WO2021227962A1 - 干燥设备 - Google Patents

干燥设备 Download PDF

Info

Publication number
WO2021227962A1
WO2021227962A1 PCT/CN2021/092191 CN2021092191W WO2021227962A1 WO 2021227962 A1 WO2021227962 A1 WO 2021227962A1 CN 2021092191 W CN2021092191 W CN 2021092191W WO 2021227962 A1 WO2021227962 A1 WO 2021227962A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
drying device
air duct
radiation
radiation source
Prior art date
Application number
PCT/CN2021/092191
Other languages
English (en)
French (fr)
Inventor
王铭钰
唐尹
徐兴旺
张蕾
Original Assignee
深圳汝原科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳汝原科技有限公司 filed Critical 深圳汝原科技有限公司
Priority to CN202180002549.2A priority Critical patent/CN113573608B/zh
Priority to CN202210494494.8A priority patent/CN115137140A/zh
Priority to US17/477,574 priority patent/US11672318B2/en
Priority to CN202111341594.9A priority patent/CN115120020A/zh
Publication of WO2021227962A1 publication Critical patent/WO2021227962A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/0033Heating devices using lamps
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45DHAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
    • A45D20/00Hair drying devices; Accessories therefor
    • A45D20/04Hot-air producers
    • A45D20/08Hot-air producers heated electrically
    • A45D20/10Hand-held drying devices, e.g. air douches
    • A45D20/12Details thereof or accessories therefor, e.g. nozzles, stands
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45DHAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
    • A45D20/00Hair drying devices; Accessories therefor
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45DHAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
    • A45D20/00Hair drying devices; Accessories therefor
    • A45D20/04Hot-air producers
    • A45D20/08Hot-air producers heated electrically
    • A45D20/10Hand-held drying devices, e.g. air douches
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45DHAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
    • A45D2200/00Details not otherwise provided for in A45D
    • A45D2200/20Additional enhancing means
    • A45D2200/205Radiation, e.g. UV, infrared

