WO2022105749A1 - 一种激光输出光缆 - Google Patents

一种激光输出光缆 Download PDF

Info

Publication number
WO2022105749A1
WO2022105749A1 PCT/CN2021/130917 CN2021130917W WO2022105749A1 WO 2022105749 A1 WO2022105749 A1 WO 2022105749A1 CN 2021130917 W CN2021130917 W CN 2021130917W WO 2022105749 A1 WO2022105749 A1 WO 2022105749A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser output
laser
cutting head
spatial
optical cable
Prior art date
Application number
PCT/CN2021/130917
Other languages
English (en)
French (fr)
Inventor
李榕
赵文利
沈翔
雷星
施建宏
黄中亚
宋梁
鲁晓聪
李成
闫大鹏
Original Assignee
武汉锐科光纤激光技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉锐科光纤激光技术股份有限公司 filed Critical 武汉锐科光纤激光技术股份有限公司
Priority to EP21893896.7A priority Critical patent/EP4212277A1/en
Publication of WO2022105749A1 publication Critical patent/WO2022105749A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0927Systems for changing the beam intensity distribution, e.g. Gaussian to top-hat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0626Energy control of the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment

Definitions

  • the present application relates to the field of optical technology, and in particular, to a laser output optical cable.
  • Fiber laser processing has shown unique advantages in the field of industrial manufacturing.
  • fiber lasers have emerged in the laser processing market due to their good beam quality, flexible medium output, high stability and low processing costs.
  • the maximum output power of fiber lasers is also rapidly increasing.
  • the embodiment of the present application provides a laser output optical cable.
  • a space diaphragm in the optical path By adding a space diaphragm in the optical path, the stray light in the output laser is filtered out, which effectively improves the quality of the output laser and reduces the temperature of the output head.
  • the embodiments of the present application provide a laser output optical cable, an energy transmission fiber, and a laser cutting head connector connecting a laser output head and a laser cutting head;
  • the laser output head includes an end cap;
  • the laser cutting head connector There is at least one space aperture in the space aperture; the clear aperture of the space aperture is determined based on the distance between the virtual light exit point and the space aperture and the divergence angle of the laser output beam after passing through the end cap;
  • the virtual light exit point is determined based on the end cap.
  • the space diaphragm is provided with a first gradually expanding hole; the laser output beam is incident on the large diameter end of the first gradually expanding hole along the radial line of the first gradually expanding hole, and ejected from the small diameter end of the first gradually expanding hole.
  • the calculation formula of the clear aperture of the small diameter end of the first gradually expanding hole is:
  • D is the clear aperture of the small diameter end of the first gradually expanding hole
  • is the divergence angle of the laser output beam after passing through the end cap
  • L is the distance between the virtual light-emitting point and the space diaphragm
  • the clear aperture of the large diameter end of the first gradually expanding hole is smaller than the clear aperture of the cutting head connector.
  • At least one ring of annular light-absorbing grooves is disposed in the middle of the inner wall of the spatial aperture; the annular light-absorbing grooves are inclined at a predetermined angle toward the optical path direction.
  • a concave structure or a matting thread is arranged, and a light-absorbing material is applied.
  • the spatial aperture further includes a second gradually expanding hole provided on the optical path; the small diameter end of the second gradually expanding hole coincides with the small diameter end of the first gradually expanding hole;
  • the inner wall of the second gradually expanding hole is provided with a concave structure or a matte thread, and a light-absorbing material is laid.
  • the incident light focus of the collimating unit coincides with the virtual light exit point;
  • the spatial aperture and the cutting head connector are integrally formed structures.
  • a heat dissipation structure with multiple channel fins is provided on the outer wall of the space diaphragm.
  • the laser output optical cable provided in the embodiment of the present application further includes a connecting cylinder, and the connecting cylinder is a hollow structure; the spatial aperture and the connecting cylinder are connected by tightening screws to form a spatial aperture unit; A water inlet and outlet are arranged on the surface of the connecting cylinder, and a water cooling joint is arranged at the water inlet and outlet; the space diaphragm unit is detachably connected to the laser output head.
  • the laser output optical cable provided in the embodiment of the present application further includes a locking nut arranged on the connector of the cutting head; the locking nut is provided with an inner thread, which is used for connecting with the outer surface of the laser output head. Thread matching connection; a bayonet is provided at one end of the laser output head close to the cutting head connector, and a latch hole corresponding to the bayonet is provided on the main control of the cutting head connector.
  • the laser output optical cable provided by the embodiment of the present application is used to filter out part of the light beam larger than the clear aperture by adding a space diaphragm in the laser cutting head connector located between the collimating unit of the cutting head and the laser output head, especially
  • the trailing part of the light spot greatly reduces the incidental thermal effect of the nozzle, which effectively improves the cutting effect and ensures the safe operation of the laser equipment.
  • FIG. 1 is a schematic diagram of the energy distribution and effective light spot of various light beams provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of the working principle of a laser output optical cable provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of the internal structure of a spatial aperture provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of the working principle of a spatial aperture provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of divergence angles corresponding to different energy percentages of a laser output beam spot provided by an embodiment of the present application
  • FIG. 6 is a schematic diagram of the internal structure of an integrated spatial aperture connector provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a water channel structure of a spatial aperture provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a spatial aperture unit provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of an output optical cable with a spatial aperture integrated in a connector provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a 10,000-watt high-power output optical cable provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a simplified output optical cable integrated with a spatial aperture provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a 10,000-watt high-power output optical cable with a simplified connection method provided in an embodiment of the present application;
  • FIG. 13 is a schematic structural diagram of a cutting head main body provided in an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a locking nut provided by an embodiment of the present application.
  • FIG. 1 is a schematic diagram of the energy distribution and effective light spot of various light beams provided by an embodiment of the present application.
  • the relationship between the energy density and the spot diameter is different.
  • the diameter of 86.5% of the total energy as a and the diameter of the spot with 100% of the total energy as A, as shown in part (a) of Figure 1, for the spot of a Gaussian beam, A ⁇ 2a, which indicates that its center The energy intensity to the edge changes gradually, but the change is relatively gentle; as shown in part (b) of Figure 1, the light spot of the flat-top beam is A ⁇ a, which indicates that the energy intensity from the center to the edge is a sudden drop,
  • the variation range is large; as shown in part (c) of Figure 1, for the Gaussian-like beam, the variation trend of the spot intensity is between the Gaussian beam and the flat top beam, and different Gaussian-like beams are between A and a.
  • the ratios are different, but they all satisfy the following relationship: a ⁇ A ⁇ 2
  • the energy density in the central area is relatively high, but because the intensity from the center to the edge changes gradually, the energy has a large tail, and this part of the energy not only has little effect on cutting, but also leads to Additional thermal effects, as shown in part (a) of Figure 1, the black area is the effective area, and the white area is the trailing area, which leads to a narrower kerf when cutting thick plates with high-power lasers, and the cutting residues are not easily removed.
  • the auxiliary gas is blown away, and at the same time, the edge of the cutting surface produces a strong thermal effect.
  • the intensity of the energy from the central area to the edge changes very sharply, and there is basically no tailing of the light spot, and the effective area of the light spot is large, which makes the flat-top beam more suitable for thick plate cutting.
  • the energy density in the central area of the flat-top beam is only half of that of the Gaussian spot, which means that the cutting speed of the flat-top beam is slower.
  • the flat-top beam only has a flat-top distribution of the spot energy at the focal point, and is still a Gaussian-like distribution at the far focus.
  • the energy distribution of the spot acting on the surface of the plate is generally a Gaussian-like spot, which has a higher central energy distribution than the flat-top beam and a smaller smear than the Gaussian beam. .
  • a nozzle at the bottom of the cutting head for outputting cutting auxiliary gas coaxial with the laser beam. Since the auxiliary gas needs to have a larger flow rate, it requires that the outlet diameter of the nozzle is smaller, which is generally slightly larger than the beam spot diameter at the plane.
  • the Gaussian-like beam Due to the above characteristics of the Gaussian-like beam, it still has a small trailing tail when cutting the processed sheet. Due to the different energy distribution of different lasers, the Gaussian-like beam shape is also different. Also different. Generally speaking, when a large defocus is used to cut a sheet, once the 100% energy spot diameter of a certain laser is equal to or larger than the nozzle size, it will cause the nozzle to heat up and affect the cutting effect. The narrow kerf results in limited auxiliary airflow, which cannot complete high-quality cuts, thus limiting the application range of this laser.
  • FIG. 2 is a schematic diagram of the working principle of a laser output optical cable provided by an embodiment of the present application.
  • the laser output cable mainly includes: an energy transmission optical fiber 402 connected in sequence on an optical path, a laser output head 203 and a The laser cutting head connector 202 of the laser cutting head 201; the laser output head 203 includes an end cap 401; the laser cutting head 201 includes a collimating unit.
  • At least one spatial diaphragm 204 is provided in the laser cutting head connector 202; the clear aperture of the spatial diaphragm 204 is based on the distance between the virtual light exit point and the spatial diaphragm 204 and the laser output The divergence angle of the light beam after passing through the end cap 401 is determined; the virtual light exit point is determined based on the end cap 401 .
