WO2021228081A1 - 一种邻苯二甲腈基复合材料及其制备方法和应用 - Google Patents

一种邻苯二甲腈基复合材料及其制备方法和应用 Download PDF

Info

Publication number
WO2021228081A1
WO2021228081A1 PCT/CN2021/093026 CN2021093026W WO2021228081A1 WO 2021228081 A1 WO2021228081 A1 WO 2021228081A1 CN 2021093026 W CN2021093026 W CN 2021093026W WO 2021228081 A1 WO2021228081 A1 WO 2021228081A1
Authority
WO
WIPO (PCT)
Prior art keywords
phthalonitrile
composite material
thermally conductive
graphite
conductive filler
Prior art date
Application number
PCT/CN2021/093026
Other languages
English (en)
French (fr)
Inventor
周恒�
郭颖
赵彤
刘先渊
Original Assignee
中国科学院化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010394333.2A external-priority patent/CN113637227B/zh
Priority claimed from CN202011331086.8A external-priority patent/CN114539770B/zh
Application filed by 中国科学院化学研究所 filed Critical 中国科学院化学研究所
Priority to US17/998,515 priority Critical patent/US20230193023A1/en
Publication of WO2021228081A1 publication Critical patent/WO2021228081A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • C08K2003/282Binary compounds of nitrogen with aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K