Definitions

  • This application relates to the field of drying technology, in particular to a drying equipment.
  • the hair dryer capable of emitting infrared radiation to dry hair
  • the hair dryer has a radiation source for emitting infrared radiation.
  • the number of radiation sources and their positional relationship need to be considered.
  • a higher-power radiation source is required to achieve a suitable radiation amount.
  • this leads to a higher working temperature of the radiation source.
  • how to match the radiation direction of each radiation source To achieve a suitable amount of radiation has become a problem to be solved.
  • the embodiment of the present application provides a drying device.
  • a housing in which an air duct is provided
  • a motor located in the housing and used to generate airflow in the air duct;
  • a plurality of radiation sources housed in the housing and used to generate infrared radiation and guide the infrared radiation to the outside of the housing,
  • the multiple radiation sources are configured such that the infrared radiation generated by the multiple radiation sources forms at least one light spot at a certain distance from the airflow outlet of the air duct.
  • the multiple radiation sources are arranged obliquely so that the infrared radiation generated by the multiple radiation sources forms a spot at a certain distance from the airflow outlet of the air duct, so that the infrared radiation of each radiation source can be used to target the target.
  • the object is dried, so that multiple radiation sources can provide a suitable amount of radiation to the target object, while avoiding the problem of excessively high operating temperature of a single radiation source.
  • FIG. 1 is a schematic diagram of the structure of a drying device according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a part of the structure of a drying device according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of another part of the structure of the drying equipment according to the embodiment of the present application.
  • Fig. 4 is a schematic cross-sectional view of a drying device according to an embodiment of the present application.
  • 5A-5D are schematic diagrams of the relationship between the radiation source and the air duct of the drying device according to the embodiment of the present application;
  • FIG. 6 is a schematic diagram of another part of the structure of the drying equipment according to the embodiment of the present application.
  • 7A-7D are another schematic diagrams of the relationship between the radiation source and the air duct of the drying device according to the embodiment of the present application.
  • FIG. 8 is a schematic diagram of another part of the structure of the drying equipment according to the embodiment of the present application.
  • 9A-9D are schematic diagrams of another relationship between the radiation source and the air duct of the drying device according to the embodiment of the present application.
  • FIG. 10 is a schematic diagram of another part of the structure of the drying equipment according to the embodiment of the present application.
  • 11A-11D is another schematic diagram of the relationship between the radiation source and the air duct of the drying device according to the embodiment of the present application;
  • FIG. 12 is a schematic diagram of another part of the structure of the drying equipment according to the embodiment of the present application.
  • 13A-13D are schematic diagrams of another relationship between the radiation source and the air duct of the drying device according to the embodiment of the present application.
  • FIG. 14 is a schematic diagram of another part of the structure of the drying equipment according to the embodiment of the present application.
  • 15A-15B are schematic diagrams of another relationship between the radiation source and the air duct of the drying device according to the embodiment of the present application.
  • 16 is a schematic diagram of another part of the structure of the drying equipment according to the embodiment of the present application.
  • FIG. 17 is a schematic perspective view of a part of the structure of a drying device according to an embodiment of the present application.
  • FIG. 18 is a three-dimensional schematic diagram of the radiation source of the drying device according to the embodiment of the present application.
  • FIG. 19 is a schematic structural diagram of a light-emitting element of a drying device according to an embodiment of the present application.
  • 20 is a schematic diagram of the relationship between the radiation source and the air duct of the drying equipment of the embodiment of the present application;
  • 21 is a schematic cross-sectional view of the radiation source and the air duct of the drying device according to the embodiment of the present application;
  • FIG. 22 is a schematic diagram of parameter comparison of the radiation source of the drying equipment according to the embodiment of the present application.
  • FIG. 23 is a schematic diagram of the relationship between the radiation source and the air duct of the drying equipment of the embodiment of the present application.
  • 24 is a schematic cross-sectional view of the radiation source and the air duct of the drying equipment of the embodiment of the present application;
  • 25 is a schematic diagram of the relationship between the radiation source and the air duct of the drying equipment of the embodiment of the present application.
  • FIG. 26 is a schematic cross-sectional view of the radiation source and the air duct of the drying device according to the embodiment of the present application.
  • FIG. 27 is a schematic diagram of the relationship between the radiation source and the air duct of the drying equipment of the embodiment of the present application.
  • 29 is a schematic cross-sectional view of a light-emitting element of a drying device according to an embodiment of the present application.
  • FIG. 30 is another schematic cross-sectional view of the light-emitting element of the drying device according to the embodiment of the present application.
  • FIG. 31 is another schematic cross-sectional view of the light-emitting element of the drying device according to the embodiment of the present application.
  • 32A-32B are schematic diagrams of the relationship between a radiation source and an optical element in an embodiment of the present application.
  • connection should be understood in a broad sense, unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection.
  • It can be a mechanical connection or an electrical connection.
  • It can be directly connected, or indirectly connected through an intermediate medium, and it can be a communication between two elements or an interaction relationship between two elements.
  • the specific meanings of the above-mentioned terms in this application can be understood according to specific circumstances.
  • the "on" or “under” of the first feature of the second feature may include direct contact between the first and second features, or may include the first and second features Not in direct contact but through other features between them.
  • the "above”, “above” and “above” of the first feature on the second feature include the first feature directly above and obliquely above the second feature, or it simply means that the first feature is higher in level than the second feature.
  • the “below”, “below” and “below” of the second feature of the first feature include the first feature directly below and obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.
  • the embodiment of the present application provides a drying device.
  • the drying device of the present application can remove water and moisture from objects (for example, hair, fabric) by using infrared (IR) radiation sources as thermal energy sources.
  • IR infrared
  • the infrared radiation source can emit infrared energy with a preset wavelength range and power density to heat the object.
  • the heat carried by infrared energy is directly transferred to the object in the form of radiant heat transfer, so that compared with the traditional convection heat transfer method, the heat transfer efficiency is improved (for example, basically no heat is transferred by the surrounding air in the form of radiant heat transfer).
  • Absorption while a large part of the heat in the traditional heat conduction method is absorbed by the surrounding air and then taken away).
  • the infrared radiation source can be used in combination with a motor, and the air flow generated by the motor further accelerates the evaporation of water from the object.
  • infrared radiation as a thermal energy source is that infrared heat can penetrate the hair shaft to the outer layer of the hair, so the hair dries faster, and it makes the hair loose and soft. Infrared energy is also believed to be beneficial to scalp health and stimulate hair growth by increasing blood flow to the scalp.
  • the use of infrared radiation sources can also make the drying equipment compact and light.
  • the improved heat transfer efficiency and energy efficiency of infrared radiation sources can also extend the operating time of wireless drying equipment powered by embedded batteries.
  • a drying device 100 may include a housing 10, a motor 20 and a radiation source 30.
  • An air duct 40 is provided in the housing 10.
  • the housing 10 can accommodate various electrical, mechanical, and electromechanical components, such as a motor 20, a radiation source 30, a control board (not shown), a power adapter (not shown), and the like.
  • the housing 10 may include a body 102 and a handle 104, and each of the body 102 and the handle 104 may house at least a part of electrical, mechanical, and electromechanical components therein.
  • the body 102 and the handle 104 may be integrally connected.
  • the body 102 and the handle 104 may be separate components.
  • the handle 104 can be detached from the body 102.
  • the detachable handle 104 may contain a power source (such as one or more batteries) for powering the drying device 100 therein.
  • the housing 10 may be made of an electrically insulating material.
  • Examples of electrical insulating materials may include polyvinyl chloride (PVC), polyethylene terephthalate (PET), acrylonitrile-butadiene-styrene copolymer (ABS), polyester, polyolefin, polystyrene Ethylene, polyurethane, thermoplastics, silicone, glass, fiberglass, resin, rubber, ceramics, nylon and wood.
  • the housing 10 may also be made of a metal material coated with an electrically insulating material, or a combination of an electrically insulating material and a metal material coated or not coated with an electrically insulating material.
  • an electrically insulating material may constitute the inner layer of the casing 10
  • a metal material may constitute the outer layer of the casing 10.
  • the handle 104 is also provided with an input component 106, which can be used for the user to operate the drying device, such as switching the drying device, adjusting the motor speed, and the power of the radiation source.
  • the input component 106 may include at least one of a physical button, a virtual button, and a touch screen.
  • the drying device can also omit the input component, and the drying device can be controlled through a terminal communicating with the drying device.
  • the terminal can include, but is not limited to, a mobile phone, a tablet computer, a wearable smart device, a personal computer, and the like.
  • the housing 10 may be provided with one or more air ducts 40 inside, and the air ducts 40 may be fixed in the housing 10 so that the airflow generated by the motor 20 can flow stably and avoid unexpected airflow disturbances.
  • the air flow generated by the motor 20 can be guided or adjusted through the air duct and toward the user's hair.
  • the air duct 40 may be shaped to at least adjust the speed, throughput, divergence angle, or vortex intensity of the airflow leaving the drying device 100.
  • the air duct 40 may include an air flow inlet 402 and an air flow outlet 404.
  • the airflow inlet 402 and the airflow outlet 404 may be placed at opposite ends of the drying device 100 along the longitudinal direction of the drying device 100 (such as the length direction of the body 102).
  • the airflow inlet 402 and the airflow outlet 404 may each be a vent that allows effective airflow throughput.
  • the ambient air may be drawn into the air duct 40 through the air flow inlet 402 to generate air flow, and the generated air flow may leave the air duct 40 through the air flow outlet 404.
  • the motor 20 can be located in the air duct 40 of the main body 102 or in the air duct 40 of the handle 104, which is not limited here.
  • the air inlet 402 can also be provided in the handle 104 or the handle 104 and the body 102.
  • the cross-sectional shape of the air flow outlet 404 can be any shape, preferably a circle, an ellipse, a rectangle (rectangle), a square, or various variations of a circle and a quadrilateral, such as a quadrilateral with rounded corners. There is no specific limitation here.
  • an air duct 40 is provided in the main body 102, and the air duct 40 is substantially cylindrical. It can be understood that in other embodiments, the air duct 40 may also have other shapes, such as a funnel shape, a Y shape, and other regular or irregular shapes, which are not specifically limited herein.
  • one or more air filters may be provided at the air inlet 402 to prevent dust or hair from entering the air duct 40.
  • the air filter may be a mesh with an appropriate mesh size.
  • the air filter can be detachable or replaceable for cleaning and maintenance.
  • an airflow regulator (not shown) may be provided at the airflow outlet 404.
  • the airflow regulator can be a detachable nozzle, comb or crimper.
  • the airflow regulator may be configured to adjust the speed, throughput, divergence angle, or vortex intensity of the airflow blown from the airflow outlet 404.
  • the airflow regulator may be shaped to converge (eg concentrate) the airflow at a predetermined distance from the front of the airflow outlet 404.
  • the airflow regulator may be shaped to diverge the airflow leaving the airflow outlet 404.
  • the housing 10 is provided with a radiation source 30 for generating infrared radiation, there may be no additional heating equipment in the housing 10.
  • the radiation power of the radiation source 30 can be adjusted to To achieve the desired drying effect, on the other hand, the miniaturization of the drying device 100 can be achieved without additional heating equipment, thereby improving the portability of the drying device 100. Without additional heating equipment, the energy consumption of the drying device 100 can be lower. In this way, the battery life of the drying device 100 can be increased.
  • the heating device includes an electric heating wire (such as a resistance wire).
  • the motor 20 is located in the housing 10 and is used to generate air flow in the air duct 40.
  • the motor 20 may be arranged in the air duct 40 of the body 102 and close to the air inlet 402.
  • the motor 20 may include a driving part 202 and an impeller 204.
  • the impeller 204 may include a plurality of fan blades. When the impeller 204 is driven by the driving part 202, the rotation of the impeller 204 can send ambient air into the air duct 40 through the air inlet 402 to generate air flow, push the generated air flow through the air duct 40 and discharge the air flow from the air outlet 404.
  • the driving part 202 may be supported by a bracket or housed in a shield.
  • the motor 20 may include a brushless motor 20, and the rotation speed of the impeller 204 may be adjusted under the control of a controller (not shown).
  • the rotation speed of the impeller 204 can be controlled through a preset program, user input, or sensor data.
  • the size of the driving portion 202 measured in any direction may all be in the range between 14 mm (millimeters) and 21 mm.
  • the power output of the motor 20 may be in the range of 35 to 80 watts (W).
  • the maximum velocity of the airflow exiting from the airflow outlet 404 may be at least 8 meters per second (m/s).
  • FIG. 1 and FIG. 2 show that the motor 20 is provided in the body 102. It is understood that in other embodiments, the motor 20 may also be provided in the handle 104.
  • the rotation of the impeller 204 can draw air into the air flow inlet 402 provided at the handle 104 and push the air through the air duct 40 to the air flow outlet 404 provided at one end of the body 102.
  • the air duct 40 may correspondingly extend through the handle 104 and the body 102 of the housing 10.
  • the passing frequency of the fan blades of the motor 20 is close to the frequency range of ultrasonic waves.
  • the fan blade passing frequency can be expressed as the product of the motor speed and the number of fan blades of the motor 20.
  • the passing frequency of the fan blades of the motor 20 is close to the ultrasonic frequency range. It can be understood that the passing frequency of the fan blades is within the frequency range of the ultrasonic wave, or the passing frequency of the fan blade is the upper or lower limit of the frequency range of the ultrasonic wave, or the passing frequency of the fan blade and the frequency range of the ultrasonic wave.
  • the difference between the upper limit or the lower limit of the frequency range of the ultrasonic wave is smaller than the preset value.
  • the unit of rotation speed of the motor 20 is rps (revolutions per second), and the passing frequency of the fan blades is greater than or equal to 15KHz.
  • the number of blades of the motor 20 is a prime number of 5 or more.
  • a part of the radiation source 30 is located outside the air duct 40, and the other part can exchange heat with the air duct 40.
  • the radiation source 30 may include a reflector 302, and a part of the outer wall of the reflector 302 (such as the windward side) is located Outside the air duct 40, this part is not blown by the air flow of the air duct 40, and the amount of heat exchange between this part and the air duct 40 is small.
  • it can properly dissipate the radiation source 30.
  • it can also Keeping the radiation source 30 at a proper working temperature when working can improve the evaporation efficiency of the water on the object.
  • the rotation speed of the motor 20 is greater than or equal to 50,000 rpm (revolutions per minute). In other words, the motor speed is at least 50,000 revolutions per minute. In this way, by using the high-speed motor 20 (the rotation speed of the motor 20 is greater than or equal to 50,000 rpm), while generating sufficient air volume, the radiation source 30 can also be properly dissipated.
  • the radiation source is usually placed directly in the air duct as a whole, for example, the entire outer wall of the reflector cup of the radiation source ( That is, the entire windward side) is directly blown by the airflow of the air duct to take away the heat of the radiation source.
  • the disadvantages of this kind of drying equipment are 1) the length of the body along the axial direction of the air duct (such as the horizontal direction) is longer (large size), because a) the reflector of the radiation source is generally parabolic and relatively long; b) ionizing radiation The temperature near the air outlet is extremely high, and isolation devices need to be installed to prevent burns and accidents. 2)
  • the shape of the radiation source in the air duct 40 (such as the shape of the outer wall of the reflector) will affect the airflow, such as wind resistance, wind noise, change of the direction of the airflow, etc., and ultimately loss of wind energy.
  • the object will radiate in the infrared to visible wavelength range in the form of heat transfer.
  • This heat transfer is called black body radiation.
  • Blackbody radiation is broadband radiation.
  • the center wavelength and spectral bandwidth decrease with increasing temperature.
  • the total energy is proportional to S ⁇ T 4 , where S is the surface area and T is the temperature.
  • This heat dissipation area is smaller than the heat dissipation area where the entire radiation source 30 is placed in the air duct 40 in the prior art. Therefore, a part of the radiation source 30 in the embodiment of the present application may be located outside the air duct 40 without being directly blown by the air flow of the air duct 40 , It can also make it possible to keep the radiation source 30 at a suitable working temperature even when a single high-power radiation source 30 is used.
  • the radiation source 30 can be structurally
  • the offset along the radial direction (such as the vertical direction) of the air duct 40 can reduce the length of the body 102, and the shape of the radiation source 30 also reduces the adverse effect of the airflow.
  • the motor 20 is fixed in the housing 10 by a shock absorber (not shown). In this way, it is possible to reduce or prevent the vibration generated by the motor 20 from being transmitted to the housing 10, thereby avoiding trouble to the user in use.
  • the shock absorption device may include an elastic member, and the vibration generated during the operation of the motor 20 can be absorbed by the elastic member to reduce the transmission of vibration.
  • the damping device is fixedly connected to the radiation source 30.
  • the transmission path of the vibration generated by the motor 20 is increased, and the vibration generated by the motor 20 and transmitted to the housing 10 is further reduced.
  • the shock absorption device is fixedly connected to the radiation source 30, and the radiation source 30 can be fixed in the housing 10, so that the formed vibration transmission path is further: motor 20 -> shock absorption device -> radiation source 30 -> housing 10.
  • the shock absorbing device includes a sleeve formed of an elastic material, and the sleeve includes a clamping portion flexibly coupled with at least one of the housing 10, the air duct 40 and the radiation source 30 extending around the sleeve. In this way, through the flexible coupling clip part, the vibration transmission is reduced.
  • the sleeve may be sleeved outside the driving part 202 of the motor 20, the clamping part may be arranged on the outer surface of the sleeve, and the clamping part may be formed into multiple (two or more) along the sleeve The circumferential direction is evenly spaced to reduce vibration transmission evenly.
  • the clamping portion can also be formed as a single clamping portion, and the single clamping portion is annularly arranged on the outer surface of the sleeve.
  • the sleeve includes a clamping portion flexibly coupled with at least one of the housing 10, the air duct 40, and the radiation source 30 extending around the sleeve.
  • the clamping portion may be that the sleeve includes a clamping portion that extends around the sleeve and is flexibly coupled to the air duct 40. It may be that the sleeve includes a clamping portion that extends around the sleeve and is flexibly coupled to the radiation source 30.
  • the sleeve includes a clamping portion extending around the sleeve that is flexibly coupled with the housing 10 and the air duct 40, so the sleeve includes a clamping portion extending around the sleeve that is flexibly coupled with the air duct 40 and the radiation source 30 It may be that the sleeve includes a clamping portion flexibly coupled with the housing 10 and the radiation source 30 extending around the sleeve, or it may be that the sleeve includes the housing 10, the air duct 40 and the radiation source extending around the sleeve. 30 Flexible coupling card connection part.
  • the clamping portion is a protrusion formed of a rubber material.
  • the bumps are easy to connect, and the bumps formed by the rubber material are also easy to shape, and the shock absorption effect is better.
  • the radiation source 30 is housed in the housing 10 and used to generate infrared radiation and guide the infrared radiation to the outside of the housing 10.
  • the radiation source 30 may include a first part and a second part, wherein the first part is located outside the air duct 40, and the second part is connected to the first part and exchanges heat with the air duct 40.
  • the number of radiation sources 30 may be single or multiple (two or more than two). When the number of radiation sources 30 is multiple, the multiple radiation sources 30 are configured such that the infrared radiation generated by the multiple radiation sources 30 forms at least one light spot at a certain distance from the airflow outlet 404 of the air duct 40. In this way, the infrared radiation intensity in the spot area is relatively high, and the object can be effectively dried. It can be understood that the single radiation source 30 may also be configured to make the radiation from the radiation source 30 form a light spot at a certain distance outside the side of the opening of the radiation source 30.
  • the multiple radiation sources 30 are configured such that the infrared radiation generated by the multiple radiation sources 30 forms at least one spot at a certain distance from the airflow outlet of the air duct. In this way, the infrared radiation of each radiation source 30 can be used to target the target.
  • the object is dried, so that the multiple radiation sources 30 can provide a suitable amount of radiation to the target object, while avoiding the problem of excessively high operating temperature of the single radiation source 30.
  • the multiple radiation sources 30 form a light spot at a certain distance from the airflow outlet of the air duct 40.
  • the light spot may be a circular light spot, and the diameter of the circular light spot may be 10 cm. In an example, the certain distance may be 10 cm.
  • the light spot may also be an elliptical light spot, or a light spot of other shapes, which is not specifically limited herein.
  • the number of light spots can also be two or more than two, which can be achieved by adjusting the opening direction of the radiation source 30.
  • the number of radiation sources 30 is six. Six radiation sources 30 can form one spot, or three radiation sources 30 can form one spot, and the other three radiation sources 30 can form another spot.
  • the number of light spots is less than the number of radiation sources 30.
  • one or more radiation sources 30 may be arranged obliquely as a whole to adjust the light output direction (as shown in FIG. 3 and FIG. 4), or it may be one or more openings of the radiation source 30 (such as the opening of the reflector 302). ) Direction adjustment to adjust the light emission direction, or the installation direction adjustment of the light-emitting element to achieve the light emission direction adjustment, or any combination of the above, to form a light spot at a certain distance from the airflow outlet of the air duct 40, which is not done here. Specific restrictions.
  • the light spot illuminating the target object has the optimal area (at the same time, the effective area of thermal radiation is coupled with the effective area of wind, which should be matched as far as possible.
  • This can determine the optimal radiation exposure area, such as in a circle with a diameter of 10cm), from which the optimal value of the radiation flux (irradiance x exposure area) that ultimately acts on the target object can be calculated, and then pass
  • the radiation energy/electric energy conversion efficiency of the radiation source 30 radiated into the designated area is calculated to calculate the electric power required by various radiation source 30 layout schemes, and then the number and size combination of the luminous elements of the radiation source 30 and the corresponding reflector 302 can be selected.
  • the heat radiation power density at the opening of the radiation source 30 (the opening of the reflector 302) is relatively high, which may cause burns in a short period of time.
  • the radiation sources 30 can be arranged separately (the total power of multiple radiation sources 30 is the same as the power of a single radiation source 30), and the heat radiation power density of the opening (radiation exit port) of each radiation source 30 is relatively lower and safer.
  • two adjacent radiation sources 30 may be close to each other, or may be separated by a certain distance, which is not specifically limited here.
  • the optical axes H of the multiple radiation sources 30 converge to a predetermined position away from the drying device 100. In this way, the radiation energy at the predetermined position can be made stronger, and the drying efficiency of the target object can be improved.
  • the radiation source 30 may include a reflector cup 302 and an optical element, the optical element is installed at the opening of the reflector cup 302, and the optical axis H of the radiation source 30 may be the optical axis of the optical element.
  • the predetermined position may be a position at a certain distance from the air outlet of the air duct 40, for example, the predetermined position may be a position 10 cm away from the air outlet of the air duct 40.
  • the second part is located downstream of the motor 20 in the direction of air flow. In this way, the heat exchange effect between the second part and the air duct 40 can be improved.
  • the radiation source 30 is located on the left side of the drying device 100 as a whole, and the motor 20 is located on the right side of the drying device 100.
  • the motor 20 works, air is drawn from the outside environment on the right side of the drying device 100. And a faster airflow is output from the left side of the motor 20, and the airflow flows to the radiation source 30.
  • the faster airflow can improve the heat exchange efficiency between the second part and the air duct 40.
  • the radiation source 30 is located between the air duct 40 and the housing 10. In this way, a configuration of the drying device 100 can be realized, as shown in FIG. 1.
  • the radiation source 30 and the motor 20 is turned on, including the radiation source 30 is turned on and the motor 20 is turned off, the radiation source 30 is turned off and the motor 20 is turned on, and the radiation source 30 is turned on and the motor 20 is turned on.
  • the radiation source 30 may be fixed in the housing 10, that is, the radiation source 30 is located between the air duct 40 and the housing 10 no matter when the drying device 100 is in operation or not in operation.
  • the radiation source 30 is movably disposed in the housing 10, for example, by adding a movable structure to adjust the position of the radiation source 30, so that the drying device 100 drives the radiation source 30 to the air duct 40 when the drying device 100 is working.
  • the radiation source 30 is moved to other positions, for example, to the air duct 40 or other positions in the housing 10 that are convenient for storage.
  • the structure may be moved to adjust the position of the air duct 40, or the structure may be moved to adjust the positions of the air duct 40 and the radiation source 30. There is no specific limitation here.
  • all radiation sources 30 are located outside the air duct 40.
  • the number of radiation sources 30 may include multiple, and all the radiation sources 30 are located outside the air duct 40, so that the air flow resistance generated by the air duct 40 during operation is small, which helps to reduce wind noise and wind resistance.
  • the drying device 100 is used for drying hair, since the drying device 100 is close to the ear during the hair blowing process, the low noise can improve the user experience.
  • the radiation source 30 may be arranged in the circumferential direction of the air duct 40 close to the air flow outlet 404 of the air duct 40.
  • the temperature of the wind rises by a few degrees (1 to 5 degrees), although it is not enough to cause the object to be dried (such as dry hair).
  • the infrared radiation emitted by the radiation source 30 is basically not blocked by the air duct 40, which is beneficial to improve the drying efficiency.
  • the radiation source 30 is arranged around the air flow outlet 404 of the air duct 40.
  • the shape of the radiation source 30 along a plane perpendicular to the axial direction of the air duct 40 is circular or approximately circular.
  • the number of radiation sources 30 is two, and the two radiation sources 30 are arranged at an interval of 180 degrees around the airflow outlet 404 of the air duct 40.
  • the number of radiation sources 30 is three, and the three radiation sources 30 are arranged around the airflow outlets 404 of the air duct 40 at intervals of 120 degrees.
  • FIG. 5A the number of radiation sources 30 is two, and the two radiation sources 30 are arranged at an interval of 180 degrees around the airflow outlet 404 of the air duct 40.
  • the number of radiation sources 30 is three, and the three radiation sources 30 are arranged around the airflow outlets 404 of the air duct 40 at intervals of 120 degrees.