  • the laser output optical cable provided by the embodiment of the present application, by adding a space diaphragm 204 in the laser cutting head connector 202 between the laser output head and the collimating unit, the energy transmission
  • the laser output beam transmitted by the optical fiber 204 is refracted by the end cap 401 in the laser output head 203 from the actual light output point, and then diverges to generate an energy spot.
  • the energy spot will directly enter the collimation unit in the cutting head for collimation and then focus, and directly cut the processed sheet 206 .
  • the divergence angle corresponding to 98% of the total energy of the corresponding spot in the beam can be: ⁇ , the distance L between the space diaphragm 204 and the virtual light exit point, determine the clear aperture D of the space diaphragm 204 .
  • the above-mentioned divergence angle ⁇ refers to the divergence angle of the laser beam after passing through the end cap 401
  • the virtual light exit point is generally determined by the length of the end cap 401 on the optical path and the effective refractive index of its material.
  • a spatial diaphragm 204 is set on the optical path between the laser output head 203 and the collimation unit of the laser cutting head 201 as an example for description. It is not regarded as a specific limitation to the embodiments of the present application.
  • a plurality of spatial apertures with different clear apertures can also be provided, and the spatial apertures 204 with different clear apertures are arranged on the laser output head 203 and the laser cutting head 203 in order of the apertures from large to small.
  • the spatial aperture 204 with the smallest clear aperture is the same as the clear aperture of the single spatial aperture 204 described in the above-mentioned embodiment.
  • the trailing light and stray light of the laser beam are filtered out by stages, so as to overcome the excessively demanding requirements for absorption and heat dissipation of a single spatial aperture. Difficult to implement flaws.
  • a space diaphragm is added in the cutting head connector between the collimating unit of the cutting head and the laser output head, so as to filter out part of the light beam larger than the clear aperture, especially the drag of the light spot.
  • the tail part greatly reduces the incidental thermal effect of the nozzle, which effectively improves the cutting effect and ensures the safe operation of the laser equipment.
  • the spatial aperture 204 is provided with a through first gradually expanding hole; the laser output beam is radiated along the radial line of the first gradually expanding hole into the large-diameter end of the first gradually expanding hole, and exiting from the small-diameter end of the first gradually expanding hole.
  • FIG. 3 is a schematic diagram of the internal structure of a spatial aperture provided by the embodiment of the present application.
  • the laser output optical cable provided by the embodiment of the present application, in order to avoid the single-point absorption of the trailing light by the spatial aperture 204, As a result, the diaphragm is partially overheated and destroyed, and a graded absorption structure is adopted in the design of the spatial diaphragm.
  • a first progressively expanding hole passing through is provided inside the frustum-shaped structure.
  • the conical hole wall of the first gradually expanding hole gradually shrinks, and the trailing light far away from the beam focus in the laser output beam is gradually reduced.
  • Graded absorption As shown in FIG. 3 , by setting the entire space diaphragm into a frustum-shaped structure, a first progressively expanding hole passing through is provided inside the frustum-shaped structure.
  • a water circuit or an air circuit can be introduced into the design of the control diaphragm, so as to use cooling water or cooling gas to cool the control diaphragm.
  • a three-dimensional space diaphragm is provided, and a tapered gradually expanding hole is designed in the space diaphragm, so as to realize the layer-by-layer effect of the annular trailing light.
  • Absorption effectively disperses the heat generated by laser absorption, avoids the local overheating and destruction of the space diaphragm, and effectively improves the absorption efficiency of trailing light and stray light, improves the cutting effect, and guarantees Safe operation of laser equipment.
  • the laser output optical cable provided by the embodiment of the present application may further include: a cutting head connector 202, and the spatial aperture 204 is fixed in the cutting head connector;
  • the cutting head connector 202 is disposed between the laser output head 203 and the laser cutting head 201 for fixing the laser output head 202 and the laser cutting head 201 .
  • the clear aperture of the small diameter end of the first gradually expanding hole is:
  • D is the clear aperture of the small diameter end of the first gradually expanding hole
  • is the divergence angle of the laser output beam after passing through the end cap
  • L is the distance between the virtual light-emitting point and the space diaphragm
  • the clear aperture of the large diameter end of the first gradually expanding hole is smaller than the clear aperture of the cutting head connector.
  • a cutting head connector 202 with a diaphragm device can be configured at the end of the laser output head 203 for different types of lasers, so as to realize the difference between the laser output head and the laser output head.
  • the installation and fixation of the space diaphragm 204 can also be realized.
  • the embodiment of the present application does not adopt any connection method to realize the connection between the laser output head 203, the cutting head connector 202 and the
  • the connection between the three laser cutting heads 201 is specifically limited, for example, a threaded connection, a snap connection and the like can be used.
  • the design should ensure that after the connection, the virtual light output point of the laser output head 203 matches the collimation unit in the laser cutting head, that is, it is necessary to ensure that the collimation unit is connected.
  • the focal point of the incident light coincides with the virtual light exit point 403 .
  • FIG. 4 is a schematic diagram of the working principle of a spatial aperture provided by an embodiment of the present application.
  • FIG. 4 shows the laser output original spot energy distribution 405 and the spot energy distribution 406 after passing through the spatial aperture.
  • the 10,000-watt laser transmission optical cable used is in the form of an end cap 401 combined with an energy-transmitting optical fiber 402, and its light exit point is the end face of the energy-transmitting optical fiber 402, but since the end cap 401 is composed of silica material, its refractive index When the output light beam is larger than air, when the output light beam enters the air from the end cap 401 , it will be refracted, and finally a virtual light exit point 403 will be formed.
  • the clear aperture of the spatial diaphragm 204 is related to both the divergence angle of the laser output light and the distance of the virtual light exit point.
  • the calculation formula of its clear diameter can be:
  • D is the clear aperture of the small diameter end of the first gradually expanding hole
  • is the divergence angle of the laser output beam after passing through the end cap
  • L is the distance between the virtual light output point and the space diaphragm.
  • the material is subject to a large incidental thermal effect Decrease in magnitude.
  • the embodiment of the present application also provides a method for determining the divergence angle ⁇ .
  • the corresponding divergence angle ⁇ will be quite different according to the different light spot energy that needs to be filtered out.
  • Fig. 5 is a schematic diagram of divergence angles corresponding to different energy percentages of a laser output spot provided by an embodiment of the present application.
  • the laser is a laser with a total power of 12000W, and its 100% energy divergence angle ⁇ 1 is 0.12 rad, the 99% energy divergence angle ⁇ 2 is 0.117 rad, and the 98% energy divergence angle ⁇ 3 is 0.112 rad.
  • the return light will return to the laser output head 203, but affected by the surface flatness of the material, the divergence angle of the return light will be greater than that of the forward laser in most cases.
  • the clear aperture itself is equivalent to a diaphragm, but this diaphragm has a larger aperture, which can be used to block and absorb the processed Part of the return light reflected by the material does not act as a blocker for forward light.
  • the clear aperture of the space diaphragm 204 should be smaller than the clear aperture in the interface of the cutting head connector 202, then the present application implements the The space diaphragm 204 provided in the example can not only block part of the forward laser light, but also can effectively block part of the returning light. That is, the clear aperture of the large diameter end can be determined according to the clear aperture of the interface of the cutting head connector 202 .
  • the design of the entire spatial diaphragm 204 can be realized.
  • the length of the space diaphragm 204 in the direction of the optical path can be appropriately increased (subject to being smaller than the total length of the cutting head connector 202 without affecting the connection function of the cutting head connector 202 ), as long as the effective The heat generated by the absorption of the laser light is dissipated.
  • the embodiment of the present application provides a design and installation method of a spatial aperture, and the provided spatial aperture can effectively filter out part of the light beam larger than the clear aperture, especially the trailing part of the light spot, so that the nozzle is subject to the incidental thermal effect It is greatly reduced, which effectively improves the cutting effect and ensures the safe operation of the laser equipment.
  • At least one ring of annular light-absorbing grooves is provided in the middle of the inner wall of the spatial aperture; the annular light-absorbing grooves are inclined by a preset angle toward the optical path direction.
  • FIG. 6 is a schematic diagram of the internal structure of an integrated spatial aperture connector provided by an embodiment of the present application.
  • 401 is the end cap of the output optical cable
  • 520 is the annular light absorption groove of the spatial aperture
  • the annular light absorption groove 520 The threads of the tapered surfaces on both sides are on the same plane, and the surface is processed with fine-tooth matt threads, which are sandblasted and textured.
  • the energy of the spot part greater than the divergence angle ⁇ is mostly destroyed by the extinction thread 519 and the annular groove. Cavity 520 absorbs.
  • the annular interval of the blocked light beam can be calculated according to the minimum divergence angle and the maximum divergence angle that need to block light.
  • the inner wall of the first gradually expanding hole 519 in the entire annular section is designed as a tapered surface as described in the present application.
  • the direction of the mouth is the light-emitting direction.
  • a section of annular light absorption groove 520 with an angle is designed in the middle of the inner wall of the tapered surface of the first gradually expanding hole 519 of the spatial aperture 519 .
  • the surface of the annular light-absorbing groove 520 has undergone light-absorbing treatment such as texturing and blackening, and during the design process, the annular light-absorbing groove 520 is appropriately inclined to the direction of the optical path by a preset angle, which can effectively ensure that the blocked light Once the forward light enters the annular light absorption groove 520, it will be scattered in the groove for many times and absorbed.
