WO2023123510A1 - 附件、干燥设备及干燥组件 - Google Patents

附件、干燥设备及干燥组件 Download PDF

Info

Publication number
WO2023123510A1
WO2023123510A1 PCT/CN2021/144053 CN2021144053W WO2023123510A1 WO 2023123510 A1 WO2023123510 A1 WO 2023123510A1 CN 2021144053 W CN2021144053 W CN 2021144053W WO 2023123510 A1 WO2023123510 A1 WO 2023123510A1
Authority
WO
WIPO (PCT)
Prior art keywords
airflow
light
accessory
outgoing
radiation
Prior art date
Application number
PCT/CN2021/144053
Other languages
English (en)
French (fr)
Inventor
顾令东
同钊
刘楚枫
Original Assignee
深圳汝原科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳汝原科技有限公司 filed Critical 深圳汝原科技有限公司
Priority to PCT/CN2021/144053 priority Critical patent/WO2023123510A1/zh
Priority to CN202180027341.6A priority patent/CN115461585B/zh
Publication of WO2023123510A1 publication Critical patent/WO2023123510A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/28Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun
    • F26B3/283Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun in combination with convection
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45DHAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
    • A45D20/00Hair drying devices; Accessories therefor
    • A45D20/04Hot-air producers
    • A45D20/08Hot-air producers heated electrically
    • A45D20/10Hand-held drying devices, e.g. air douches
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45DHAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
    • A45D20/00Hair drying devices; Accessories therefor
    • A45D20/04Hot-air producers
    • A45D20/08Hot-air producers heated electrically
    • A45D20/10Hand-held drying devices, e.g. air douches
    • A45D20/12Details thereof or accessories therefor, e.g. nozzles, stands
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/14Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid
    • F04F5/16Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/004Nozzle assemblies; Air knives; Air distributors; Blow boxes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B23/00Heating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B25/00Details of general application not covered by group F26B21/00 or F26B23/00
    • F26B25/009Alarm systems; Safety sytems, e.g. preventing fire and explosions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/28Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun
    • F26B3/30Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun from infrared-emitting elements

