mischungen,
(C) 1 bis 18 Gew.-% Lithiumkomplexseifen und
(D) 5 bis 70 Gew.-% Perfluorpolyether (PFPE).
2. Lithiumkomplexhybridfett nach Anspruch 1 des Weiteren enthaltend
(E) 1 bis 30 Gew,-% eines weiteren Verdickungsmittels.
3. Lithiumkomplexhybridfett nach einem der vorherigen Ansprüche des Weiteren enthaltend
(F) 0 bis 20 Gew.-%, vorzugsweise 2 bis 20 Gew.-% einer weiteren Ölkomponente.
4. Lithiumkomplexhybridfett nach einem der vorherigen Ansprüche des Weiteren enthaltend
(G) 0 bis 10 Gew.-%, vorzugsweise 0,1 bis 10 Gew.-% Additive,
5. Lithiumkomplexhybridfett nach einem der vorherigen Ansprüche des Weiteren enthaltend
(H) 0 bis 10 Gew.-%, vorzugsweise 2 bis 5 Gew.-% Festschmierstoff.
6. Lithiumkomplexhybridfett nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Pyromellithsäureester der Komponente (A) Tetrakis(2-ethylhexyl)pyromellitat und die Dimersäure Bis(2-ethylhexyl)dimerat ist.
7. Lithiumkomplexhybridfett nach Anspruch 2, dadurch gekennzeichnet, dass die Komponente (E) ausgewählt wird aus der Gruppe bestehend aus Al- Komplexseifen, Metall-Einfachseifen der Elemente der ersten und zweiten Hauptgruppe des Periodensystems ohne Lithium, Metall-Komplexseifen der Elemente der ersten und zweiten Hauptgruppe des Periodensystems ohne Lithium, Bentonite, Sulfonate, Silikate, Aerosil, Polyimide, PTFE oder einer Mischung daraus.
8. Lithiumkomplexhybridfett nach Anspruch 3, dadurch gekennzeichnet, dass die Komponente (F) wird ausgewählt aus der Gruppe bestehend aus Mineralöl, alkylierten Benzolen, alkylierte Naphthaline, aliphatischen Carbonsäure- und Dicarbonsäureestern, Fettsäuretriglyceriden, alkylierte Diphenylether, Phloroglucinester, und/oder Poly-alpha-olefinen, alpha-Olefin-Copolymere, Metallocen katalysierte Poly-alfa-olefine.
9. Lithiumkomplexhybridfett nach Anspruch 4, dadurch gekennzeichnet, dass die Komponente (G) ausgewählt wird aus der Gruppe bestehend aus Korrosionsschutzadditiven, Antioxidantien, Verschleißschutzadditiven, UV- Stabilisatoren.
10. Lithiumkomplexhybridfett nach Anspruch 5, dadurch gekennzeichnet, dass die Komponente (H) ausgewählt wird aus der Gruppe bestehend aus BN, Pyrophosphat, Zn-Oxid, Mg-Oxid, Pyrophosphate, Thiosulfate, Mg-Carbonat, Ca-Carbonat, Ca-Stearat, Zn-Sulfid, Mo-sulfid, W-sulfid, Sn-Sulfid, Graphite, Graphen, Nano-Tubes, SiC>2-Modifikationen oder einer Mischung daraus.
11. Verwendung des Lithiumkomplexhybridfett nach einem der vorherigen
Ansprüche zur Schmierung von Bauteilen, insbesondere in Wälzlagern, Gleitlagern, Transport- und Steuerketten in der Fahrzeugtechnik, bei Schienenfahrzeugen, der Fördertechnik, bei Folienreckanlagen, bei Wellpappanlagen, von Laufrollenlagern, Lüfterlagern, Lagern von
Traktionsmotoren, zur Schmierung von Kegelrad- und Stirnradgetrieben, Federn, Schrauben und Kompressoren, Pneumatikkomponenten, Amaturen, und von Maschinenbauteilen und in Anlagen, bei denen es zum gelegentlichen, unbeabsichtigten Kontakt mit Lebensmitteln kommt.
12. Verfahren zur Schmierung oder zum Fetten von Bauteilen, insbesondere in Wälzlagern, Gleitlagern, Transport- und Steuerketten in der Fahrzeugtechnik und bei Schienenfahrzeugen, das Verfahren umfasst:
Aufträgen einer Schmiermittelzusammensetzung auf die Oberfläche des Bauteils, das Schmiermittel umfasst:
(A) 70 bis 7 Gew.-% eines Esters oder eines Estergemisches, ausgewählt aus der Gruppe bestehend aus Trimellithsäureestern, die als Alkoxygruppe lineare oder verzweigte Alkylgruppen aufweisen, die 6 bis 18 Kohlenstoffatome enthalten, bevorzugt 8 bis 14 Kohlenstoffatome, wobei die Alkoxygruppe gleich oder verschieden sein können, Pyromellithsäureestern, hydrierte oder unhydrierte Dimersäuren, Estoliden,
(B) 0,5 bis 20 Gew.-% nicht hydriertes, hydriertes oder vollhydriertes Polyisobutylen oder deren Mischungen,
(C) 1 bis 18 Gew.-% Lithiumkomplexseifen und
(D) 5 bis 70 Gew.-% Perfluorpolyether (PFPE).
13. Verfahren zur Schmierung oder zum Fetten von Laufrollenlagern in Stranggießanlagen, Transportrollenlagern in Durchlauföfen, von offenen Zahnkränzen in Drehrohröfen, Rohrmühlen, Trommeln und Mischern, Lagern in Wellpappanlagen und Folienreckanlagen, Lagern in Anlagen zur Herstellung und Transport von Lebensmitteln, das Verfahren umfasst:
Aufträgen einer Schmiermittelzusammensetzung auf die Oberfläche des Bauteils, das Schmiermittel umfasst: (A) 70 bis 7 Gew.-% eines Esters oder eines Estergemisches, ausgewählt aus der Gruppe bestehend aus Trimellithsäureestern, die als Alkoxygruppe lineare oder verzweigte Alkylgruppen aufweisen, die 6 bis 18 Kohlenstoffatome enthalten, bevorzugt 8 bis 14 Kohlenstoffatome, wobei die Alkoxygruppe gleich oder verschieden sein können, Pyromellithsäureestern, hydrierte oder unhydrierte Dimersäuren, Estoliden,
(B) 0,5 bis 20 Gew.-% nicht hydriertes, hydriertes oder vollhydriertes Polyisobutylen oder deren Mischungen,
(C) 1 bis 18 Gew.-% Lithiumkomplexseifen und
(D) 5 bis 70 Gew.-% Perfluorpolyether (PFPE).
14. Verfahren zur Reduktion der Verhärtung von Schmierfetten bei 200°C und/oder zur Reduktion der Ölabscheidung von Schmierfetten auf Laufrollenlagern in Stranggießanlagen, Transportrollenlagern in Durchlauföfen, von offenen Zahnkränzen in Drehrohröfen, Rohrmühlen, Trommeln und Mischern, Lagern in Wellpappanlagen und Folienreckanlagen, Lagern in Anlagen zur Herstellung und Transport von Lebensmitteln, das Verfahren umfasst:
Aufträgen einer Schmiermittelzusammensetzung auf die Oberfläche des Bauteils, das Schmiermittel umfasst:
(A) 70 bis 7 Gew.-% eines Esters oder eines Estergemisches, ausgewählt aus der Gruppe bestehend aus Trimellithsäureestern, die als Alkoxygruppe lineare oder verzweigte Alkylgruppen aufweisen, die 6 bis 18 Kohlenstoffatome enthalten, bevorzugt 8 bis 14 Kohlenstoffatome, wobei die Alkoxygruppe gleich oder verschieden sein können, Pyromellithsäureestern, hydrierte oder unhydrierte Dimersäuren, Estoliden,
(B) 0,5 bis 20 Gew.-% nicht hydriertes, hydriertes oder vollhydriertes Polyisobutylen oder deren Mischungen,
(C) 1 bis 18 Gew.-% Lithiumkomplexseifen und
(D) 5 bis 70 Gew.-% Perfluorpolyether (PFPE).
PCT/EP2021/052523 2020-05-13 2021-02-03 Lithiumkomplexhybridfett WO2021228442A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180034746.2A CN115461434B (zh) 2020-05-13 2021-02-03 锂复合杂化润滑脂
US17/904,257 US20230138681A1 (en) 2020-05-13 2021-02-03 Lithium Complex Hybrid Grease
EP21704440.3A EP4090723B1 (de) 2020-05-13 2021-02-03 Lithiumkomplexhybridfett

