WO2021227963A1 - 干燥装置以及供电模组 - Google Patents

干燥装置以及供电模组 Download PDF

Info

Publication number
WO2021227963A1
WO2021227963A1 PCT/CN2021/092204 CN2021092204W WO2021227963A1 WO 2021227963 A1 WO2021227963 A1 WO 2021227963A1 CN 2021092204 W CN2021092204 W CN 2021092204W WO 2021227963 A1 WO2021227963 A1 WO 2021227963A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
drying device
power supply
main control
radiation source
Prior art date
Application number
PCT/CN2021/092204
Other languages
English (en)
French (fr)
Inventor
王铭钰
徐兴旺
Original Assignee
深圳汝原科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳汝原科技有限公司 filed Critical 深圳汝原科技有限公司
Priority to CN202180002172.0A priority Critical patent/CN113811223A/zh
Publication of WO2021227963A1 publication Critical patent/WO2021227963A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/0033Heating devices using lamps
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45DHAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
    • A45D20/00Hair drying devices; Accessories therefor
    • A45D20/04Hot-air producers
    • A45D20/08Hot-air producers heated electrically
    • A45D20/10Hand-held drying devices, e.g. air douches
    • A45D20/12Details thereof or accessories therefor, e.g. nozzles, stands
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45DHAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
    • A45D20/00Hair drying devices; Accessories therefor
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45DHAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
    • A45D20/00Hair drying devices; Accessories therefor
    • A45D20/04Hot-air producers
    • A45D20/08Hot-air producers heated electrically
    • A45D20/10Hand-held drying devices, e.g. air douches
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45DHAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
    • A45D2200/00Details not otherwise provided for in A45D
    • A45D2200/20Additional enhancing means
    • A45D2200/205Radiation, e.g. UV, infrared