Definitions

  • the present application relates to the field of drying devices, in particular to an accessory, a drying device and a drying assembly.
  • the embodiments of the present application provide an accessory, a drying device and a drying assembly.
  • An embodiment of the present application provides an accessory for a drying device, and the drying device includes a housing, an airflow generating element, and a radiation source.
  • An air duct is provided inside the housing, and the air duct has an air inlet and an air outlet.
  • the airflow generating element is arranged in the housing and is used for generating airflow, and ejects the airflow from the airflow outlet to form an outgoing airflow.
  • the radiation source is arranged on the casing and generates radiation, and guides the radiation from the light exit portion to the outside of the casing to form outgoing light.
  • the accessory includes a radiation adjusting part, and the radiation adjusting part is used to adjust at least one parameter of at least part of the outgoing light, wherein the parameter includes at least one of a radiation power density, a transmission path, and a light field distribution.
  • the embodiment of the present application provides a drying assembly, including drying equipment and accessories.
  • the drying device includes a housing, an air flow generating element and a radiation source.
  • An air duct is provided inside the housing, and the air duct has an air inlet and an air outlet.
  • the airflow generating element is arranged in the housing and is used for generating airflow, and ejects the airflow from the airflow outlet to form an outgoing airflow.
  • the radiation source is arranged on the casing and generates radiation, and guides the radiation from the light exit portion to the outside of the casing to form outgoing light.
  • the accessory includes a radiation adjusting part, and the radiation adjusting part is used to adjust at least one parameter of at least part of the outgoing light, wherein the parameter includes at least one of a radiation power density, a transmission path, and a light field distribution.
  • the embodiment of the present application provides a drying device, which can be adapted to accessories.
  • the drying device includes a housing, an air flow generating element and a radiation source.
  • An air duct is provided inside the housing, and the air duct has an air inlet and an air outlet.
  • the airflow generating element is arranged in the housing and is used for generating airflow, and ejects the airflow from the airflow outlet to form an outgoing airflow.
  • the radiation source is arranged on the casing and generates radiation, and guides the radiation from the light exit portion to the outside of the casing to form outgoing light.
  • the accessory includes a radiation adjusting part, and the radiation adjusting part is used to adjust at least one parameter of at least part of the outgoing light, wherein the parameter includes at least one of a radiation power density, a transmission path, and a light field distribution.
  • the embodiment of the present application provides an accessory for a drying device.
  • the drying device includes a housing, an air flow generating element and a radiation source.
  • An air duct is provided inside the housing, and the air duct has an air inlet and an air outlet.
  • the airflow generating element is arranged in the housing and is used for generating airflow, and ejects the airflow from the airflow outlet to form an outgoing airflow.
  • the radiation source is arranged on the casing and generates radiation, and guides the radiation from the light exit portion to the outside of the casing to form outgoing light.
  • the accessories include fluid flow paths and light absorbing cells.
  • the fluid flow path has an air inlet and an air outlet, the air inlet is used to communicate with the air outlet, at least part of the outgoing air flows through the fluid flow path and is ejected from the air outlet.
  • At least part of the light absorption unit is located on the optical path of the outgoing light, and the light absorption unit is used to absorb at least part of the outgoing light to reduce the power density of the outgoing light. Wherein, the light absorption unit performs heat exchange with the fluid flow path.
  • the embodiment of the present application provides an accessory for a drying device.
  • the drying device includes a housing, an air flow generating element and a radiation source.
  • An air duct is provided inside the housing, and the air duct has an air inlet and an air outlet.
  • the airflow generating element is arranged in the housing and is used for generating airflow, and ejects the airflow from the airflow outlet to form an outgoing airflow.
  • the radiation source is arranged on the casing and generates radiation, and guides the radiation from the light exit portion to the outside of the casing to form outgoing light.
  • the accessories include a fluid flow path and a light transmission unit.
  • the fluid flow path has an air inlet and an air outlet, the air inlet is used to communicate with the air outlet, at least part of the outgoing air flows through the fluid flow path and is ejected from the air outlet.
  • the light-transmitting unit is located on the optical path of the outgoing light, the light-transmitting unit is used to allow part of the outgoing light to pass through, and the light-transmitting unit is used to absorb part of the outgoing light to reduce the power density.
  • the embodiment of the present application provides an accessory for a drying device.
  • the drying device includes a housing, an air flow generating element and a radiation source.
  • An air duct is provided inside the housing, and the air duct has an air inlet and an air outlet.
  • the airflow generating element is arranged in the housing and is used for generating airflow, and ejects the airflow from the airflow outlet to form an outgoing airflow.
  • the radiation source is arranged on the casing and generates radiation, and guides the radiation from the light exit portion to the outside of the casing to form outgoing light.
  • the accessories include an airflow adjustment part and a radiation adjustment part.
  • the airflow adjusting part is used to adjust at least one airflow parameter of the outgoing airflow, wherein the airflow parameter includes at least one of air volume, wind speed, outgoing direction, and wind field area of the airflow.
  • At least part of the radiation adjusting part is located on the optical path of the outgoing light, and the radiation adjusting part is used to change the power density and/or transmission path of at least part of the outgoing light through at least one of reflection, refraction and absorption.
  • the embodiment of the present application provides an accessory for a drying device.
  • the drying device includes a housing, an air flow generating element and a radiation source.
  • An air duct is provided inside the housing, and the air duct has an air inlet and an air outlet.
  • the airflow generating element is arranged in the housing and is used for generating airflow, and ejects the airflow from the airflow outlet to form an outgoing airflow.
  • the radiation source is arranged on the casing and generates radiation, and guides the radiation from the light exit portion to the outside of the casing to form outgoing light.
  • the accessory includes a light absorbing unit, at least part of the light absorbing unit is located on the optical path of the outgoing light, and the light absorbing unit is used to absorb at least part of the outgoing light, so that the power of the outgoing light emitted from the accessory is less than Twenty percent of the power of the outgoing light entering the attachment.
  • the embodiment of the present application provides an accessory for a drying device.
  • the drying device includes a housing, an air flow generating element and a radiation source.
  • An air duct is provided inside the housing, and the air duct has an air inlet and an air outlet.
  • the airflow generating element is arranged in the housing and is used for generating airflow, and ejects the airflow from the airflow outlet to form an outgoing airflow.
  • the radiation source is arranged on the casing and generates radiation, and guides the radiation from the light exit portion to the outside of the casing to form outgoing light.
  • the accessories include a fluid flow path and a light transmission unit.
  • the fluid flow path has an air inlet and an air outlet, the cross-section of the fluid flow path increases in the direction from the air inlet to the air outlet, and the air inlet is used to communicate with the air outlet , at least part of the outgoing airflow flows through the fluid flow path and exits from the air outlet, at least part of the outgoing light can enter the fluid flow path, and exit to the outside under the guidance of the fluid flow path.
  • At least part of the light-transmitting unit is located in the fluid flow path, and the light-transmitting unit is used to allow part of the outgoing light to pass through, so that the power density of the outgoing light emitted from the accessory is the same as that entering the accessory.
  • the difference between the power densities of the outgoing light is smaller than a preset threshold.
  • the embodiment of the present application provides an accessory for a drying device.
  • the drying device includes a housing, an air flow generating element and a radiation source.
  • An air duct is provided inside the housing, and the air duct has an air inlet and an air outlet.
  • the airflow generating element is arranged in the housing and is used for generating airflow, and ejects the airflow from the airflow outlet to form an outgoing airflow.
  • the radiation source is arranged on the casing and generates radiation, and guides the radiation from the light exit portion to the outside of the casing to form outgoing light.
  • the accessories include a fluid flow path and a reflective unit.
  • the fluid flow path has an air inlet and an air outlet, the cross-section of the fluid flow path decreases in a direction from the air inlet to the air outlet, and the air inlet is used to communicate with the air outlet , at least part of the outgoing airflow flows through the fluid flow path and exits from the air outlet, at least part of the outgoing light can enter the fluid flow path, and exit to the outside under the guidance of the fluid flow path.
  • At least part of the reflective unit is located in the fluid flow path, and the reflective unit is used to reflect the outgoing light incident on the reflective unit, so that the power density of the outgoing light emitted from the accessory, greater than the power density of the outgoing light entering the attachment.
  • the embodiment of the present application provides an accessory for a drying device.
  • the drying device includes a housing, an air flow generating element and a radiation source.
  • An air duct is provided inside the housing, and the air duct has an air inlet and an air outlet.
  • the airflow generating element is arranged in the housing and is used for generating airflow, and ejects the airflow from the airflow outlet to form an outgoing airflow.
  • the radiation source is arranged on the casing and generates radiation, and guides the radiation from the light exit portion to the outside of the casing to form outgoing light.
  • the accessories include fluid flow paths and light absorbing cells.
  • the fluid flow path has an air inlet and an air outlet, the cross-section of the fluid flow path decreases in a direction from the air inlet to the air outlet, and the air inlet is used to communicate with the air outlet , at least part of the outgoing airflow flows through the fluid flow path and exits from the air outlet, at least part of the outgoing light can enter the fluid flow path, and exit to the outside under the guidance of the fluid flow path.
  • the light absorbing unit is located in the fluid flow path, and the light absorbing unit absorbs at least part of the outgoing light, so that the power density of the outgoing light emitted from the accessory is smaller than the power density of the outgoing light entering the accessory.
  • the accessories, drying equipment and drying components of the present application adjust at least one parameter of at least part of the outgoing light through the radiation adjustment part, which can prevent the accessories from seriously hindering the normal radiation of thermal radiation to a certain extent, so as to achieve effective drying of objects , It can make the parameters of the radiation output by the drying equipment to the object to be dried meet different requirements without changing the operating parameters, and at the same time slow down the temperature rise of the accessories and reduce the probability of safety accidents.
  • Fig. 1 is a schematic structural view of drying equipment in some embodiments of the present application.
  • Figure 2 is a schematic perspective view of the three-dimensional structure of an accessory in some embodiments of the present application.
  • Fig. 3 is a schematic structural diagram of the radiation regulating part of the accessory in some embodiments of the present application.
  • Fig. 4 is a schematic perspective view of the three-dimensional structure of an accessory in some embodiments of the present application.
  • Fig. 5 is a schematic cross-sectional view of the accessory shown in Fig. 4 along the V-V line;
  • FIG. 6 is a schematic cross-sectional view of an accessory in some embodiments of the present application.
  • Fig. 7 is a schematic perspective view of the three-dimensional structure of an accessory in some embodiments of the present application.
  • Fig. 8 is a schematic cross-sectional view of the accessory shown in Fig. 7 along the VIII-VIII line;
  • Fig. 9 is a schematic perspective view of the three-dimensional structure of an accessory in some embodiments of the present application.
  • Fig. 10 is a schematic structural diagram of a drying assembly in some embodiments of the present application.
  • a first feature being "on” or “under” a second feature may mean that the first and second features are in direct contact, or that the first and second features are indirect through an intermediary. touch.
  • “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • “Below”, “beneath” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.
  • the object to be dried (such as hair) is baked by outputting high-temperature airflow, thereby evaporating the moisture on the object to be dried, and realizing the drying of the object to be dried.
  • traditional air nozzle accessories are designed. The traditional air nozzle accessories are adapted to traditional drying equipment to adjust high-temperature airflow so that the adjusted airflow can meet different usage needs.
  • drying equipment that uses infrared radiation to dry objects has emerged as the times require.
  • the radiation including infrared radiation is generated by the radiation source, and the radiation is emitted outward, and the high-speed airflow is generated by the airflow generating element such as the fan, and the airflow is emitted outward, thereby absorbing moisture through heat radiation, and using
  • the high-speed airflow accelerates the heat exchange between the object to be dried and the environment, and realizes the drying of the object to be dried.
  • the drying equipment that uses infrared radiation to dry objects will not bake the objects to be dried at high temperature, so the hair waiting to be dried can be protected from damage caused by high-temperature baking.
  • FIG. 1 illustrates a drying device 200 for drying objects using infrared radiation.
  • the drying device 200 includes a housing 210 , an airflow generating element 230 and a radiation source 240 .
  • An air duct 220 is provided inside the casing 210 , and the air duct 220 has an air inlet 2201 and an air outlet 2203 .
  • the airflow generating element 230 is disposed in the casing 210 and used for generating airflow, and ejecting the airflow from the airflow outlet 2203 to form an outgoing airflow.
  • the radiation source 240 is disposed on the casing 210 and generates radiation, and guides the radiation from the light emitting portion 260 to the outside of the casing 210 to form outgoing light.
  • the drying equipment 200 realizes the drying of objects through the combined effects of fluid convection, infrared radiation, and heat exchange. In short, the drying equipment 200 dries objects through the combined effects of wind, light, and heat.
  • the drying device 200 may be a hair dryer, a hand dryer, a clothes dryer, a body dryer, a dryer, etc. In this embodiment of the application, the drying device 200 is a hair dryer as an example for illustration.
  • the outgoing light output by the drying device 200 has a radiation parameter
  • the outgoing airflow output by the drying device 200 has an airflow parameter
  • the specific radiation parameters can include the total radiation power, radiation power density, transmission path, light field distribution, etc.
  • the total radiation power is related to the input data of the working conditions of the radiation source, such as current, voltage, etc.; the transmission path of radiation is generally a straight line diverging outward without intervention; the power density represents the radiation power per unit area.
  • the radiation power is constant, the smaller the radiation irradiation area, the greater the power density; the light field distribution includes the position and size of the spots generated by the outgoing light.
  • the radiation parameters mentioned below are also explained in the same way, and will not be repeated here.
  • the outgoing airflow can take away the water droplets on the object to be dried and the humid air around the object to be dried, and accelerate the heat exchange between the object to be dried and the ambient air.
  • the airflow parameters of the outgoing airflow may include the flow rate, flow velocity, exit direction, temperature, humidity, airflow composition, etc. of the airflow, the airflow parameters are related to the working condition data of the airflow generating element and the structure of the airflow outlet 2203, and the temperature and humidity of the airflow are also related. related to radiation.
  • the parameters of the airflow mentioned below are also explained in this way, and will not be repeated here.
  • the present application provides a kind of accessory 100 (as shown in Figure 2), is used for the above-mentioned drying equipment 200 that realizes drying through the joint action of wind, light and heat. Drying hair is taken as an example for illustration.
  • the principle and process of applying the accessory 100 to other types of drying equipment to dry other objects to be dried are similar to the examples in this application, and will not be described in detail here.
  • the accessory 100 includes a radiation adjustment unit 10 (as shown in FIG. 3 ), and the radiation adjustment unit 10 is used to adjust at least one parameter of at least part of the outgoing light, wherein the parameter includes at least one of the power density of the radiation, the transmission path, and the optical field distribution. kind.
  • the radiation adjustment unit 10 can be used to adjust the power density of the outgoing light. For example, without changing the total power of the outgoing light, the radiation adjustment unit 10 can converge the outgoing light to reduce the irradiation area of the outgoing light. Compared with not setting the accessory 100, adding the accessory 100 can increase the output of the outgoing light. power density. Alternatively, without changing the total power of the outgoing light, the radiation adjustment unit 10 can diverge the outgoing light to increase the irradiation area of the outgoing light. Compared with not setting the accessory 100, the addition of the accessory 100 can reduce the output of the outgoing light. power density.
  • the radiation adjusting part 10 can be used to adjust the transmission path of the outgoing light. It can be understood that after exiting from the drying device 200 , the outgoing light propagates outward in a straight line without intervention. After the drying equipment 200 is equipped with the accessory 100, the radiation regulating part 10 of the accessory 100 can change the transmission path of the outgoing light, for example, by reflecting or refracting light, compared with not setting the accessory 100, adding the accessory 100 can change the outgoing light. transmission path.
  • the radiation adjusting part 10 can be used to adjust the light field distribution of the outgoing light. It can be understood that after the outgoing light exits the drying device 200 , the light field distribution formed without intervention is definite, that is, the position and size of the spots generated by the outgoing light are definite. After the drying equipment 200 is equipped with the accessory 100 , the radiation adjustment unit 10 of the accessory 100 can change the light field distribution of the outgoing light, so that the positions and sizes of the spots generated by the outgoing light are different from those without the accessory 100 .
  • the radiation adjusting part 10 moves the position of the spots generated by the outgoing light to the direction closer to the drying equipment 200 or rearwards the direction away from the drying equipment 200, or the radiation adjusting part 10 increases or decreases the spots generated by the outgoing light the size of.
  • parameters such as power density, transmission path, and light field distribution of the outgoing light are interrelated, and the radiation adjustment unit 10 can adjust a single parameter, or simultaneously adjust any two or three parameters.
  • the radiation adjustment unit 10 can adjust a single parameter, or simultaneously adjust any two or three parameters. For example, by changing the transmission path of the outgoing light through reflection to make the light converge, reducing the spots caused by the outgoing light irradiating on the object to be dried, that is, reducing the irradiation area of the outgoing light, the power density can be increased.
  • the transmission path of the outgoing light is changed by refraction to diverge the light, and the spots where the outgoing light irradiates on the object to be dried can be increased, so that the power density of the outgoing light can be reduced.
  • the adjustment of the parameters of the emitted light by the radiation adjustment unit 10 may be to adjust the parameters of a part of the light beams in the emitted light of the drying device 200, such as adjusting at least one parameter of one-third of the emitted light, or adjusting the parameters of the drying device 200. At least one parameter of one-half of the outgoing light of the drying device 200 may also be at least one parameter of all the outgoing light of the drying device 200, which is not specifically limited in the present application.
  • the radiation adjustment unit 10 is used to adjust at least one parameter of at least part of the outgoing light, which should be understood as heat radiation irradiated on the object to be dried, and the adjustment function here should be understood as the same Under the premise of not changing the operating parameters of the drying equipment 200, compared with the non-configured accessory 100, the configured accessory 100 has an adjustment function.
  • the single adjustment or compound adjustment of the radiation parameters of part of the outgoing light or all of the outgoing light by the radiation adjustment part 10 can be adaptively set according to the needs, and will not be described in detail here. .
  • the accessory 100 of the embodiment of the present application can adjust at least one parameter of at least part of the outgoing light by setting the radiation adjustment part 10.
  • the accessory 100 is configured to the drying equipment 200 that realizes drying through the combined effects of fluid convection, heat radiation, and heat exchange.
  • the drying equipment The outgoing light output by 200 passes through the attachment 100 and then irradiates the object to be dried.
  • the radiation adjustment unit 10 can adjust the outgoing light. By adjusting at least one parameter of at least part of the outgoing light, it can avoid the serious obstruction of thermal radiation by the attachment 100 to a certain extent.
  • Normal radiation to achieve effective drying of objects, can make the parameters of the radiation output by the drying equipment 200 to the object to be dried without changing the operating parameters to meet different needs, and at the same time can slow down the temperature rise of the accessories, and can reduce the temperature caused by the accessories.
  • the probability of safety accidents such as burns caused by high temperature due to the absorption of radiation improves safety.
  • the accessory 100 of the embodiment of the present application adjusts the outgoing light output by the drying device 200 through the radiation adjustment unit 10 .
  • the outgoing light has an optical path, and at least part of the radiation adjusting part 10 is located on the optical path.
  • the radiation adjusting part 10 is located on the optical path, which can be understood as that the radiation adjusting part 10 is located at a position directly irradiated by the outgoing light, that is, the radiation adjusting part 10 is directly irradiated by the outgoing light.
  • a part of the radiation adjusting part 10 can be located on the optical path, for example, a quarter of the radiation adjusting part 10 is located on the optical path, or three fifths of the radiation adjusting part 10 are located on the optical path, of course, the radiation adjusting part 10 10 may also be all located on the optical path.
  • part or all of the radiation regulating part 10 that is directly irradiated by the outgoing light can adjust at least one parameter of the outgoing light irradiated on the radiation regulating part 10, so that the drying equipment 200 It can output different radiation parameters to the object to be dried without changing the operating parameters, so as to meet different needs, avoid heat radiation from being seriously hindered, and reduce the probability of safety accidents while achieving normal drying of objects.
  • At least part of the radiation regulating part 10 is located on the optical path of the outgoing light. It may be that the radiation regulating part 10 is close to the light exit part of the drying equipment, or the radiation regulating part 10 may be separated from the light exit part by a certain distance, such as 2 cm, 10 cm, etc.
  • the radiation adjusting part 10 may cover at least part of the light emitting part 260 .
  • the light outlet 260 of the drying device 200 is located at the front of the body, and when the accessory 100 is configured on the drying device 200, the radiation regulating unit 10 is located in front of the drying device 200 and covers at least part of the light outlet 260.
  • the radiation regulating part 10 can cover a part of the light exiting part 260, for example, cover half of the light exiting part 260, that is, the outgoing light emitted through the half of the light exiting part 260 covered by the radiation regulating part 10 will directly hit the radiation regulating part 10;
  • the adjustment unit 10 can cover the entire light output unit 260, that is, all the emitted light emitted through the light output unit 260 directly hits the radiation adjustment unit 10; of course, the radiation adjustment unit 10 can also cover other proportions of the light output unit 260, such as one-third , four out of five, etc., the application does not specifically limit this.
  • the part of the radiation adjusting part 10 covering the light emitting part 260 can directly adjust the emitted light emitted through the light emitting part 260 covered by the radiation adjusting part 10 to change at least one parameter of at least part of the emitted light.
  • the radiation regulating part 10 can also be arranged opposite to at least part of the light exiting part 260.
  • the so-called opposite arrangement can be positively opposite, that is, the outgoing light emitted through the light exiting part 260 directly hits the radiation regulating part 10, or It is obliquely opposite, that is, the outgoing light emitted through the light exiting portion 260 is obliquely directed toward the radiation regulating portion 10 .
  • the radiation regulating part 10 may be disposed opposite to part of the light exiting part 260 , or may be disposed opposite to all the light exiting parts 260 .
  • At least part of the emitted light emitted through the light emitting part 260 can enter the radiation adjustment part 10, and the radiation adjustment part 10 adjusts at least one parameter of the received at least part of the emitted light to change at least one parameter of at least part of the emitted light.
  • the radiation adjustment part 10 can be used to reduce the power density of the outgoing light. That is, the radiation adjusting part 10 can adjust the power density of at least part of the outgoing light, so as to reduce the power density of the outgoing light irradiated on the object to be dried. In this way, the thermal radiation power density irradiated on the object to be dried can be reduced without changing the operating parameters of the drying equipment 200, so that the heat generation rate of the object to be dried under the action of thermal radiation is relatively slow, and the radiation to the object to be dried is avoided.
  • the power of the emitted light is too concentrated to burn the object to be dried, which meets the drying needs of some heat-resistant objects to be dried.
  • the radiation adjustment part 10 includes a light absorbing unit 11, at least part of the light absorbing unit 11 is located on the optical path of the outgoing light, and the light absorbing unit 11 is used to absorb at least part of the outgoing light to reduce The power density of the emitted light.
  • the light-absorbing unit 11 may be a light-absorbing coating or a black light-absorbing member, which is not limited here.
  • the radiation generated by the radiation source 240 can be guided to the outside from the light exit part 260 to form outgoing light, and part of the outgoing light is irradiated to the light source arranged on the optical path of the outgoing light.
  • the light absorbing unit 11, the light absorbing unit 11 absorbs at least part of the outgoing light, so that the power density of the heat radiation irradiated on the object to be dried after being processed by the attachment 100 is reduced.
  • the power density of the outgoing light irradiated on the object to be dried can be made smaller than the power density of the outgoing light irradiated on the object to be dried when no accessories are configured, that is, the power density of the outgoing light is reduced, so that it can be used without changing the drying equipment.
  • the power density of the outgoing light is reduced by the light absorption unit of the accessory.
  • the light-absorbing unit 11 can convert the absorbed light energy into its own heat energy. After the heat exchange between the light-absorbing unit 11 and the airflow, the heat energy of the light-absorbing unit 11 can be transferred to the airflow, and can be lifted through the attachment 100 The temperature of the airflow can improve the drying efficiency of the drying device 200, and can also improve user experience in working conditions such as drying hair and hands.
  • the radiation adjusting part 10 may be used to change the transmission path of the outgoing light. It can be understood that the emitted light is usually transmitted along a straight line without being intervened, that is, the transmission path of the emitted light emitted through the light emitting portion 260 is a straight line. After the accessory 100 is configured for the drying device 200 , the radiation adjusting part 10 can make the outgoing light not be transmitted in a straight line, for example, be transmitted along a zigzag line or along other paths.
  • the radiation adjusting unit 10 may be configured to change the transmission path of at least part of the emitted light by at least one of reflection, refraction, diffraction, waveguide, and dispersion.
  • reflection, refraction, diffraction, waveguide and dispersion may be a single process, or a combination of any two of them, or a combination of any multiple of them.
  • the distribution of the thermal radiation irradiated on the object to be dried can be changed, thus, the outgoing light irradiated on the object to be dried can be enabled without changing the operating parameters of the drying device 200 Adapt to a variety of specific objects to meet the needs of special experiences.
  • the radiation adjusting part 10 may include a reflection unit 12 .
  • the reflective unit 12 is located on the optical path of the outgoing light, that is, the reflective unit 12 is directly irradiated by the outgoing light emitted through the light exit portion 260 .
  • the reflecting unit 12 is used for reflecting the outgoing light incident on the reflecting unit 12 , so as to change the transmission path of the outgoing light incident on the reflecting unit 12 .
  • the reflective unit 12 may be disposed opposite to at least part of the light emitting portion 260 .
  • the accessory 100 is configured on the drying equipment 200 and the drying equipment 200 is working normally, at least part of the outgoing light emitted through the light emitting part 260 can be irradiated on the reflecting unit 12, and at this time, the reflecting unit 12 can reflect the outgoing light irradiated on it.
  • the incident light is reflected, thereby changing the transmission path of the outgoing light.
  • the reflection process is related to the incident angle of the outgoing light on the reflection unit 12 and the normal of the reflection unit 12 , and satisfies the law of light reflection, which is understandable to those skilled in the art and will not be repeated here.
  • the distribution of heat radiation irradiated on the object to be dried can be changed, which is beneficial to realize efficient drying in conjunction with the outlet airflow of the drying device 200 .
  • the reflection of the outgoing light by the reflecting unit 12 can reduce the absorption of the outgoing light by the accessory 100, so as to avoid the high temperature of the accessory 100 due to absorbing a large amount of heat radiation, and prevent the phenomenon of burning and melting the accessory 100, thereby improving safety.
  • the reflective unit 12 can also be arranged at other positions of the light path of the outgoing light, which is not limited in the present application, and it is only necessary to ensure that at least part of the reflective unit 12 can receive the outgoing light.
  • the reflective unit 12 may be made of opaque material with reflective substances.
  • the reflective unit 12 may include but not limited to at least one of a reflective metal layer, a reflective film, a reflective coating, and a reflective coating.
  • the reflective unit 12 has many preparation options, which is beneficial to cost control. It should be noted that what can provide reflection for the outgoing light is the surface of the reflection unit 12 located on the optical path of the outgoing light and facing the light exit part, that is, the surface on the accessory 200 opposite to the light exit part 260.