  • the small diameter end corresponding to the minimum divergence angle can be designed to be R-shaped to reduce the risk of tip heating.
  • the annular light absorption groove may be provided with only one circle, or may be provided with multiple circles spaced apart from each other according to actual needs, so as to improve the absorption efficiency of the blocked forward light.
  • the laser output optical cable provided by the embodiment of the present application effectively improves the absorption efficiency of blocked forward light by setting an annular light absorption groove inclined toward the direction of the optical path on the inner wall of the first gradually expanding hole of the spatial aperture.
  • concave structures or matting threads are provided on the tapered surfaces on both sides of the annular light-absorbing groove and/or on the inner wall of the spatial diaphragm, and are laid There are light absorbing materials.
  • a concave structure can be designed on the inner wall of the first gradually expanding hole of the spatial diaphragm 204, a matting thread can be arranged, and a light-absorbing material, such as a black temperature-resistant material, can be applied to realize the positive response to the blocked Sufficient absorption of light.
  • a light-absorbing material such as a black temperature-resistant material
  • the spatial aperture 204 further includes a second gradually expanding hole 522 disposed on the optical path; the small diameter end of the second gradually expanding hole 522 is connected to the The small diameter ends of the first progressively enlarged holes coincide (collectively referred to as the small diameter ends 521 of the spatial aperture); the inner walls of the second progressively enlarged holes 522 are provided with concave structures or matting threads, and light absorbing materials are laid.
  • the space diaphragm 204 unit provided in the embodiment of the present application is also provided with a reverse cone on the other side of the first gradually expanding hole 519 face to form the second gradually expanding hole 522 , so as to achieve effective absorption of the returning light, and at the same time, it can also effectively reduce the requirement on the water cooling capacity of the space diaphragm 204 .
  • the second gradually expanding hole 522 may be subjected to texturing treatment to improve the absorption efficiency of the returned light. It should be noted that, since the energy density of the returning light is lower than that of the forward light, the extinction requirement of the returning light is not as high as that of the forward light, so in the embodiment of the present application, the reverse direction of the second gradually expanding hole 522 is formed.
  • the tapered surface can absorb most of the returning light to a certain extent, and the scattered light that is not absorbed can be scattered into the cavity of the laser cutting head 201 without too much influence on its temperature rise.
  • the inner wall of the second gradually expanding hole can also be provided with a concave structure or a matte thread, and a light absorbing material can be laid.
  • the laser output optical cable provided by the embodiment of the present application can effectively realize the forward trailing light by setting the spatial aperture as a multi-level structure consisting of a first gradually expanding hole, a ring-shaped light absorption groove, and a second gradually expanding hole, etc.
  • the omnidirectional and multi-level absorption of forward scattered light and return light greatly reduces the incidental thermal effect of the nozzle, effectively improves the cutting effect, and ensures the safe operation of the laser equipment.
  • the incident light focus of the collimating unit coincides with the virtual light exit point; the spatial aperture and the cutting head connector are integrally formed structures.
  • FIG. 3 which is a schematic diagram of the internal structure of a space aperture provided by an embodiment of the present application
  • the space aperture 204 and the cutting head connector 202 are integrally formed, wherein the light-through hole of the space aperture 204 is the cutting The light-through hole of the header connector 202 .
  • a cutting head connector 202 with a spatial aperture 204 can be configured at the end of the laser output head for different types of lasers, which can be matched with the laser output head or integrated use.
  • the cutting head connector 202 with the space diaphragm can mate with mainstream cutting heads or welding heads.
  • the laser cutting head Since different types of lasers have different divergence angles, and the laser cutting head has an aperture unit between the connector interface and the collimation unit, the spatial aperture of the same cutting head cannot be well matched with each manufacturer. For different types of lasers, it is necessary to design the corresponding spatial aperture and integrate it with the laser output head, which can effectively filter out the trailing energy that negatively affects the cutting effect.
  • a heat dissipation structure with multiple channel fins is provided on the outer wall of the spatial aperture.
  • FIG. 7 is a schematic structural diagram of a water channel of a spatial diaphragm provided by an embodiment of the present application
  • FIG. 8 is a schematic structural diagram of a spatial diaphragm unit provided by an embodiment of the present application.
  • the spatial diaphragm A water channel structure 527 is provided on the outer wall of 204 .
  • a water-cooling joint 530 for the water inlet and outlet of the water channel is provided on it, and fins are provided in the water channel return channel to increase the heat dissipation area.
  • the size and number of the fins shown in FIG. 8 are not regarded as a specific limitation on the protection scope of the embodiments of the present application.
  • the laser output optical cable may further include a connecting cylinder 528, and the connecting cylinder 528 is a hollow structure; the spatial aperture 204 and the connecting cylinder 528 A spatial aperture unit 529 is formed by connecting with set screws; a water inlet and outlet are provided on the surface of the connecting cylinder 528, and a water cooling joint 530 is provided at the water inlet and outlet; the spatial aperture unit 529 and the laser output head 203 Detachable connection.
  • the water channel structure 527 of the space diaphragm 204 shown in FIG. 7 forms a mechanical seal between the sealing members 524 and 525 and the connecting cylinder 528 .
  • the end of the connecting cylinder 528 is provided with an external thread 523 for connecting with the laser cutting head 201 ; the space diaphragm 204 and the connecting cylinder 528 are radially limited by positioning pins, which are connected to the connector 537 of the cutting head connector 202 . The radial limit is also carried out by the positioning pin.
  • the spatial diaphragm 204 in the spatial diaphragm unit 529 is connected with the connecting cylinder 528 through set screws.
  • the surface of the connecting cylinder 528 is provided with a water inlet and outlet, and is provided with a water cooling joint 530 .
  • the entire space diaphragm unit 529 is an independent component.
  • the space diaphragm unit 529 can be integrated with the output head connector 202, which solves the problem between the space diaphragm unit 529 and the laser output head 203. connection problem.
  • FIG. 9 is a schematic structural diagram of an output optical cable with a spatial aperture integrated in a connector provided by an embodiment of the present application
  • FIG. 10 is a structural schematic diagram of a 10,000-watt high-power output optical cable provided by an embodiment of the present application. After a conventional connector 537 matched with the 10,000-watt high-power output head 511 as shown in FIG.
  • a connector 538 of an integrated spatial diaphragm is formed, and the integrated spatial diaphragm
  • the connector 538 is connected with the 10,000-watt high-power output head 511, a new output optical cable 512 with a spatial aperture function is formed, which enables the conventional 10,000-watt high-power output head to have the function of filtering out spatial light and achieve high quality. Control of the cutting spot.
  • the embodiment of the present application provides a new laser output optical cable , in order to reduce the cost of the new output optical cable with integrated space diaphragm, and the structure adopts a more streamlined structure, which specifically includes a locking nut arranged on the cutting head connector; the locking nut is internally provided with an internal thread , used for matching connection with the external thread of the laser output head; a bayonet is provided at the end of the laser output head close to the cutting head connector; a main control of the cutting head connector is provided with a the corresponding latch hole of the said bayonet.
  • FIG. 11 is a schematic structural diagram of a simplified output optical cable integrated with a spatial aperture provided by an embodiment of the present application
  • FIG. 12 is a simplified schematic diagram of a 10,000-watt high-power output optical cable provided by an embodiment of the present application.
  • Schematic diagram of the structure FIG. 13 is a schematic structural diagram of a cutting head main body provided by an embodiment of the present application, and
  • FIG. 14 is a schematic structural schematic diagram of a locking nut provided by an embodiment of the present application.
  • the 10,000-watt high-power output head 511 shown in FIG. 12 has an external thread 517 in the middle of its structure, and a bayonet 516 is designed on the end face.
  • the laser cutting of the connector 538 with the integrated spatial aperture shown in FIG. 10 The head main body 533 is designed with a more streamlined interface.
  • the laser cutting head main body 533 as shown in FIG. 13 is provided with a plurality of latch holes 536, which can be used to fix the latches, and are used on the sleeve as shown in FIG. 14.
  • the illustrated locking nut 531 is then installed with a latch to limit the locking nut 531 .
  • An inner thread 535 is provided inside the locking nut 531 for matching connection with the outer thread 517 on the 10,000-watt high-power output head 511 .
  • the laser output optical cable using the integrated space diaphragm provided in the embodiment of this application can design the light blocking divergence angle threshold for a specific laser model, can control the output beam, effectively improve the cutting effect, and avoid the installation and disassembly of the laser output head on the customer's site. It only needs to match the interface part of the diaphragm unit with the cutting head.
  • the device embodiments described above are only illustrative, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in One place, or it can be distributed over multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution in this embodiment. Those of ordinary skill in the art can understand and implement it without creative effort.
  • each embodiment can be implemented by means of software plus a necessary general hardware platform, and certainly can also be implemented by hardware.
  • the above-mentioned technical solutions can be embodied in the form of software products in essence or the parts that make contributions to the prior art, and the computer software products can be stored in computer-readable storage media, such as ROM/RAM, magnetic A disc, an optical disc, etc., includes several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to perform the methods described in various embodiments or some parts of the embodiments.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Laser Beam Processing (AREA)