  • the number of radiation sources 30 is four, and the four radiation sources 30 are arranged around the airflow outlets 404 of the air duct 40 at intervals of 90 degrees.
  • the number of radiation sources 30 is five, and the five radiation sources 30 are arranged around the airflow outlets 404 of the air duct 40 at an interval of 72 degrees. It can be understood that the number of radiation sources 30 can also be more than five, and they are arranged around the airflow outlets 404 of the air duct 40 at even intervals along the circumference of the air duct 40.
  • the angle of the interval between two adjacent radiation sources 30 may be different. There is no specific limitation here.
  • the shape of the radiation source 30 along a plane perpendicular to the axial direction of the air duct 40 is a circular ring or a sector.
  • the number of the radiation source 30 is single, and the single radiation source 30 has a circular ring shape and is arranged 360 degrees around the airflow outlet 404 of the air duct 40 in the circumferential direction of the air duct 40.
  • FIG. 7A the number of the radiation source 30 is single, and the single radiation source 30 has a circular ring shape and is arranged 360 degrees around the airflow outlet 404 of the air duct 40 in the circumferential direction of the air duct 40.
  • the number of radiation sources 30 is two, each radiation source 30 is basically a fan shape of 180 degrees, and each radiation source 30 is approximately 180 degrees around the airflow outlet 404 of the air duct 40 in the circumferential direction of the air duct 40 Arrangement, the two radiation sources 30 are arranged in a substantially circular ring shape.
  • the number of radiation sources 30 is three, and each radiation source 30 is basically a fan shape of 120 degrees, and each radiation source 30 is approximately 120 degrees in the circumferential direction of the air duct 40 and surrounds the air flow outlet 404 of the air duct 40.
  • the three radiation sources 30 are arranged in a substantially circular ring shape. In the example of FIG.
  • the number of radiation sources 30 is four, and each radiation source 30 is basically in a 90-degree fan shape, and each radiation source 30 is approximately 90 degrees in the circumferential direction of the air duct 40 and surrounds the airflow outlet 404 of the air duct 40.
  • the four radiation sources 30 are arranged in a substantially circular ring shape. It can be understood that the number of radiation sources 30 may also be more than four, and they are arranged around the airflow outlets 404 of the air duct 40 at even intervals along the circumference of the air duct 40.
  • the fan-shaped arc of each radiation source 30 may be different. There is no specific limitation here.
  • the radiation source 30 is arranged on one side of the air flow outlet 404 of the air duct 40.
  • the shape of the radiation source 30 along a plane perpendicular to the axial direction of the air duct 40 is circular or approximately circular.
  • the number of the radiation source 30 is single, and the single radiation source 30 is arranged on the lower half of the air flow outlet 404 of the air duct 40.
  • the number of radiation sources 30 is two, and the two radiation sources 30 are arranged on the lower half of the airflow outlet 404 of the air duct 40.
  • FIG. 9A the number of the radiation source 30 is single, and the single radiation source 30 is arranged on the lower half of the air flow outlet 404 of the air duct 40.
  • the number of radiation sources 30 is two, and the two radiation sources 30 are arranged on the lower half of the airflow outlet 404 of the air duct 40.
  • the number of radiation sources 30 is three, and the three radiation sources 30 are arranged on the lower half of the airflow outlet 404 of the air duct 40.
  • the number of radiation sources 30 is four, and the four radiation sources 30 are arranged on the lower half of the airflow outlet 404 of the air duct 40.
  • the number of radiation sources 30 can also be more than five, which are arranged on the lower half of the airflow outlet 404 of the air duct 40.
  • the radiation source 30 can also be arranged on the upper half, the left half, the right half, the upper left half, the lower left half, the upper right half, and the lower right half, which are not specifically limited here.
  • the shape of the radiation source 30 along a plane perpendicular to the axial direction of the air duct 40 may be circular or fan-shaped.
  • any combination of the circular radiation source 30, the circular radiation source 30, and the fan-shaped radiation source 30 may be dispersedly arranged on the side of the airflow outlet 404 of the air duct 40, or around the air duct.
  • the airflow outlet 404 of 40 is arranged.
  • the second part and the air duct 40 are integrally formed and connected. In this way, the heat exchange efficiency between the second part and the air duct 40 can be made high.
  • the radiation source 30 may include a reflector cup 302, the second part may be a part of the outer wall of the reflector cup 302 or a part of the base of the reflector cup 302, and the reflector cup 302 may be integrally connected with the air duct 40.
  • the injection molding process can be used to realize the integral forming connection, and the welding process can also be adopted to realize the integral forming connection.
  • the outer wall of the reflector cup 302 and the air duct 40 form a joint at the air outlet 404. At the joint, the inhaled wind exchanges heat with the reflector cup 302. The temperature of the wind will increase by about 1 to 5 degrees and then blow out, although it is not enough. It has a decisive influence on the dried object (such as dry hair), but it improves the body feeling of the person after the wind blows on the human body, so that people will not feel being blown by the cold wind, which improves the user experience.
  • the radiation source 30 is surrounded by the air duct 40. In this way, another configuration of the drying device 100 can be realized, as shown in FIG. 10.
  • the radiation source 30 can be placed in the air duct 40, and the first part of the radiation source 30 can be shielded by the shielding member, so that the first part will not be blown by the airflow in the air duct 40.
  • the first part can include reflective light.
  • a part of the outer wall of the cup 302 can be shielded so that the part will not be blown by the airflow in the air duct 40.
  • a part of the outer wall of the reflector cup 302 that is not blocked can be used as the second part, and the airflow in the air duct 40 can be blown to the second part, so that the second part and the air duct 40 can exchange heat.
  • the shape of the radiation source 30 along a plane perpendicular to the axial direction of the air duct 40 is circular or approximately circular.
  • the number of the radiation source 30 is single, and the single radiation source 30 is arranged in the air duct 40.
  • the number of radiation sources 30 is two, and the two radiation sources 30 are arranged in the air duct 40 radially and dispersedly along the air duct 40.
  • the number of radiation sources 30 is three, and the three radiation sources 30 are scattered in the air duct 40 in a triangular shape.
  • FIG. 11A the number of the radiation source 30 is single, and the single radiation source 30 is arranged in the air duct 40.
  • the number of radiation sources 30 is two, and the two radiation sources 30 are arranged in the air duct 40 radially and dispersedly along the air duct 40.
  • the number of radiation sources 30 is three, and the three radiation sources 30 are scattered in the air duct 40 in a triangular shape.
  • FIG. 11A the number of the radiation source 30 is
  • the number of radiation sources 30 is four, and the four radiation sources 30 are scattered and arranged in the air duct 40 in a square shape. It can be understood that the number of radiation sources 30 can also be more than four, which are scattered in the air duct 40. There is no specific limitation here.
  • the shape of the radiation source 30 along a plane perpendicular to the axial direction of the air duct 40 is a circular ring or a sector.
  • the number of radiation sources 30 is two, and each radiation source 30 has a circular ring shape, and the two radiation sources 30 are arranged concentrically in the air duct 40, thereby forming a two-layer ring-shaped radiation source 30 .
  • the number of radiation sources 30 is two, each radiation source 30 is substantially in a 180-degree fan shape, and the two radiation sources 30 are arranged in a substantially circular ring shape.
  • the number of radiation sources 30 is three, each radiation source 30 is substantially in a 120-degree sector shape, and the three radiation sources 30 are arranged in a substantially circular ring shape.
  • the number of radiation sources 30 is four, each radiation source 30 is substantially in a 90-degree fan shape, and the four radiation sources 30 are arranged in a substantially circular ring shape. It can be understood that the number of radiation sources 30 may also be single or more than four, which are scattered in the air duct 40.
  • the fan-shaped arc of each radiation source 30 may be different. There is no specific limitation here.
  • any combination of the circular radiation source 30, the circular radiation source 30, and the fan-shaped radiation source 30 may be dispersedly arranged in the air duct 40.
  • the number of radiation sources 30 is multiple, and the multiple radiation sources 30 are dispersedly arranged in the air duct 40.
  • the multiple radiation sources 30 dispersedly arranged in the air duct 40 can prevent the occurrence of local overheating of the radiation source 30 or the air duct 40 due to excessive heat concentration.
  • one air duct 40 is provided with an air flow outlet 404, and the plurality of radiation sources 30 that are dispersedly arranged may be placed in the air flow outlet 404 of the air duct 40 in a star shape.
  • the air duct 40 is provided with a plurality of airflow outlets 404, and the radiation source 30 is arranged between adjacent airflow outlets 404, as shown in FIG. 15B.
  • one air duct 40 may be provided with a plurality of airflow outlets 404, and the plurality of radiation sources 30 dispersedly arranged may be placed in the air duct 40 in a star shape. It may also be that there are multiple air ducts 40, and each air duct 40 is provided with an air flow outlet 404.
  • the plurality of airflow outlets 404 may be embedded in the gaps of the plurality of radiation sources 30 in a star shape. It may also be a mixed arrangement of the above two, which is not specifically limited here.
  • the drying device 100 further includes a spacer 50, and the spacer 50 is arranged in the air duct 40.
  • a part of the radiation source 30 can be shielded by the spacer 50, and the shielded part of the radiation source 30 is not blown by the airflow in the air duct 40.
  • This part can be regarded as the first part, and this part can be regarded as located in the air duct. 40 outside.
  • the shielded portion of the radiation source 30 may be at least one of a portion of the outer wall of the reflector cup 302 and the base of the reflector cup 302.
  • the outer wall of the spacer 50 may be arranged in the form of a wind guide.
  • the outer wall of the spacer 50 is arranged in a streamlined shape to reduce wind noise and wind resistance.
  • a heat sink (not shown in the figure) is provided on the outer wall of the spacer 50.
  • the heat sink may include one or any combination of heat dissipation fins, heat dissipation air ducts, heat pipes, and heat dissipation plates.
  • the partition 50 is provided at the air flow outlet 404 of the air duct 40. In this way, the partition 50 provided at the airflow outlet 404 has less adverse effect on the airflow in the air duct 40.
  • the isolator 50 is coupled with at least one of the radiation source 30, the housing 10 and the air duct 40.
  • the way of coupling may be a detachable connection or a fixed connection.
  • the airflow flows in the channel formed by the inner wall of the air duct 40 and the outer wall of the partition 50. In this way, the airflow can flow out of the drying device 100 through the channel, and can take away the heat of the spacer 50.
  • the spacer 50 may absorb the heat generated when the radiation source 30 is in operation and increase the temperature. When the airflow passes through the channel, the spacer 50 can be dissipated, and the service life of the spacer 50 is ensured.
  • a part of the radiation source 30 is contained in the partition 50.
  • the spacer 50 can shield a part of the radiation source 30 to avoid being blown by the airflow in the air duct 40.
  • the radiation source 30 may include a reflector cup 302, and a part of the outer wall of the reflector cup 302 may be contained in the spacer 50. This part may be used as the first part to prevent the radiation source 30 from being blown directly by the airflow of the air duct 40. Excessive emission can ensure that the radiation source 30 is maintained at a proper working temperature during operation.
  • the radiation source 30 is in coplanar contact with the spacer 50. In this way, the adverse effect of the connection between the radiation source 30 and the spacer 50 on the airflow can be reduced.
  • the coplanar contact can make the connection between the radiation source 30 and the spacer 50 have a smooth transition.
  • the connection may form a streamlined surface.
  • the inner wall of the spacer 50 and the outer wall of the radiation source 30 enclose a cavity 60
  • the first part includes the outer wall portion of the radiation source 30 enclosing the cavity 60
  • the outer wall portion of the radiation source 30 may be a part of the outer wall of the reflector 302, or the base of the reflector 302, or a part of the base, or include a part of the outer wall of the reflector 302 and the base of the reflector 302, or include the reflector A part of the outer wall of 302 and a part of the base of the reflector cup 302.
  • the outer wall portion of the radiation source 30 that encloses the cavity 60 is blocked by the spacer 50, so that the airflow of the air duct 40 cannot blow directly.
  • the air duct 40 exchanges heat with the radiation source 30 through at least one of heat conduction and heat convection. In this way, the heat of the radiation source 30 can be properly dissipated, and the temperature during operation will not be too high or too low.
  • the drying device 100 further includes a control board (not shown in the figure), and the control board is arranged in the partition 50. In this way, the space in the housing 10 can be fully utilized, and the structure of the drying device 100 can be made compact.
  • control board may be placed in the cavity 60, and the control board may include a circuit board and various components mounted on the circuit board, such as a processor, a controller, a power supply, a switch circuit, a detection circuit, and the like.
  • the control board can be electrically connected to the radiation source 30 and the motor 20, and other electrical components, such as lights, indicator lights, sensors, etc.
  • the control board is used to control the operation of the drying device 100, including but not limited to controlling the operation mode of the drying device 100, the length of operation, the rotation speed of the motor, the power of the radiation source 30, and so on.
  • the drying device 100 includes a power source, a part of the power source is disposed in the isolator 50, and the power source is electrically connected to at least one of the radiation source 30 and the control board. In this way, the heat of the power supply can be dissipated through the isolator 50, and the power supply can supply power to at least one of the radiation source 30 and the control board.
  • the power source may include one or more batteries, and the batteries may be rechargeable batteries.
  • the power source may be a dedicated power supply for the radiation source 30, or a dedicated power supply for the control board, or power supply for the radiation source 30 and the control board at the same time.
  • a switch may be connected to the control board, and the on and off of the switch can be controlled to control whether the power supply supplies power to the radiation source 30.
  • the motor 20 is located downstream of at least part of the power source in the direction of air flow. In this way, the heat when the power supply is working is taken away by the wind of the motor, and the normal operation of the power supply is ensured.
  • the power supply 70 may include multiple batteries.
  • the motor 20 may be located downstream of all the batteries, or the motor 20 may be between multiple batteries. Place the battery, the lower half of the handle is the battery, the upper half is the motor 20, and there is a battery in the body 102. In this way, the air flow (wind) generated by the motor 20 can flow through at least part of the power source, so that the part of the power source blown by the wind can be dissipated.
  • the power source 70 is heavier than the motor 20, and the motor 20 is located at least partially downstream of the power source 70, which can avoid the drying device 100 being top-heavy. Furthermore, the wind resistance of the airflow generated by the motor 20 can also be reduced.
  • the drying device 100 includes a safety sensor (not shown), the safety sensor is electrically connected to the power supply 70 and the radiation source 30, and the safety sensor is used to disconnect the power supply 70 when the temperature of the radiation source 30 is greater than the set temperature. powered by. In this way, the safety of the drying device 100 can be improved.
  • the temperature of the radiation source 30 during operation may reach several hundred degrees, or thousands of degrees. If the temperature of the radiation source 30 increases abnormally due to abnormal operation, it may cause a burn accident to the user. Therefore, a safety sensor is provided, and when the temperature of the radiation source 30 is greater than the set temperature, the power supply of the power supply 70 can be disconnected, so that the radiation source 30 stops working and the temperature drops, avoiding safety accidents and improving the safety of the drying equipment 100.
  • the specific value of the set temperature can be set according to requirements, and is not specifically limited here.
  • the safety sensor may include a thermostat.
  • the parameter selection of the thermostat can be determined according to the value of the set temperature.
  • the radiation source 30 is arranged on the longitudinal axis L of the air duct 40.
  • the airflow has basically the same heat dissipation efficiency around the radiation source 30, avoiding the occurrence of high local temperature and low local temperature of the radiation source 30, which is beneficial to maintaining the working efficiency of the radiation source 30 and the intensity of infrared radiation is stable.
  • the number of the radiation source 30 is single, and the single radiation source 30 is arranged on the longitudinal axis L of the air duct 40. In an example, the number of radiation sources 30 is multiple, and the multiple radiation sources 30 are arranged around the circumference of the longitudinal axis L of the air duct 40.
  • the radiation source 30 may include a reflector cup 302 and a light emitting element 304, the light emitting element 304 is located in the reflector cup 302, the first part includes a part of the outer wall of the reflector cup 302, and the second part includes another part of the outer wall of the reflector cup 302.
  • the second part may be a part of the outer wall of the reflector cup 302 that directly contacts the outer wall of the air duct 40, and the first part may be another part of the outer wall of the reflector cup 302 connected to the outer wall of the air duct 40 through the second part.
  • the second part may include a part of the base of the reflector cup 302, and a part of the base is directly in contact with the outer wall of the air duct 40.
  • the first part may include the base of the reflector cup 302, or a part of the base.
  • the surface area of the first part is greater than the surface area of the second part. In this way, it is possible to properly dissipate the radiation source 30 and maintain a proper working temperature of the radiation source 30.
  • the second part exchanges heat with the air duct 40
  • the manner of heat exchange may include at least one of heat conduction and heat convection.
  • the second part directly contacts the outer wall of the air duct 40.
  • a part of the outer wall of the reflector cup 302 directly contacts the outer wall of the air duct 40 for heat exchange.
  • a part of the outer wall of the reflector cup 302 may form a part of the outer wall of the air duct 40 to directly contact another part of the outer wall of the air duct 40, that is, this part of the outer wall of the reflector cup 302 serves as the outer wall of the reflector 302 Part of it is also used as a part of the outer wall of the air duct 40.
  • a part of the outer wall of the reflector cup 302 is located outside the outer wall of the air duct 40 and is in direct contact with the outer wall of the air duct 40.
  • the second part is in contact with the air duct 40 through an additional heat dissipation structure 80 for heat exchange.
  • the heat dissipation structure 80 may include metals that facilitate heat dissipation (such as aluminum, copper, aluminum alloy, copper alloy, etc.), carbon fiber materials, and the like.
  • the specific form of the heat dissipation structure 80 is not limited. For example, it may include one or any combination of heat dissipation fins, heat dissipation plates, heat dissipation air ducts, and heat pipes.
  • the heat dissipation structure 80 can exchange heat between the air duct 40 and the second part through at least one of heat conduction and heat convection.
  • the heat dissipation structure 80 connects the second part and the outer wall of the air duct 40, that is, a heat dissipation structure 80 is provided between the air duct 40 and the second part.
  • the second part is a part of the outer wall of the reflector cup 302
  • the heat dissipation structure 80 connects this part of the outer wall of the reflector cup 302 and the outer wall of the air duct 40.
  • a part of the heat dissipation structure 80 is located in the air duct 40.
  • the second part is a part of the outer wall of the reflector cup 302
  • one end of the heat dissipation structure 80 is connected to the part of the outer wall of the reflector cup 302
  • the other end of the heat dissipation structure 80 extends into the air duct 40, and the airflow in the air duct 40 is directly Blow to this end of the heat dissipation structure 80.
  • the part of the heat dissipation structure 80 located in the air duct 40 may be formed as a first air guide. In this way, the adverse effect of this part of the heat dissipation structure 80 on the airflow can be reduced, and wind noise, wind resistance, etc. can be reduced.
  • the first air guide may have a streamlined windward surface, and the airflow can flow smoothly on the windward surface.
  • the first air guide is integrally connected with the second air guide in the air duct 40.
  • the second wind guide may be a guide bar and/or a guide groove formed on the inner wall of the air duct 40, and the second wind guide may also be arranged in a streamlined shape. Through the arrangement of the second air guide, it is possible to rectify and adjust the direction of the airflow.
  • the first air guide is integrally connected with the second air guide in the air duct 40, so that the airflow seamlessly passes through the first air guide and the second air guide, further reducing wind noise and wind resistance.
  • the heat dissipation structure 80 forms a part of the outer wall of the air duct 40.
  • a part of the outer wall of the air duct 40 may form a heat dissipation structure 80 for heat exchange with the second part (such as a part of the outer wall of the reflector 302).
  • the heat dissipation structure 80 forms a part of the inner wall of the air duct 40.
  • a part of the inner wall of the air duct 40 may form a heat dissipation structure 80, and the connecting structure passes through the wall of the air duct 40 to exchange heat with the second part (for example, a part of the outer wall of the reflector 302).
  • the outer wall and the inner wall of the air duct 40 may be two faces of one part, or one face of each of the two parts, and the two parts are connected to form the air duct 40. There is no specific limitation here.
  • the light emitting element 304 emits radiation containing an infrared band. In this way, the infrared band radiation emitted by the light-emitting element 304 can be used to dry the object, and the drying effect is good.
  • radiation in the infrared band may include radiation in the far-infrared band, radiation in the near-infrared band, and the like.
  • the infrared waveband radiation emitted by the light emitting element 304 may cover an infrared spectrum of 0.7 ⁇ m or more.
  • the wavelength of the infrared radiation emitted by the light emitting element 304 is in the range of 0.7 ⁇ m to 20 ⁇ m.
  • the radiation emitted by the light emitting element 304 may substantially cover the visible spectrum from 0.4 ⁇ m to 0.7 ⁇ m and the infrared spectrum above 0.7 ⁇ m.
  • the light emitting element 304 includes at least one of a halogen lamp, ceramics, graphene, and light emitting diodes.
  • examples of ceramics may include a positive temperature coefficient (PTC) heater and a metal ceramic heater (MCH).
  • the ceramic light emitting element 304 includes a metal heating element buried in the ceramic, such as tungsten buried in silicon nitride or silicon carbide.
  • the light emitting element 304 may be provided in the form of a wire (for example, silk).
  • the thread may be patterned (e.g., formed into a spiral wire) to increase its length and/or surface.
  • the light emitting element 304 may also be provided in the form of a rod.
  • the light emitting element 304 may be a silicon nitride rod, a silicon carbide rod, or a carbon fiber rod with a predetermined diameter and length.
  • the light-emitting element 304 can be selected from one of halogen lamps, ceramics, graphene, and light-emitting diodes, or the light-emitting element 304 can be selected from two or a combination of more than two of halogen lamps, ceramics, graphene, and light-emitting diodes. . There is no specific limitation here.
  • the temperature of the light emitting element 304 may be at least 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, or 2000 degrees Celsius (°C). In an example, the temperature of the light emitting element 304 may be 900 to 1500 degrees Celsius.
  • the center wavelength or wavelength range of the infrared radiation emitted by the light-emitting element 304 may be tunable, for example, at least 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0.
  • the power density of the radiation emitted from the light-emitting element 304 can be adjusted in different operation modes of the drying device 100 (eg, fast drying mode, hair health mode, etc.), for example, by changing the voltage and/or voltage supplied to the drying device 100 The current can be adjusted.
  • the reflective cup 302 may be configured to adjust the direction of radiation emitted from the light emitting member 304.
  • the reflector cup 302 may be configured to reduce the divergence angle of the reflected radiation beam.
  • the reflective surface of the reflector cup 302 may be coated with a coating material having high reflectivity to the wavelength or wavelength range of the radiation emitted by the light-emitting element 304.
  • the coating material may have high reflectivity for wavelengths in both the visible spectrum and the infrared spectrum. Materials with high reflectivity can have high efficiency in reflecting radiant energy.
  • coating materials may include metallic materials and dielectric materials.
  • the metal material may include, for example, silver and aluminum.
  • the dielectric coating may have alternating layers of dielectric material, such as magnesium fluoride.
  • the reflectivity of the reflective surface provided with the coating can be at least 90% (for example, 90% of the incident radiation is reflected by the reflective surface of the reflector 302), 90.5%, 91%, 91.5%, 92%, 92.5%, 93%, 93.5%, 94%, 94.5%, 95%, 95.5%, 96%, 96.5%, 97%, 97.5%, 98%, 98.5%, 99%, 99.5%, 99.6%, 99.7%, 99.8%, 99.9% Or higher.
  • the reflectivity of the reflective surface provided with the coating may be approximately 100%, which means that substantially all the radiation emitted by the light emitting element 304 can be reflected toward the outside of the drying device 100. Therefore, even if the temperature of the light-emitting element 304 is high, the temperature on the reflective surface of the reflector cup 302 will not substantially increase due to the radiation emitted from the light-emitting element 304.
  • the axial cross section of the reflective surface of the reflector cup 302 is in the shape of a polynomial curve. In this way, a focal point can be formed on the reflecting surface, which facilitates the guiding of infrared radiation and reduces the divergence angle of the reflected radiation beam.
  • the shape of the polynomial curve may include shapes such as a parabola, an ellipse, and a hyperbola.
  • the axial cross-section of the reflective surface of the reflector cup 302 has a parabolic shape.
  • the light emitting element 304 is arranged at the focal point of the reflective surface of the reflector cup 302. In this way, the infrared light beam emitted by the light emitting element 304 can be emitted from the opening of the reflector cup 302 substantially in parallel after being reflected by the reflecting surface, so that the infrared radiation emitted by the drying device 100 has good directivity.
  • the light-emitting element 304 is disposed at the focal point of the reflective surface of the reflector 302, and the infrared radiation beam emitted by the light-emitting element 304 at the focal point is reflected by the reflective surface of the reflector 302, and is substantially parallel to each other from the opening of the reflector 302 Shoot out.
  • the light emitting element 304 can also be placed away from the focus of the parabola, so that the reflected infrared radiation beam can converge or diverge at a certain distance in front of the drying device 100.
  • the position of the light emitting element 304 in the reflector cup 302 can be adjusted, so that the degree of convergence and/or direction of the output radiation beam can be changed.
  • the shape of the reflective cup 302 and the shape of the light emitting element 304 can be optimized and changed with respect to each other to output a desired heating power at a desired position of the drying device 100.
  • a heat-insulating material for example, glass fiber, mineral wool, cellulose, polyurethane foam or polystyrene
  • a heat-insulating material may be inserted between the light-emitting element 304 and the reflector cup 302 to insulate the light-emitting element 304 and the reflector cup 302. Even if the temperature of the light-emitting element 304 is high, thermal insulation can keep the temperature of the reflector 302 from increasing. It is also possible to insert a heat insulating material between the periphery of the optical element and the reflector cup 302 to insulate the optical element from the reflector cup 302.
  • the radiation source 30 includes a first light reflecting member 306, and the first light reflecting member 306 is disposed in the light emitting member 304. In this way, the infrared radiation in the light-emitting element 304 can be reflected to the opening of the reflector 302, which improves the utilization of infrared radiation.
  • the axial cross section of the reflective surface of the first reflective member 306 may be in the shape of a polynomial curve, for example, a parabolic shape.
  • the first reflector 306 can be made of a high temperature resistant material, and a coating is provided on the reflective surface, and the coating has high reflectivity to infrared radiation.
  • the light-emitting element 304 is a bulb.
  • the light-emitting element 304 includes a clamping position 308, and the first reflective member 306 is disposed close to the clamping position 308. In this way, the infrared radiation leaking from the clamping position 308 can be reflected to the opening of the reflector cup 302.
  • the light-emitting element 304 may include a filament, and the filament is connected to the clamping position 308.