  • the reflection unit 12 can It is to provide reflective effect as a whole, or it can be located on the optical path of the outgoing light and provide reflective effect towards the surface of the light exit part 260, for example, the surface is coated with a reflective layer, the surface is electroplated with a reflective layer, the surface is pasted with a reflective film, and the surface is provided with polished metal reflective Layers, etc., which can be designed in an adaptive manner by comprehensively considering factors such as reflective requirements, effects, and costs, which are not specifically limited in this application.
  • the radiation adjusting unit 10 may include a refraction unit 13 (as shown in FIG. 3 ).
  • the refraction unit 13 is located on the optical path of the outgoing light, and is used for refracting the outgoing light incident on the refraction unit 13 .
  • the outgoing light can be transmitted in the refracting unit 13, and the propagation speed of the outgoing light in the air is different from the propagation speed of the outgoing light in the refracting unit 13, so that the outgoing light is refracted during the entire transmission process to change the shape of the outgoing light. transfer path.
  • the refraction unit 13 covers at least a part of the light emitting portion 260 .
  • the outgoing light emitted through at least part of the light exit portion 260 covered by the refracting unit 13 can be incident on the refracting unit 13 and transmitted in the refracting unit 13.
  • part of the outgoing light is refracted, changing the propagation direction, thereby changing the transmission path.
  • the refraction process is related to the refractive index of the outgoing light in the transmission medium (ie air and the refraction unit 13 ), and satisfies the law of refraction of light, which is understandable to those of ordinary skill and will not be repeated here.
  • the propagation direction of the outgoing light is changed by the refraction unit 13, and then the transmission path of the outgoing light is changed, so that the distribution of the thermal radiation irradiated on the object to be dried can be changed, and the air flow of the drying device 200 is used to facilitate the realization of the drying process. Efficient drying of objects.
  • the refraction unit 13 can be a material piece that allows the transmission of outgoing light.
  • the refraction unit 13 can be one or a combination of light-transmitting PC, acrylic, glass, and frosted glass.
  • this Applications are not restricted.
  • the radiation adjusting unit 10 may include a diffraction unit 14 (as shown in FIG. 3 ), which is located on the optical path of the outgoing light and used to diffract the outgoing light incident on the diffraction unit 14 .
  • the diffractive unit 14 may include a grating (not shown). The grating can be arranged opposite to at least part of the light emitting part 260, at least part of the outgoing light emitted by the light emitting part 260 can be incident on the grating, and the grating diffracts the outgoing light incident on it, thereby changing the transmission path of the outgoing light, and then changing the outgoing light.
  • the light field distribution of the irradiated light is conducive to making the parameters of the radiation irradiated on the object to be dried meet different requirements without changing the operating parameters of the drying device 200 .
  • the radiation regulating part 10 may include a light guide unit 15 (as shown in FIG. 3 ), the light guide unit 15 is located on the optical path of the outgoing light, the light guide unit 15 has a preset path, and the light guide unit 15 is used to guide the received outgoing light to travel along a preset path.
  • the outgoing light emitted by the light exiting portion 260 can be incident on the light guiding unit 15, and then emitted after being transmitted along the preset path of the light guiding unit 15, and the transmission path of the outgoing light is determined by the preset path of the light guiding unit 15, so that
  • the distribution of the outgoing light (that is, thermal radiation) irradiated on the object to be dried is changed, which is beneficial to meet the drying requirements of specific parts.
  • the light guide unit 15 has a light incident end, and the light incident end covers at least part of the light exit portion 260 .
  • the accessory 100 is configured in the drying device 200 and the drying device 200 is working normally, at least part of the emitted light can enter the light guide unit 15 from the light incident end, be transmitted along a preset path, and be emitted from the light output end of the light guide unit 15,
  • the light output end of the light guide unit 15 can be set at a preset position, and the preset position can be adaptively designed according to requirements, which is not limited in this application.
  • the transmission path of the outgoing light can be changed through the light guide unit, so as to guide at least part of the outgoing light to a preset position in a directional manner, so as to meet the drying requirement of a specific area in the object to be dried.
  • the light guide unit 15 may include at least one of an optical fiber, a light guide, a fiber optic panel, and a light funnel.
  • the light guide unit 15 may also be other materials capable of directional transmission of outgoing light, which is not limited here.
  • the radiation adjustment unit 10 may further include a dispersion unit 16 (as shown in FIG. 3 ), the dispersion unit 16 is located on the optical path of the outgoing light, and is used to disperse the outgoing light incident on the dispersion unit 16, In order to make the outgoing light with different wavelengths travel along different paths.
  • the outgoing light includes first outgoing light and second outgoing light with different wavelengths.
  • the accessory 100 When the accessory 100 is arranged on the drying equipment 200 and the drying equipment 200 is working normally, at least part of the outgoing light (including the first outgoing light and the second outgoing light) can be incident on the dispersion unit 16, and the dispersion unit 16 can detect the different wavelengths of the outgoing light
  • the refractive index is different, after passing through the dispersion unit 16, the first outgoing light is transmitted along the first direction, and the second outgoing light is transmitted along the second direction, and the first direction is different from the second direction. In this way, the accessory 100 can not only change the transmission direction of the outgoing light, but also enable the outgoing light with different wavelengths to be transmitted along different paths.
  • the absorption speed of water is different under the irradiation of different wavelengths of radiation.
  • the research surface water has a strong absorption peak at 2.5 ⁇ m to 3.5 ⁇ m. Part of the outgoing light in or close to the interval) is transmitted to the preset position of the object to be dried, and the outgoing light of other wavelength bands is transmitted to other positions to improve the drying efficiency of the preset position and meet special drying needs.
  • the dispersion unit 16 may include a prism.
  • the dispersing unit 16 may also be other materials capable of directing the outgoing light with different wavelengths to different paths for transmission, which is not limited here.
  • the radiation adjustment unit 10 may include at least one of a light absorption unit 11 , a reflection unit 12 , a refraction unit 13 , a diffraction unit 14 , a light guide unit 15 , and a diffraction unit 16 .
  • the radiation adjusting part 10 includes two of them at the same time, for example, includes the light absorbing unit 11 and the reflecting unit 12 at the same time, and other combinations including two of them are not exhaustive; or, the radiation adjusting part 10 includes three of them at the same time
  • the light absorption unit 11, the reflection unit 12 and the refraction unit 13 are included at the same time, and other combinations including three are not exhaustive; or, the radiation adjustment part 10 includes four of them at the same time, for example, the light absorption unit 11 is included at the same time , the reflecting unit 12 , the refracting unit 13 and the diffractive unit 14 , other combinations including four are not exhaustive; or, the radiation adjusting part 10 includes all five at the same time.
  • the radiation adjustment unit 10 includes multiple of the light absorption unit 11, the reflection unit 12, the refraction unit 13, the diffraction unit 14, the light guide unit 15, and the diffraction unit 16, the radiation adjustment unit 10 can be embodied in multiple physical forms.
  • Each physical element corresponds to the functions of a light absorption unit 11, a reflection unit 12, a refraction unit 13, a diffraction unit 14, a light guide unit 15, and a diffraction unit 16; or, the specific presentation of the radiation adjustment unit 10 can also be a physical element , the one physical element simultaneously has the functions of the light absorbing unit 11, the reflecting unit 12, the refracting unit 13, the diffractive unit 14, the light guiding unit 15, and the diffractive unit 16; or, the specific presentation of the radiation regulating unit 10 can also be several physical components, but some of the physical components have multiple functions of the light absorbing unit 11 , the reflecting unit 12 , the refracting unit 13 , the diffractive unit 14 , the light guiding unit 15 and the diffractive unit 16
  • the radiation adjustment unit 10 in the accessory 100 may include the dispersion unit 16 and the light absorption unit 11 at the same time.
  • the dispersion unit 16 is located on the optical path of the outgoing light, and the dispersion unit 16 disperses the outgoing light incident on it, so as to guide the outgoing light within the preset wavelength range to the light absorption unit 11, and the light absorption unit 11 is used to absorb the preset wavelength range
  • the outgoing light inside is blocked to prevent the outgoing light with a preset wavelength band from being emitted to the outside.
  • the dispersion unit 16 disperses and guides the outgoing light with a wavelength outside the range of 2.5 ⁇ m to 3.5 ⁇ m to the light absorption unit 11, and the light absorption unit 11 absorbs the outgoing light with a wavelength outside the range of 2.5 ⁇ m to 3.5 ⁇ m, and makes this part of the outgoing light
  • the radiant energy is converted into heat energy, and the air is further heated through heat exchange, and at the same time, the outgoing light with a wavelength in the range of 2.5 ⁇ m to 3.5 ⁇ m is irradiated to the object to be dried, achieving efficient drying.
  • the accessory 100 may further include a light-transmitting part, which is located on the optical path of the outgoing light and allows at least part of the outgoing light to pass through. In this way, the absorption of the outgoing light by the accessory 100 can be reduced, avoiding the high temperature of the accessory 100 due to absorbing a large amount of radiation energy, reducing the probability of accidents such as burns, and improving safety. Objects to be dried to meet drying needs.
  • the light-transmitting part can cover at least part of the light-emitting part 260, for example, the light-transmitting part covers a part of the light-emitting part 260, or the light-transmitting part covers all the light-emitting part 260, and the outgoing light emitted by the light-emitting part 260 can partially or completely pass through the light-emitting part 260.
  • the light-transmitting part may also be arranged at other positions of the light path of the outgoing light, which is not specifically limited in the present application.
  • the light-transmitting part can also adjust at least one parameter of the outgoing light incident thereon.
  • the light-transmitting part can also refract the outgoing light incident on it, so as to transmit at least part of the outgoing light while changing the transmission direction of the transmitted outgoing light, so that the drying equipment 200 can operate without changing the operating parameters.
  • the parameters of the radiation output to the object to be dried can meet different requirements.
  • the accessory 100 may further include an airflow adjustment part.
  • the airflow adjusting part is used for adjusting at least one airflow parameter of the outgoing airflow.
  • the airflow parameter includes at least one of flow rate, flow velocity, exit direction, temperature, humidity, and airflow composition of the airflow.
  • the airflow adjustment part can increase the flow rate of the airflow, reduce the flow velocity, change the exit direction, increase the temperature, reduce the humidity, mix the external airflow into the exit airflow, and so on.
  • the adjustment of airflow parameters is not limited to the process and results described in the above examples, it can be other processes, it can also be the adjustment of a single parameter or the composite adjustment of multiple arbitrary parameters, which is understandable to those skilled in the art , which will not be described in detail here.
  • the airflow adjustment part includes a fluid flow path 21 .
  • a fluid flow path 21 may be formed by the inner surface of the accessory 100 , the fluid flow path 21 having an air inlet 211 and an air outlet 212 .
  • the air inlet 211 communicates with the air outlet 2203 of the drying device 200 , and at least part of the outgoing air flow can flow through the fluid flow path 21 and be ejected from the air outlet 212 .
  • the flow direction of the outgoing airflow in the accessory 100 is the direction from the air inlet 211 to the air outlet 212 , and the flow direction mentioned below is also explained in this way, and will not be repeated here. For example, as shown in FIG. 2 and FIG.
  • the accessory 100 includes a ring-shaped attachment shell 31 , and a cavity formed on the inner wall of the attachment shell 31 forms the fluid flow path 21 .
  • the fluid flow path 21 is formed by the inner wall of the first shell 32 .
  • the air inlet of the fluid flow path 21 communicates with the air outlet 2203 of the drying device 200, so that at least part of the outgoing air flow can enter the fluid flow path 21 and flow in the fluid flow path 21 It is ejected from the air outlet of the fluid flow path 21.
  • the fluid flow path 21 has a restrictive control effect on the air flow flowing inside it. In this way, only the fluid flow path 21 needs to be designed according to the needs, and at least One airflow parameter to adjust.
  • the cross-section of the fluid flow path 21 increases, that is, the area of the cross-section of the air outlet 212 is greater than that of the air inlet 211 The cross-sectional area, whereby the fluid flow path 21 can diffuse the outgoing air flow entering it.
  • the accessory 100 is disposed on the drying device 200 and the drying device 200 is working normally, at least part of the outgoing air flow can enter the fluid flow path 21 through the smaller air inlet 211 and exit to the outside from the larger air outlet 212 .
  • the exit direction of the exit air flow can be adjusted, that is, the exit air flow entering the fluid flow path 21 is diffused to expand the coverage of the exit air flow after exiting. range; on the other hand, it can reduce the flow velocity (ie flow velocity) of the exit airflow. In this way, the air flow adjustment part adjusts the flow velocity and the emission direction of the outgoing air flow through the fluid flow path 21 .
  • the cross-section of the fluid flow path 21 is gradually increased, which can make the fluid flow path 21 smoother, which is beneficial to the entry
  • the outlet airflow of the fluid flow path 21 is diffused to increase the area that the outlet airflow can cover, and at the same time make the outlet airflow softer, which is beneficial to reduce wind resistance noise and increase user comfort during use.
  • an air outlet cover 213 can be provided at the end of the air outlet 212 of the fluid flow path 21, and the air outlet 212 is provided on the air outlet cover 213, and the outgoing airflow in the fluid flow path 21 can pass through the air outlet.
  • the air outlet 212 on the cover 213 emits to the outside.
  • At least a part of the gas outlet cover 213 is configured as the radiation adjustment part 10 , so that parameters of the emitted light can be adjusted through the gas outlet cover 213 .
  • a part of the air outlet cover 213 can be configured as the radiation adjustment part 10 to adjust at least one parameter of the outgoing light, or the entire air outlet cover 213 can be configured as the radiation adjustment part 10 to adjust at least one parameter of the outgoing light.
  • the air outlet cover 213 can be configured as a light-transmitting structure as a whole, which can allow the outgoing light to pass through while realizing the output of the outgoing airflow; or, a part of the air outlet cover 213 can be configured as a light-reflecting structure, and the light-reflecting structure can reflect part of the outgoing light.
  • the local structure of the air outlet cover 213 can be set as a dispersion unit 16, and the dispersion unit 16 can concentrate the part of the outgoing light with a wavelength in the range of 2.5 ⁇ m to 3.5 ⁇ m to
  • the preset position in the middle or outside can realize the outlet airflow output and at the same time guide the outgoing light with high drying efficiency to the preset position to accelerate the drying of specific areas.
  • the air outlet cover 213 can realize simultaneous adjustment of the outgoing airflow and outgoing light.
  • the specific implementation of at least part of the air outlet cover 213 configured as the radiation regulating part 10 those skilled in the art can select and set it according to the needs on the basis of understanding the above. detail.
  • the air outlet cover 213 can close the fluid flow path 21, for example, the fluid flow path 21 is defined by the annular attachment shell 31, the air outlet cover 213 can be connected to the attachment shell 31 to close the fluid flow path 21, so that the The outgoing air flow is ejected from the air outlet 212 on the air outlet cover 213 , which is beneficial to realize the restricted control of the outgoing air flow.
  • the air outlet cover 213 can be configured as a curved surface, that is, the air outlet cover 213 is a curved air outlet cover, thus, the air outlets 212 on the air outlet cover 213 can not be in the same plane, and the divergence of the air flow can be further realized.
  • the curved air outlet cover 213 can make the power distribution of the outgoing light after passing through the accessory 100 more uniform, and through the more divergent airflow and uniform outgoing light, it can meet the drying requirements. Improve user experience.
  • the air outlet cover 213 is configured as a curved surface
  • the inner wall of the air outlet cover 213 ie, the side facing the fluid flow path 21
  • the outer wall of the air outlet cover 213 ie, the side facing the outside
  • both the inner wall and the outer wall of the air outlet cover 213 are configured as curved surfaces.
  • the inner and outer walls of the air-transmitting air outlet cover 213 are configured as curved surfaces
  • the air outlet cover 213 has a substantially uniform wall thickness, so that the air outlet cover 213 is effective for both the outgoing light and the outgoing airflow.
  • the air outlet cover 213 can be configured in a wave shape, and the air outlet cover 213 can include a convex portion 2134 that protrudes from the air inlet 211 to the air outlet 212, and a depression that is concave from the air outlet 212 to the air inlet 211. Section 2135. Therefore, the wave-shaped air outlet cover 213 can make the airflow emitted from the air outlet 212 have different directions, which has a better divergence effect on the airflow, and the wave-shaped air outlet cover 213 can make the power distribution of the emitted light more uniform.
  • the wave-shaped structure of the air outlet cover 213 can be adapted to the power distribution of the outgoing light of the drying device 200, wherein the raised part 2134 can correspond to the outgoing light with a power greater than the first preset power, and the concave part 2135 can correspond to the outgoing light with a power greater than the first preset power.
  • the first preset power is greater than the second preset power. That is to say, the outgoing light output by the drying device 200 has an uneven energy density, and the raised portion 2134 is located in an area with a relatively high energy density, so as to surround the position where the energy is concentrated on the inside of the air outlet cover 213, and increase the energy density.
  • the transmission distance of the outgoing light in a large area makes the energy dissipate more, preventing the user or the object to be dried from being burned by high temperature when placed in an area with a high energy density; the recessed part 2135 can be located in an area with a relatively small energy density to The position with less energy is located outside the air outlet cover 213 as much as possible, so that the emitted light in this area can directly irradiate the hair waiting for drying without being burned by high temperature, so that the energy density outside the air outlet cover 213 is relatively uniform and gentle on the whole , that is, the radiated heat is relatively uniform and gentle, and the user experience is better.
  • the air outlet cover 213 is provided with a plurality of air outlet pillars 2131 protruding from the air inlet 211 to the air outlet 212 .
  • Each air outlet column 2131 is provided with a first air outlet hole 2132 communicating with the outside world and the fluid flow path 21 , so that the outgoing airflow in the fluid flow path 21 can exit to the outside through the first air outlet hole 2132 .
  • the first air outlet holes 2132 are formed on the sidewalls of the air outlet pillars 2131 , and the orientations of the first air outlet holes 2132 on at least two air outlet pillars 2131 are different.
  • the outgoing airflow can be guided to shoot in different directions, so as to increase the area that the outgoing airflow can cover, and at the same time make the outgoing airflow softer, increasing the comfort of the user, especially when the user uses the accessories connected to the accessory 100
  • the drying device 200 blows the hair, it is beneficial to improve the bulkiness of the hair.
  • the air outlet column 2131 includes a plurality of air outlet columns 2131 distributed at intervals, and the plurality of air outlet columns 2131 can be divided into an outer air outlet column located on the outside, and an inner air outlet column located on the radial inner side of the outer air outlet column, wherein there are two outlet air columns on the outer air outlet column.
  • the first air outlet hole 2132, the two first air outlet holes 2132 on the outer air outlet column are arranged on the side wall of the outer air outlet column and facing inward in the radial direction of the air outlet cover 213, and the inner air outlet column has two first air outlet holes 2132,
  • the two first air outlet holes 2132 on the inner air outlet column are disposed on the sidewall of the inner air outlet column and face outward in the radial direction of the air outlet cover 213 .
  • the air outlet cover 213 can also be provided with a plurality of second air outlet holes 2133, and each second air outlet hole 2133 penetrates the air outlet cover 213 to communicate with the outside world and the fluid flow path 21, so that the fluid flow path 21 At least part of the outgoing airflow can also exit to the outside through the second air outlet hole 2133 .
  • the outlet airflow in the fluid flow path 21 can exit from the first air outlet hole 2132 and the second air outlet hole 2133, which can not only increase the airflow flow that can be emitted by the air outlet cover 213, improve drying efficiency, but also make the outlet direction of the outlet airflow More diverse to meet different needs.
  • the cross-section of the fluid flow path 21 decreases, that is, the area of the cross-section of the air outlet 212 is smaller than the area of the cross-section of the air inlet 211 , thus, the fluid flow path 21 can converge the airflow entering it.
  • the accessory 100 is disposed on the drying device 200 and the drying device 200 is working normally, at least part of the outgoing air flow can enter the fluid flow path 21 from the larger air inlet 211 and exit to the outside through the smaller air outlet 212 .
  • the exit direction of the exit airflow can be adjusted, that is, the exit airflow entering the fluid flow path 21 can be converged; on the other hand, the exit flow of the exit airflow can be increased.
  • Flow velocity i.e. velocity of flow.
  • the air flow adjusting part adjusts the flow velocity and the emission direction of the outgoing air flow through the fluid flow path 21 .
  • the cross-section of the fluid flow path 21 is gradually reduced, so that the fluid flow path 21 can be made smoother, and the flow of the incoming fluid During the process of converging the outlet airflow of the path 21, it is beneficial to smoothly gather most of the outlet airflow to the object to be dried, thereby improving the drying efficiency of the drying equipment 200 connected to the accessory 100, and is beneficial to reducing wind resistance noise and improving user experience .
  • At least part of the fluid flow path 21 is provided with a radiation regulating unit 10 , wherein the radiation regulating unit 10 is at least one of a light absorbing unit 11 , a reflecting unit 12 , a refracting unit 13 and a light guiding unit 15 .
  • the radiation regulating part 10 may be provided on part of the fluid flow paths 21 , or the radiation regulating part 10 may be provided on all the fluid flow paths 21 .
  • the radiation adjustment unit 10 located in the fluid flow path 21 can adjust at least one parameter of the outgoing light incident on it, and the specific adjustment method is the same as that described above, which will not be repeated here.
  • At least part of the fluid flow path 21 can be configured as the radiation adjustment part 10 , in other words, part or all of the fluid flow path 21 can adjust the outgoing light to change at least one parameter of the outgoing light.
  • the parameters of the outgoing air flow and the outgoing light can be adjusted at the same time, and compared with the additional radiation adjustment part 10 on the fluid flow path 21 , the number of components can be reduced, thereby reducing the size and weight of the accessory 100 .
  • At least part of the fluid flow path 21 can be configured as a light-transmitting part. After the outgoing light of the drying device 200 enters the accessory 100, at least part of the outgoing light can be incident on the light-transmitting part and pass through the light-transmitting part. . In this way, it is possible to avoid the situation that the energy of a large amount of emitted light is absorbed by the accessory 100 and burn the accessory 100 because a large amount of emitted light cannot be emitted to the outside normally, thereby prolonging the service life of the accessory 100 and improving the safety of users using the accessory 100 .
  • part of the inner surface of the fluid flow path 21 can be configured as the reflective unit 12, for example, a part of the inner surface of the fluid flow path 21 is coated with a reflective coating, and after the outgoing light enters the accessory 100, part of the outgoing light is reflected by the reflective unit 12 Reflection changes the transmission path. On the one hand, it can prevent the accessory 100 from absorbing a large amount of outgoing light energy and generate high temperature, preventing the user from being burned when operating the accessory. On the other hand, part of the outgoing light will not be irradiated after the transmission path is changed.
  • the object to be dried so the temperature rise of the object to be dried can be suppressed, and low-temperature drying can be realized to meet the drying needs of heat-labile objects.
  • the fluid flow path 21 can also be one or more of other types of radiation regulating parts 10, and those skilled in the art can make adaptive settings according to the needs on the basis of understanding the above, and this application does not make any Specific limits.
  • the airflow adjustment part may further include an additional path 22 .
  • the additional path 22 communicates with the fluid flow path 21 and is used to introduce the external airflow into the fluid flow path 21 to adjust at least one of temperature, humidity and composition of the outgoing airflow.
  • the parameters of the outgoing airflow output by the drying device 200 without changing the operating parameters are basically the same.
  • the external airflow is introduced into the fluid flow path 21 through the additional path 22, so that the outgoing airflow is the same as the incoming airflow.
  • the airflow output from the accessory 100 can be adjusted when the external airflow converges, and parameters such as temperature, humidity and composition can be changed, so that the airflow output by the drying equipment 200 to the object to be dried can meet different requirements without changing the operating parameters.
  • the adjustment of the additional path 22 for the outgoing airflow can be to adjust a single parameter, or two or more composite parameters, which is understandable to those skilled in the art and will not be described in detail here. .
  • the additional path 22 includes an additional inlet and an additional outlet, the additional inlet communicates with the outside world, and the additional outlet communicates with the fluid flow path 21, thus, outside air can enter the additional path 22 through the additional inlet, and the additional path 22
  • the internal flow flows to the additional outlet, and enters the fluid flow path 21 from the additional outlet to merge with the outgoing airflow, and the merged airflow can be emitted to the outside through the air outlet 212 .
  • the additional path 22 can adjust the temperature, humidity, composition, etc. of the outgoing airflow.
  • the setting of the additional path 22 is not limited to the above-mentioned method, and the additional inlet can also be communicated with the fluid flow path 21, and the additional outlet can be connected to the outside world, thus, the outgoing airflow output by the drying device 200 can be divided into two parts, one part from the additional inlet Enter the additional path 22, flow to the additional outlet in the additional path 22, and then output, and the other part continues to be transported in the fluid flow path 21, and is emitted from the air outlet 212 to the object to be dried.
  • the additional path 22 can adjust the temperature, humidity, composition, etc. of the outgoing airflow .
  • the adjustment of the outlet airflow by the additional path 22 is not limited to the above manner, and is not limited here.
  • the accessory 100 includes a first shell 32 and a second shell 33 , and the first shell 32 is accommodated in the second shell 33 .
  • the inner surface of the first shell 32 forms a fluid flow path 21, an additional path 22 is formed between the first shell 32 and the second shell 33, the external air flow can flow in the additional path 22, and merge with the outgoing air flow at the position of the air outlet, so as to Adjust the temperature and humidity of the outgoing airflow, etc.
  • the part of the first housing 32 on the optical path of the outgoing light is configured as the radiation regulating part 10 ; or, at least part of the inner surface of the first casing 32 on the optical path of the outgoing light is configured as the radiation regulating part 10 .
  • the radiation adjusting part 10 may be at least one of a light absorbing unit 11 , a reflecting unit 12 , a refracting unit 13 and a light guiding unit 15 .
  • the airflow adjustment part may further include an adjustment unit 24, and the adjustment unit 24 is used for heating and/or cooling the airflow in the fluid flow path 21 to adjust the output Airflow temperature and/or humidity.
  • the adjustment unit 24 can heat the airflow in the fluid flow path 21 to increase the temperature of the airflow, evaporate the moisture in the airflow, and reduce the humidity of the airflow; or, the adjustment unit 24 can cool the airflow in the fluid flow path 21 , to reduce the temperature of the air flow; or, the adjustment unit 24 may first heat the air flow in the fluid flow path 21 and then cool it, or cool it first and then heat it, and so on.
  • the adjustment unit 24 adjusts the temperature and/or humidity of the outgoing airflow, so that the temperature and/or humidity of the airflow blowing on the hair and scalp are similar to the temperature and/or humidity of the body surface, thereby improving the comfort of the user when using the drying device 200 .
  • the regulating unit 24 may be disposed in the fluid flow path 21 ; or disposed at the air inlet 211 ; or disposed at the air outlet 212 , which is not limited in the present application.
  • the airflow regulating part may further include a composition generator 25 for generating particles and adding the described particles to the airflow in the fluid flow path 21. particles to adjust the composition of the airflow so that the airflow emitted to the object to be dried has particles generated by the composition generator 25 .
  • the component generator 25 is used to generate at least one of metal microparticles, ions, charged microparticles, charged microparticle liquid, acidic component microparticles, and alkaline component microparticles.
  • the component generator 25 is used to generate metal particles, and the generated metal particles contain at least one of gold, silver, copper and zinc, so that the outgoing airflow can have antibacterial effect; for another example, in some embodiments, the component generator 25 is used to generate metal particles, and the generated metal particles contain at least one of platinum, zinc, and titanium, so that the outgoing airflow can have an anti-oxidation effect; another example, in some In the embodiment, the component generator 25 is used to generate negative ions, such that there are negative ions in the outgoing airflow, and if the hair is dried by using the outgoing airflow, the hair care effect can be improved; for another example, the component generator 25 is used to generate acidic component particles, In this way, the outgoing airflow can have a sterilizing and cleaning effect.
  • the component generator 25 is used to generate alkaline component particles, so that the outgoing airflow can have a cleaning effect.
  • the component generator 25 can be arranged in the fluid flow path 21 ; or at the airflow inlet 211 ; or at the airflow outlet 212 , which is not limited here.
  • the accessory 100 may further include an airflow guide 40 .
  • At least part of the air flow guide 40 is located in the fluid flow path 21 and is used to guide the air flow in the fluid flow path 21 .
  • the outgoing airflow entering the fluid flow path 21 can flow under the joint action of the airflow guide 40 and the fluid flow path 21, and the airflow guide 40 can assist in guiding the flow velocity and flow direction of the airflow, so that the airflow emitted to the object to be dried
  • the parameters of the airflow are more in line with expectations, and the airflow guide 40 can make the flow of the airflow tend to be smoother, which is beneficial to control the wind resistance noise, and can improve the user experience.