Definitions

  • This application relates to drying technology, in particular to drying devices and power supply modules.
  • the embodiments of the present application provide an improved drying device and a power supply module.
  • an embodiment of the present application provides a drying device, including:
  • Thermal radiation source used for thermal radiation to transfer heat to the object to be dried
  • the air supply unit is used to generate air flow in the working state to deliver the air flow to the object to be dried;
  • the main control unit is used to control the working state of the air blowing unit and the heat radiation source, and to control the drying device to stop running when an abnormality of the drying device is detected.
  • an embodiment of the present application provides a power supply module of a drying device, the drying device includes a main control unit, the main control unit is used to control the operation of the drying device, and interact with the power supply module Communication data;
  • the power supply module includes a discharge unit connected to the drying device, and a power supply management unit connected to the discharge unit;
  • the power supply management unit is used to control the discharge unit to discharge to the drying device, and to exchange communication data with the main control unit, and to control the main control unit when it is determined that the main control unit is abnormal according to the communication data.
  • the discharge unit stops discharging.
  • an embodiment of the present application provides a drying device, including:
  • Thermal radiation source used for thermal radiation
  • the air supply unit is used to generate and convey air flow under working conditions
  • the main control unit is used to control the working status of the air supply unit and the heat radiation source, and exchange data with the power supply module;
  • the power supply module is used to supply power to the heat radiation source and the air supply unit, and to communicate data with the main control unit, and based on the communication data, when the main control unit is determined to be abnormal Stop supplying power to the heat radiation source and the air blowing unit.
  • the drying device provided by the embodiment of the present application directly transmits heat to the object to be dried through the heat radiation source, avoids the unnecessary energy loss caused by heating the air, and improves the energy utilization rate.
  • the heat radiation source directly transmits the heat to the object to be dried.
  • the heat transfer does not need to heat the air, and the power consumption required for work is greatly reduced; at the same time, it is supplemented by the air supply unit to generate air flow and transport it to the object to be dried, which can prevent the object to be dried from receiving the heat of the heat radiation source to cause the temperature to be too high.
  • the main control unit is also used to control the working status of the air supply unit and the heat radiation source, and when an abnormality of the drying device is detected, for example, the air supply unit or the air supply unit is detected.
  • the drying device is controlled to stop operation, so as to provide a safety protection mechanism for the operation of the drying device and ensure the safe operation of the drying device.
  • Fig. 1 is a schematic structural diagram of a drying device shown in an exemplary embodiment of the present application.
  • Fig. 2 is a schematic structural diagram of a heat radiation source shown in an exemplary embodiment of the present application.
  • Fig. 3 is a cross-sectional view of a drying device shown in an exemplary embodiment of the present application.
  • Fig. 4 is a cross-sectional view of another drying device shown in an exemplary embodiment of the present application.
  • Fig. 5 is a schematic structural diagram of a drying device including a power supply module according to an exemplary embodiment of the present application.
  • Fig. 6 is a schematic structural diagram of a power supply module shown in an exemplary embodiment of the present application.
  • Fig. 7 is a schematic structural diagram of a drying device including a power conversion unit according to an exemplary embodiment of the present application.
  • Fig. 8 is a schematic structural diagram of a drying device including a motor drive unit according to an exemplary embodiment of the present application.
  • Fig. 9 is a schematic structural diagram of a specific drying device shown in an exemplary embodiment of the present application.
  • Fig. 10 is a schematic structural diagram of still another drying device shown in an exemplary embodiment of the present application.
  • Drying device 01 includes:
  • the heat radiation source 100 is used for heat radiation to transfer heat to the object to be dried
  • the air supply unit 200 is used to generate air flow in the working state to deliver the air flow to the object to be dried;
  • the main control unit 300 is used to control the working state of the air blowing unit 200 and the heat radiation source 100, and to control the drying device to stop running when an abnormality of the drying device is detected.
  • the heat radiation source 100 directly transmits heat to the object to be dried, avoiding the unnecessary energy loss caused by heating the air, and improving the energy utilization rate.
  • the heat radiation source 100 since the heat radiation source 100 is directly The object to be dried transfers heat without heating the air, and the power consumption required for work is greatly reduced; at the same time, the air supply unit 200 generates air flow and conveys it to the belt drying object, which can prevent the object to be dried from receiving the heat of the heat radiation source to cause temperature It is too high, and when the wind flows through the object to be dried, it can also accelerate the evaporation of moisture in the object to be dried. Therefore, the combination of the heat radiation source 100 and the air blowing unit 200 can effectively improve the drying efficiency.
  • the main control unit 300 also controls the working status of the air supply unit 200 and the heat radiation source 100, and when an abnormality of the drying device is detected, for example, the air supply is detected When the unit 200 or the heat radiation source 100 is abnormal, the drying device is controlled to stop operation, providing a safety protection mechanism for the operation of the drying device, and ensuring the safety of the drying device.
  • the drying device in the embodiment of the present application may be a hair dryer, a dryer, a hand dryer, a body dryer, etc., which are used as drying equipment.
  • the heat radiation source 100 may include a heat source (ie, a radiation source) for heat radiation and heat transfer, and a reflector lamp cup for directing the heat radiation emitted by the heat source in the same direction, but other sources are not excluded. Realization of heat radiation source.
  • Figure 2 is a schematic structural diagram of a thermal radiation source shown in an exemplary embodiment of the present application.
  • the thermal radiation source 100 includes a heating source 110 and a reflector lamp cup 120. The heat radiation is directed to the same direction after passing through the reflector lamp cup, and illuminates the object to be dried for heat transmission.
  • the heating source 110 may be an infrared radiation source, a black body radiation source, etc., specifically it may be a ceramic heating rod, a carbon fiber heating wire, a metal heating wire, etc., of course, this is not limited.
  • the reflector lamp cup 120 may include a concave surface through which the radiation direction is changed.
  • the number of heat radiation sources 100 in the drying device may be one or more, which is not limited.
  • the air blowing unit 200 may include a motor and a fan blade mounted on the motor and driven to rotate by the motor, and the fan blade generates wind flow during the rotation and conveys the wind flow to the object to be dried.
  • the drying device further includes an air flow channel for conveying air flow, and the air blowing unit can transport the generated air flow through the air flow channel.
  • the heat radiation source 100 may be provided in the air flow channel, or The heat radiation source 100 is arranged in the non-air flow channel area of the drying device, for example, it may be arranged around the air flow channel.
  • Fig. 3 is a cross-sectional view of a drying device shown in an exemplary embodiment of the present application.
  • the drying device 03 includes an infrared radiation source 10, an air duct 20, a fan blade 30, and a motor 40.
  • the infrared radiation source 10 includes Heat source 11.
  • the motor 40 is connected to the fan blade 30, and the motor 40 drives the fan blade 30 to rotate to form an air flow, and is transported through the air duct 20, wherein the infrared radiation source 10 is arranged in the air duct 20.
  • Figure 4 is a cross-sectional view of another drying device according to an exemplary embodiment of the present application.
  • the drying device 04 includes a number of infrared radiation sources 50, air ducts 60, motors 70, and fan blades 80.
  • the source 50 is arranged around the air duct 60, and the surrounding infrared radiation source 50 can constitute the outer wall of the air duct 60, that is, the infrared radiation source 50 and the air duct 60 are integrated; of course, the air duct 60 can also have an independent outer wall.
  • the radiation source 50 is arranged around the air duct 60 to reduce the wind resistance and wind noise of the wind flow generated by the fan blade 80.
  • the main control unit 300 can be a chip with processing capabilities such as a micro control unit (MCU), a central processing unit (CPU), a programmable logic device (PLD), etc. integrated in the drying device, and the chip can implement corresponding functions through a software program , The corresponding functions can also be realized through hardware such as circuits.
  • MCU micro control unit
  • CPU central processing unit
  • PLD programmable logic device
  • the drying device is controlled to stop operation.
  • control of the drying device to stop operation mentioned here may refer to the control of the drying device to completely stop operation, that is, the drying device is completely in an inoperative state, for example, the control of the air supply unit 200 and the heat radiation source 100 to stop working; or Controlling the drying device to stop running can also refer to controlling a specific functional module in the drying device to stop working. Other functional modules in the drying device may still be in working state, for example, only controlling the air supply unit 200 or the heat radiation source 100 to stop working.
  • the specific method for controlling the stopping operation of the drying device can be set by a technician according to requirements, which is not limited.
  • the drying device may also include a sampling unit, through which data such as current and voltage are sampled, and the sampled value is sent to the main control unit 300 for analysis to determine whether there is an abnormality.
  • the sampling unit may be integrated inside the main control unit 300, or may also be deployed outside the main control unit 300, for example, it may be electrically connected to the main control unit 300 to transmit sampling data to the main control unit 300, specifically How to set up the sampling unit, the technician can choose according to the demand, this is not limited.
  • the sampling unit may specifically be an analog-to-digital converter (ADC).
  • the main control unit 300 can pre-store the current data of the air supply unit 200 under normal operation. For example, the current value, the maximum current, the minimum current or the current range of the air supply unit 200 under normal operation can be pre-stored as a judgment. The basis for whether the air supply unit 200 works normally. Therefore, during the operation of the drying device, the sampling unit can collect the working current of the air supply unit 200 in real time, and send the sampled current value to the main control unit 300 after analog-to-digital conversion, and the main control unit 300 can obtain the operating current of the air supply unit.
  • the current operating current value is compared with the pre-stored current data of the air supply unit 200 under normal operation, to determine whether the current operating current value is a normal current value, and then determine whether the air supply unit 200 is abnormal, for example
  • the current operating current value of the air supply unit 200 is not within the current range under the normal operation of the air supply unit 200, it can be determined that the air supply unit 200 is abnormal.
  • the method described above can also be referred to. The only difference is that the sampling value is a voltage. The principle is similar to the above method. Do not repeat it.
  • the drying device may further include an air flow channel for conveying air flow.
  • the size and shape of the air flow channel can be set by the technician according to the actual structure of the drying device, and the air flow generated by the air supply unit 200 can pass through the air flow channel.
  • the air flow channel conveys the object to be dried.
  • a heating element and a heat-sensitive element can be arranged in the air flow channel, and the position of the heat-sensitive element is set close to the position of the heating element, and the heating element conducts heat transfer to the heat-sensitive element.
  • the proximity of the position of the element and the position of the heating element may be as long as it can ensure that the heating element and the heat-sensitive element maintain a good thermal conductivity relationship, and there is no limit to the specific value set close to each other.
  • the resistance value of the thermosensitive element used in the embodiment of the present application has a fixed corresponding relationship with its temperature, that is, the thermosensitive element is fixedly corresponding to a certain resistance value under different temperatures.
  • the heating element used in the embodiment of the present application may be a heating resistor, which will generate a temperature rise after being energized
  • the thermal element used in the embodiment of the present application may be a thermistor, the resistance of which varies with temperature And change.
  • this application can measure in advance at different ambient temperatures after the heating element is heated to a specified value, and the thermal element is under different speeds of air flow.
  • Corresponding temperature from which the corresponding relationship between the temperature of the thermal element and the wind speed can be obtained under a specific ambient temperature and the same heating element conducts heat to the thermal element, and the corresponding relationship is tabulated and stored in the main control unit In 300, the corresponding relationship between the resistance of the thermistor and the temperature can also be pre-stored at the same time. Therefore, during the operation of the drying device, the sampling unit can sample the current and voltage of the thermal element in real time and send it to the main control unit 300 for analysis.
  • the main control unit 300 can calculate the current and voltage of the thermal element based on the obtained thermal element’s current and voltage.
  • the current resistance value of the thermistor and at the same time obtain the temperature value corresponding to the current resistance value of the thermistor by querying the pre-stored table, and query the wind speed corresponding to the current temperature value of the thermistor, thereby obtaining the air flow delivered by the air supply unit 200 in real time Speed, based on the acquired real-time air flow velocity conveyed by the air blowing unit 200, it can be determined whether the air blowing unit 200 is abnormal.
  • the speed is compared to determine whether the air flow speed currently conveyed by the air supply unit 200 is normal, and to determine whether the air supply unit 200 is abnormal.
  • the above shows several ways to detect whether the air supply unit 200 is abnormal. It can be understood that the above is only an example and not a limitation. Other possible methods for detecting an abnormality of the air supply unit 200 will not be introduced here. .
  • the main control unit 300 can determine whether to control the heat radiation source 100 and the air supply unit 200 to stop working by determining whether the air supply unit 200 is abnormal. It should be noted that in the case that the air supply unit 200 is abnormal, the main control unit 300 can control the heat radiation source 100 to stop operating, because the drying device provided in the embodiment of the present application uses the heat radiation source 100 and the air supply unit 200 at the same time. To dry, and the effect of wind is very important for safety.
  • the main control unit 300 can control the heat radiation source 100 to stop operating when an abnormality occurs in the air supply unit 200. At the same time, furthermore, when an abnormality occurs in the air supply unit 200, in order to prevent the abnormality of the air supply unit 200 from continuing, the air supply unit 200 can also be controlled to stop operation.
  • the embodiment of the present application also provides a method for detecting whether the thermal radiation source 100 is abnormal. Taking the working current of the thermal radiation source 100 as an example, how to detect whether the thermal radiation source 100 is abnormal is described.
  • the main control unit 300 can pre-store the current data of the thermal radiation source 100 under normal operation. For example, the current value, maximum current, minimum current or current range of the thermal radiation source 100 under normal operation can be pre-stored as a judgment. The basis for whether the heat radiation source 100 works normally. Therefore, during the operation of the drying device, the sampling unit can collect the working current of the thermal radiation source 100 in real time, and send the sampled current value to the main control unit 300, and the main control unit 300 can obtain the current working current of the thermal radiation source 100.
  • the main control unit 300 may determine whether to control the thermal radiation source 100 to stop working by determining whether the thermal radiation source 100 is abnormal.
  • the above embodiments of the present application implement the main control unit 300 to determine whether the heat radiation source 100 and the air supply unit 200 are abnormal, and to determine whether to control the heat radiation source 100 and the air supply unit 200 to stop operation to ensure the drying device safe operation.