  • the filament When the filament is energized, infrared radiation is emitted, and the infrared radiation is emitted to the surroundings, and part of the infrared radiation is emitted to the clamping position 308. Therefore, if the first reflector 306 is arranged at a position close to the clamping position 308, the first reflector 306 can be used to reflect this part of the infrared radiation to the opening of the reflector cup 302, thereby improving the utilization of infrared radiation.
  • the distance between the first reflector 306 and the clamping position 308 can be calibrated in advance, and is not specifically limited here. In an example, the first reflector 306 may be installed at a position where the filament is close to the clamping position 308.
  • the light-emitting element 304 includes a light-emitting part 309, the axial cross-section of the light-reflecting surface of the first light-reflecting element 306 is in the shape of a polynomial curve facing the light-emitting part 309, and the light-emitting part 309 is located on the light-reflecting surface of the first light-reflecting element 306 The focal point. In this way, the infrared radiation emitted by the light-emitting part 309 to the first reflector 306 can be reflected by the first reflector 306 to form a parallel beam and exit to the opening of the reflector 302.
  • the shape of the polynomial curve may include shapes such as a parabola, an ellipse, and a hyperbola.
  • the axial cross section of the reflective surface of the first reflective member 306 has a parabolic shape.
  • the light emitting part 309 is a part that emits infrared radiation when energized.
  • the light-emitting part 309 may be a filament (such as a tungsten wire). It can be understood that, in other examples, the light-emitting portion 309 may also have a block shape or other shapes.
  • the light-emitting element 304 includes a light-emitting part 309, the light-emitting part 309 is supported by a conductive support, the first reflector 306 is mounted on the conductive support, and the radiation source 30 includes an insulating element that connects the conductive support and the first reflector 306 . In this way, the conductive support and the first reflective member 306 can be insulated.
  • the light-emitting element 304 further includes a pin at the clamping position 308, the conductive bracket can be connected to the pin and the light-emitting portion 309, the material of the first reflective member can be metal, and the first reflective member 306 is mounted on the conductive bracket.
  • the place connected to the conductive support should be insulated to prevent short circuit during installation. Therefore, the insulating member can be connected to the conductive bracket and the first reflective member 306, so that the conductive bracket and the first reflective member 306 are insulated, and the normal operation of the light-emitting member 304 is ensured.
  • the light-emitting element 304 includes a clamping position 308, the first reflective member 306 is supported by an insulating support, and the insulating support is connected to the clamping position 308. In this way, the installation of the first reflector 306 can be realized.
  • the first reflector 306 may not be installed on the light-emitting portion 309, and may be installed at the clamping position 308 by another insulating bracket.
  • the radiation source 30 includes a second light reflecting member 312, and the second light reflecting member 312 is located in the light emitting member 304 close to the top of the light emitting member 304. In this way, the utilization rate of infrared radiation can be improved.
  • the emission angle of the light emitted by the light-emitting part 309 and emitted through the edge of the opening of the reflector 302 is relatively large. If this part of the light is emitted directly, it may not be able to illuminate the target object.
  • the second light emitting element 304 By installing the second light emitting element 304 above the light emitting element 304, the part of the light emitted by the light emitting part 309 located at the focal point of the reflector cup 302 can be reflected by the second reflector 312 back into the reflector cup 302, and then reflected again by the reflector cup 302, In turn, the emission angle of the part of the light is reduced, so that the part of the light can be directed to the target object.
  • the axial cross section of the reflective surface of the second reflective member 312 is in the shape of a polynomial curve facing the light-emitting member 304, and the light-emitting member 304 is located at the focal point of the reflective surface of the second reflective member 312. In this way, the infrared radiation emitted by the light-emitting part 309 to the second reflector 312 can be reflected by the second reflector 312 to form a parallel beam and exit into the reflector 302.
  • the shape of the polynomial curve may include shapes such as a parabola, an ellipse, and a hyperbola.
  • the axial cross section of the reflective surface of the second reflective member 312 has a parabolic shape.
  • the second light reflecting member 312 is provided with a light through hole (not shown in the figure). In this way, part of the light emitted by the light-emitting part 309 can be emitted from the light-passing hole.
  • the planar shape of the second reflector 312 may be a circle, and the light-passing hole can be opened near the center of the circle, so that the light emitted by the light-emitting portion 309 opposite to the light-passing hole can be directly transmitted from the light-emitting part 309.
  • the light is emitted from the hole, and the emission angle of this part of the light is usually small. Therefore, this part of the light can be allowed to directly exit from the light-passing hole without being reflected by the second reflector 312.
  • the light-emitting element 304 includes a light-emitting part 309, the light-emitting part 309 is supported by a conductive support, the second reflector 312 is mounted on the conductive support, and the radiation source 30 includes an insulating member (not shown), which is connected to the conductive support and The second reflector 312. In this way, the conductive support and the second reflective member 312 can be insulated.
  • the material of the second reflective member 312 may be metal, and the second reflective member 312 is installed on the conductive support, and the place connected to the conductive support should be insulated to prevent short circuit during installation. Therefore, the insulating member can be connected to the conductive bracket and the second reflective member 312, so that the conductive bracket and the second reflective member 312 are insulated, and the normal operation of the light-emitting member 304 is ensured.
  • the light emitting element 304 includes a clamping position 308, the second reflective member 312 is supported by a second insulating support, and the second insulating support is connected to the clamping position 308. In this way, the installation of the second reflector 312 can be realized.
  • the second reflective member 312 may not be installed on the light-emitting portion 309, and the second light-reflecting member 312 may be supported by another insulating bracket located at the clamping position 308 and close to the top of the light-emitting portion 309.
  • the wall of the reflector cup 302 is formed with an escape portion, and the shape of the escape portion is adapted to the air duct 40 and/or the housing 10.
  • the drying device 100 can be made more compact.
  • the configuration (parabolic shape) of the reflector 302 will occupy equipment space and/or compress the air duct 40 (and thus affect the wind). Due to the overall size limitation of the drying device 100, the overall space utilization rate can be improved by increasing the number of radiation sources 30 while reducing the size of the single reflector 302. However, due to the limitations of various radiation sources 30 technology (such as the size of the filament in the bulb), if the sizes of the reflector 302 and the radiation source 30 are relatively too small, the radiation efficiency will be seriously attenuated.
  • the light emitting element 304 is installed in the reflector cup 302
  • some installation and positioning structures are required in the reflector cup 302, and this part of the structure damages the reflector cup shape of the small reflector cup 302 more than the large-size reflector cup 302.
  • the use of a large reflector 302 may exceed the shape limit. Under satisfying the radiation efficiency and the above two constraints, the reflector 302 needs to be cut to avoid the appearance of the air duct 40 and/or The housing 10 is compatible.
  • the radiation source 30 exchanges heat with the air duct 40 through the wall of the reflector cup 302.
  • the configuration of the traditional reflector cup 302 limits the contact area between the wall of the reflector cup 302 and the air duct 40. To increase the area, part of the reflector 302 wall is required to corrode the air duct 40, thereby affecting the wind speed, air volume and wind resistance. Therefore, it is necessary to cut the wall of the reflector 302 that intrudes into the air duct 40 to adapt to the shape of the air duct 40, so as to reduce the influence on the wind.
  • the advantage of this is that, given the size of the housing 10, the diameter of the air duct 40 will be larger than the conventional one.
  • the part of the reflector cup 302 in contact with the inner wall of the housing 10 is also cut to adapt to the shape of that part.
  • Figure 22 Please refer to Figure 22 and compare the non-cut reflectors through simulation. It is found that for the reflector 302 of a certain caliber, the cutting of the above two parts has no obvious effect on the total output power of the reflector 302 and the energy density of the spot outside a certain distance. Within the acceptable range.
  • the avoiding part may be a part formed by adapting the shape of the air duct 40 and/or the housing 10 to the outer wall of the reflector cup 302. In this way, when the reflector cup 302 is coupled with the air duct 40 and/or the housing 10, the overall size after assembly can be reduced without affecting the shape of the air duct 40 and/or the housing 10.
  • Cutting area related to heat dissipation efficiency and maintaining the working temperature of the luminous element 304;
  • the shape of the cutting surface (cutting of the contact surface with the air duct 40): balance the influence on the wind and the reflection path of light (and thus influence the convergence of light);
  • Cutting position For different cutting positions, there is an optimal solution for the exit power and the power at the target spot.
  • a plurality of radiation sources 30 are arranged around the airflow outlet 404 of the air duct 40.
  • a plurality of radiation sources 30 are arranged on one side of the air flow outlet 404 of the air duct 40, which is the upper half in the figure.
  • FIGS. 25 to 26 and FIGS. 27 to 28 a plurality of radiation sources 30 are surrounded by air ducts 40.
  • the clearance portion includes a first clearance portion 314, and the shape of the first clearance portion 314 matches the contour of the air duct 40. In this way, the reflector cup 302 can be arranged closer to the air duct 40, and the space utilization rate of the drying device 100 is improved.
  • the point on the first space 314 farthest from the opening of the reflector cup 302 is located on the side of the focal point of the reflective surface of the reflector cup 302 close to the opening of the reflector cup 302. In this way, it can be ensured that the entrance cut of the avoiding portion is in front of the plane of the focal point of the reflector 302.
  • the axial section of the reflective surface of the reflector cup 302 is in the shape of a polynomial curve (such as a parabola).
  • the point on the first avoiding portion 314 that is farthest from the opening of the reflector cup 302 is at the entrance incision.
  • the light emitted by the light emitting element 304 can be reflected by the part of the reflecting surface connected to the avoiding part to form a parallel beam to emit, and the influence of the avoiding part on the light emitted by the light emitting element 304 can be reduced.
  • the first clearance portion 314 is in contact with the air flow in the air duct 40. In this way, the heat exchange efficiency between the first avoiding portion 314 and the air duct 40 can be improved.
  • the first evacuating portion 314 may be formed as a part of the wall of the air duct 40, so that the first evacuating portion 314 can contact the airflow in the air duct 40, and the heat can be taken away by the airflow.
  • the outline of the air duct 40 is circular, and the center of the radial cross section of the housing 10 is the center of the circle.
  • the shape of the first avoiding portion 314 may be a circular arc, and the arc is adapted to the contour of the air duct 40, and the first avoiding portion 314 can fit well with the air duct 40.
  • the heat exchange efficiency is improved, and on the other hand, the structure is more compact.
  • the contour of a part of the air duct 40 may also be a concave shape of the inner or outer contour of the circular ring, with the center of the radial section of the housing 10 as the center of the circle.
  • the clearance portion includes a second clearance portion 316, and the curvature of the second clearance portion 316 is different from the curvature of the first clearance portion 314. In this way, the reflector cup 302 can be adapted to the actual parts of the drying device 100.
  • the second avoiding portion 316 is located on a side away from the air duct 40 relative to the first avoiding portion 314.
  • the second vacant portion 316 can match the shape of the inner wall of the housing 10, which further reduces the space occupation of the reflector cup 302 and improves the space utilization rate.
  • the second vacant portion 316 may match the shape of the inner wall of the body. It can be understood that the second avoiding portion 316 can also match the shape of other parts of the drying device 100, which is not specifically limited herein.
  • two reflector cups 302 of two adjacent radiation sources 30 are connected to form a common part 317. In this way, the space occupation of the multiple radiation sources 30 can be further reduced, and the space utilization rate in the housing 10 can be improved.
  • two reflector cups 302 are connected by a common part 317, and the common part 317 may be a wall of the reflector cup 302.
  • the common part 317 may be in the shape of a flat plate to further reduce the space occupied by the two reflector cups 302.
  • the radial and axial cross-sections of the reflective surface of the reflector cup 302 are part of at least one polynomial curve shape.
  • the polynomial curve shape includes a circle, a parabola, an ellipse, a hyperbola, and the like.
  • the axial cross section of the reflective surface of the reflector cup 302 is a part of at least one parabolic shape
  • the radial cross section of the reflective surface of the reflector cup 302 is a part of at least one parabolic shape.
  • the different radial cross-sections of the reflective surface of the reflector cup 302 are non-concentric circles. It can be understood that in other embodiments, the different radial cross-sections of the reflective surface of the reflector cup 302 may also be non-concentric ellipses.
  • the radial and axial cross sections of the reflective surface of the reflector cup 302 are connected by segmented polynomial curves.
  • the reflector cup 302 includes a base 310.
  • the light-emitting element 304 is connected to the base 310. Focal point. In this way, a non-formal installation manner of the light emitting element 304 can be realized.
  • the advantages of the non-formal installation method are: 1) The heat of the clamping position 308 can be directly conducted to exchange heat with the air duct or the air in the duct, or directly radiated; 2) Because the clamping position at the base is relatively long To ensure that the light-emitting part is at the focal point of the reflector, the base is often very long and takes up space in the case of formal installation. Non-formal mounting (such as side mounting and flip mounting) can save space.
  • the axial section of the reflective surface of the reflector cup 302 (the inner wall of the reflector cup 302) can be a polynomial curve shape, and the axial section of the outer wall of the reflector cup 302 also has this shape.
  • the reflector cup 302 The outer wall has an apex.
  • the base is located at the apex of the outer wall of the reflector. This is a form of formal installation.
  • the light-emitting element 304 is located at the focal point of the reflector 302, that is, the light-emitting element 304 is located at the focal point of the reflective surface of the reflector 302.
  • the base 310 is not located at the apex of the outer wall of the reflector cup 302. In one embodiment, referring to FIG. 29, the base 310 is located on the side wall of the reflector cup 302. In this way, the side-mounted installation method of the light-emitting element 304 can be realized.
  • the side wall of the reflector cup 302 is coupled with the wall of the air duct 40. In this way, the heat of the light-emitting element 304 can pass through the base 310, and the side wall of the reflector cup 302 can exchange heat with the wall of the air duct 40, so that the light-emitting element 304 can be properly dissipated.
  • the heat of the wall of the air duct 40 can be taken away by the airflow in the air duct 40, so as to dissipate heat to the light-emitting element 304.
  • the radiation source 30 can be arranged around the airflow outlet of the air duct 40, and the side wall of the reflector cup 302 is coupled with the wall of the air duct 40.
  • the wall of the reflector cup 302 can be in direct contact with the wall of the air duct 40, or it can be connected by an additional heat dissipation structure. It may also be that the wall of the reflector cup 302 forms a part of the wall of the air duct 40.
  • the relevant embodiments of this application which is not specifically limited here.
  • the side wall of the reflector cup 302 is used for heat exchange with the air flow in the air duct 40.
  • the heat of the light-emitting element 304 can pass through the base 310, and the side wall of the reflector 302 can exchange heat with the air flow in the air duct 40, so that the light-emitting element 304 can be properly dissipated.
  • the radiation source 30 may be surrounded by the air duct 40, so that the side wall of the reflector cup 302 will be blown by the air flow in the air duct 40, thereby taking away the heat of the light-emitting element 304.
  • the relevant embodiments of this application There is no specific limitation here.
  • the base 310 is not located at the apex of the outer wall of the reflector cup 302.
  • the light-emitting element 304 is located at the opening of the reflector cup 302. In this way, the flip-chip mounting method of the light-emitting element 304 can be realized.
  • a connecting member 318 may be provided at the opening of the reflector cup 302, and the light-emitting member 304 is mounted on the connecting member 318.
  • the luminous element 304 is facing the apex of the reflector 302.
  • the wall at the opening of the reflector 302 has a groove, and the groove accommodates the lamp pin of the light-emitting element 304 or a wire connecting the lamp pin of the light-emitting element 304.
  • the lamp pin of the light-emitting element 304 or the wire connecting the lamp pin of the light-emitting element 304 can be led into the groove through the connector 318.
  • the base 310 is provided with an opening, and the opening accommodates the lamp pin of the light-emitting element 304 or a wire connected to the lamp pin of the light-emitting element 304.
  • the lamp pin of the light-emitting element 304 or the wire connecting the lamp pin of the light-emitting element 304 can pass through the base 310 and can pass through the connector 318 to be connected to an external power source.
  • the opening is closed by an insulating, heat-insulating, and opaque material. In this way, the leakage of infrared radiation can be reduced.
  • the radiation source 30 includes an optical element 90, and the optical element 90 is disposed at the opening of the reflector 302 to filter or reflect radiation in the non-infrared wavelength range. In this way, only infrared radiation can be directed to the object to be dried.
  • the optical element 90 may include a lens, a reflector, a prism, a grating, a beam splitter, an optical filter, or a combination thereof that changes or redirects light.
  • the optical element 90 may be a lens.
  • the optical element 90 may be a Fresnel lens.
  • the radiation in the non-infrared band includes visible light and/or ultraviolet light.
  • the optical element 90 may be made of a material having high infrared transmittance. Examples of materials for the optical element 90 may include oxides (e.g. silicon dioxide), metal fluorides (e.g. barium fluoride), metal sulfides or metal selenides (e.g. zinc sulfide, zinc selenide) and crystals (e.g. Crystalline silicon, crystalline germanium). Further, either or both sides of the optical element 90 may be coated with materials that absorb or reflect the visible spectrum and the ultraviolet spectrum, so that only wavelengths in the infrared range can pass through the optical element 90.
  • oxides e.g. silicon dioxide
  • metal fluorides e.g. barium fluoride
  • metal sulfides or metal selenides e.g. zinc sulfide, zinc selenide
  • crystals e.g. Crystalline silicon, crystalline germanium
  • the optical element 90 can filter out (for example, absorb) radiation that is not in the infrared spectrum.
  • the infrared transmittance of the optical element 90 may be at least 95% (for example, 95% of the incident radiation in the infrared spectrum passes through the optical element 90), 95.5%, 96.0%, 96.5%, 97.0%, 97.5%, 98.0%, 98.5% , 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, 99.9% or higher.
  • the infrared transmittance of the optical element 90 may be 99%.
  • the light emitting element 304 can emit radiation with a wavelength of 0.4 ⁇ m to 20 ⁇ m
  • the reflector 302 can reflect all radiation toward the optical element 90 (for example, no radiation is absorbed at the reflective surface)
  • the optical element 90 can be removed from Any visible spectrum wavelength between 0.4 ⁇ m and 0.7 ⁇ m is filtered out of the reflected radiation, so that only radiation in the infrared spectrum leaves the radiation source 30.
  • the thermal expansion coefficient difference between the optical element and the reflector cup is within a preset range. In this way, the thermal expansion coefficient of the optical element and the reflector cup are made close, and the large difference in the thermal expansion coefficient prevents deformation of the component with a small thermal expansion coefficient when heated.
  • the coefficient of thermal expansion can be selected through simulation or testing according to product performance, and is not specifically limited here.
  • the optical element 90 seals the opening of the reflector cup 302. In this way, a relatively sealed internal space can be formed in the reflector cup 302.
  • the internal space of the reflector cup 302 may be configured to have a certain degree of vacuum.
  • the pressure inside the reflector 302 may be less than 0.9 standard atmospheric pressure (atm), 0.8atm, 0.7atm, 0.6atm, 0.5atm, 0.4atm, 0.3atm, 0.2atm, 0.1atm, 0.05atm, 0.01atm, 0.001atm, 0.0001atm or less.
  • the inside of the reflector cup 302 is close to a vacuum state, for example, the pressure inside the reflector cup 302 may be about 0.001 atm or less.
  • the vacuum can suppress the evaporation and/or oxidation of the light emitting element 304 and extend the life of the radiation source 30.
  • the vacuum can also prevent heat convection or heat conduction between the light emitting element 304 and the optical element 90 and/or the reflector cup 302.
  • the reflector cup 302 is filled with a protective gas.
  • the protective gas can be a certain amount of non-oxidizing gas (such as an inert gas) while still maintaining a certain level of vacuum to reduce the damage caused by the reflector cup 302 and the optical element 90.
  • the temperature of the gas inside the space formed by the inner surface rises. Although this temperature rise is small, it is caused by heat convection and heat conduction.
  • non-oxidizing gases may include nitrogen (N2), helium (He), argon (Ar), neon (Ne), krypton (Kr), xenon (Xe), radon (Rn) and nitrogen ( N2).
  • the presence of the inert gas can further protect the material of the light emitting element 304 from oxidation and evaporation.
  • multiple radiation sources 30 share the same optical element 90, that is, one optical element is provided at the opening of the reflector 302 of all the radiation sources.
  • each radiation source has one optical element 90, that is, one optical element 90 is provided at the opening of one reflector cup 302.
  • some of the radiation sources share the same optical element, and each of the remaining radiation sources has one optical element.
  • the drying device 100 further includes a control board, and the control board is electrically connected to the radiation source 30 and/or the motor 20. In this way, the control of the drying device 100 can be achieved.
  • control board may include a circuit board and various components mounted on the circuit board, such as a processor, a controller, a power supply 70, a switch circuit, a detection circuit, and the like.
  • the control board can be electrically connected to the radiation source 30 and the motor 20, and other electrical components, such as lights, indicator lights, sensors, etc.
  • the control board is used to control the operation of the drying device 100, including but not limited to controlling the operation mode of the drying device 100, the length of operation, the rotation speed of the motor, the power of the radiation source 30, and so on.
  • the drying device 100 includes a power source 70 located in the housing 10, the power source 70 is electrically connected to a control board, and the control board is electrically connected to the radiation source 30 and the motor 20. In this way, the power consumption of the radiation source 30 and the motor 20 can be controlled by the control board.
  • the control board can convert the voltage of the power source 70 into the voltage of the radiation source 30 corresponding to the working mode of the drying device 100 and the voltage of the motor 20, so that the radiation source 30 and the motor 20 can work in this working mode.
  • the control board can adjust the voltage, the radiation power of the radiation source 30, the rotation speed of the motor 20 (that is, the rotation speed of the fan blade), etc. can be adjusted.
  • the power supply 70 is switched on and off to control the working time of the radiation source 30 and the motor 20.
  • the power supply 70, the control board, the radiation source 30, and the motor 20 may also be connected in other ways.
  • the power supply 70 may be installed in the handle 104.
  • the power source 70 includes a rechargeable battery. In this way, the drying device 100 can be free from the shackles of the wire harness when in use, and the user experience can be improved.
  • the rechargeable battery may be a lithium ion battery, or other rechargeable batteries.
  • There may be one or more rechargeable batteries, and multiple batteries may be connected in series, or in parallel, or in series and parallel.
  • the main body 102 or the handle 104 may be provided with a charging interface.
  • the charging interface may be a wired charging interface or a wireless charging interface, which is not specifically limited here.
  • a battery cover may be provided on the handle 104, and the battery cover is removable to facilitate the removal and installation of the battery.
  • the drying device 100 further includes a sensor that senses the state of at least one of the drying device 100, the working environment in which the drying device 100 is located, the airflow, or the receiver of radiation. In this way, the operation of the drying device 100 can be controlled according to the signal of the sensor, and the user experience can be improved.
  • the state includes at least one of temperature, humidity, distance, posture, movement, flow, and flux.
  • the sensor may include at least one of a temperature sensor, a proximity/range sensor, a humidity sensor, an attitude sensor, a flow sensor, and a flux sensor.
  • the sensor may be placed, for example, on the side of the airflow outlet 404 of the housing 10 to monitor the state (for example, humidity) of the object to be dried (ie, the receiver of airflow or radiation).
  • the area where the airflow is applied to the object to be dried may roughly include an infrared radiation area (for example, radiation spot) on the object to be dried. Airflow can accelerate the evaporation of water from the object to be dried by blowing away the moist air around the object to be dried.
  • the airflow can also reduce the temperature of the object to be dried radiated by infrared radiation, so as to avoid damage to the object being dried.
  • the temperature of the object to be dried and the water on the object to be dried must be kept within an appropriate range to accelerate the evaporation of water from the object to be dried, while keeping the object to be dried from overheating.
  • a suitable temperature range can be 50 to 60 degrees Celsius.
  • the speed of the airflow blowing on the object to be dried can be adjusted to maintain the temperature of the object to be dried in an appropriate temperature range, for example, by blowing away hot water and excess heat.
  • the proximity/range sensor and the temperature sensor can work together to determine the temperature of the object to be dried and adjust the speed of the airflow through a feedback loop control to maintain the constant temperature or programmed temperature of the object to be dried.
  • the object to be dried may be hair, for example.
  • the posture sensor can collect the posture and movement of the drying device 100.
  • the attitude sensor may include an inertial detection module (IMU), which can detect the state of at least one of the roll axis, pitch axis, and yaw axis of the drying device 100, and can also detect whether it is in motion on the corresponding axis.
  • IMU inertial detection module
  • the posture sensor detects that the drying device 100 has not moved for a long time.
  • the control board can be based on the posture sensor.
  • the output data can be used to control the reduction of the rotation speed of the motor 20 and/or the reduction of the radiation intensity of the radiation source 30, and can also control the drying device 100 to perform sound, light, and vibration prompts.
  • the flow sensor can detect the flow of the air flow, so that the control board can control the speed of the motor 20 to adapt to the temperature control of the object to be dried. Similarly, the control board can also control the operation of the motor 20 and/or the radiation source 30 according to the flux data output by the flux sensor.
  • the senor is disposed in the housing 10 and located at the airflow outlet 404 of the air duct 40 and/or the opening of the radiation source 30. In this way, more accurate control of the airflow state and/or radiation state can be achieved.
  • the senor is located at the airflow outlet 404 of the air duct 40, which can detect the state of the airflow leaving the drying device 100, such as flow, flux, temperature, humidity, etc., and can more accurately control the state of the airflow leaving the drying device 100 , To prevent the internal environment of the drying device 100 from affecting the detection of the airflow state.
  • the sensor is located at the opening of the radiation source 30, which can detect the radiation state, such as intensity, leaving the drying device 100, and can more accurately control the radiation state leaving the drying device 100 to avoid the internal environment of the drying device 100. Detection of radiation status.
  • drying device 100 of the foregoing embodiment includes but is not limited to the following technical effects:
  • the configuration of the drying device 100 in the embodiment of the present application can appropriately reduce the temperature of the radiation source 30, prolong the service life of the light-emitting element 304, and at the same time prevent the temperature from dropping too low and causing waste of electric energy (more electric energy is used to maintain the black body). Radiant temperature).
  • the excess heat of the radiation source 30 is taken away by the wind, and the temperature of the wind rises by a few degrees (1 to 5 degrees). Although it is not enough to have a decisive effect on dry hair, it improves the body feeling of the people after the wind blows on the human body. People will not feel blown by the cold wind, which improves the user experience.