Definitions

  • the invention belongs to the field of polymer composite materials, and particularly relates to a phthalonitrile-based composite material and a preparation method and application thereof.
  • phthalonitrile resin As a high molecular polymer, phthalonitrile resin has the advantages of high glass transition temperature (greater than 450°C), excellent heat resistance, low water absorption, good flame retardancy, and good mechanical properties. It is used in aerospace, It is widely used in the fields of shipbuilding, machinery and electronic materials. However, the lower thermal conductivity of phthalonitrile resin severely restricts its application in the electronic field. At present, the preparation of thermally conductive and insulating polymer-based composite materials generally involves adding inorganic ceramic fillers to the polymer. However, the high cost of ceramic fillers affects its economic effect. Therefore, there is an urgent need to develop a new type of filler with excellent performance and low cost.
  • Carbon material graphite has significant advantages such as low cost, high thermal conductivity, high temperature resistance, low thermal expansion coefficient, low density, and stable chemical properties.
  • Lamellar graphite is considered to be a more suitable filler for the preparation of thermally conductive polymer composites, but it reduces the insulation performance of the composites. How to ensure that the thermal conductivity and insulation of the polymer matrix composite material can still be taken into account after the filler is added has become a technical problem to be solved urgently.
  • the preparation of a three-dimensional continuous thermal network in a polymer matrix is one of the most effective and promising methods to achieve high thermal conductivity.
  • three-dimensional continuous thermal network construction methods mainly include freeze-drying, self-assembly, ice template, chemical vapor deposition, three-dimensional weaving, etc.
  • most methods for manufacturing a three-dimensional continuous thermal network have relatively complex processes, high process costs, and difficulty in large-scale production, so there is still a long way to go for industrial applications. Therefore, there is an urgent need to develop a simple and efficient method to prepare polymer matrix composites with a three-dimensional continuous thermal network structure.
  • the invention provides a phthalonitrile-based composite material, the composite material includes a thermally conductive filler;
  • the thermally conductive filler is distributed in the phthalonitrile matrix resin, or the thermally conductive filler is distributed in a thermally conductive filler layer at least partially covering the surface of the phthalonitrile-based microspheres.
  • the thermally conductive filler may be selected from at least one of the following materials: metals, ceramics, carbon materials, composite materials of metals, ceramics and/or carbon materials, and the like.
  • the thermally conductive filler is selected from copper, silver, aluminum, aluminum oxide, silicon nitride, silicon carbide, aluminum nitride, silicon nitride, boron nitride, graphite, graphene, carbon nanotubes, and aluminum oxide.
  • One, two or more of graphite composite materials are selected from copper, silver, aluminum, aluminum oxide, silicon nitride, silicon carbide, aluminum nitride, silicon nitride, boron nitride, graphite, graphene, carbon nanotubes, and aluminum oxide.
  • One, two or more of graphite composite materials are examples of graphite composite materials.
  • the phthalonitrile monomer forming the phthalonitrile resin is selected from compounds having the structure shown in formula (1):
  • R is selected from any one of the following structures:
  • the thermal conductivity of the composite material is at least 0.2 W ⁇ m -1 ⁇ K -1 , for example 0.2 to 5.0 W ⁇ m -1 ⁇ K -1 , preferably 0.2 to 0.7 W ⁇ m -1 ⁇ K -1 or 2.2 ⁇ 5.0W ⁇ m -1 ⁇ K -1 .
  • the volume resistivity of the composite material is not less than 10 10 ⁇ cm, preferably not less than 10 11 ⁇ cm, and more preferably greater than 10 11 ⁇ cm.
  • the present invention provides an alumina@graphite composite material.
  • the composite material has a core-shell structure, the shell layer is alumina, the core is graphite particles, and the surface layer of the graphite particles is coated with alumina.
  • the present invention also provides a preparation method of the above-mentioned alumina@graphite composite material, and the preparation method includes the following steps:
  • step (2) Add aluminum salt solution and lye dropwise to the mixed solution obtained in step (1) at the same time, react under stirring conditions, filter to obtain a precipitate after the reaction is completed, and perform post-processing on the precipitate to obtain a powder;
  • step (3) calcining the powder obtained in step (2) to obtain alumina@graphite composite material.
  • the present invention also provides the alumina@graphite composite material prepared by the above method.
  • the present invention also provides the application of the above-mentioned alumina@graphite composite material as a thermally conductive filler. It is preferably used as a thermally conductive filler for phthalonitrile-based resin.
  • the present invention also provides a phthalonitrile-based composite material, which contains the above-mentioned alumina@graphite composite material.
  • the present invention also provides a preparation method of the above-mentioned phthalonitrile-based composite material.
  • the preparation method includes the following steps: prepared from a raw material containing the alumina@graphite composite material.
  • the invention also provides the phthalonitrile-based composite material prepared by the above method.
  • the present invention also provides the application of the phthalonitrile-based composite material in the field of thermal conductivity and insulation; preferably, the composite material is used for electrical components.
  • the present invention provides a phthalonitrile-based composite material with a core-shell structure.
  • the composite material includes an inner core and at least one thermally conductive filler layer.
  • the inner core is phthalonitrile-based microspheres, and the thermally conductive
  • the filler layer at least partially covers the surface of the inner core.
  • the thermally conductive filler layer is entirely covered on the surface of the inner core.
  • the present invention also provides a method for preparing the above-mentioned phthalonitrile-based composite material with a core-shell structure.
  • the preparation method includes the following steps: at least partially covering the surface of the phthalonitrile-based microspheres with a thermally conductive filler layer to obtain The phthalonitrile-based composite material.
  • the invention also provides a phthalonitrile-based composite material with a core-shell structure prepared by the above method.
  • the invention also provides the application of the phthalonitrile-based composite material with the core-shell structure in the preparation of the phthalonitrile-based three-dimensional continuous thermal network structure composite material.
  • the present invention also provides a phthalonitrile-based three-dimensional continuous thermally conductive network structure composite material, which is prepared from the above-mentioned phthalonitrile-based composite material with a core-shell structure.
  • the present invention also provides a method for preparing the above-mentioned phthalonitrile-based three-dimensional continuous thermally conductive network structure composite material.
  • the preparation method includes the following steps: preparing from raw materials containing the phthalonitrile-based composite material with a core-shell structure get. Preferably, it is obtained from the above-mentioned phthalonitrile-based composite material with a core-shell structure through a hot-pressing reaction.
  • the invention also provides a phthalonitrile-based three-dimensional continuous thermal network structure composite material prepared by the above method.
  • the present invention also provides the application of the phthalonitrile-based composite material with a core-shell structure and/or the phthalonitrile-based three-dimensional continuous thermally conductive network structure composite material in the field of heat conduction.
  • the invention provides a composite material containing phthalonitrile resin and thermally conductive filler.
  • the thermally conductive filler is tightly combined with the phthalonitrile resin and has low porosity.
  • the composite material has high thermal conductivity and high volume resistivity. performance.
  • the alumina@graphite shell-core composite material, the phthalonitrile-based composite material and the preparation method and application thereof provided by the present invention have the following three advantages:
  • the present invention provides an alumina@graphite shell-core composite material as a filler for phthalonitrile-based composite materials, which is different from inorganic ceramic fillers with high cost, and is also different from metals that are easily corroded and conductive. filler.
  • the alumina@graphite shell core composite material is coated with an alumina insulating layer on the graphite surface, which not only has the significant advantages of carbon material graphite, such as low cost, high thermal conductivity, high temperature resistance, low thermal expansion coefficient, low density, and stable chemical properties.
  • the thermal conductivity network can be constructed in the phthalonitrile resin matrix, which improves the thermal conductivity of the phthalonitrile-based composite material while maintaining the high volume resistivity of the composite material to meet the insulation requirements.
  • the preparation method of the alumina@graphite shell-core composite material provided by the present invention can control the content of alumina by adjusting the ratio of raw materials, the reaction conditions are mild, and the process is simple and controllable.
  • the prepared alumina@graphite core-shell composite material has high yield, low cost and good performance.
  • the present invention provides a thermally conductive and insulating phthalonitrile-based composite material and a preparation method thereof.
  • the phthalonitrile-based composite material has good thermal conductivity and insulation. When it is applied to electrical components, It can well solve the problems of heat dissipation, electrical insulation and heat resistance of high-power electrical appliances.
  • the present invention provides a composite material containing a phthalonitrile resin and a thermally conductive filler, wherein the thermally conductive filler is distributed in a thermally conductive filler layer at least partially coated on the surface of the phthalonitrile-based microspheres.
  • the composite material It can show good thermal conductivity under low thermal conductivity filler content, effectively overcome the problem of high thermal conductivity filler content to produce a thermal network, and has good insulation performance.
  • the method for preparing the phthalonitrile-based core-shell composite material provided by the present invention uses phthalonitrile resin as an adhesive without introducing other substances. It is a self-adhesive method and maintains the maximum The nature of the phthalonitrile-based composite material itself. Through the adjustment of the raw material ratio, the content of the thermally conductive filler and the number of thermally conductive filler layers can be accurately controlled, the reaction conditions are mild, the process is simple and controllable, and it is suitable for large-scale production.
  • the prepared phthalonitrile-based core-shell composite material has high yield, low cost and good performance.
  • the phthalonitrile-based three-dimensional continuous thermally conductive network structure composite material and the preparation method thereof provided by the present invention are obtained from the phthalonitrile-based core-shell composite material through a hot pressing reaction.
  • the phthalonitrile-based three-dimensional continuous thermal conductive network structure composite material has a phase separation structure, the thermal conductive filler is a continuous phase, and a thermal conductive channel can be formed at a low thermal conductive filler content to effectively construct a thermal conductive network.
  • the novel material structure design and processing method make the material can be widely used in the field of heat conduction.
  • the phthalonitrile-based three-dimensional continuous thermal network structure composite material has good electrical insulation properties, and finally broadens the application field of phthalonitrile resin.
  • the composite material with a three-dimensional continuous thermally conductive network structure provided by the present invention can exhibit good thermal conductivity at a low thermally conductive filler content, effectively overcoming the problem of generating a thermally conductive network with a high thermally conductive filler content. And has good insulation properties.
  • the thermally conductive phase-separated structure composite material has higher thermal conductivity, simpler molding process, lower density, and lower cost.
  • Figure 1 is a transmission electron microscope (TEM) image of graphite.
  • TEM 2 is a transmission electron microscope (TEM) image of alumina@graphite core-shell composite particles prepared in Preparation Example A1.
  • FIG. 3 is a thermogravimetric analysis (TGA) diagram of alumina@graphite core-shell composite particles and graphite prepared in Preparation Example A1 and Preparation Example A2 in an air atmosphere.
  • TGA thermogravimetric analysis
  • SEM scanning electron microscope
  • Figure 5 is a scanning electron microscope (SEM) image of phthalonitrile-based microspheres.
  • Figure 6 is an infrared comparison diagram of phthalonitrile-based microspheres, uncrosslinked phthalonitrile resin and phthalonitrile resin cured at 375°C.
  • FIG. 7 is a scanning electron microscope (SEM) image of a single-layer boron nitride@phthalonitrile-based composite material with a volume fraction of boron nitride of 20% prepared in Preparation Example B1.
  • Example 8 is a cross-sectional scanning electron microscope (SEM) image of a phthalonitrile-based three-dimensional continuous thermally conductive network structure composite material with a volume fraction of 20% boron nitride prepared in Example B1.
  • SEM scanning electron microscope
  • Figure 9 shows a randomly distributed phthalonitrile-based thermally conductive composite material prepared by Comparative Example B1 with a volume fraction of 20% boron nitride.
  • the alumina@graphite composite material has a core-shell structure, the shell layer is alumina, the core is graphite particles, and the surface layer of the graphite particles is coated with alumina.
  • the alumina completely covers the surface layer of the graphite particles.
  • the size of the graphite particles is on the order of micrometers; for example, the particle size of the graphite particles is 0.15-50 ⁇ m, such as 0.5-20 ⁇ m.
  • the mass percentage of the alumina shell in the alumina@graphite composite material is 5-50%, preferably 10-30%, exemplified by 9.07%, 10%, 15%, 18.37% , 20%, 24%, 25%, 30%.
  • the alumina@graphite composite material has a TEM morphology as shown in FIG. 2.
  • the preparation method of the alumina@graphite composite material includes the following steps:
  • step (2) Add aluminum salt solution and lye dropwise to the mixed solution obtained in step (1) at the same time, react under stirring conditions, filter to obtain a precipitate after the reaction is completed, and perform post-processing on the precipitate to obtain a powder;
  • step (3) calcining the powder obtained in step (2) to obtain alumina@graphite composite material.
  • the graphite has the meaning as described above.
  • the anionic surfactant is at least one of sodium dodecyl sulfonate, sodium dodecyl sulfate, and sodium secondary alkyl sulfonate, preferably sodium dodecyl sulfonate And/or sodium lauryl sulfate.
  • the aluminum salt is at least one of aluminum nitrate, aluminum sulfate, or a hydrate thereof, for example, aluminum nitrate nonahydrate and/or aluminum sulfate octahydrate.
  • the alkali is at least one of sodium hydroxide, potassium hydroxide, sodium bicarbonate, and potassium bicarbonate, for example, sodium hydroxide and/or potassium hydroxide.
  • the dispersion is ultrasonic dispersion.
  • the power of the ultrasound is 80-120W, preferably 90-110W, and exemplarily 80W, 90W, 100W, 110W, 120W.
  • the ultrasound time is 10 minutes to 60 minutes, preferably 20 to 40 minutes, and exemplarily 20 minutes, 30 minutes, and 40 minutes.
  • the temperature of the ultrasound is 70-90°C, preferably 75-85°C, exemplarily 70°C, 75°C, 80°C, 85°C, 90°C.
  • the amount of the anionic surfactant is 0.5 to 30% of the graphite mass, preferably 2 to 7%, exemplified by 2%, 3%, 4%, 5 %, 6%, 7%.
  • the mass-volume ratio of the graphite to deionized water is 1 g: (15-50) mL, for example, 1 g: (20-40) mL, exemplarily 1 g: 20 mL , 1g: 30mL, 1g: 40mL, 1g: 50mL.
  • the mass ratio of the aluminum salt to graphite is 1:(0.1-10), preferably 1:(0.5-2), and exemplarily 1:0.64, 1: 0.75, 1:1, 1:1.5, 1:2.
  • the molar ratio of the base to the aluminum salt is (2.7-3.3):1, preferably (2.9-3.1):1, and exemplarily 3:1.
  • the volume ratio of the aluminum salt solution and the mixed solution, and the volume ratio of the lye and the mixed solution are the same or different, for example, 1:(5-30), preferably 1: (10-20), exemplified as 1:10, 1:15, 1:20.
  • step (2) the aluminum salt solution and the lye are slowly added dropwise to the mixed solution under stirring conditions.
  • the dropping time does not exceed 2 hours, such as 1 to 2 hours.
  • the pH value of the system is maintained at 6-7.
  • step (2) after the dropwise addition of the aluminum salt solution and the lye is completed, the reaction is stirred for 2 to 4 hours, such as 2 to 3 hours, and exemplarily 2 hours, 2.5 hours, and 3 hours.
  • the post-treatment includes washing and drying.
  • vacuum drying the precipitate after washing further, the temperature of the vacuum drying is 90-110°C, preferably 95-105°C, exemplarily 90°C, 100°C, 110°C; further, said The time of vacuum drying is 8-16h, preferably 10-14h, and exemplarily 10h, 12h.
  • the calcination temperature is 400-800°C, preferably 500-600°C, exemplarily 500°C, 550°C, and 600°C.
  • the calcination time is 1-12h, preferably 2-5h, exemplarily 2h, 3h, 4h, 5h.
  • step (3) the calcination is performed in a tube furnace.
  • the preparation method of the alumina@graphite composite material includes the following steps:
  • the aluminum salt provides aluminum ions to the solution
  • the alkali provides hydroxide to the solution.
  • the anionic surfactant is dissolved in deionized water, its alkyl end is combined with graphite, and the anion at the other end is combined with aluminum ions in the solution; at the same time, aluminum ions and hydroxide in the solution form aluminum hydroxide to obtain hydrogen.
  • Alumina-coated graphite composite particles are calcined at a high temperature to obtain alumina@graphite composite material.
  • the present invention also provides the alumina@graphite composite material prepared by the above method.
  • the above alumina@graphite composite material is used as a thermally conductive filler. It is preferably used as a thermally conductive filler for phthalonitrile-based resin.
  • the composite material includes a thermally conductive filler; the thermally conductive filler is distributed in the phthalonitrile matrix resin.
  • the thermally conductive filler is selected from the above alumina@graphite composite materials.
  • the aforementioned phthalonitrile-based composite material contains the above-mentioned alumina@graphite composite material.
  • the mass percentage of the alumina@graphite composite material in the phthalonitrile-based composite material is 5-50%, such as 10-30%, exemplarily 5%, 10%, 15%, 20% , 25%, 30%.
  • the alumina@graphite composite material is uniformly distributed in the phthalonitrile matrix resin.
  • the alumina@graphite composite material is tightly combined with the phthalonitrile matrix resin, and the porosity is less than 2.5%.
  • the alumina@graphite composite material overlaps each other in the phthalonitrile matrix resin to form a heat conduction channel.
  • the phthalonitrile-based composite material has a cross-sectional topography substantially as shown in FIG. 4.
  • the raw materials for preparing the phthalonitrile-based composite material include: 100 parts of phthalonitrile monomer, 1-10 parts of curing agent, and the alumina@graphite 5-50 parts of composite materials;
  • the alumina@graphite composite material has the meaning as described above.
  • the phthalonitrile monomer is selected from compounds having the structure shown in formula (1):
  • R is selected from any one of the following structures:
  • R is selected from any of the following structures:
  • R is selected from any of the following structures:
  • the phthalonitrile monomer is selected from compounds of the structure represented by formula (2) or formula (3):
  • the curing agent is an amine curing agent, for example, 4,4-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfone, 4-amino-(3,4- At least one of dicyanophenoxy)benzene, m-aminophenylacetylene, and 4,4'-biphenyldiamine; exemplary is 4-amino-(3,4-dicyanophenoxy)benzene .
  • the amount of the curing agent is 2-8 parts, exemplified as 2 parts, 3 parts, 4 parts, 5 parts, 6 parts, 7 parts, and 8 parts.
  • the amount of the alumina@graphite composite material is 10-30 parts by weight, exemplified as 11 parts, 11.625 parts, 12 parts, 15 parts, 18 parts, 18.5 parts, 20 parts. Servings, 25 Servings, 26.25 Servings, 30 Servings.
  • the phthalonitrile-based composite material is prepared from the aforementioned raw materials in parts by weight.
  • the thermal conductivity of the phthalonitrile-based composite material is 0.2 to 0.7 W ⁇ m -1 ⁇ K -1 .
  • the thermal conductivity of the phthalonitrile-based composite material is 0.3 to 0.68 W ⁇ m -1 ⁇ K -1 .
  • the volume resistivity of the phthalonitrile-based composite material is not less than 10 10 ⁇ cm, preferably not less than 10 11 ⁇ cm.
  • the glass transition temperature of the phthalonitrile-based composite material is 450-465°C, preferably 455-462°C.
  • the method for preparing the above-mentioned phthalonitrile-based composite material includes the following steps: preparing from the raw material containing the alumina@graphite composite material. Preferably, it is obtained from a blend containing the above-mentioned phthalonitrile monomer, a curing agent and the alumina@graphite composite material through a hot-pressing reaction.
  • the preparation method includes the following steps:
  • the alumina@graphite composite material is uniformly mixed with the phthalonitrile monomer and curing agent by a melt blending method
  • step (2) Pour the mixture obtained in step (1) into a mold, after the first normal pressure pre-curing, pressure curing, cooling and demolding, performing normal pressure post-curing, to obtain the phthalonitrile-based composite material .
  • the alumina@graphite composite material, the curing agent and the phthalonitrile monomer have the meaning and amount as described above.
  • the temperature of the melt blending is determined according to the phthalonitrile monomer used.
  • the blending time is 20min-40min, such as 20min, 25min, 30min, 35min, 40min.
  • the temperature of the atmospheric pre-curing is 150-230°C, preferably 180-220°C, exemplarily 180°C, 190°C, 200°C, 210°C, 220°C °C.
  • the normal pressure pre-curing time is 0.5 to 2.5 hours, preferably 1 to 2 hours, and exemplarily 1 hour, 1.5 hours, and 2 hours.
  • the pressure curing is pressure curing in stages; for example, there are 2 to 4 pressure curing stages, preferably 2 to 3 stages.
  • the temperature in each stage of the pressure curing is 230 to 300°C, preferably 230 to 280°C, and exemplarily 230°C, 250°C, and 280°C.
  • the curing temperature of each stage is increased step by step.
  • the time of each stage of the pressure curing is the same or different, for example, 1 to 3.5 hours, preferably 1.5 to 3 hours, and exemplarily 1 hour, 1.5 hours, 2 hours, 2.5 hours, 3 hours, and 3.5 hours.
  • the pressure for pressurization and solidification is 5-15 MPa, preferably 8-12 MPa, and exemplarily 8 MPa, 10 MPa, and 12 MPa.
  • the cooling is natural cooling to room temperature.
  • the normal pressure post-curing may be post-curing in stages, for example, in 2 to 4 stages.
  • the temperature in each stage of the normal pressure post-curing is 300-400°C, preferably 315-375°C, and exemplified by 315°C, 330°C, 350°C, and 375°C.
  • the curing temperature of each stage is increased step by step.
  • the time of each stage of the normal pressure post-curing is the same or different, and they are all selected from 4 to 6 hours, such as 4 hours, 4.5 hours, 5 hours, 5.5 hours, and 6 hours. Exemplarily, under normal pressure, first 315°C and then curing for 5 hours, and then 375°C after curing for 5 hours.
  • the invention also provides the phthalonitrile-based composite material prepared by the above method.
  • the present invention also provides the application of the phthalonitrile-based composite material in the field of thermal conductivity and insulation; preferably, the composite material is used for electrical components.
  • the phthalonitrile-based composite material includes a thermally conductive filler; the thermally conductive filler is distributed in a thermally conductive filler layer at least partially covering the surface of the phthalonitrile-based microspheres.
  • the composite material has a core-shell structure, that is, includes a core and at least one thermally conductive filler layer, the core is phthalonitrile-based microspheres, and the thermally conductive filler layer at least partially covers On the surface of the inner core.
  • the thermally conductive filler layer is entirely covered on the surface of the inner core.
  • the thermally conductive filler layer closest to the inner core is denoted as the first thermally conductive filler layer, and a phthalonitrile resin layer may also be included between the first thermally conductive filler layer and the inner core.
  • the number of layers of the thermally conductive filler layer is two, three or more layers, there is a phthalonitrile resin layer between adjacent thermally conductive filler layers.
  • the thermally conductive filler in each thermally conductive filler layer may be the same or different.
  • the thermally conductive filler may be selected from at least one of thermally conductive fillers such as metals, ceramics and carbon materials; preferably copper, silver, aluminum, aluminum oxide, silicon nitride, silicon carbide, aluminum nitride, silicon nitride, One, two or more of boron nitride, graphite, graphene, and carbon nanotubes.
  • the thermally conductive filler in the outermost thermally conductive filler layer cannot be a carbon material.
  • the “outermost layer” refers to the thermally conductive filler layer farthest from the inner core.
  • the thermally conductive filler layer is a single layer, the first thermally conductive filler The filler layer is the outermost thermally conductive filler layer.
  • the phthalonitrile-based core-shell composite material in terms of parts by volume, includes: 45-85 parts of phthalonitrile-based microspheres and 5-50 parts of thermally conductive fillers.
  • the phthalonitrile-based core-shell composite material includes: 50-80 parts of phthalonitrile-based microspheres and 10-40 parts of thermally conductive filler.
  • the volume parts of the phthalonitrile-based microspheres are 50 parts, 55 parts, 60 parts, 65 parts, 70 parts, 75 parts or 80 parts
  • the volume parts of the thermally conductive filler are 10 parts and 15 parts. , 20, 30, 35, 40, 45 or 50 shares.
  • the phthalonitrile-based core-shell composite material further includes 5-10 parts of phthalonitrile resin, exemplarily including 5 parts, 6 parts, and 7 parts , 8 parts, 9 parts or 10 parts of phthalonitrile resin.
  • the phthalonitrile resin comes from the phthalonitrile resin layer.
  • the phthalonitrile-based core-shell composite material includes: 50 to 80 parts of phthalonitrile-based microspheres, 6 to 9 parts of phthalonitrile resin, and 10 to 40 parts of thermally conductive filler.
  • the phthalonitrile resin comes from the phthalonitrile resin layer.
  • the phthalonitrile-based core-shell composite material includes: 60 to 70 parts of phthalonitrile-based microspheres, 7 to 8 parts of phthalonitrile resin, and 20 parts. ⁇ 30 parts of thermally conductive filler.
  • the phthalonitrile resin comes from the phthalonitrile resin layer.
  • the sum of the volume parts of the phthalonitrile-based microspheres, the phthalonitrile resin and the thermally conductive filler is 100 parts.
  • the volume parts are calculated by the mass parts of the material/density of the material.
  • the phthalonitrile resin in the phthalonitrile resin layer is not cross-linked.
  • the phthalonitrile-based microspheres are cured products at 245-250°C, preferably 250°C, which have a lower crosslinking density; specifically, it It is an incompletely cured product of a phthalonitrile compound, which can be changed into a molten state again at a temperature not lower than 280°C, for example, at a temperature of 280-350°C.
  • the phthalonitrile-based microspheres are insoluble in organic solvents, for example, the organic solvent is selected from at least one of ethanol, acetone, n-propanol, dimethylformamide, etc., exemplary It is acetone.
  • the phthalonitrile-based microspheres are known in the art.
  • the phthalonitrile-based microspheres are prepared from phthalonitrile resin, and the phthalonitrile resin is the same as the phthalonitrile resin in the phthalonitrile resin layer.
  • the particle size of the phthalonitrile-based microspheres is between 0.05 and 300 ⁇ m, for example, between 10 and 200 ⁇ m, such as between 80 and 190 ⁇ m.
  • the phthalonitrile resin is a thermosetting resin.
  • Thermosetting phthalonitrile resin has excellent thermal stability, water resistance, flame retardancy, mechanical properties, etc., and is especially suitable for the field of thermal conductivity.
  • the phthalonitrile resin is prepared from raw materials including phthalonitrile monomer and curing agent, and the phthalonitrile monomer is selected from the structure shown in formula (1) compound of:
  • R is selected from any one of the following structures:
  • R is selected from any of the following structures:
  • R is selected from any of the following structures:
  • the phthalonitrile monomer is selected from compounds of the structure represented by formula (2) or formula (3'):
  • the curing agent is an amine curing agent, for example, 4,4-diaminodiphenyl sulfone, 3,3,-diethyl 4,4,-diaminodiphenylmethane ( H-256), at least one of 4-amino-(3,4-dicyanophenoxy)benzene, p-phenylenediamine, m-aminophenylacetylene, and diethyltoluenediamine (DETDA); exemplary For 4-amino-(3,4-dicyanophenoxy)benzene.
  • amine curing agent for example, 4,4-diaminodiphenyl sulfone, 3,3,-diethyl 4,4,-diaminodiphenylmethane ( H-256), at least one of 4-amino-(3,4-dicyanophenoxy)benzene, p-phenylenediamine, m-aminophenylacetylene, and diethylto
  • the curing agent accounts for 1 to 12% of the mass fraction of the phthalonitrile monomer, preferably 3 to 6% of the mass fraction.