  • the embodiment of the present application also provides a drying device including a power supply module. See FIG. 5, which is a drying device including a power supply module according to an exemplary embodiment of the present application.
  • the drying device 05 The difference from the drying device 01 shown in FIG. 1 is that it also includes a power supply module 400.
  • the power supply module 400 is connected to the heat radiation source 100 and connected to the air supply unit 200.
  • the power supply module 400 can be used to radiate heat.
  • the source 100 and the air supply unit 200 supply power.
  • the power supply module 400 may have built-in battery cells to supply power to the heat radiation source 100 and the air supply unit 200 through battery discharge.
  • the power supply module 400 may also be an external power source, and power is supplied to the heat radiation source 100 and the air supply unit 200 through the external power source.
  • the power supply module 400 may provide direct current power to the heat radiation source 100 and the air supply unit 200, or may provide alternating current power, which can be set according to actual needs.
  • the power supply module 400 can be detachably installed on the drying device, of course, it can also be integrated with the drying device.
  • the power supply module 400 may also be configured to exchange data with the main control unit 300.
  • the power supply module 400 and the main control unit 300 may communicate through a signal line, for example, in the power supply module 400
  • the power supply module 400 and the main control unit 300 can communicate through inter-board signal lines; in the case that the power supply module 400 and the main control unit 300 are deployed on the same circuit board
  • the power supply module 400 and the main control unit 300 can communicate with each other through an in-board signal line.
  • the used communication interface protocol can be I2C (Inter-Integrated Circuit), UART (Universal Asynchronous Receiver/Transmitter), etc.
  • the power supply module 400 and the main control unit 300 can communicate wirelessly, for example, via Bluetooth, wireless local area network (WIFI), telecommunications network, mobile network, etc.
  • WIFI wireless local area network
  • the communication data between the power supply module 400 and the main control unit 300 can be used to determine whether the main control unit 300 is working abnormally, so that the main control unit can be detected through the interactive communication between the power supply module 400 and the main control unit 300 Whether there is an abnormality in 300, because the main control unit 300 may not be able to normally control the working state of the heat radiation source 100 and the air supply unit 200 under abnormal conditions, therefore, in one embodiment, if the power supply module 400 is determining the main control unit If 300 is abnormal, the power supply to the heat radiation source 100 and the air supply unit 200 can be stopped, so that the heat radiation source 100 and the air supply unit 200 stop operating and avoid potential safety hazards.
  • the main control unit 300 can also exchange data with the power supply module 400 to determine whether the power supply module 400 is working abnormally, and when the main control unit 300 determines that the power supply module 400 is abnormal, it controls the heat radiation source that is in operation. 100.
  • the air supply unit 200 stops running.
  • the main control unit 300 and the power supply module 400 can exchange communication data by sending communication requests to each other, and determine whether an abnormality occurs according to the response result of the other party. For example, the main control unit 300 sends the power supply module 400 to the power supply module 400. During the communication request, if the other party responds abnormally or does not respond, it can be determined that the power supply module 400 is abnormal. Or the way of communicating data between the main control unit 300 and the power supply module 400 can also be through periodic exchange of heartbeat packets, that is, the main control unit 300 and the power supply module 400 send each other according to a preset cycle. Heartbeat packet, judge whether an abnormality occurs according to whether the heartbeat packet sent by the other party can be received on time.
  • the main control unit 300 and the power supply module 400 agree on the cycle of the heartbeat packet. If the main control unit 300 receives a heartbeat packet sent by the power supply module 400, but has not received the next heartbeat packet after the specified cycle time, then It can be determined that the power supply module 400 is abnormal. Of course, in addition to the two methods introduced above, it is not ruled out that the main control unit 300 and the power supply module 400 may actively send a message to the other party indicating that they are abnormal when the main control unit 300 and the power supply module 400 are abnormal, so that the other party can make a timely response. Safety protection measures.
  • the main control unit 300 controls the heat radiation source 100 and the air supply unit 200 to stop working, the operation may fail.
  • the main control unit 300 may send instructions to the power supply module 400 to notify the power supply module.
  • the group 400 stops supplying power to the heat radiation source 100 and the air supply unit 200 to prevent the heat radiation source 100 and the air supply unit 200 from being unable to stop working in a timely manner.
  • the main control unit 300 determines that the stop operation of the heat radiation source 100 and the air supply unit 200 has failed to be controlled by the method of obtaining the heat radiation source 100 after sending the stop operation control signal to the heat radiation source 100 and the air supply unit 200.
  • FIG. 6 is a schematic structural diagram of a power supply module 400 according to an exemplary embodiment of the present application.
  • the power supply module 400 includes The discharging unit 410 and the power supply management unit 420 are used to communicate data with the main control unit 300 and determine whether the main control unit 300 works abnormally according to the communication data, so as to control the discharge unit 410 to discharge/stop the discharge.
  • the discharging unit 410 and the power supply management unit 420 are used to communicate data with the main control unit 300 and determine whether the main control unit 300 works abnormally according to the communication data, so as to control the discharge unit 410 to discharge/stop the discharge.
  • For how to determine whether the main control unit 300 is working abnormally according to the communication data reference may be made to the introduction of the previous embodiment, which will not be repeated here.
  • the main control unit 300 may generate an enable signal to control the working status of the heat radiation source 100 and the air supply unit 200 through a fixed enable pin, and the power supply management unit 420 may use a fixed enable pin.
  • Pin to generate an enable signal to control the discharge of the discharge unit 410, and if the enable pin on the main control unit 300 for controlling the heat radiation source 100 or the air supply unit 200 is damaged, or the power supply management unit 420 is used for controlling the discharge
  • the main control unit 300 may lose its ability to control the heat radiation source 100 and the air supply unit 200.
  • the power supply management unit 420 may also lose its ability to control the discharge unit 410.
  • the power supply management unit 420 and the main control unit 300 can be set to generate enable signals through at least two enable pins according to the designated logic gate circuit, thereby avoiding damage to a specific pin. At this time, the power supply management unit 420 or the main control unit 300 loses the corresponding control capability. For example, the main control unit 300 generates an enable signal for controlling the working state of the heat radiation source 100 as an example.
  • the main control unit 300 can be configured as Simultaneously output '1' through 3 pins, and generate an enable signal '1' through a three-input AND gate to control the operation of the heat radiation source 100, so if any one of the pins fails, the output will be erroneously '0', then none of the AND gates through these three inputs can generate the enable signal '1' needed to control the operation of the heat radiation source 100.
  • the discharging unit 410 may also include a discharge driving unit and battery cells, and the power supply management unit 420 may control the battery cells to discharge/stop discharging through the discharge driving unit.
  • the discharging unit 410 may not be equipped with battery cells, and the discharging unit 410 may be directly connected to an external power source through the discharging driving unit, and the power supply switch of the external power source may be controlled by the discharging driving unit.
  • the discharge driving unit may be a MOS (MOSFET) chip.
  • the power supply management unit 420 may also include a battery power management chip and a power supply manager, wherein the power supply manager is used to output a discharge enable signal to the battery power management chip, so that the battery power management chip controls the discharge unit 410 discharge.
  • the power management unit 420 may not be equipped with a battery power management chip.
  • the power supply manager can directly output a discharge enable signal to the discharge unit 410 to control the discharge unit. 410 discharge.
  • the battery power management chip can not only control the discharge of the discharge unit 410 according to the discharge enable signal output by the power supply manager, but also can monitor the battery power in real time and perform battery power monitoring. Related management.
  • the drying device may further include a power conversion unit, see FIG. 7, which is a drying device including a power conversion unit according to an exemplary embodiment of the present application, as shown in FIG.
  • the drying device 06 differs from the drying device 01 shown in FIG. 1 in that it also includes a power conversion unit 500.
  • the heat radiation source 100 and the air supply unit 200 can be connected to power sources through the power conversion unit 500, so that the power conversion unit 500 can The input power is converted to provide the air supply unit 200 with a first working power source that meets normal working requirements, and to provide a second working power source for the heat radiation source 100 to meet normal working requirements.
  • the power conversion unit 500 may be connected to the power supply module 400. Connect to convert the power input from the power supply module 400.
  • the drying device is not equipped with the power supply module 400, it can also be directly connected to an external power source.
  • different modules may be configured in the power conversion unit 500 to convert the input power into the first operation.
  • the power conversion unit 500 may include a first power supply chip and a second power supply chip.
  • the first power supply chip is responsible for converting the input power into the first working power supply
  • the second power supply chip converts the input power
  • the input power supply itself may already meet the working requirements of the heat radiation source 100 or the air supply unit 200.
  • the power conversion unit 500 may be only connected to the air supply unit, and is only used to convert the input power to the first working power supply that meets the working requirements of the air supply unit 200; in the same way, the input power meets the working requirements of the air supply unit 200.
  • the situation is similar when the working requirements of the heat radiation source 100 are not met.
  • the main control unit 300 controls the working status of the heat radiation source 100 and the air blowing unit 200 based on the power conversion unit 500. For example, if the power conversion unit 500 is required to provide the second working power source for the heat radiation source 100 during the operation of the drying device, the main control unit 300 may send the heat radiation source power supply enable signal to the power conversion unit 500, and the power conversion unit 500 may follow The heat radiation source power supply enable signal converts the input power source into a heat radiation source to provide a second working power source that meets working requirements.
  • the main control unit 300 can cut off the power supply to the heat radiation source 100 by stopping sending the heat radiation source power supply enable signal to the power conversion unit 500, so as to The heat radiation source 100 is controlled to stop working.
  • the main control unit 300 can also control the size of the power supplied to the thermal radiation source 100 through the power conversion unit 500, thereby controlling the thermal radiation intensity of the thermal radiation source 100.
  • the main control unit 300 may also send the air supply unit power supply enable signal to the power conversion unit 500, and the power conversion unit According to the power supply enable signal of the air supply unit 500, the input power supply can be converted into a first working power supply that meets the operating requirements of the air supply unit 200.
  • the main control unit 300 can stop sending the air supply unit power supply enable signal to the power conversion unit 500 to cut off the power supply to the air supply unit 200 to control the air supply unit 200 to stop Work.
  • FIG. 8 is a drying device including a motor drive unit shown in an exemplary embodiment of the present application, as shown in FIG.
  • the drying device 07 is different from the drying device shown in FIG. 1 in that it also includes a motor drive unit 600.
  • the air blowing unit 200 includes a motor 210.
  • the motor drive unit 600 is connected between the main control unit 300 and the motor 210.
  • the control unit 300 can send an air supply enable signal to the motor drive unit 600, so that the motor drive unit 600 controls the motor 210 to work according to the air supply enable signal, and the main control unit 300 can also send a drive signal to the motor drive unit 600
  • the driving signal sent may include control parameters for the motor 210, such as the rotation speed, steering, and torque of the motor 210. Therefore, in the event of an abnormality in the air supply unit 200, the main control unit 300 can stop sending the air supply enable signal to the motor drive unit 600, or send a drive signal for instructing the control motor 210 to rotate to 0 to the motor drive unit 600 , To control the motor 210 to stop working, and then to control the working state of the air blowing unit 200.
  • the motor 210 it may be a brushed motor or a brushless motor.
  • the main control unit 300 may send driving signals to the motor drive unit 600 through a single path or multiple paths.
  • the motor drive unit 600 can control the different rotation speeds of the motor 210 according to the different drive signals sent by the main control unit 300, thereby controlling the air delivery speed of the air blowing unit 200, that is, the magnitude of the wind speed.
  • the motor drive unit 600 may be a MOS (MOSFET) chip, and the MOS chip may include a MOS tube, a MOS tube driver, and the like.
  • MOSFET MOS
  • the MOS chip may include a MOS tube, a MOS tube driver, and the like.
  • other components that can be used for driving such as IGBTs, triodes, etc., can also be used.
  • FIG. 9 is a more specific drying device shown in an exemplary embodiment of the present application.
  • the drying device provided in this embodiment, reference may be made to the content introduced in the previous embodiment, which will not be repeated here.
  • the embodiment of the present application also provides a power supply module of a drying device separately, wherein the drying device may include a main control unit for controlling the operation of the drying device and interacting with the power supply module Communication data;
  • the power supply module 400 may include a discharge unit 410 connected to the drying device, and a power supply management unit 420 connected to the discharge unit 410;
  • the management unit 420 is used to control the discharge unit 410 to discharge to the drying device, and to exchange communication data with the main control unit, and to control the main control unit when it is determined that the main control unit is abnormal according to the communication data.
  • the discharge unit stops discharging.
  • the embodiment of the present application also provides a drying device.
  • FIG. 10 is a drying device shown in an exemplary embodiment of the present application.
  • the drying device 09 includes:
  • the heat radiation source 100 is used for heat radiation to transfer heat to the object to be dried
  • the air supply unit 200 is used to generate air flow in the working state to deliver the air flow to the object to be dried;
  • the main control unit 700 is used to control the working status of the air supply unit 200 and the heat radiation source 100, and exchange data with the power supply module 400;
  • the power supply module 400 is used to supply power to the heat radiation source 100 and the air supply unit 200, and to communicate data with the main control unit 700, and to determine the main control unit based on the communication data When 700 is abnormal, the power supply to the heat radiation source 100 and the air blowing unit 200 is stopped.
  • the difference between the drying device provided in this embodiment and the drying device provided in the previous embodiments is that the main control unit 700 in the drying device may only be responsible for controlling the normal operation or stopping of the heat radiation source 100 and the air supply unit 200. , And other modules are responsible for the abnormality detection of the drying device, and the power supply module 400 exchanges communication data with the main control unit 700 to determine whether the main control unit 700 is abnormal. If the main control unit 700 is abnormal, stop sending The heat radiation source 100 and the air supply unit 200 supply power.
  • the main control unit 700 can also be configured to detect abnormalities of the drying device and control the operation of the drying device according to the detection results.
  • the drying device please refer to the previous figures 1 to 9
  • the drawings of the drying device shown in and the description of the embodiments described by the corresponding text will not be expanded here.