  • the airflow guide 40 includes a guide wall 41 , the guide wall 41 is configured as a generally conical wall, and is oriented in the direction from the air inlet 211 to the air outlet 212 , and the apex of the guide wall 41 faces Air outlet 212. It can be understood that when the outgoing airflow flows in the fluid flow path 21, the flow direction will be changed by the guide wall 41, and the guide wall 41, which is generally conical and whose apex is facing the air outlet 212, can guide the airflow to tend to converge, and then from the air outlet 212 The airflow emitted to the object to be dried can be relatively concentrated.
  • the convergence of the airflow can be realized to meet the local high-efficiency of the object to be dried. Drying is required, and the guidance of the guide wall 41 can smooth the flow of airflow and reduce wind resistance noise.
  • the guide wall 41 it can be the inner wall of the airflow guide 40, that is, the airflow can flow inside the airflow guide 40, or the outer wall of the airflow guide 40, that is, the airflow can flow outside the airflow guide 40. are the inner and outer walls of the sheet-shaped airflow guide 40, and the airflow can flow on the inside and outside of the airflow guide 40 at the same time.
  • the airflow can be guided by the guide wall 41 of the airflow guide 40 , which is understandable to those skilled in the art, and the present application does not specifically limit it.
  • the guide wall 41 can be configured as a plug 42 , and the outer wall surface of the plug 42 forms the guide wall 41 .
  • the plug can be a generally conical solid or hollow body.
  • the plug 42 can correspond to the position of the air outlet 2203 of the drying device 200, and the outgoing air flow enters the accessory along the outer wall of the plug 42.
  • the flow, that is, the air flow is guided by the guide wall 41 formed by the outer wall surface of the plug 42 .
  • the structure is simple, easy to process and assemble, and the guiding effect on the airflow can be adjusted by adjusting the shape of the outer wall surface of the plug 42 , and the cost is low.
  • the airflow outlet 2203 (as shown in FIG. 1 ) of the drying device is formed as an annular airflow outlet 2203, and the airflow guide 40 may also include a guide surface 43, which surrounds at least part of the outgoing airflow, so as to at least partially The annular airflow turns to laminar flow.
  • the annular airflow and laminar flow here should be understood in a broad sense, that is, the general shape of the outline of the airflow.
  • the annular airflow usually has no obvious difference in length and width, and the laminar flow generally has a flat outline.
  • the annular gas flow outlet 2203 may be a circular outlet, or may be an annular outlet with an inner wall and an outer wall.
  • the guide surface 43 can surround a part of the outgoing airflow, such as the part located at the center, or the guide surface 43 can surround all the outgoing airflow, so that the airflow surrounded by the guide surface 43 is turned by the guide surface 43, turning from the annular airflow to laminar flow, That is, without changing the operating parameters of the drying device 200, the accessory can turn the annular airflow into a laminar flow, which is beneficial to improve the drying effect.
  • the airflow guide 40 can be configured as a hollow sleeve 44, and the sleeve 44 is used to surround the airflow outlet 2203 of the drying device 200, so that the outgoing airflow output by the drying device 200 can enter the sleeve 44.
  • the distance between the two opposite side walls 441 of the sleeve 44 decreases toward the air outlet 212 , that is, the closer to the air outlet 212 , the smaller the distance between the two opposite side walls 441 of the sleeve 44 .
  • the sleeve 44 is oriented along the direction from the air inlet 211 to the air outlet 212 , and one end of the sleeve 44 facing the air outlet 212 is an opening, so that the outgoing airflow entering the sleeve 44 can enter the sleeve 44 through the opening.
  • the inner surfaces of two opposite side walls 411 of the sleeve 44 whose spacing gradually decreases between them are configured as guide surfaces 43 .
  • the outgoing airflow can enter the sleeve 44 and flow between the inner surfaces of the two side walls 411 of the sleeve 44.
  • the guide surface 43 plays a role in the airflow.
  • the constraint control effect makes the outgoing airflow turn from circular airflow to laminar flow, and then shoots out of the sleeve 44 from the opening of the sleeve 44 . It can be understood that, compared with the annular airflow, the laminar flow has a higher flow velocity and a more concentrated airflow, which can speed up the drying speed of a local part of the object to be dried and meet special drying requirements.
  • the sleeve 44 may be generally duckbill-shaped, that is, in the direction toward the air outlet 212, the distance between the two opposite side walls of the sleeve 44 is reduced, and the The distance between the two opposite side walls between the two side walls remains unchanged, thereby reducing wind resistance noise.
  • the different airflow guides in the above embodiments may function independently or jointly.
  • the plug 42 can be accommodated in the hollow sleeve 44 so that the guide wall 41 is opposite to the guide surface 43 .
  • the airflow guide 40 can not only divert the at least part of the annular outgoing airflow into a laminar flow, but also guide the outgoing airflow to flow along the guide wall 41 .
  • the specific structures of the plug 42 and the sleeve 44 are substantially the same as those of the plug 42 and the sleeve 44 described in the above embodiments, and will not be repeated here.
  • the airflow can be restricted from the inside and the outside at the same time, so that the airflow emitted to the object to be dried is more in line with expectations and further meets the drying requirements.
  • the airflow guide 40 may further include a grille 45 .
  • the grille 45 can be located in the fluid flow path 21 , and the grille 45 has a plurality of air outlets 451 through which at least part of the air flow in the fluid flow path 21 flows.
  • the grille 45 includes an air inlet 452 and a plurality of air outlets 451 .
  • the grille 45 is arranged in the fluid flow path 21, and the air inlet 452 is arranged opposite to the air outlet 2203 of the drying device 200, so that at least part of the outgoing airflow enters the grille 45 through the air inlet 452, and is passed through a plurality of air outlets 451 Outflow grill 45 . In this way, at least one airflow parameter of at least part of the outgoing airflow can be varied by means of the grille 45 .
  • the outgoing airflow flows through the grille 45, the flow is hindered by the grille 45, the flow velocity will decrease, the exit direction will be changed by the air outlet 452, and the parameters of the airflow will be changed by the joint action of the grille 45 and the fluid flow path 21,
  • the airflow after passing through the accessory 100 can meet different demands.
  • the orientations of the multiple air outlets 451 are not completely the same.
  • the orientations of the multiple air outlets may be different from each other, or some of the air outlets may have the same orientation while the other part of the air outlets may have different orientations.
  • at least part of the outgoing airflow can be ejected from multiple directions after passing through the air outlet 451 of the grille 45, so that the airflow presents a more obvious diffusion effect, which is beneficial to improve the drying effect, especially when blowing hair, it is beneficial to improve hair drying. of bulkiness.
  • the grid 45 is hollow and generally conical, and is oriented in the direction from the air inlet 211 to the air outlet 212, the apex of the grid 45 faces the air outlet 212, and a plurality of air outlets 451 are arranged at intervals in the grid.
  • the grid 45 and each air outlet 451 penetrates the inner surface and the outer surface of the grid 45 .
  • the grille 45 is constructed as a hollow and generally conical shape, and is oriented in the direction from the air inlet 211 to the air outlet 212, the apex of the grille 45 faces the air outlet 212, so that at least part of the fluid flow path 21 can be guided to exit Airflow; on the other hand, since the grille 45 is provided with a plurality of air outlets 451 , the transmission path of at least part of the outgoing airflow entering the grille 45 can be changed. In this way, after being processed by the accessory 100, the airflow is decelerated and divergent in direction.
  • accessory 100 also includes connection bridge 46 .
  • the connecting bridge 46 is used to connect the grid 45 and to the structure forming the fluid flow path 21 . Wherein, when the fluid flow path 21 is formed by the inner wall surface of the attached shell 31 of the accessory 100, the grille 45 is connected with the attached shell 31 through the connecting bridge 46, so that the attached shell 31 and the grille 45 are integrated, which is convenient for the drying equipment 200 to configure the fluid flow path 21 and grille 45 .
  • the number of connecting bridges 46 is multiple, and a plurality of connecting bridges 46 are distributed at intervals in the circumferential direction of the grid 45, for example, a plurality of connecting bridges 46 are evenly distributed in the circumferential direction of the grid 45, so that It is beneficial to improve the connection strength between the grid 45 and the structure forming the fluid flow path 21, and can improve the aesthetics of the accessories.
  • the cross section of the fluid flow path 21 gradually increases, and the end of the air outlet 212 of the fluid flow path 21 is provided with an air outlet cover 213, and the inside of the accessory 100 A grid 45 is provided, the air outlet cover 213 is a curved surface, and the raised portion 2134 of the air outlet cover 213 corresponds to the grid 45 . That is, the surface of the air outlet cover 213 opposite to the grille 45 protrudes from the air inlet 211 toward the air outlet 212 to form a raised portion 2134 . In this way, the accommodation space in the fluid flow path 21 can be increased, which is beneficial to accommodate the grid 45 in the fluid flow path 21 .
  • the grille 45 cooperates with the gradually expanding fluid flow path 21 in the above-mentioned embodiment, and the wave-shaped and light-transmitting air outlet cover 213 in the above-mentioned embodiment, so that the airflow can be diffused and directed to the object to be dried, and at the same time, the outgoing light After passing through the air outlet cover 213, it irradiates the object to be dried, so that the object to be dried can be dried efficiently through the joint action of wind, light and heat, and can meet different drying requirements without changing the operating parameters of the drying equipment 200. Improve user experience.
  • the fluid flow path 21 and the air outlet cover 213 those skilled in the art can make adaptive settings according to the requirement on the basis of understanding the above, and details will not be repeated here.
  • the radiation adjustment part 10 may be disposed on at least one of the airflow adjustment part and the airflow guide 40 .
  • the radiation adjustment part 10 is disposed on the airflow adjustment part, or the radiation adjustment part 10 is disposed on the airflow guide 40 , or the radiation adjustment part 10 is disposed on both the airflow adjustment part and the airflow guide 40 .
  • at least one of the airflow adjustment part and the airflow guide 40 can be used to simultaneously adjust the outgoing airflow and outgoing light.
  • the implementation manner in which the radiation regulating part 10 is arranged on the airflow regulating part is the same as that described above, and will not be repeated here.
  • the radiation regulating part 10 When the radiation regulating part 10 is disposed on the airflow guide 40 , the radiation regulating part 10 may be disposed on at least one of the guiding surface 43 , the guiding wall 41 and the outer surface of the grille 45 .
  • the radiation regulating part 10 may be disposed on at least one of the guiding surface 43 , the guiding wall 41 and the outer surface of the grille 45 .
  • at least a part of at least one of the guide surface 43 , the guide wall 41 and the outer surface of the grid 45 is configured as the radiation regulating part 10 , which is not limited here.
  • the accessory 100 may further include an attachment part 50 , and the attachment part 50 can be connected with the drying device 200 to configure the accessory 100 on the drying device 200 .
  • the accessory part 50 can be connected with the radiation regulating part 10, and the accessory part 50 and the radiation regulating part 10 can be connected through a detachable connection, or can be connected through a fixed connection, which is not limited here.
  • the attachment part 50 may also be combined with at least one of the radiation adjustment part 10 , the airflow adjustment part and the airflow guide 40 in the accessory 100 .
  • the attachment portion 50 may be disposed at the air inlet 211 of the fluid flow path 21 of the airflow adjustment portion.
  • the attachment part 50 can be detachably connected to the drying device 200, so that it is convenient to connect or detach the accessory 100 and the drying device 200 at any time, and it is convenient to choose the drying device 200 to be used alone or with accessories according to drying needs.
  • the attachment part 50 may be detachably connected to the drying device 200 through at least one of magnetic attraction, engagement, and screw rotation.
  • the attachment part 50 is used to be sleeved on the housing 210 of the drying device 200, the drying device 200 is provided with a magnetic connection (not shown), and the attachment part 50 is provided with There is a magnetic attraction part 51 , and the magnetic attraction part 51 can be magnetically connected with the magnetic attraction connecting part, so as to install the accessory 100 on the drying device 200 .
  • the attachment part 50 is used to adapt to the air channel 220 of the drying device 200, and the magnetic part 51 on the attachment part 50 can magnetically attract the wall of the air channel, such as the inner peripheral wall of the air channel 220, or The peripheral wall of the air duct 220 , or the end of the structure forming the air duct 220 , etc., are used to realize the connection between the accessory 100 and the drying device 200 .
  • the attachment part 50 can also be adaptively connected with other structures of the drying equipment 200, and those skilled in the art can make adaptive settings considering factors such as installation space, cost, connection stability, firmness, etc., and this application does not specifically limit it.
  • one of the magnetic connection portion and the magnetic component 51 is a magnetic material component, and the other is a magnet.
  • FIG. 4 there are multiple magnetic attractors 51 , and the plurality of magnetic attractors 51 are arranged at intervals in the circumferential direction of the accessory 100 , for example, a plurality of magnetic attractors 51 are arranged in the circumferential direction of the accessory 100 The arrangement at even intervals is conducive to the stable connection between the accessory 100 and the drying device 200 .
  • the attachment part 50 can also be fixedly connected with the drying device 200, for example, the attachment part 50 is fixedly connected with the housing 210 of the drying device 200, so that the connection between the two can be stable and firm, and avoid falling off.
  • the embodiment of the present application also provides an accessory 100 for the drying device 200 .
  • the drying equipment 200 is similar to the drying equipment 200 described in the above embodiments, and will not be repeated here.
  • the accessory 100 includes a fluid flow path 21 and a light absorbing unit 11 .
  • the fluid flow path 21 has an air inlet 211 and an air outlet 212 , the air inlet 211 is used to communicate with the air outlet 2203 , and at least part of the outgoing air flows through the fluid flow path 21 and is emitted from the air outlet 212 .
  • At least part of the light absorption unit 11 is located on the optical path of the outgoing light, and the light absorption unit 11 is used to absorb at least part of the outgoing light to reduce the power density of the outgoing light. Wherein, the light absorption unit 11 performs heat exchange with the fluid flow path 21 .
  • the light absorbing unit 11 since at least part of the light absorbing unit 11 is located on the optical path of the outgoing light, and is used to absorb at least part of the outgoing light to reduce the power density of the outgoing light, this can prevent the attachment 100 or the object to be dried from being burned by the excessive power of the outgoing light; On the other hand, since the light absorbing unit 11 can exchange heat with the fluid flow path 21 , it can heat the outgoing airflow in the fluid flow path 21 to increase the temperature of the outgoing airflow, thereby improving the drying efficiency of the drying device 200 .
  • the accessory 100 when the accessory 100 is configured in the drying device 200 , at least part of the outgoing airflow and at least part of the outgoing light formed by the drying device 200 pass through the accessory 100 and then exit to the outside.
  • at least part of the light absorbing unit 11 is disposed on the fluid flow path 21 ; or at least part of the fluid flow path 21 is configured as the light absorbing unit 11 .
  • the light absorbing unit 11 can absorb at least part of the outgoing light to reduce the power density of the outgoing light, and convert the absorbed light energy into heat energy, and then heat the outgoing airflow in the attachment 100 through heat conduction to increase the temperature of the outgoing airflow.
  • the cross-section of the fluid flow path 21 decreases in the direction from the air inlet 211 to the air outlet 212 . That is to say, the accessory 100 can also converge the outgoing airflow, which is beneficial to make most of the outgoing airflow converge on the object to be dried, so that the drying equipment 200 connected to the accessory 100 can be improved without changing the operating parameters of the drying equipment 200. drying efficiency.
  • the shell of the accessory 100 includes a first shell 32 and a second shell 33 , and the first shell 32 is accommodated in the second shell 33 .
  • the inner surface of the first shell 32 forms the fluid flow path 21 .
  • An additional path 22 is formed between the first shell 32 and the second shell 33, the external air flow can flow in the additional path 22, and perform heat exchange with the fluid flow path 21, so as to reduce the temperature of the air flow in the flow path and the light absorption unit 11, thereby Avoid overheating of the outgoing airflow and the light-absorbing unit 11.
  • the additional path 22 can also block the heat transfer between the first shell 32 and the second shell 33, slow down the accumulation of temperature rise of the second shell 33, even if the first shell 32 is emitting light
  • the phenomenon of high temperature will appear under the action of the accessory 100.
  • the user operates the accessory 100, he can still directly operate the second shell 33 without feeling obvious high temperature, which is beneficial to improve the user experience.
  • the embodiment of the present application also provides an accessory 100 for the drying equipment 200 .
  • the drying equipment 200 is similar to the drying equipment 200 described in the above embodiments, and will not be repeated here.
  • the accessory 100 includes a fluid flow path 21 and a light transmission unit.
  • the fluid flow path 21 has an air inlet 211 and an air outlet 212 , the air inlet 211 is used to communicate with the air outlet 2203 , and at least part of the outgoing air flows through the fluid flow path 21 and is ejected from the air outlet 212 .
  • the light-transmitting unit is located on the optical path of the outgoing light, the light-transmitting unit is used to allow part of the outgoing light to pass through, and the light-transmitting unit is used to absorb part of the outgoing light to reduce the power density of the outgoing light.
  • the light-transmitting unit can allow part of the outgoing light to pass through, it can avoid the energy accumulation of a large amount of outgoing light in the accessory 100 due to the failure of a large amount of outgoing light to be emitted to the outside normally, thereby prolonging the service life of the accessory 100 and improving Security of the user using the accessory 100.
  • the accessory 100 when the accessory 100 is configured in the drying device 200 , at least part of the outgoing airflow and at least part of the outgoing light formed by the drying device 200 pass through the accessory 100 and then exit to the outside. At this time, at least part of the light-transmitting unit is disposed on the fluid flow path 21 ; or at least part of the fluid flow path 21 is configured as a light-transmitting unit.
  • the cross section of the fluid flow path 21 increases in the direction from the air inlet 211 to the air outlet 212 . That is to say, the accessory 100 can also diffuse the outgoing airflow to increase the area that the outgoing airflow can cover, and at the same time can make the outgoing airflow softer, increasing the user's comfort during use.
  • the embodiment of the present application also provides an accessory 100 for the drying device 200 .
  • the drying equipment 200 is the same as the drying equipment 200 in the above-mentioned embodiments, and will not be repeated here.
  • the accessory 100 includes an airflow adjustment part and a radiation adjustment part 10 .
  • the airflow adjusting part is used to adjust at least one airflow parameter of the outgoing airflow, wherein the airflow parameter includes at least one of air volume, wind speed, outgoing direction, and wind field area of the airflow.
  • At least part of the radiation adjustment unit 10 is located on the optical path of the outgoing light, and the radiation adjustment unit 10 is used to change the power density and/or transmission path of at least part of the outgoing light by at least one of reflection, refraction, absorption, diffraction, light guiding, and dispersion .
  • the radiation adjustment unit 10 is used to change the power density and/or transmission path of at least part of the outgoing light by at least one of reflection, refraction, absorption, diffraction, light guiding, and dispersion .
  • Accumulation inside the accessory 100 burns the accessory 100 , thereby using the security of the accessory 100 .
  • the accessory 100 includes an airflow adjustment column 60 , the cross section of the airflow adjustment column 60 gradually increases in the flow direction of the airflow, so that the outer peripheral surface of the airflow adjustment column 60 is configured as an airflow adjustment part.
  • the airflow adjustment column 60 is set corresponding to the airflow outlet 2203 of the air duct 220, so that at least part of the outgoing airflow emitted from the air duct 220 can pass along the outer peripheral surface of the airflow adjustment column 60 (i.e. airflow adjustment part) to adjust at least one airflow parameter thereof.
  • the radiation adjusting unit 10 may include at least one of the light absorbing unit 11 , the reflecting unit 12 , the refracting unit 13 , the diffractive unit 14 , the light guiding unit 15 and the dispersing unit 16 described in any one of the above embodiments.
  • the accessory 100 may further include an attached shell 31 and a connecting post 70 .
  • the attached shell 31 is used to connect with the drying equipment 200
  • the connecting column 70 is used to connect the attached shell 31 and the airflow adjustment column 60, so that when the accessory 100 is connected to the drying equipment 200, the airflow adjustment column 60 can be connected to the air duct 220.
  • Airflow outlet 2203 corresponds.
  • the first surface of the connecting column 70 faces the airflow outlet 2203 , and at least part of the first surface of the connecting column 70 is provided with the radiation regulating part 10 .
  • the radiation adjusting unit 10 may include at least one of the light absorbing unit 11 , the reflecting unit 12 , the refracting unit 13 , the diffractive unit 14 , the light guiding unit 15 and the dispersing unit 16 described in any one of the above embodiments.
  • the embodiment of the present application also provides an accessory 100 for the drying device 200 .
  • the drying equipment 200 is the same as the drying equipment 200 in the above-mentioned embodiments, and will not be repeated here.
  • the accessory 100 includes a light absorbing unit 11 . At least part of the light absorbing unit 11 is located on the optical path of the outgoing light for absorbing at least part of the outgoing light so that the power of the outgoing light emitted from the accessory 100 is less than 20% of the power of the outgoing light entering the accessory 100 .
  • the power of the outgoing light emitted by the drying device 200 is 200W.
  • the power of the outgoing light entering the accessory 100 is 200W.
  • the power of the outgoing light emitted from the accessory 100 is less than the power of the outgoing light entering the accessory 100. Twenty percent, that is, the power of the outgoing light emitted from the accessory 100 is less than 40W. In this way, without changing the operating parameters of the drying device 200, the power of the outgoing light can be reduced through accessories to meet different requirements.
  • the embodiment of the present application also provides an accessory 100 for the drying equipment 200 .
  • the drying equipment 200 is the same as the drying equipment 200 in the above-mentioned embodiments, and will not be repeated here.
  • the accessory 100 includes a fluid flow path 21 and a light absorbing unit 11 .
  • the fluid flow path 21 has an air inlet 211 and an air outlet 212. On the direction from the air inlet 211 to the air outlet 212, the cross-section of the fluid flow path 21 increases.
  • the air inlet 211 is used to communicate with the air outlet 2203, at least partially The air flow flows through the fluid flow path 21 and exits the air outlet 212 .
  • At least part of the emitted light can enter the fluid flow path 21 and be emitted to the outside under the guidance of the fluid flow path 21 .
  • At least part of the light-transmitting unit is located in the fluid flow path 21, and the light-transmitting unit is used to allow part of the outgoing light to pass through, so that the power density of the outgoing light emitted from the accessory 100 is between the power density of the outgoing light entering the accessory 100. The difference is less than a preset threshold.
  • the power density of the outgoing light emitted by the drying equipment 200 is 0.06W/mm 2
  • the power density of the emitted light emitted from the accessory 100 is also 0.06 W/mm 2 . That is, the power density of the outgoing light emitted from the accessory 100 is approximately the same as the power density of the outgoing light entering the accessory 100 .
  • the embodiment of the present application also provides an accessory 100 for the drying device 200 .
  • the drying equipment 200 is the same as the drying equipment 200 in the above-mentioned embodiments, and will not be repeated here.
  • the accessory 100 includes a fluid flow path 21 and a reflection unit 12 .
  • the fluid flow path 21 has an air inlet 211 (as shown in FIG. 2 ) and an air outlet 212 (as shown in FIG. 2 ). In the direction from the air inlet 211 to the air outlet 212, the cross-section of the fluid flow path 21 decreases, The air inlet 211 is used to communicate with the air outlet 2203 , and at least part of the outgoing air flows through the fluid flow path 21 and is emitted from the air outlet 212 .
  • At least part of the emitted light can enter the fluid flow path 21 and be emitted to the outside under the guidance of the fluid flow path 21 .
  • At least part of the reflection unit 12 is located in the fluid flow path 21, and the reflection unit 12 is used to reflect the outgoing light incident on the reflection unit 12, so that the power density of the outgoing light emitted from the accessory 100 is greater than that entering the The power density of the light exiting the accessory 100.
  • the power density of the outgoing light emitted by the drying equipment 200 is 0.06W/mm 2 . In the case where the accessory 100 is connected to the drying equipment 200, it is assumed that all the outgoing light can enter the fluid flow path 21 of the accessory 100 and flow in the fluid flow path. Guided by 21 , it is emitted to the outside world.
  • the power density of the emitted light emitted from the accessory 100 is 0.12 W/mm 2 . That is, the power density of the outgoing light emitted from the accessory 100 is greater than the power density of the outgoing light entering the accessory 100 . In this way, without changing the operating parameters of the drying device 200 , the power density irradiated on the object to be dried can be increased through accessories to meet different drying requirements.
  • the embodiment of the present application also provides an accessory 100 for the drying device 200 .
  • the drying equipment 200 is the same as the drying equipment 200 in the above-mentioned embodiments, and will not be repeated here.
  • the accessory 100 includes a fluid flow path 21 and a light absorbing unit 11 .
  • the fluid flow path 21 has an air inlet 211 and an air outlet 212. In the direction from the air inlet 211 to the air outlet 212, the cross-section of the fluid flow path 21 decreases.
  • the air inlet 211 is used to communicate with the air outlet 2203, at least partially The air flow flows through the fluid flow path 21 and exits the air outlet 212 .
  • At least part of the emitted light can enter the fluid flow path 21 and be emitted to the outside under the guidance of the fluid flow path 21 .
  • At least part of the light absorbing unit 11 is located in the fluid flow path 21 , the light absorbing unit 11 is used for absorbing at least part of the outgoing light, so that the power density of the outgoing light emitted from the accessory 100 is smaller than the power density of the outgoing light entering the accessory 100 .
  • the power density of the outgoing light emitted by the drying equipment 200 is 0.06W/mm 2 . In the case where the accessory 100 is connected to the drying equipment 200, it is assumed that all the outgoing light can enter the fluid flow path 21 of the accessory 100 and flow in the fluid flow path.
  • the drying device 200 equipped with the accessory 100 can reduce the power density of the outgoing light without changing the operating parameters, so as to meet different requirements.
  • the above description of the power and power density of the drying equipment 200 is only an exemplary description, and the power of the outgoing light of the drying equipment 200 (ie, the output power of the radiation source) in the embodiment of the application is not limited to the above Example of description.
  • the radiation power of the radiation source 240 of the drying equipment 200 is at least 5W, such as 5W, 10W, 50W, 75W, 80W, 100W, 120W, etc. This application does not make specific limitations on this, and can be set according to actual needs.
  • the embodiment of the present application also provides a drying assembly 1000 .
  • the drying assembly 1000 includes a drying device 200 and an accessory 100 .
  • the drying device 200 includes: a casing 210 , an airflow generating element 230 and a radiation source 240 .
  • An air duct 220 is provided inside the casing 210, and the air duct 220 has an airflow inlet 2201 and an airflow outlet 2203; the airflow generating element 230 is arranged in the casing 210 and is used to generate airflow, and the airflow is ejected from the airflow outlet 2203 to form an outgoing airflow;
  • the radiation source 240 is disposed on the casing 210 and generates radiation, and guides the radiation from the light emitting portion 260 to the outside of the casing 210 to form outgoing light.
  • the accessory 100 may be the accessory 100 described in any one of the above embodiments, and at least part of the accessory 100 is located on the optical path of the outgoing light.
  • the radiation regulating part 10 in the accessory 100 can adjust at least one parameter of at least part of the outgoing light, so as to prevent the accessory 100 from seriously hindering the normal emission of infrared light , thereby reducing the probability of safety accidents while achieving normal drying of objects.
  • the drying device 200 has a mounting portion.
  • the installation part is adapted to the attachment part 50 of the attachment 100 to connect the drying device 200 and the attachment 100 through the installation part and the attachment part 50 .
  • the embodiment of the present application also provides a drying device 200, which can be adapted to an accessory, wherein the accessory is the accessory 100 described in the above embodiment of the present application.
  • the drying device 200 includes a housing 210, an airflow generating element 230 and a radiation source 240.
  • An air duct 220 is provided inside the housing 210.
  • the air duct 220 has an airflow inlet 2201 and an airflow outlet 2203.
  • the airflow generating element 230 is arranged in the housing 210 and used To generate airflow and emit the airflow from the airflow outlet 2203 to form an outgoing airflow, the radiation source 240 is disposed on the casing 210 to generate radiation and guide the radiation from the light exit portion 260 to the outside of the casing 210 to form outgoing light. Wherein, the emitted light can be adjusted through the accessory 100 described in the above embodiment.
  • the drying assembly 1000 can adjust the radiation parameters without changing the operating parameters of the drying equipment 200 by setting the accessory 100 on the optical path of the outgoing light of the drying equipment 200, and the same drying equipment 200 is equipped with different accessories 100
  • the adjustment results of the post-radiation parameters can be different.
  • the adjustment of the parameters of the outgoing airflow can also be realized in combination with the airflow adjustment part described above, so that the outgoing light and the outgoing airflow meet different requirements.
  • it can be set adaptively on the basis of understanding the above embodiments.
  • references to the terms “certain embodiments,” “one embodiment,” “some embodiments,” “examples,” “specific examples,” or “some examples” are intended to mean A specific feature, structure, material, or characteristic described by an embodiment or example is included in at least one embodiment or example of the present application.
  • the schematic representations of the above terms are not necessarily directed to the same embodiment or example.
  • the described specific features, structures, materials or characteristics may be combined in any suitable manner in any one or more embodiments or examples.
  • those skilled in the art can combine and combine different embodiments or examples and features of different embodiments or examples described in this specification without conflicting with each other.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of said features.
  • “plurality” means at least two, such as two, three, unless otherwise specifically defined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