Abstract

本申请实施例提供的激光输出光缆,主要包括:在光路上依次连接的传能光纤,连接激光输出头和激光切割头的激光切割头连接器;所述激光输出头包含有端帽;所述激光切割头连接器中至少设置有一个空间光阑;所述空间光阑的通光孔径是基于虚拟出光点与所述空间光阑之间的距离以及激光器输出光束通过所述端帽后的发散角确定的;所述虚拟出光点是基于所述端帽确定的。本申请实施例提供的激光输出光缆,通过在位于切割头准直单元和激光输出头之间的激光切割头连接器中增设空间光阑,用于滤除大于通光孔径的部分光束,特别是光斑的拖尾部分,使得喷嘴受到的附带热效应大幅度下降,有效的改善了切割效果,保障了激光设备的安全运行。

Description

一种激光输出光缆
相关申请的交叉引用
本申请要求于2020年11月17日提交的申请号为202011287324.X,发明名称为“一种激光输出光缆”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本申请涉及光学技术领域,尤其涉及一种激光输出光缆。
背景技术
激光加工在工业制造领域已展现独特的优势,而近几年光纤激光器因其较好的光束质量,柔性介质输出,高稳定性以及较低的加工成本,使其在激光加工市场异军突起。随着光纤激光器市场的扩大,光纤激光器的最高输出功率也在迅速提高。
随着功率的提升,尤其是突破万瓦达到数万瓦输出激光后,光纤激光器在切割领域的一些不足之处开始展现,例如:多模激光器切割厚板时,在被切割板材的几个切割面条纹深度不一致;在使用大离焦的时候,切割头喷嘴剧烈发热变形,甚至烧毁等。
有鉴于此,亟需设计一种轻量化及更安全可靠的激光输出光缆,以有效的滤除输出光缆输出的激光中的拖尾激光或者杂散光,以实现高质量、高安全的切割。
发明内容
本申请实施例提供一种激光输出光缆,通过在光路中增设空间光阑,对输出激光中的杂散光进行滤除,在有效的提高了输出激光的质量的同时,降低了输出头的温度。
具体地,本申请实施例提供一种激光输出光缆,传能光纤,连接激光输出头和激光切割头的激光切割头连接器;所述激光输出头包含有端帽;所述激光切割头连接器中至少设置有一个空间光阑;所述空间光阑的通光 孔径是基于虚拟出光点与所述空间光阑之间的距离以及激光器输出光束通过所述端帽后的发散角确定的;所述虚拟出光点是基于所述端帽确定的。
可选地,所述空间光阑中设置有贯穿的第一渐扩孔;所述激光器输出光束沿第一渐扩孔的径向线射入至所述第一渐扩孔的大径端,并由所述第一渐扩孔的小径端射出。
可选地,本申请实施例提供的激光输出光缆,所述第一渐扩孔的小径端的通光孔径的计算公式为:
D=2×tanθ×L;
其中,D为所述第一渐扩孔的小径端的通光孔径;θ为激光器输出光束通过所述端帽后的发散角;L为所述虚拟出光点距离所述空间光阑的距离;所述第一渐扩孔的大径端的通光孔径小于所述切割头连接器的通光孔径。
可选地,在所述空间光阑的内壁中部设置有至少一圈环形吸光槽;所述环形吸光槽向所述光路方向倾斜预设角度。
可选地,在所述环形吸光槽两侧的锥面上和/或所述空间光阑的内壁上,设置有内凹结构或消光螺纹,并敷设有吸光材料。
可选地,所述空间光阑还包括在所述光路上设置的第二渐扩孔;所述第二渐扩孔的小径端与所述第一渐扩孔的小径端重合;所述第二渐扩孔的内壁设置有内凹结构或消光螺纹,并敷设有吸光材料。
可选地,所述准直单元的入射光焦点与所述虚拟出光点重合;所述空间光阑与所述切割头连接器是一体成型结构。
可选地,在所述空间光阑的外壁设置有多水道翅片的散热结构。
可选地,本申请实施例提供的激光输出光缆,还包括连接筒,所述连接筒的为中空结构;所述空间光阑与所述连接筒通过紧定螺钉连接构成空间光阑单元;在所述连接筒表面设置有进出水口,并在所述进出水口设置有水冷接头;所述空间光阑单元与所述激光输出头可拆卸连接。
可选地,本申请实施例提供的激光输出光缆,还包括设置于所述切割头连接器的锁紧螺母;所述锁紧螺母内部设置有内螺纹,用于与所述激光输出头的外螺纹匹配连接;在所述激光输出头靠近所述切割头连接器的一 端设置有卡销,在所述切割头连接器的主控件上设置有与所述卡销对应的插销孔。
本申请实施例提供的激光输出光缆,通过在位于切割头准直单元和激光输出头之间的激光切割头连接器中增设空间光阑,用于滤除大于通光孔径的部分光束,特别是光斑的拖尾部分,使得喷嘴受到的附带热效应大幅度下降,有效的改善了切割效果,保障了激光设备的安全运行。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图逐一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的实施例内容。
图1是本申请实施例提供的各种光束的能量分布及有效光斑的示意图;
图2是本申请实施例提供的一种激光输出光缆的工作原理示意图;
图3是本申请实施例提供的一种空间光阑内部结构示意图;
图4是本申请实施例提供的一种空间光阑的工作原理示意图;
图5是本申请实施例提供的一种激光器输出光束斑的不同能量百分比对应的发散角示意图;
图6是本申请实施例提供的一种集成空间光阑连接器的内部结构示意图;
图7是本申请实施例提供的一种空间光阑的水道结构示意图;
图8是本申请实施例提供的一种空间光阑单元的结构示意图;
图9是本申请实施例提供的一种在连接器中集成了空间光阑的输出光缆的结构示意图;
图10是本申请实施例提供的一种万瓦级高功率输出光缆的结构示意图;
图11是本申请实施例提供的一种简化后的集成有空间光阑的输出光 缆的结构示意图;
图12是本申请实施例提供的一种连接方式简化后的万瓦级高功率输出光缆的结构示意图;
图13是本申请实施例提供的一种切割头主体件的结构示意图;
图14是本申请实施例提供的一种锁紧螺母的结构示意图;
其中,201-激光切割头;202-切割头连接器;203-激光输出头;204-空间光阑;205-喷嘴;206-被加工板材;401-端帽;402-传能光纤;403-虚拟出光点;204-空间光阑;405-激光器输出原始光斑能量分布;406-经过空间光阑后的光斑能量分布;511-万瓦级高功率输出头;512-具有空间光阑功能的新型输出光缆;519-第一渐扩孔;516-卡销;517-激光输出头的外螺纹;520-环形吸光槽;521-空间光阑的小径端;522-第二渐扩孔;523-连接筒的外螺纹;524、525-密封件;527-空间光阑的水道结构;528-连接筒;529-空间光阑单元;530-水冷接头;531-锁紧螺母;533-激光切割头主体件;534-槽口;535-锁紧螺母的内螺纹;536-插销孔;537-连接器;538-集成空间光阑的连接器。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
目前对于光纤激光器来说,板材切割是其重要应用市场,同时对万瓦激光需求最大。在实际应用中,尤其是高功率激光切割应用中,被切割的材质具有一定的损伤阈值,这就意味着只有能量密度达到一定强度才能实现较好的切割。
图1是本申请实施例提供的各种光束的能量分布及有效光斑的示意图,对于不同模式的光束,其能量密度与光斑直径之间的关系是不同的。例如:定义总能量的86.5%直径为a,总能量为100%的光斑直径为A,如 图1中的(a)部分所示,对于高斯光束的光斑来说A≈2a,这表明其中心到边缘的能量强度是逐渐变化,但变化较为平缓;如图1中的(b)部分所示,平顶光束的光斑来说A≈a,这表明其中心到边缘的能量强度是突然下落、变化幅度大;如图1中的(c)部分所示,对于类高斯光束来说,其光斑强度变化趋势介于高斯光束和平顶光束之间,且不同的类高斯光束其A与a之间的比例不同,但均满足以下关系:a<A<2a。
故对于高斯光束来说,其中心区域能量密度较高,但由于中心到边缘的强度是逐渐变化的,能量具有一个较大的拖尾,而这部分能量不仅对切割作用不大,同时会导致额外的热效应,如图1中的(a)部分所示,黑色区域为有效区域,白色区域为拖尾区域,这就导致在高功率激光切割厚板时,切缝较窄,切割残渣不易被辅助气体吹走,同时切割面边缘产生较强的热效应。
而对于平顶光束来说,其中心区域能量到边缘的强度变化非常剧烈,光斑拖尾基本没有,光斑的有效区域较大,这就使得平顶光束比较适合厚板切割。但是相同总功率下,平顶光束中心区域的能量密度仅为高斯光斑的一半,即意味着,平顶光束的切割速度较慢。同时,平顶光束只在焦点处光斑能量分布为平顶分布,在远焦处仍为类高斯分布。
综上所述,对于厚板切割,作用在板材表面的光斑能量分布一般为类高斯光斑,其相对于平顶光束具有一个较高的中心能量分布,相对于高斯光束具有一个较小的拖尾。
进一步地,在切割头的底部有一个喷嘴,用于输出与激光光束同轴的切割辅助气体。由于辅助气体需要具有一个较大的流速,这就要求喷嘴的出气口径较小,一般是略大于该平面处的光束光斑直径。
由于类高斯光束的上述特性,其在对被加工板材进行切割时,仍然具有一个较小的拖尾,由于不同的激光器的能量分布不同,其类高斯光束的形貌也各不相同,拖尾也就不同。一般来说,在采用大离焦切割板材的时候,一旦某台激光器的100%能量光斑直径等于或大于喷嘴尺寸,就会导致喷嘴发热,影响切割效果;而采用较小离焦量,又因为切缝较窄,导致辅助气流作用有限,无法完成较高质量的切割,从而限制了该激光器的应用范围。