Landscapes

  • Cleaning And Drying Hair (AREA)
  • Drying Of Solid Materials (AREA)
  • Radiation Pyrometers (AREA)
  • Control Of Washing Machine And Dryer (AREA)
  • Radiation-Therapy Devices (AREA)
  • Detail Structures Of Washing Machines And Dryers (AREA)

Abstract

一种干燥装置(01),包括热辐射源(100),用于进行热辐射,以向被干燥物传输热量;送风单元(200),用于在工作状态下产生风流,以向被干燥物输送风流;主控单元(300),用于控制送风单元(200)和热辐射源(100)的工作状态,以及在检测到干燥装置(01)发生异常的情况下,控制干燥装置(01)停止运行。一种干燥装置(01)的供电模组(400)。

Description

干燥装置以及供电模组 技术领域
本申请涉及干燥技术,尤其涉及干燥装置以及供电模组。
背景技术
传统的干燥装置,比如吹风机,通常是通过被加热的气流来加热头发或者头发周围的水来达到干燥头发的目的。其原理大致是通过吹风机内部的电阻丝通电发热,然后由吹风机内部的电机带动扇叶产生空气的流动,这些流动的空气吹过发热电阻丝时被加热,由此形成被加热的气流。然而这种干燥方式能耗非常大,而且效率极其低,大部分的热量用来加热了周围空气。由此亟需更加低耗高效的干燥装置改变现状。
发明内容
有鉴于此,本申请实施例提供了改进的干燥装置及供电模组。
第一方面,本申请实施例提供一种干燥装置,包括:
热辐射源,用于进行热辐射,以向被干燥物传输热量;
送风单元,用于在工作状态下产生风流,以向所述被干燥物输送风流;
主控单元,用于控制所述送风单元和所述热辐射源的工作状态,以及在检测到所述干燥装置发生异常的情况下,控制所述干燥装置停止运行。
第二方面,本申请实施例提供一种干燥装置的供电模组,所述干燥装置包括主控单元,所述主控单元用于控制所述干燥装置的运行,以及与所述供电模组交互通信数据;
所述供电模组包括与所述干燥装置连接的放电单元、与所述放电单元连接的供电管理单元;
所述供电管理单元用于控制所述放电单元向所述干燥装置放电,以及与所述主控单元交互通信数据,并在根据所述通信数据确定所述主控单元出现异常的情况下控 制所述放电单元停止放电。
第三方面,本申请实施例提供一种干燥装置,包括:
热辐射源,用于进行热辐射;
送风单元,用于在工作状态下产生以及输送风流;
主控单元,用于控制所述送风单元和所述热辐射源的工作状态,以及与供电模组交互通信数据;
所述供电模组,用于为所述热辐射源和所述送风单元供电,以及与所述主控单元交互通信数据,并基于所述通信数据在确定所述主控单元异常的情况下停止向所述热辐射源和所述送风单元供电。
本申请实施例提供的干燥装置,通过热辐射源直接向被干燥物传输热量,避免了对空气加热导致的多余能量损耗,提高了能量的利用率,同时由于热辐射源是直接向被干燥物传输热量,并不需要加热空气,工作所需功耗也大大降低;同时还辅以送风单元产生风流并向待干燥物输送,可以避免被干燥物接收热辐射源的热量导致温度过高,并且风流经被干燥物时,也可以加速被干燥物的水分蒸发,因此热辐射源和送风单元的配合可以有效地提高干燥效率。进一步的,为确保干燥装置运行过程中的安全,还通过主控单元来控制送风单元和热辐射源的工作状态,并在检测到干燥装置异常时,例如检测到所述送风单元或所述热辐射源发生异常的情况下,控制所述干燥装置停止运行,为干燥装置的运行提供安全保护机制,保证了干燥装置的安全运行。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一示例性实施例示出的一种干燥装置的结构示意图。
图2是本申请一示例性实施例示出的一种热辐射源的结构示意图。
图3是本申请一示例性实施例示出的一种干燥装置的剖视图。
图4是本申请一示例性实施例示出的另一种干燥装置的剖视图。
图5是本申请一示例性实施例示出的一种包括供电模组的干燥装置的结构示意图。
图6是本申请一示例性实施例示出的一种供电模组的结构示意图。
图7是本申请一示例性实施例示出的一种包括电源转换单元的干燥装置的结构示意图。
图8是本申请一示例性实施例示出的一种包括电机驱动单元的干燥装置的结构示意图。
图9是本申请一示例性实施例示出的一种具体的干燥装置的结构示意图。
图10是本申请一示例性实施例示出的又一种干燥装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
基于当前干燥装置存在的高功耗低效率的问题,本申请实施例首先提供一种改进的干燥装置,参见图1,图1是本申请一示例性实施例示出的一种干燥装置的结构示意图,干燥装置01包括:
热辐射源100,用于进行热辐射,以向被干燥物传输热量;
送风单元200,用于在工作状态下产生风流,以向所述被干燥物输送风流;
主控单元300,用于控制所述送风单元200和所述热辐射源100的工作状态,以及在检测到所述干燥装置发生异常的情况下,控制所述干燥装置停止运行。
根据本申请实施例提供的干燥装置,通过热辐射源100直接向被干燥物传输热量,避免了对空气加热导致的多余能量损耗,提高了能量的利用率,同时由于热辐射源100是直接向被干燥物传输热量,并不需要加热空气,工作所需功耗也大大降低;同时辅以送风单元200产生风流并向带干燥物输送,可以避免被干燥物接收热辐射源 的热量导致温度过高,并且风流经被干燥物时,也可以加速被干燥物的水分蒸发,因此热辐射源100和送风单元200的配合可以有效地提高干燥效率。进一步的,为确保干燥装置运行过程中的安全,还通过主控单元300来控制送风单元200和热辐射源100的工作状态,并在检测到干燥装置异常时,例如检测到所述送风单元200或所述热辐射源100发生异常的情况下,控制所述干燥装置停止运行,为干燥装置的运行提供安全保护机制,保证了干燥装置的安全。
其中本申请实施例中的干燥装置可以是吹风机、烘干机、烘手机、干身机等用作干燥的设备。作为例子,热辐射源100中可以包括用于进行热辐射传输热量的发热源(即辐射源),以及用于将发热源所发出的热辐射导向同一方向的反射灯杯,但并不排除其他热辐射源的实现方式。参见图2,图2是本申请一示例性实施例示出的一种热辐射源的结构示意图,该热辐射源100中包括发热源110以及反射灯杯120,发热源110发出的不同方向上的热辐射通过反射灯杯后被导向同一方向,并照向被干燥物进行热量传输。值得说明,发热源110可以是红外辐射源、黑体辐射源等,具体的可以是陶瓷发热棒、碳纤维发热丝、金属发热丝等,当然对此并不限定。反射灯杯120可以包括凹面,通过凹面来改变辐射方向。另外,干燥装置中热辐射源100的数量可以是一个也可以是多个,对此并不限定。
送风单元200可以包括电机以及安装于电机上由电机驱动旋转的扇叶,扇叶在旋转过程中产生风流以及向被干燥物输送风流。
另外,干燥装置还包括用于输送风流的气流通道,送风单元可以通过气流通道输送产生的风流,在一个实施例中,可以将热辐射源100设于所述气流通道中,或者还可以将热辐射源100设于干燥装置中的非气流通道区域,例如可以是围绕气流通道设置。为更形象地介绍本申请实施例提供的干燥装置中热辐射源位置的设置,在此以两个具体的例子进行说明。参见图3,图3是本申请一示例性实施例示出的一种干燥装置的剖视图,其中干燥装置03包括红外辐射源10、风道20、扇叶30、电机40,红外辐射源10中包括发热源11。其中电机40与扇叶30连接,电机40通过转动驱动扇叶30旋转形成风流,并通过风道20进行输送,其中红外辐射源10设于风道20中。再参见图4,图4是本申请一示例性实施例示出另一种干燥装置的剖视图,其中干燥装置04包括若干红外辐射源50、风道60、电机70、扇叶80,其中若干红外辐射源50环绕风道60设置,环绕设置的红外辐射源50可以构成风道60的外壁,也即红外辐射源50与风道60呈一体化;当然,风道60也可以具有独立的外壁。辐射源50围 绕风道60设置可以降低对扇叶80产生的风流的风阻和风噪。
对于主控单元300,其可以是集成于干燥装置中微控制单元(MCU)、中央处理单元(CPU)、可编程逻辑器件(PLD)等具备处理能力的芯片,芯片可以通过软件程序实现相应功能,也可以通过电路等硬件形式实现相应功能。其在检测到干燥装置异常时,例如在检测到送风单元200或热辐射源100发生异常的情况下,控制干燥装置停止运行。需要说明的是,这里所说的控制干燥装置停止运行可以是指控制干燥装置完全停止运行,也即干燥装置完全处于不工作状态,例如控制送风单元200和热辐射源100均停止工作;或者控制干燥装置停止运行还可以是指控制干燥装置中某特定的功能模块停止工作,干燥装置中的其他功能模块可能依旧处于工作状态,例如仅控制送风单元200或者是热辐射源100停止工作,控制干燥装置停止运行的具体方式可以由技术人员根据需求设置,对此并不限定。
下面介绍在一些实例中如何检测送风单元200、热辐射源100是否发生异常。在一个实施例中,可以通过采集送风单元200的工作电流、工作电压等数值,以及热辐射源100的工作电流、工作电压等数值来判断送风单元200、热辐射源100工作过程中是否发生异常。在此基础上,干燥装置还可以包括采样单元,通过采样单元来对电流、电压等数据进行采样,并将采样值发送给主控单元300进行分析以确定是否存在异常。其中该采样单元可以是集成于主控单元300内部,或者也可以是部署在主控单元300外部,例如可以是与主控单元300之间电连接,以向主控单元300传输采样数据,具体如何设置采样单元,技术人员可以根据需求选择,对此并不限定。另外,采样单元具体可以是模数转换器(ADC)。
以采集送风单元200的工作电流为例介绍如何检测送风单元200是否发生异常。首先主控单元300中可以预存送风单元200正常工作下的电流数据,例如可以预存送风单元200在正常工作下的电流值、电流最大值、电流最小值或者是电流范围,以此作为判断送风单元200是否正常工作的依据。由此在干燥装置运行过程中,采样单元可以实时采集送风单元200的工作电流,并将采样的电流值模数转换后发送给主控单元300,主控单元300可以在获取到送风单元200当前的工作电流值后将其与预存的送风单元200正常工作下的电流数据进行比对,来判断当前工作电流值是否为正常的电流值,进而判断送风单元200是否发生异常,例如在通过比对发现送风单元200的当前工作电流值并不处于送风单元200正常工作下的电流范围时,可以判定送风单元200发生了异常。类似的,通过采集送风单元200的工作电压来检测送风单元200是 否发生异常同样可以参照以上所介绍的方法,其区别仅在于将采样值为电压,由于其原理与上述方法类似,在此不再进行赘述。