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020112993.9 2020-05-13
DE102020112993.9A DE102020112993A1 (de) 2020-05-13 2020-05-13 Lithiumkomplexhybridfett

Publications (1)

Publication Number Publication Date
WO2021228442A1 true WO2021228442A1 (de) 2021-11-18

Family

ID=74586988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/052523 WO2021228442A1 (de) 2020-05-13 2021-02-03 Lithiumkomplexhybridfett

Country Status (5)

Country Link
US (1) US20230138681A1 (de)
EP (1) EP4090723B1 (de)
CN (1) CN115461434B (de)
DE (1) DE102020112993A1 (de)
WO (1) WO2021228442A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114150525A (zh) * 2021-11-26 2022-03-08 上海东升新材料有限公司 一种纳米改性造纸用润滑剂

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114574273B (zh) * 2022-03-18 2022-08-12 中国科学院兰州化学物理研究所 一种托轮轴瓦润滑油及其制备方法和应用

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6018063A (en) 1998-11-13 2000-01-25 The United States Of America As Represented By The Secretary Of Agriculture Biodegradable oleic estolide ester base stocks and lubricants
US6063743A (en) 1989-06-02 2000-05-16 Kluber Lubrication Munchen K.G. Lubricating grease composition
WO2001027916A1 (en) 1999-10-14 2001-04-19 E.I. Du Pont De Nemours And Company Phosphorous and fluorine containing compounds as magnetic media lubricants
EP0902828B1 (de) 1996-06-07 2001-08-22 Klüber Lubrication München Kg Schmierfettzusammensetzungen
WO2001072759A1 (en) 2000-03-24 2001-10-04 E. I. Du Pont De Nemours And Company Fluorinated lubricant additives
US6316649B1 (en) 1998-11-13 2001-11-13 The United States Of America As Represented By The Secretary Of Agriculture Biodegradable oleic estolide ester having saturated fatty acid end group useful as lubricant base stock
EP1070074B1 (de) 1998-04-07 2003-01-15 E.I. Du Pont De Nemours And Company Phosphor-verbindungen als korrosioninhibitoren für perfluorpoläther
EP1659165B1 (de) 2004-11-19 2009-01-07 Solvay Solexis S.p.A. Heterozyklischen Stickstoff enthaltende (Per)fluoropolyether-Additive für Perfluoropolyether-Schmieröle oder -Schmierfette
US20130261325A1 (en) 2012-03-27 2013-10-03 Jeremy Forest Dicarboxylate-capped estolide compounds and methods of making and using the same
US20150011446A1 (en) 2012-02-17 2015-01-08 Solvay Specialty Polymers Italy S.P.A. (PER)FLUOROPOLYETHERS WITH bi- OR ter-PHENYL END GROUPS
US20150175931A1 (en) * 2013-12-19 2015-06-25 Hyundai Motor Company Grease composition for engine bearing
EP3372660A1 (de) * 2014-12-17 2018-09-12 Klüber Lubrication München SE & Co. KG Hochtemperaturschmierstoffe
WO2018177588A1 (de) 2017-03-29 2018-10-04 Klüber Lubrication München Se & Co. Kg Neue esterverbindungen, verfahren zu ihrer herstellung sowie ihre verwendung

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5386803B2 (ja) * 2007-07-31 2014-01-15 Nokクリューバー株式会社 グリース組成物
US20110218128A1 (en) * 2008-10-17 2011-09-08 Nok Kluber Co., Ltd. Lubricating grease composition and method for producing the same
DE102014018719A1 (de) * 2014-12-17 2016-06-23 Klüber Lubrication München Se & Co. Kg Hochtemperaturschmierstoff für die Lebensmittelindustrie
EP3385358B1 (de) * 2015-12-04 2020-06-03 NOK Klueber Co., Ltd. Schmiermittelzusammensetzung
JP6755905B2 (ja) * 2018-07-27 2020-09-16 ミネベアミツミ株式会社 樹脂潤滑用グリース組成物および樹脂摺動部材