根据现有的激光切光过程中所存在的上述缺陷,本申请实施例提供了一种激光输出光缆。图2是本申请实施例提供的一种激光输出光缆的工作原理示意图,如图2所示,所述激光输出电缆主要包括:在光路上依次连接的传能光纤402,连接激光输出头203和激光切割头201的激光切割头连接器202;所述激光输出头203包含有端帽401;所述激光切割头201包含有准直单元。并且,在所述激光切割头连接器202中设置有至少一个空间光阑204;所述空间光阑204的通光孔径是基于虚拟出光点与所述空间光阑204之间的距离以及激光器输出光束通过所述端帽401后的发散角确定的;所述虚拟出光点是基于所述端帽401确定的。
本申请实施例提供的激光输出光缆,相较于传统的输出光缆结构,通过在激光输出头与所述准直单元之间的激光切割头连接器202中增设一个空间光阑204,由传能光纤204传输的激光器输出光束,由实际出光点经过激光输出头203中的端帽401折射后进行发散,生成能量光斑。在传统的激光输出光缆中,能量光斑将直接进入至切割头内的准直单元进行准直后再聚焦,直接对被加工板材206进行切割。
但按照上述实施例中所述的内容,一方面,由于端帽401折射后生成的能量光斑中存在较多的拖尾激光或者杂散激光,而这些拖尾激光或者杂散激光在进入至激光切割头201后会造成其发热,甚至直接烧毁所述激光切割头201。另一方面,由于激光器的能量光斑直径若等于或大于喷嘴205尺寸,就会导致喷嘴205发热,影响切割效果;而较小离焦量,切缝较窄,辅助气流作用有限,无法完成较高质量的切割。
由于上述技术需求的存在,本申请实施例通过在激光输出头203与激光切割头201之间的切割头连接器202中设置至少一个空间光阑204,并通过设置适当的通光孔径,不但可以有效的滤除能量光斑中存在的拖尾激光或者杂散激光,而且可以通过对所述空间光阑204的通光孔径的设置与调整,能够在一定程度上控制能量光斑的大小。
作为可选地,如果某台激光器,需求是滤掉所发射的激光器输出光束中98%-100%部分的光斑能量,则可以根据该光束中对应的光斑其98%总能量对应的发散角为θ、空间光阑204距虚拟出光点的距离L,确定出空间光阑204的通光孔径D。通过增设所述空间光阑204,则大于该通光孔 径的光束部分被光阑挡住,无法传输到喷嘴处使得喷嘴发热;同时由于滤除了光斑的拖尾部分,使得材料受到的附带热效应大幅度下降。
进一步地,上述发散角θ是指该激光光束通过端帽401后的发散角,而虚拟出光点一般是由端帽401在光路上的长度以及其材质的有效折射率决定的。
需要说明的是,在本申请实施例中的各个实施例中均是以在激光输出头203与激光切割头201的准直单元之间的光路上设置一个空间光阑204为例进行说明,其不视为对本申请实施例的具体限定。
作为可选地,也可以设置多个不同通光孔径的空间光阑,所述不同通光孔径的空间光阑204,按照通过孔径的由大至小依次排布在激光输出头203与激光切割头201的准直单元之间的光路上。其中,最小通光孔径的空间光阑204,以上述实施例中所述的仅装设单个的空间光阑204的通光孔径相同。本申请实施例通过设置多个不同通光孔径的空间光阑,对激光光束中光斑的拖尾光、杂散光等进行分级滤除,克服对单个空间光阑的吸收及散热要求过于苛刻而导致难以实现的缺陷。
本申请实施例提供的激光输出光缆,通过在于切割头准直单元和激光输出头之间的切割头连接器中增设空间光阑,以滤除大于通光孔径的部分光束,特别是光斑的拖尾部分,使得喷嘴受到的附带热效应大幅度下降,有效的改善了切割效果,保障了激光设备的安全运行。
基于上述实施例的内容,作为一种可选实施例,所述空间光阑204中设置有贯穿的第一渐扩孔;所述激光器输出光束沿所述第一渐扩孔的径向线射入至所述第一渐扩孔的大径端,并由所述第一渐扩孔的小径端射出。
图3是本申请实施例提供的一种空间光阑内部结构示意图,如图3所示,本申请实施例所提供的激光输出光缆,为了避免空间光阑204对于拖尾光的单点吸收,从而造成光阑局部过热被破坏,在空间光阑的设计上采用了分级吸收结构。
如图3所示,通过将整个空间光阑设置为锥台型结构,在所述锥台型结构的内部设置有贯穿的第一渐扩孔。在激光器输出光束由第一渐扩孔的大径端射入的情况下,则第一渐扩孔的锥形孔壁逐渐收缩,逐步对所述激光器输出光束中远离光束焦点的拖尾光进行分级吸收。
作为可选地,可以在控件光阑的设计中引入水路或者气路,以利用冷却水或者冷却气体对所述控件光阑进行降温。
本申请实施例提供的激光输出光缆,通过设置一种立体式的空间光阑,以在所述空间光阑中设计贯穿的锥形渐扩孔,实现对圆环型的拖尾光的逐层吸收,有效的分散了由于对激光吸收所产生的热量,避免了空间光阑局部过热被破坏的情况发生,且有效的提高了对于拖尾光以及杂散光的吸收效率,改善了切割效果,保障了激光设备的安全运行。
基于上述实施例的内容,如图2所示,本申请实施例提供的激光输出光缆,还可以包括:切割头连接器202,所述空间光阑204固设于所述切割头连接器内;所述切割头连接器202设置于所述激光输出头203和所述激光切割头201之间,用于固接所述激光输出头202和所述激光切割头201。
其中,所述第一渐扩孔的小径端的通光孔径为:
D=2×tanθ×L;
其中,D为所述第一渐扩孔的小径端的通光孔径;θ为激光器输出光束通过所述端帽后的发散角;L为所述虚拟出光点距离所述空间光阑的距离;所述第一渐扩孔的大径端的通光孔径小于所述切割头连接器的通光孔径。
由于不同厂家及不同激光器型号的输出光的发散角不一样,可以针对不同型号的激光器,在激光输出头203的端部配置带有光阑装置的切割头连接器202,在实现与激光输出头203配套或集成使用的同时,还可以实现空间光阑204的安装固定。相应地,在所述激光切割头201和同时设置于所述切割头连接器202进行配套连接的机械结构,本申请实施例不对采用何种连接方式实现激光输出头203、切割头连接器202与所述激光切割头201三者之间的连接做具体的限定,例如可以采用螺纹连接、卡扣连接等。
进一步地,在实现了激光输出光缆各装置的固定连接的同时,设计上要保证连接后,激光输出头203的虚拟出光点与激光切割头内的准直单元匹配,即需要保证准直单元的入射光焦点与所述虚拟出光点403重合。
图4是本申请实施例提供的一种空间光阑的工作原理示意图,在图4 中示出了激光器输出原始光斑能量分布405和经过空间光阑后的光斑能量分布406。所使用的万瓦级别的激光器激光传输光缆,采用端帽401结合传能光纤402的形式,其出光点为传能光纤402的端面,但是由于端帽401为二氧化硅材料组成,其折射率大于空气,当输出光束从端帽401进入空气时,会受到折射作用,最终形成一个虚拟出光点403。
空间光阑204的通光孔径与激光器输出光的发散角以及虚拟出光点的距离两者都相关。其通光直径的计算公式可以是:
D=2×tanθ×L;
其中,D为所述第一渐扩孔的小径端的通光孔径;θ为激光器输出光束通过所述端帽后的发散角;L为所述虚拟出光点距离所述空间光阑的距离。例如,针对某台激光器,需要滤掉98%-100%部分的光斑能量,设当这台激光器的输出光束对应的光斑其98%总能量对应的发散角为θ,此时根据整体结构需求,确定空间光阑204距虚拟出光点的距离为L(其中,虚拟出光点距离端帽镀膜面的长度L1=端帽的长度/端帽材质的有效折射率,光阑距离端帽镀膜面的距离为L2,L=L1+L2),则大于通光孔径的光束部分被光阑挡住,无法传输到喷嘴205处使得喷嘴发热,同时由于滤除了光斑的拖尾部分,使得材料受到的附带热效应大幅度下降。
本申请实施例还提供了一种发散角θ的确定方法,对于同一输出光束对应的光斑,根据需要滤除的光斑能量的不同,其对应的发散角θ会存在较大的差异。
图5是本申请实施例提供的一种激光器输出光斑的不同能量百分比对应的发散角示意图,如图5所示,该激光器是总功率为12000W的激光器,其100%能量发散角θ 1为0.12rad,99%能量发散角θ 2为0.117rad,98%能量发散角θ 3为0.112rad。如根据需求,需要使用空间光阑滤除98%-100%部分的光斑能量,即可以确定出θ=θ 3=0.112rad。
由于不同型号的激光器其发散角θ不一样,且激光切割头201在位准直单元与激光输出头203之间是有光阑单元204的,但是同一款切割头的光阑单元204并不能较好的匹配各个厂家不同型号的激光器,因此有必要针对性的设计光阑装置假设。设空间光阑204的第一渐扩孔的小径端距虚拟出光点403的轴向距离是L=34mm,此时根据第一渐扩孔的小径端的通 光孔径计算公式,结合上述能量发散角θ的取值,则可以计算出小径端的通光孔径为D=7.65mm。
进一步地,在使用激光器进行材料加工时,在材料表面会产生一些反射,其中碳钢,不锈钢反射率较低,铝、铜等材质的反射率较高。根据光路的可逆性,回返光会返回到激光输出头203部分,但是受材料表面平整度影响,回返光的发散角绝大部分会大于正向激光。对于激光切割头201上连接激光输出头203的切割头连接器202的接口,其通光孔径本身相当于一个光阑,但这个光阑具有一个较大的孔径,可以用来阻挡和吸收被加工材料反射的部分回返光,其对于正向光不起阻隔作用。在切割头连接器202中引入本申请实施例中所提供的空间光阑204后,该空间光阑204的通光孔径应小于切割头连接器202的接口内的通光孔径,则本申请实施例提供的空间光阑204既能阻挡部分正向激光,也可以有效的阻挡部分回返光。即可以根据切割头连接器202的接口的通光孔径确定出大径端的通光孔径。
在确定出空间光阑204的大径端的通光孔径以及小径端的通光孔径后,即可以实现整个空间光阑204的设计。作为可选,可以适当的增加空间光阑204的在光路方向的长度(以小于所述切割头连接器202的总长度,并不影响切割头连接器202的连接功能为准),以有效的分散了由于对激光吸收所产生的热量。
