WO2021227551A1 - 一种搬运机器人、取箱方法、货箱上货方法及仓储物流系统 - Google Patents

一种搬运机器人、取箱方法、货箱上货方法及仓储物流系统 Download PDF

Info

Publication number
WO2021227551A1
WO2021227551A1 PCT/CN2021/072984 CN2021072984W WO2021227551A1 WO 2021227551 A1 WO2021227551 A1 WO 2021227551A1 CN 2021072984 W CN2021072984 W CN 2021072984W WO 2021227551 A1 WO2021227551 A1 WO 2021227551A1
Authority
WO
WIPO (PCT)
Prior art keywords
box
container
cargo
target
handling robot
Prior art date
Application number
PCT/CN2021/072984
Other languages
English (en)
French (fr)
Inventor
李晓伟
Original Assignee
北京极智嘉科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京极智嘉科技股份有限公司 filed Critical 北京极智嘉科技股份有限公司
Publication of WO2021227551A1 publication Critical patent/WO2021227551A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/137Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed
    • B65G1/1373Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed for fulfilling orders in warehouses

Definitions

  • This application relates to the field of warehousing and logistics, such as a handling robot, a method for taking boxes, a method for loading containers, and a warehousing logistics system.
  • FIG. 1 provides a robot for carrying cargo boxes in the related art. As shown in FIG. 1, it includes a drive unit 100, a cargo box storage unit 200, and a cargo box transfer unit 300, wherein the drive unit 100 carries the cargo box storage unit 200 and The box transport unit 300 moves together, the box storage unit 200 includes at least one box storage space, and the box transfer unit 300 is configured to transfer the box 40 between the box storage space and the inventory container.
  • the cargo box transmission unit 300 includes a frame 310 configured to place a cargo box, a lifting device 320 configured to drive the cargo box 40 up and down, a telescopic fork 330 configured to drive the cargo box 40 to expand and contract, and a frame 310 configured to drive the cargo box 40 to rotate. ⁇ 340 ⁇ Rotating device 340.
  • the cargo box transfer unit requires the use of the lifting device 320 and the telescopic fork 330 to cooperate with the rotating device 340 to smoothly transport the cargo box 40 from the storage container to the cargo box storage unit 200, and the cargo box transfer unit 300
  • the structure is complicated; and in the process of loading and unloading the cargo box, only one cargo box 40 can be taken and placed at a time, and the loading and unloading efficiency of the cargo box 40 is low, and it is difficult to effectively improve the efficiency of picking and logistics.
  • the present application provides a handling robot, which improves the efficiency of picking and placing cargo boxes by the handling robot, and improves the efficiency of picking and logistics.
  • the present application also provides a method for taking boxes, which improves the efficiency of taking boxes by the handling robot, thereby improving the efficiency of picking and logistics.
  • the present application also provides a method for loading cargo boxes, which improves the efficiency of loading the cargo boxes by the handling robot, thereby improving the efficiency of picking, loading and logistics.
  • This application also provides a warehousing logistics system to improve the efficiency of the warehousing logistics system.
  • a handling robot includes:
  • a stand, the stand is vertically arranged on the mobile chassis
  • At least two box-taking mechanisms are arranged along the height direction of the stand, and each of the box-taking mechanisms can be horizontally telescopic and vertically lifted relative to the mobile chassis to pick up inventory containers Or place the container on the storage container.
  • a method for picking up boxes is to use a handling robot to pick up boxes on a storage container.
  • the handling robot includes a moving chassis, a stand vertically arranged on the moving chassis, and a stand arranged on the stand At least two box taking mechanisms on the upper side, the at least two box taking mechanisms are arranged along the height direction of the stand, each of the box taking mechanisms can be horizontally telescopic and vertically lifted relative to the mobile chassis, the Methods of picking up the box include:
  • the control system allocates the task of taking boxes to the handling robot
  • the control system plans the travel path of the container according to the location of all the target containers in the container-taking task;
  • the control system allocates the container taking mechanism for taking the container to each of the target containers according to the layer height ranking of all the target containers;
  • the handling robot runs to the front of each target container in turn according to the box-removing travel path and picks up each target container using the assigned box-removing mechanism, and responds to determining all target containers.
  • a plurality of the target containers in the box are located in the same column of the storage container, and the picking mechanism corresponding to the plurality of target containers is simultaneously picked up.
  • a method for loading a cargo box uses a handling robot to load the cargo box to a target position on a storage container.
  • the handling robot includes a mobile chassis and a stand vertically arranged on the mobile chassis. And at least two box-taking mechanisms arranged on the stand, the at least two box-taking mechanisms are arranged along the height direction of the stand, and each of the box-taking mechanisms can be horizontally telescopic relative to the mobile chassis And vertical lifting, the loading method of the cargo box includes:
  • the control system allocates the task of loading the container to the handling robot
  • the control system plans the loading journey path according to the target cargo location positions corresponding to all the target cargo boxes in the cargo loading task;