  • the volume percentage of the at least one thermally conductive filler layer (also called the shell layer) in the phthalonitrile-based core-shell composite material is 5-50%, preferably 10-40%, Exemplary are 10%, 15%, 20%, 25%, 30%, 35%, 40%.
  • the phthalonitrile-based core-shell composite material has a SEM topography substantially as shown in FIG. 7.
  • the phthalonitrile-based core-shell composite material may be:
  • Phthalonitrile-based core-shell composite material with a single thermally conductive filler layer such as a single-layer boron nitride@phthalonitrile-based composite, where the shell layer is boron nitride and the core is phthalonitrile-based Microspheres, there is a phthalonitrile resin layer between the boron nitride shell layer and the phthalonitrile-based microspheres, and the boron nitride shell layer and the phthalonitrile resin layer can completely cover the phthalonitrile resin layer.
  • the boron nitride accounts for 20% of the volume of the boron nitride@phthalonitrile-based composite material;
  • a phthalonitrile-based core-shell composite material with a double-layer thermally conductive filler layer such as boron nitride-graphite@phthalonitrile-based composite material
  • the thermally conductive filler layer includes a boron nitride layer and a graphite layer, which are nitrided
  • the boron layer is the outermost layer
  • the core is phthalonitrile-based microspheres.
  • the boron nitride layer, the graphite layer and the phthalonitrile resin layer can completely cover the microspheres located therein; preferably, the boron nitride and graphite respectively account for the boron nitride-graphite@ 20% of the volume of the phthalonitrile-based composite material;
  • a phthalonitrile-based core-shell composite material with three thermally conductive filler layers such as boron nitride-alumina-graphite@phthalonitrile-based composite material
  • the thermally conductive filler layer includes a boron nitride layer and alumina Layer and graphite layer
  • the boron nitride layer is the outermost layer
  • the core is phthalonitrile-based microspheres, between adjacent thermally conductive filler layers
  • the first thermally conductive filler layer may be an alumina layer or a graphite layer
  • There is a phthalonitrile resin layer between the phthalonitrile-based microspheres, and the boron nitride layer, alumina layer, graphite layer, and phthalonitrile resin layer can completely cover the microspheres inside.
  • the boron nitride accounts for 20% of the volume ratio of the boron nitride-alumina-graphite@phthalonitrile-based composite material
  • the alumina accounts for the boron nitride-alumina-
  • the graphite@phthalonitrile-based composite material is 10% by volume
  • the graphite accounts for 10% of the boron nitride-alumina-graphite@phthalonitrile-based composite material by volume.
  • the method for preparing the above-mentioned phthalonitrile-based composite material with a core-shell structure includes the following steps: at least partially covering the surface of the phthalonitrile-based microsphere with a thermally conductive filler layer to obtain the phthalonitrile-based composite Material.
  • the method specifically includes the following steps:
  • the surface of the phthalonitrile-based microspheres is sequentially coated with a phthalonitrile resin layer and a first thermally conductive filler layer to obtain a phthalonitrile-based core-shell composite material with a single-layer thermally conductive filler layer;
  • the surface of the phthalonitrile-based core-shell composite material of the single-layer thermally conductive filler is sequentially covered with a phthalonitrile-based resin layer and a second thermally conductive filler layer to obtain the phthalonitrile-based core-shell composite material with a double-layer thermally conductive filler layer.
  • a phthalonitrile-based core-shell composite material with three or more thermally conductive filler layers can be prepared.
  • the preparation method of the phthalonitrile-based core-shell composite material includes the following steps:
  • step (1) The first thermally conductive filler and the phthalonitrile resin-coated phthalonitrile-based microspheres obtained in step (1) are heated and mixed until the first thermally conductive filler is completely attached to the phthalonitrile resin coated The surface of the phthalonitrile-based microspheres is pre-cured to obtain a single-layer thermally conductive filler@phthalonitrile-based composite material.
  • the method may further include:
  • step (3) Dissolve the phthalonitrile resin in an organic solvent, add the single-layer thermally conductive filler@phthalonitrile-based composite material of step (2) to it, remove the organic solvent, and make the phthalonitrile resin complete Cover a single-layer thermally conductive filler@phthalonitrile-based composite material to obtain a single-layer thermally conductive filler@phthalonitrile-based composite material coated with phthalonitrile resin;
  • step (3) The second thermally conductive filler and the phthalonitrile resin-coated single-layer thermally conductive filler@phthalonitrile-based composite material obtained in step (3) are heated and mixed until the second thermally conductive filler is completely attached to the phthalonitrile.
  • the surface of the single-layer thermally conductive filler@phthalonitrile-based composite material coated with cyanoacrylate resin is pre-cured to obtain the phthalonitrile-based core-shell composite material with a double-layer thermally conductive filler layer.
  • steps (3) and (4) are repeated to prepare the phthalonitrile-based core-shell composite material with three or more thermally conductive filler layers.
  • the phthalonitrile resin in step (1) or step (3), has the meaning as described above.
  • the phthalonitrile resin is solid at room temperature, and acts as an adhesive by changing the reaction conditions for bonding thermally conductive fillers and phthalonitrile-based microspheres.
  • the organic solvent is selected from at least one of ethanol, acetone, n-propanol, and dimethylformamide, and is exemplified by acetone.
  • the quality of the organic solvent is 1 to 10 times the quality of the phthalonitrile resin, for example, 3 times, 4 times, 5 times, 6 times. Times, 7 times, 8 times.
  • the phthalonitrile-based microspheres have the meaning as described above.
  • the volume ratio of the phthalonitrile resin to the phthalonitrile-based microspheres is 1:(5-20), preferably 1:(8). ⁇ 15), exemplified as 1:10, 1:12, 1:15.
  • the method for removing the organic solvent is a conventional method for removing organic solvent known to those skilled in the art, such as rotary evaporation to remove organic solvent.
  • the organic solvent is removed by rotary evaporation at a temperature of 70-90°C.
  • the phthalonitrile-based microspheres coated with phthalonitrile resin have a core-shell structure, the shell layer is phthalonitrile resin, and the inner core is Phthalonitrile-based microspheres.
  • the heating function is to make the phthalonitrile resin-coated phthalonitrile-based microspheres solid phthalonitrile on the surface
  • the resin reaches its melting point and becomes a liquid with a certain viscosity.
  • the heating temperature is 130 to 200°C, for example, 150 to 160°C.
  • step (2) or step (4) the mixing is achieved by stirring, for example, the stirring time is 20-60 min, preferably 30-50 min, and exemplarily 30 min, 40 min, 50 min.
  • the function of the pre-curing is to slightly cure the phthalonitrile resin as the adhesive between the thermally conductive filler shell layer and the inner core to form o-phthalonitrile.
  • the dimethyl nitrile resin layer prevents the core-shell particles from being dissolved by the solvent in the subsequent processing.
  • the mass ratio of the phthalonitrile resin to the single-layer thermally conductive filler@phthalonitrile-based composite material is 1:(5-20), preferably It is 1:(8-15), exemplified as 1:10, 1:12, 1:15.
  • the invention also provides the phthalonitrile-based core-shell composite material prepared by the above method.
  • the aforementioned phthalonitrile-based three-dimensional continuous thermally conductive network structure composite material is prepared from the above-mentioned phthalonitrile-based composite material with a core-shell structure.
  • the thermally conductive filler in the phthalonitrile-based three-dimensional continuous thermally conductive network structure composite material is tightly combined with the phthalonitrile resin without obvious pores, and the porosity is preferably less than 2.0%, for example, less than 1.5%.
  • the thermally conductive fillers are connected to each other in the phthalonitrile-based three-dimensional continuous thermally conductive network structure composite material to form a thermally conductive channel.
  • the phthalonitrile-based three-dimensional continuous thermally conductive network structure composite material has a cross-sectional topography substantially as shown in FIG. 8.
  • the phthalonitrile-based three-dimensional continuous thermally conductive network structure composite material has high thermal conductivity and electrical insulation properties.
  • the thermal conductivity of the phthalonitrile-based three-dimensional continuous thermally conductive network structure composite material is 2.2 to 5.0 W ⁇ m -1 ⁇ K -1
  • the phthalonitrile-based three-dimensional continuous thermally conductive network composite material has a thermal conductivity of 2.2 to 5.0 W ⁇ m -1 ⁇ K -1.
  • the volume resistivity is greater than 10 11 ⁇ cm, for example, between 10 12 and 10 13 ⁇ cm.
  • the volume fraction of the thermally conductive filler in the phthalonitrile-based three-dimensional continuous thermally conductive network structure composite material is 10-40%
  • the thermal conductivity of the phthalonitrile-based three-dimensional continuous thermally conductive network structure composite material is 2.47 ⁇ 4.88W ⁇ m -1 ⁇ K -1
  • the volume resistivity of the phthalonitrile-based three-dimensional continuous thermally conductive network structure composite material is greater than 10 11 ⁇ cm, preferably between 10 12 ⁇ 10 13 ⁇ cm between.
  • the present invention also provides a method for preparing the above-mentioned phthalonitrile-based three-dimensional continuous thermally conductive network structure composite material.
  • the preparation method includes the following steps: preparing from raw materials containing the phthalonitrile-based composite material with a core-shell structure get.
  • the preparation method includes the following steps:
  • step (S2) The block obtained in step (S1) is post-cured under normal pressure to obtain the phthalonitrile-based three-dimensional continuous thermal conductive network structure composite material.
  • the hot-press curing is performed in stages; for example, the hot-press curing stage is divided into 1 to 3 stages, preferably 2 stages.
  • the temperature in each stage of the thermocompression curing is 260-315°C, preferably 280°C-315°C, and exemplarily 280°C and 315°C.
  • the curing temperature of the latter stage is higher than that of the previous stage.
  • the time of each stage of the thermocompression curing is the same or different, for example, 1 to 3 hours, preferably 1.5 to 2.5 hours, and exemplarily 1.5 hours, 2 hours, and 2.5 hours.
  • the thermocompression curing is divided into two stages, the first stage is cured at 280°C for 2 hours, and the second stage is cured at 315°C for 3 hours.
  • the pressure of the thermocompression curing is 5-20 MPa, preferably 8-15 MPa, exemplarily 8 MPa, 10 MPa, 12 MPa, 15 MPa.
  • curing is performed at 280° C. for 2 hours and then at 315° C. for 3 hours.
  • the mold before the phthalonitrile-based core-shell composite material is poured into the mold, the mold is preheated.
  • step (S1) the cooling is natural cooling to room temperature.
  • the normal-pressure post-curing may be post-curing in stages, for example, the normal-pressure post-curing stage is divided into 1 to 3 stages, preferably 2 stages.
  • the temperature in each stage of the normal pressure post-curing is 315-400°C, preferably 315-375°C, and exemplarily 315°C, 330°C, 350°C, 375°C.
  • the curing temperature of the latter stage is higher than that of the previous stage.
  • the time of each stage of curing after normal pressure is the same or different, and they are all selected from 2 to 6 hours, such as 2 hours, 2.5 hours, 3 hours, 3.5 hours, 4 hours, 4.5 hours, 5 hours, 5.5 hours, and 6 hours.
  • 2 to 6 hours such as 2 hours, 2.5 hours, 3 hours, 3.5 hours, 4 hours, 4.5 hours, 5 hours, 5.5 hours, and 6 hours.
  • under normal pressure first 315°C and then curing for 2h, and then 375°C after curing for 5h.
  • the invention also provides a phthalonitrile-based three-dimensional continuous thermal network structure composite material prepared by the above method.
  • the present invention also provides the application of the phthalonitrile-based composite material with a core-shell structure and/or the phthalonitrile-based three-dimensional continuous thermally conductive network structure composite material in the field of heat conduction; preferably, the Core-shell structured phthalonitrile-based composite material and/or the phthalonitrile-based three-dimensional continuous thermal network structure composite material is used in the fields of heat conduction and/or electrical insulation such as electronics, communications, new energy, or aerospace .
  • Alumina@graphite shell-core composite particles are prepared according to the following steps:
  • Figure 1 is a transmission electron microscope (TEM) image of graphite
  • Figure 2 is a transmission electron microscope (TEM) image of the prepared alumina@graphite core-shell composite particles. It can be seen from the comparison that alumina was successfully coated on the graphite surface, and alumina@graphite shell core composite particles were successfully prepared.
  • TEM transmission electron microscope
  • Figure 3 is a thermogravimetric analysis (TGA) diagram of the prepared alumina@graphite core-shell composite particles in an air atmosphere, from which it can be obtained that the alumina shell layer accounts for 18.37% of the mass percentage of the alumina@graphite core-shell composite particles.
  • TGA thermogravimetric analysis
  • Alumina@graphite shell-core composite particles are prepared according to the following steps:
  • Figure 3 is a thermogravimetric analysis (TGA) diagram of the prepared alumina@graphite core-shell composite particles in an air atmosphere, from which it can be obtained that the alumina shell layer accounts for 9.07% of the mass percentage of the alumina@graphite core-shell composite particles.
  • TGA thermogravimetric analysis
  • Alumina@graphite shell-core composite particles are prepared according to the following steps:
  • thermally conductive and insulating phthalonitrile-based composite material was prepared according to the following method (alumina@graphite shell-core composite particles accounted for about 5% of the composite material mass):
  • the mixture was poured into a preheated mold and precured at 200°C for 1 hour under normal pressure. Then under a pressure of 10 MPa, it was cured at 230°C for 2 hours, at 250°C for 2 hours, and at 280°C for 2 hours. It is naturally cooled to room temperature, demoulded, and cured at 315°C for 5 hours and 375°C for 5 hours under normal pressure to obtain a thermally conductive and insulating phthalonitrile-based composite material.
  • thermally conductive and insulating phthalonitrile-based composite material was prepared according to the following method (alumina@graphite shell core composite particles accounted for about 10% of the composite material mass):
  • the mixture was poured into a preheated mold and precured at 200°C for 1 hour under normal pressure. Then under a pressure of 10 MPa, it was cured at 230°C for 2 hours, at 250°C for 2 hours, and at 280°C for 2 hours. It is naturally cooled to room temperature, demoulded, and cured at 315°C for 5 hours and 375°C for 5 hours under normal pressure to obtain a thermally conductive and insulating phthalonitrile-based composite material.
  • thermally conductive and insulating phthalonitrile-based composite material was prepared according to the following method (alumina@graphite shell-core composite particles accounted for about 15% of the composite material mass):
  • the mixture was poured into a preheated mold and precured at 200°C for 1 hour under normal pressure. Then under a pressure of 10 MPa, it was cured at 230°C for 2 hours, at 250°C for 2 hours, and at 280°C for 2 hours. It is naturally cooled to room temperature, demoulded, and cured at 315°C for 5 hours and 375°C for 5 hours under normal pressure to obtain a thermally conductive and insulating phthalonitrile-based composite material.
  • Figure 4 is a cross-sectional scanning electron microscope (SEM) image of the prepared phthalonitrile composite material. It can be seen that the alumina@graphite shell-core composite particles are uniformly distributed in the resin without agglomeration. In addition, the hot pressing process makes the alumina@graphite particles and the phthalonitrile bond tightly without obvious pores (the porosity is less than 2.5%). Good interface adhesion can effectively transfer the heat between the particles and the resin and reduce the interface thermal resistance. The alumina@graphite particles overlap each other, effectively constructing the corresponding heat conduction channel.
  • SEM scanning electron microscope
  • thermally conductive and insulating phthalonitrile-based composite material was prepared according to the following method (alumina@graphite shell-core composite particles accounted for about 20% of the composite material mass):
  • the mixture was poured into a preheated mold and precured at 200°C for 1 hour under normal pressure. Then under a pressure of 10 MPa, it was cured at 230°C for 2 hours, at 250°C for 2 hours, and at 280°C for 2 hours. It is naturally cooled to room temperature, demoulded, and cured at 315°C for 5 hours and 375°C for 5 hours under normal pressure to obtain a thermally conductive and insulating phthalonitrile-based composite material.
  • the mixture was poured into a preheated mold and precured at 200°C for 1 hour under normal pressure. Then under a pressure of 10 MPa, it was cured at 230°C for 2 hours, at 250°C for 2 hours, and at 280°C for 2 hours. Naturally cool to room temperature, demould, and cure at 315°C for 5 hours and 375°C for 5 hours under normal pressure to obtain phthalonitrile resin.
  • the mixture was poured into a preheated mold and precured at 200°C for 1 hour under normal pressure. Then under a pressure of 10 MPa, it was cured at 230°C for 2 hours, at 250°C for 2 hours, and at 280°C for 2 hours. It is naturally cooled to room temperature, demoulded, and cured at 315°C for 5 hours and 375°C for 5 hours under normal pressure to obtain a phthalonitrile-based composite material.
  • the mixture was poured into a preheated mold and precured at 200°C for 1 hour under normal pressure. Then under a pressure of 10 MPa, it was cured at 230°C for 2 hours, at 250°C for 2 hours, and at 280°C for 2 hours. It is naturally cooled to room temperature, demoulded, and cured at 315°C for 5 hours and 375°C for 5 hours under normal pressure to obtain a phthalonitrile composite material.
  • the transient planar heat source method (Hot Disk) is used to test the thermal conductivity of the composite material.
  • a PC68 digital high resistance meter was used to test the volume resistivity of the composite material at a voltage of 500V.
  • the test temperature is 25 ⁇ 500°C
  • the test frequency is 1Hz
  • nitrogen is the protective gas.
  • the alumina@graphite composite particles prepared by a simple and feasible method in the present invention have high yield, low cost, and good performance.
  • the composite material prepared by blending with phthalonitrile resin has high performance. Thermal conductivity, while the material still maintains good electrical insulation and heat resistance.
  • the invention provides a new idea for the application of carbon materials in the field of thermal insulation of composite materials.
  • phthalonitrile resin which is composed of 18g of phthalonitrile monomer represented by formula (2) and 2g of 4-amino-(3,4-dicyanophenoxy)benzene as curing agent
  • PMMA polymethyl methacrylate
  • the resulting mixture was cured at 170°C for 1 hour, at 200°C for 1 hour, and at 250°C for 1 hour, and then washed with acetone to remove polymethylmethacrylate (PMMA) to obtain phthalonitrile-based microspheres.
  • PMMA polymethylmethacrylate
  • Figure 5 is a scanning electron microscope (SEM) image of phthalonitrile-based microspheres.
  • SEM scanning electron microscope
  • the particle size distribution of the phthalonitrile microspheres is uniform, the particle size is between 80-190 ⁇ m, and the Dv(50) is 129 ⁇ m.
  • the cross-linking density is represented by the infrared chart.
  • Figure 6 shows the phthalonitrile-based microspheres, uncross-linked phthalonitrile resin (containing the phthalonitrile monomer represented by formula (2)) and 375°C.
  • the phthalonitrile-based microspheres are cured up to 250°C, and their infrared image is close to that of uncrosslinked phthalonitrile resin. Compared with the phthalonitrile resin cured at 375°C, its 2230cm -1 corresponds to The strong C ⁇ N peak indicates that there are still many unreacted cyano groups in the phthalonitrile-based microspheres, which are incompletely solidified and can be re-melted at high temperature.
  • the amount of the other raw materials is the actual mass used.
  • v (volume) m (mass) / ⁇ (density) to obtain that each raw material is compounded
  • the volume fraction in the material is 1.38 g/cm 3
  • the density of alumina is 3.5 g/cm 3
  • the density of boron nitride is 2.25 g/cm 3
  • the density of graphite is 2.25 g/cm 3 .
  • the single-layer boron nitride@phthalonitrile-based composite material is prepared according to the following steps (the boron nitride accounts for about 20% of the volume of the single-layer boron nitride@phthalonitrile-based composite material):
  • phthalonitrile resin which consists of 0.95g of phthalonitrile monomer represented by formula (2) and curing agent 4-amino-(3,4-dicyanophenoxy)benzene 0.05 g. Stir at 160°C for 20 minutes.) Dissolve it in 50mL of acetone solution, stir evenly, then add 10g of phthalonitrile-based microspheres to it, rotate and evaporate until the solvent is completely volatilized to obtain phthalonitrile resin coating The phthalonitrile-based microspheres.
  • FIG. 7 is a scanning electron microscope (SEM) image of a single-layer boron nitride@phthalonitrile-based composite material with a volume fraction of boron nitride of 20%.
  • SEM scanning electron microscope
  • the boron nitride-graphite@phthalonitrile-based composite material is prepared according to the following steps (boron nitride and graphite respectively account for about 20% of the volume of the boron nitride-graphite@phthalonitrile-based composite material, and the inner layer is graphite ,
  • the outer layer is boron nitride):
  • phthalonitrile resin which consists of 0.95g of phthalonitrile monomer represented by formula (2) and curing agent 4-amino-(3,4-dicyanophenoxy)benzene 0.05 g. Stir at 160°C for 20 minutes.) Dissolve it in 50ml of acetone solution, stir well, then add 10g of phthalonitrile-based microspheres to it, rotate and evaporate until the solvent is completely volatilized to obtain phthalonitrile resin coating The phthalonitrile-based microspheres.
  • phthalonitrile resin which consists of 0.95g of phthalonitrile monomer represented by formula (2) and curing agent 4-amino-(3,4-dicyanophenoxy)benzene 0.05 g is prepared by stirring at 160°C for 20 minutes) dissolve in 50ml of acetone solution, stir evenly, then add the above-mentioned single-layer graphite@phthalonitrile-based composite material to it, rotate and evaporate until the solvent is completely volatilized to obtain phthalic acid Nitrile resin coated single-layer graphite@phthalonitrile-based composite material.
  • Boron nitride-alumina-graphite@phthalonitrile-based composite materials are prepared according to the following steps (boron nitride, alumina, and graphite respectively account for about boron nitride-alumina-graphite@phthalonitrile-based composite materials 20%, 10%, 10% of the volume, the inner layer is graphite, the middle layer is alumina, and the outer layer is boron nitride):
  • phthalonitrile resin (0.95g of phthalonitrile monomer represented by formula (3') and curing agent 4-amino-(3,4-dicyanophenoxy)benzene 0.05g prepared by stirring at 160°C for 20 minutes) was dissolved in 50ml of acetone solution, stirred evenly, and then 10g of phthalonitrile-based microspheres were added to it, rotary steamed until the solvent was completely volatilized, and then pre-cured at 200°C for 2h, The phthalonitrile-based microspheres coated with phthalonitrile resin are obtained.
  • phthalonitrile resin (0.95g of phthalonitrile monomer represented by formula (3') and curing agent 4-amino-(3,4-dicyanophenoxy)benzene 0.05g prepared by stirring at 160°C for 20 minutes) was dissolved in 50ml of acetone solution, stirred uniformly, and then added the above-mentioned single-layer graphite@phthalonitrile-based composite material, and rotary steamed until the solvent was completely volatilized to obtain phthalate Alumina-graphite@phthalonitrile composite material coated with cyanocarbonitrile resin.
  • the phthalonitrile-based three-dimensional continuous thermal network structure composite material was prepared according to the following method:
  • step (2) Put the block obtained in step (1) in an oven, under normal pressure, first cure at 315°C for 2 hours, and then cure at 375°C for 5 hours to obtain a three-dimensional continuous thermal network of phthalonitrile groups Structural composite materials.
  • Figure 8 is a cross-sectional scanning electron microscope (SEM) image of a phthalonitrile-based three-dimensional continuous thermal network structure composite material with a volume fraction of 20% boron nitride. It can be concluded that a three-dimensional continuous boron nitride thermal conduction network has been constructed.
  • SEM scanning electron microscope
  • the phthalonitrile-based three-dimensional continuous thermal network structure composite material was prepared according to the following method:
  • step (2) Put the block obtained in step (1) in an oven, under normal pressure, first cure at 315°C for 2 hours, and then cure at 375°C for 5 hours to obtain a three-dimensional continuous thermal network of phthalonitrile groups Structural composite materials.
  • the phthalonitrile-based three-dimensional continuous thermal network structure composite material was prepared according to the following method:
  • step (2) Put the block obtained in step (1) in an oven, under normal pressure, first cure at 315°C for 2 hours, and then cure at 375°C for 5 hours to obtain a three-dimensional continuous thermal network of phthalonitrile groups Structural composite materials.
  • This comparative example was prepared according to the following method (adding 20% of boron nitride by volume in a random distribution method):
  • phthalonitrile resin which is composed of 9.5 g of phthalonitrile monomer represented by formula (2) and 0.5 g of curing agent 4-amino-(3,4-dicyanophenoxy)benzene
  • phthalonitrile resin which is composed of 9.5 g of phthalonitrile monomer represented by formula (2) and 0.5 g of curing agent 4-amino-(3,4-dicyanophenoxy)benzene
  • the mixture was poured into a preheated mold and precured at 200°C for 1 hour under normal pressure. Then under a pressure of 15MPa, cure at 230°C for 2 hours, then at 250°C for 2 hours, and then at 280°C for 2 hours. It is naturally cooled to room temperature, demoulded, and cured at 315°C for 5 hours under normal pressure, and then cured at 375°C for 5 hours to obtain a phthalonitrile-based thermally conductive composite material.
  • Figure 9 shows a randomly distributed phthalonitrile-based thermally conductive composite material with a volume fraction of boron nitride of 20%. It can be concluded that the thermally conductive filler boron nitride is disordered, and it is difficult to overlap each other to form a thermally conductive channel.
  • This comparative example was prepared according to the following method (adding 20% boron nitride and 20% graphite in a random distribution manner):
  • phthalonitrile resin which is composed of 9.5g of phthalonitrile monomer represented by formula (2) and 0.5g of curing agent 4-amino-(3,4-dicyanophenoxy)benzene. It was prepared by stirring at 160° C. for 20 minutes), 6.5 g of graphite, and 6.5 g of boron nitride were dispersed in the acetone solution, heated and stirred until the solvent was completely volatilized, and vacuum degassed to obtain a mixture.
  • This comparative example was prepared according to the following method (adding 20% boron nitride, 10% alumina, and 10% graphite in a random distribution manner):
  • phthalonitrile resin (9.5g of phthalonitrile monomer represented by formula (3') and curing agent 4-amino-(3,4-dicyanophenoxy)benzene 0.5g It was prepared by stirring at 160°C for 20 minutes), 3.5 g of graphite, 5.5 g of alumina, and 7.1 g of boron nitride were dispersed in the acetone solution, heated and stirred until the solvent was completely volatilized, and vacuum degassed to obtain a mixture.
  • This comparative example was prepared according to the following method (without adding any filler):
  • phthalonitrile resin which consists of 9.5g of phthalonitrile monomer shown in formula (2) and curing agent 4-amino-(3,4-dicyanophenoxy) 0.5 g of benzene (prepared by stirring at 160°C for 20 minutes) was dissolved in acetone solvent, heated and stirred until all the solvent was volatilized, and vacuum degassed to obtain a mixture.
  • the transient planar heat source method (Hot Disk) is used to test the thermal conductivity of composite materials, which is a non-destructive testing technology that can be directly tested with a single-sided probe.
  • the PC68 digital high resistance meter was used to test the volume resistivity of the composite material at a voltage of 500V.
  • the sample size was 60 ⁇ 60 ⁇ 2mm.
  • Examples B1-B3 and Comparative Examples B1-B4 can be concluded that as the content of thermally conductive fillers increases, the thermally conductive fillers are easily in contact with each other in the resin matrix, and the corresponding heat conduction channels are more easily formed, which effectively improves the composite
  • the thermal conductivity of the material can better transfer heat.
  • the thermal conductivity of Example B2 is the best under the same filling amount of thermally conductive filler.
  • the phthalonitrile-based core-shell composite material prepared by a simple and feasible method in the present invention has high yield, low cost and good performance, and its phthalonitrile-based three-dimensional continuous thermal network structure prepared by hot pressing
  • the composite material can have higher thermal conductivity with less thermally conductive filler content, and has good electrical insulation properties.
  • the invention realizes a high-performance thermally conductive and insulating composite material by means of novel material structure design and processing methods, and well retains the excellent comprehensive performance of the polymer-based composite material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一种邻苯二甲腈基复合材料及其制备方法与应用。所述复合材料中包括导热填料;所述导热填料分布在邻苯二甲腈基体树脂中,或者,所述导热填料分布在至少部分包覆在邻苯二甲腈基微球的表面的导热填料层中。该邻苯二甲腈基复合材料在导热、导热绝缘领域具有良好的应用前景。