Landscapes

  • Cleaning And Drying Hair (AREA)
  • Drying Of Solid Materials (AREA)
  • Radiation Pyrometers (AREA)
  • Control Of Washing Machine And Dryer (AREA)
  • Radiation-Therapy Devices (AREA)
  • Detail Structures Of Washing Machines And Dryers (AREA)

Abstract

一种干燥设备(100),包括:壳体(10)、电机(20)和多个辐射源(30),所述壳体(10)内设有风道(40),电机(20)位于所述壳体(10)中并用于在所述风道(40)中产生气流,多个辐射源(30)收容在所述壳体(10)中并用于产生红外辐射并将所述红外辐射导向所述壳体(10)外部,其中,所述多个辐射源(30)被配置为使得所述多个辐射源(30)所产生的红外辐射在所述风道(40)的气流出口(404)一定距离形成至少一光斑。

Description

干燥设备
优先权信息
本申请请求2020年05月09日向中国国家知识产权局提交的、专利申请号为PCT/CN2020/089408的专利申请的优先权和权益,请求2020年06月09日向中国国家知识产权局提交的、专利申请号为PCT/CN2020/095146的专利申请的优先权和权益,请求2021年03月24日向中国国家知识产权局提交的、专利申请号为PCT/CN2021/082835的专利申请的优先权和权益,并且通过参照将其全文并入此处。
技术领域
本申请涉及干燥技术领域,特别涉及一种干燥设备。
背景技术
目前已有能够发出红外辐射来干燥头发的吹风机,该吹风机具有用于发射红外辐射的辐射源。为了提供合适的辐射量,需要考虑辐射源的数量及相互之间的位置关系。在使用单一辐射源时,需要较大功率的辐射源来达到合适的辐射量,然而,这样导致该辐射源的工作温度较高,在使用多辐射源时,如何使各个辐射源的辐射方向匹配以达到合适的辐射量成为待解决的问题。
发明内容
本申请的实施方式提供一种干燥设备。
本申请实施方式的一种干燥设备,包括:
壳体,所述壳体内设有风道;
电机,位于所述壳体中并用于在所述风道中产生气流;
多个辐射源,收容在所述壳体中并用于产生红外辐射并将所述红外辐射导向所述壳体外部,
其中,所述多个辐射源被配置为使得所述多个辐射源所产生的红外辐射在所述风道的气流出口一定距离形成至少一光斑。
上述干燥设备中,多个辐射源倾斜设置使得多个辐射源所产生的红外辐射在所述风道的气流出口一定距离形成一光斑,这样,每个辐射源的红外辐射均可被利用对目标物体进行干燥,使得多个辐射源能够为目标物体提供合适的辐射量,同时避免单一辐射源工作温度过高的问题。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点可以从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本申请实施方式的干燥设备的结构示意图;
图2是本申请实施方式的干燥设备的部分结构示意图;
图3是本申请实施方式的干燥设备的另一部分结构示意图;
图4是本申请实施方式的干燥设备的截面示意图;
图5A-5D是本申请实施方式的干燥设备的辐射源与风道的关系示意图;
图6是本申请实施方式的干燥设备的另一部分结构示意图;
图7A-7D是本申请实施方式的干燥设备的辐射源与风道的另一关系示意图;
图8是本申请实施方式的干燥设备的又一部分结构示意图;
图9A-9D是本申请实施方式的干燥设备的辐射源与风道的又一关系示意图。
图10是本申请实施方式的干燥设备的再一部分结构示意图;
图11A-11D是本申请实施方式的干燥设备的辐射源与风道的再一关系示意图;
图12是本申请实施方式的干燥设备的再一部分结构示意图;
图13A-13D是本申请实施方式的干燥设备的辐射源与风道的再一关系示意图;
图14是本申请实施方式的干燥设备的再一部分结构示意图;
图15A-15B是本申请实施方式的干燥设备的辐射源与风道的再一关系示意图;
图16是本申请实施方式的干燥设备的再一部分结构示意图;
图17是本申请实施方式的干燥设备的部分结构立体示意图;
图18是本申请实施方式的干燥设备的辐射源的立体示意图;
图19是本申请实施方式的干燥设备的发光件的结构示意图;
图20是本申请实施方式的干燥设备的辐射源与风道的关系示意图;
图21是本申请实施方式的干燥设备的辐射源与风道的截面示意图;
图22是本申请实施方式的干燥设备的辐射源的参数对比示意图;
图23是本申请实施方式的干燥设备的辐射源与风道的关系示意图;
图24是本申请实施方式的干燥设备的辐射源与风道的截面示意图;
图25是本申请实施方式的干燥设备的辐射源与风道的关系示意图;
图26是本申请实施方式的干燥设备的辐射源与风道的截面示意图;
图27是本申请实施方式的干燥设备的辐射源与风道的关系示意图;
图28是本申请实施方式的干燥设备的辐射源与风道的截面示意图;
图29是本申请实施方式的干燥设备的发光件的截面示意图;
图30是本申请实施方式的干燥设备的发光件的另一截面示意图;
图31是本申请实施方式的干燥设备的发光件的再一截面示意图;
图32A-32B是本申请实施方式的辐射源与光学元件的关系示意图。
具体实施方式
下面详细描述本申请的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接。可以是机械连接,也可以是电连接。可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
本文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,本文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此 外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
本申请实施方式提供一种干燥设备。本申请的干燥设备可以通过利用红外(IR)辐射源作为热能源以从物体(例如头发、织物)去除水和湿气。红外辐射源可以发射具有预设波长范围和功率密度的红外能量以加热物体。红外能量携带的热量以辐射传热的方式直接传递至物体,使得与传统的对流传热方式相比,传热效率得到了提高(例如,基本上没有热量以辐射传热的方式被周围的空气吸收,而传统的热传导方式一大部分的热量被周围空气吸收后被带走)。红外辐射源可以与电机结合使用,电机产生的气流进一步加速了水从物体的蒸发。
利用红外辐射作为热能源的另一个好处是,红外热量可以穿透发干直到毛外皮的皮层,因此使头发干燥得更快,并且使头发松弛和柔软。红外能量还被认为有利于头皮健康,并通过增加头皮的血流量来刺激头发生长。红外辐射源的使用还可以使干燥设备紧凑轻便。红外辐射源的提高热传递效率和能量效率还可以延长由嵌入式电池供电的无线干燥设备的运行时间。
请参图1,本申请实施方式提供的一种干燥设备100可包括壳体10、电机20和辐射源30。壳体10内设有风道40。壳体10可容纳各种电气、机械和机电组件,例如电机20、辐射源30、控制板(未示出)和电源适配器(未示出)等。
壳体10可包括本体102和把手104,本体102和把手104中的每个都可以在其中容纳电气、机械和机电部件的至少一部分。在一些实施方式中,本体102和把手104可以是一体连接的。在一些实施方式中,本体102和把手104可以是单独的部件。例如,把手104可从本体102拆卸。在一个示例中,可拆卸把手104可在其中容纳用于为干燥设备100供电的电源(如一个或多个电池)。壳体10可以由电绝缘材料制成。电绝缘材料的示例可以包括聚氯乙烯(PVC)、聚对苯二甲酸乙二醇酯(PET)、丙烯腈-丁二烯-苯乙烯共聚物(ABS)、聚酯、聚烯烃、聚苯乙烯、聚氨酯、热塑性塑料、硅树脂、玻璃、玻璃纤维、树脂、橡胶、陶瓷、尼龙和木材。壳体10也可以由涂有电绝缘材料的金属材料制成,或者由电绝缘材料与涂有或未涂有电绝缘材料的金属材料的组合制成。例如,电绝缘材料可以构成壳体10的内层,而金属材料可以构成壳体10的外层。在一个示例中,把手104上还设有输入组件106,输入组件106可用于供用户操作干燥设备,例如开关干燥设备,调节电机转速,辐射源的功率等。输入组件106可包括实体按键、虚拟按键、触摸屏中的至少一者。在其它实施方式中,干燥设备也可省略输入组件,可以通过与干燥设备通信的终端对干燥设备进行控制,终端可包括但不限于手机、平板电脑、可穿载智能设备、个人计算机等。
壳体10可以在内部设置一个或多个风道40,风道40可固定在壳体10内,以使得电机20所产生的气流能够稳定流动,避免出现期望外的气流扰动。电机20产生的气流可以被引 导或调节通过风道并朝向使用者的头发。例如,风道40可以成形为至少调节离开干燥设备100的气流的速度、通过量、发散角或涡流强度。风道40可以包括气流入口402和气流出口404。在一个示例中,气流入口402和气流出口404可以沿着干燥设备100的纵向方向(如本体102的长度方向)放置在干燥设备100的相反端处。气流入口402和气流出口404可以各自是通风口,该通风口允许有效的气流通过量。可以将环境空气通过气流入口402抽入风道40中以产生气流,并且所产生的气流可以通过气流出口404离开风道40。电机20可以位于本体102的风道40内,也可以位于把手104的风道40内,在此不作具限定。气流入口402也可设置在把手104,或把手104和本体102。
气流出口404的截面形状可以是任何形状,优选圆形、椭圆形、长方形(矩形)、正方形、或者圆形和四边形的各种变体,比如四个角圆滑处理的四边形等。在此不作具体限定。
在一个示例中,本体102内设有一个风道40,风道40基本呈圆柱状。可以理解,在其它实施方式中,风道40还可以呈其它形状,例如漏斗形状,Y形状等各种规则或不规则形状,在此不作具体限定。
在一个实施方式中,可以在气流入口402处设置一个或多个空气过滤器(图未示),以防止灰尘或头发进入风道40。例如,空气过滤器可以是具有适当网格尺寸的网格。空气过滤器可以是可拆卸的或可更换的,以进行清洁和维护。在一个实施方式中,可以在气流出口404处设置气流调节器(图未示)。气流调节器可以是可拆卸的管嘴、梳子或卷曲器。气流调节器可以被配置为调节从气流出口404吹出的气流的速度、通过量、发散角或涡流强度。例如,气流调节器可以成形为使气流会聚(例如集中)于距气流出口404前方的预设距离处。例如,气流调节器可以被成形为使离开气流出口404的气流发散。
在一个实施方式中,由于壳体10内设在用于产生红外辐射的辐射源30,因此,壳体10中可没有额外的加热设备,一方面,可以对辐射源30的辐射功率进行调节来达到预期的干燥效果,另一方面,没有额外的加热设备还可实现干燥设备100的小型化,进而提升干燥设备100的便携性,没有额外的加热设备也可使得干燥设备100的能耗较低,这样可以增加干燥设备100的续航。在一些实施方式中,加热设备包括电热丝(如电阻丝)。
在一个实施方式中,电机20位于壳体10中并用于在风道40中产生气流。在一个示例中,电机20可以设置在本体102的风道40内并靠近气流入口402。电机20可以包括驱动部202和叶轮204。叶轮204可以包括多个扇叶。当叶轮204由驱动部202驱动时,叶轮204的旋转可以将环境空气通过气流入口402送入风道40中以产生气流,推动所产生的气流通过风道40并将气流从气流出口404排出。驱动部202可以由支架支撑或容纳在护罩中。电机20可以包括无刷电机20,可以在控制器(未示出)的控制下调节叶轮204的旋转速度。例如,可以通过预设程序、用户输入或传感器数据来控制叶轮204的旋转速度。在一些实施 方式中,在任何方向上测量的驱动部202尺寸可以均处于14mm(毫米)到21mm之间的范围中。电机20的功率输出可以处于35至80瓦(W)的范围中。从气流出口404离开的气流的最大速度可以至少为8米/秒(m/s)。
在图1和图2中示出了电机20设置在本体102中,可以理解,在其它实施方式中,电机20也可以设置在把手104中。例如,叶轮204的旋转可将空气抽入设置在把手104处的气流入口402中并将空气推动通过风道40到设置在本体102的一端处的气流出口404。风道40可以相应地延伸通过壳体10的把手104和本体102。
在一个实施方式中,电机20的扇叶通过频率接近于超声波的频率范围。扇叶通过频率可以表示为电机转速与电机20的扇叶数量的乘积。电机20的扇叶通过频率接近于超声波的频率范围,可以理解为,扇叶通过频率位于超声波的频率范围内,或扇叶通过频率是超声波的频率范围的上限或下限,或扇叶通过频率与超声波的频率范围的上限或下限之间的差值小于预设值。在一个例子中,电机20的转速单位为rps(转每秒),扇叶通过频率大于等于15KHz。
在一个实施方式中,电机20的扇叶数量为5以上的质数。
在图1的示例中,辐射源30有一部分位于风道40外,另一部分可以和风道40进行热交换,例如辐射源30可包括反光杯302,反光杯302外壁(如迎风面)的一部分位于风道40外,该部分并没有被风道40的气流吹到,进而该部分与风道40的热交换量较小,一方面,能够对辐射源30进行适当散热,另一方面,也能够使辐射源30工作时保持在合适的工作温度,可提高物体上的水的蒸发效率。
在一个实施方式中,电机20的转速大于等于50000rpm(转每分)。也就是说,电机转速至少为每分钟5万转。如此,利用高速电机20(电机20的转速大于等于50000rpm),在产生足够的风量的同时,也能够对辐射源30作适当的散热。
具体地,在现有技术中,由于使用低速电机,为了给单个大功率的辐射源进行有效散热,通常是将辐射源整体地直接放置在风道中,例如,辐射源的反光杯的整个外壁(即整个迎风面)直接被风道的气流吹到,来带走辐射源的热量。但这种干燥设备的缺点是1)沿风道轴向(如水平方向)的本体长度较长(尺寸大),因为a)辐射源的反光杯一般为抛物线型,比较长;b)离辐射近的气流出口温度极高,需要设置隔离装置防止烫伤和事故。2)风道40里的辐射源的形状(如反光杯的外壁形状)会对气流有影响,比如产生风阻、风噪、改变气流的方向等,最终损耗了风的能量。
在本申请实施方式中,物体将以热传递形式在红外到可见波长范围内进行辐射。这种热传递称为黑体辐射。黑体辐射是宽带辐射。中心波长以及光谱带宽随温度升高而降低。总能量与S×T 4成比例,其中S表示表面积,T表示温度。给定辐射源30的黑体辐射需要的工 作温度和高速电机20的风量(以Cubic per Minute/CPM来衡量),可以推导出散热效率,进而推导出辐射源30需要的散热面积。这个散热面积比现有技术将整个辐射源30放入风道40的散热面积小,所以本申请实施方式中的辐射源30一部分可位于风道40外,没有被风道40的气流直接吹到,也可以使得即使使用大功率单一辐射源30的情况下,也能够使辐射源30保持在合适的工作温度,同时,由于辐射源30的一部分位于风道40外,结构上可以将辐射源30沿风道40的径向(如竖直方向)进行偏置,可减少本体102的长度,辐射源30的形状对气流不利影响也降低了。
在一个实施方式中,电机20通过减震装置(图未示)固定在壳体10内。如此,可以减少或避免电机20所产生的震动传递到壳体10,避免对用户在使用上造成困扰。
具体地,减震装置可包括弹性件,在电机20运行时所产生的震动,可通过弹性件进行吸收,减少震动的传递。
在一个实施方式中,减震装置与辐射源30固定连接。如此,增加电机20产生的震动的传递路径,进一步减少电机20产生的传递到壳体10的震动。具体地,减震装置与辐射源30固定连接,辐射源30可固定在壳体10内,这样,形成的震动传递路径进一步为,电机20->减震装置->辐射源30->壳体10。
在一个实施方式中,减震装置包括由弹性材料形成的套筒,套筒包括围绕套筒延伸的与壳体10、风道40和辐射源30中的至少一者柔性耦合的卡接部。如此,通过柔性耦合的卡接部,减少震动传递。
具体地,套筒可以套设在电机20的驱动部202外部,卡接部可以设置在套筒的外表面,卡接部可以形成为多个(两个或多于两个),沿套筒的周向均匀间隔设置,以均匀地减少震动传递。当然,卡接部也可形成为单个,单个卡接部呈环形设置在套筒的外表面。
套筒包括围绕套筒延伸的与壳体10、风道40和辐射源30中的至少一者柔性耦合的卡接部,可以是,套筒包括围绕套筒延伸的与壳体10柔性耦合的卡接部,可以是,套筒包括围绕套筒延伸的与风道40柔性耦合的卡接部,可以是,套筒包括围绕套筒延伸的与辐射源30柔性耦合的卡接部,可以是,套筒包括围绕套筒延伸的与壳体10、风道40柔性耦合的卡接部,也以是,套筒包括围绕套筒延伸的与风道40和辐射源30柔性耦合的卡接部,可以是,套筒包括围绕套筒延伸的与壳体10和辐射源30柔性耦合的卡接部,还可以是,套筒包括围绕套筒延伸的与壳体10、风道40和辐射源30柔性耦合的卡接部。
在一个实施方式中,卡接部为由橡胶材料形成的凸起。如此,凸起便于连接,橡胶材料形成的凸起也易于成型,减震效果较佳。
在一个实施方式中,辐射源30收容在壳体10中并用于产生红外辐射并将红外辐射导向壳体10外部。辐射源30可包括第一部分和第二部分,其中,第一部分位于风道40外,第 二部分连接第一部分并与风道40进行热交换。
辐射源30的数量可以是单个,或多个(两个或多于两个)。当辐射源30的数量是多个时,多个辐射源30被配置为使得多个辐射源30所产生的红外辐射在风道40的气流出口404一定距离处形成至少一光斑。如此,光斑区域的红外辐射强度较高,能够对物体进行有效干燥。可以理解的是,单个辐射源30也可以被配置为使来自辐射源30的辐射在辐射源30的开口一侧的外部的一定距离处形成光斑。如此,多个辐射源30被配置为使得多个辐射源30所产生的红外辐射在风道的气流出口一定距离形成至少一光斑,这样,每个辐射源30的红外辐射均可被利用对目标物体进行干燥,使得多个辐射源30能够为目标物体提供合适的辐射量,同时避免单一辐射源30工作温度过高的问题。
具体地,通过对辐射源30出光方向的调整,来使多个辐射源30在距离风道40的气流出口一定距离形成一光斑。光斑可以是圆形光斑,圆形光斑的直径可以为10cm。在一个例子中,一定距离可以是10cm。光斑还可以是椭圆形光斑,或其它形状的光斑,在此不作具体限定。可以理解,光斑的数量还可是两个或多个两个,通过对辐射源30的开口方向调整来实现。例如,辐射源30的数量是6个,可以是6个辐射源30可形成一光斑,也可以是3个辐射源30形成一光斑,另3个辐射源30形成另一光斑等。较佳地,光斑的数量小于辐射源30的数量。
进一步地,可以是一个或多个辐射源30整体地倾斜设置来调整出光方向(如图3和图4所示),也可以是一个或多个辐射源30的开口(如反光杯302的开口)方向调整来实现出光方向调整,还可以是发光件的安装方向调整来实现出光方向调整,还可以是上述的任意组合,以在距离风道40的气流出口一定距离处形成光斑,在此不作具体限定。
在本申请实施方式中,对应一定的辐射照度,照到目标物体(被干燥物体)上的光斑有最优面积(同时热辐射的作用面积与风的作用面积有耦合关系,应尽量匹配,由此可确定发一个最优的辐射照射面积,如,直径10cm的圆内),由此可推算出最终作用在目标物体上的辐照通量最优值(辐射照度x照射面积),再通过辐射源30辐射到指定区域内的辐射能量/电能转换效率算出各种辐射源30布置方案所需的电功率,进而可选择合适的辐射源30的发光件的个数和尺寸组合和相应反光杯302的尺寸。在这些组合中,如果使用单个辐射源30,由于红外光射出后会发散,故辐射源30开口(反光杯302开口)处的热辐射功率密度较高,可能短时间内造成灼伤,而多个辐射源30可分开设置(多个辐射源30的总功率和单个辐射源30的功率相同),每个辐射源30的开口(辐射出射口)的热辐射功率密度相对更低,更安全。
多个辐射源30中,相邻两个辐射源30可以紧挨着,也可以间隔一定距离,在此不作具体限定。
在一个实施方式中,请结合图4,多个辐射源30的光轴H汇聚至远离干燥设备100的预定位置。如此,可以使预定位置的辐射能量较强,提升了目标物体的干燥效率。
具体地,辐射源30可包括反光杯302和光学元件,光学元件安装在反光杯302的开口处,辐射源30的光轴H可为光学元件的光轴。该预定位置可以是距离风道40的气流出口一定距离的位置,例如,预定位置可以是距离风道40的气流出口10cm的位置。
在一个实施方式中,沿空气流动的方向,第二部分位于电机20的下游。如此,可以提升第二部分与风道40的热交换效果。
具体地,请参图1,辐射源30整体位于靠近干燥设备100左侧的位置,电机20位于靠近干燥设备100右侧的位置,电机20工作时从干燥设备100右侧的外部环境吸入空气,并从电机20的左侧输出速度较快的气流,气流流向辐射源30。速度较快的气流可以提升第二部分与风道40的热交换效率。
在一个实施方式中,在工作时,辐射源30位于风道40与壳体10之间。如此,可以实现干燥设备100的一种构型,如图1所示。
具体地,工作时,可以理解为,辐射源30和电机20中的至少一个开启,包括辐射源30开启和电机20关闭,辐射源30关闭和电机20开启,辐射源30开启和电机20开启。
在一个实施方式中,辐射源30可固定在壳体10内,也就是说,不管干燥设备100在工作时或是在非工作时,辐射源30位于风道40与壳体10之间。在一个实施方式中,辐射源30是可移动地设置在壳体10内,例如通过增加移动结构来调整辐射源30的位置,使得干燥设备100在工作时,将辐射源30驱动至风道40与壳体10之间的位置,在干燥设备100非工作时,将辐射源30移动至其它位置,例如,移动至风道40内,或壳体10内便于收纳的其它位置。在一个实施方式中,可以是移动结构来调整风道40的位置,或移动结构来调整风道40及辐射源30的位置。在此不作具体限定。
在一个实施方式中,所有辐射源30位于风道40外。辐射源30的数量可包括多个,所有辐射源30位于风道40外,使得工作时,风道40产生的气流阻力少,有助于减少风噪及风阻。
具体地,风道40中没有辐射源30,对风的风速和风量的影响很小,也不会产生额外的风噪。风速和风量对吹风速度影响很大。特别地,当干燥设备100用于干发时,由于在吹发过程中,干燥设备100贴近耳朵,噪声小可以提升用户体验。
在一个实施方式中,辐射源30可以靠近风道40的气流出口404设置在风道40的周向。如此,一方面,风从气流出口404流出时,辐射源30部分的热量被风带走,让风温上升几度(1~5度),虽然不足以对被干燥物体(如干发)产生决定性影响,但提升了风吹到人体后人的体感,让人不会感到被冷风吹,提升了用户体验。另一方面,使得辐射源30发射的 红外辐射基本上不会受到风道40的遮挡,有利于提升干燥效率。
在一个实施方式中,辐射源30围绕风道40的气流出口404布置。在图2、图5A-5D的示例中,辐射源30沿垂直于风道40轴向的平面形状为圆形或近似圆形。在图5A的示例中,辐射源30的数量是两个,两个辐射源30呈间隔180度围绕风道40的气流出口404布置。在图5B的示例中,辐射源30的数量是三个,三个辐射源30呈间隔120度围绕风道40的气流出口404布置。在图5C的示例中,辐射源30的数量是四个,四个辐射源30呈间隔90度围绕风道40的气流出口404布置。在图5D的示例中,辐射源30的数量是五个,五个辐射源30呈间隔72度围绕风道40的气流出口404布置。可以理解的是,辐射源30的数量还可以是五个以上,沿风道40的周向均匀间隔围绕风道40的气流出口404布置。另外,在其它实施方式中,多个辐射源30中,相邻两个辐射源30之间间隔的角度可以是不同的。在此不作具体限定。
在图6、图7A-7D的示例中,辐射源30沿垂直于风道40轴向的平面形状为圆环形或扇形。在图7A的示例中,辐射源30的数量是单个,单个辐射源30呈圆环形,沿风道40周向360度围绕风道40的气流出口404布置。在图7B的示例中,辐射源30的数量是两个,每个辐射源30基本呈180度的扇形,每个辐射源30沿风道40周向接近180度围绕风道40的气流出口404布置,两个辐射源30布置成基本呈圆环形。在图7C的示例中,辐射源30的数量是三个,每个辐射源30基本呈120度的扇形,每个辐射源30沿风道40周向接近120度围绕风道40的气流出口404布置,三个辐射源30布置成基本呈圆环形。在图7D的示例中,辐射源30的数量是四个,每个辐射源30基本呈90度的扇形,每个辐射源30沿风道40周向接近90度围绕风道40的气流出口404布置,四个辐射源30布置成基本呈圆环形。可以理解的是,辐射源30的数量还可以是四个以上,沿风道40的周向均匀间隔围绕风道40的气流出口404布置。另外,在其它实施方式中,多个辐射源30中,每个辐射源30的扇形弧度可以是不同的。在此不作具体限定。
在一个实施方式中,辐射源30布置在风道40的气流出口404的一侧。在图8、图9A-9D的示例中,辐射源30沿垂直于风道40轴向的平面形状为圆形或近似圆形。在图9A的示例中,辐射源30的数量是单个,单个辐射源30布置在风道40的气流出口404的下半侧。在图9B的示例中,辐射源30的数量是两个,两个辐射源30布置在风道40的气流出口404的下半侧。在图9C的示例中,辐射源30的数量是三个,三个辐射源30布置在风道40的气流出口404的下半侧。在图9D的示例中,辐射源30的数量是四个,四个辐射源30布置在风道40的气流出口404的下半侧。可以理解的是,辐射源30的数量还可以是五个以上,布置在风道40的气流出口404的下半侧。另外,在其它实施方式中,辐射源30也可布置在上半侧、左半侧、右半侧、左上半侧、左下半侧、右上半侧、右下半侧,在此不作具体限定。 在其它的实施方式中,辐射源30沿垂直于风道40轴向的平面形状可为圆环形或扇形。
在其它实施方式中,也可以是圆形的辐射源30、圆环形的辐射源30、和扇形的辐射源30的任意组合分散布置在风道40的气流出口404一侧,或围绕风道40的气流出口404布置。
在一个实施方式中,第二部分与风道40为一体成型连接。如此,可以使得第二部分与风道40的热交换效率高。
具体地,辐射源30可包括反光杯302,第二部分可以是反光杯302外壁的一部分或反光杯302基座的一部分,反光杯302可以与风道40为一体成型连接。可以采用注塑工艺来实现一体成型连接,也可以采用焊接工艺来实现一体成型连接。在此不作具体限定。反光杯302外壁与风道40在气流出口404那一段形成结合部,在结合部,吸入的风和反光杯302进行热交换,风的温度会提升1~5度左右,然后吹出,虽然不足以对被干燥物体(如干发)产生决定性影响,但提升了风吹到人体后人的体感,让人不会感到被冷风吹,提升了用户体验。
在一个实施方式中,辐射源30被风道40包围。如此,可以实现干燥设备100的另一构型,如图10所示。
具体地,可以将辐射源30放置于风道40中,辐射源30的第一部分可以由遮挡件进行遮挡,使得第一部分不会被风道40内的气流吹到,例如,第一部分可包括反光杯302外壁的一部分,可以对该部分进行遮挡,使得该部分不会被风道40内的气流吹到。而没有被遮挡的反光杯302外壁的一部分可以为作第二部分,风道40内的气流可以吹到第二部分,以使得第二部分与风道40进行热交换。
在图10、图11A-11D的示例中,辐射源30沿垂直于风道40轴向的平面形状为圆形或近似圆形。在图11A的示例中,辐射源30的数量是单个,单个辐射源30设置在风道40中。在图11B的示例中,辐射源30的数量是两个,两个辐射源30沿风道40径向分散布置在风道40中。在图11C的示例中,辐射源30的数量是三个,三个辐射源30呈三角形状分散布置在风道40中。在图11D的示例中,辐射源30的数量是四个,四个辐射源30呈正方形状分散布置在风道40中。可以理解的是,辐射源30的数量还可以是四个以上,分散布置在风道40中。在此不作具体限定。
在图12、图13A-13D的示例中,辐射源30沿垂直于风道40轴向的平面形状为圆环形或扇形。在图13A的示例中,辐射源30的数量是两个,每个辐射源30呈圆环形,两个辐射源30同心设置在风道40中,以此形成两层环状的辐射源30。在图13B的示例中,辐射源30的数量是两个,每个辐射源30基本呈180度的扇形,两个辐射源30布置成基本呈圆环形。在图13C的示例中,辐射源30的数量是三个,每个辐射源30基本呈120度的扇形, 三个辐射源30布置成基本呈圆环形。在图13D的示例中,辐射源30的数量是四个,每个辐射源30基本呈90度的扇形,四个辐射源30布置成基本呈圆环形。可以理解的是,辐射源30的数量还可以是单个或四个以上,分散布置在风道40中。另外,在其它实施方式中,多个辐射源30中,每个辐射源30的扇形弧度可以是不同的。在此不作具体限定。
在其它实施方式中,也可以是圆形的辐射源30、圆环形的辐射源30、和扇形的辐射源30的任意组合分散布置在风道40中。
在一个实施方式中,辐射源30的数量是多个,多个辐射源30在风道40中分散布置。
如此,在风道40中分散布置的多个辐射源30,可避免热量过于集中而出现辐射源30局部或风道40局部过热的现象发生。
具体地,请参图14和图15A,一个风道40设置有一个气流出口404,分散布置的多个辐射源30可以是呈星星状置于风道40的气流出口404中。
在一个实施方式中,风道40设置有多个气流出口404,辐射源30布置在相邻的气流出口404之间,如图15B所示。
具体地,可以是一个风道40设置有多个气流出口404,分散布置的多个辐射源30可以是呈星星状置于风道40中。也可以是,有多个风道40,每个风道40设置有一个气流出口404。多个气流出口404可以是呈星星状嵌在多个辐射源30的间隙。还可以是以上两者的混合布置,在此不作具体限定。
在一个实施方式中,请结合图10、图12及图14,干燥设备100还包括隔离件50,隔离件50设置在风道40内。如此,可以利用隔离件50对辐射源30的一部分进行遮挡,被遮挡的辐射源30的部分没有被风道40内的气流吹到,该部分可以作为第一部分,该部分可以认为是位于风道40外。在一个示例中,被遮挡的辐射源30的部分可以是反光杯302外壁的一部分和反光杯302的基座中的至少一者。隔离件50的外壁可以设置成导风件的形式,例如,隔离件50的外壁设置成流线型,以减少风噪及风阻。进一步地,隔离件50外壁上设置有散热件(图未示)。如此,可以加快散热效率。具体地,散热件可以包括散热鳍片、散热风道、热管和散热板的其中一者或任意组合。
在一个实施方式中,隔离件50设置在风道40的气流出口404。如此,设置在气流出口404的隔离件50对风道40内的气流的不利影响较小。
在一个实施方式中,隔离件50与辐射源30、壳体10以及风道40中的至少一者相耦合。
具体地,相耦合的方式可以是可拆卸地连接,或固定连接。
在一个实施方式中,气流在风道40的内壁和隔离件50的外壁形成的通道内流动。如此,气流可以通过通道流出干燥设备100,并且可以带走隔离件50的热量。
具体地,隔离件50可能会吸收辐射源30工作时产生的热量而升温。气流通过通道时, 能够对隔离件50进行散热,保证了隔离件50的使用寿命。
在一个实施方式中,辐射源30的一部分被容纳在隔离件50内。如此,隔离件50可以对辐射源30的一部分进行遮挡,避免被风道40内的气流吹到。
具体地,辐射源30可包括反光杯302,反光杯302外壁的一部分可以被容纳在隔离件50内,该部分可以作为第一部分,避免被风道40的气流直吹而造成辐射源30热量的过度散发,从而可以保证辐射源30工作时保持在合适的工作温度。
在一个实施方式中,辐射源30与隔离件50共面接触。如此,可以减少辐射源30与隔离件50形成的连接处对气流的不利影响。
具体地,共面接触,可以使得辐射源30与隔离件50形成的连接处可以是平滑过渡,气流流经连接处时,可以顺畅地流过,减少了风噪及风阻。在一个示例中,连接处可以形成流线型的面。
在一个实施方式中,请结合图10、图12及图14,隔离件50的内壁与辐射源30的外壁围成腔体60,第一部分包括围成腔体60的辐射源30的外壁部分。具体地,辐射源30的外壁部分可以是反光杯302外壁的一部分,或反光杯302基座,或基座的一部分,或包括反光杯302外壁的一部分和反光杯302基座,或包括反光杯302外壁的一部分和反光杯302基座的一部分。也就是说,围成腔体60的辐射源30的外壁部分被隔离件50遮挡,使风道40的气流无法直吹。
在一个实施方式中,经由隔离件50,风道40通过热传导和热对流中的至少一者方式与辐射源30进行热交换。如此,辐射源30的热量能够得到适当的散发,而不至于工作时的温度过高,或过低。
在一个实施方式中,干燥设备100还包括控制板(图未示),控制板设置在隔离件50内。如此,可充分利用壳体10内的空间,可使得干燥设备100的结构紧凑。
具体地,控制板可放置在腔体60中,控制板可包括电路板及安装在电路板上的各种元器件,例如,处理器,控制器,电源,开关电路、检测电路等。控制板可以电连接辐射源30及电机20,及其它电气件,例如照明灯,指示灯,传感器等。控制板用于控制干燥设备100的运行,包括但不限于控制干燥设备100的运行模式,运行时长,电机转速,辐射源30的功率等等。
在一个实施方式中,干燥设备100包括电源,电源的一部分设置在隔离件50内,电源与辐射源30和控制板中的至少一者电连接。如此,电源的热量可以通过隔离件50散发,且电源可以向辐射源30和控制板的至少一者供电。
具体地,电源可包括一个或多个电池,电池可为可充电电池。电源可以是辐射源30的专供电源,也可以是控制板的专供电源,还可以是同时为辐射源30和控制板供电。控制板 可连接有开关,通过控制开关的通断,以控制电源是否向辐射源30供电。