  • the handling robot sequentially runs to the front of the target cargo space corresponding to each target cargo box according to the loading travel path and places each target cargo box in the corresponding target cargo space, and responds to determining the cargo box
  • the target cargo positions corresponding to the multiple target bins of all the target bins are located in the same column of the same inventory container, and the multiple target bins are placed in the multiple target bins at the same time One-to-one correspondence in multiple target positions.
  • a warehousing logistics system includes the above-mentioned handling robot.
  • Fig. 1 is a schematic diagram of the structure of a robot for carrying cargo boxes provided by related technologies
  • FIG. 2 is a schematic diagram of the structure of the handling robot provided by Embodiment 1 of the present application;
  • FIG. 3 is a schematic structural diagram of a box taking mechanism provided in Embodiment 1 of the present application.
  • Fig. 4 is a schematic structural diagram of the structure in Fig. 3 after the protective casing is removed;
  • FIG. 5 is a schematic structural diagram of a box taking mechanism provided in Embodiment 2 of the present application.
  • FIG. 6 is a schematic structural diagram of the box removal mechanism provided in the second embodiment of the present application after the temporary storage board is removed;
  • FIG. 7 is a flowchart of a method for taking a box provided in Embodiment 3 of the present application.
  • FIG. 8 is a flowchart of a box taking method provided in Embodiment 4 of the present application.
  • Fig. 9 is a flowchart of a method for loading a cargo box provided in Embodiment 5 of the present application.
  • 1-temporary storage board 11-temporary storage board body; 12-guide part;
  • 2- telescopic component 21- fixed plate; 22- connecting plate; 23- telescopic plate; 24- extension plate; 25- telescopic transmission component; 251- first pulley; 252- first synchronous belt; 253- second belt Wheel; 254-second timing belt; 255-third pulley; 256-third timing belt; 257-transmission rack; 26-retractable drive assembly; 27-synchronous transmission assembly; 271-transmission shaft; 272-fourth Pulley; 273—Fifth pulley; 274—Fourth timing belt; 28—Telescopic guide assembly; 281—First guide groove; 282—Second guide groove; 283—First guide rail; 284—Second guide rail;
  • 3-shift lever assembly 31-shift lever; 32-shift lever driver;
  • connection shall be interpreted broadly, for example, they may be fixedly connected, detachably connected, or integrated. ; It can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components or the interaction relationship between two components.
  • connection shall be interpreted broadly, for example, they may be fixedly connected, detachably connected, or integrated. ; It can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components or the interaction relationship between two components.
  • the "on" or “under” of the first feature of the second feature may include direct contact between the first and second features, or may include the first and second features Not in direct contact but through other features between them.
  • the "above”, “above” and “above” of the first feature on the second feature include the first feature directly above and obliquely above the second feature, or it simply means that the first feature is higher in level than the second feature.
  • the “below”, “below” and “below” of the second feature of the first feature include the first feature directly below and obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.
  • the terms “upper”, “lower”, “right”, and other orientations or positional relationships are based on the orientations or positional relationships shown in the drawings, and are only for the convenience of description and simplifying operations, rather than indicating It may also imply that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be understood as a limitation of the present application.
  • the terms “first” and “second” are only used to distinguish them in description, and have no special meaning.
  • FIG. 2 is a schematic structural diagram of a handling robot provided by an embodiment of the application.
  • this embodiment provides a handling robot, which is configured to carry and pick up and place the cargo box 40, which is mainly used in warehousing and logistics.
  • the container 40 storing the order goods or express delivery is taken, placed and transported, so as to realize the order-based pickup or loading operation. It can also be applied to other places where the cargo box 40 or cargo needs to be transported.
  • the application of the transport robot in this embodiment is only exemplary, and this embodiment does not limit this.
  • the handling robot provided in this embodiment includes a mobile chassis 30, a stand 20, a box taking mechanism 10, a detection component, and a controller.
  • the mobile chassis 30 is set to realize the movement of the handling robot on the ground to realize the transportation of the cargo box 40 by the handling robot;
  • the stand 20 is set on the mobile chassis 30 to fix and support the box taking mechanism 10;
  • 10 is provided with at least two along the height direction of the stand 20, and each of the box picking mechanisms 10 can be horizontally telescopic and vertically lifted relative to the mobile chassis 30 to pick up the container 40 on the inventory container or place the container 40
  • the detection component is set to detect the working status of the handling robot and the state of the external environment;
  • the controller is set to obtain the order information of warehousing logistics, and based on the order information and the detection result of the detection component, the operation of the handling robot is intelligent Regulation.