一种附件(100)、干燥设备(200)及干燥组件 (1000)。附件 (100) 包括辐射调节部 (10),辐射调节部(10)用于调整干燥设备 (200) 出射的至少部分出射光的至少一个参数,其中,所述参数包括辐射的功率密度、传输路径、光场分布中的至少一种。

Description

附件、干燥设备及干燥组件 技术领域
本申请涉及干燥装置领域,特别涉及一种附件、干燥设备及干燥组件。
背景技术
传统的风嘴附件只适配于仅通过高温气流实现干燥的传统干燥设备,若将传统的风嘴附件安装到通过流体对流、红外辐射、热交换共同作用实现干燥的干燥设备中,会严重阻碍热辐射的正常辐射,如此,不仅无法实现对物体的有效干燥,还会使附件温升较高,容易发生烫伤等安全事故。
发明内容
本申请的实施方式提供了一种附件、干燥设备及干燥组件。
本申请实施方式提供一种附件,用于干燥设备,所述干燥设备包括壳体、气流产生元件及辐射源。所述壳体内部设有风道,所述风道具有气流入口和气流出口。所述气流产生元件设置在所述壳体内并用于产生气流,且将气流从气流出口射出以形成出射气流。所述辐射源设置于所述壳体并产生辐射,且将所述辐射从出光部导向所述壳体的外部以形成出射光。所述附件包括辐射调节部,所述辐射调节部用于调整至少部分所述出射光的至少一个参数,其中,所述参数包括辐射的功率密度、传输路径、光场分布中的至少一种。
本申请实施方式提供一种干燥组件,包括干燥设备和附件。所述干燥设备包括壳体、气流产生元件及辐射源。所述壳体内部设有风道,所述风道具有气流入口和气流出口。所述气流产生元件设置在所述壳体内并用于产生气流,且将气流从气流出口射出以形成出射气流。所述辐射源设置于所述壳体并产生辐射,且将所述辐射从出光部导向所述壳体的外部以形成出射光。所述附件包括辐射调节部,所述辐射调节部用于调整至少部分所述出射光的至少一个参数,其中,所述参数包括辐射的功率密度、传输路径、光场分布中的至少一种。
本申请实施方式提供一种干燥设备,该干燥设备与附件可适配。所述干燥设备包括壳体、气流产生元件及辐射源。所述壳体内部设有风道,所述风道具有气流入口和气流出口。所述气流产生元件设置在所述壳体内并用于产生气流,且将气流从气流出口射出以形成出射气流。所述辐射源设置于所述壳体并产生辐射,且将所述辐射从出光部导向所述壳体的外部以形成出射光。所述附件包括辐射调节部,所述辐射调节部用于调整至少部分所述出射光的至少一个参数,其中,所述参数包括辐射的功率密度、传输路径、光场分布中的至少一种。
本申请实施方式提供一种附件,用于干燥设备。所述干燥设备包括壳体、气流产生元件及辐射源。所述壳体内部设有风道,所述风道具有气流入口和气流出口。所述气流产生元件设置在所述壳体内并用于产生气流,且将气流从气流出口射出以形成出射气流。所述辐射源设置于所述壳体并产生辐射,且将所述辐射从出光部导向所述壳体的外部以形成出射光。所述附件包括流体流动路径及吸光单元。所述流体流动路径具有入气口和出气口,所述入气口用于与所述气流出口连通,至少部分所述出射气流流经所述流体流动路径并从所述出气口射出。至少部分所述吸光单元位于所述出射光的光路上,所述吸光单元用于吸收至少部分所述出射光以降低所述出射光的功率密度。其中,所述吸光单元与所述流体流动路径进行热交换。
本申请实施方式提供一种附件,用于干燥设备。所述干燥设备包括壳体、气流产生元件及辐射源。所述壳体内部设有风道,所述风道具有气流入口和气流出口。所述气流产生元件设置在所述壳体内并用于产生气流,且将气流从气流出口射出以形成出射气流。所述辐射源设置于所述壳体并产生辐射,且将所述辐射从出光部导向所述壳体的外部以形成出射光。所述附件包括流体流动路径及透光单元。所述流体流动路径具有入气口和出气口,所述入气口用于与所述气流出口连通,至少部分所述出射气流流经所述流体流动路径并从所述出气口射出。所述透光单元位于所述出射光的光路上,所述透光单元用于允许部分所述出射光透过,且所述透光单元用于吸收部分所述出射光以降低所述出射光的功率密度。
本申请实施方式提供一种附件,用于干燥设备。所述干燥设备包括壳体、气流产生元件及辐射源。所述壳体内部设有风道,所述风道具有气流入口和气流出口。所述气流产生元件设置在所述壳体内并用于产生气流,且将气流从气流出口射出以形成出射气流。所述辐射源设置于所述壳体并产生辐射,且将所述辐射从出光部导向所述壳体的外部以形成出射光。所述附件包括气流调节部及辐射调节部。所述气流调节部用于调整所述出射气流的至少一个气流参数,其中,所述气流参数包括气流的风量、风速、出射方向,风场面积中的至少一个。至少部分所述辐射调节部位于所述出射光的光路上,所述辐射调节部用于通过反射、折射和吸收中的至少一种改变至少部分所述出射光的功率密度和/或传输路径。
本申请实施方式提供一种附件,用于干燥设备。所述干燥设备包括壳体、气流产生元件及辐射源。所述壳体内部设有风道,所述风道具有气流入口和气流出口。所述气流产生元件设置在所述壳体内并用于产生气流,且将气流从气流出口射出以形成出射气流。所述辐射源设置于所述壳体并产生辐射,且将所述辐射从出光部导向所述壳体的外部以形成出射光。所述附件包括吸光单元,至少部分所述吸光单元位于所述出射光的光路上,所述吸光单元用于吸收至少部分所述出射光,以使从所述附件射出的出射光的功率,小于进入所述附件的出射光的功率的百分之二十。
本申请实施方式提供一种附件,用于干燥设备。所述干燥设备包括壳体、气流产生元件及辐射源。所述壳体内部设有风道,所述风道具有气流入口和气流出口。所述气流产生元件设置在所述壳体内并用于产生气流,且将气流从气流出口射出以形成出射气流。所述辐射源设置于所述壳体并产生辐射,且将所述辐射从出光部导向所述壳体的外部以形成出射光。所述附件包括流体流动路径及透光单元。所述流体流动路径具有入气口和出气口,在从所述入气口到所述出气口的方向上,所述流体流动路径的横截面增大,所述入气口用于与所述气流出口连通,至少部分所述出射气流流经所述流体流动路径并从所述出气口射出,至少部分所述出射光能够进入所述流体流动路径,并在所述流体流动路径的引导下出射至外界。至少部分所述透光单元位于所述流体流动路径内,所述透光单元用于允许部分所述出射光透过,以使从所述附件射出的出射光的功率密度,与进入所述附件的出射光的功率密度之间的差值小于预设阈值。
本申请实施方式提供一种附件,用于干燥设备。所述干燥设备包括壳体、气流产生元件及辐射源。所述壳体内部设有风道,所述风道具有气流入口和气流出口。所述气流产生元件设置在所述壳体内并用于产生气流,且将气流从气流出口射出以形成出射气流。所述辐射源设置于所述壳体并产生辐射,且将所述辐射从出光部导向所述壳体的外部以形成出射光。所述附件包括流体流动路径及反射单元。所述流体流动路径具有入气口和出气口,在从所述入气口到所述出气口的方向上,所述流体流动路径的横截面减小,所述入气口用于与所述气流出口连通,至少部分所述出射气流流经所述流体流动路径并从所述出气口射出,至少部分所述出射光能够进入所述流体流动路径,并在所述流体流动路径的引导下出射至外界。至少部分所述反射单元位于所述流体流动路径内,所述反射单元用于对射到所述反射单元上的所述出射光进行反射,以使从所述附件射出的出射光的功率密度,大于进入所述附件的出射光的功率密度。
本申请实施方式提供一种附件,用于干燥设备。所述干燥设备包括壳体、气流产生元件及辐射源。所述壳体内部设有风道,所述风道具有气流入口和气流出口。所述气流产生元件设置在所述壳体内并用于产生气流,且将气流从气流出口射出以形成出射气流。所述辐射源设置于所述壳体并产生辐射,且将所述辐射从出光部导向所述壳体的外部以形成出射光。所述附件包括流体流动路径及吸光单元。所述流体流动路径具有入气口和出气口,在从所述入气口到所述出气口的方向上,所述流体流动路径的横截面减小,所述入气口用于与所述气流出口连通,至少部分所述出射气流流经所述流体流动路径并从所述出气口射出,至少部分所述出射光能够进入所述流体流动路径,并在所述流体流动路径的引导下出射至外界。所述吸光单元位于所述流体流动路径内,所述吸光单元用于吸收至少部分出射光,以使从所述附件射出的出射光的功率密度,小于进入所述附件的出射光的功率密度。
本申请的附件、干燥设备及干燥组件,通过辐射调节部对至少部分出射光的至少一个参数进行调整,可以在一定程度上避免附件严重阻碍热辐射的正常辐射,从而能够实现对物体的有效干燥,可以使干燥设备在不改变运行参数的情况下输出至待干燥物体的辐射的参数能够满足不同需 求,同时可以减缓附件的温升,降低发生安全事故的几率。
本申请的实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实施方式的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本申请某些实施方式中的干燥设备的结构示意图;
图2是本申请某些实施方式中的附件的立体结构示意图;
图3是本申请某些实施方式中的附件的辐射调节部的结构示意图;
图4是本申请某些实施方式中的附件的立体结构示意图;
图5是图4所示的附件沿V-V线的截面示意图;
图6是本申请某些实施方式中的附件的截面示意图;
图7是本申请某些实施方式中的附件的立体结构示意图;
图8是图7所示的附件沿VIII-VIII线的截面示意图;
图9是本申请某些实施方式中的附件的立体结构示意图;
图10是本申请某些实施方式中的干燥组件的结构示意图。
具体实施方式
以下结合附图对本申请的实施方式作进一步说明。附图中相同或类似的标号自始至终表示相同或类似的元件或具有相同或类似功能的元件。
另外,下面结合附图描述的本申请的实施方式是示例性的,仅用于解释本申请的实施方式,而不能理解为对本申请的限制。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
传统的干燥设备(例如吹风机)中,通过输出高温气流烘烤待干燥物体(如头发),从而蒸发待干燥物体上的水份,实现对待干燥物体的干燥。为了适应特定物体或满足特殊体验,传统风嘴附件被设计,传统风嘴附件适配于传统干燥设备,用来调节高温气流,使得调节后的气流能够满足不同的使用需求。
随着干燥技术的发展,采用红外辐射干燥物体的干燥设备应运而生。在这类干燥设备中,通过辐射源产生包括红外辐射在内的辐射,并向外发射辐射,通过风机等气流产生元件产生高速气流,并向外发射气流,从而通过热辐射吸收水份,利用高速气流加速待干燥物体与环境之间的热交换,实现对待干燥物体的干燥。采用红外辐射干燥物体的干燥设备不会对待干燥物体进行高温烘烤,因此可以使头发等待干燥物体免于高温烘烤造成的受损。
图1示意了一种采用红外辐射干燥物体的干燥设备200,该干燥设备200包括壳体210、气流产生元件230及辐射源240。壳体210内部设有风道220,风道220具有气流入口2201和气流出口2203。气流产生元件230设置在壳体210内并用于产生气流,且将气流从气流出口2203射出以形成出射气流。辐射源240设置于壳体210并产生辐射,且将辐射从出光部260导向壳体210的外部以形成出射光。
干燥设备200通过流体对流、红外辐射、热交换的共同作用实现对物体的干燥,简言之,干燥设备200通过风、光、热共同作用干燥物体。干燥设备200可以是吹风机、干手机、干衣机、干身机、烘干机等,本申请实施例以干燥设备200为吹风机为例进行说明。
具体而言,干燥设备200输出的出射光具有辐射参数,干燥设备200输出的出射气流具有气流参数。
出射光照射到物体时会使物体升温,辐射参数具体可包括辐射总功率、辐射功率密度、传输 路径、光场分布等。其中,辐射总功率与辐射源的工况输入数据相关,如电流、电压等;辐射的传输路径在没有干预的情况下一般为向外发散的直线;功率密度表示单位面积上的辐射功率,在辐射功率一定的情况下,辐射照射面积越小,功率密度越大;光场分布包括出射光所产生的斑点的位置以及斑点大小。下文提及的辐射的参数也是做如此解释,不再赘述。
出射气流可以带走待干燥物体上的水滴以及待干燥物体周围湿润的空气,加快待干燥物体与环境空气的热交换。其中,出射气流的气流参数可包括气流的流量、流速、出射方向、温度、湿度、气流组成等,气流参数与气流产生元件的工况数据以及气流出口2203的构造相关,气流的温度和湿度还与辐射有关。下文提及的气流的参数也是做如此解释,不再赘述。
在干燥设备200的使用中,同样存在适应特定物体以及满足特殊体验的需求,在为了满足这种情况下,若将传统风嘴附件安装到通过风、光、热共同作用实现干燥的干燥设备200中,传统的嘴附件会严重阻碍热辐射的正常辐射,尤其是会严重阻碍红外光的正常辐射,使干燥设备200输出到待干燥物体的风、光、热无法实现对物体的有效干燥,同时传统风嘴附件会吸收大量辐射能量而发热,产生较高的温升,热量的积累会随使用时长的增加而持续增加,此时使用者操作附件很容易被高温的风嘴附件烫伤,严重时会使传统风嘴附件因高温而出现变形甚至熔化等现象,安全性差。
为此,本申请提供一种附件100(如图2所示),用于上述通过风、光、热共同作用实现干燥的干燥设备200,为了便于描述和理解,干燥设备200干燥物体以吹风机吹干头发为例进行说明,附件100应用于其他类型的干燥设备以干燥其他待干燥物体的原理和过程,与本申请的示例类似,对此不再一一详述。
附件100包括辐射调节部10(如图3所示),辐射调节部10用于调整至少部分出射光的至少一个参数,其中,参数包括辐射的功率密度、传输路径、光场分布中的至少一种。
在一些示例中,辐射调节部10可用于调整出射光的功率密度。例如,在不改变出射光的总功率的情况下,辐射调节部10可以将出射光汇聚,减小出射光的照射面积,相比于不设置附件100,增设附件100后可以增大出射光的功率密度。或者,在不改变出射光的总功率的情况下,辐射调节部10可以将出射光发散,增大出射光的照射面积,相比于不设置附件100,增设附件100后可以减小出射光的功率密度。
在一些示例中,辐射调节部10可用于调整出射光的传输路径。可以理解,出射光从干燥设备200射出后,在没有干预的情况下向外直线传播。干燥设备200配置附件100后,附件100的辐射调节部10可以改变出射光的传输路径,例如通过对光线的反射、折射等方式,相比于不设置附件100,增设附件100后可以改变出射光的传输路径。
在一些示例中,辐射调节部10可用于调整出射光的光场分布。可以理解,出射光从干燥设备200射出后,在没有干预的情况下形成的光场分布是确定的,即出射光所产生的斑点的位置以及斑点大小是确定的。干燥设备200配置附件100后,附件100的辐射调节部10可以改变出射光的光场分布,使出射光所产生的斑点的位置以及斑点大小与未配置附件100时的不同。例如,辐射调节部10将出射光产生的斑点的位置向靠近干燥设备200的方向前移或向远离干燥设备200的方向后置,或者,辐射调节部10增大或减小出射光产生的斑点的大小。
当然,出射光的功率密度、传输路径和光场分布等参数是彼此关联的,辐射调节部10可以调节其中的单一的参数,也可以同时调节其中的任意两个或三个参数。例如,通过反射改变出射光的传输路径使光线汇聚,减小出射光照射到待干燥物体上产生的斑点,也即减小出射光的照射面积,则功率密度可以增大。或者,通过折射改变出射光的传输路径使光线发散,增大出射光照射到待干燥的物体上的斑点,可以减小出射光的功率密度。
需要说明的是,辐射调节部10对于出射光的参数的调整,可以是调整干燥设备200的出射光中的部分光束的参数,例如调整其中三分一的出射光的至少一个参数,或者调整干燥设备200的出射光中二分之一的出射光的至少一个参数,也可以干燥设备200的全部出射光的至少一个参数,本申请对此不作具体限定。
另外,需要说明的是,辐射调节部10用于调整至少部分出射光的至少一个参数,此出射光应理解为照射到待干燥物体上的热辐射,且此处的调整作用应理解为,相同的干燥设备200在不改变运行参数的前提下,相比于未配置附件100而言,配置的附件100具有调整作用。
本领域技术人员在阅读上文的基础上可以理解,辐射调节部10对于部分出射光或者全部出射光的辐射参数的单一调整或复合调整可以根据需求适应性设置,在此不再一一详述。
本申请实施方式的附件100通过设置辐射调节部10,可以调整至少部分出射光的至少一个参数,该附件100配置到通过流体对流、热辐射、热交换共同作用实现干燥的干燥设备200,干燥设备200输出的出射光经过附件100后照射至待干燥物体,辐射调节部10能够对出射光进行调整,通过调整至少部分出射光的至少一个参数,可以在一定程度上避免附件100严重阻碍热辐射的正常辐射,实现对物体的有效干燥,可以使干燥设备200在不改变运行参数的情况下输出至待干燥物体的辐射的参数能够满足不同需求,同时可以减缓附件的温升,可以降低发生因附件吸收辐射而出现高温导致烫伤等安全事故的几率,提高安全性。
本申请实施例的附件100,通过辐射调节部10对干燥设备200输出的出射光进行调整。在一些实施例中,出射光具有光路,至少部分辐射调节部10位于光路上。辐射调节部10位于光路上,可以理解为,辐射调节部10位于出射光直接照射到的位置上,即辐射调节部10被出射光直射。也就是说,辐射调节部10可以是一部分位于光路上,例如,四分之一的辐射调节部10位于光路上,或者,五分之三的辐射调节部10位于光路上,当然,辐射调节部10也可以是全部位于光路上。通过将至少辐射调节部10位于出射光的光路上,被出射光直射的部分或全部辐射调节部10能够对照射到辐射调节部10上的出射光的至少一个参数进行调整,可以使干燥设备200在不改变运行参数的情况下能够输出不同的辐射参数至待干燥物体,从而满足不同的需求,避免热辐射被严重阻碍,在实现对物体的正常干燥的同时,降低发生安全事故的几率。
至少部分辐射调节部10位于出射光的光路上,可以是辐射调节部10紧邻干燥设备的出光部,或者也可以是辐射调节部10与出光部间隔一定距离,例如间隔2cm、间隔10cm等。
在一些实施例中,辐射调节部10可以覆盖至少部分出光部260。例如,在一些实施例中,干燥设备200的出光部260位于机体的前端,附件100被配置于干燥设备200时,辐射调节部10位于干燥设备200的前方并覆盖至少部分出光部260。其中,辐射调节部10可以覆盖一部分出光部260,例如覆盖一半出光部260,即经由该被辐射调节部10覆盖的一半出光部260射出的出射光会直射到辐射调节部10上;或者,辐射调节部10可以覆盖全部出光部260,即经由出光部260射出的出射光全部直射到辐射调节部10上;当然辐射调节部10还可以覆盖出光部260的其他比例的部分,例如三分之一、五分之一四等,本申请对此不作具体限定。如此,辐射调节部10的覆盖出光部260的部分能够直接对经由该部分被辐射调节部10覆盖的出光部260射出的出射光进行调整,以改变至少部分出射光的至少一个参数。
或者,在一些实施例中,辐射调节部10还可以与至少部分出光部260相对设置,所谓相对设置,可以是正向相对,即经由出光部260射出的出射光直射向辐射调节部10,也可以是斜向相对,即经由出光部260射出的出射光斜射向辐射调节部10。辐射调节部10可与部分出光部260相对设置,也可与全部出光部260相对设置。如此,经由出光部260出射的至少部分出射光能够入射至辐射调节部10,辐射调节部10对接收到的至少部分出射光的至少一个参数进行调整,以改变至少部分出射光的至少一个参数。
根据本申请的一些实施例,辐射调节部10可以用于降低出射光的功率密度。也即,辐射调节部10可以调整至少部分出射光的功率密度,以降低照射至待干燥物体上的出射光的功率密度。如此能够在不改变干燥设备200的运行参数的前提下降低照射至待干燥物体上的热辐射功率密度,使得待干燥物体在热辐射作用下热量的产生速度较为缓慢,避免照射到待干燥物体上的出射光的功率过于集中而灼烧待干燥物体,满足某些不耐热的待干燥物体的干燥需求。
请参阅图1、图2及图3,在一些实施例中,辐射调节部10包括吸光单元11,至少部分吸光单元11位于出射光的光路上,吸光单元11用于吸收至少部分出射光以降低出射光的功率密度。可选地,吸光单元11可以是吸光涂层或黑色吸光件等,在此不作限制。在附件100被配置于干燥设备200的情况下,干燥设备200工作时,辐射源240产生的辐射能够从出光部260导向外部以形成出射光,部分出射光照射至设置于出射光的光路上的吸光单元11,吸光单元11吸收至少部分出射光,使得经过附件100处理后照射至待干燥物体上的热辐射的功率密度降低。如此,能够使照射到待干燥物体上的出射光的功率密度小于未配置附件时照射到待干燥物体上的出射光的功率密 度,即降低了出射光的功率密度,从而能够在不改变干燥设备的运行参数的情况下通过附件的吸光单元降低出射光的功率密度。
可选地,在一些实施例中,吸光单元11能够将吸收的光能转化为自身的热能,经过吸光单元11与气流的热交换,吸光单元11的热能可以传递至气流,可以提升经过附件100的气流的温度,可以提升干燥设备200的干燥效率,另外在干燥头发以及干手等工况下还可以提升用户体验。
根据本申请的一些实施例,辐射调节部10可以用于改变出射光的传输路径。可以理解,出射光在不被干预的情况下通常沿直线传输,即经由出光部260射出的出射光的传输路径为直线。为干燥设备200配置附件100后,辐射调节部10可以使出射光不沿直线传输,例如沿折线传输或沿其他路径传输。
可选地,辐射调节部10可以用于通过反射、折射、衍射、波导、色散中的至少一种改变至少部分出射光的传输路径。可以理解的是,反射、折射、衍射、波导和色散可以是单一过程,也可以是其中任意两个过程的组合,或者还可以是其中任意多个的组合。对于出射光的传输路径的改变,可以改变照射到待干燥物体上的热辐射的分布,由此,可以在不改变干燥设备200的运行参数的情况下使照射到待干燥物体上的出射光能够适应多种特定物体,满足特殊体验的需求。
请参阅图1、图3及图6,在一些实施例中,辐射调节部10可以包括反射单元12。反射单元12位于出射光的光路上,即反射单元12被经由出光部260射出的出射光直射。并且,反射单元12用于对射到反射单元12上的出射光进行反射,以改变射到反射单元12上的出射光的传输路径。
例如,在一些实施例中,反射单元12可以与至少部分出光部260相对设置。在附件100被配置于干燥设备200且干燥设备200正常工作的情况下,经由出光部260射出的至少部分出射光能够照射到反射单元12上,此时反射单元12能够对照射到其上的出射光进行反射,从而改变出射光的传输路径。该反射过程与出射光在反射单元12上的入射角以及反射光单元12的法线相关,且满足光线的反射定律,这对于普通技术人员来说是可以理解的,在此不再赘述。如此,照射到待干燥物体上的热辐射的分布可以被改变,配合干燥设备200的出射气流,利于实现高效干燥。同时,反射单元12对于出射光的反射能够减少附件100对出射光的吸收,以避免附件100因吸收大量热辐射而产生高温,防止出现灼烧融化附件100的现象,从而提高安全性。
当然,在一些实施例中,反射单元12还可以设于出射光的光路的其他位置,本申请对此不作限制,只需要保证至少部分反射单元12能够接收到出射光即可。
可选地,反射单元12可以由带有反射物质的不透光材料制成。例如,反射单元12可以包括但不限于反光金属层、反光贴膜、反光涂层、反光镀层中的至少一种,这样,反射单元12的制备选择多,利于控制成本。需要说明的是,能够对出射光提供反射作用的,是位于出射光的光路上且朝向出光部的反射单元12的表面,即附件200上与出光部260相对的表面,可见,反射单元12可以是整体提供反光作用,也可以是位于出射光的光路上且朝向出光部260的表面提供反光作用,例如表面涂反光层,表面电镀反光层,表面贴反光膜,表面设置经过抛光处理的金属反光层等,对此可以综合考虑反光需求、效果、成本等因素适应性设计,本申请不作具体限定。
在本申请的一些实施例,辐射调节部10可以包括折射单元13(如图3所示)。折射单元13位于出射光的光路上,且用于对射到折射单元13上的出射光进行折射。换言之,出射光可以在折射单元13中传输,且出射光在空气中的传播速度与出射光在折射单元13中的传播速度不同,使得出射光在整个传输过程中发生折射,以改变出射光的传输路径。
在一些实施例中,折射单元13覆盖至少部分出光部260。在附件100配配置于干燥设备200且干燥设备200正常工作的情况下,经由被折射单元13覆盖的至少部分出光部260射出的出射光能够入射到折射单元13并在折射单元13中传输,在此过程中,部分出射光被折射,改变了传播方向,从而改变了传输路径。该折射过程与出射光在传输介质(即空气和折射单元13)的折射率相关,且满足光线的折射定律,这对于普通技术人员来说是可以理解的,在此不再赘述。如此,通过折射单元13改变了出射光的传播方向,进而改变了出射光的传输路径,使得照射到待干燥物体上的热辐射的分布可以被改变,配合干燥设备200的出射气流,利于实现对物体的高效干燥。
可选地,折射单元13可以是允许出射光传输的材料件,例如折射单元13可以是透光PC、亚克力、玻璃、毛玻璃中一种或几种的组合,对于折射单元13的具体组成,本申请不作限制。
在一些实施例中,辐射调节部10可以包括衍射单元14(如图3所示),衍射单元14位于出射光的光路上,且用于对入射到衍射单元14的出射光进行衍射。例如,在一些实施例中,衍射单元14可以包括光栅(图未示)。光栅可以与至少部分出光部260相对设置,由出光部260出射的至少部分出射光能够入射到光栅上,光栅对入射到其上的出射光进行衍射,从而改变出射光的传输路径,进而改变出射光的光场分布,利于在不改变干燥设备200的运行参数的前提下使照射到待干燥物体上的辐射的参数满足不同需求。
根据本申请的一些实施例,辐射调节部10可以包括导光单元15(如图3所示),导光单元15位于出射光的光路上,导光单元15具有预设路径,并且导光单元15用于引导接收到的出射光沿预设路径传输。这样,由出光部260出射的出射光可以如入射到导光单元15,并沿导光单元15的预设路径传输后射出,出射光的传输路径被导光单元15的预设路径确定,使得照射到待干燥物体上的出射光(即热辐射)的分布被改变,利于满足特定部位的干燥需求。
在一些实施例中,导光单元15具有入光端,入光端覆盖至少部分出光部260。在附件100配置于干燥设备200且干燥设备200正常工作的情况下,至少部分出射光能够由入光端进入导光单元15,沿预设路径传输,并从导光单元15的出光端射出,可以理解,导光单元15的出光端可以设置于预设位置,该预设位置可以根据需求适应性设计,本申请对此不作限定。如此,能够通过导光单元改变出射光的传输路径,以定向将至少部分出射光引导至预设位置,满足待干燥物体中特定区域的干燥需求。
需要说明的是,导光单元15可以包括光纤、光导、光纤面板及光漏斗中的至少一种,当然导光单元15还可以是其他能够定向传输出射光的材料,在此不作限制。
在一些实施例中,辐射调节部10还可以包括色散单元16(如图3所示),色散单元16位于出射光的光路上,且用于对入射到色散单元16上的出射光进行色散,以使具有不同波长的出射光沿不同路径传输。例如,在一些实施例中,出射光包括不同波长的第一出射光及第二出射光。在附件100配置于干燥设备200且干燥设备200正常工作的情况下,至少部分出射光(包含第一出射光及第二出射光)能够入射到色散单元16,色散单元16对不同波长的出射光的折射率不同,经过色散单元16后,第一出射光沿第一方向传输,第二出射光沿第二方向传输,并且第一方向与第二方向不相同。如此,附件100不但能够改变出射光的传输方向,而且能够使具有不同波长的出射光沿不同路径传输。
另外,水在不同波长辐射的照射下的吸收速度不同,研究表面水在2.5μm~3.5μm有强烈的吸收峰,基于此,可以将干燥效率较高的波段(即波长在2.5μm~3.5μm区间内或靠近该区间)的部分出射光传输至待干燥物体的预设位置,将其他波段的出射光传输至其他位置,提升该预设位置的干燥效率,满足特殊的干燥需求。
可选地,色散单元16可以包括棱镜。当然色散单元16还可以是其他能够将具有不同波长的出射光导向不同路径传输的材料,在此不作限制。
特别需要说明的是,辐射调节部10可以包括吸光单元11、反射单元12、折射单元13、衍射单元14、导光单元15、及衍射单元16中的至少一个。例如,辐射调节部10同时包括其中的两个,比如,同时包括吸光单元11和反射单元12,其他同时包括两个的组合不一一穷举;或者,辐射调节部10同时包括其中的三个,比如,同时包括吸光单元11、反射单元12和折射单元13,其他同时包括三个的组合不一一穷举;或者,辐射调节部10同时包括其中的四个,比如,同时包括吸光单元11、反射单元12、折射单元13和衍射单元14,其他同时包括四个的组合不一一穷举;或,辐射调节部10同时包括所有的五个。在辐射调节部10包括吸光单元11、反射单元12、折射单元13、衍射单元14、导光单元15及衍射单元16中的多个的情况下,辐射调节部10具体的呈现可以是多个物理元件,每个物理元件对应具有吸光单元11、反射单元12、折射单元13、衍射单元14、导光单元15及衍射单元16的功能;或者,辐射调节部10具体的呈现也可以是一个物理元件,该一个物理元件同时具有吸光单元11、反射单元12、折射单元13、衍射单元14、导光单元15及衍射单元16的功能;再或者,辐射调节部10具体的呈现也可以是几个物理元件,但其中部分物理元件同时具有吸光单元11、反射单元12、折射单元13、衍射单元14、导光单元15及衍射单元16中多个的功能。
在一些实施例中,附件100中的辐射调节部10可同时包括色散单元16及吸光单元11。色散单元16位于出射光的光路上,色散单元16对射到其上的出射光进行色散,以将预设波段范围内的出射光导向至吸光单元11,吸光单元11用于吸收预设波段范围内的出射光,以阻碍具有预设波段的出射光向外界射出。例如,色散单元16将波长在2.5μm~3.5μm范围之外的出射光色散导向至吸光单元11,吸光单元11吸收该波长在2.5μm~3.5μm范围之外的出射光,使该部分出射光的辐射能转化为热能,进一步通过热交换加热空气,同时使得波长在2.5μm~3.5μm范围内的出射光照射至待干燥物体,实现高效干燥。
在一些实施例中,附件100还可包括透光部,透光部位于出射光的光路上,且允许至少部分出射光透过。如此,能够减少附件100对于出射光的吸收,避免附件100由于吸收大量辐射能量而产生高温,可以降低发生烫伤等事故的几率,提高安全性,而且,透过透光部的出射光可以照射至待干燥物体,满足干燥需求。
可选地,透光部可以覆盖至少部分出光部260,例如透光部覆盖一部分出光部260,或者透光部覆盖全部出光部260,由出光部260出射的出射光能够部分或者全部透过透光部。当然,透光部还可以设于出射光的光路的其他位置,本申请对此不作具体限制。
特别地,在一些实施例中,透光部还能够对入射到其上的出射光的至少一个参数进行调整。例如,透光部还能够对入射到其上的出射光进行折射,以在透过至少部分出射光的同时,改变透过的出射光的传输方向,使干燥设备200在不改变运行参数的情况下输出至待干燥物体的辐射的参数能够满足不同需求。
根据本申请的一些实施例,附件100还可以包括气流调节部。气流调节部用于调整出射气流的至少一个气流参数。其中,气流参数包括气流的流量、流速、出射方向、温度、湿度、气流组成中的至少一个。在附件100配置于干燥设备200且干燥设备200正常工作的情况下,干燥设备200的出射气流经过气流调节部调整后出射至待干燥物体,气流调节部能够对出射气流的至少一个气流参数进行调整,使出射至待干燥物体上的气流能够满足不同需求。例如,气流调节部可以增大气流的流量,降低流速,改变出射方向,提高温度,降低湿度,将外界气流混合至出射气流中等。对于气流参数的调整,不限于上述示例中描述的过程和结果,可以是其他过程,还可以是单一参数的调整或者多个任意参数的复合调整,这对于本领域技术人员而言是可以理解的,在此不再一一详述。
请参阅图2,在一些实施例中,气流调节部包括流体流动路径21。流体流动路径21可以由附件100的内表面形成,流体流动路径21具有入气口211和出气口212。入气口211与干燥设备200的气流出口2203连通,至少部分出射气流可以流经流体流动路径21并从出气口212射出。可以理解,出射气流在附件100中的流动方向是从入气口211到出气口212的方向,下文提及的流动方向也是做如此解释,不再赘述。示例地,如图2及图7所示,附件100包括环形的附壳31,附壳31的内壁面形成的空腔形成流体流动路径21。其中,图5所示,当附件100包括第一壳32及位于第一壳32外侧的第二壳33时,流体流动路径21由第一壳32的内壁面形成。在附件100配置于干燥设备200的情况下,流体流动路径21的入气口与干燥设备200的气流出口2203连通,使至少部分出射气流能够进入流体流动路径21,并在流体流动路径21内流动后由流体流动路径21的出气口射出,可以理解,流体流动路径21对于在其内部流动的气流具有约束控制作用,如此只需要根据需要对流体流动路径21进行设计,即可实现对出射气流的至少一个气流参数进行调整。
在一些实施例中,请参阅图8,在从入气口211到出气口212的方向上,流体流动路径21的横截面增大,也即出气口212的横截面的面积大于入气口211的横截面的面积,由此,流体流动路径21能够对进入其内的出射气流进行扩散。在附件100配置于干燥设备200且干燥设备200正常工作的情况下,至少部分出射气流能够由较小的入气口211进入流体流动路径21后,从较大的出气口212出射至外界。由于出气口212的横截面的面积大于入气口211的横截面的面积,一方面能够调整出射气流的出射方向,即对进入流体流动路径21的出射气流进行扩散,以扩大出射气流出射后能够覆盖的范围;另一方面能够降低出射气流的流动速度(即流速)。如此,气流调节部通过流体流动路径21调整出射气流的流速及出射方向。
可选地,在一些实施例中,在从入气口211到出气口212的方向上,流体流动路径21的横截面是逐渐增大的,如此能够使流体流动路径21更加平滑,有利于对进入流体流动路径21的出射 气流进行扩散,以增大出射气流能够覆盖的面积,同时还能够使出射气流更加柔和,利于降低风阻噪音,增加用户使用时的舒适度。
请参阅图8,在一些实施例中,流体流动路径21的出气口212端可设有出气盖213,出气盖213上设有该出气口212,流体流动路径21中内的出射气流可通过出气盖213上的出气口212出射至外界。至少部分出气盖213构造为辐射调节部10,从而通过出气盖213实现对出射光的参数的调节。换言之,出气盖213的一部分可以构造为辐射调节部10以调整出射光的至少一个参数,或者出气盖213的全部可以构造为辐射调节部10以调整出射光的至少一个参数。
例如,出气盖213可以整体构造为透光结构,可以在实现出射气流输出的同时允许出射光透过;或者,出气盖213的局部部分可以构造为反光结构,反光结构可以反射部分出射光,可以在实现出射气流输出的同时改变出射光的分布;再或者,出气盖213的局部结构可以设置为色散单元16,色散单元16可以将出射光中波长在2.5μm~3.5μm范围内的部分集中至中间或者外侧的预设位置,可以实现出射气流输出的同时将干燥效率高的出射光导向至预设位置实现特定区域加速干燥。简言之,出气盖213可以实现出射气流和出射光的同时调整。对于至少部分出气盖213构造为辐射调节部10的具体实现方式,本领域技术人员在理解上文的基础上可根据需求适应性选择和设置,本申请对此不作具体限定,在此不一一详述。
可选地,出气盖213可以封闭流体流动路径21,例如,流体流动路径21由环形的附壳31限定,出气盖213可连接于附壳31,以封闭流体流动路径21,使得经过附件100的出射气流从出气盖213上的出气口212射出,利于实现对出射气流的约束控制。出气盖213可以构造为曲面,即出气盖213为曲面型出气盖,由此,出气盖213上的出气口212可以不在同一平面内,可以进一步实现气流的发散,而且在出气盖213整体为透光部的情况下,曲面的出气盖213可以使经过附件100后的出射光的功率分布更趋于均匀,通过较发散的气流和趋于均匀的出射光,可以在满足干燥需求的前提下,提升使用体验。
可以理解,出气盖213构造为曲面,可以是出气盖213的内壁(即朝向流体流动路径21的一面)构造为曲面,也可以是出气盖213的外壁(即朝向外界的一面)构造为曲面,当然还可以是出气盖213的内壁和外壁均构造为曲面。在一个实施例中,如图8所示,整体透光的出气盖213的内壁和外壁均构造为曲面,且出气盖213有大体一致的壁厚,使得出气盖213对于出射光和出射气流同时提供“平缓”作用,使经过出气盖213的气流均匀扩散,并且使进过出气盖213的出射光的功率分布趋于均匀,在干燥待干燥物体时,可以在不改变干燥设备200的运行参数的情况下输出较发散的气流和较均匀的热辐射,从而满足特定需求,另外还方便加工,利于控制成本。