在一个实施方式中,沿空气流动的方向,电机20位于至少部分电源的下游。如此,这样电源工作时的热量被电机的风带走,保证电源的正常工作。
请参图1,电源70可包括多个电池,可以是电机20位于全部电池的下游,也以是电机20可以在多个电池之间,比如把手104下部是放置电池,中部放置电机20,上部放置电池,把手下半部是电池,上半部是电机20,本体102内还有电池。这样,电机20产生的气流(风)可以流经至少部分电源,使得被风吹过的电源部分可以得到散热。
另外,通常地,电源70较电机20重,电机20位于至少部分电源70的下游,可避免干燥设备100头重脚轻。进一步,也可减少电机20产生的气流风阻。
在一个实施方式中,干燥设备100包括安全传感器(图未示),安全传感器电连接电源70和辐射源30,安全传感器用于在辐射源30的温度大于设定温度时,断开电源70的供电。如此,可以提升干燥设备100的安全性。
具体地,辐射源30工作时的温度可能会达到几百度,或上千度,如果辐射源30因工作异常而导致温度异常升高,可能会对使用者造成烫伤的事故。因此,设置安全传感器,在辐射源30的温度大于设定温度时,可断开电源70的供电,使辐射源30停止工作,温度下降,避免出现安全事故,提升干燥设备100的安全性。设定温度的具体数值可根据需求来设定,在此不作具体限定。
在一个示例中,安全传感器可包括温控器。温控器的参数选择可根据设定温度的数值来确定。
在一个实施方式中,辐射源30设置在风道40的纵轴线L。如此,气流对辐射源30四周的散热效率基本一致,避免辐射源30出现局部温度高,局部温度低的情况出现,有利于保持辐射源30的工作效率,红外辐射的强度稳定。
在一个示例中,辐射源30的数量是单个,单个辐射源30设置在风道40的纵轴线L。在一个示例中,辐射源30的数量是多个,多个辐射源30围绕风道40的纵轴线L的周向设置。
辐射源30可包括反光杯302和发光件304,发光件304位于反光杯302内,第一部分包括反光杯302外壁的一部分,第二部分包括反光杯302外壁的另一部分。例如在图1中,第二部分可以是直接与风道40外壁接触的反光杯302外壁的一部分,第一部分可以是通过第二部分与风道40外壁连接的反光杯302外壁的另一部分。在其它实施方式中,第二部分可包括反光杯302的基座的一部分,该基座的一部分直接与风道40外壁接触。可以理解,在其它实施方式中,第一部分可包括反光杯302的基座,或基座的一部分。
较佳地,第一部分的表面积大于第二部分的表面积。如此,可以使得对辐射源30进行 适当的散热并保持辐射源30合适的工作温度。
具体地,第二部分与风道40进行热交换,热交换的方式可以包括热传导和热对流的至少一者。通过简单地对表面积进行设定,可以使辐射源30的大部分热量能够维持辐射源30的工作温度,而额外的热量则通过第二部分与风道40进行热交换而散发出去。
在图1、图6和图8所示的实施方式中,第二部分直接与风道40外壁接触。具体地,在一个示例中,反光杯302外壁的一部分直接与风道40外壁接触以进行热交换。具体地,可以是,反光杯302外壁的一部分可以形成风道40外壁的一部分,以与风道40外壁的另一部分直接接触,也就是说,反光杯302外壁的该部分即作为反光杯302外壁的一部分,也作为风道40外壁的一部分。另外,也可以是,反光杯302外壁的一部分位于风道40外壁外侧,并与风道40外壁直接接触。
在图16-图18所示的实施方式中,第二部分通过额外的散热结构80与风道40接触以进行热交换。具体地,散热结构80可包括利于散热的金属(如铝、铜、铝合金、铜合金等)、碳纤维材料等。散热结构80的具体形式不作限定,例如可以是包括散热鳍片、散热板、散热风道、热管的其中一者或任意组合。散热结构80可通过热传导和热对流中的至少一者方式使风道40与第二部分进行热交换。
在一个实施方式中,散热结构80连接第二部分和风道40的外壁,也就是说,在风道40和第二部分之间设有散热结构80。在一个示例中,第二部分为反光杯302外壁的一部分,散热结构80连接反光杯302外壁的该部分与风道40的外壁。
在一个实施方式中,请结合图16和图17,散热结构80的一部分位于风道40内。在一个示例中,第二部分为反光杯302外壁的一部分,散热结构80的一端连接反光杯302外壁的该部分,散热结构80的另一端伸入风道40内,风道40内的气流直接吹到散热结构80的该端。进一步地,位于风道40内的散热结构80的部分可形成为第一导风件。如此,可以减少散热结构80的该部分对气流的不利影响,可减少风噪,风阻等。
具体地,第一导风件可以具有流线型的迎风面,气流能够顺畅地在该迎风面流过。进一步地,第一导风件与风道40内的第二导风件一体连接。如此,一方面风道40内的第二导风件可以对气流进行导流,另一方面,也可加快热交换效率。第二导风件可以是形成在风道40内壁上的导流条和/或导流槽,第二导风件也可设置成流线型。通过第二导风件的设置,可以使得对气流进行整流及方向调整。第一导风件与风道40内的第二导风件一体连接,使得气流无缝连接地通过第一导风件和第二导风件,进一步减少风噪及风阻等。
在一个实施方式中,散热结构80形成风道40外壁的一部分。也就是说,风道40外壁的一部分可以形成散热结构80与第二部分(如反光杯302外壁的一部分)进行热交换。
在一个实施方式中,散热结构80形成风道40内壁的一部分。也就是说,风道40内壁 的一部分可以形成散热结构80,并通过连接结构穿过风道40壁与第二部分(如反光杯302外壁的一部分)进行热交换。
在本申请实施方式中,风道40的外壁和内壁可以是一个零件的两个面,或是两个零件各自的一个面,两个零件连接形成风道40。在此不作具体限定。
在一个实施方式中,发光件304发射含有红外波段的辐射。如此,可以利用发光件304发射的红外波段的辐射对物体进行干燥,干燥效果好。
具体地,红外波段的辐射可包括远红外波段的辐射,近红外波段的辐射等。在一个示例中,由发光件304发射的红外波段辐射可以覆盖0.7μm以上的红外光谱。在一个例子中,发光件304发射的红外辐射的波长处于0.7μm到20μm的范围中。
在另外的示例中,发光件304发射的辐射可以大致覆盖从0.4μm到0.7μm的可见光谱以及0.7μm以上的红外光谱。
在一个实施方式中,发光件304包括卤素灯、陶瓷、石墨烯、发光二极管中的至少一者。
具体地,陶瓷的示例可以包括正温度系数(PTC)加热器和金属陶瓷加热器(MCH)。陶瓷的发光件304包括埋在陶瓷内部的金属加热元件,例如埋在氮化硅或碳化硅内部的钨。发光件304可以以线(例如丝)的形式提供。线可以被形成图案(例如,形成螺旋丝)以增加其长度和/或表面。发光件304也可以杆的形式提供。在一个示例中,发光件304可以是具有预设直径和长度的氮化硅棒、碳化硅棒或碳纤维棒。
发光件304可以选自卤素灯、陶瓷、石墨烯、发光二极管中的其中一者,或发光件304可以选自卤素灯、陶瓷、石墨烯、发光二极管中的两个或多于两个的组合。在此不作具体限定。
为了具有更高的红外发射率,有必要升高发光件304的温度。发光件304的温度可以是至少500、600、700、800、900、1000、1100、1200、1300、1400、1500、1600、1700、1800、1900或2000摄氏度(℃)。在一个示例中,发光件304的温度可以是900至1500摄氏度。发光件304发射的红外辐射的中心波长或波长范围可以是可调谐的,例如至少可调谐0.5、1.0、1.5、2.0、2.5、3.0、3.5、4.0、4.5、5.0、5.5、6.0、6.5、7.0、7.5、8.0、8.5、9.0、9.5或10.0μm。可以在干燥设备100的不同操作模式下(例如,快速干燥模式,头发健康模式等)对从发光件304发射的辐射的功率密度进行调整,例如,通过改变供应给干燥设备100的电压和/或电流来进行调整。
反光杯302可以被配置为调节从发光件304发射的辐射方向。例如,反光杯302可以被配置为减小反射的辐射束的发散角。
反光杯302的反射面可以涂有对由发光件304发射的辐射的波长或波长范围具有高反射率的涂层材料。例如,涂层材料可以对可见光谱和红外光谱两者中的波长都具有高反射率。 具有高反射率的材料在反射辐射能的方面可以具有很高的效率。涂层材料的示例可以包括金属材料和介电材料。金属材料可以包括例如银和铝。介电涂层可以具有交替的介电材料层,例如氟化镁。设有涂层的反射面的反射率可以为至少90%(例如90%的入射辐射被反光杯302的反射表面反射)、90.5%、91%、91.5%、92%、92.5%、93%、93.5%、94%、94.5%、95%、95.5%、96%、96.5%、97%、97.5%、98%、98.5%、99%、99.5%、99.6%、99.7%、99.8%、99.9%或更高。在一些实例中,设有涂层的反射面的反射率可以为大致为100%,这意味着可以将由发光件304发射的基本所有辐射都朝着干燥设备100的外部进行反射。因此,即使发光件304的温度高,反光杯302的反射面上的温度也基本上不会由于从发光件304发射的辐射而升高。
在一个实施方式中,反光杯302的反射面的轴向截面为多项式曲线的形状。如此,可以使反射面形成有焦点,便于对红外辐射的导向及减少反射的辐射束的发散角。
具体地,多项式曲线的形状,可包括抛物线、椭圆、双曲线等形状。在一个示例中,反光杯302的反射面的轴向截面为抛物线的形状。
在一个实施方式中,发光件304设置于反光杯302的反射面的焦点处。如此,可以使得发光件304发出的红外光束经反射面反射后,基本上平行地从反光杯302的开口出射,使得干燥设备100的发出的红外辐射的指向性好。
具体地,发光件304设置于反光杯302的反射面的焦点处,在焦点处的发光件304发射的红外辐射束经反光杯302的反射面反射后,基本相互平行地由反光杯302的开口出射。
在其它实施方式中,发光件304也可以偏离抛物线的焦点放置,使得反射的红外辐射束可以在干燥设备100前方的一定距离处会聚或发散。发光件304在反光杯302中的位置是可以调节,因此,可以改变输出的辐射束的会聚程度和/或方向。反光杯302的形状和发光件304的形状可以相对于彼此优化和变化,以在干燥设备100的期望位置输出期望的加热功率。
另外,可以在发光件304和反光杯302之间插入绝热材料(例如,玻璃纤维、矿棉、纤维素、聚氨酯泡沫或聚苯乙烯),使得发光件304与反光杯302绝热。即使发光件304的温度高,热绝缘也可以保持反光杯302的温度不增加。也可以在光学元件的周边和反光杯302之间插入绝热材料,使得光学元件与反光杯302绝热。
在一个实施方式中,请参图19,辐射源30包括第一反光件306,第一反光件306设置在发光件304内。如此,可以将发光件304内的红外辐射反射至反光杯302的开口处,提升了红外辐射的利用率。
具体地,第一反光件306的反光面的轴向截面可为多项式曲线的形状,例如为抛物线形状。第一反光件306可采用耐高温材料,反光面上设置镀膜,该镀膜是对红外辐射具有高反射率。在一个示例中,发光件304为灯泡。
在一个实施方式中,发光件304包括夹封位308,第一反光件306靠近夹封位308设置。如此,可以将从夹封位308漏出的红外辐射反射至反光杯302的开口。
具体地,发光件304可包括灯丝,灯丝连接夹封位308。灯丝通电时发出红外辐射,红外辐射向四周发射,部分红外辐射会射向夹封位308。因此,在靠近夹封位308的位置设置第一反光件306,可以利用第一反光件306将该部分的红外辐射反射至反光杯302的开口,进而提升了红外辐射的利用率。第一反光件306与夹封位308的距离可以预先进行标定,在此不作具体限定。在一个示例中,第一反光件306可安装在灯丝靠近夹封位308的位置。
在一个实施方式中,发光件304包括发光部309,第一反光件306的反光面的轴向横截面为面向发光部309的多项式曲线的形状,发光部309位于第一反光件306的反光面的焦点处。如此,可以使得由发光部309向第一反光件306发射的红外辐射经第一反光件306反射后,形成平行光束向反光杯302的开口出射。
具体地,多项式曲线的形状,可包括抛物线、椭圆、双曲线等形状。在一个示例中,第一反光件306的反光面的轴向截面为抛物线的形状。
发光部309是通电时发出红外辐射的部位。在一个示例中,发光部309可为灯丝(如钨丝)。可以理解,在其它示例中,发光部309还可呈块状,或其它形状。
在一个实施方式中,发光件304包括发光部309,发光部309由导电支架支撑,第一反光件306安装在导电支架,辐射源30包括绝缘件,绝缘件连接导电支架和第一反光件306。如此,可以使得导电支架和第一反光件306之间绝缘。
具体地,发光件304还包括位于夹封位308处的引脚,导电支架可连接引脚和发光部309,第一反光件的材质可为金属,第一反光件306安装在导电支架上,和导电支架连接的地方要绝缘,以在安装时防短路。因此,绝缘件可以连接导电支架和第一反光件306,使得导电支架和第一反光件306之间绝缘,保证了发光件304的正常工作。
在一个实施方式中,发光件304包括夹封位308,第一反光件306由绝缘支架支撑,绝缘支架连接夹封位308。如此,可以实现第一反光件306的安装。
具体地,第一反光件306可不安装在发光部309上,可以由另外的绝缘支架安装在夹封位308。
在一个实施方式中,辐射源30包括第二反光件312,第二反光件312位于发光件304内靠近发光件304的顶部。如此,可以提升红外辐射的利用率。
通常地,发光部309发出的且经反光杯302开口边缘出射的光线的发射角度较大,这部分光线直接出射的话可能无法照射到目标物体上。通过在发光件304上方安装第二发光件304,位于反光杯302焦点处的发光部309发出的该部分光线可以被第二反光件312反射回反光杯302内,由反光杯302再重新反射,进而减少该部分光线的发射角度,使该部分光线 能够被导向目标物体。
在一个实施方式中,第二反光件312的反光面的轴向横截面为面向发光件304的多项式曲线的形状,发光件304位于第二反光件312的反光面的焦点处。如此,可以使得由发光部309向第二反光件312发射的红外辐射经第二反光件312反射后,形成平行光束向反光杯302内出射。
具体地,多项式曲线的形状,可包括抛物线、椭圆、双曲线等形状。在一个示例中,第二反光件312的反光面的轴向截面为抛物线的形状。
在一个实施方式中,第二反光件312开设有通光孔(图未示)。如此,可以使发光部309发出的部分光线由通光孔出射。
具体地,在一个实施方式中,第二反光件312的平面形状可为圆形,通光孔可以开设在圆心附近,这样,与通光孔相对的发光部309发光的光线可以直接从通光孔出射,这部分光线的发射角度通常是较小,因此,可以允许这部分光线直接从通光孔出射,而不经第二反光件312的反射。
在一个实施方式中,发光件304包括发光部309,发光部309由导电支架支撑,第二反光件312安装在导电支架,辐射源30包括绝缘件(图未示),绝缘件连接导电支架和第二反光件312。如此,可以使得导电支架和第二反光件312之间绝缘。
具体地,第二反光件312的材质可为金属,第二反光件312安装在导电支架上,和导电支架连接的地方要绝缘,以在安装时防短路。因此,绝缘件可以连接导电支架和第二反光件312,使得导电支架和第二反光件312之间绝缘,保证了发光件304的正常工作。
在一个实施方式中,发光件304包括夹封位308,第二反光件312由第二绝缘支架支撑,第二绝缘支架连接夹封位308。如此,可以实现第二反光件312的安装。
具体地,第二反光件312可不安装在发光部309上,第二反光件312可以由位于夹封位308的另外的绝缘支架支撑,并靠近发光部309的顶部。
在一个实施方式中,请参图20和图22,反光杯302的壁形成有避空部,避空部的形状与风道40和/或壳体10相适应。可以使得干燥设备100更紧凑。
具体地,在多个辐射源30中,反光杯302的构型(抛物线型)会占用设备空间和/或压缩风道40(进而对风产生影响)。由于干燥设备100整体的尺寸限制,可以通过提高辐射源30的数量,同时减小单个反光杯302的尺寸来提高整体的空间利用率。但由于各种辐射源30工艺的限制(如灯泡中灯丝尺寸)的限制,如果反光杯302与辐射源30的尺寸相对过小,辐射效率会严重衰减。同时由于将发光件304安装在反光杯302里,反光杯302内需要一些安装定位结构,而此部分结构对小反光杯302的反射杯型的破坏比大尺寸反光杯302更大。而在给定的产品外形里,用大的反光杯302可能会超出外形限制,在满足辐射效率和以 上两个约束下,需要对反光杯302进行外观避空切割以与风道40和/或壳体10相适应。
辐射源30通过反光杯302壁与风道40进行热交换。传统反光杯302的构型使反光杯302壁和风道40的接触面积有限。要提高面积,需要部分反光杯302壁去侵蚀风道40,从而影响风速、风量和产生风阻。所以需要切割侵入风道40的反光杯302壁以适应风道40的形状,这样可以降低对风的影响。这样的好处在于,在给定壳体10尺寸的情况下,风道40的口径会比传统的大。
同时,反光杯302与壳体10内壁接触的部分也通过切割来适应那部分的形状。请结合图22,通过仿真对比不切割的反光杯发现,对于一定口径的反光杯302,上述两部分的切割对反光杯302的出口总功率和一定距离外的光斑的能量密度影响不明显,在可接受的范围内。
具体地,避空部可以是反光杯302外壁因适应风道40和/或壳体10的形状而形成的部位。这样,在反光杯302与风道40和/或壳体10耦合时,在不影响风道40和/或壳体10外形的情况下,可以减少装配后的整体尺寸。
需要说明的是,避空部的设置需要考虑因素如下:
切割面积:和散热效率和维持发光件304工作温度有关;
切割面的形状(与风道40接触面的切割):平衡对风的影响和光的反射路径(进而影响光的汇聚);
切割位置:对于不同的切割位置,出口功率和目标光斑处的功率存在最优解。
在切割时,需要注意:
入切口:在多项式曲线(如抛物线)的焦点的平面前方。
出切口:要满足干燥设备100的本体的外壁以及风道40的构型限制。
在图20-图21中,多个辐射源30围绕风道40的气流出口404布置。
在图23-图24中,多个辐射源30布置在风道40的气流出口404的一侧,在图示中是上半侧。
在图25-图26,图27-图28中,多个辐射源30被风道40包围。
在一个实施方式中,避空部包括第一避空部314,第一避空部314的形状与风道40的轮廓匹配。如此,可以使得反光杯302能够更靠近风道40设置,提升了干燥设备100的空间利用率。
在一个实施方式中,第一避空部314上距离反光杯302的开口最远的点位于反光杯302的反射面的焦点的靠近反光杯302开口的一侧。如此,可以保证避空部的入切口在反光杯302的焦点的平面前方。
具体地,反光杯302的反射面的轴向截面为多项式曲线(如抛物线)的形状。第一避空 部314上距离反光杯302的开口最远的点在入切口处。这样,可以使得发光件304发出的光线能够被连接避空部的反射面部位反射形成平行光束出射,减少避空部对发光件304发出光线的影响。
在一个实施方式中,第一避空部314与风道40内的气流接触。如此,可以提升第一避空部314与风道40的热交换效率。
具体地,第一避空部314可以形成为风道40的壁一部分,这样第一避空部314可与风道40内的气流接触,而被气流带走热量。
在一个实施方式中,风道40的轮廓为圆形,以壳体10径向截面的中心为圆心。第一避空部314的形状可以呈圆弧形,弧度与风道40的轮廓相适应,第一避空部314能够与风道40较好地贴合。一方面,提升热交换效率,另一方向,结构也更紧凑。
可以理解,在其它实施方式中,部分风道40的轮廓还可以是圆环的内或外轮廓的凹形,以壳体10径向截面的中心为圆心。
在一个实施方式中,避空部包括第二避空部316,第二避空部316的曲率不同于第一避空部314的曲率。如此,可以使反光杯302能够适应干燥设备100的其实部件。
具体地,第二避空部316位于相对于第一避空部314远离风道40的一侧。第二避空部316可与壳体10的内壁形状匹配,进一步减少反光杯302的空间占用,提升空间利用率。
具体地,在一个示例中,第二避空部316可与本体的内壁形状匹配。可以理解,第二避空部316还可以与干燥设备100的其它部件的形状匹配,在此不作具体限定。
在一个实施方式中,相邻两个辐射源30的两个反光杯302连接形成有共用部317。如此,能够进一步减少多个辐射源30的空间占用,提升了壳体10内的空间利用率。
具体地,在相邻两个辐射源30中,两个反光杯302通过共用部317连接,共用部317可以是反光杯302的壁。共用部317可以呈平板状以进一步减少两个反光杯302所占用的空间。
在一个实施方式中,反光杯302的反射面的径向和轴向截面为至少一个多项式曲线形状的一部分。具体地,多项式曲线形状包括圆、抛物线、椭圆、双曲线等形状。在一个示例中,反光杯302的反射面的轴向截面为至少一个抛物线形状的一部分,反光杯302的反射面的径向截面为至少一个抛物线形状的一部分。
在一个实施方式中,反光杯302的反射面的不同径向截面为不同心的圆形。可以理解,在其它实施方式中,反光杯302反射面的不同径向截面也可以是不同心的椭圆。
在一个实施方式中,反光杯302的反射面的径向和轴向截面由分段的多项式曲线连接而成。
在一个实施方式中,请参图29及图30,反光杯302包括基座310,发光件304连接基 座310,基座310不位于反光杯302外壁的顶点,发光件304位于反光杯302的焦点处。如此,可以实现发光件304的非正装安装方式。
非正装安装方式的好处是:1)夹封位308的热可以直接被传导,以和风道或风道内的空气进行热交换,或者直接辐射出去;2)因为基座处的夹封位比较长,想要保证发光件在反光杯的焦点处,正装的情况下往往使基座很长,占空间。非正装(如侧装和倒装)可以节省空间。
具体地,反光杯302的反射面(反光杯302的内壁)的轴向截面可为多项式曲线形状,反光杯302的外壁的轴向截面也呈这种形状,在这种形状下,反光杯302外壁具有一顶点。在本申请的一个实施方式中,请参图31,基座位于反光杯外壁的顶点,这种属于正装的方式。
在本申请实施方式中,发光件304位于反光杯302的焦点处,即发光件304位于反光杯302的反射面的焦点处。
基座310不位于反光杯302外壁的顶点,在一个实施方式中,请参图29,基座310位于反光杯302的侧壁。如此,可实现发光件304的侧装安装方式。
在一个实施方式中,反光杯302的侧壁与风道40壁耦合。如此,可以使得发光件304的热量可通过基座310,反光杯302的侧壁与风道40壁进行热交换,能够对发光件304进行适当散热。
具体地,风道40壁的热量能够被风道40内的气流带走,进而可对发光件304散热。
辐射源30可围绕风道40的气流出口布置,反光杯302的侧壁与风道40壁耦合,可以是反光杯302的壁与风道40壁直接接触,也可以通过额外的散热结构连接,还可以是反光杯302的壁形成风道40壁的一部分,具体请参本申请相关的实施方式,在此不作具体限定。
在一个实施方式中,反光杯302的侧壁用于与风道40中的气流进行热交换。如此,可以使得发光件304的热量可通过基座310,反光杯302的侧壁与风道40中的气流进行热交换,能够对发光件304进行适当散热。
具体地,辐射源30可被风道40包围,这样,反光杯302的侧壁会被风道40中的气流吹到,进而带走发光件304的热量,具体请参本申请相关的实施方式,在此不作具体限定。
基座310不位于反光杯302外壁的顶点,在一个实施方式中,请参图30,发光件304位于反光杯302的开口处。如此,可实现发光件304的倒装安装方式。
具体地,可以在反光杯302的开口处设置一连接件318,发光件304安装在连接件318上。发光件304正对反光杯302的顶点。
在一个实施方式中,反光杯302的开口处的壁上有凹槽,凹槽容纳发光件304的灯脚或者连接发光件304的灯脚的导线。具体地,可以将发光件304的灯脚或者连接发光件304的 灯脚的导线通过连接件318引到凹槽中。
在一个实施方式中,基座310开设有开孔,开孔容纳发光件304的灯脚或者连接发光件304的灯脚的导线。如此,发光件304的灯脚或连接发光件304灯脚的导线能够穿过基座310,并可穿过连接件318与外部电源连接。
在一个实施方式中,开孔由绝缘、绝热以及不透光的材料封闭。如此,可以减少红外辐射的泄露。
在一个实施方式中,请结合图32A-图32B,辐射源30包括光学元件90,光学元件90设置在反光杯302的开口处,用于滤除或反射非红外波段的辐射。如此,可以使得只有红外辐射导向至被干燥的物体。
具体地,光学元件90可以包括改变或重新引导光的透镜、反射器、棱镜、光栅、分束器、滤光器或它们的组合。在一些实施例中,光学元件90可以是透镜。在一些实施例中,光学元件90可以是菲涅耳透镜。
在一个实施方式中,非红外波段的辐射包括可见光和/或紫外光。光学元件90可以由具有高红外透射率的材料制成。用于光学元件90的材料的示例可以包括氧化物(例如二氧化硅)、金属氟化物(例如氟化钡)、金属硫化物或金属硒化物(例如硫化锌、硒化锌)和晶体(例如晶体硅,晶体锗)。进一步地,光学元件90的任一侧或两侧可以涂有吸收或反射可见光谱和紫外光谱的材料,使得仅红外范围内的波长可以穿过光学元件90。光学元件90可以滤出(例如吸收)不在红外光谱中的辐射。光学元件90的红外透射率可以为至少95%(例如,红外光谱中95%的入射辐射透过光学元件90)、95.5%、96.0%、96.5%、97.0%、97.5%、98.0%、98.5%、99%、99.1%、99.2%、99.3%、99.4%、99.5%、99.6%、99.7%、99.8%、99.9%或更高。在一个示例中,光学元件90的红外透射率可以是99%。
在一个示例中,发光件304可以发射波长为0.4μm到20μm的辐射,反光杯302可以将所有辐射朝向光学元件90反射(例如,没有辐射在反射表面处被吸收),并且光学元件90可以从反射的辐射中滤出处于0.4μm至0.7μm之间的任何可见光谱波长,从而使得仅红外光谱中的辐射离开辐射源30。
在一个实施方式中,光学元件与反光杯的热膨胀系数差值在预设范围内。如此,使得光学元件和反光杯的热膨胀系数相近,避免因热膨胀系数相差较大而在受热时使热膨胀系数小的部件变形。热膨胀系数可以根据产品性能,通过仿真或测试来选择,在此不作具体限定。
在一个实施方式中,光学元件90密封反光杯302的开口。如此,可以使反光杯302内形成相对密封的内部空间。
具体地,反光杯302的内部空间可以被配置为具有一定程度的真空。反光杯302的内部内的压力可以小于0.9标准大气压(atm)、0.8atm、0.7atm、0.6atm、0.5atm、0.4atm、 0.3atm、0.2atm、0.1atm、0.05atm、0.01atm、0.001atm、0.0001atm或更小。在一个实施方式中,反光杯302内呈接近真空状态,例如反光杯302的内部内的压力可以为大约0.001atm或更小。真空可以抑制发光件304的蒸发和/或氧化并延长辐射源30的寿命。真空还可以防止发光件304与光学元件90和/或反光杯302之间的热对流或热传导。
在一个实施方式中,反光杯302内填充有保护气体,保护气体可以是一定量的非氧化性气体(如惰性气体),同时仍保持一定水平的真空以减少由反光杯302和光学元件90的内表面形成的空间内部的气体的温度的升高。该温度升高虽然很小,但是由热对流和热传导引起的。非氧化性气体的例子可以包括氮气(N2)、氦气(He)、氩气(Ar)、氖气(Ne)、氪气(Kr)、氙气(Xe)、氡气(Rn)和氮气(N2)。惰性气体的存在可以进一步保护发光件304的材料免受氧化和蒸发。
在图32A所示的实施方式中,多个辐射源30共用同一个光学元件90,也就是说,一个光学元件设在所有辐射源的反光杯302的开口处。在图32B所示的实施方式中,每个辐射源具有一个光学元件90,也就是说,一个光学元件90设在一个反光杯302的开口处。在其它实施方式中,部分辐射源共用同一个光学元件,其余部分辐射源中的每个辐射源具有一个光学元件。
在一个实施方式中,干燥设备100还包括控制板,控制板电连接辐射源30和/或电机20。如此,可以实现对干燥设备100的控制。
具体地,控制板可包括电路板及安装在电路板上的各种元器件,例如,处理器,控制器,电源70,开关电路、检测电路等。控制板可以电连接辐射源30及电机20,及其它电气件,例如照明灯,指示灯,传感器等。控制板用于控制干燥设备100的运行,包括但不限于控制干燥设备100的运行模式,运行时长,电机转速,辐射源30的功率等等。
在一个实施方式中,干燥设备100包括位于壳体10内的电源70,电源70电连接控制板,控制板电连接辐射源30和电机20。如此,可以由控制板对辐射源30和电机20的用电进行控制。
具体地,控制板可以将电源70的电压转换为适应于干燥设备100工作模式所对应的辐射源30的电压,和电机20的电压,使得辐射源30和电机20能够在该工作模式下工作。例如,通过对电压的调整,可以调整辐射源30的辐射功率,电机20的转速(即扇叶的转速)等。或对电源70进行通断,来控制辐射源30和电机20的工作时长。可以理解,在其它实施方式中,电源70、控制板、辐射源30和电机20还可以是其它连接方式。在一个示例中,电源70可以安装在把手104中。
在一个实施方式中,电源70包括可充电电池。如此,可以使干燥设备100使用时可脱离线束的束缚,提升用户体验。
具体地,可充电电池可以是锂离子电池,或其它可充电电池。可充电电池可以是一个或多个,多个电池可以串联连接,或并联连接,或串并联连接。在此不作具体限定。另外,为便于电池的充电,本体102或把手104可设有充电接口。可以理解,充电接口可以是有线的充电接口,也可以是无线充电接口,在此不作具体限定。另外,为便于电池的拆卸,可以在把手104上设置有电池盖,电池盖是可移除的,便于电池的取出和安装。
在一个实施方式中,干燥设备100还包括传感器,传感器感测干燥设备100、干燥设备100所处的工作环境、气流或辐射的接受体中的至少一者的状态。如此,可以根据传感器的信号来控制干燥设备100运行,提升用户体验。
具体地,状态包括温度、湿度、距离、姿态、运动、流量、通量中的至少一者。
传感器可以包括温度传感器、接近/测距传感器、湿度传感器、姿态传感器、流量传感器、通量传感器中的至少一者。传感器可以例如放置在壳体10的气流出口404侧,以监视被干燥物体(即气流或辐射的接受体)状态(例如湿度)。气流施加到被干燥物体上的区域可以大致包括被干燥物体上的红外辐射区域(例如,辐射斑点)。气流可以通过吹走被干燥物体周围的湿空气来加速水从被干燥物体蒸发。气流还可以降低由红外辐射辐射的被干燥物体的温度,以避免被干燥物体受损。被干燥物体和被干燥物体上的水的温度必须保持在适当的范围内,以加速水从被干燥物体的蒸发,同时保持被干燥物体不要过热。适当的温度范围可以是50到60摄氏度。可以调节吹到被干燥物体上的气流的速度,以例如通过吹走热水和多余的热量来将被干燥物体的温度保持在适当的温度范围内。接近/测距传感器和温度传感器可以共同运行以确定被干燥物体的温度并通过反馈回路控制来调节气流的速度,以保持被干燥物体的恒定温度或编程温度。被干燥物体例如可为头发。
姿态传感器可以采集干燥设备100姿态和运动。例如姿态传感器可包括惯性检测模块(IMU),可以检测干燥设备100的横滚轴、俯仰轴及偏航轴中至少一者的状态,也可以检测在相应轴上是否处于运动。例如,当用户长时间对着被干燥物体的一个部位吹时,姿态传感器检测到干燥设备100是长时间没有运动,那么,为避免对被干燥物体的该部位造成损伤,控制板可以根据姿态传感器输出的数据,来控制电机20的转速减少和/或辐射源30的辐射强度降低,还可以控制干燥设备100进行声光、震动提示等。
流量传感器可以检测气流的流量,使得控制板可以控制电机20的转速来适应被干燥物体的温度控制。类似地,控制板也可根据通量传感器输出的通量数据来控制电机20和/或辐射源30运行。
在一个实施方式中,传感器设置在壳体10内且位于风道40的气流出口404和/或辐射源30的开口。如此,可以实现气流状态和/或辐射状态的更准确控制。
具体地,传感器位于风道40的气流出口404,可以使得对离开干燥设备100的气流状 态,如流量、通量、温度、湿度等进行检测,可以对离开干燥设备100的气流状态进行更准确控制,避免干燥设备100的内部环境影响气流状态的检测。类似地,传感器位于辐射源30的开口,可以使得对离开干燥设备100的辐射状态,如强度等进行检测,可以对离开干燥设备100的辐射状态进行更准确控制,避免干燥设备100的内部环境影响辐射状态的检测。
综上,上述实施方式的干燥设备100,包括但不限于以下技术效果:
1.相对于传统的干燥设备100(如反光杯302外壁的全部直接在风道40中)太过散热,会影响辐射效率,因为过量的散热意味着发光件304需要将额外的电能转化为热能以维持产生黑体辐射所必要的温度。本申请实施方式的干燥设备100的构型可以适当降低辐射源30的温度,延长发光件304的使用寿命,同时又不至于把温度降得太低造成电能浪费(更多电能要用来维持黑体辐射的温度)。
2.辐射源30多余的热量被风带走,让风温上升几度(1~5度),虽然完全不足以对干发产生决定性影响,但提升了风吹到人体后人的体感,让人不会感到被冷风吹,提升了用户体验。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一者实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
尽管已经示出和描述了本申请的实施方式,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施方式进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (47)