Description

一种邻苯二甲腈基复合材料及其制备方法和应用
本申请要求申请人下述两件在先申请的优先权:于2020年5月11日向中国国家知识产权局提交的专利申请号为202010394333.2,发明名称为“一种邻苯二甲腈基复合材料及其制备方法和应用”的在先申请的优先权;于2020年11月24日向中国国家知识产权局提交的专利申请号为202011331086.8,发明名称为“一种高导热、绝缘邻苯二甲腈基复合材料及其制备方法和应用”的在先申请的优先权。所述在先申请的全文通过引用的方式结合于本申请中。
技术领域
本发明属于高分子复合材料领域,特别涉及一种邻苯二甲腈基复合材料及其制备方法和应用。
背景技术
5G时代,电子、通讯、新能源和航空航天等领域正在飞速发展,电子器件、通讯设备、自动化智能设备的大功率、高集成、轻量、小型化方向趋势日益明显,由此带来的器件散热问题日益突出。若不及时将集聚的热量传递到周围环境中去,会严重影响器件的性能及使用寿命。聚合物基复合材料由于其高强度、低密度、易成型、耐化学腐蚀、成本低等优点而被广泛应用于导热领域。理想的封装材料应具备良好的导热和绝缘性能,对于某些长期高发热量的电器元件,较高的使用温度对材料的耐热性能也提出了更高的要求。
邻苯二甲腈树脂作为一种高分子聚合物,具有高玻璃化转变温度(大于450℃)、耐热性能优异、吸水性低、阻燃性好、机械性能好等优点,在航空航天、船舶、机械、电子材料领域有广泛应用。但是邻苯二甲腈树脂较低的热导率,严重制约了其在电子领域的应用。目前制备导热绝缘聚合物基复合材料,一般是向聚合物中添加无机陶瓷类填料,但陶瓷类填料高昂的成本影响了其经济效应,因而迫切需要开发一种性能优异并且成本低廉的新型填料。
碳材料石墨具有成本低、热导率高、耐高温、热膨胀系数低、密度小、化学性质稳定等显著优点。片层结构的石墨被认为是制备导热高分子复合材料较为合适的填料,但是其降低了复合材料绝缘性能。如何保证添加填料后,仍能兼顾聚合物基复合材料的导热性和绝缘性,成为亟待解决的技术问题。
另一方面,在聚合物基体中加入高导热填料是一种经济可靠的制备高导热材料的方法。传统的随机填充方法通常需要大量的填料来产生导热网络,高的填料含量会导致复合材料存在力学性能差、加工困难、密度高、成本高等缺点。
在聚合物基体中制备三维连续导热网络是实现高导热的最有效和最有前途的方法之一。目前,三维连续导热网络的构建方法主要有冷冻干燥、自组装、冰模板、化学气相沉积、三维编织等。而多数制造三维连续导热网络的方法工艺相对复杂、工艺成本高、难以大规模生产,使其工业化应用还有很长的路要走。因而迫切需要开发一种简单高效的方法,来制备具有三维连续导热网络结构的聚合物基复合材料。
发明内容
本发明提供一种邻苯二甲腈基复合材料,所述复合材料中包括导热填料;
所述导热填料分布在邻苯二甲腈基体树脂中,或者,所述导热填料分布在至少部分包覆 在邻苯二甲腈基微球的表面的导热填料层中。
根据本发明的实施方案,所述导热填料可以选自下述材料中的至少一种:金属,陶瓷,碳材料,金属、陶瓷和/或碳材料的复合材料等。示例性地,所述导热填料选自铜、银、铝、氧化铝、氮化硅、碳化硅、氮化铝、氮化硅、氮化硼、石墨、石墨烯、碳纳米管、氧化铝@石墨复合材料中的一种、两种或更多种。
根据本发明的实施方案,形成所述邻苯二甲腈树脂的邻苯二甲腈单体选自如式(1)所示结构的化合物:
Figure PCTCN2021093026-appb-000001
其中,R选自如下结构中的任意一种:
Figure PCTCN2021093026-appb-000002
根据本发明的实施方案,所述复合材料的导热系数至少为0.2W·m -1·K -1,例如为0.2~5.0W·m -1·K -1,优选为0.2~0.7W·m -1·K -1或2.2~5.0W·m -1·K -1
根据本发明的实施方案,所述复合材料的体积电阻率不低于10 10Ω·cm,优选不低于10 11Ω·cm,更优选大于10 11Ω·cm。
本发明提供一种氧化铝@石墨复合材料,所述复合材料具有核壳结构,其壳层为氧化铝,核为石墨颗粒,氧化铝包覆在所述石墨颗粒的表层。
本发明还提供上述氧化铝@石墨复合材料的制备方法,所述制备方法包括如下步骤:
(1)将石墨和阴离子表面活性剂分散在去离子水中,使阴离子表面活性剂完全覆盖所述石墨,得到稳定均匀的混合液;
(2)向步骤(1)得到的混合液中同时滴加铝盐溶液和碱液,在搅拌条件下反应,反应完成后过滤得到沉淀,对所述沉淀进行后处理,得到粉末;
(3)对步骤(2)得到的粉末进行煅烧,得到氧化铝@石墨复合材料。
本发明还提供由上述方法制备得到的氧化铝@石墨复合材料。
本发明还提供上述氧化铝@石墨复合材料作为导热填料的应用。优选作为邻苯二甲腈基树脂的导热填料。
本发明还提供一种邻苯二甲腈基复合材料,其含有上述氧化铝@石墨复合材料。
本发明还提供上述邻苯二甲腈基复合材料的制备方法,所述制备方法包括如下步骤:由含有所述氧化铝@石墨复合材料的原料制备得到。
本发明还提供由上述方法制备得到的邻苯二甲腈基复合材料。
本发明还提供所述邻苯二甲腈基复合材料在导热绝缘领域中的应用;优选地,所述复合 材料用于电器元件。
本发明提供一种具有核壳结构的邻苯二甲腈基复合材料,所述复合材料包括内核和至少一层的导热填料层,所述内核为邻苯二甲腈基微球,所述导热填料层至少部分包覆在所述内核的表面。优选地,所述导热填料层全部包覆在所述内核的表面。
本发明还提供上述具有核壳结构的邻苯二甲腈基复合材料的制备方法,所述制备方法包括如下步骤:在邻苯二甲腈基微球的表面至少部分包覆导热填料层,得到所述邻苯二甲腈基复合材料。
本发明还提供由上述方法制备得到的具有核壳结构的邻苯二甲腈基复合材料。
本发明还提供上述具有核壳结构的邻苯二甲腈基复合材料在制备邻苯二甲腈基三维连续导热网络结构复合材料中的应用。
本发明还提供一种邻苯二甲腈基三维连续导热网络结构复合材料,其由上述的具有核壳结构的邻苯二甲腈基复合材料制备得到。
本发明还提供上述邻苯二甲腈基三维连续导热网络结构复合材料的制备方法,所述制备方法包括如下步骤:由含有所述具有核壳结构的邻苯二甲腈基复合材料的原料制备得到。优选地,由上述具有核壳结构的邻苯二甲腈基复合材料通过热压反应得到。
本发明还提供由上述方法制备得到的邻苯二甲腈基三维连续导热网络结构复合材料。
本发明还提供所述具有核壳结构的邻苯二甲腈基复合材料和/或所述邻苯二甲腈基三维连续导热网络结构复合材料在导热领域中的应用。
本发明的有益效果:
本发明提供一种含有邻苯二甲腈树脂和导热填料的复合材料,其中的导热填料与邻苯二甲腈树脂紧密结合,孔隙率低,该复合材料具有高导热率、高体积电阻率的性能。
本发明提供的氧化铝@石墨壳核复合材料、邻苯二甲腈基复合材料及其制备方法和应用具有如下三方面优势:
(1)本发明提供了一种氧化铝@石墨壳核复合材料作为邻苯二甲腈基复合材料的填料,其不同于具有高昂成本的无机陶瓷填料,也不同于易被腐蚀且导电的金属填料。氧化铝@石墨壳核复合材料在石墨表面进行氧化铝绝缘层涂覆,不但具有碳材料石墨的成本低、热导率高、耐高温、热膨胀系数低、密度小、化学性质稳定等显著优点,能够在邻苯二甲腈树脂基体中构建导热网络,提高了邻苯二甲腈基复合材料导热性能的同时,还维持了复合材料高的体积电阻率,达到绝缘要求。
(2)本发明提供的氧化铝@石墨壳核复合材料的制备方法,通过原料配比的调整,可以控制氧化铝的含量,反应条件温和,工艺简单可控。制备的氧化铝@石墨核壳复合材料产率高、成本低、性能好。
(3)本发明提供了一种导热绝缘邻苯二甲腈基复合材料及其制备方法,该邻苯二甲腈基复合材料具有良好的导热性和绝缘性,将其应用于电器元件时,能够很好地解决高功率电器散热、电绝缘以及耐热的问题。
本发明提供一种含有邻苯二甲腈树脂和导热填料的复合材料,其中的导热填料分布在至少部分包覆在邻苯二甲腈基微球的表面的导热填料层中,所述复合材料在较低的导热填料含量下就能够表现出良好的导热性能,有效地克服了高导热填料含量才产生导热网络的问题,并且具有良好的绝缘性能。
本发明提供的具有核壳结构的邻苯二甲腈基复合材料及其制备方法和应用具有如下三方 面优势:
(1)本发明提供的邻苯二甲腈基核壳复合材料的制备方法,采用邻苯二甲腈树脂作为胶粘剂,不引入其他物质,属于一种自粘接的方法,最大程度地保持了邻苯二甲腈基复合材料本身的性质。通过原料配比的调整,可以精确控制导热填料的含量以及导热填料层数,反应条件温和,工艺简单可控,适合大规模生产。制备的邻苯二甲腈基核壳复合材料产率高、成本低、性能好。
(2)本发明提供的邻苯二甲腈基三维连续导热网络结构复合材料及其制备方法,由邻苯二甲腈基核壳复合材料通过热压反应得到。该邻苯二甲腈基三维连续导热网络结构复合材料具有相分离结构,导热填料为连续相,在较低的导热填料含量能形成导热通道能有效构筑导热网络。新颖的材料结构设计和加工方式使得该材料可以广泛应用于导热领域中。并且邻苯二甲腈基三维连续导热网络结构复合材料兼具有良好电绝缘性能,最终拓宽了邻苯二甲腈树脂的应用领域。
(3)本发明提供的具有三维连续导热网络结构的复合材料,其在较低的导热填料含量下就能够表现出良好的导热性能,有效地克服了高导热填料含量才产生导热网络的问题,并且具有良好的绝缘性能。相比于随机填充的聚合物基复合材料,该导热相分离结构的复合材料拥有更高导热系数、更简单成型工艺、更低密度、更低成本。
附图说明
图1为石墨的透射电子显微镜(TEM)图。
图2为制备例A1制备的氧化铝@石墨核壳复合粒子的透射电子显微镜(TEM)图。
图3为制备例A1、制备例A2制备的氧化铝@石墨核壳复合粒子和石墨在空气气氛下的热重分析(TGA)图。
图4为实施例A3制备的氧化铝@石墨核壳复合粒子填充的邻苯二甲腈基复合材料的断面扫描电子显微镜(SEM)图。
图5为邻苯二甲腈基微球的扫描电子显微镜(SEM)图。
图6为邻苯二甲腈基微球、未交联邻苯二甲腈树脂和375℃固化后的邻苯二甲腈树脂红外对比图。
图7为制备例B1制备的氮化硼体积分数为20%的单层氮化硼@邻苯二甲腈基复合材料的扫描电子显微镜(SEM)图。
图8为实施例B1制备的氮化硼体积分数为20%的邻苯二甲腈基三维连续导热网络结构复合材料的断面扫描电子显微镜(SEM)图。
图9为对比例B1制备的氮化硼体积分数为20%的随机分布的邻苯二甲腈基导热复合材料。
具体实施方式
[氧化铝@石墨复合材料]
如前所述的氧化铝@石墨复合材料,所述复合材料具有核壳结构,其壳层为氧化铝,核为石墨颗粒,氧化铝包覆在所述石墨颗粒的表层。
根据本发明的实施方案,所述氧化铝全部包覆所述石墨颗粒的表层。
根据本发明的实施方案,所述石墨颗粒的尺寸为微米级;例如,所述石墨颗粒的粒径为0.15~50μm,例如0.5~20μm。
根据本发明的实施方案,氧化铝壳层占所述氧化铝@石墨复合材料的质量百分比为5~50%,优选为10~30%,示例性为9.07%、10%、15%、18.37%、20%、24%、25%、30%。
根据本发明的实施方案,所述氧化铝@石墨复合材料具有基本如图2所示的TEM形貌图。[氧化铝@石墨复合材料的制备方法]
上述氧化铝@石墨复合材料的制备方法包括如下步骤:
(1)将石墨和阴离子表面活性剂分散在去离子水中,使阴离子表面活性剂完全覆盖所述石墨,得到稳定均匀的混合液;
(2)向步骤(1)得到的混合液中同时滴加铝盐溶液和碱液,在搅拌条件下反应,反应完成后过滤得到沉淀,对所述沉淀进行后处理,得到粉末;
(3)对步骤(2)得到的粉末进行煅烧,得到氧化铝@石墨复合材料。
根据本发明的实施方案,所述石墨具有如上文所述的含义。
根据本发明的实施方案,所述阴离子表面活性剂为十二烷基磺酸钠、十二烷基硫酸钠、仲烷基磺酸钠中的至少一种,优选为十二烷基磺酸钠和/或十二烷基硫酸钠。
根据本发明的实施方案,所述铝盐为硝酸铝、硫酸铝、或其水合物中的至少一种,例如为九水合硝酸铝和/或十八水合硫酸铝。
根据本发明的实施方案,所述碱为氢氧化钠、氢氧化钾、碳酸氢钠和碳酸氢钾中至少的一种,例如为氢氧化钠和/或氢氧化钾。
根据本发明的实施方案,步骤(1)中,所述分散为超声分散。例如,所述超声的功率为80~120W,优选为90~110W,示例性为80W、90W、100W、110W、120W。例如,所述超声的时间为10min~60min,优选为20~40min,示例性为20min、30min、40min。例如,所述超声的温度为70~90℃,优选为75~85℃,示例性为70℃、75℃、80℃、85℃、90℃。
根据本发明的实施方案,步骤(1)中,所述阴离子表面活性剂的用量为石墨质量的0.5~30%,优选为2~7%,示例性为2%、3%、4%、5%、6%、7%。
根据本发明的实施方案,步骤(1)中,所述石墨与去离子水的质量体积比为1g:(15~50)mL,例如1g:(20~40)mL,示例性为1g:20mL,1g:30mL,1g:40mL,1g:50mL。
根据本发明的实施方案,步骤(2)中,所述铝盐与石墨的质量比为1:(0.1~10),优选为1:(0.5~2),示例性为1:0.64、1:0.75、1:1、1:1.5、1:2。
根据本发明的实施方案,步骤(2)中,所述碱与铝盐的摩尔比为(2.7~3.3):1,优选为(2.9~3.1):1,示例性为3:1。
根据本发明的实施方案,步骤(2)中,所述铝盐溶液和混合液的体积比、以及碱液和混合液的体积比相同或不同,例如为1:(5~30),优选为1:(10~20),示例性为1:10、1:15、1:20。
根据本发明的实施方案,步骤(2)中,所述铝盐溶液和碱液在搅拌条件下缓慢滴加入所述混合液中。例如,滴加时间不超过2h,比如为1~2h。进一步地,所述滴加过程中,保持体系的pH值为6~7。
根据本发明的实施方案,步骤(2)中,待铝盐溶液和碱液滴加完成后,搅拌反应2~4h,例如2~3h,示例性为2h、2.5h、3h。
根据本发明的实施方案,步骤(2)中,所述后处理包括洗涤和干燥。例如,用乙醇洗涤沉淀至少2次。例如,对洗涤后的沉淀进行真空干燥;进一步地,所述真空干燥的温度为90~110℃,优选为95~105℃,示例性为90℃,100℃,110℃;进一步地,所述真空干燥的时间为8~16h,优选为10~14h,示例性为10h、12h。
根据本发明的实施方案,步骤(3)中,所述煅烧的温度为400~800℃,优选为500~600℃,示例性为500℃、550℃、600℃。例如,所述煅烧的时间为1~12h,优选为2~5h,示例性为2h、3h、4h、5h。
根据本发明的实施方案,步骤(3)中,所述煅烧在管式炉中进行。
根据本发明示例性的方案,所述氧化铝@石墨复合材料的制备方法包括如下步骤:
(1)将石墨和阴离子表面活性剂超声分散于去离子水中,使阴离子表面活性剂完全覆盖所述石墨,得到稳定均匀的混合液;
(2)搅拌条件下向上述混合液中同时缓慢滴加铝盐溶液和碱液,滴加过程中保持体系pH为6~7,滴加完成后在搅拌条件下反应,待反应完成后过滤得到沉淀,对所述沉淀进行后处理,得到粉末;
(3)对上述粉末进行煅烧,得到氧化铝@石墨复合材料。
制备时,铝盐向溶液中提供铝离子,碱向溶液中提供氢氧根。而阴离子表面活性剂溶于去离子水之后,其烷基端与石墨相结合,另一端的阴离子与溶液中铝离子相结合;同时铝离子与溶液中的氢氧根生成氢氧化铝,得到氢氧化铝包覆石墨的复合粒子,再经过高温煅烧即得氧化铝@石墨复合材料。
本发明还提供由上述方法制备得到的氧化铝@石墨复合材料。
[氧化铝@石墨复合材料的应用]
上述氧化铝@石墨复合材料作为导热填料的应用。优选作为邻苯二甲腈基树脂的导热填料。
[邻苯二甲腈基复合材料]
如前所述的邻苯二甲腈基复合材料,所述复合材料中包括导热填料;所述导热填料分布在邻苯二甲腈基体树脂中。
根据本发明的实施方案,所述导热填料选自上述氧化铝@石墨复合材料。
如前所述的邻苯二甲腈基复合材料,其含有上述氧化铝@石墨复合材料。例如,所述氧化铝@石墨复合材料占所述邻苯二甲腈基复合材料的质量百分比为5~50%,例如10~30%,示例性为5%、10%、15%、20%、25%、30%。
根据本发明的实施方案,所述氧化铝@石墨复合材料均匀分布在邻苯二甲腈基体树脂中。优选地,氧化铝@石墨复合材料与邻苯二甲腈基体树脂紧密结合,孔隙率低于2.5%。
根据本发明的实施方案,所述氧化铝@石墨复合材料在邻苯二甲腈基体树脂中相互搭接,形成导热通道。
根据本发明的实施方案,所述邻苯二甲腈基复合材料具有基本如图4所示的断面形貌图。
根据本发明的实施方案,以重量份计,所述邻苯二甲腈基复合材料的制备原料包括:邻苯二甲腈单体100份,固化剂1~10份,所述氧化铝@石墨复合材料5~50份;
所述氧化铝@石墨复合材料具有如上文所述的含义。
根据本发明的实施方案,所述邻苯二甲腈单体选自如式(1)所示结构的化合物:
Figure PCTCN2021093026-appb-000003
其中,R选自如下结构中的任意一种:
Figure PCTCN2021093026-appb-000004