在一些实施例中,出气盖213可以构造为波浪形,出气盖213可以包括自入气口211向出气口212方向凸起的凸起部2134,及自出气口212向入气口211方向凹陷的凹陷部2135。由此,波浪形的出气盖213可以使从出气口212射出的气流具有不同方向,对气流的发散效果更好,并且波浪形的出气盖213可以使出射光的功率分布更均匀。
可选地,出气盖213的波浪形构造可与干燥设备200的出射光的功率分布适配,其中,凸起部2134可与功率大于第一预设功率的出射光对应,凹陷部2135可与功率小于第二预设功率的出射光对应,第一预设功率大于第二预设功率。也就是说,干燥设备200输出的出射光具有不均匀的能量密度,凸起部2134位于能量密度相对较大的区域,以将能量集中的位置包围在出气盖213内侧,并且增加该能量密度较大区域的出射光的传输距离,使能量耗散多,避免使用者或者待干燥物置于能量密度较大的区域而被高温灼烧;凹陷部2135可以位于能量密度相对较小的区域,以将能量较小的位置尽量位于出气盖213外侧,使得此区域的出射光能够直接照射头发等待干燥物而不会被高温灼烧,从而整体上表现为在出气盖213外部的能量密度较为均匀、平缓,也即辐射热量较为均匀、平缓,使用体验更优。
在一些实施例中,如图8所示,出气盖213上设有多个自入气口211向出气口212凸起的出气柱2131。每个出气柱2131都开设有连通外界和流体流动路径21的第一出气孔2132,以使流体流动路径21中的出射气流可通过第一出气孔2132出射至外界。其中,第一出气孔2132形成在出气柱2131的侧壁上,且至少两个出气柱2131上的第一出气孔2132的朝向不相同。如此,能够引导出射气流沿不同方向进行射射,以增大出射气流能够覆盖的面积,同时还能够使出射气流更加 柔和,增加用户使用时的舒适度,尤其是用户使用与该附件100连接的干燥设备200吹头发时,有利于提升头发的蓬松度。
例如,出气柱2131包括间隔分布的多个,多个出气柱2131可分为位于外侧的外出气柱,以及位于外出气柱的径向内侧的内出气柱,其中,外出气柱上具有两个第一出气孔2132,外出气柱上的两个第一出气孔2132设于外出气柱的侧壁且在出气盖213的径向上朝向内部,内出气柱上具有两个第一出气孔2132,内出气柱上的两个第一出气孔2132设于内出气柱的侧壁且在出气盖213的径向上朝向外部。这样,待干燥的头发可置于多个出气柱2131之间,从附件100出射的气流可以分别从径向的内侧和外侧吹向头发,加上出射光透射出气盖213射向头发,在风、光、热的共同作用下可以实现对头发的干燥,且进过扩散的气流能够从不同方向吹向头发,可以使干燥后的头发呈现蓬松的效果,利于保持卷发的卷曲形状。
在一些实施例中,出气盖213上还可设有多个第二出气孔2133,每个第二出气孔2133贯通出气盖213,以连通外界和流体流动路径21,以使流体流动路径21中的至少部分出射气流还可以通过第二出气孔2133出射至外界。如此,流体流动路径21内的出射气流可以从第一出气孔2132和第二出气孔2133出射,不仅能够增加能够由出气盖213出射的气流流量,提升干燥效率,而且可以使出射气流的出射方向更加多样,满足不同需求。
根据本申请的一些实施例,在从入气口211到出气口212的方向上,流体流动路径21的横截面减小,也即出气口212的横截面的面积小于入气口211的横截面的面积,由此,流体流动路径21能够对进入其内的气流进行汇聚。在附件100配置于干燥设备200且干燥设备200正常工作的情况下,至少部分出射气流能够从较大的入气口211进入流体流动路径21后,由较小的出气口212出射至外界。由于出气口212的横截面的面积小于入气口211的横截面的面积,一方面能够调整出射气流的出射方向,即对进入流体流动路径21的出射气流进行汇聚;另一方面能够增加出射气流的流动速度(即流速)。如此气流调节部通过流体流动路径21调整出射气流的流速及出射方向。
可选地,在一些实施例中,在从入气口211到出气口212的方向上,流体流动路径21的横截面是逐渐减小的,如此能够使流体流动路径21更加平滑,对进入流体流动路径21的出射气流进行汇聚的过程中,有利于使大部分出射气流平滑聚集至待干燥物体,从而可提升与该附件100连接的干燥设备200的干燥效率,而且利于降低风阻噪音,提升使用体验。
在一些实施例中,至少部分流体流动路径21上设有辐射调节部10,其中辐射调节部10为吸光单元11、反射单元12、折射单元13及导光单元15中的至少一种。可以理解,部分流体流动路径21上可以设有辐射调节部10,也可以是全部流体流动路径21上设有辐射调节部10。在附件100配置于干燥设备200且干燥设备200正常工作的情况下,干燥设备200的出射光进入附件100后,至少有部分出射光能够射到位于流体流动路径21的辐射调节部10上,此时位于流体流动路径21的辐射调节部10能够对射到其上的出射光的至少一个参数进行调节,具体调节方式与上文中所述的调节方式相同,在此不在赘述。
在一些实施例中,至少部分流体流动路径21可构造为辐射调节部10,换言之,流体流动路径21的部分或者全部能够对出射光实现调整作用,以改变出射光的至少一个参数。如此,能够同时调节出射气流的参数及出射光的参数,并且相较于在流体流动路径21上额外设置辐射调节部10,能够减少元件数量,从而减小附件100的尺寸,减轻质量。
在一个示例中,至少部分流体流动路径21可构造为透光部,干燥设备200的出射光进入附件100后,至少有部分出射光能够入射到透光部上,并从透光部中透过。如此,能够避免出现由于大量出射光不能正常出射至外界导致大量出射光的能量被附件100吸收而灼烧附件100的情况,从而延长附件100的使用寿命,提升用户使用附件100的安全性。
在另一个示例中,流体流动路径21的部分内表面可构造为反射单元12,例如流体流动路径21的部分内表面涂设反光涂层,出射光进入附件100后,部分出射光被反射单元12反射,改变了传输路径,一方面,可以避免附件100吸收大量出射光的能量而产生高温,防止使用者操作附件时被烫伤,另一方面,部分出射光被改变传输路径后,不会照射到待干燥物体,因而待干燥物体的温升可以被抑制,可以实现低温干燥,满足不耐热物体的干燥需求。
当然,流体流动路径21的至少部分还可以是其他类型的辐射调节部10中的一种或多种,本 领域技术人员在理解上文的基础上可以根据需求适应性设置,本申请对此不作具体限定。
根据本申请的一些实施中,请参阅图5,气流调节部还可以包括附加路径22。附加路径22与流体流动路径21连通,并用于将外界气流引入流体流动路径21,以调整出射气流的温度、湿度和成分中的至少一个。这样,干燥设备200在不改变运行参数的情况下输出的出射气流的参数是基本相同的,在经过附件100的过程中,通过附加路径22将外界气流引入流体流动路径21,使得出射气流与引入的外界气流汇合,从附件100输出的气流即被调整,可以改变温度、湿度和成分等参数,使干燥设备200在不改变运行参数的情况下输出至待干燥物体的气流能够满足不同需求。其中,附加路径22对于出射气流的调整,可以是调整单一的参数,也可以是两个或两个以上复合的参数,这对于本领域技术人员而言是可以理解的,对此不再详述。
在一些实施例中,附加路径22包括附加入口和附加出口,附加入口与外界连通,附加出口与流体流动路径21连通,由此,外界的空气能够由附加入口进入附加路径22,在附加路径22内流动至附加出口,由附加出口进入流体流动路径21与出射气流汇合,汇合后的气流可由出气口212出射至外界。可以理解,汇合了外界空气的出射气流与干燥设备输出的出射气流在温度、湿度、成分等方面存在区别,即附加路22径能够调整出射气流的温度、湿度、成分等。
当然,附加路径22的设置不限于上述方式,还可以是附加入口与流体流动路径21连通,附加出口为外界连通,由此,干燥设备200输出的出射气流可以分为两部分,一部分从附加入口进入附加路径22,在附加路径22内流动至附加出口后输出,另一部分持续在流体流动路径21中传输,从出气口212出射至待干燥物体。可以理解,输出至待干燥物体的是分离了一部分的出射气流,与未经分离的出射气流在温度、湿度、成分等方面存在区别,即附加路径22能够调整出射气流的温度、湿度、成分等。附加路径22对于出射气流的调整不限于上述方式,在此不作限制。
请参阅图5,在一些实施例中,附件100包括第一壳32及第二壳33,第一壳32收容在第二壳33内。第一壳32的内表面形成流体流动路径21,第一壳32与第二壳33之间形成附加路径22,外界气流能够在附加路径22内流动,并在出气口位置与出射气流汇合,以调整出射气流的温度和湿度等。其中,第一壳32的位于出射光的光路上的部分构造为辐射调节部10;或者,第一壳32位于出射光的光路上的至少部分内表面构造为辐射调节部10。辐射调节部10可以为吸光单元11、反射单元12、折射单元13及导光单元15中的至少一种。
根据本申请的一些实施例,请参阅图5、图6及图8,气流调节部还可以包括调节单元24,调节单元24用于加热和/或制冷流体流动路径21中的气流,以调整出射气流的温度和/或湿度。例如,调节单元24可以对流体流动路径21内的气流加热,使气流温度升高,气流中的水份被蒸发,气流的湿度降低;或者,调节单元24可以对流体流动路径21内的气流制冷,使气流温度降低;再或者,调节单元24可先对流体流动路径21内的气流先加热后制冷,先制冷后加热等等。
如此,能够使流动至待干燥物体的出射气流的温度和/或湿度,更加符合用户的期望,尤其是用户使用与该附件100连接的干燥设备200吹头发的情况下,用户可以根据自身需求通过调节单元24调整出射气流的温度和/或湿度,以使吹到头发和头皮的气流温度和/或湿度与体表温度和/或湿度相近,从而提升用户使用干燥设备200的舒适度。其中,调节单元24可以设置在流体流动路径21内;或者设于气流入口211;或者设于气流出口212,本申请对此不作限制。
根据本申请的一些实施例,请参阅图5、图6及图8,气流调节部还可以包括成分发生器25,成分发生器25用于生成微粒并向流体流动路径21内的气流添加所述微粒,以调整气流成分,使得出射到待干燥物体的气流具备成分发生器25生成的微粒。其中,成分发生器25用于生成金属微粒子、离子、带电微粒子、带电微粒子液体、酸性成分微粒、碱性成分微粒中的至少一种。例如,在一些实施例中,成分发生器25用于生成金属微粒子,并且生成的金属微粒子中含有金、银、铜及锌中的至少一种,如此能够使出射气流具有抗菌功效;再例如,在一些实施例中,成分发生器25用于生成金属微粒子,并且生成的金属微粒子中含有含铂、锌、钛中的至少一种,如此能够使出射气流具有抗氧化作用;再例如,在一些实施例中,成分发生器25用于生成负离子,如此出射气流中具有负离子,若采用该出射气流对头发进行干燥,能够提高头发护理效果;再例如,成分发生器25用于生成酸性成分微粒,如此能够使出射气流具有杀菌清洁作用。再例如,成分发生器25用于生成碱性成分微粒,如此能够使出射气流具有清洁作用。成分发生器25可以设置在流体流动路径21内;或者设于气流入口211;或者设于气流出 口212,在此不作限制。
请参阅图6及图7,根据本申请的一些实施例,附件100中还可以包括气流引导件40。至少部分气流引导件40位于流体流动路径21内,且用于引导流体流动路径21内的气流。由此,进入流体流动路径21的出射气流可以在气流引导件40以及流体流动路径21的共同作用下流动,气流引导件40可以对气流的流速、流向进行辅助引导,使得出射到待干燥物体的气流的参数更加符合期待,且气流引导件40可以使气流的流动趋于平滑,利于控制风阻噪音,可以提升使用体验。
请参阅图6,在一些实施例中,气流引导件40包括引导壁41,引导壁41构造为大体锥形壁,且在入气口211到出气口212的方向上定向,引导壁41的顶点朝向出气口212。可以理解,出射气流在流体流动路径21中流动时,流动方向会被引导壁41改变,大体锥形且顶点朝向出气口212的引导壁41可以将气流引导为趋于汇聚,则从出气口212出射至待干燥物体的气流可以表现为较集中,这种情况下,配合从入气口211到出气口212的方向上渐缩的流体流动路径21,可以实现气流的汇聚,满足待干燥物体局部高效干燥的需求,且引导壁41的引导可以使气流的流动平滑,可降低风阻噪音。
对于引导壁41而言,可以是气流引导件40的内壁,即气流可以在气流引导件40内部流动,也可以是气流引导件40的外壁,即气流在气流引导件40的外部流动,还可以是薄片状气流引导件40的内外壁,气流可以同时在气流引导件40的内侧和外侧流动。上述几种情况下,气流均可被气流引导件40的引导壁41引导,这对于本领域的技术人员而言是可以理解的,本申请对此不作具体限制。
可选地,引导壁41可以构造为塞子42,塞子42的外壁面形成引导壁41。塞子可以是大体锥形的实心体或空心体,在附件100配置于干燥设备200的情况下,塞子42可与干燥设备200的气流出口2203位置对应,出射气流进入附件后沿塞子42的外壁面流动,即气流被塞子42的外壁面形成的引导壁41引导。如此,结构简单,便于加工和装配,且对于气流的引导作用可以通过调整塞子42的外壁面的形状实现调节,实现成本低廉。
在一些实施例中,干燥设备的气流出口2203(如图1所示)形成为环形气流出口2203,气流引导件40还可以包括引导面43,引导面43包围至少部分出射气流,以将至少部分环形气流转向为层流。需要说明的是,此处的环形气流、层流应为广义理解,即气流的轮廓的大体形状,环形气流通常为没有明显的长度和宽度区别,层流一般为轮廓为扁平状。环形气流出口2203可以是圆形出口,或者可以是具有内壁和外壁的环形出口。其中,引导面43可以包围一部分出射气流,例如位于中心的部分,或者,引导面43可以包围全部出射气流,使由引导面43包围的气流被引导面43转向,从环形气流转向为层流,即在不改变干燥设备200的运行参数的情况下,附件可以将环形气流转向为层流,有利于提升干燥效果。
可选地,在一些实施例中,气流引导件40可以构造为中空的套筒44,套筒44用于包围干燥设备200的气流出口2203,以使干燥设备200输出的出射气流能够进入套筒44。套筒44的相对的两个侧壁441之间的间距朝向出气口212减小,也即越靠近出气口212,套筒44的相对两个侧壁441之间的间距就越小。套筒44沿入气口211到出气口212的方向定向,套筒44的朝向出气口212的一端为开口,以使进入套筒44内的出射气流能够由该开口出射入套筒44。其中,套筒44的相对的两个之间间距逐渐减小的侧壁411的内表面即构造为引导面43。在附件100配置于干燥设备200的情况下,出射气流能够进入套筒44内,并沿套筒44的两个侧壁411的内表面之间流动,流动过程中,引导面43对气流起到约束控制作用,使出射气流由环形气流转向为层流,随后从套筒44的开口射出套筒44。可以理解,相比于呈环形的气流,层流的流速较大且气流较集中,可以加快待干燥物体局部位置的干燥速度,满足特殊的干燥需求。
在一些实施例中,套筒44可以大体呈鸭嘴型,即在朝向出气口212的方向上,套筒44的相对的两个侧壁之间的间距减小,连接于该间距减小的两个侧壁之间的相对的两个侧壁之间的间距不变,由此,可利于降低风阻噪音。
可以理解,上述实施例中不同的气流引导件可以是独立作用,亦可共同作用。例如,请参阅图6,在一些实施例中,塞子42可以收容在中空的套筒44内,以使引导壁41与引导面43相对。如此气流引导件40不仅能够将至少部分呈环形的出射气流转向为层流,还能够引导出射气流沿引导壁41流动。其中,塞子42和套筒44的具体结构,与上述实施例中所述的塞子42和套筒44的具体结构大体相同,在此不作赘述。通过塞子42和套筒44的共同作用,可以从内侧和外侧同时约束气流,使得出射至待干燥 物体的气流更符合期待,进一步满足干燥需求。
根据本申请的一些实施例,请参阅图7及图8,气流引导件40还可以包括格栅45。格栅45可位于流体流动路径21内,且格栅45具有多个过气口451,流体流动路径21内的至少部分气流流经多个过气口451。示例地,如图8所示,格栅45包括进气口452及多个过气口451。格栅45设于流体流动路径21内,且进气口452与干燥设备200的气流出口2203相对设置,以使至少部分出射气流通过进气口452进入格栅45后,由多个过气口451流出格栅45。如此,能够通过格栅45改变至少部分出射气流的至少一个气流参数。具体而言,出射气流流经格栅45,流动被格栅45阻碍,流速会降低,出射方向会被过气口452改变,且气流的参数改变由格栅45和流体流动路径21的共同作用,使得进过附件100后的气流能够满足不同需求。
可选地,多个过气口451的朝向不完全相同,可以是多个过气口的朝向互不相同,也可以是其中一部分过气口的朝向相同,其中另一部分过气口的朝向不同。如此,能够使至少部分出射气流经过格栅45的过气口451后,由多个方向射出,使气流呈现出更明显的扩散效果,有利于提升干燥效果,尤其是吹头发时,有利于提升头发的蓬松度。
在一些实施例中,格栅45构造为中空的大体锥形,且在入气口211到出气口212的方向上定向,格栅45的顶点朝向出气口212,多个过气口451间隔设置于格栅45且每个过气口451贯通格栅45的内表面和外表面。一方面,由于格栅45构造为中空的大体锥形,且在入气口211到出气口212的方向上定向,格栅45的顶点朝向出气口212,如此能够引导流体流动路径21内至少部分出射气流流动;另一方面,由于格栅45上开设有多个过气口451,如此能够改变进入格栅45内的至少部分出射气流的传输路径。这样,经过附件100处理后,气流被降速且方向发散。
在一些实施例中,附件100还包括连接桥46。连接桥46用于连接格栅45及与形成流体流动路径21的结构相连。其中,当流体流动路径21由附件100的附壳31内壁面形成时,格栅45通过连接桥46与附壳31连接,使得附壳31和格栅45形成一体,便于为干燥设备200配置流体流动路径21和格栅45。在一些实施例中,连接桥46的数量为多个,并且多个连接桥46在格栅45的周向上间隔分布,例如多个连接桥46在格栅45的周向上均匀间隔分布,如此有利于提升格栅45及与形成流体流动路径21的结构之间的连接强度,且可以提升附件的美观性。
请参阅图8,在从入气口211到出气口212的方向上,流体流动路径21的横截面是逐渐增大的,流体流动路径21的出气口212端设有出气盖213,且附件100内设有格栅45,出气盖213为曲面,且出气盖213的凸起部2134与格栅45对应。也即,与格栅45相对位置的出气盖213的表面,自入气口211向出气口212方向凸起以形成凸起部2134。如此能够增加流体流动路径21内的收容空间,有利于将格栅45收容在流体流动路径21内。
可以理解,格栅45配合上述实施例中渐扩的流体流动路径21,以及上述实施例中呈波浪形且透光的出气盖213,可以使气流扩散后射向待干燥物体,同时使出射光透过出气盖213后照射至待干燥物体,从而通过风、光、热的共同作用实现对待干燥物体的高效干燥,并且能够在不改变干燥设备200的运行参数的情况下满足不同的干燥需求,提升使用体验。对于流体流动路径21以及出气盖213,本领域技术人员可以在理解上文的基础上根据需求适应性设置,在此不作赘述。
根据本申请的一些实施例,辐射调节部10可设置于气流调节部和气流引导件40中的至少一个上。例如,辐射调节部10设置于气流调节部上,或者,辐射调节部10设置于气流引导件40上,再或者,气流调节部和气流引导件40上都设置辐射调节部10。如此,可以通过气流调节部和气流引导件40中的至少一个同时调节出射气流及出射光。其中,辐射调节部10设置于气流调节部上的实现方式,与上文中所述的相同,在此不作赘述。当辐射调节部10设置于气流引导件40时,辐射调节部10可以设置在引导面43、引导壁41及格栅45外表面中的至少一个上。当然,在一些实施例中,引导面43、引导壁41及格栅45外表面中的至少一个的至少部分的构造为辐射调节部10,在此不作限制。
对于辐射调节部10与气流调节部的不同调节方式,在不冲突的情况下可以进行组合,本领域技术人员可以适应性设置,这是在理解上文的基础上能够实现的,本申请对于不同组合的实现方式和效果不做一一详述。
请参阅图1、图2及图7,在一些实施例中,附件100还可以包括附接部50,附接部50能够与干燥设备200连接,以将附件100配置于干燥设备200。其中,附件部50可以与辐射调节部10相连,并且 附件部50与辐射调节部10可以通过可拆卸连接的方式连接,也可以通过固定连接的方式连接,在此不作限制。
在一些实施例中,附接部50还可以与附件100中的辐射调节部10、气流调节部及气流引导件40中的至少一个结合。例如,在一些实施例中,附接部50可以设置于气流调节部的流体流动路径21的入气口211。
在一些实施例中,附接部50可以与干燥设备200可拆卸连接,如此方便随时连接或拆卸附件100与干燥设备200,便于根据干燥需求选择干燥设备200单独使用或配置附件使用。
其中,附接部50可以与干燥设备200通过磁吸、卡合、螺纹旋转中至少一种可拆卸连接。请结合图4,在一些实施例中,附接部50用于套设于干燥设备200的壳体210,干燥设备200上设有磁吸连接件(图未示),附接部50上设有磁吸件51,磁吸件51与磁吸连接件可磁吸连接,以将附件100安装于所述干燥设备200。
在一些实施例中,附接部50用于与干燥设备200的风道220适配,附接部50上的磁性件51可与风道壁磁性相吸,例如风道220的内周壁,或者风道220的外周壁,再或者形成风道220的结构的端部等,以实现附件100与干燥设备200的连接。当然,附接部50还可与干燥设备200的其他结构适配连接,本领域技术人员可以综合考虑设置空间、成本、连接稳定性、牢固性等因素适应性设置,本申请对此不作具体限定
其中,磁吸连接部和磁吸件51中的其中一个为磁性材料件,另一个为磁铁。
可选地,在一些实施例中,如图4所示,磁吸件51的数量为多个,多个在附件100的周向上间隔设置,例如多个磁吸件51在附件100的周向上均匀间隔设置,如此有利于附件100与干燥设备200的稳定连接。
当然,在一些实施例中,附接部50也可以与干燥设备200固定连接,例如附接部50与干燥设备200的壳体210固定连接,如此能够使二者的连接稳定牢固,避免脱落。请参阅图2、图4及图5,本申请实施方式还提供一种用于干燥设备200的附件100。干燥设备200与上述实施例中描述的干燥设备200类似,在此不在赘述。附件100包括流体流动路径21及吸光单元11。流体流动路径21具有入气口211和出气口212,入气口211用于与气流出口2203连通,至少部分出射气流流经流体流动路径21并从出气口212射出。至少部分吸光单元11位于出射光的光路上,吸光单元11用于吸收至少部分出射光以降低出射光的功率密度。其中,吸光单元11与流体流动路径21进行热交换。
一方面,由于至少部分吸光单元11位于出射光的光路上,并用于吸收至少部分出射光以降低出射光的功率密度,如此能够免出射光的功率过高灼烧附件100或待干燥的物体;另一方面,由于吸光单元11能够与流体流动路径21进行热交换,如此能够对在流体流动路径21内的出射气流进行加热,以提高出射气流的温度,从而提升干燥设备200的干燥效率。
在一些实施例中,在附件100配置于干燥设备200的情况下,干燥设备200形成的至少部分出射气流及至少部分出射光均穿过附件100后出射至外界。在此过程中,至少部分吸光单元11设置于流体流动路径21;或至少部分流体流动路径21被构造为吸光单元11。如此吸光单元11能够吸收至少部分出射光以降低出射光的功率密度,并且将吸收的光能转化为热能,随后通过热传导对在附件100中的出射气流进行加热,以提升出射气流的温度。特别地,此时,在一些实施例中,在从入气口211到出气口212的方向上,流体流动路径21的横截面减小。也即,附件100还能够对出射气流进行汇聚,有利于使大部分出射气流聚集至待干燥物体上,从而在不改变干燥设备200的运行参数的情况下提升与该附件100连接的干燥设备200的干燥效率。
进一步地,在一些实施例中,附件100外壳包括第一壳32及第二壳33,第一壳32收容在第二壳33内。第一壳32的内表面形成流体流动路径21。第一壳32与第二壳33之间形成附加路径22,外界气流能够在附加路径22内流动,与流体流动路径21进行热交换,以降低流动流动路径内气流及吸光单元11的温度,从而避免出射气流及吸光单元11过热,另外,附加路径22还可以阻隔第一壳32和第二壳33之间的热量传递,减缓第二壳33的温升积累,就算第一壳32在出射光的作用下会出现温度较高的现象,使用者操作附件100时依然可以直接操作第二壳33,而不会感受到明显的高温,利于提升使用体验。
请参阅图7及图8,本申请实施方式还提供一种用于干燥设备200的附件100。干燥设备200与上述实施例中描述的干燥设备200类似,在此不在赘述。附件100包括流体流动路径21及透光单元。流 体流动路径21具有入气口211和出气口212,入气口211用于与气流出口2203连通,至少部分出射气流流经流体流动路径21并从出气口212射出。透光单元位于出射光的光路上,透光单元用于允许部分出射光透过,且透光单元用于吸收部分出射光以降低出射光的功率密度。
一方面,由于透光单元能够允许部分出射光透过,能够避免出现由于大量出射光不能够正常出射至外界,导致大量出射光的能量堆积在附件100内,从而延长附件100的使用寿命及提升用户使用附件100的安全性。
具体地,在一些实施例中,在附件100配置于干燥设备200的情况下,干燥设备200形成的至少部分出射气流及至少部分出射光均穿过附件100后出射至外界。此时,至少部分透光单元设置于流体流动路径21;或至少部分流体流动路径21的构造为透光单元。在一些实施例中,在从入气口211到出气口212的方向上,流体流动路径21的横截面增大。也即,附件100还能够对出射气流进行扩散,以增大出射气流能够覆盖的面积,同时还能够使出射气流更加柔和,增加用户使用时的舒适度。
请参阅图9,本申请实施方式还提供一种用于干燥设备200的附件100。干燥设备200与上述实施例中的干燥设备200相同,在此不在赘述。附件100包括气流调节部及辐射调节部10。气流调节部用于调整出射气流的至少一个气流参数,其中,气流参数包括气流的风量、风速、出射方向,风场面积中的至少一个。至少部分辐射调节部10位于出射光的光路上,辐射调节部10用于通过反射、折射、吸收、衍射、导光、色散中的至少一种改变至少部分出射光的功率密度和/或传输路径。如此能够在调节出射气流至少一个气流参数的同时,还能够通过改变至少部分出射光的功率密度和/或传输路径,以避免出现由于大量出射光不能够正常出射至外界,导致大量出射光的能量堆积在附件100内灼烧附件100,从而使用附件100的安全性。
具体地,在一些实施例中,附件100包括气流调节柱60,气流调节柱60的横截面在气流的流动方向上逐渐增大,以使气流调节柱60的外周面构造为气流调节部。在附件100与干燥设备200连接的情况下,气流调节柱60与风道220的气流出口2203对应设置,以使从风道220出射的至少部分出射气流能够沿气流调节柱60的外周面(即气流调节部)出射,从而调节其的至少一个气流参数。
在一些实施例中,在附件100与干燥设备200连接的情况下,干燥设备200形成的至少部分出射气流及至少部分出射光均经过附件100后出射至外界。此时,至少部分辐射调节部10(如图3所示)设置于气流调节部,如此能够同时对至少部分出射气流及至少部分出射光进行调节。其中,辐射调节部10可以包括上述任意一项所述实施例中所述的吸光单元11、反射单元12、折射单元13、衍射单元14、导光单元15、色散单元16中的至少一种。
进一步地,在一些实施例中,附件100还可以包括附壳31及连接柱70。附壳31用于与干燥设备200连接,连接柱70用于连接附壳31与气流调节柱60,以使在附件100与干燥设备200连接的情况下,气流调节柱60能够与风道220的气流出口2203对应。连接柱70的第一面朝向气流出口2203,至少部分连接柱70的第一面设有辐射调节部10。其中,辐射调节部10可以包括上述任意一项所述实施例中所述的吸光单元11、反射单元12、折射单元13、衍射单元14、导光单元15、色散单元16中的至少一种。
请参阅图2、图4及图5,本申请实施方式还提供一种用于干燥设备200的附件100。干燥设备200与上述实施例中的干燥设备200相同,在此不在赘述。附件100包括吸光单元11。至少部分吸光单元11位于出射光的光路上,用于吸收至少部分出射光,以使从附件100射出的出射光的功率小于,进入附件100的出射光的功率的百分之二十。例如,干燥设备200出射的出射光的功率为200W,在附件100与干燥设备200连接的情况下,假设所有出射光均能够进入附件100,并穿过附件100后出射至外界。则进入附件100的出射光的功率的为200W,在经过附件100中的吸光单元11对至少部分出射光进行吸收后,从附件100射出的出射光的功率小于入附件100的出射光的功率的百分之二十,即从附件100射出的出射光的功率小于40W。如此能够在不改变干燥设备200的运行参数的情况下通过附件降低出射光的功率,满足不同需求。
请参阅图7及图8,本申请实施方式还提供一种用于干燥设备200的附件100。干燥设备200与上述实施例中的干燥设备200相同,在此不在赘述。附件100包括流体流动路径21及吸光单元11。流体流动路径21具有入气口211和出气口212,在从入气口211到出气口212的方向上,流体流动路径21的横截面增大,入气口211用于与气流出口2203连通,至少部分出射气流流经流体流动路径21并从出气口212射出。至少部分出射光能够进入流体流动路径21,并在流体流动路径21的引导下出射至外界。 至少部分透光单元位于流体流动路径21内,透光单元用于允许部分出射光透过,以使从附件100射出的出射光的功率密度,与进入附件100的出射光的功率密度之间的差值小于预设阈值。例如,干燥设备200出射的出射光的功率密度为0.06W/mm 2,在附件100配置于干燥设备200的情况下,假设所有出射光均能够进入附件100的流体流动路径21内,并在流体流动路径21的引导下出射至外界,从附件100射出的出射光的功率密度也为0.06W/mm 2。也即从附件100出射的出射光的功率密度与进入附件100的出射光的功率密度大致相同。
请参阅图6,本申请实施方式还提供一种用于干燥设备200的附件100。干燥设备200与上述实施例中的干燥设备200相同,在此不在赘述。附件100包括流体流动路径21及反射单元12。流体流动路径21具有入气口211(如图2所示)和出气口212(如图2所示),在从入气口211到出气口212的方向上,流体流动路径21的横截面减小,入气口211用于与气流出口2203连通,至少部分出射气流流经流体流动路径21并从出气口212射出。至少部分出射光能够进入流体流动路径21,并在流体流动路径21的引导下出射至外界。至少部分反射单元12位于流体流动路径21内,反射单元12用于对射到所述反射单元12上的所述出射光进行反射,以使从附件100射出的出射光的功率密度大于进入所述附件100的出射光的功率密度。干燥设备200出射的出射光的功率密度为0.06W/mm 2,在附件100与干燥设备200连接的情况下,假设所有出射光均能够进入附件100的流体流动路径21内,并在流体流动路径21的引导下出射至外界,出射光在经由流体流动路径21内的反射单元12的反射后,从附件100射出的出射光的功率密度为0.12W/mm 2。也即从附件100出射的出射光的功率密度大于进入附件100的出射光的功率密度。这样,可以在不改变干燥设备200的运行参数的情况下通过附件增大照射到待干燥物体上的功率密度,满足不同干燥需求。
请参阅图2、图4及图5,本申请实施方式还提供一种用于干燥设备200的附件100。干燥设备200与上述实施例中的干燥设备200相同,在此不在赘述。附件100包括流体流动路径21及吸光单元11。流体流动路径21具有入气口211和出气口212,在从入气口211到出气口212的方向上,流体流动路径21的横截面减小,入气口211用于与气流出口2203连通,至少部分出射气流流经流体流动路径21并从出气口212射出。至少部分出射光能够进入流体流动路径21,并在流体流动路径21的引导下出射至外界。至少部分吸光单元11位于流体流动路径21内,所述吸光单元11用于吸收至少部分出射光,以使从附件100射出的出射光的功率密度小于进入所述附件100的出射光的功率密度。干燥设备200出射的出射光的功率密度为0.06W/mm 2,在附件100与干燥设备200连接的情况下,假设所有出射光均能够进入附件100的流体流动路径21内,并在流体流动路径21的引导下出射至外界,出射光在经由流体流动路径21内的吸光单元11的吸收后,从附件100射出的出射光的功率密度也为0.014W/mm 2。也即从附件100出射的出射光的功率密度小于进入附件100的出射光的功率密度。可以理解,配置附件100后的干燥设备200在不改变运行参数的情况下可以降低出射光的功率密度,从而满足不同需求。
需要强调的是,上文对于干燥设备200的功率以及功率密度的描述,仅为示例性描述,本申请实施例的干燥设备200的出射光的功率(即辐射源的输出功率)不限于上文描述的示例。干燥设备200的辐射源240的辐射功率至少为5W,例如可以是5W、10W、50W、75W、80W、100W、120W等,本申请对此不作具体限制,可以根据实际需要设置。
请参阅图10,本申请实施方式还提供一种干燥组件1000。干燥组件1000包括干燥设备200和附件100。其中,干燥设备200包括:壳体210、气流产生元件230及辐射源240。壳体210内部设有风道220,风道220具有气流入口2201和气流出口2203;气流产生元件230设置在壳体210内并用于产生气流,且将气流从气流出口2203射出以形成出射气流;辐射源240设置于壳体210并产生辐射,且将辐射从出光部260导向壳体210的外部以形成出射光。附件100可以为上述任意一项实施例中所述的附件100,至少部分附件100位于出射光的光路上。如此,干燥设备200发射的至少部分出射光能够进入附件100中,并且附件100中的辐射调节部10能够对至少部分出射光的至少一个参数进行调整,以避免附件100严重阻碍红外光的正常发射,从而在实现对物体的正常干燥的同时减少发生安全事故的几率。
具体地,在一些实施例中,干燥设备200具有安装部。安装部与附件100的附接部50适配,以通过安装部与附接部50连接干燥设备200和附件100。
请参阅图1,本申请实施方式还提供一种干燥设备200,该干燥设备200与附件可适配,其中,附 件为本申请上述实施方式描述的附件100。干燥设备200包括壳体210、气流产生元件230及辐射源240,壳体210内部设有风道220,风道220具有气流入口2201和气流出口2203,气流产生元件230设置在壳体210内并用于产生气流,且将气流从气流出口2203射出以形成出射气流,辐射源240设置于壳体210并产生辐射,且将辐射从出光部260导向壳体210的外部以形成出射光。其中,出射光可以经过上述实施方式描述的附件100调整。
可以理解,干燥组件1000通过在干燥设备200的出射光的光路上设置附件100,可以在不改变干燥设备200的运行参数的情况下调整辐射参数,而且,相同的干燥设备200配置不同的附件100后辐射参数的调整结果可以不同,当然,还可以结合上文描述的气流调节部实现对出射气流的参数的调整,使得出射光和出射气流满足不同需求。这对于本领域技术人员而言,在理解上述实施例的基础上,可以适应性设置。
在本说明书的描述中,参考术语“某些实施方式”、“一个实施方式”、“一些实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个所述特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个,除非另有明确具体的限定。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (56)