  1. 一种干燥设备,其特征在于,包括:
    壳体,所述壳体内设有风道;
    电机,位于所述壳体中并用于在所述风道中产生气流;
    多个辐射源,收容在所述壳体中并用于产生红外辐射并将所述红外辐射导向所述壳体外部,其中,所述多个辐射源被配置为使得所述多个辐射源所产生的红外辐射在所述风道的气流出口一定距离形成至少一光斑。
  2. 根据权利要求1所述的干燥设备,其特征在于,所述多个辐射源的光轴汇聚至远离所述干燥设备的预定位置。
  3. 根据权利要求1所述的干燥设备,其特征在于,所述辐射源位于所述风道与所述壳体之间。
  4. 根据权利要求1所述的干燥设备,其特征在于,所述辐射源被所述风道包围。
  5. 根据权利要求1所述的干燥设备,其特征在于,所述辐射源包括反光杯和发光件,所述发光件位于所述反光杯内。
  6. 根据权利要求5所述的干燥设备,其特征在于,所述发光件发射含有红外波段的辐射。
  7. 根据权利要求5所述的干燥设备,其特征在于,所述发光件包括卤素灯、陶瓷、石墨烯、发光二极管中的至少一者。
  8. 根据权利要求5所述的干燥设备,其特征在于,所述反光杯的反射面的轴向截面为多项式曲线的形状。
  9. 根据权利要求8所述的干燥设备,其特征在于,所述发光件设置于所述反射面的焦点处。
  10. 根据权利要求5所述的干燥设备,其特征在于,所述辐射源包括光学元件,所述光学元件设置在所述反光杯的开口处,用于滤除或反射非红外波段的辐射。
  11. 根据权利要求10所述的干燥设备,其特征在于,所述非红外波段的辐射包括可见光和/或紫外光。
  12. 根据权利要求10所述的干燥设备,其特征在于,所述多个辐射源共用同一个光学元件,或每个所述辐射源具有一个光学元件,或部分辐射源共用同一个光学元件,其余部分辐射源中的每个辐射源具有一个光学元件。
  13. 根据权利要求10所述的干燥设备,其特征在于,所述光学元件与所述反光杯的热膨胀系数差值在预设范围内。
  14. 根据权利要求10所述的干燥设备,其特征在于,所述光学元件密封所述反光杯的开口。
  15. 根据权利要求14所述的干燥设备,其特征在于,所述反光杯内呈接近真空状态或充有 保护气体。
  16. 根据权利要求5所述的干燥设备,其特征在于,所述辐射源包括第一反光件,所述第一反光件设置在所述发光件内。
  17. 根据权利要求16所述的干燥设备,其特征在于,所述发光件包括夹封位,所述第一反光件靠近所述夹封位设置。
  18. 根据权利要求16或17所述的干燥设备,其特征在于,所述发光件包括发光部,所述第一反光件的反光面的轴向横截面为面向所述发光部的多项式曲线的形状,所述发光部位于所述第一反光件的反光面的焦点处。
  19. 根据权利要求18所述的干燥设备,其特征在于,所述第一反光件的反光面上设有镀膜。
  20. 根据权利要求16所述的干燥设备,其特征在于,所述发光件包括发光部,所述发光部由导电支架支撑,所述第一反光件安装在所述第一导电支架,所述辐射源包括绝缘件,所述绝缘件连接所述导电支架和所述第一反光件。
  21. 根据权利要求16所述的干燥设备,其特征在于,所述发光件包括夹封位,所述第一反光件由第一绝缘支架支撑,所述第一绝缘支架连接所述夹封位。
  22. 根据权利要求5或16-21中任一项所述的干燥设备,其特征在于,所述辐射源包括第二反光件,所述第二反光件位于所述发光件内靠近所述发光件的顶部。
  23. 根据权利要求22所述的干燥设备,其特征在于,所述第二反光件的反光面的轴向横截面为面向所述发光件的多项式曲线的形状,所述发光件位于所述第二反光件的反光面的焦点处。
  24. 根据权利要求22所述的干燥设备,其特征在于,所述第二反光件开设有通光孔。
  25. 根据权利要求22所述的干燥设备,其特征在于,所述发光件包括发光部,所述发光部由导电支架支撑,所述第二反光件安装在所述导电支架,所述辐射源包括绝缘件,所述绝缘件连接所述导电支架和所述第二反光件。
  26. 根据权利要求22所述的干燥设备,其特征在于,所述发光件包括夹封位,所述第二反光件由第二绝缘支架支撑,所述第二绝缘支架连接所述夹封位。
  27. 根据权利要求5所述的干燥设备,其特征在于,所述反光杯的壁形成有避空部,所述避空部的形状与所述风道和/或所述壳体相适应。
  28. 根据权利要求27所述的干燥设备,其特征在于,所述避空部包括第一避空部,所述第一避空部的形状与所述风道的轮廓匹配。
  29. 根据权利要求28所述的干燥设备,其特征在于,所述第一避空部上距离所述反光杯的开口最远的点位于所述反光杯的反射面的焦点的靠近所述反光杯开口的一侧。
  30. 根据权利要求28所述的干燥设备,其特征在于,所述第一避空部与所述风道内的气流 接触。
  31. 根据权利要求30所述的干燥设备,其特征在于,所述风道的轮廓为圆形以所述壳体径向截面的中心为圆心。
  32. 根据权利要求28所述的干燥设备,其特征在于,所述避空部包括第二避空部,所述第二避空部的曲率不同于所述第一避空部的曲率。
  33. 根据权利要求32所述的干燥设备,其特征在于,所述第二避空部位于相对于所述第一避空部远离所述风道的一侧。
  34. 根据权利要求32所述的干燥设备,其特征在于,所述第二避空部与所述壳体的内壁匹配。
  35. 根据权利要求5所述的干燥设备,其特征在于,相邻两个辐射源的两个反光杯连接形成有共用部。
  36. 根据权利要求27所述的干燥设备,其特征在于,所述反光杯的反射面的径向和轴向截面为至少一个多项式曲线形状的一部分。
  37. 根据权利要求36所述的干燥设备,其特征在于,所述反光杯的反射面的不同径向截面为不同心的圆形。
  38. 根据权利要求36所述的干燥设备,其特征在于,所述反光杯的反射面的径向和轴向截面由分段的多项式曲线连接而成。
  39. 根据权利要求5所述的干燥设备,其特征在于,所述反光杯包括基座,所述发光件连接所述基座,所述基座不位于所述反光杯外壁的顶点,所述发光件位于所述反光杯的焦点处。
  40. 根据权利要求39所述的干燥设备,其特征在于,所述发光件位于所述反光杯的开口处。
  41. 根据权利要求39所述的干燥设备,其特征在于,所述基座位于所述反光杯的侧壁。
  42. 根据权利要求41所述的干燥设备,其特征在于,所述反光杯的侧壁与所述风道壁耦合。
  43. 根据权利要求41所述的干燥设备,其特征在于,所述反光杯的侧壁用于与所述风道中的气流进行热交换。
  44. 根据权利要求40所述的干燥设备,其特征在于,所述发光件正对所述反光杯的顶点。
  45. 根据权利要求40所述的干燥设备,其特征在于,所述反光杯的开口处的壁上有凹槽,所述凹槽容纳所述发光件的灯脚或者连接所述发光件的灯脚的导线。
  46. 根据权利要求39所述的干燥设备,其特征在于,所述基座开设有开孔,所述开孔容纳所述发光件的灯脚或者连接所述发光件的灯脚的导线。
  47. 根据权利要求46所述的干燥设备,其特征在于,所述开孔由绝缘、绝热以及不透光的材料封闭。
PCT/CN2021/092191 2020-05-09 2021-05-07 干燥设备 WO2021227962A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180002549.2A CN113573608B (zh) 2020-05-09 2021-05-07 干燥设备
CN202210494494.8A CN115137140A (zh) 2020-05-09 2021-05-07 干燥设备
US17/477,574 US11672318B2 (en) 2020-05-09 2021-09-17 Apparatuses and methods for safely drying an object
CN202111341594.9A CN115120020A (zh) 2021-03-24 2021-11-12 干燥设备