优选地,R选自如下结构中的任意一种:
Figure PCTCN2021093026-appb-000005
示例性地,R选自如下结构中的任意一种:
Figure PCTCN2021093026-appb-000006
根据本发明的实施方案,所述邻苯二甲腈单体选自式(2)或式(3)所示结构的化合物:
Figure PCTCN2021093026-appb-000007
根据本发明的实施方案,所述固化剂为胺类固化剂,例如可以为4,4-二氨基二苯砜、4,4’-二氨基二苯砜、4-氨基-(3,4-二氰基苯氧基)苯、间氨基苯乙炔、以及4,4’-联苯二胺中的至少一种;示例性为4-氨基-(3,4-二氰基苯氧基)苯。
根据本发明的实施方案,以重量份计,所述固化剂的用量为2~8份,示例性为2份、3份、4份、5份、6份、7份、8份。
根据本发明的实施方案,以重量份计,所述氧化铝@石墨复合材料的用量为10~30份,示例性为11份、11.625份、12份、15份、18份、18.5份、20份、25份、26.25份、30份。
根据本发明的实施方案,所述邻苯二甲腈基复合材料由上述重量份的原料制备得到。
根据本发明的实施方案,所述邻苯二甲腈基复合材料的导热系数为0.2~0.7W·m -1·K -1。优选地,所述邻苯二甲腈基复合材料的导热系数为0.3~0.68W·m -1·K -1
根据本发明的实施方案,所述邻苯二甲腈基复合材料的体积电阻率不低于10 10Ω·cm,优选不低于10 11Ω·cm。
根据本发明的实施方案,所述邻苯二甲腈基复合材料的玻璃化转变温度为450~465℃,优 选为455~462℃。
[邻苯二甲腈基复合材料的制备方法]
上述邻苯二甲腈基复合材料的制备方法,所述制备方法包括如下步骤:由含有所述氧化铝@石墨复合材料的原料制备得到。优选地,由含有上述邻苯二甲腈单体、固化剂和所述氧化铝@石墨复合材料的共混物通过热压反应得到。
根据本发明的实施方案,所述制备方法包括如下步骤:
(1)采用熔融共混法将所述氧化铝@石墨复合材料与邻苯二甲腈单体以及固化剂混合均匀;
(2)将步骤(1)得到的混合物倒入模具中,经过第一次常压预固化,加压固化,冷却脱模后进行常压后固化,得到所述邻苯二甲腈基复合材料。
根据本发明的实施方案,所述氧化铝@石墨复合材料、固化剂和邻苯二甲腈单体具有如上文所述的含义和用量。
根据本发明的实施方案,步骤(1)中,所述熔融共混的温度根据所用的邻苯二甲腈单体来确定。其中,所述共混的时间为20min~40min,例如20min、25min、30min、35min、40min。
根据本发明的实施方案,步骤(2)中,所述常压预固化的温度为150~230℃,优选为180~220℃,示例性为180℃、190℃、200℃、210℃、220℃。其中,所述常压预固化的时间为0.5~2.5h,优选为1~2h,示例性为1h、1.5h、2h。
根据本发明的实施方案,步骤(2)中,所述加压固化是分阶段进行加压固化;例如加压固化阶段为2~4个,优选为2~3个。其中,所述加压固化的各阶段温度为230~300℃,优选为230℃~280℃,示例性为230℃、250℃、280℃。优选地,各阶段固化的温度逐阶段升高。其中,所述加压固化的各阶段时间相同或不同,例如为1~3.5h,优选1.5~3h,示例性为1h、1.5h、2h、2.5h、3h、3.5h。
根据本发明的实施方案,步骤(2)中,所述加压固化的压力为5~15MPa,优选为8~12MPa,示例性为8MPa、10MPa、12MPa。
根据本发明的实施方案,步骤(2)中,所述冷却为自然冷却至室温。
根据本发明的实施方案,步骤(2)中,所述常压后固化可以分阶段后固化,例如分2~4阶段。其中,所述常压后固化的各阶段温度为300~400℃,优选为315~375℃,示例性为315℃、330℃、350℃、375℃。优选地,各阶段固化的温度逐阶段升高。其中,所述常压后固化的各阶段时间相同或不同,均选自4~6h,例如4h、4.5h、5h、5.5h、6h。示例性地,在常压下,先315℃后固化5h,再375℃后固化5h。
本发明还提供由上述方法制备得到的邻苯二甲腈基复合材料。
[邻苯二甲腈基复合材料的应用]
本发明还提供所述邻苯二甲腈基复合材料在导热绝缘领域中的应用;优选地,所述复合材料用于电器元件。
[具有核壳结构的邻苯二甲腈基复合材料]
如前所述的邻苯二甲腈基复合材料,所述复合材料中包括导热填料;所述导热填料分布在至少部分包覆在邻苯二甲腈基微球的表面的导热填料层中。
根据本发明的实施方案,所述复合材料具有核壳结构,即包括内核和至少一层的导热填料层,所述内核为邻苯二甲腈基微球,所述导热填料层至少部分包覆在所述内核的表面。
优选地,所述导热填料层全部包覆在所述内核的表面。
根据本发明的实施方案,将距离内核最近的导热填料层记为第一导热填料层,所述第一导热填料层和内核之间还可以包括邻苯二甲腈树脂层。
根据本发明的实施方案,当所述导热填料层的层数为两层、三层或更多层时,相邻导热填料层之间具有邻苯二甲腈树脂层。
根据本发明的实施方案,各导热填料层中的导热填料可以相同或不同。例如,所述导热填料可以选自金属、陶瓷和碳材料等导热填料中的至少一种;优选为铜、银、铝、氧化铝、氮化硅、碳化硅、氮化铝、氮化硅、氮化硼、石墨、石墨烯和碳纳米管中的一种、两种或更多种。
优选地,最外层的导热填料层中的导热填料不能为碳材料,所述“最外层”指的是距离内核最远的导热填料层,当导热填料层为单层时,第一导热填料层即为最外层的导热填料层。
根据本发明的实施方案,以体积份数计,所述邻苯二甲腈基核壳复合材料包括:45~85份的邻苯二甲腈基微球和5~50份的导热填料。例如,以体积份数计,所述邻苯二甲腈基核壳复合材料包括:50~80份的邻苯二甲腈基微球和10~40份的导热填料。示例性地,邻苯二甲腈基微球的体积份数为50份、55份、60份、65份、70份、75份或80份,导热填料的体积份数为10份、15份、20份、30份、35份、40份、45份或50份。
根据本发明的实施方案,以体积份数计,所述邻苯二甲腈基核壳复合材料还包括5~10份的邻苯二甲腈树脂,示例性包括5份、6份、7份、8份、9份或10份的邻苯二甲腈树脂。该邻苯二甲腈树脂来自所述邻苯二甲腈树脂层。
例如,以体积份数计,所述邻苯二甲腈基核壳复合材料包括:50~80份的邻苯二甲腈基微球、6~9份的邻苯二甲腈树脂和10~40份的导热填料。该邻苯二甲腈树脂来自所述邻苯二甲腈树脂层。
又如,以体积份数计,所述邻苯二甲腈基核壳复合材料包括:60~70份的邻苯二甲腈基微球、7~8份的邻苯二甲腈树脂和20~30份的导热填料。该邻苯二甲腈树脂来自所述邻苯二甲腈树脂层。
优选地,所述邻苯二甲腈基微球、邻苯二甲腈树脂和导热填料的体积份数之和为100份。
本发明中,所述体积份数是通过所述材料的质量份/该材料的密度计算得到的。
根据本发明的实施方案,所述邻苯二甲腈树脂层中的邻苯二甲腈树脂未发生交联。
根据本发明的实施方案,为了后续的再次加工成型,所述邻苯二甲腈基微球为245~250℃,优选250℃的固化产物,其具有较低的交联密度;具体的,其为邻苯二甲腈化合物的不完全固化物,在不低于280℃下,例如280~350℃温度下能够重新变为熔融状态。
根据本发明的实施方案,所述邻苯二甲腈基微球不溶于有机溶剂,例如所述有机溶剂选自乙醇、丙酮、正丙醇和二甲基甲酰胺等中的至少一种,示例性为丙酮。
根据本发明的实施方案,所述邻苯二甲腈基微球为本领域已知微球。所述邻苯二甲腈基微球由邻苯二甲腈树脂制备得到,所述邻苯二甲腈树脂与所述邻苯二甲腈树脂层中的邻苯二甲腈树脂相同。
根据本发明的实施方案,所述邻苯二甲腈基微球的粒径在0.05~300μm之间,例如10~200μm之间,又如80~190μm之间。
根据本发明的实施方案,所述邻苯二甲腈树脂为热固性树脂。热固性邻苯二甲腈树脂具有优异的热稳定性、耐水性、阻燃性、力学性能等优点,特别适用于导热领域。
根据本发明的实施方案,所述邻苯二甲腈树脂由包括邻苯二甲腈单体和固化剂的原料制 备得到,所述邻苯二甲腈单体选自如式(1)所示结构的化合物:
Figure PCTCN2021093026-appb-000008
其中,R选自如下结构中的任意一种:
Figure PCTCN2021093026-appb-000009
优选地,R选自如下结构中的任意一种:
Figure PCTCN2021093026-appb-000010
示例性地,R选自如下结构中的任意一种:
Figure PCTCN2021093026-appb-000011
根据本发明的实施方案,所述邻苯二甲腈单体选自式(2)或式(3’)所示结构的化合物:
Figure PCTCN2021093026-appb-000012
根据本发明的实施方案,所述固化剂为胺类固化剂,例如可以为4,4-二氨基二苯砜、3,3,-二乙基4,4,-二氨基二苯基甲烷(H-256)、4-氨基-(3,4-二氰基苯氧基)苯、对苯二胺、间氨基苯乙炔、以及二乙基甲苯二胺(DETDA)的至少一种;示例性为4-氨基-(3,4-二氰基苯氧基)苯。
根据本发明的实施方案,所述固化剂占所述邻苯二甲腈单体质量分数的1~12%,优选质 量分数的3~6%。
根据本发明的实施方案,所述至少一层导热填料层(也称壳层)占所述邻苯二甲腈基核壳复合材料的体积百分比为5~50%,优选为10~40%,示例性为10%、15%、20%、25%、30%、35%、40%。
根据本发明的实施方案,所述邻苯二甲腈基核壳复合材料具有基本如图7所示的SEM形貌图。
根据本发明优选的实施方案,所述邻苯二甲腈基核壳复合材料可以为:
单层导热填料层的邻苯二甲腈基核壳复合材料,例如单层氮化硼@邻苯二甲腈基复合材料,其中,壳层为氮化硼,内核为邻苯二甲腈基微球,在氮化硼壳层和邻苯二甲腈基微球之间具有邻苯二甲腈树脂层,所述氮化硼壳层和邻苯二甲腈树脂层能够完全包覆位于其内的微球;优选地,所述氮化硼占所述氮化硼@邻苯二甲腈基复合材料体积的20%;
或者双层导热填料层的邻苯二甲腈基核壳复合材料,例如氮化硼-石墨@邻苯二甲腈基复合材料,其中,导热填料层包括氮化硼层和石墨层,氮化硼层为最外层,内核为邻苯二甲腈基微球,在氮化硼层和石墨层之间、以及石墨层和邻苯二甲腈基微球之间具有邻苯二甲腈树脂层,所述氮化硼层、石墨层和邻苯二甲腈树脂层能够完全包覆位于其内的微球;优选地,所述氮化硼和石墨分别占所述氮化硼-石墨@邻苯二甲腈基复合材料体积的20%;
或者三层导热填料层的邻苯二甲腈基核壳复合材料,例如氮化硼-氧化铝-石墨@邻苯二甲腈基复合材料,其中,导热填料层包括氮化硼层、氧化铝层和石墨层,氮化硼层为最外层,内核为邻苯二甲腈基微球,在相邻导热填料层之间、以及第一导热填料层(可以为氧化铝层或石墨层)和邻苯二甲腈基微球之间具有邻苯二甲腈树脂层,所述氮化硼层、氧化铝层、石墨层和邻苯二甲腈树脂层能够完全包覆位于其内的微球;优选地,所述氮化硼占所述氮化硼-氧化铝-石墨@邻苯二甲腈基复合材料体积比的20%,所述氧化铝占所述氮化硼-氧化铝-石墨@邻苯二甲腈基复合材料体积比的10%,所述石墨占所述氮化硼-氧化铝-石墨@邻苯二甲腈基复合材料体积比的10%。
[具有核壳结构的邻苯二甲腈基复合材料的制备方法]
上述具有核壳结构的邻苯二甲腈基复合材料的制备方法包括如下步骤:在邻苯二甲腈基微球的表面至少部分包覆导热填料层,得到所述邻苯二甲腈基复合材料。
根据本发明的实施方案,所述方法具体包括如下步骤:
在邻苯二甲腈基微球的表面依次包覆邻苯二甲腈树脂层和第一导热填料层,得到单层导热填料层的邻苯二甲腈基核壳复合材料;
或者,在所述单层导热填料的邻苯二甲腈基核壳复合材料的表面依次包覆邻苯二甲腈基树脂层和第二导热填料层,得到双层导热填料层的邻苯二甲腈基核壳复合材料;
或者,依此类推,制备得到三层或更多层导热填料层的邻苯二甲腈基核壳复合材料。
在一个具体的实施方案中,所述邻苯二甲腈基核壳复合材料的制备方法包括如下步骤:
(1)将邻苯二甲腈树脂溶于有机溶剂中,向其中加入邻苯二甲腈基微球,除去有机溶剂,使邻苯二甲腈树脂完全覆盖邻苯二甲腈基微球,得到邻苯二甲腈树脂包覆的邻苯二甲腈基微球;
(2)第一导热填料和步骤(1)得到的邻苯二甲腈树脂包覆的邻苯二甲腈基微球加热混合,至第一导热填料全部附着在邻苯二甲腈树脂包覆的邻苯二甲腈基微球的表面,预固化,得到单层导热填料@邻苯二甲腈基复合材料。
进一步地,所述方法还可以包括:
(3)将邻苯二甲腈树脂溶于有机溶剂中,向其中加入步骤(2)的单层导热填料@邻苯二甲腈基复合材料,除去有机溶剂,使邻苯二甲腈树脂完全覆盖单层导热填料@邻苯二甲腈基复合材料,得到邻苯二甲腈树脂包覆的单层导热填料@邻苯二甲腈基复合材料;
(4)第二导热填料和步骤(3)得到的邻苯二甲腈树脂包覆的单层导热填料@邻苯二甲腈基复合材料加热混合,至第二导热填料全部附着在邻苯二甲腈树脂包覆的单层导热填料@邻苯二甲腈基复合材料的表面,预固化,得到双层导热填料层的邻苯二甲腈基核壳复合材料。
进一步地,重复步骤(3)和(4),制备得到具有三层或更多层导热填料层的邻苯二甲腈基核壳复合材料。
根据本发明的实施方案,步骤(1)或步骤(3)中,所述邻苯二甲腈树脂具有如上文所述的含义。所述邻苯二甲腈树脂常温下为固态,通过改变反应条件来充当胶粘剂的作用,用于粘结导热填料和邻苯二甲腈基微球。
根据本发明的实施方案,步骤(1)或步骤(3)中,所述有机溶剂选自乙醇、丙酮、正丙醇和二甲基甲酰胺等中的至少一种,示例性为丙酮。
根据本发明的实施方案,步骤(1)或步骤(3)中,所述有机溶剂的质量是邻苯二甲腈树脂质量的1~10倍,例如为3倍、4倍、5倍、6倍、7倍、8倍。
根据本发明的实施方案,步骤(1)中,所述邻苯二甲腈基微球具有如上文所述的含义。
根据本发明的实施方案,步骤(1)中,所述邻苯二甲腈树脂与所述邻苯二甲腈基微球的体积比为1:(5~20),优选为1:(8~15),示例性为1:10、1:12、1:15。
根据本发明的实施方案,步骤(1)或步骤(3)中,除去有机溶剂的方法为本领域技术人员知晓的常规除去有机溶剂的方法,例如旋转蒸发除去有机溶剂。示例性地,在70~90℃温度下,采用旋转蒸发的方式除去有机溶剂。
根据本发明的实施方案,步骤(1)中,所述邻苯二甲腈树脂包覆的邻苯二甲腈基微球具有核壳结构,其壳层为邻苯二甲腈树脂,内核为邻苯二甲腈基微球。
根据本发明的实施方案,步骤(2)或步骤(4)中,所述加热的作用是使邻苯二甲腈树脂包覆的邻苯二甲腈基微球表面固态的邻苯二甲腈树脂达到熔点,变为具有一定黏性的液态。其中,加热的温度为130~200℃,例如150~160℃。
根据本发明的实施方案,步骤(2)或步骤(4)中,所述混合通过搅拌实现,例如搅拌的时间为20~60min,优选为30~50min,示例性为30min、40min、50min。
根据本发明的实施方案,步骤(2)或步骤(4)中,所述预固化的作用是使导热填料壳层与内核之间的作为胶粘剂的邻苯二甲腈树脂轻微固化,形成邻苯二甲腈树脂层,防止在后续加工中核壳粒子被溶剂溶解。
根据本发明的实施方案,步骤(3)中,所述邻苯二甲腈树脂与所述单层导热填料@邻苯二甲腈基复合材料的质量比为1:(5~20),优选为1:(8~15),示例性为1:10、1:12、1:15。
本发明还提供由上述方法制备得到的邻苯二甲腈基核壳复合材料。
[具有核壳结构的邻苯二甲腈基复合材料的应用]
上述具有核壳结构的邻苯二甲腈基复合材料在制备邻苯二甲腈基三维连续导热网络结构复合材料中的应用。
[邻苯二甲腈基三维连续导热网络结构复合材料]
前述邻苯二甲腈基三维连续导热网络结构复合材料,其由上述的具有核壳结构的邻苯二 甲腈基复合材料制备得到。
根据本发明的实施方案,所述邻苯二甲腈基三维连续导热网络结构复合材料中导热填料与邻苯二甲腈树脂紧密结合,无明显孔洞,优选孔隙率低于2.0%,例如低于1.5%。
根据本发明的实施方案,所述导热填料在邻苯二甲腈基三维连续导热网络结构复合材料中相互连接,形成导热通道。
根据本发明的实施方案,所述邻苯二甲腈基三维连续导热网络结构复合材料具有基本如图8所示的断面形貌图。
根据本发明的实施方案,所述邻苯二甲腈基三维连续导热网络结构复合材料具有高导热以及电绝缘的性质。例如,所述邻苯二甲腈基三维连续导热网络结构复合材料的导热系数为2.2~5.0W·m -1·K -1,所述邻苯二甲腈基三维连续导热网络结构复合材料的体积电阻率大于10 11Ω·cm,例如介于10 12~10 13Ω·cm之间。
优选地,当导热填料在邻苯二甲腈基三维连续导热网络结构复合材料中的体积分数为10~40%时,所述邻苯二甲腈基三维连续导热网络结构复合材料的导热系数为2.47~4.88W·m -1·K -1,所述邻苯二甲腈基三维连续导热网络结构复合材料的体积电阻率大于10 11Ω·cm,优选介于10 12~10 13Ω·cm之间。
[邻苯二甲腈基三维连续导热网络结构复合材料的制备方法]
本发明还提供上述邻苯二甲腈基三维连续导热网络结构复合材料的制备方法,所述制备方法包括如下步骤:由含有所述具有核壳结构的邻苯二甲腈基复合材料的原料制备得到。