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6063743A (en) 1989-06-02 2000-05-16 Kluber Lubrication Munchen K.G. Lubricating grease composition
EP0902828B1 (de) 1996-06-07 2001-08-22 Klüber Lubrication München Kg Schmierfettzusammensetzungen
EP1070074B1 (de) 1998-04-07 2003-01-15 E.I. Du Pont De Nemours And Company Phosphor-verbindungen als korrosioninhibitoren für perfluorpoläther
US6316649B1 (en) 1998-11-13 2001-11-13 The United States Of America As Represented By The Secretary Of Agriculture Biodegradable oleic estolide ester having saturated fatty acid end group useful as lubricant base stock
US6018063A (en) 1998-11-13 2000-01-25 The United States Of America As Represented By The Secretary Of Agriculture Biodegradable oleic estolide ester base stocks and lubricants
WO2001027916A1 (en) 1999-10-14 2001-04-19 E.I. Du Pont De Nemours And Company Phosphorous and fluorine containing compounds as magnetic media lubricants
WO2001072759A1 (en) 2000-03-24 2001-10-04 E. I. Du Pont De Nemours And Company Fluorinated lubricant additives
EP1659165B1 (de) 2004-11-19 2009-01-07 Solvay Solexis S.p.A. Heterozyklischen Stickstoff enthaltende (Per)fluoropolyether-Additive für Perfluoropolyether-Schmieröle oder -Schmierfette
US20150011446A1 (en) 2012-02-17 2015-01-08 Solvay Specialty Polymers Italy S.P.A. (PER)FLUOROPOLYETHERS WITH bi- OR ter-PHENYL END GROUPS
US20130261325A1 (en) 2012-03-27 2013-10-03 Jeremy Forest Dicarboxylate-capped estolide compounds and methods of making and using the same
US20150175931A1 (en) * 2013-12-19 2015-06-25 Hyundai Motor Company Grease composition for engine bearing
EP3372660A1 (de) * 2014-12-17 2018-09-12 Klüber Lubrication München SE & Co. KG Hochtemperaturschmierstoffe
WO2018177588A1 (de) 2017-03-29 2018-10-04 Klüber Lubrication München Se & Co. Kg Neue esterverbindungen, verfahren zu ihrer herstellung sowie ihre verwendung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Synthetics, Mineral Oils And Bio Based Lubricants Chemistry And Technology", 2013, CRC PRESS, pages: 273 - 300

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114150525A (zh) * 2021-11-26 2022-03-08 上海东升新材料有限公司 一种纳米改性造纸用润滑剂
CN114150525B (zh) * 2021-11-26 2022-12-27 上海东升新材料有限公司 一种纳米改性造纸用润滑剂

Also Published As

Publication number Publication date
EP4090723A1 (de) 2022-11-23
EP4090723B1 (de) 2023-11-29
DE102020112993A1 (de) 2021-11-18
CN115461434A (zh) 2022-12-09
US20230138681A1 (en) 2023-05-04
CN115461434B (zh) 2024-03-22

Similar Documents

Publication Publication Date Title
EP2164935B1 (de) Schmierfettzusammensetzung
EP3372660B1 (de) Hochtemperaturschmierstoffe
EP3375850B1 (de) Hochtemperaturschmierstoff für die lebensmittelindustrie
DE19538658C2 (de) Schmierfettzusammensetzung
EP2260091B1 (de) Verwendung einer schmierfettzusammensetzung auf basis von ionischen flüssigkeiten
EP4090723B1 (de) Lithiumkomplexhybridfett
WO2012159738A1 (de) Hochtemperaturöl
DE112013005199T5 (de) Schmierfettzusammensetzung für Nabenlagereinheit
DE102020102462A1 (de) Ionische Flüssigkeiten enthaltende Schmierstoffzusammensetzung
DE10108343B4 (de) Verwendung einer Schmierfettzusammensetzung für ein Wälzlager
DE112013000604B4 (de) Schmiermittelzusammensetzung und dessen Verwendung für Lager
EP3692120B1 (de) Hybridfett mit niedrigen reibwerten und hohem verschleissschutz
WO2021115685A1 (de) Verwendung einer schmierfettzusammensetzung mit hoher oberer gebrauchstemperatur
EP3841190B1 (de) Verwendung einer schmiermittelzusammensetzung
WO2023016908A1 (de) Verwendung von hemimellitsäureester als basisöl für schmierstoffzusammensetzungen
CN114058424A (zh) 非蔓延性润滑脂组合物
DE102023109507A1 (de) Schmierfettzusammensetzung
DD237183A1 (de) Pastenfoermige festschmierstoffkombination, vorzugsweise fuer den hochtemperaturbereich

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21704440

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021704440

Country of ref document: EP

Effective date: 20220818

NENP Non-entry into the national phase

Ref country code: DE