  1. 一种附件,用于干燥设备,所述干燥设备包括:
    壳体,所述壳体内部设有风道,所述风道具有气流入口和气流出口;
    气流产生元件,所述气流产生元件设置在所述壳体内并用于产生气流,且将气流从气流出口射出以形成出射气流;
    辐射源,所述辐射源设置于所述壳体并产生辐射,且将所述辐射从出光部导向所述壳体的外部以形成出射光;
    其特征在于,所述附件包括:
    辐射调节部,所述辐射调节部用于调整至少部分所述出射光的至少一个参数,其中,所述参数包括辐射的功率密度、传输路径、光场分布中的至少一种。
  2. 根据权利要求1所述的附件,其特征在于,所述出射光具有光路,所述至少部分所述辐射调节部位于所述光路上。
  3. 根据权利要求1所述的附件,其特征在于,
    所述辐射调节部覆盖至少部分所述出光部;或者,
    所述辐射调节部与至少部分所述出光部相对设置。
  4. 根据权利要求1所述的附件,其特征在于,所述辐射调节部用于降低所述出射光的功率密度。
  5. 根据权利要求4所述的附件,其特征在于,所述辐射调节部包括:
    吸光单元,至少部分所述吸光单元位于所述出射光的光路上,所述吸光单元用于吸收至少部分所述出射光以降低所述出射光的功率密度。
  6. 根据权利要求1所述的附件,其特征在于,所述辐射调节部用于改变所述出射光的传输路径。
  7. 根据权利要求6所述的附件,其特征在于,所述辐射调节部用于通过反射、折射、衍射、波导、色散中的至少一种改变至少部分所述出射光的传输路径。
  8. 根据权利要求7所述的附件,其特征在于,所述辐射调节部包括:
    反射单元,所述反射单元位于所述出射光的光路上,且用于对射到所述反射单元上的所述出射光进行反射。
  9. 根据权利要求8所述的附件,其特征在于,所述反射单元与至少部分所述出光部相对设置。
  10. 根据权利要求7所述的附件,其特征在于,所述辐射调节部包括:
    折射单元,所述折射单元位于所述出射光的光路上,且用于对射到所述折射单元上的所述出射光进行折射。
  11. 根据权利要求10所述的附件,其特征在于,所述折射单元覆盖至少部分所述出光部。
  12. 根据权利要求7所述的附件,其特征在于,所述辐射调节部包括:
    导光单元,所述导光单元具有预设路径,所述导光单元位于所述出射光的光路上,且用于引导接收到的所述出射光沿所述预设路径传输。
  13. 根据权利要求12所述的附件,其特征在于,所述导光单元具有入光端,所述入光端覆盖至少部分所述出光部。
  14. 根据权利要求1所述的附件,其特征在于,还包括:
    透光部,所述透光部位于所述出射光的光路上,且允许至少部分所述出射光透过。
  15. 根据权利要求14所述的附件,其特征在于,所述透光部覆盖至少部分所述出光部。
  16. 根据权利要求1-15中任一项所述的附件,其特征在于,还包括:
    气流调节部,所述气流调节部用于调整所述出射气流的至少一个气流参数,其中,所述气流参数包括:气流的流量、流速、出射方向、温度、湿度、成分中的至少一个。
  17. 根据权利要求16所述的附件,其特征在于,所述气流调节部包括:
    流体流动路径,所述流体流动路径由所述附件的内表面形成,所述流体流动路径具有入气口和出气口,所述入气口用于与所述气流出口连通,至少部分所述出射气流流经所述流体流动路径并从所述出气口射出。
  18. 根据权利要求17所述的附件,其特征在于,在从所述入气口到所述出气口的方向上,所述流体流动路径的横截面增大。
  19. 根据权利要求18所述的附件,其特征在于,所述流体流动路径的出气口端设有出气盖,所述出气盖上设有所述出气口,至少部分所述出气盖构造为所述辐射调节部。
  20. 根据权利要求19所述的附件,其特征在于,所述出气盖封闭所述流体流动路径,且所述出气盖构造为曲面。
  21. 根据权利要求20所述的附件,其特征在于,所述出气盖构造为波浪形,其中,所述出气盖包括:
    自所述入气口向所述出气口方向凸起的凸起部;及
    自所述出气口向所述入气口方向凹陷的凹陷部。
  22. 根据权利要求21所述的附件,其特征在于,所述出气盖的波浪形构造与所述干燥设备的所述出射光的功率分布适配,其中,所述凸起部与功率大于第一预设功率的出射光对应,所述凹陷部与功率小于第二预设功率的出射光对应,所述第一预设功率大于所述第二预设功率。
  23. 根据权利要求9所述的附件,其特征在于,所述出气盖上设有多个自所述入气口向所述出气口方向凸起的出气柱,每个所述出气柱上开设有连通外界和所述流体流动路径的第一出气孔,且至少两个所述出气柱上的所述第一出气孔的朝向不同。
  24. 根据权利要求17所述的附件,其特征在于,在从所述入气口到所述出气口的方向上,所述流体流动路径的横截面减小。
  25. 根据权利要求24所述的附件,其特征在于,至少部分所述流体流动路径上设有所述辐射调节部,所述辐射调节部为吸光单元、反射单元、折射单元、导光单元中的至少一种。
  26. 根据权利要求25所述的附件,其特征在于,至少部分所述流体流动路径构造为所述辐射调节部。
  27. 根据权利要求17所述的附件,其特征在于,所述气流调节部还包括:
    附加路径,所述附加路径与所述流体流动路径连通,并用于将外界气流引入所述流体流动路径,以调整所述出射气流的温度、湿度和成分中的至少一个。
  28. 根据权利要求27所述的附件,其特征在于,所述附加路径包括附加入口和附加出口,其中,
    所述附加入口与外界连通,所述附加出口与所述流体流动路径连通;或者,
    所述附加入口与所述流体流动路径连通,所述附加出口与外界连通。
  29. 根据权利要求17所述的附件,其特征在于,所述气流调节部还包括:
    调节单元,所述调节单元用于加热或制冷所述流体流动路径中的气流,以调整所述出射气流的温度和/或湿度。
  30. 根据权利要求17所述的附件,其特征在于,所述气流调节部还包括:
    成分发生器,所述成分发生器用于生成微粒并向所述流体流动路径内的气流添加所述微粒,以调整气流成分。
  31. 根据权利要求30所述的附件,其特征在于,所述成分发生器用于生成金属微粒子、离子、带电微粒子、带电微粒子液体、酸性成分微粒中的至少一种。
  32. 根据权利要求17所述的附件,其特征在于,还包括:
    气流引导件,至少部分所述气流引导件位于所述流体流动路径内,且用于引导所述流体流动路径内的气流。
  33. 根据权利要求32所述的附件,其特征在于,所述气流引导件包括引导壁,所述引导壁构造为大体锥形壁,且在所述入气口到所述出气口的方向上定向,所述引导壁的顶点朝向所述出气口。
  34. 根据权利要求33所述的附件,其特征在于,所述气流引导件构造为塞子,所述塞子的外壁面形成所述引导壁。
  35. 根据权利要求32所述的附件,其特征在于,所述气流引导件包括引导面,所述引导面包围至少部分出射气流,以将至少部分环形气流转向为层流。
  36. 根据权利要求35所述的附件,其特征在于,气流引导件构造为中空的套筒,所述套筒用于包围所述气流出口,所述套筒的相对的两个侧壁之间的间距朝向所述出气口减小,所述套筒沿从所述入气口到所述出气口的方向定向,所述套筒的朝向所述出气口的一端为开口。
  37. 根据权利要求32所述的附件,其特征在于,所述气流引导件包括格栅,所述格栅位于所述流体流动路径内,且所述格栅具有多个过气口,所述流体流动路径内的至少部分气流流经多个所述过气口。
  38. 根据权利要求37所述的附件,其特征在于,多个所述过气口的朝向不完全相同。
  39. 根据权利要求38所述的附件,其特征在于,所述格栅构造为中空的大体锥形,且在所述入气口到所述出气口的方向上定向,所述格栅的顶点朝向所述出气口,多个所述过气口间隔设置于所述格栅且每个所述过气口贯通所述格栅的内表面和外表面。
  40. 根据权利要求33-39中任一项所述的附件,其特征在于,所述辐射调节部设置于所述气流调节部和所述气流引导件中的至少一个上。
  41. 根据权利要求1所述附件,其特征在于,还包括:
    附接部,所述附接部能够与所述干燥设备连接,以将所述附件连接于所述干燥设备。
  42. 根据权利要求41所述的附件,其特征在于,所述附接部与所述辐射调节部、所述附件的气流调节部、所述附件的气流引导件中的至少一个结合。
  43. 根据权利要求41所述的附件,其特征在于,所述附接部与所述干燥设备可拆卸连接;或者
    所述附接部与所述干燥设备固定连接。
  44. 一种干燥组件,其特征在于,包括干燥设备和附件,
    所述干燥设备包括:
    壳体,所述壳体内部设有风道,所述风道具有气流入口和气流出口;
    气流产生元件,所述气流产生元件设置在所述壳体内并用于产生气流,且将气流从气流出口射出以形成出射气流;
    辐射源,所述辐射源设置于所述壳体并产生辐射,且将所述辐射从出光部导向所述壳体的外部以形成出射光;
    其中,所述附件为权利要求1-43中任一项所述的附件,至少部分所述附件位于所述出射光的光路上。
  45. 根据权利要求44所述的干燥组件,其特征在于,所述干燥设备具有安装部,所述安装部与所述附件的附接部适配,以通过所述安装部与所述附接部连接所述干燥设备和所述附件。
  46. 一种干燥设备,其特征在于,所述干燥设备与附件可适配,其中,所述附件为根据权利要求1-43中任一项所述的附件。
  47. 一种附件,用于干燥设备,其特征在于,所述干燥设备包括:
    壳体,所述壳体内部设有风道,所述风道具有气流入口和气流出口;
    气流产生元件,所述气流产生元件设置在所述壳体内并用于产生气流,且将气流从气流出口射出以形成出射气流;
    辐射源,所述辐射源设置于所述壳体并产生辐射,且将所述辐射从出光部导向所述壳体的外部以形成出射光;
    其特征在于,所述附件包括:
    流体流动路径,所述流体流动路径具有入气口和出气口,所述入气口用于与所述气流出口连通,至少部分所述出射气流流经所述流体流动路径并从所述出气口射出;
    吸光单元,至少部分所述吸光单元位于所述出射光的光路上,所述吸光单元用于吸收至少部分所述出射光以降低所述出射光的功率密度;
    其中,所述吸光单元与所述流体流动路径进行热交换。
  48. 根据权利要求47所述的附件,其特征在于,在从所述入气口到所述出气口的方向上,所述流体流动路径的横截面减小。
  49. 一种附件,用于干燥设备,其特征在于,所述干燥设备包括:
    壳体,所述壳体内部设有风道,所述风道具有气流入口和气流出口;
    气流产生元件,所述气流产生元件设置在所述壳体内并用于产生气流,且将气流从气流出口射出以形成出射气流;
    辐射源,所述辐射源设置于所述壳体并产生辐射,且将所述辐射从出光部导向所述壳体的外部以形成出射光;
    其特征在于,所述附件包括:
    流体流动路径,所述流体流动路径具有入气口和出气口,所述入气口用于与所述气流出口连通,至少部分所述出射气流流经所述流体流动路径并从所述出气口射出;
    透光单元,所述透光单元位于所述出射光的光路上,所述透光单元用于允许部分所述出射光透过,且所述透光单元用于吸收部分所述出射光以降低所述出射光的功率密度。
  50. 根据权利要求49所述的附件,其特征在于,在从所述入气口到所述出气口的方向上,所述流体流动路径的横截面增大。
  51. 一种附件,用于干燥设备,其特征在于,所述干燥设备包括:
    壳体,所述壳体内部设有风道,所述风道具有气流入口和气流出口;
    气流产生元件,所述气流产生元件设置在所述壳体内并用于产生气流,且将气流从气流出口射出以形成出射气流;
    辐射源,所述辐射源设置于所述壳体并产生辐射,且将所述辐射从出光部导向所述壳体的外部以形成出射光;
    其特征在于,所述附件包括:
    气流调节部,所述气流调节部用于调整所述出射气流的至少一个气流参数,其中,所述气流参数包括气流的风量、风速、出射方向,风场面积中的至少一个;
    辐射调节部,至少部分所述辐射调节部位于所述出射光的光路上,所述辐射调节部用于通过反射、折射和吸收中的至少一种改变至少部分所述出射光的功率密度和/或传输路径。
  52. 根据权利要求51所述的附件,其特征在于,所述附件包括气流调节柱,所述气流调节柱的横截面在气流的流动方向上逐渐增大,以使所述气流调节柱的外周面构造为所述气流调节部。
  53. 一种附件,用于干燥设备,其特征在于,所述干燥设备包括:
    壳体,所述壳体内部设有风道,所述风道具有气流入口和气流出口;
    气流产生元件,所述气流产生元件设置在所述壳体内并用于产生气流,且将气流从气流出口射出以形成出射气流;
    辐射源,所述辐射源设置于所述壳体并产生辐射,且将所述辐射从出光部导向所述壳体的外部以形成出射光;
    其特征在于,所述附件包括:
    吸光单元,至少部分所述吸光单元位于所述出射光的光路上,所述吸光单元用于吸收至少部分所述出射光,以使从所述附件射出的出射光的功率,小于进入所述附件的出射光的功率的百分之二十。
  54. 一种附件,用于干燥设备,其特征在于,所述干燥设备包括:
    壳体,所述壳体内部设有风道,所述风道具有气流入口和气流出口;
    气流产生元件,所述气流产生元件设置在所述壳体内并用于产生气流,且将气流从气流出口射出以形成出射气流;
    辐射源,所述辐射源设置于所述壳体并产生辐射,且将所述辐射从出光部导向所述壳体的外部以形成出射光;
    其特征在于,所述附件包括:
    流体流动路径,所述流体流动路径具有入气口和出气口,在从所述入气口到所述出气口的方向上,所述流体流动路径的横截面增大,所述入气口用于与所述气流出口连通,至少部分所述出射气流流经所述流体流动路径并从所述出气口射出,至少部分所述出射光能够进入所述流体流动路径,并在所述流体流动路径的引导下出射至外界;及
    透光单元,至少部分所述透光单元位于所述流体流动路径内,所述透光单元用于允许部分所 述出射光透过,以使从所述附件射出的出射光的功率密度,与进入所述附件的出射光的功率密度之间的差值小于预设阈值。
  55. 一种附件,用于干燥设备,其特征在于,所述干燥设备包括:
    壳体,所述壳体内部设有风道,所述风道具有气流入口和气流出口;
    气流产生元件,所述气流产生元件设置在所述壳体内并用于产生气流,且将气流从气流出口射出以形成出射气流;
    辐射源,所述辐射源设置于所述壳体并产生辐射,且将所述辐射从出光部导向所述壳体的外部以形成出射光;
    其特征在于,所述附件包括:
    流体流动路径,所述流体流动路径具有入气口和出气口,在从所述入气口到所述出气口的方向上,所述流体流动路径的横截面减小,所述入气口用于与所述气流出口连通,至少部分所述出射气流流经所述流体流动路径并从所述出气口射出,至少部分所述出射光能够进入所述流体流动路径,并在所述流体流动路径的引导下出射至外界;及
    反射单元,至少部分所述反射单元位于所述流体流动路径内,所述反射单元用于对射到所述反射单元上的所述出射光进行反射,以使从所述附件射出的出射光的功率密度,大于进入所述附件的出射光的功率密度。
  56. 一种附件,用于干燥设备,其特征在于,所述干燥设备包括:
    壳体,所述壳体内部设有风道,所述风道具有气流入口和气流出口;
    气流产生元件,所述气流产生元件设置在所述壳体内并用于产生气流,且将气流从气流出口射出以形成出射气流;
    辐射源,所述辐射源设置于所述壳体并产生辐射,且将辐射从出光部导向壳体的外部以形成出射光;
    其特征在于,所述附件包括:
    流体流动路径,所述流体流动路径具有入气口和出气口,在从所述入气口到所述出气口的方向上,所述流体流动路径的横截面减小,所述入气口用于与所述气流出口连通,至少部分所述出射气流流经所述流体流动路径并从所述出气口射出,至少部分所述出射光能够进入所述流体流动路径,并在所述流体流动路径的引导下出射至外界;及
    吸光单元,所述吸光单元位于所述流体流动路径内,所述吸光单元用于吸收至少部分出射光,以使从所述附件射出的出射光的功率密度,小于进入所述附件的出射光的功率密度。
PCT/CN2021/144053 2021-12-31 2021-12-31 附件、干燥设备及干燥组件 WO2023123510A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/144053 WO2023123510A1 (zh) 2021-12-31 2021-12-31 附件、干燥设备及干燥组件
CN202180027341.6A CN115461585B (zh) 2021-12-31 2021-12-31 附件、干燥设备及干燥组件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/144053 WO2023123510A1 (zh) 2021-12-31 2021-12-31 附件、干燥设备及干燥组件