优选地,由上述具有核壳结构的邻苯二甲腈基复合材料通过热压反应得到。
根据本发明的实施方案,所述制备方法包括如下步骤:
(S1)将具有核壳结构的邻苯二甲腈基复合材料倒入模具中,经过热压固化,冷却脱模,得到块体;
(S2)对步骤(S1)得到的块体进行常压后固化,得到所述邻苯二甲腈基三维连续导热网络结构复合材料。
根据本发明的实施方案,步骤(S1)中,所述热压固化是分阶段进行热压固化;例如热压固化阶段分为1~3个阶段,优选为2个阶段。其中,所述热压固化的各阶段温度为260~315℃,优选为280℃~315℃,示例性为280℃、315℃。优选地,后一阶段固化的温度较前一阶段升高。其中,所述热压固化的各阶段时间相同或不同,例如为1~3h,优选1.5~2.5h,示例性为1.5h、2h、2.5h。示例性地,热压固化分为两个阶段,第一阶段于280℃固化2h,第二阶段于315℃固化3h。
根据本发明的实施方案,步骤(S1)中,所述热压固化的压力为5~20MPa,优选为8~15MPa,示例性为8MPa、10MPa、12MPa、15MPa。
示例性地,在15MPa压力下,先于280℃固化2h,后于315℃固化3h。
根据本发明的实施方案,所述邻苯二甲腈基核壳复合材料倒入模具之前,先对模具进行预热。
根据本发明的实施方案,步骤(S1)中,所述冷却为自然冷却至室温。
根据本发明的实施方案,步骤(S2)中,所述常压后固化可以分阶段后固化,例如常压后固化阶段分为1~3个阶段,优选为2个阶段。其中,所述常压后固化的各阶段温度为315~400℃,优选为315~375℃,示例性为315℃、330℃、350℃、375℃。优选地,后一阶段固化的温度较前一阶段升高。其中,所述常压后固化的各阶段时间相同或不同,均选自2~6h, 例如2h、2.5h、3h、3.5h、4h、4.5h、5h、5.5h、6h。示例性地,在常压下,先315℃后固化2h,再375℃后固化5h。
本发明还提供由上述方法制备得到的邻苯二甲腈基三维连续导热网络结构复合材料。
[邻苯二甲腈基三维连续导热网络结构复合材料的应用]
本发明还提供所述具有核壳结构的邻苯二甲腈基复合材料和/或所述邻苯二甲腈基三维连续导热网络结构复合材料在导热领域中的应用;优选地,所述具有核壳结构的邻苯二甲腈基复合材料和/或所述邻苯二甲腈基三维连续导热网络结构复合材料用于电子、通讯、新能源或航空航天等导热和/或电绝缘需求领域。
本申请中,单位“小时”与“h”具有相同的含义,单位“分钟”与“min”具有相同的含义。
下文将结合具体实施例对本发明的技术方案做更进一步的详细说明。应当理解,下列实施例仅为示例性地说明和解释本发明,而不应被解释为对本发明保护范围的限制。凡基于本发明上述内容所实现的技术均涵盖在本发明旨在保护的范围内。
除非另有说明,以下实施例中使用的原料和试剂均为市售商品,或者可以通过已知方法制备。
制备例A1
氧化铝@石墨壳核复合粒子按以下步骤制备:
(1)将10g石墨和0.4g十二烷基硫酸钠分散在300ml去离子水中,在超声波清洗机中80℃、100w功率中超声0.5小时,得到稳定均匀的混合液;
(2)将上述混合液在80℃下机械搅拌2小时,称取15.0g九水合硝酸铝和4.8g氢氧化钠分别配制成20ml水溶液,然后同时缓慢滴加到上述混合液中,保持pH值在6-7。在搅拌条件下继续反应2小时,抽滤,取滤渣用乙醇洗涤3-5次,移至100℃真空烘箱干燥12小时,得到氢氧化铝@石墨粒子。将所得氢氧化铝@石墨粒子在600℃管式炉中煅烧3小时,得到产物氧化铝@石墨壳核复合粒子。
图1为石墨的透射电子显微镜(TEM)图,图2为制备的氧化铝@石墨核壳复合粒子的透射电子显微镜(TEM)图。通过对比可以看出,氧化铝成功包覆在石墨表层,氧化铝@石墨壳核复合粒子制备成功。
图3为制备的氧化铝@石墨核壳复合粒子在空气气氛下的热重分析(TGA)图,从中可得氧化铝壳层占氧化铝@石墨核壳复合粒子的质量百分比为18.37%。
制备例A2
氧化铝@石墨壳核复合粒子按以下步骤制备:
(1)将10g石墨和0.4g十二烷基硫酸钠分散在300ml去离子水中,在超声波清洗机中80℃、100w功率中超声0.5小时,得到稳定均匀的混合液;
(2)将上述混合液在80℃下机械搅拌2小时,称取7.5g九水合硝酸铝和2.4g氢氧化钠分别配制成20ml水溶液,然后同时缓慢滴加到上述混合液中,保持pH值在6~7。在搅拌条件下继续反应2小时,抽滤,取滤渣用乙醇洗涤3-5次,移至100℃真空烘箱干燥12小时,得到氢氧化铝@石墨粒子。将所得氢氧化铝@石墨粒子在600℃管式炉中煅烧3小时,得到产物氧化铝@石墨壳核复合粒子。
图3为制备的氧化铝@石墨核壳复合粒子在空气气氛下的热重分析(TGA)图,从中可得氧化铝壳层占氧化铝@石墨核壳复合粒子的质量百分比为9.07%。
制备例A3
氧化铝@石墨壳核复合粒子按以下步骤制备:
(1)将10g石墨和0.4g十二烷基硫酸钠分散在300ml去离子水中,在超声波清洗机中80℃、100w功率中超声0.5小时,得到稳定均匀的混合液;
(2)将上述混合液在80℃下机械搅拌2小时,称取20g九水合硝酸铝和6.4g氢氧化钠分别配制成20ml水溶液,然后同时缓慢滴加到上述混合液中,保持pH值在6-7。在搅拌条件下继续反应2小时,抽滤,取滤渣用乙醇洗涤3-5次,移至100℃真空烘箱干燥12小时,得到氢氧化铝@石墨粒子。将所得氢氧化铝@石墨粒子在600℃管式炉中煅烧3小时,得到产物氧化铝@石墨壳核复合粒子。氧化铝壳层占氧化铝@石墨核壳复合粒子的质量百分比约为24%。
实施例A1
本实施例按以下方法制备导热绝缘邻苯二甲腈基复合材料(氧化铝@石墨壳核复合粒子约占复合材料质量的5%):
称取8.0g邻苯二甲腈单体(式(2)所示结构)加热熔融,加入0.4g固化剂4-氨基-(3,4-二氰基苯氧基)苯,机械搅拌均匀,然后加入0.44g制备例1制备的氧化铝@石墨壳核复合粒子,机械搅拌20分钟至均匀,得到混合物。
Figure PCTCN2021093026-appb-000013
将混合物倒入预热的模具中,在常压下200℃预固化1小时。然后在10MPa压力下,230℃固化2小时,250℃下固化2小时,280℃下固化2小时。自然冷却至室温,脱模,在常压下,315℃固化5小时,375℃固化5小时,即得到导热绝缘邻苯二甲腈基复合材料。
实施例A2
本实施例按以下方法制备导热绝缘邻苯二甲腈基复合材料(氧化铝@石墨壳核复合粒子约占复合材料质量的10%):
称取8.0g邻苯二甲腈单体(式(2)所示结构)加热熔融,加入0.4g固化剂4-氨基-(3,4-二氰基苯氧基)苯,机械搅拌均匀,然后加入0.93g制备例1制备的氧化铝@石墨壳核复合粒子,机械搅拌20分钟至均匀,得到混合物。
Figure PCTCN2021093026-appb-000014
将混合物倒入预热的模具中,在常压下200℃预固化1小时。然后在10MPa压力下,230℃固化2小时,250℃下固化2小时,280℃下固化2小时。自然冷却至室温,脱模,在常压下,315℃固化5小时,375℃固化5小时,即得到导热绝缘邻苯二甲腈基复合材料。
实施例A3
本实施例按以下方法制备导热绝缘邻苯二甲腈基复合材料(氧化铝@石墨壳核复合粒子约占复合材料质量的15%):
称取8.0g邻苯二甲腈单体(式(3)所示结构)加热熔融,加入0.4g固化剂4-氨基-(3,4-二 氰基苯氧基)苯,机械搅拌均匀,然后加入1.48g制备例1制备的氧化铝@石墨复合粒子,机械搅拌20分钟至均匀,得到混合物。
Figure PCTCN2021093026-appb-000015
将混合物倒入预热的模具中,在常压下200℃预固化1小时。然后在10MPa压力下,230℃固化2小时,250℃下固化2小时,280℃下固化2小时。自然冷却至室温,脱模,在常压下,315℃固化5小时,375℃固化5小时,即得到导热绝缘邻苯二甲腈基复合材料。
图4为制备的邻苯二甲腈复合材料的断面扫描电子显微镜(SEM)图,可以看出:氧化铝@石墨壳核复合粒子在树脂中分布均匀,没有团聚现象。另外,热压工艺使得氧化铝@石墨粒子与邻苯二甲腈结合紧密,无明显孔洞(孔隙率低于2.5%)。良好的界面附着可以有效地传递颗粒与树脂之间的热量,降低界面热阻。氧化铝@石墨粒子相互搭接,有效地构造了相应的导热通道。
实施例A4
本实施例按以下方法制备导热绝缘邻苯二甲腈基复合材料(氧化铝@石墨壳核复合粒子约占复合材料质量的20%):
称取8.0g邻苯二甲腈单体(式(3)所示结构)加热熔融,加入0.4g固化剂4-氨基-(3,4-二氰基苯氧基)苯,机械搅拌均匀,然后加入2.1g制备例1制备的氧化铝@石墨壳核复合粒子,机械搅拌20分钟至均匀,得到混合物。
Figure PCTCN2021093026-appb-000016
将混合物倒入预热的模具中,在常压下200℃预固化1小时。然后在10MPa压力下,230℃固化2小时,250℃下固化2小时,280℃下固化2小时。自然冷却至室温,脱模,在常压下,315℃固化5小时,375℃固化5小时,即得到导热绝缘邻苯二甲腈基复合材料。
对比例A1
未添加任何填料。称取8.0g邻苯二甲腈单体(式(2)所示结构)加热熔融,加入0.4g固化剂4-氨基-(3,4-二氰基苯氧基)苯,机械搅拌20分钟至均匀。
Figure PCTCN2021093026-appb-000017
将混合物倒入预热的模具中,在常压下200℃预固化1小时。然后在10MPa压力下,230℃固化2小时,250℃下固化2小时,280℃下固化2小时。自然冷却至室温,脱模,在常压下,315℃固化5小时,375℃固化5小时,得到邻苯二甲腈树脂。
对比例A2
称取8.0g邻苯二甲腈单体(式(2)所示结构)加热熔融,加入0.4g固化剂4-氨基-(3,4-二 氰基苯氧基)苯,机械搅拌均匀,然后加入0.44g石墨(石墨约占复合材料质量的5%),机械搅拌20分钟至均匀,得到混合物。
Figure PCTCN2021093026-appb-000018
将混合物倒入预热的模具中,在常压下200℃预固化1小时。然后在10MPa压力下,230℃固化2小时,250℃下固化2小时,280℃下固化2小时。自然冷却至室温,脱模,在常压下,315℃固化5小时,375℃固化5小时,得到邻苯二甲腈基复合材料。
对比例A3
称取8.0g邻苯二甲腈单体(式(3)所示结构)加热熔融,加入0.4g固化剂4-氨基-(3,4-二氰基苯氧基)苯机械搅拌均匀,然后加入1.48g石墨(石墨约占复合材料质量的15%),机械搅拌20分钟至均匀,得到混合物。
Figure PCTCN2021093026-appb-000019
将混合物倒入预热的模具中,在常压下200℃预固化1小时。然后在10MPa压力下,230℃固化2小时,250℃下固化2小时,280℃下固化2小时。自然冷却至室温,脱模,在常压下,315℃固化5小时,375℃固化5小时,得到邻苯二甲腈复合材料。
通过如下测试方法对上述实施例和对比例制备的邻苯二甲腈基复合材料进行测试,具体测试结果如表1。
(1)导热系数测试
采用瞬态平面热源法(Hot Disk)测试复合材料的导热系数。
(2)体积电阻率测试
使用PC68型数字高阻计测试500V电压下复合材料的体积电阻率。
(3)动态机械分析(DMA)
使用Netzsch 242c测试复合材料的玻璃化转变温度,测试温度为25~500℃,测试频率为1Hz,氮气为保护气。
表1实施例和对比例制备的邻苯二甲腈基复合材料的性能
Figure PCTCN2021093026-appb-000020
根据表1,实施例A1-A4与对比例A1对比可以得出结论,随着氧化铝@石墨复合粒子含量的增加,导热填料相互搭接,形成导热网络,有效地提高了复合材料导热系数,能更好地将热量传递。相应复合材料的体积电阻率略有下降,但仍然维持在很高水平。
根据表1中对比例A1、对比例A2、对比例A3对比可以得出结论,未处理石墨填充的复合材料导热系数与电导率都有显著提升,其在聚合物基复合材料导热导电领域有所应用。但未处理石墨的高导电性无法满足绝缘要求。
根据表1,比较实施例A1与对比例A2,可以得出氧化铝@石墨粒子填充的复合材料与相同含量未处理石墨填充的复合材料导热系数相当,而体积电阻率却高出好几个数量级。氧化铝与石墨复配使用结合了碳材料石墨的高导热性能以及氧化铝的绝缘性能,得到了很好的效果。
根据表1,实施例A1-A4与对比例A1对比可以得出结论,氧化铝@石墨粒子填充的复合材料玻璃化转变温度在455-460℃之间波动,相比纯邻苯二甲腈树脂无显著降低,并且氧化铝@石墨粒子填充的复合材料玻璃化转变温度仍然很高(Tg>450℃)。因此氧化铝@石墨粒子填充的邻苯二甲腈复合材料具有良好的耐热性能。
综上所述,本发明采用简单可行方法制备的氧化铝@石墨复合粒子产率高、成本低、性能好,其作为导热填料与邻苯二甲腈树脂共混制备的复合材料具有较高的导热率,同时材料依旧保持良好的电绝缘性和耐热性。本发明为碳材料在复合材料导热绝缘领域的应用提供了新思路。
下述制备例B1-B3中所用的邻苯二甲腈微球的制备过程如下:
称取20g邻苯二甲腈树脂(其由式(2)所示邻苯二甲腈单体18g与固化剂4-氨基-(3,4-二氰基苯氧基)苯2g在160℃搅拌20分钟制备得到)溶解在100ml丙酮溶液中,搅拌均匀,然后向其中加入4g聚甲基丙烯酸甲酯(PMMA),加热搅拌至溶剂全部挥发,得到均匀的混合物。
Figure PCTCN2021093026-appb-000021
将所得混合物在170℃固化1小时,200℃下固化1小时,250℃下固化1小时,然后用丙酮洗涤除去聚甲基丙烯酸甲酯(PMMA),得到邻苯二甲腈基微球。
图5为邻苯二甲腈基微球的扫描电子显微镜(SEM)图,邻苯二甲腈微球粒径分布均匀,粒径在80-190μm之间,Dv(50)为129μm。其交联密度通过红外图来表现,图6为邻苯二甲腈基微球、未交联邻苯二甲腈树脂(含有式(2)所示邻苯二甲腈单体)和375℃固化后的邻苯二甲腈树脂(含有式(2)所示邻苯二甲腈单体)红外对比图。邻苯二甲腈基微球最高固化到250℃,其红外图与未交联邻苯二甲腈树脂接近,与375℃固化后的邻苯二甲腈树脂相比,其2230cm -1对应的C≡N峰强较大,表明邻苯二甲腈基微球未反应的氰基基团还有很多,其为不完全固化物,高温能重新熔融。
下述制备例中,除溶剂外,其余原料的用量给出的是实际所用质量,本领域技术人员可以根据v(体积)=m(质量)/ρ(密度),来计算得到各原料在复合材料中的体积分数。其中, 邻苯二甲腈树脂的密度为1.38g/cm 3,氧化铝的密度为3.5g/cm 3,氮化硼的密度为2.25g/cm 3,石墨的密度为2.25g/cm 3
制备例B1
单层氮化硼@邻苯二甲腈基复合材料按以下步骤制备(氮化硼约占单层氮化硼@邻苯二甲腈基复合材料体积的20%):
(1)将1g邻苯二甲腈树脂(其由式(2)所示邻苯二甲腈单体0.95g与固化剂4-氨基-(3,4-二氰基苯氧基)苯0.05g在160℃搅拌20分钟制备得到)溶解在50mL丙酮溶液中,搅拌均匀,然后向其中加入10g邻苯二甲腈基微球,旋蒸至溶剂全部挥发,得到邻苯二甲腈树脂包覆的邻苯二甲腈基微球。
Figure PCTCN2021093026-appb-000022
(2)将4.5g氮化硼加热到160℃,然后向其中加入上述邻苯二甲腈树脂包覆的邻苯二甲腈基微球,搅拌混合至所有氮化硼全部附着在邻苯二甲腈树脂包覆的邻苯二甲腈基微球表面,随后在200℃预固化2h,得到单层氮化硼@邻苯二甲腈基复合材料,氮化硼占复合材料的体积分数为20%。
图7为氮化硼体积分数为20%的单层氮化硼@邻苯二甲腈基复合材料的扫描电子显微镜(SEM)图。通过与图5对比可以得出,氮化硼成功包覆在邻苯二甲腈基微球表面,单层氮化硼@邻苯二甲腈基复合材料制备成功。
制备例B2
氮化硼-石墨@邻苯二甲腈基复合材料按以下步骤制备(氮化硼、石墨分别约占氮化硼-石墨@邻苯二甲腈基复合材料体积的20%,内层为石墨,外层为氮化硼):
(1)将1g邻苯二甲腈树脂(其由式(2)所示邻苯二甲腈单体0.95g与固化剂4-氨基-(3,4-二氰基苯氧基)苯0.05g在160℃搅拌20分钟制备得到)溶解在50ml丙酮溶液中,搅拌均匀,然后向其中加入10g邻苯二甲腈基微球,旋蒸至溶剂全部挥发,得到邻苯二甲腈树脂包覆的邻苯二甲腈基微球。
Figure PCTCN2021093026-appb-000023
(2)将6.5g石墨加热到160℃,然后向其中加入上述邻苯二甲腈树脂包覆的邻苯二甲腈基微球,搅拌混合至所有石墨全部附着在邻苯二甲腈树脂包覆的邻苯二甲腈基微球表面,随后在200℃预固化2h,得到单层石墨@邻苯二甲腈基复合材料。
(3)将1g邻苯二甲腈树脂(其由式(2)所示邻苯二甲腈单体0.95g与固化剂4-氨基-(3,4-二氰基苯氧基)苯0.05g在160℃搅拌20分钟制备得到)溶解在50ml丙酮溶液中,搅拌均匀,然后向其中加入上述单层石墨@邻苯二甲腈基复合材料,旋蒸至溶剂全部挥发,得到邻苯二甲腈树脂包覆的单层石墨@邻苯二甲腈基复合材料。