以上方法中通过采样送风单元200的工作电流值或电压值来检测送风单元200是否异常,除此之外,考虑到送风单元200是否发生异常还可以通过送风单元200所产生的风流来体现,由此本申请实施例还提供另外一种检测送风单元200是否发生异常的方法。在一个实施例中,干燥装置还可以包括用于输送风流的气流通道,该气流通道的尺寸、形状等可以由技术人员根据干燥装置的实际结构设定,送风单元200产生的风流可以通过该气流通道向被干燥物进行输送。在此基础上,可以在该气流通道内设置加热元件和热敏元件,并将热敏元件的位置设置为靠近所述加热元件的位置,由加热元件对热敏元件进行热传递,其中热敏元件的位置和加热元件的位置的靠近程度可以是只要能够确保加热元件与热敏元件之间保持良好的导热关系即可,对于具体靠近设置的数值并不限定。其中本申请实施例所采用的热敏元件,其电阻值与其温度呈固定对应关系,也即热敏元件在不同的温度的情况下固定对应某一电阻值。可选的,本申请实施例中所采用的加热元件可以是加热电阻,其在通电后会产生温升,本申请实施例所采用的热敏元件可以是热敏电阻,其电阻大小随温度变化而变化。
为实现根据送风单元200所产生的风流来检测送风单元是否发生异常,本申请可以预先在不同的环境温度下,测量在加热元件加热到指定值后,热敏元件在不同速度的风流下对应的温度,由此可以得到在特定的环境温度以及同一加热元件对热敏元件导热的情况下,热敏元件的温度和风速的对应关系,并将该对应关系制成表格存放到主控单元300中,同时还可以预存热敏元件的电阻与温度之间的对应关系。由此,在干燥装置运行的过程中,采样单元可以实时采样热敏元件的电流、电压并发送给主控单元300进行分析,主控单元300可以依据所获取的热敏元件的电流、电压计算热敏元件的当前电阻值,同时通过查询预存的表格获取热敏元件当前电阻值对应的温度值,并查询热敏电阻当前的温度值对应的风速,由此得到送风单元200实时输送的风流速度,基于所获取的送风单元200实时输送的风流速度可以判断送风单元200是否发生异常,例如,可以将送风单元200实时输送的风流速度与送风单元200正常工作状态下输送的风流速度进行比对,来确定送风单元200当前输送的风流速度是否正常,以此来判断送风单元200是否发生异常。
以上示出了几种用于检测送风单元200是否发生异常的方式,可以理解,以上仅为示例,并非限定,对于其他可能用于检测送风单元200异常的方式在此不再一一 介绍。主控单元300可以通过确定送风单元200是否发生异常,来确定是否控制热辐射源100、送风单元200停止工作。需要说明的是,在送风单元200发生异常的情况下,主控单元300可以控制热辐射源100停止运行,由于本申请实施例所提供的干燥装置同时利用热辐射源100和送风单元200来进行干燥,而风的作用对于安全性非常重要。如果不对被干燥物输送风流,一方面缺少了风对蒸发的促进作用,另一方面容易导致被干燥物的温度会不断升高,最后由于自身散热速度达到一个热平衡,稳定在一个较高的温度。对于某些被干燥物而言,也许无法耐受较高的温度,而会产生损坏。因此,为确保安全,在送风单元200发生异常时主控单元300可以控制热辐射源100停止运行。同时进一步的,在送风单元200发生异常的情况下,为避免送风单元200的异常持续,还可以控制送风单元200停止运行。
本申请实施例还提供了检测热辐射源100是否发生异常的方法,以采集热辐射源100的工作电流为例介绍如何检测热辐射源100是否发生异常。首先主控单元300中可以预存热辐射源100正常工作下的电流数据,例如可以预存热辐射源100在正常工作下的电流值、电流最大值、电流最小值或者是电流范围,以此作为判断热辐射源100是否正常工作的依据。由此在干燥装置运行过程中,采样单元可以实时采集热辐射源100的工作电流,并将采样的电流值发送给主控单元300,主控单元300可以在获取到热辐射源100当前的工作电流值后将其与预存的热辐射源100正常工作下的电流数据进行比对,来判断当前工作电流值是否为正常的电流值,进而判断热辐射源100是否发生异常,例如在通过比对发现热辐射源100的当前工作电流值并不处于热辐射源100正常工作下的电流范围时,可以判定热辐射源100发生了异常。类似的,还可以通过采集热辐射源100的工作电压来检测热辐射源100是否发生异常,由于其原理与上述方法类似,在此不再进行赘述。主控单元300可以通过确定热辐射源100是否发生异常,来确定是否控制热辐射源100停止工作。
本申请以上实施例实现了通过主控单元300来确定热辐射源100、送风单元200是否发生异常,并依此来确定是否控制热辐射源100、送风单元200停止运行以确保干燥装置的安全运行。但考虑到一些情况下主控单元300可能也会出现异常,由此可能还需要更多的冗余控制措施来确保干燥装置的安全运行。基于此,本申请实施例还提供了一种包括供电模组的干燥装置,参见图5,图5是本申请一示例性实施例示出的一种包括供电模组的干燥装置,该干燥装置05与图1所示的干燥装置01的区别在于,还包括了供电模组400,供电模组400分别与热辐射源100连接,以及与送风单元200连接,供电模组400可用于向热辐射源100以及送风单元200供电,具体的, 供电模组400可以内置电池电芯,通过电池放电的方式向热辐射源100以及送风单元200供电。当然供电模组400也可以是外部电源,通过外部电源来向热辐射源100以及送风单元200供电。另外,供电模组400可以是向热辐射源100以及送风单元200提供直流电,也可以是提供交流电,对此可以根据实际需求设定。另外,供电模组400可以是可拆卸地安装于干燥装置上,当然其也可以是与干燥装置呈一体化设置。
进一步的,供电模组400还可以被配置为与主控单元300交互通信数据,在一个实施例中,供电模组400与主控单元300可以是通过信号线进行通信,例如在供电模组400与主控单元300分别部署于不同的电路板的情况下,供电模组400与主控单元300可以通过板间信号线通信;在供电模组400与主控单元300部署于同一电路板的情况下,供电模组400与主控单元300可以通过板内信号线通信。其中,所采用的通信接口协议可以是I2C(Inter-Integrated Circuit)、UART(Universal Asynchronous Receiver/Transmitter)等。在另一个实施例中,供电模组400与主控单元300可以是进行无线通信,例如可以是通过蓝牙、无线局域网(WIFI)、电信网络、移动网络等。
其中供电模组400与主控单元300之间的通信数据可以用于确定主控单元300是否工作异常,由此可以通过供电模组400与主控单元300之间的交互通信来检测主控单元300是否发生异常,由于主控单元300在异常情况下可能无法正常地控制热辐射源100以及送风单元200的工作状态,因此,在一个实施例中,如果供电模组400在确定主控单元300异常,可以停止向热辐射源100以及送风单元200供电,以使得热辐射源100以及送风单元200停止运行,避免安全隐患。
考虑到供电模组400如果发生异常可能会导致供电异常的问题引发安全隐患,例如无法切断电源输出、无法正常控制干燥装置关机等,可能导致热辐射源100、送风单元200持续工作无法停止,由此主控单元300同样可以与供电模组400交互通信数据来确定供电模组400是否工作异常,并在主控单元300确定供电模组400异常的情况下,控制处于运行状态的热辐射源100、送风单元200停止运行。
其中主控单元300与供电模组400之间交互通信数据的方式可以是互相之间发送通讯请求,并根据对方的响应结果来判断是否发生异常,例如在主控单元300向供电模组400发送通讯请求时,如果对方响应异常或者是没有响应,则可以确定供电模组400发生了异常。或者主控单元300与供电模组400之间交互通信数据的方式还可以是通过周期性交互心跳包的方式,也即主控单元300与供电模组400之间按照预设 周期相互之间发送心跳包,根据是否能够准时接收到对方发送的心跳包来判断是否发生异常,如果超出双方所约定好的周期后还未收到对方的心跳包,则可以确定发生了异常,例如,主控单元300与供电模组400约定心跳包的周期,如果主控单元300在接收到供电模组400所发送的一个心跳包后,在超出所约定的周期时间后还未接收到下一个心跳包,则可以确定供电模组400发生了异常。当然,除开以上所介绍的两种方式以外,不排除主控单元300与供电模组400之间可能在自身运行发生异常的情况下主动向对方发送指示自身出现异常的消息,以使对方及时作出安全保护措施。
在一些情况下,主控单元300在控制热辐射源100、送风单元200停止工作的时候,可能出现操作失败的情况,此时主控单元300可以向供电模组400发送指令以通知供电模组400停止向热辐射源100、送风单元200供电,避免热辐射源100、送风单元200无法适时停止工作。其中主控单元300确定控制热辐射源100、送风单元200停止工作操作失败的方式可以是,在向热辐射源100、送风单元200发送停止工作的控制信号后,通过获取热辐射源100、送风单元200的电流或者电压或者温度等变量的采样值是否为关闭下的状态来确定是否操作失败。例如主控单元300在向热辐射源100发送了停止工作的控制信号后,由采样单元实时对热辐射源100进行电流的采样,主控单元300根据采样电流确定是否操作失败,具体的,如果采样电流不为0,表明此时热辐射源100还处于运行状态,由此可以确定控制热辐射源100停止运行的操作失败。
下面对供电模组400的结构进行简单介绍,参见图6,图6是本申请一示例性实施例示出的一种供电模组400的结构示意图,如图6所示,供电模组400包括放电单元410以及供电管理单元420,供电管理单元420用于与主控单元300交互通信数据,以及根据所述通信数据确定主控单元300是否工作异常,以控制放电单元410放电/停止放电。其中对于如何根据通信数据确定主控单元300是否工作异常可以参照前面实施例的介绍,在此不再赘述。