本申请实施例提供了一种空间光阑的设计、安装方法,所提供的空间光阑能够有效的滤除大于通光孔径的部分光束,特别是光斑的拖尾部分,使得喷嘴受到的附带热效应大幅度下降,有效的改善了切割效果,保障了激光设备的安全运行。
基于上述实施例的内容,作为一种可选实施例,在所述空间光阑的内壁中部设置有至少一圈环形吸光槽;所述环形吸光槽向所述光路方向倾斜预设角度。
图6是本申请实施例提供的一种集成空间光阑连接器的内部结构示意图,如图6所示,401为输出光缆的端帽,520是空间光阑的环形吸光槽,环形吸光槽520两侧锥面的螺纹在同一平面,表面加工有细牙消光螺纹,细牙消光螺纹经过喷砂毛化处理。
空间光阑的小径端521是空间光阑的最小口径,是根据本公式D=2×tanθ×L计算出来的,大于发散角θ的光斑部分的能量,绝大部分被消光螺纹519及环形槽腔520吸收。
进一步地,可以根据需要挡光的最小发散角和最大发散角,可以计算出被挡光束的环形区间。为了尽可能避免被挡住的正向光打在挡光环形区间后回返至激光输出头203内,本申请所述将整个环形区间内的第一渐扩孔519的内壁设计为锥面,且锥口方向为出光方向。
进一步地,本申请实施例通过在空间光阑519的第一渐扩孔519的锥面内壁的中部,设计一段带有角度的环形吸光槽520。所述环形吸光槽520表面经过了毛化、发黑等吸光处理,且在设计的过程中,适当的将环形吸光槽520,向所述光路方向倾斜预设角度,能有效的保证被挡住的正向光一旦进入环形吸光槽520内,会在槽内多次散射而被吸收。其中,最小发散角对应的小径端可以被设计为R型,以较少尖端发热风险。
作为可选地,所述环形吸光槽可以仅仅设置一圈,也可以根据实际需要设置相互间隔的多圈,以提高对于被挡住的正向光的吸收效率。
本申请实施例提供的激光输出光缆,通过在空间光阑的第一渐扩孔的内壁上开设向光路方向倾斜的环形吸光槽,有效的提高了被挡住的正向光的吸收效率。
基于上述实施例的内容,作为一种可选实施例,在所述环形吸光槽两侧的锥面上和/或所述空间光阑的内壁上,设置有内凹结构或消光螺纹,并敷设有吸光材料。
具体地,本申请实施例可以在空间光阑204的第一渐扩孔的内壁上设计内凹结构以及设置消光螺纹并涂覆吸光材料,如涂覆黑色耐温材料,来实现对于被挡正向光的充分吸收。
进一步地,在本申请实施例中还需要在环形吸光槽520两侧的锥面设计消光细牙螺纹,并对消光螺纹进行喷砂毛化或发黑处理后,能有效的吸收绝大部分被挡住的激光,而仅有少量没有被吸收的正向激光成为发散光,分散到激光切割头201的腔内,有效的实现了激光切割头201的温度控制。
基于上述实施例的内容,作为一种可选实施例,所述空间光阑204还 包括在所述光路上设置的第二渐扩孔522;所述第二渐扩孔522的小径端与所述第一渐扩孔的小径端重合(统称为空间光阑的小径端521);所述第二渐扩孔522的内壁设置有内凹结构或消光螺纹,并敷设有吸光材料。
如图6所示,在本申请实施例提供的空间光阑204单元除了可以增设对于正向激光进行吸收的环形吸光槽520,在第一渐扩孔519的另一侧也设置有反向锥面,以形成第二渐扩孔522,以实现对于回返光的有效吸收,同时也可以有效的降低对空间光阑204水冷能力的要求。
进一步地,可以对所述第二渐扩孔522进行毛化处理,以提高回返光的吸收效率。需要说明的是,由于回返光的能量密度相较正向光的能量较低,对回返光的消光要求没有正向光要求高,故本申请实施例中构成第二渐扩孔522的反向锥面,能一定程度上实现对绝大部分回返光的吸收,而未被吸收的散射光可以散到激光切割头201的腔内,也不会对其温升带来太多的影响。
作为可选地,为了有效的提升第二渐扩孔522对于回返光的吸收效率,可以在第二渐扩孔的内壁同样设置内凹结构或消光螺纹,并敷设有吸光材料。
本申请实施例提供的激光输出光缆,通过将空间光阑设置为由第一渐扩孔、圈环形吸光槽和第二渐扩孔等多层级结构,能有效的实现对于正向的拖尾光、正向散射光以及回返光的全方位、多层级的吸收,使得喷嘴受到的附带热效应大幅度下降,有效的改善了切割效果,保障了激光设备的安全运行。
基于上述实施例的内容,作为一种可选实施例,所述准直单元的入射光焦点与所述虚拟出光点重合;所述空间光阑与所述切割头连接器是一体成型结构。
如图3所示,是本申请实施例提供的一种空间光阑内部结构示意图,将空间光阑204与切割头连接器202一体成型,其中空间光阑204的通光孔即为所述切割头连接器202的通光孔。
由于不同厂家及不同激光器型号的输出光的发散角不一样,可以针对不同型号的激光器,在激光输出头端部配置带有空间光阑204的切割头连接器202,可以与激光输出头配套或集成使用。带有空间光阑的切割头连 接器202能与主流切割头或焊接头匹配连接。
在具体的设计上,需要保证连接后,输出头的虚拟出光点与切割头内的准直单元匹配。
由于不同型号的激光器其发散角不一样,且激光切割头在位于连接器接口与准直单元之间是有光阑单元的,但是同一款切割头的空间光阑并不能较好的匹配各个厂家不同型号的激光器,因此有必要针对性的设计相应的空间光阑并与激光输出头集成,可以有效滤除给切割效果带来负面影响的拖尾能量。
基于上述实施例的内容,作为一种可选实施例,在所述空间光阑的外壁设置有多水道翅片的散热结构。
图7是本申请实施例提供的一种空间光阑的水道结构示意图,图8是本申请实施例提供的一种空间光阑单元的结构示意图,如图7和图8所示,空间光阑204的外壁上设置有水道结构527。其上设置有用于水道的进出水的水冷接头530,在水道回流通道中带有翅片,以增加散热面积。需要说明的是,图8中所示的翅片的尺寸和数量不视为对本申请实施例保护范围的具体限定。
基于上述实施例的内容,作为一种可选实施例,所述激光输出光缆,还可以包括连接筒528,所述连接筒528的为中空结构;所述空间光阑204与所述连接筒528通过紧定螺钉连接构成空间光阑单元529;在所述连接筒528表面设置有进出水口,并在所述进出水口设置有水冷接头530;所述空间光阑单元529与所述激光输出头203可拆卸连接。
可选地,图7中所示的空间光阑204的水道结构527是通过密封件524、525与连接筒528之间形成机械密封。连接筒528端部设置有外螺纹523,用于与激光切割头201连接;空间光阑204与连接筒528之间通过定位销进行径向限位,与切割头连接器202的连接器537之间也通过定位销进行径向限位。
可选地,如图8所示,空间光阑单元529中的空间光阑204与连接筒528是通过紧定螺钉进行连接的,连接筒528表面设置有进出水口,并设置有水冷接头530。
整个空间光阑单元529是一个独立的组件,为了让客户使用更加方便, 可以将空间光阑单元529与输出头连接器202集成,这样就解决了空间光阑单元529与激光输出头203之间连接的问题。
图9是本申请实施例提供的一种在连接器中集成了空间光阑的输出光缆的结构示意图,图10是本申请实施例提供的一种万瓦级高功率输出光缆的结构示意图。如图9所示的万瓦级高功率输出头511所匹配的一款常规连接器537与光阑单元529连接后,形成了集成空间光阑的连接器538,而所述集成空间光阑的连接器538与万瓦级高功率输出头511连接后,形成了具有空间光阑功能的新型输出光缆512,使常规万瓦级高功率输出头具备了滤除空间光的功能,实现了高质量切割光斑的控制。
进一步地,在如图10所示的万瓦级高功率输出头511中,是采用了常规连接器,其优势是装拆输出头快捷方便,
基于上述实施例的内容,为了克服如图10所示的万瓦级高功率输出头511成本较高的不足,作为一种可选实施例,本申请实施例提供了一种新的激光输出光缆,以降低集成空间光阑的新型输出光缆的成本,且结构上采用了更精简的结构,具体还包括设置于所述切割头连接器的锁紧螺母;所述锁紧螺母内部设置有内螺纹,用于与所述激光输出头的外螺纹匹配连接;在所述激光输出头靠近所述切割头连接器的一端设置有卡销;在所述切割头连接器的主控件上设置有与所述卡销对应的插销孔。
图11是本申请实施例提供的一种简化后的集成有空间光阑的输出光缆的结构示意图,图12是本申请实施例提供的一种连接方式简化后的万瓦级高功率输出光缆的结构示意图,图13是本申请实施例提供的一种切割头主体件的结构示意图,图14是本申请实施例提供的一种锁紧螺母的结构示意图。
如图12所示的万瓦级高功率输出头511,其结构的中部设置了外螺纹517,端面设计有卡销516,通过在图10所示的集成空间光阑的连接器538的激光切割头主体件533上,设计有更加精简的接口,如在如图13所示的激光切割头主体件533上设置有多个插销孔536,可以用于固定插销,用于在套上如图14所示的锁紧螺母531后再安装插销,对锁紧螺母531限位。锁紧螺母531的内部设置有内螺纹535,用于与万瓦级高功率输出头511上的外螺纹517匹配连接。
在安装万瓦级高功率输出头511时,找准与卡销516匹配的激光切割头主体件533的槽口534并进行卡位;然后,将万瓦级高功率输出头511完全伸入集成空间光阑的连接器538内部并贴合,最后旋紧锁紧螺母531,使万瓦级高功率输出头511与集成空间光阑的连接器538完成连接,构成了集成空间光阑功能的新型输出光缆515。
本申请实施例提供的采用集成空间光阑的激光输出光缆,可以针对特定激光器型号,设计挡光发散角阈值,可以控制输出光束,有效改善切割效果,同时避免了在客户现场装拆激光输出头的繁琐操作,只需要将光阑单元的接口部分与切割头匹配连接即可。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (10)