Publications (1)

Publication Number Publication Date
WO2023123510A1 true WO2023123510A1 (zh) 2023-07-06

Family

ID=84294637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/144053 WO2023123510A1 (zh) 2021-12-31 2021-12-31 附件、干燥设备及干燥组件

Country Status (2)

Country Link
CN (1) CN115461585B (zh)
WO (1) WO2023123510A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD1021238S1 (en) 2022-06-02 2024-04-02 Sharkninja Operating Llc Hair care appliance

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004344354A (ja) * 2003-05-21 2004-12-09 Kyushu Hitachi Maxell Ltd ヘアードライヤー
CN106256285A (zh) * 2015-06-16 2016-12-28 戴森技术有限公司 扩散器
CN107924976A (zh) * 2015-08-17 2018-04-17 无限关节内窥镜检查公司 光源
CN109480440A (zh) * 2018-12-03 2019-03-19 深圳市深创电器有限公司 一种带扩散气流功能的吹风机风罩
CN111093421A (zh) * 2018-02-08 2020-05-01 麦克赛尔控股株式会社 吹风机
CN211932987U (zh) * 2020-03-13 2020-11-17 深圳奥郎格环保有限公司 扩散器和干发器
CN111972805A (zh) * 2020-01-21 2020-11-24 东莞市徕芬电子科技有限公司 吹风机的主体结构
US20210315352A1 (en) * 2020-04-10 2021-10-14 Lg Electronics Inc. Diffuser and hair dryer having a diffuser
CN113573609A (zh) * 2020-05-09 2021-10-29 深圳汝原科技有限公司 干燥设备
CN113573608A (zh) * 2020-05-09 2021-10-29 深圳汝原科技有限公司 干燥设备
CN113597267A (zh) * 2020-05-09 2021-11-02 深圳汝原科技有限公司 干燥设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104807300A (zh) * 2015-04-29 2015-07-29 韦道义 一种红外烘干机
CN112728881B (zh) * 2020-09-03 2022-05-17 浙江启尔机电技术有限公司 一种辐射加热浸没单元洁净烘干装置及其烘干方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004344354A (ja) * 2003-05-21 2004-12-09 Kyushu Hitachi Maxell Ltd ヘアードライヤー
CN106256285A (zh) * 2015-06-16 2016-12-28 戴森技术有限公司 扩散器
CN107924976A (zh) * 2015-08-17 2018-04-17 无限关节内窥镜检查公司 光源
CN111093421A (zh) * 2018-02-08 2020-05-01 麦克赛尔控股株式会社 吹风机
CN109480440A (zh) * 2018-12-03 2019-03-19 深圳市深创电器有限公司 一种带扩散气流功能的吹风机风罩
CN111972805A (zh) * 2020-01-21 2020-11-24 东莞市徕芬电子科技有限公司 吹风机的主体结构
CN211932987U (zh) * 2020-03-13 2020-11-17 深圳奥郎格环保有限公司 扩散器和干发器
US20210315352A1 (en) * 2020-04-10 2021-10-14 Lg Electronics Inc. Diffuser and hair dryer having a diffuser
CN113573609A (zh) * 2020-05-09 2021-10-29 深圳汝原科技有限公司 干燥设备
CN113573608A (zh) * 2020-05-09 2021-10-29 深圳汝原科技有限公司 干燥设备
CN113597267A (zh) * 2020-05-09 2021-11-02 深圳汝原科技有限公司 干燥设备

Also Published As

Publication number Publication date
CN115461585A (zh) 2022-12-09
CN115461585B (zh) 2024-01-05

Similar Documents

Publication Publication Date Title
TWI796608B (zh) 擴散器及具有該擴散器的吹風機
CN113573608B (zh) 干燥设备
CN215737367U (zh) 干燥设备
WO2023123510A1 (zh) 附件、干燥设备及干燥组件
WO2022105749A1 (zh) 一种激光输出光缆
KR102366462B1 (ko) 디퓨저 및 이를 포함하는 헤어드라이어
KR102364681B1 (ko) 디퓨저 및 이를 포함하는 헤어드라이어
TWI793465B (zh) 擴散器及具有擴散器的吹風機
WO2021227962A1 (zh) 干燥设备
CN215649649U (zh) 干燥设备
CN113573609B (zh) 干燥设备
US20220378165A1 (en) Infrared hairdryer
CN216123963U (zh) 干燥装置
CN217764362U (zh) 附件、干燥设备及干燥组件
CN218179560U (zh) 附件、干燥设备及干燥组件
CN113597267B (zh) 干燥设备
CN115120020A (zh) 干燥设备
WO2022199675A1 (zh) 一种辐射组件、干燥设备和反光座
CN217609896U (zh) 附件、干燥设备及干燥组件
WO2022261987A1 (zh) 干燥设备
CN217065614U (zh) 附件、干燥设备及干燥组件
CN114938624B (zh) 一种辐射组件、干燥设备和反光座
WO2022261986A1 (zh) 干燥装置
CN218588431U (zh) 一种辐射组件、干燥设备和反光座
WO2023123518A1 (zh) 干燥设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21969853

Country of ref document: EP

Kind code of ref document: A1