在一个实施例中,主控单元300可能通过固定的一个使能引脚来生成使能信号控制热辐射源100、送风单元200的工作状态,供电管理单元420可能通过固定的一个使能引脚来生成使能信号控制放电单元410的放电,而如果主控单元300上用于控制热辐射源100或送风单元200的使能引脚损坏,或者是供电管理单元420上用于控制放电单元410的使能引脚损坏的情况下,主控单元300可能失去对热辐射源100、送风单元200的控制能力,同理的供电管理单元420也可能失去对放电单元410的控 制能力。为避免此类情况发生,可以设置供电管理单元420、主控单元300分别按照指定逻辑门电路通过至少两个使能引脚来生成使能信号,由此来避免在某个特定引脚损坏的时候导致供电管理单元420或主控单元300失去相应的控制能力,例如,以主控单元300生成控制热辐射源100的工作状态的使能信号为例进行说明,主控单元300可以被配置为通过3个引脚同时输出‘1’,通过一个三路输入的与门来生成使能信号‘1’控制热辐射源100的运行,由此如果有任何一个引脚发生故障,错误地输出了‘0’,那么,通过这个三路输入的与门都无法生成控制热辐射源100运行所需要的使能信号‘1’。
在图6所示的供电模组400的基础上,进一步的,放电单元410还可以包括放电驱动单元以及电池电芯,供电管理单元420可以通过该放电驱动单元控制电池电芯进行放电/停止放电。当然,放电单元410中也可以不配置电池电芯,放电单元410可以通过放电驱动单元直接与外部电源连接,通过放电驱动单元控制外部电源的供电开关。其中该放电驱动单元可以是MOS(MOSFET)芯片。
对于供电管理单元420,其还可以包括电池电量管理芯片以及供电管理器,其中所述供电管理器用于向所述电池电量管理芯片输出放电使能信号,以使所述电池电量管理芯片控制放电单元410放电。当然在供电模组400中没有设置电池电芯的情况下,供电管理单元420中可以不配置电池电量管理芯片,此时可以由供电管理器直接向放电单元410输出放电使能信号以控制放电单元410放电。另外,在供电模组400中设置有电池电芯的情况下,电池电量管理芯片除了根据供电管理器输出的放电使能信号控制放电单元410放电以外,还可以实时监控电池电量,进行电池电量的相关管理。
在一些情况下,为热辐射源100以及送风单元200所提供的电源需要满足其工作需求才能确保正常工作,例如需要为热辐射源100以及送风单元200提供合适的电压来确保正常工作,但可能由供电模组400或者是外部电源提供的电压无法直接适用于热辐射源100和送风单元200。由此,在一个实施例中,干燥装置还可以包括电源转换单元,参见图7,图7是本申请一示例性实施例示出的一种包括电源转换单元的干燥装置,如图7所示的干燥装置06,其与图1所示的干燥装01区别在于还包括电源转换单元500,热辐射源100以及送风单元200可以分别通过电源转换单元500连接电源,由此电源转换单元500可以对输入电源进行转换,以便为送风单元200提供满足正常工作需求的第一工作电源,为热辐射源100提供满足正常工作需求的第二工 作电源,其中电源转换单元500可以是与供电模组400连接,对供电模组400输入的电源进行转换,当然在干燥装置不配置供电模组400的情况下,也可以是直接与外部电源连接。进一步的,考虑到热辐射源100和送风单元200的工作所需要的工作电源可能不一致,对此电源转换单元500中可以是分别配置不同的模块来分别用于将输入电源转换成第一工作电源以及第二工作电源,例如电源转换单元500中可以包括第一电源芯片和第二电源芯片,由第一电源芯片负责将输入电源转换成第一工作电源,由第二电源芯片将输入电源转换成第二工作电源,当然也不排除可能通过单一的芯片同时实现将输入电源转换成第一工作电源以及第二工作电源。另外,在一些情况下,可能输入电源本身已经满足热辐射源100或送风单元200的工作需求,例如在输入电源满足热辐射源100的工作需求但不满足送风单元200的工作需求时,此时电源转换单元500可以是仅与送风单元连接,仅用来将输入电源转换为满足送风单元200的工作需求的第一工作电源;同理在输入电源满足送风单元200的工作需求但不满足热辐射源100的工作需求的情况下也类似。
在干燥装置中配置有电源转换单元500的基础上,主控单元300对热辐射源100以及送风单元200的工作状态控制可以是基于电源转换单元500进行。例如,在干燥装置运行过程中如果需要电源转换单元500为热辐射源100提供第二工作电源,主控单元300可以通过向电源转换单元500发送热辐射源供电使能信号,电源转换单元500根据该热辐射源供电使能信号对输入电源进行转换为热辐射源提供满足工作需求的第二工作电源。由此,在热辐射源100、送风单元200发生异常的情况下,主控单元300可以通过停止向电源转换单元500发送热辐射源供电使能信号来切断对热辐射源100的供电,以控制热辐射源100停止工作。另外,主控单元300还可以通过电源转换单元500控制提供给热辐射源100的电源大小,由此来控制热辐射源100的热辐射强度。
同理的,在干燥装置运行过程中如果需要电源转换单元500为送风单元200提供第一工作电源,主控单元300还可以向电源转换单元500发送送风单元供电使能信号,电源转换单元500可以根据该送风单元供电使能信号对输入电源进行转换为满足送风单元200工作需求的第一工作电源。由此,在送风单元200发生异常的情况下,主控单元300可以停止向电源转换单元500发送送风单元供电使能信号来切断对送风单元200的供电,以控制送风单元200停止工作。
另外,在一些情况下,如果送风单元200中包括电机,主控单元300还可以是通过电机驱动单元控制电机的状态,由此来控制送风单元200的工作状态。基于此, 本申请实施例还提供一种包括电机驱动单元的干燥装置,参见图8,图8是本申请一示例性实施例示出的一种包括电机驱动单元的干燥装置,如图8所示的干燥装置07,其与图1所示的干燥装置区别在于还包括电机驱动单元600,送风单元200中包括电机210,其中电机驱动单元600连接于主控单元300以及电机210之间,主控单元300可以通过向电机驱动单元600发送送风使能信号,以使电机驱动单元600根据该送风使能信号控制电机210工作,同时主控单元300还可以向电机驱动单元600发送驱动信号来控制电机210具体的工作状态,其中所发送的驱动信号中可以包括对电机210的控制参数,例如电机210的转速、转向和扭矩等。由此在送风单元200发生异常的情况下,主控单元300可以停止向电机驱动单元600发送送风使能信号,或者向电机驱动单元600发送用于指示控制电机210转速为0的驱动信号,来控制电机210停止工作,进而控制送风单元200的工作状态。另外,对于电机210,其可以是有刷电机,也可以是无刷电机,根据电机类型的不同,主控单元300可以是通过单路或者是多路向电机驱动单元600发送驱动信号。同时电机驱动单元600根据主控单元300所发送的不同驱动信号可以控制电机210的不同转速,由此来控制送风单元200的气流输送速度,也即控制风速的大小。其中电机驱动单元600可以是MOS(MOSFET)芯片,MOS芯片中可以包括MOS管、MOS管驱动器等。当然也不排除还可以是其他的可以用作驱动的元器件,例如IGBT、三极管等。
在以上所介绍的实施例的基础上,本申请实施例还提供了一种更加具体的干燥装置,参见图9,图9是本申请一示例性实施例示出的一种更为具体的干燥装置的结构示意图,如图9所示的干燥装置08,其中包括了热辐射源100、送风单元200、主控单元300、供电模组400、电源转换单元500、电机驱动单元600;送风单元200中包括电机210;主控单元300上可以包括采样单元310;供电模组400中还包括放电单元410、供电管理单元420;放电单元410中包括放电驱动单元411、电池电芯412;供电管理单元420中包括供电管理器421、电池电量管理芯片422;电源转换单元500中包括第一电源芯片以及第二电源芯片(图中未示出)。对于本实施例所提供的干燥装置的说明可以参照前面实施例所介绍的内容,在此不再重复展开。
另外,本申请实施例还单独提供一种干燥装置的供电模组,其中干燥装置可以包括主控单元,所述主控单元用于控制所述干燥装置的运行,以及与所述供电模组交互通信数据;
本实施例所提供的供电模组的结构可以参见图5,其中供电模组400可以包括 与所述干燥装置连接的放电单元410、与所述放电单元410连接的供电管理单元420;所述供电管理单元420用于控制所述放电单元410向所述干燥装置放电,以及与所述主控单元交互通信数据,并在根据所述通信数据确定所述主控单元出现异常的情况下控制所述放电单元停止放电。
对于供电模组的详细说明可以参照图5到6中展示的供电模组的附图以及所对应的文字描述的实施例的介绍,在此不再展开介绍。
本申请实施例还提供一种干燥装置,参见图10,图10是本申请一示例性实施例示出的一种干燥装置,该干燥装置09包括:
热辐射源100,用于进行热辐射,以向被干燥物传输热量;
送风单元200,用于在工作状态下产生风流,以向所述被干燥物输送风流;
主控单元700,用于控制所述送风单元200和所述热辐射源100的工作状态,以及与供电模组400交互通信数据;
所述供电模组400,用于为所述热辐射源100和所述送风单元200供电,以及与所述主控单元700交互通信数据,并基于所述通信数据在确定所述主控单元700异常的情况下停止向所述热辐射源100和所述送风单元200供电。
本实施例所提供的干燥装置,其与前面实施例所提供的干燥装置的区别在于,该干燥装置中主控单元700可以是只负责控制热辐射源100以及送风单元200的正常运行或停止,而交由其他模块来负责进行干燥装置的异常检测,并由供电模组400与主控单元700交互通信数据来确定主控单元700是否发生异常,在主控单元700异常的情况下停止向热辐射源100和送风单元200供电。
当然,根据实际需求,主控单元700同样可以被配置为进行干燥装置的异常检测并依据检测结果来控制干燥装置的运行,对此种情况下的干燥装置的详细说明可以参照前面图1到9中展示的干燥装置的附图以及所对应的文字描述的实施例的介绍,在此不进行展开。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、 方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本申请实施例所提供的装置进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (68)