(4)将6.5g氮化硼加热到160℃,然后向其中加入上述邻苯二甲腈树脂包覆的单层石墨 @邻苯二甲腈基复合材料,搅拌混合至所有氮化硼全部附着在邻苯二甲腈树脂包覆的单层石墨@邻苯二甲腈基复合材料表面,随后在200℃预固化2h,得到氮化硼-石墨@邻苯二甲腈基复合材料。
制备例B3
氮化硼-氧化铝-石墨@邻苯二甲腈基复合材料按以下步骤制备(氮化硼、氧化铝、石墨分别约占氮化硼-氧化铝-石墨@邻苯二甲腈基复合材料体积的20%、10%、10%,内层为石墨,中间层为氧化铝,外层为氮化硼):
(1)将1g邻苯二甲腈树脂(其由式(3’)所示邻苯二甲腈单体0.95g与固化剂4-氨基-(3,4-二氰基苯氧基)苯0.05g在160℃搅拌20分钟制备得到)溶解在50ml丙酮溶液中,搅拌均匀,然后向其中加入10g邻苯二甲腈基微球,旋蒸至溶剂全部挥发,随后在200℃预固化2h,得到邻苯二甲腈树脂包覆的邻苯二甲腈基微球。
Figure PCTCN2021093026-appb-000024
(2)将3.5g石墨加热到160℃,然后向其中加入上述邻苯二甲腈树脂包覆的邻苯二甲腈基微球,搅拌混合至所有氮化硼全部附着在邻苯二甲腈树脂包覆的邻苯二甲腈基微球表面,随后在200℃预固化2h,得到单层石墨@邻苯二甲腈基复合材料。
(3)将1g邻苯二甲腈树脂(其由式(3’)所示邻苯二甲腈单体0.95g与固化剂4-氨基-(3,4-二氰基苯氧基)苯0.05g在160℃搅拌20分钟制备得到)溶解在50ml丙酮溶液中,搅拌均匀,然后向其中加入上述单层石墨@邻苯二甲腈基复合材料,旋蒸至溶剂全部挥发,得到邻苯二甲腈树脂包覆的单层石墨@邻苯二甲腈基复合材料。
(4)将5.5g氧化铝加热到160℃,然后向其中加入上述邻苯二甲腈树脂包覆的单层氮化硼@邻苯二甲腈基复合材料,搅拌混合至所有氧化铝全部附着在邻苯二甲腈树脂包覆的单层氮化硼@邻苯二甲腈基复合材料表面,随后在200℃预固化2h,得到氧化铝-石墨@邻苯二甲腈基复合材料。
(5)将1g邻苯二甲腈树脂(其由式(3’)所示邻苯二甲腈单体0.95g与固化剂4-氨基-(3,4-二氰基苯氧基)苯0.05g在160℃搅拌20分钟制备得到)溶解在50ml丙酮溶液中,搅拌均匀,然后向其中加入上述单层石墨@邻苯二甲腈基复合材料,旋蒸至溶剂全部挥发,得到邻苯二甲腈树脂包覆的氧化铝-石墨@邻苯二甲腈基复合材料。
(6)将7.1g氮化硼加热到160℃,然后向其中加入上述邻苯二甲腈树脂包覆的氧化铝-石墨@邻苯二甲腈基复合材料,搅拌混合至所有氧化铝全部附着在邻苯二甲腈树脂包覆的氧化铝-石墨@邻苯二甲腈基复合材料表面,随后在200℃预固化2h,得到氮化硼-氧化铝-石墨@邻苯二甲腈基复合材料。
实施例B1
本实施例按以下方法制备邻苯二甲腈基三维连续导热网络结构复合材料:
(1)称取10.0g制备例B1制备的单层氮化硼@邻苯二甲腈基复合材料倒入预热模具中,在15MPa压力下,先于280℃固化2小时,后于315℃固化3h,冷却脱模,得到块体;
(2)将步骤(1)得到的块体置于烘箱中,在常压下,先于315℃固化2小时,后于375℃ 固化5小时,即得到邻苯二甲腈基三维连续导热网络结构复合材料。
图8为氮化硼体积分数为20%的邻苯二甲腈基三维连续导热网络结构复合材料的断面扫描电子显微镜(SEM)图。可以得出三维连续氮化硼导热网络已经被构建。
实施例B2
本实施例按以下方法制备邻苯二甲腈基三维连续导热网络结构复合材料:
(1)称取10.0g制备例B2制备的氮化硼-石墨@邻苯二甲腈基复合材料倒入预热模具中,在15MPa压力下,先于280℃固化2小时,后于315℃固化3h,冷却脱模,得到块体;
(2)将步骤(1)得到的块体置于烘箱中,在常压下,先于315℃固化2小时,后于375℃固化5小时,即得到邻苯二甲腈基三维连续导热网络结构复合材料。
实施例B3
本实施例按以下方法制备邻苯二甲腈基三维连续导热网络结构复合材料:
(1)称取10.0g制备例B3制备的氮化硼-氧化铝-石墨@邻苯二甲腈基复合材料倒入预热模具中,在15MPa压力下,先于280℃固化2小时,后于315℃固化3h,冷却脱模,得到块体;
(2)将步骤(1)得到的块体置于烘箱中,在常压下,先于315℃固化2小时,后于375℃固化5小时,即得到邻苯二甲腈基三维连续导热网络结构复合材料。
对比例B1
本对比例按以下方法制备(随机分布方式添加体积份数为20%的氮化硼):
称取10.0g邻苯二甲腈树脂(其由式(2)所示邻苯二甲腈单体9.5g与固化剂4-氨基-(3,4-二氰基苯氧基)苯0.5g在160℃搅拌20分钟制备得到)和4.5g氮化硼分散于丙酮溶液中,加热搅拌至溶剂全部挥发,真空脱泡,得到混合物。
Figure PCTCN2021093026-appb-000025
将混合物倒入预热的模具中,在常压下200℃预固化1小时。然后在15MPa压力下,先于230℃固化2小时,再于250℃下固化2小时,后于280℃下固化2小时。自然冷却至室温,脱模,在常压下,先于315℃固化5小时,后于375℃固化5小时,得到邻苯二甲腈基导热复合材料。
图9为氮化硼体积分数为20%的随机分布邻苯二甲腈基导热复合材料。可以得出导热填料氮化硼是无序的,彼此之间很难搭接来形成导热通道。
对比例B2
本对比例按以下方法制备(随机分布方式添加体积份数为20%的氮化硼、20%的石墨):
称取10g邻苯二甲腈树脂(其由式(2)所示邻苯二甲腈单体9.5g与固化剂4-氨基-(3,4-二氰基苯氧基)苯0.5g在160℃搅拌20分钟制备得到)、6.5g石墨、6.5g氮化硼分散于丙酮溶液中,加热搅拌至溶剂全部挥发,真空脱泡,得到混合物。
Figure PCTCN2021093026-appb-000026
将混合物倒入预热的模具中,在常压下200℃预固化1小时。然后在15MPa压力下,先于 230℃固化2小时,再于250℃下固化2小时,后于280℃下固化2小时。自然冷却至室温,脱模,在常压下,先于315℃固化5小时,后于375℃固化5小时,得到邻苯二甲腈基导热复合材料。对比例B3
本对比例按以下方法制备(随机分布方式添加体积份数为20%的氮化硼、10%的氧化铝、10%的石墨):
称取10g邻苯二甲腈树脂(其由式(3’)所示邻苯二甲腈单体9.5g与固化剂4-氨基-(3,4-二氰基苯氧基)苯0.5g在160℃搅拌20分钟制备得到)、3.5g石墨、5.5g氧化铝、7.1g氮化硼分散于丙酮溶液中,加热搅拌至溶剂全部挥发,真空脱泡,得到混合物。
Figure PCTCN2021093026-appb-000027
将混合物倒入预热的模具中,在常压下200℃预固化1小时。然后在15MPa压力下,先于230℃固化2小时,再于250℃下固化2小时,后于280℃下固化2小时。自然冷却至室温,脱模,在常压下,先于315℃固化5小时,后于375℃固化5小时,得到邻苯二甲腈基导热复合材料。对比例B4
本对比例按以下方法制备(未添加任何填料):
(1)称取10g邻苯二甲腈树脂(其由括式(2)所示邻苯二甲腈单体9.5g与固化剂4-氨基-(3,4-二氰基苯氧基)苯0.5g在160℃搅拌20分钟制备得到)溶于丙酮溶剂中,加热搅拌至溶剂全部挥发,真空脱泡,得到混合物。
Figure PCTCN2021093026-appb-000028
(2)将熔融物倒入预热的模具中,在常压下200℃预固化1小时。然后在15MPa压力下,先于230℃固化2小时,再于250℃下固化2小时,后于280℃下固化2小时。自然冷却至室温,脱模,在常压下,先于315℃固化5小时,后于375℃固化5小时,得到邻苯二甲腈树脂固化物。
通过如下测试方法对上述实施例和对比例制备的邻苯二甲腈基复合材料进行测试,具体测试结果如表2。
(1)导热系数测试:
室温条件下,采用瞬态平面热源法(Hot Disk)测试复合材料的导热系数,为可单面探头直接测试的无损检测技术。使用C-THERM TCI导热系数仪于室温下进行测试,测量时间:0.8-2.5s,样品尺寸为20×20×2mm。
(2)体积电阻率测试:
室温条件下,使用PC68型数字高阻计测试500V电压下复合材料的体积电阻率,样品尺寸为60×60×2mm。
表2实施例B1-B3和对比例B1-B4制备的邻苯二甲腈树脂基复合材料的性能
Figure PCTCN2021093026-appb-000029
Figure PCTCN2021093026-appb-000030
根据表2,实施例B1-B3与对比例B1-B4可以得出结论,随着导热填料含量的增加,导热填料在树脂基体中容易相互接触,更易形成相应的导热通道,有效地提高了复合材料导热系数,能更好地将热量传递。同等导热填料填充量条件下,实施例B2的热导率最佳。
根据表2,实施例B1-B3与对比例B1-B3对比可以得出结论,邻苯二甲腈基核壳复合材料通过热压制备的邻苯二甲腈基三维连续导热网络结构复合材料比相同含量导热填料随机填充的复合材料导热系数高得多。主要原因在于这种三维连续导热网络结构复合材料具有相分离结构,导热填料为连续相,在很少填料含量下,导热通道就已经形成;而随机填充的复合材料只有高导热填料含量,才有可能会产生填料相互搭接产生导热通道。
根据表2,实施例B2-B3与对比例B2-B3对比可以得出结论,邻苯二甲腈基三维连续导热网络结构复合材料比随机分布的复合材料的导热系数高得多。同时,前者体积电阻率也比后者高出几个数量级。邻苯二甲腈基三维连续导热网络结构复合材料可以充分发挥碳材料高热导率优势,并且达到电气绝缘要求,得到了很好的效果。
综上所述,本发明采用简单可行方法制备的邻苯二甲腈基核壳复合材料产率高、成本低、性能好,其通过热压制备的邻苯二甲腈基三维连续导热网络结构复合材料在较少导热填料含量下能够具有较高的导热率,并且具有良好的电绝缘性能。本发明借助新颖的材料结构设计和加工方式实现了高性能导热绝缘复合材料,并且很好地保留了聚合物基复合材料优异的综合性能。
以上,对本发明的实施方式进行了说明。但是,本发明不限定于上述实施方式。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种邻苯二甲腈基复合材料,其特征在于,所述复合材料中包括导热填料;
    所述导热填料分布在邻苯二甲腈基体树脂中,或者,所述导热填料分布在至少部分包覆在邻苯二甲腈基微球的表面的导热填料层中;
    优选地,所述导热填料选自下述材料中的至少一种:金属,陶瓷,碳材料,金属、陶瓷和/或碳材料的复合材料;
    优选地,所述导热填料选自铜、银、铝、氧化铝、氮化硅、碳化硅、氮化铝、氮化硅、氮化硼、石墨、石墨烯、碳纳米管、氧化铝@石墨复合材料中的一种、两种或更多种;
    优选地,形成所述邻苯二甲腈树脂的邻苯二甲腈单体选自如式(1)所示结构的化合物:
    Figure PCTCN2021093026-appb-100001
    其中,R选自如下结构中的任意一种:
    Figure PCTCN2021093026-appb-100002
    优选地,所述复合材料的导热系数至少为0.2W·m -1·K -1,优选为0.2~5.0W·m -1·K -1
    优选地,所述复合材料的体积电阻率不低于10 10Ω·cm,优选不低于10 11Ω·cm。
  2. 一种氧化铝@石墨复合材料,其特征在于,所述氧化铝@石墨复合材料具有核壳结构,其壳层为氧化铝,核为石墨颗粒,氧化铝包覆在所述石墨颗粒的表层。
  3. 权利要求2所述的氧化铝@石墨复合材料的制备方法,其特征在于,所述制备方法包括如下步骤:
    (1)将石墨和阴离子表面活性剂分散在去离子水中,使阴离子表面活性剂完全覆盖所述石墨,得到稳定均匀的混合液;
    (2)向步骤(1)得到的混合液中同时滴加铝盐溶液和碱液,在搅拌条件下反应,反应完成后过滤得到沉淀,对所述沉淀进行后处理,得到粉末;
    (3)对步骤(2)得到的粉末进行煅烧,得到氧化铝@石墨复合材料。
  4. 如权利要求1所述的邻苯二甲腈基复合材料,其特征在于,所述邻苯二甲腈基复合材料包括权利要求2所述的氧化铝@石墨复合材料;
    优选地,所述氧化铝@石墨复合材料均匀分布在邻苯二甲腈基体树脂中;
    优选地,氧化铝@石墨复合材料与邻苯二甲腈基体树脂紧密结合,孔隙率低于2.5%。
    优选地,所述氧化铝@石墨复合材料在邻苯二甲腈基体树脂中相互搭接,形成导热通道;
    优选地,所述邻苯二甲腈基复合材料具有基本如图4所示的断面形貌图;
    优选地,以重量份计,所述邻苯二甲腈基复合材料的制备原料包括:邻苯二甲腈单体100份,固化剂1~10份,所述氧化铝@石墨复合材料5~50份;
    优选地,所述邻苯二甲腈基复合材料的玻璃化转变温度为450~465℃。
  5. 权利要求4所述的邻苯二甲腈基复合材料的制备方法,其特征在于,所述制备方法包括:通过权利要求3所述的制备方法制备氧化铝@石墨复合材料;
    优选地,所述方法进一步包括:由含有上述邻苯二甲腈单体、固化剂和所述氧化铝@石墨复合材料的共混物通过热压反应得到;
    优选地,所述制备方法进一步包括如下步骤:
    (i)采用熔融共混法将所述氧化铝@石墨复合材料与邻苯二甲腈单体以及固化剂混合均匀;
    (ii)将步骤(i)得到的混合物倒入模具中,经过第一次常压预固化,加压固化,冷却脱模后进行常压后固化,得到所述邻苯二甲腈基复合材料。
  6. 如权利要求1所述的邻苯二甲腈基复合材料,其特征在于,所述邻苯二甲腈基复合材料为一种具有核壳结构的邻苯二甲腈基复合材料,所述复合材料包括内核和至少一层的导热填料层,所述内核为邻苯二甲腈基微球,所述导热填料层至少部分包覆在所述内核的表面;
    优选地,所述导热填料层全部包覆在所述内核的表面;
    优选地,所述导热填料具有如权利要求1所述的选择;
    优选地,所述复合材料具有核壳结构,即包括内核和至少一层的导热填料层,所述内核为邻苯二甲腈基微球,所述导热填料层至少部分包覆在所述内核的表面;
    优选地,所述导热填料层全部包覆在所述内核的表面;
    优选地,将距离内核最近的导热填料层记为第一导热填料层,所述第一导热填料层和内核之间还包括邻苯二甲腈树脂层;
    优选地,当所述导热填料层的层数为两层、三层或更多层时,相邻导热填料层之间具有邻苯二甲腈树脂层。
  7. 权利要求6所述的邻苯二甲腈基复合材料的制备方法,其特征在于,所述制备方法包括如下步骤:在邻苯二甲腈基微球的表面至少部分包覆导热填料层,得到所述邻苯二甲腈基复合材料;
    优选地,所述方法具体包括如下步骤:
    在邻苯二甲腈基微球的表面依次包覆邻苯二甲腈树脂层和第一导热填料层,得到单层导热填料层的邻苯二甲腈基核壳复合材料;
    或者,在所述单层导热填料的邻苯二甲腈基核壳复合材料的表面依次包覆邻苯二甲腈基树脂层和第二导热填料层,得到双层导热填料层的邻苯二甲腈基核壳复合材料;
    或者,依此类推,制备得到三层或更多层导热填料层的邻苯二甲腈基核壳复合材料。
  8. 一种邻苯二甲腈基三维连续导热网络结构复合材料,其特征在于,所述邻苯二甲腈基三维连续导热网络结构复合材料由权利要求6所述的邻苯二甲腈基复合材料制备得到。
  9. 权利要求8所述的邻苯二甲腈基三维连续导热网络结构复合材料的制备方法,其特征在于,所述制备方法包括如下步骤:由含有权利要求6所述的邻苯二甲腈基复合材料的原料制备得到;
    优选地,由所述具有核壳结构的邻苯二甲腈基复合材料通过热压反应得到。
  10. 权利要求1、4、6和8任一项所述的复合材料在导热和/或绝缘领域中的应用。
PCT/CN2021/093026 2020-05-11 2021-05-11 一种邻苯二甲腈基复合材料及其制备方法和应用 WO2021228081A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/998,515 US20230193023A1 (en) 2020-05-11 2021-05-11 Phthalonitrile-based composite material, preparation method therefor and use thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010394333.2A CN113637227B (zh) 2020-05-11 2020-05-11 一种邻苯二甲腈基复合材料及其制备方法和应用
CN202010394333.2 2020-05-11
CN202011331086.8A CN114539770B (zh) 2020-11-24 2020-11-24 一种高导热、绝缘邻苯二甲腈基复合材料及其制备方法和应用
CN202011331086.8 2020-11-24