  1. 一种激光输出光缆,包括在光路上依次连接的传能光纤,连接激光输出头和激光切割头的激光切割头连接器;所述激光输出头包含有端帽;
    其特征在于:所述激光切割头连接器中至少设置有一个空间光阑;
    所述空间光阑的通光孔径是基于虚拟出光点与所述空间光阑之间的距离以及激光器输出光束通过所述端帽后的发散角确定的;
    所述虚拟出光点是基于所述端帽确定的。
  2. 根据权利要求1所述的激光输出光缆,其特征在于,所述空间光阑中设置有贯穿的第一渐扩孔;
    所述激光器输出光束沿所述第一渐扩孔的径向线射入至所述第一渐扩孔的大径端,并由所述第一渐扩孔的小径端射出。
  3. 根据权利要求2所述的激光输出光缆,其特征在于,
    所述第一渐扩孔的小径端的通光孔径的计算公式为:
    D=2×tanθ×L;
    其中,D为所述第一渐扩孔的小径端的通光孔径;θ为激光器输出光束通过所述端帽后的发散角;L为所述虚拟出光点距离所述空间光阑的距离;
    所述第一渐扩孔的大径端的通光孔径小于所述切割头连接器的通光孔径。
  4. 根据权利要求2所述的激光输出光缆,其特征在于,在所述空间光阑的内壁中部设置有至少一圈环形吸光槽;所述环形吸光槽向所述光路方向倾斜预设角度。
  5. 根据权利要求4所述的激光输出光缆,其特征在于,在所述环形吸光槽两侧的锥面上和/或所述空间光阑的内壁上,设置有内凹结构或消光螺纹,并敷设有吸光材料。
  6. 根据权利要求2所述的激光输出光缆,其特征在于,所述空间光阑还包括在所述光路上设置的第二渐扩孔;
    所述第二渐扩孔的小径端与所述第一渐扩孔的小径端重合;
    所述第二渐扩孔的内壁设置有内凹结构或消光螺纹,并敷设有吸光材 料。
  7. 根据权利要求3所述的激光输出光缆,其特征在于,所述准直单元的入射光焦点与所述虚拟出光点重合;所述空间光阑与所述切割头连接器是一体成型结构。
  8. 根据权利要求1所述的激光输出光缆,其特征在于,在所述空间光阑的外壁设置有多水道翅片的散热结构。
  9. 根据权利要求1所述的激光输出光缆,其特征在于,还包括连接筒,所述连接筒的为中空结构;
    所述空间光阑与所述连接筒通过紧定螺钉连接构成空间光阑单元;
    在所述连接筒表面设置有进出水口,并在所述进出水口设置有水冷接头;
    所述空间光阑单元与所述激光输出头可拆卸连接。
  10. 根据权利要求3所述的激光输出光缆,其特征在于,还包括设置于所述切割头连接器的锁紧螺母;
    所述锁紧螺母内部设置有内螺纹,用于与所述激光输出头的外螺纹匹配连接;
    在所述激光输出头靠近所述切割头连接器的一端设置有卡销;
    在所述切割头连接器的主控件上设置有与所述卡销对应的插销孔。
PCT/CN2021/130917 2020-11-17 2021-11-16 一种激光输出光缆 WO2022105749A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21893896.7A EP4212277A1 (en) 2020-11-17 2021-11-16 Laser output optical cable