  1. 一种干燥装置,其特征在于,包括:
    热辐射源,用于进行热辐射,以向被干燥物传输热量;
    送风单元,用于在工作状态下产生风流,以向所述被干燥物输送风流;
    主控单元,用于控制所述送风单元和所述热辐射源的工作状态,以及在检测到所述干燥装置发生异常的情况下,控制所述干燥装置停止运行。
  2. 根据权利要求1所述的干燥装置,其特征在于,所述干燥装置还包括采样单元,用于对电流或电压进行采样,并将采样值发送给所述主控单元。
  3. 根据权利要求2所述的干燥装置,其特征在于,所述采样值为对所述送风单元的电流或电压的采样值,所述主控单元通过所述采样值检测所述送风单元是否发生异常,以确定是否控制所述热辐射源和/或所述送风单元停止工作。
  4. 根据权利要求2所述的干燥装置,其特征在于,所述干燥装置还包括用于输送风流的气流通道,以及设于所述气流通道内的加热元件和热敏元件,所述热敏元件的位置靠近所述加热元件的位置;
    所述采样值为对所述热敏元件的电压的采样值,所述主控单元通过所述采样值确定所述加热元件的温度,进而确定所述送风单元是否发生异常,以确定是否控制所述热辐射源和/或所述送风单元停止工作。
  5. 根据权利要求2所述的干燥装置,其特征在于,所述采样值为对所述热辐射源的电流或电压的采样值,所述主控单元还用于通过采样值检测所述热辐射源是否发生异常,以确定是否控制所述热辐射源停止工作。
  6. 根据权利要求2所述的干燥装置,其特征在于,所述采样单元集成于所述主控单元内部。
  7. 根据权利要求1或2所述的干燥装置,其特征在于,所述干燥装置还包括与所述热辐射源以及所述送风单元连接的供电模组,所述供电模组用于向所述热辐射源以及所述送风单元供电。
  8. 根据权利要求7所述的干燥装置,其特征在于,所述供电模组还用于与所述主控单元交互通信数据,所述通信数据用于确定所述主控单元或所述供电模组是否工作异常。
  9. 根据权利要求8所述的干燥装置,其特征在于,所述通信数据包括周期性交互的心跳包。
  10. 根据权利要求9所述的干燥装置,其特征在于,所述主控单元还用于在确定 所述供电模组异常时控制所述送风单元和/或所述热辐射源停止工作。
  11. 根据权利要求9所述的干燥装置,其特征在于,所述供电模组还用于在确定所述主控单元工作异常时停止向所述热辐射源以及所述送风单元供电。
  12. 据权利要求7所述的干燥装置,其特征在于,所述主控单元还用于在控制所述热辐射源停止工作的操作失败的情况下,通知所述供电模组停止向所述热辐射源供电。
  13. 根据权利要求12所述的干燥装置,其特征在于,所述主控单元在向所述热辐射源发送停止工作的控制信号后,根据所述采样单元对所述热辐射源的采样值是否为零确定控制所述热辐射源停止工作的操作是否失败。
  14. 根据权利要求8所述干燥装置,其特征在于,所述供电模组包括放电单元以及供电管理单元;
    所述供电管理单元用于与所述主控单元交互通信数据,以及根据所述通信数据确定所述主控单元是否工作异常,以控制所述放电单元放电/停止放电。
  15. 根据权利要求14所述的干燥装置,其特征在于,所述供电管理单元和/或所述主控单元按照指定逻辑门电路通过至少两个使能引脚生成使能信号;
    其中所述供电管理单元生成的使能信号用于控制所述放电单元放电;所述主控单元生成的使能信号用于控制所述送风单元和/或所述热辐射源的工作状态。
  16. 根据权利要求1所述的干燥装置,其特征在于,所述干燥装置还包括电源转换单元,用于为所述送风单元提供第一工作电源,和/或为所述热辐射源提供第二工作电源。
  17. 根据权利要求16所述的干燥装置,其特征在于,所述电源转换单元为所述热辐射源提供第二工作电源的情况下,所述主控单元还用于向所述电源转换单元发送热辐射源供电使能信号,以使所述电源转换单元生成所述第二工作电源。
  18. 根据权利要求17所述的干燥装置,其特征在于,在所述送风单元和/或所述热辐射源发生异常的情况下,所述主控单元停止向所述电源转换单元发送热辐射源供电使能信号。
  19. 根据权利要求16所述的干燥装置,其特征在于,所述电源转换单元为所述送风单元提供第一工作电源的情况下,所述主控单元还用于向所述电源转换单元发送送风单元供电使能信号,以使所述电源转换单元生成所述第一工作电源。
  20. 根据权利要求19所述的干燥装置,其特征在于,在所述送风单元发生异常的情况下,所述主控单元停止向所述电源转换单元发送送风单元供电使能信号。
  21. 根据权利要求1所述的干燥装置,其特征在于,所述送风单元包括电机,所述干燥装置还包括连接于所述主控单元以及所述电机之间的电机驱动单元;
    所述主控单元通过向所述电机驱动单元发送送风使能信号以及驱动信号,控制所述电机的工作状态。
  22. 根据权利要求21所述的干燥装置,其特征在于,在所述送风单元发生异常的情况下,所述主控单元停止向所述电机驱动单元发送送风使能信号;和/或
    所述主控单元向所述电机驱动单元发送用于指示控制所述电机转速为0的驱动信号。
  23. 根据权利要求1所述的干燥装置,其特征在于,所述干燥装置为吹风机、烘手机、干身机或烘干机。
  24. 根据权利要求7所述的干燥装置,其特征在于,所述供电模组可拆卸安装于所述干燥装置。
  25. 根据权利要求14所述干燥装置,其特征在于,所述放电单元包括放电驱动单元以及电池电芯,所述供电管理单元通过所述放电驱动单元控制所述电池电芯放电/停止放电。
  26. 根据权利要求14所述干燥装置,其特征在于,所述供电管理单元包括电池电量管理芯片以及供电管理器;
    所述供电管理器用于向所述电池电量管理芯片输出放电使能信号,以使所述电池电量管理芯片控制所述放电单元放电。
  27. 根据权利要求4所述的干燥装置,其特征在于,所述加热元件为加热电阻,所述热敏元件为热敏电阻。
  28. 根据权利要求21所述的干燥装置,其特征在于,所述电机为有刷电机或无刷电机。
  29. 根据权利要求21所述的干燥装置,其特征在于,所述电机驱动单元根据所述驱动信号控制所述送风单元的气流输送速度。
  30. 根据权利要求21所述的干燥装置,其特征在于,所述电机驱动单元为MOS芯片。
  31. 根据权利要求1所述的干燥装置,其特征在于,所述干燥装置还包括用于输送风流的气流通道;
    所述热辐射源设于所述气流通道中;或
    所述热辐射源围绕所述气流通道设置。
  32. 一种干燥装置的供电模组,其特征在于,所述干燥装置包括主控单元,所述主控单元用于控制所述干燥装置的运行,以及与所述供电模组交互通信数据;
    所述供电模组包括与所述干燥装置连接的放电单元、与所述放电单元连接的供电管理单元;
    所述供电管理单元用于控制所述放电单元向所述干燥装置放电,以及与所述主控单元交互通信数据,并在根据所述通信数据确定所述主控单元出现异常的情况下控制所述放电单元停止放电。
  33. 根据权利要求32所述的供电模组,其特征在于,所述通信数据包括周期性交互的心跳包。
  34. 根据权利要求32所述的供电模组,其特征在于,所述供电管理单元还用于在主控单元工作正常时,根据所述主控单元输出的控制信号控制所述放电单元停止放电。
  35. 根据权利要求32所述的供电模组,其特征在于,所述供电管理单元通过至少两个使能引脚按照指定逻辑门电路生成使能信号控制所述放电单元放电。
  36. 根据权利要求32所述的供电模组,其特征在于,所述供电模组可拆卸安装于所述干燥装置。
  37. 根据权利要求32所述的供电模组,其特征在于,所述放电单元包括放电驱动单元以及电池电芯,所述供电管理单元通过所述放电驱动单元控制所述电池电芯放电/停止放电。
  38. 根据权利要求32所述干燥装置,其特征在于,所述供电管理单元包括电池电量管理芯片以及供电管理器;
    所述供电管理器用于向所述电池电量管理芯片输出放电使能信号,以使所述电池电量管理芯片控制所述放电单元放电。
  39. 根据权利要求32所述干燥装置,其特征在于,所述放电单元连接外部交流电源。
  40. 一种干燥装置,其特征在于,包括:
    热辐射源,用于进行热辐射;
    送风单元,用于在工作状态下产生以及输送风流;
    主控单元,用于控制所述送风单元和所述热辐射源的工作状态,以及与供电模组交互通信数据;
    所述供电模组,用于为所述热辐射源和所述送风单元供电,以及与所述主控单元交互通信数据,并基于所述通信数据在确定所述主控单元异常的情况下停止向所述热 辐射源和所述送风单元供电。
  41. 根据权利要求40所述的干燥装置,其特征在于,所述通信数据包括周期性交互的心跳包。
  42. 根据权利要求40所述的干燥装置,其特征在于,所述主控单元还用于在确定所述供电模组异常时控制所述送风单元和/或所述热辐射源停止工作。
  43. 根据权利要求40所述的干燥装置,其特征在于,所述主控单元还用于在检测到所述干燥装置发生异常的情况下,控制所述干燥装置停止运行。
  44. 根据权利要求43所述的干燥装置,其特征在于,所述干燥装置还包括采样单元,用于对电流或电压进行采样,并将采样值发送给所述主控单元。
  45. 根据权利要求44所述的干燥装置,其特征在于,所述采样值为对所述送风单元的电流或电压的采样值,所述主控单元通过所述采样值检测所述送风单元是否发生异常,以确定是否控制所述热辐射源和/或所述送风单元停止工作。
  46. 根据权利要求44所述的干燥装置,其特征在于,所述干燥装置还包括用于输送风流的气流通道,以及设于所述气流通道内的加热元件和热敏元件,所述热敏元件的位置靠近所述加热元件的位置;
    所述采样值为对所述热敏元件的电压的采样值,所述主控单元通过所述采样值确定所述加热元件的温度,进而确定所述送风单元是否发生异常,以确定是否控制所述热辐射源和/或所述送风单元停止工作。
  47. 根据权利要求44所述的干燥装置,其特征在于,所述采样值为对所述热辐射源的电流或电压的采样值,所述主控单元还用于通过采样值检测所述热辐射源是否发生异常,以确定是否控制所述热辐射源停止工作。
  48. 据权利要求47所述的干燥装置,其特征在于,所述主控单元还用于在控制所述热辐射源停止工作的操作失败的情况下,通知所述供电模组停止向所述热辐射源供电。
  49. 根据权利要求48所述的干燥装置,其特征在于,所述主控单元在向所述热辐射源发送停止工作的控制信号后,根据所述采样单元对所述热辐射源的采样值是否为零确定控制所述热辐射源停止工作的操作是否失败。
  50. 根据权利要求44所述的干燥装置,其特征在于,所述采样单元集成于所述主控单元内部。
  51. 根据权利要求40所述干燥装置,其特征在于,所述供电模组包括放电单元以及供电管理单元;
    所述供电管理单元用于与所述主控单元交互通信数据,以及根据所述通信数据确定所述主控单元是否工作异常,以控制所述放电单元放电/停止放电。
  52. 根据权利要求51所述的干燥装置,其特征在于,所述供电管理单元和/或所述主控单元按照指定逻辑门电路通过至少两个使能引脚生成使能信号;
    其中所述供电管理单元生成的使能信号用于控制所述放电单元放电;所述主控单元生成的使能信号用于控制所述送风单元和/或所述热辐射源的工作状态。
  53. 根据权利要求40所述的干燥装置,其特征在于,所述干燥装置还包括电源转换单元,用于为所述送风单元提供第一工作电源,和/或为所述热辐射源提供第二工作电源。
  54. 根据权利要求53所述的干燥装置,其特征在于,所述电源转换单元为所述热辐射源提供第二工作电源的情况下,所述主控单元还用于向所述电源转换单元发送热辐射源供电使能信号,以使所述电源转换单元生成所述第二工作电源。
  55. 根据权利要求54所述的干燥装置,其特征在于,在所述送风单元和/或所述热辐射源发生异常的情况下,所述主控单元停止向所述电源转换单元发送热辐射源供电使能信号。
  56. 根据权利要求53所述的干燥装置,其特征在于,所述电源转换单元为所述送风单元提供第一工作电源的情况下,所述主控单元还用于向所述电源转换单元发送送风单元供电使能信号,以使所述电源转换单元生成所述第一工作电源。
  57. 根据权利要求56所述的干燥装置,其特征在于,在所述送风单元发生异常的情况下,所述主控单元停止向所述电源转换单元发送送风单元供电使能信号。
  58. 根据权利要求40所述的干燥装置,其特征在于,所述送风单元包括电机,所述干燥装置还包括连接于所述主控单元以及所述电机之间的电机驱动单元;
    所述主控单元通过向所述电机驱动单元发送送风使能信号以及驱动信号,控制所述电机的工作状态。
  59. 根据权利要求58所述的干燥装置,其特征在于,在所述送风单元发生异常的情况下,所述主控单元停止向所述电机驱动单元发送送风使能信号;和/或
    所述主控单元向所述电机驱动单元发送用于指示控制所述电机转速为0的驱动信号。
  60. 根据权利要求40所述的干燥装置,其特征在于,所述干燥装置为吹风机、烘手机、干身机或烘干机。
  61. 根据权利要求40所述的干燥装置,其特征在于,所述供电模组可拆卸安装于 所述干燥装置。
  62. 根据权利要求51所述干燥装置,其特征在于,所述放电单元包括放电驱动单元以及电池电芯,所述供电管理单元通过所述放电驱动单元控制所述电池电芯放电/停止放电。
  63. 根据权利要求51所述干燥装置,其特征在于,所述供电管理单元包括电池电量管理芯片以及供电管理器;
    所述供电管理器用于向所述电池电量管理芯片输出放电使能信号,以使所述电池电量管理芯片控制所述放电单元放电。
  64. 根据权利要求46所述的干燥装置,其特征在于,所述加热元件为加热电阻,所述热敏元件为热敏电阻。
  65. 根据权利要求58所述的干燥装置,其特征在于,所述电机为有刷电机或无刷电机。
  66. 根据权利要求58所述的干燥装置,其特征在于,所述电机驱动单元根据所述驱动信号控制所述送风单元的气流输送速度。
  67. 根据权利要求58所述的干燥装置,其特征在于,所述电机驱动单元为MOS芯片。
  68. 根据权利要求40所述的干燥装置,其特征在于,所述干燥装置还包括用于输送风流的气流通道;
    所述热辐射源设于所述气流通道中;或
    所述热辐射源围绕所述气流通道设置。
PCT/CN2021/092204 2020-05-09 2021-05-07 干燥装置以及供电模组 WO2021227963A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180002172.0A CN113811223A (zh) 2020-05-09 2021-05-07 干燥装置以及供电模组