Publications (1)

Publication Number Publication Date
WO2021228081A1 true WO2021228081A1 (zh) 2021-11-18

Family

ID=78525296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093026 WO2021228081A1 (zh) 2020-05-11 2021-05-11 一种邻苯二甲腈基复合材料及其制备方法和应用

Country Status (2)

Country Link
US (1) US20230193023A1 (zh)
WO (1) WO2021228081A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63199228A (ja) * 1987-02-13 1988-08-17 Agency Of Ind Science & Technol 熱硬化性樹脂原料組成物
US20110108755A1 (en) * 2009-11-12 2011-05-12 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Heteroaromatic phthalonitriles
CN102234828A (zh) * 2010-04-28 2011-11-09 中国科学院力学研究所 一种铝合金表面自润滑陶瓷涂层的原位制备方法
CN103709746A (zh) * 2013-12-19 2014-04-09 成都德美精英化工有限公司 一种腈基树脂复合材料及其制备方法
WO2017003250A1 (ko) * 2015-07-01 2017-01-05 주식회사 엘지화학 프탈로니트릴 수지
CN106632274A (zh) * 2016-11-03 2017-05-10 大连理工大学 含三芳基均三嗪结构的双邻苯二甲腈树脂纤维增强材料及其制备方法
CN109181283A (zh) * 2018-09-19 2019-01-11 成都新柯力化工科技有限公司 一种导热绝缘尼龙塑料用石墨烯母料及制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63199228A (ja) * 1987-02-13 1988-08-17 Agency Of Ind Science & Technol 熱硬化性樹脂原料組成物
US20110108755A1 (en) * 2009-11-12 2011-05-12 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Heteroaromatic phthalonitriles
CN102234828A (zh) * 2010-04-28 2011-11-09 中国科学院力学研究所 一种铝合金表面自润滑陶瓷涂层的原位制备方法
CN103709746A (zh) * 2013-12-19 2014-04-09 成都德美精英化工有限公司 一种腈基树脂复合材料及其制备方法
WO2017003250A1 (ko) * 2015-07-01 2017-01-05 주식회사 엘지화학 프탈로니트릴 수지
CN106632274A (zh) * 2016-11-03 2017-05-10 大连理工大学 含三芳基均三嗪结构的双邻苯二甲腈树脂纤维增强材料及其制备方法
CN109181283A (zh) * 2018-09-19 2019-01-11 成都新柯力化工科技有限公司 一种导热绝缘尼龙塑料用石墨烯母料及制备方法

Also Published As

Publication number Publication date
US20230193023A1 (en) 2023-06-22

Similar Documents

Publication Publication Date Title
CN110628155B (zh) 一种MXene/金属复合气凝胶、其制备方法、用途及包含其的热界面材料
CN102786815B (zh) 氮化硼粉体表面改性的方法、改性氮化硼及聚合物复合材料
WO2021128895A1 (zh) 一种高导热绝缘层材料、金属基板及制备方法
CN110105869A (zh) 一种改性石墨烯散热涂料及其制备方法
CN110669316B (zh) 一种母线槽用绝缘材料
Liu et al. Construction of 3D interconnected and aligned boron nitride nanosheets structures in phthalonitrile composites with high thermal conductivity
CN104164208A (zh) 一种石墨烯/聚酰亚胺复合胶黏剂的制备方法
CN106671501A (zh) 一种高耐热性石墨膜金属复合材料及其制备方法
WO2022179332A1 (zh) 一种电红外致热膜及其制备方法、电红外致热装置
CN104023505A (zh) 一种高导热石墨膜的制备方法
CN113881190A (zh) 一种电力电子变压器封装用环氧树脂复合材料及制备方法
CN114015238B (zh) 一种含cof包覆碳纤维的绝缘导热垫片及其制备方法
CN116535748A (zh) 一种增强导热弹性热界面复合材料及其制备方法
CN104031355A (zh) 含羧基聚醚腈砜酮共聚物固化改性环氧树脂组合物、制备方法及其应用
WO2021228081A1 (zh) 一种邻苯二甲腈基复合材料及其制备方法和应用
CN116694020A (zh) 一种高温烧蚀树脂基复合材料及其制备方法
CN101604555B (zh) 磁定向碳纳米管复合薄膜隐身材料的制备方法
CN111548167B (zh) 一种陶瓷基高导热复合相变储热材料及制备方法
CN116715900A (zh) 一种改性六方氮化硼及其制备方法和应用
CN111334260A (zh) 一种具有导热绝缘和电磁屏蔽性能的有机硅复合材料
CN108659535A (zh) 一种用于etc装置的导热吸波材料及其制备方法
CN115785864B (zh) 一种PI-Al2O3和PI-BN共掺杂高导热环氧树脂复合材料的制备方法
CN114539770B (zh) 一种高导热、绝缘邻苯二甲腈基复合材料及其制备方法和应用
CN114716249B (zh) 一种SiHfOC陶瓷微球及制备方法
CN113637227B (zh) 一种邻苯二甲腈基复合材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21803154

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21803154

Country of ref document: EP

Kind code of ref document: A1