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011287324.XA CN112605525A (zh) 2020-11-17 2020-11-17 一种激光输出光缆
CN202011287324.X 2020-11-17

Publications (1)

Publication Number Publication Date
WO2022105749A1 true WO2022105749A1 (zh) 2022-05-27

Family

ID=75224780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/130917 WO2022105749A1 (zh) 2020-11-17 2021-11-16 一种激光输出光缆

Country Status (3)

Country Link
EP (1) EP4212277A1 (zh)
CN (1) CN112605525A (zh)
WO (1) WO2022105749A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117595046A (zh) * 2024-01-19 2024-02-23 天津凯普林光电科技有限公司 一种激光输出转换装置及测试平台

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112605525A (zh) * 2020-11-17 2021-04-06 武汉锐科光纤激光技术股份有限公司 一种激光输出光缆
CN113458626A (zh) * 2021-08-02 2021-10-01 上海波刺自动化科技有限公司 杂散光吸收装置
CN114779411B (zh) * 2022-03-23 2023-08-01 武汉锐科光纤激光技术股份有限公司 一种激光传输光缆
DE102022111298A1 (de) 2022-05-06 2023-11-09 Trumpf Laser- Und Systemtechnik Gmbh Anlage zur schichtweisen Fertigung wenigstens eines Objekts auf einer Bauplattform und zugehöriges Fertigungsverfahren, mit gekühlter Blendeneinrichtung

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202015101457U1 (de) * 2015-03-23 2015-03-27 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Optisches System für eine Laserbearbeitungsmaschine, mit einem optischen Element in einem Stecker eines Lichtleitkabels
CN207837511U (zh) * 2017-04-29 2018-09-11 重庆西山科技股份有限公司 内窥镜用消光管及内窥镜
CN108562976A (zh) * 2018-03-31 2018-09-21 深圳市创鑫激光股份有限公司 高功率激光耦合器及其装配方法
CN209016423U (zh) * 2018-10-31 2019-06-21 深圳市创鑫激光股份有限公司 激光器及其激光输出头
CN209029669U (zh) * 2018-10-31 2019-06-25 深圳市创鑫激光股份有限公司 激光器及其激光输出头
CN110323658A (zh) * 2018-03-31 2019-10-11 深圳市创鑫激光股份有限公司 激光输出头和激光器
CN111122127A (zh) * 2020-03-12 2020-05-08 佛山市宏石激光技术有限公司 一种激光发散角的测量方法
CN111299850A (zh) * 2019-10-31 2020-06-19 佛山市宏石激光技术有限公司 一种激光加工方法
CN112605525A (zh) * 2020-11-17 2021-04-06 武汉锐科光纤激光技术股份有限公司 一种激光输出光缆

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2040507A5 (zh) * 1969-04-01 1971-01-22 Commissariat Energie Atomique
EP1068923B1 (de) * 1999-07-12 2007-10-17 MDC Max Dätwyler AG Bleienbach Verfahren zur Erzeugung einer Intensitätsverteilung über einen Arbeitslaserstrahl sowie Vorrichtung hierzu
EP3391479B1 (de) * 2015-12-15 2022-09-07 TRUMPF Lasersystems for Semiconductor Manufacturing GmbH Optischer isolator, treiberlaseranordnung und euv-strahlungserzeugungsvorrichtung damit
DE102017210350B3 (de) * 2017-06-21 2018-03-29 Trumpf Laser Gmbh Vorrichtung zur Auskopplung von Strahlung aus einer Lichtleitfaser, Lichtleitkabel und Bearbeitungskopf damit
CN208805602U (zh) * 2018-09-21 2019-04-30 武汉海达数云技术有限公司 一种滤光装置
CN209280591U (zh) * 2018-12-24 2019-08-20 江苏善果缘智能科技有限公司 一种用于图像采集装置的遮光罩结构
CN210524146U (zh) * 2019-08-30 2020-05-15 佛山市宏石激光技术有限公司 一种光纤激光头光阑
CN110596879B (zh) * 2019-09-23 2020-10-30 中国科学院云南天文台 一种适用于环形太阳望远镜的热光阑
CN211014638U (zh) * 2019-09-30 2020-07-14 青岛澳瑞德电子有限公司 激光系统杂散光消除装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202015101457U1 (de) * 2015-03-23 2015-03-27 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Optisches System für eine Laserbearbeitungsmaschine, mit einem optischen Element in einem Stecker eines Lichtleitkabels
CN207837511U (zh) * 2017-04-29 2018-09-11 重庆西山科技股份有限公司 内窥镜用消光管及内窥镜
CN108562976A (zh) * 2018-03-31 2018-09-21 深圳市创鑫激光股份有限公司 高功率激光耦合器及其装配方法
CN110323658A (zh) * 2018-03-31 2019-10-11 深圳市创鑫激光股份有限公司 激光输出头和激光器
CN209016423U (zh) * 2018-10-31 2019-06-21 深圳市创鑫激光股份有限公司 激光器及其激光输出头
CN209029669U (zh) * 2018-10-31 2019-06-25 深圳市创鑫激光股份有限公司 激光器及其激光输出头
CN111299850A (zh) * 2019-10-31 2020-06-19 佛山市宏石激光技术有限公司 一种激光加工方法
CN111122127A (zh) * 2020-03-12 2020-05-08 佛山市宏石激光技术有限公司 一种激光发散角的测量方法
CN112605525A (zh) * 2020-11-17 2021-04-06 武汉锐科光纤激光技术股份有限公司 一种激光输出光缆

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117595046A (zh) * 2024-01-19 2024-02-23 天津凯普林光电科技有限公司 一种激光输出转换装置及测试平台
CN117595046B (zh) * 2024-01-19 2024-05-28 天津凯普林光电科技有限公司 一种激光输出转换装置及测试平台

Also Published As

Publication number Publication date
EP4212277A1 (en) 2023-07-19
CN112605525A (zh) 2021-04-06

Similar Documents

Publication Publication Date Title
WO2022105749A1 (zh) 一种激光输出光缆
US8047663B2 (en) Beam dump for a very-high-intensity laser beam
WO2022179230A1 (zh) 激光输出头
EP1982221B1 (en) Optical fiber connector
US6016227A (en) Apparatus and method for producing an improved laser beam
CN108687440B (zh) 一种吹气平缓均匀的激光切割头气路装置
CN108562976B (zh) 高功率激光耦合器及其装配方法
CN112229506B (zh) 一种万瓦级高功率积分球激光测试装置
CN104749694B (zh) 光纤剥模器及光纤剥模器的制作方法
CN106597624A (zh) 一种适用于对称光路太阳望远镜全吸收理想视场光栏装置
CN103894742A (zh) 一种激光切割头的辅助气体流道及其设计方法
CN210334786U (zh) 一种具有杂光吸收腔的激光加工头
WO2023123510A1 (zh) 附件、干燥设备及干燥组件
CN112251748A (zh) 管道内壁用激光熔覆头
CN109901288A (zh) 一种激光直射光及其前向散射光光陷阱装置
CN214795307U (zh) 一种双凸非球面万瓦级高抗损伤大口径风冷光纤连接器
JP2757649B2 (ja) レーザ加工ヘッド
CN209461791U (zh) 用于中功率脉冲光纤激光器的拷机装置
CN111308699B (zh) 高功率光纤激光器用光闸中透镜参数设计方法
CN116742448B (zh) 抗高回返光激光输出头及激光器
CN219336431U (zh) 一种激光切割头发射组件
CN112011795A (zh) 一种宽光斑激光能量回收装置和激光熔覆头装置
KR100923083B1 (ko) 레이저 핸드피스
CN109226969A (zh) 去毛刺激光头和应用其的激光去毛刺装置
CN109687261A (zh) 用于中功率脉冲光纤激光器的拷机装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21893896

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021893896

Country of ref document: EP

Effective date: 20230414

NENP Non-entry into the national phase

Ref country code: DE