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CNPCT/CN2020/089408 2020-05-09
PCT/CN2020/089408 WO2021226749A1 (en) 2020-05-09 2020-05-09 Apparatuses and methods for drying an object
CNPCT/CN2020/095146 2020-06-09
PCT/CN2020/095146 WO2021227165A1 (en) 2020-05-09 2020-06-09 Apparatuses and methods for drying an object

Publications (1)

Publication Number Publication Date
WO2021227963A1 true WO2021227963A1 (zh) 2021-11-18

Family

ID=77257784

Family Applications (8)

Application Number Title Priority Date Filing Date
PCT/CN2020/089408 WO2021226749A1 (en) 2020-05-09 2020-05-09 Apparatuses and methods for drying an object
PCT/CN2020/095146 WO2021227165A1 (en) 2020-05-09 2020-06-09 Apparatuses and methods for drying an object
PCT/CN2021/082835 WO2021227675A1 (en) 2020-05-09 2021-03-24 Apparatuses and methods for drying an object
PCT/CN2021/092204 WO2021227963A1 (zh) 2020-05-09 2021-05-07 干燥装置以及供电模组
PCT/CN2021/092185 WO2021227960A1 (zh) 2020-05-09 2021-05-07 干燥设备
PCT/CN2021/092191 WO2021227962A1 (zh) 2020-05-09 2021-05-07 干燥设备
PCT/CN2021/092188 WO2021227961A1 (zh) 2020-05-09 2021-05-07 干燥设备
PCT/CN2021/092177 WO2021227957A1 (en) 2020-05-09 2021-05-07 Apparatuses and methods for safely drying an object

Family Applications Before (3)

Application Number Title Priority Date Filing Date
PCT/CN2020/089408 WO2021226749A1 (en) 2020-05-09 2020-05-09 Apparatuses and methods for drying an object
PCT/CN2020/095146 WO2021227165A1 (en) 2020-05-09 2020-06-09 Apparatuses and methods for drying an object
PCT/CN2021/082835 WO2021227675A1 (en) 2020-05-09 2021-03-24 Apparatuses and methods for drying an object

Family Applications After (4)

Application Number Title Priority Date Filing Date
PCT/CN2021/092185 WO2021227960A1 (zh) 2020-05-09 2021-05-07 干燥设备
PCT/CN2021/092191 WO2021227962A1 (zh) 2020-05-09 2021-05-07 干燥设备
PCT/CN2021/092188 WO2021227961A1 (zh) 2020-05-09 2021-05-07 干燥设备
PCT/CN2021/092177 WO2021227957A1 (en) 2020-05-09 2021-05-07 Apparatuses and methods for safely drying an object

Country Status (3)

Country Link
EP (2) EP4132319A4 (zh)
CN (3) CN113615952A (zh)
WO (8) WO2021226749A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113568074B (zh) * 2021-09-24 2022-01-04 深圳汝原科技有限公司 颜色镀膜方法、系统、存储介质、辐射源组件和干燥设备
CN114081259A (zh) * 2021-09-30 2022-02-25 深圳汝原科技有限公司 红外光源、辐射源和干燥装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106175024A (zh) * 2016-07-20 2016-12-07 柳州六品科技有限公司 一种断电保护式智能型电吹风
JP2019050945A (ja) * 2017-09-13 2019-04-04 マクセルホールディングス株式会社 ヘアードライヤー
CN109952044A (zh) * 2016-07-29 2019-06-28 斯波尔概念公司 用于增强型电吹风的系统和方法
CN209732899U (zh) * 2019-03-15 2019-12-06 莱克电气股份有限公司 一种吹风机保护装置及吹风机
CN209862627U (zh) * 2019-04-28 2019-12-31 南昌航空大学 一种可自动断电的触控电吹风
CN209898564U (zh) * 2018-12-10 2020-01-07 揭阳市爱惠智能科技有限公司 一种电吹风及其控制电路

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4323761A (en) * 1979-11-26 1982-04-06 Huebner Otto Radiant heat hair dryer
DE2950001A1 (de) * 1979-12-12 1981-06-19 Bosch-Siemens Hausgeräte GmbH, 7000 Stuttgart Elektischer haartrockner
CN2063025U (zh) * 1989-12-07 1990-10-03 广州无线电研究所 远红外理疗干发器
CN2111677U (zh) * 1992-03-19 1992-08-05 曾利庆 无风远红外干发器
US6732449B2 (en) * 2000-09-15 2004-05-11 Walter Evanyk Dryer/blower appliance with efficient waste heat dissipation
US6901214B2 (en) * 2003-08-26 2005-05-31 Tek Maker Corporation Multiple-setting portable dryer and circuit designs thereof
JP2005177234A (ja) * 2003-12-22 2005-07-07 Matsushita Electric Works Ltd ヘアドライヤー
KR200369961Y1 (ko) * 2004-09-09 2004-12-13 김유수 레이저 방사 기능을 갖는 헤어 드라이기
BR112013006455A2 (pt) * 2010-09-21 2016-07-26 Federal Mogui Ignition Company módulo de luz de led
CN202233647U (zh) * 2011-09-07 2012-05-30 深圳拓邦股份有限公司 一种电吹风
CN202820034U (zh) * 2012-09-28 2013-03-27 惠州学院 一种电吹风
JPWO2014129072A1 (ja) 2013-02-20 2017-02-02 日本碍子株式会社 ノズル付きヒーター及び乾燥炉
AU2014200576A1 (en) * 2014-02-03 2015-08-20 Grice, James Alexander MR The Cordless hair dryer uses Lithium-Ion cells combined in a battery pack to supply power to control circuitry, a DC blower or fan and a heating element. All components are enclosed in a cavity in which the heating element heats up air which is extruded by the blower or fan. The Control System provides a master cut off switch to the battery pack as well as speed selection for the blower or fan and also cool blast and heat blast buttons.
CN103815644A (zh) * 2014-02-28 2014-05-28 王红 温度监测控制电吹风
KR102112121B1 (ko) * 2015-04-27 2020-06-04 메트라스, 인코포레이티드 광조사 장치
CN105286263A (zh) * 2015-11-19 2016-02-03 深圳市纳顿科技有限公司 一种吹风机
CN205162245U (zh) * 2015-11-20 2016-04-20 常州烯旺新材料科技有限公司 便携式可充电电吹风
JP6718679B2 (ja) * 2015-12-28 2020-07-08 マクセルホールディングス株式会社 温風乾燥機
CN205696318U (zh) * 2016-03-25 2016-11-23 中国地质大学(武汉) 一种智能变频电吹风机及其控制系统
CN105639981B (zh) * 2016-03-25 2019-01-01 中国地质大学(武汉) 一种智能变频电吹风机及其控制系统与方法
WO2018021309A1 (ja) * 2016-07-29 2018-02-01 日立マクセル株式会社 ヘアードライヤー
CN106617613A (zh) * 2016-11-09 2017-05-10 安徽工业大学 一种吹风机及其恒温智能控制电路和方法
CN208129714U (zh) * 2018-01-20 2018-11-23 东莞市瑞迪三维电子科技有限公司 一种红外加热吹风筒
JP2019136191A (ja) * 2018-02-07 2019-08-22 マクセルホールディングス株式会社 ドライヤー
CN111093421B (zh) * 2018-02-08 2022-08-16 麦克赛尔株式会社 吹风机
CN208676494U (zh) * 2018-05-22 2019-04-02 长沙梦龙智能科技有限责任公司 一种吹风机
JP7270949B2 (ja) * 2018-09-18 2023-05-11 タカラベルモント株式会社 毛髪処理装置
JP7129298B2 (ja) 2018-09-28 2022-09-01 マクセル株式会社 ドライヤー
JP6559862B1 (ja) * 2018-10-02 2019-08-14 株式会社スリーエス 光学ユニット及びその光学ユニットを使ったled照明器具
KR102144480B1 (ko) * 2018-10-26 2020-08-13 강시열 카본히터가 구비된 헤어드라이기
JP7179585B2 (ja) * 2018-11-07 2022-11-29 マクセル株式会社 ドライヤー
CN209769390U (zh) * 2019-02-22 2019-12-13 中山市瑞驰泰克电子有限公司 一种便于加热的快干吹风梳

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106175024A (zh) * 2016-07-20 2016-12-07 柳州六品科技有限公司 一种断电保护式智能型电吹风
CN109952044A (zh) * 2016-07-29 2019-06-28 斯波尔概念公司 用于增强型电吹风的系统和方法
JP2019050945A (ja) * 2017-09-13 2019-04-04 マクセルホールディングス株式会社 ヘアードライヤー
CN209898564U (zh) * 2018-12-10 2020-01-07 揭阳市爱惠智能科技有限公司 一种电吹风及其控制电路
CN209732899U (zh) * 2019-03-15 2019-12-06 莱克电气股份有限公司 一种吹风机保护装置及吹风机
CN209862627U (zh) * 2019-04-28 2019-12-31 南昌航空大学 一种可自动断电的触控电吹风

Also Published As

Publication number Publication date
WO2021227962A1 (zh) 2021-11-18
WO2021226749A1 (en) 2021-11-18
WO2021227675A1 (en) 2021-11-18
CN113615953A (zh) 2021-11-09
WO2021227165A1 (en) 2021-11-18
WO2021227957A1 (en) 2021-11-18
EP4132319A4 (en) 2023-10-04
WO2021227960A1 (zh) 2021-11-18
EP4146037A4 (en) 2023-11-01
CN113615952A (zh) 2021-11-09
WO2021227961A1 (zh) 2021-11-18
EP4132319A1 (en) 2023-02-15
CN213962188U (zh) 2021-08-17
EP4146037A1 (en) 2023-03-15

Similar Documents

Publication Publication Date Title
WO2021227963A1 (zh) 干燥装置以及供电模组
CN208607606U (zh) 一种服务器用风扇散热系统
CN104954146B (zh) 以太网供电设备
CN110419843A (zh) 一种可对内置电池散热的充电吹风机
CN205196226U (zh) 一种用于带散热风机机柜的防凝露装置
CN216644559U (zh) 干燥装置以及供电模组
CN205485872U (zh) 电子设备
CN108346998A (zh) 具有智能化控制模块的环网柜
CN209022716U (zh) 车载设备自适应散热装置
CN112120382A (zh) 吹风机的恒温控制方法
CN111129963A (zh) 配电箱控制装置、方法及配电箱系统
CN113915148A (zh) 一种自动检测功能的计算机散热风扇
CN212511789U (zh) 空气加热装置
CN211151794U (zh) 一种配电柜内igbt模块的散热装置
CN211389697U (zh) 一种基于注塑机干燥桶的智能节能控制系统
CN203352528U (zh) 一种节能变频器
CN207924537U (zh) 冷却系统
CN206991390U (zh) 考勤机的散热机构
CN208634087U (zh) 风机驱动控制设备
CN206878732U (zh) 一种小型无刷电机控制系统
CN206559799U (zh) 一种通风散热系统
CN206548060U (zh) 一种带温度传感器的电吹风
CN202019334U (zh) 多模式马达驱动电路
CN205963927U (zh) 一种暖风烘干装置以及应用该暖风烘干装置的智能座便器
CN207111499U (zh) 一种交流风扇除尘装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21804012

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 09.01.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21804012

Country of ref document: EP

Kind code of ref document: A1