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CNPCT/CN2020/089408 2020-05-09
PCT/CN2020/089408 WO2021226749A1 (en) 2020-05-09 2020-05-09 Apparatuses and methods for drying an object
CNPCT/CN2020/095146 2020-06-09
PCT/CN2020/095146 WO2021227165A1 (en) 2020-05-09 2020-06-09 Apparatuses and methods for drying an object
PCT/CN2021/082835 WO2021227675A1 (en) 2020-05-09 2021-03-24 Apparatuses and methods for drying an object
CNPCT/CN2021/082835 2021-03-24

Publications (1)

Publication Number Publication Date
WO2021227962A1 true WO2021227962A1 (zh) 2021-11-18

Family

ID=77257784

Family Applications (8)

Application Number Title Priority Date Filing Date
PCT/CN2020/089408 WO2021226749A1 (en) 2020-05-09 2020-05-09 Apparatuses and methods for drying an object
PCT/CN2020/095146 WO2021227165A1 (en) 2020-05-09 2020-06-09 Apparatuses and methods for drying an object
PCT/CN2021/082835 WO2021227675A1 (en) 2020-05-09 2021-03-24 Apparatuses and methods for drying an object
PCT/CN2021/092204 WO2021227963A1 (zh) 2020-05-09 2021-05-07 干燥装置以及供电模组
PCT/CN2021/092185 WO2021227960A1 (zh) 2020-05-09 2021-05-07 干燥设备
PCT/CN2021/092191 WO2021227962A1 (zh) 2020-05-09 2021-05-07 干燥设备
PCT/CN2021/092188 WO2021227961A1 (zh) 2020-05-09 2021-05-07 干燥设备
PCT/CN2021/092177 WO2021227957A1 (en) 2020-05-09 2021-05-07 Apparatuses and methods for safely drying an object

Family Applications Before (5)

Application Number Title Priority Date Filing Date
PCT/CN2020/089408 WO2021226749A1 (en) 2020-05-09 2020-05-09 Apparatuses and methods for drying an object
PCT/CN2020/095146 WO2021227165A1 (en) 2020-05-09 2020-06-09 Apparatuses and methods for drying an object
PCT/CN2021/082835 WO2021227675A1 (en) 2020-05-09 2021-03-24 Apparatuses and methods for drying an object
PCT/CN2021/092204 WO2021227963A1 (zh) 2020-05-09 2021-05-07 干燥装置以及供电模组
PCT/CN2021/092185 WO2021227960A1 (zh) 2020-05-09 2021-05-07 干燥设备

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/CN2021/092188 WO2021227961A1 (zh) 2020-05-09 2021-05-07 干燥设备
PCT/CN2021/092177 WO2021227957A1 (en) 2020-05-09 2021-05-07 Apparatuses and methods for safely drying an object

Country Status (3)

Country Link
EP (2) EP4132319A4 (zh)
CN (3) CN113615952A (zh)
WO (8) WO2021226749A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113568074B (zh) * 2021-09-24 2022-01-04 深圳汝原科技有限公司 颜色镀膜方法、系统、存储介质、辐射源组件和干燥设备
CN114081259A (zh) * 2021-09-30 2022-02-25 深圳汝原科技有限公司 红外光源、辐射源和干燥装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103221854A (zh) * 2010-09-21 2013-07-24 费德罗-莫格尔点火公司 Led灯模块
WO2018021309A1 (ja) * 2016-07-29 2018-02-01 日立マクセル株式会社 ヘアードライヤー
JP2019050945A (ja) * 2017-09-13 2019-04-04 マクセルホールディングス株式会社 ヘアードライヤー
CN109952044A (zh) * 2016-07-29 2019-06-28 斯波尔概念公司 用于增强型电吹风的系统和方法
CN110985925A (zh) * 2018-10-02 2020-04-10 3S股份有限公司 光学单元及使用此光学单元的led照明灯具
CN111093421A (zh) * 2018-02-08 2020-05-01 麦克赛尔控股株式会社 吹风机

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4323761A (en) * 1979-11-26 1982-04-06 Huebner Otto Radiant heat hair dryer
DE2950001A1 (de) * 1979-12-12 1981-06-19 Bosch-Siemens Hausgeräte GmbH, 7000 Stuttgart Elektischer haartrockner
CN2063025U (zh) * 1989-12-07 1990-10-03 广州无线电研究所 远红外理疗干发器
CN2111677U (zh) * 1992-03-19 1992-08-05 曾利庆 无风远红外干发器
US6732449B2 (en) * 2000-09-15 2004-05-11 Walter Evanyk Dryer/blower appliance with efficient waste heat dissipation
US6901214B2 (en) * 2003-08-26 2005-05-31 Tek Maker Corporation Multiple-setting portable dryer and circuit designs thereof
JP2005177234A (ja) * 2003-12-22 2005-07-07 Matsushita Electric Works Ltd ヘアドライヤー
KR200369961Y1 (ko) * 2004-09-09 2004-12-13 김유수 레이저 방사 기능을 갖는 헤어 드라이기
CN202233647U (zh) * 2011-09-07 2012-05-30 深圳拓邦股份有限公司 一种电吹风
CN202820034U (zh) * 2012-09-28 2013-03-27 惠州学院 一种电吹风
JPWO2014129072A1 (ja) 2013-02-20 2017-02-02 日本碍子株式会社 ノズル付きヒーター及び乾燥炉
AU2014200576A1 (en) * 2014-02-03 2015-08-20 Grice, James Alexander MR The Cordless hair dryer uses Lithium-Ion cells combined in a battery pack to supply power to control circuitry, a DC blower or fan and a heating element. All components are enclosed in a cavity in which the heating element heats up air which is extruded by the blower or fan. The Control System provides a master cut off switch to the battery pack as well as speed selection for the blower or fan and also cool blast and heat blast buttons.
CN103815644A (zh) * 2014-02-28 2014-05-28 王红 温度监测控制电吹风
KR102112121B1 (ko) * 2015-04-27 2020-06-04 메트라스, 인코포레이티드 광조사 장치
CN105286263A (zh) * 2015-11-19 2016-02-03 深圳市纳顿科技有限公司 一种吹风机
CN205162245U (zh) * 2015-11-20 2016-04-20 常州烯旺新材料科技有限公司 便携式可充电电吹风
JP6718679B2 (ja) * 2015-12-28 2020-07-08 マクセルホールディングス株式会社 温風乾燥機
CN205696318U (zh) * 2016-03-25 2016-11-23 中国地质大学(武汉) 一种智能变频电吹风机及其控制系统
CN105639981B (zh) * 2016-03-25 2019-01-01 中国地质大学(武汉) 一种智能变频电吹风机及其控制系统与方法
CN106175024A (zh) * 2016-07-20 2016-12-07 柳州六品科技有限公司 一种断电保护式智能型电吹风
CN106617613A (zh) * 2016-11-09 2017-05-10 安徽工业大学 一种吹风机及其恒温智能控制电路和方法
CN208129714U (zh) * 2018-01-20 2018-11-23 东莞市瑞迪三维电子科技有限公司 一种红外加热吹风筒
JP2019136191A (ja) * 2018-02-07 2019-08-22 マクセルホールディングス株式会社 ドライヤー
CN208676494U (zh) * 2018-05-22 2019-04-02 长沙梦龙智能科技有限责任公司 一种吹风机
JP7270949B2 (ja) * 2018-09-18 2023-05-11 タカラベルモント株式会社 毛髪処理装置
JP7129298B2 (ja) 2018-09-28 2022-09-01 マクセル株式会社 ドライヤー
KR102144480B1 (ko) * 2018-10-26 2020-08-13 강시열 카본히터가 구비된 헤어드라이기
JP7179585B2 (ja) * 2018-11-07 2022-11-29 マクセル株式会社 ドライヤー
CN209898564U (zh) * 2018-12-10 2020-01-07 揭阳市爱惠智能科技有限公司 一种电吹风及其控制电路
CN209769390U (zh) * 2019-02-22 2019-12-13 中山市瑞驰泰克电子有限公司 一种便于加热的快干吹风梳
CN209732899U (zh) * 2019-03-15 2019-12-06 莱克电气股份有限公司 一种吹风机保护装置及吹风机
CN209862627U (zh) * 2019-04-28 2019-12-31 南昌航空大学 一种可自动断电的触控电吹风

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103221854A (zh) * 2010-09-21 2013-07-24 费德罗-莫格尔点火公司 Led灯模块
WO2018021309A1 (ja) * 2016-07-29 2018-02-01 日立マクセル株式会社 ヘアードライヤー
CN109952044A (zh) * 2016-07-29 2019-06-28 斯波尔概念公司 用于增强型电吹风的系统和方法
JP2019050945A (ja) * 2017-09-13 2019-04-04 マクセルホールディングス株式会社 ヘアードライヤー
CN111093421A (zh) * 2018-02-08 2020-05-01 麦克赛尔控股株式会社 吹风机
CN110985925A (zh) * 2018-10-02 2020-04-10 3S股份有限公司 光学单元及使用此光学单元的led照明灯具

Also Published As

Publication number Publication date
WO2021226749A1 (en) 2021-11-18
WO2021227675A1 (en) 2021-11-18
CN113615953A (zh) 2021-11-09
WO2021227165A1 (en) 2021-11-18
WO2021227957A1 (en) 2021-11-18
EP4132319A4 (en) 2023-10-04
WO2021227960A1 (zh) 2021-11-18
WO2021227963A1 (zh) 2021-11-18
EP4146037A4 (en) 2023-11-01
CN113615952A (zh) 2021-11-09
WO2021227961A1 (zh) 2021-11-18
EP4132319A1 (en) 2023-02-15
CN213962188U (zh) 2021-08-17
EP4146037A1 (en) 2023-03-15

Similar Documents

Publication Publication Date Title
CN113573608B (zh) 干燥设备
CN215737366U (zh) 干燥设备
US11464313B2 (en) Apparatuses and methods for drying an object
WO2021227962A1 (zh) 干燥设备
KR200495286Y1 (ko) 휴대식 탈모 장치
WO2016072031A1 (ja) ドライヤー
CN113573609B (zh) 干燥设备
CN113597267B (zh) 干燥设备
CN115120020A (zh) 干燥设备
CN216493967U (zh) 辐射源组件和干燥设备
WO2023123510A1 (zh) 附件、干燥设备及干燥组件
CN216875358U (zh) 干燥设备
CN216932208U (zh) 干燥设备
CN216875357U (zh) 干燥设备
WO2023123518A1 (zh) 干燥设备
WO2022261988A1 (zh) 辐射源组件和干燥设备
WO2022261987A1 (zh) 干燥设备
JP2023524576A (ja) 対象物を安全に乾燥させるための装置及び方法
CN216393319U (zh) 红外光源、辐射源和干燥装置
CN114081259A (zh) 红外光源、辐射源和干燥装置
JP2003157709A (ja) 光伝送装置
CN113701222A (zh) 一种具有新型反射结构的取暖器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21803356

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/04/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21803356

Country of ref document: EP

Kind code of ref document: A1