  • the box picking mechanisms 10 by providing at least two box picking mechanisms 10 in the height direction of the stand 20, the box picking mechanisms 10 at different heights can simultaneously pick up the boxes 40 on different layers of the inventory container.
  • the container 40 carried by the container picking mechanism 10 at different heights can be placed on different layers of the inventory container, so as to improve the efficiency of picking and placing the container 40 by the handling robot, thereby improving the efficiency of picking and handling the container 40 by the handling robot , Thereby improving the efficiency of goods picking and warehousing logistics.
  • the mobile chassis 30 includes a chassis body and a driving wheel mechanism provided at the bottom of the chassis body, and the driving wheel mechanism is configured to realize the movement of the mobile chassis 30.
  • the driving wheel mechanism can be in the form of a differential drive.
  • the driving wheel mechanism includes a driving wheel motor, two driving wheels arranged at the bottom of the chassis body, and a connecting assembly connecting the driving wheel motor and the two driving wheels.
  • the two driving wheels are respectively arranged on both sides of the chassis body, the driving wheel motor is arranged inside the chassis body, and its rotating output shaft is connected with the driving wheel and drives the driving wheel to move, so as to realize the linear or turning movement of the mobile chassis 30.
  • the driving wheel mechanism is arranged on both sides of the middle of the mobile chassis 30, which is beneficial to improve the smoothness of the movement of the mobile chassis 30.
  • the chassis body can also be provided with multiple universal driven wheels.
  • a pair of universal driven wheels can be provided on the front and rear of the chassis body, and the two pairs of universal driven wheels can be arranged symmetrically with respect to the pair of driving wheels. It is beneficial to improve the smooth motion of the mobile chassis 30, especially the turning motion stability of the mobile chassis 30, and prevent the mobile chassis 30 from tipping to one side during the movement.
  • the drive wheel mechanism can also adopt other mechanisms that can drive the chassis body to move.
  • This embodiment does not limit the form of the drive wheel mechanism, nor does it limit the structure of the mobile chassis 30, as long as the structure that can drive the stand 20 to move can be implemented.
  • the stand 20 includes two supporting columns 201 arranged vertically and relatively spaced apart.
  • the box taking mechanism 10 is arranged between the supporting columns 201 and is connected to the two supporting columns 201 through a lifting mechanism, so that the box taking mechanism 10 can stand opposite to each other.
  • 201 is vertically lifted, and between the two supporting columns 201 is formed a movable space for the supply box 40 and the box taking mechanism 10 to vertically lift.
  • the box picking mechanism 10 can drive the box 40 to rise and fall vertically, so that the box 40 can be lowered to a height suitable for picking workers during the picking process, which improves work efficiency and enables the handling robot to better It is suitable for loading and unloading the cargo box 40 on the storage container with a higher number of layers, improving the picking efficiency of the cargo box 40 and the applicability of the handling robot, and can provide greater convenience for the picking operation of the picking staff; at the same time, because each box is picked up
  • the mechanism 10 can be raised and lowered vertically, which can increase the distance between two adjacent cargo boxes 40 when picking goods, increase the picking space, and facilitate operation; in addition, since there is no temporary storage partition on the stand 20, it can be The structure interference between the box taking mechanism 10 and the temporary storage partition during the operation is avoided
  • each supporting column 201 includes a vertically arranged supporting vertical plate and vertical supporting vertical columns located on opposite sides of the supporting vertical plate, and the supporting vertical plates of the two supporting columns 201 are arranged in parallel and spaced apart.
  • the two supporting uprights are located inside the supporting upright plate, and the two supporting uprights and the supporting upright plate form a U-shaped structure with an opening facing the other supporting column 201. This arrangement can protect the structure arranged in the U-shaped groove of the U-shaped structure.
  • the supporting vertical plate is in a plate-shaped state
  • the supporting vertical column is formed by processing square steel, which improves the overall structural strength of the vertical frame 20 and facilitates the connection of the box taking mechanism 10 to the supporting vertical column.
  • reinforcing ribs are connected between two adjacent support columns.
  • the top ends of the two support columns 201 are provided with reinforced beams 202 to avoid end shaking caused by the high height of the support columns 201 and the like.
  • each side of the box taking mechanism 10 may be provided with at least two support columns 201 spaced along the expansion and contraction direction of the box taking mechanism 10. This embodiment does not impose excessive restrictions on the structure of the stand 20.
  • the box taking mechanism 10 is capable of bidirectional expansion and contraction to pick up the boxes 40 in the inventory containers on opposite sides of the handling robot respectively.
  • Fig. 3 is a schematic structural diagram of the box taking mechanism 10 provided by Embodiment 1 of the present application.
  • Fig. 4 is a structural diagram of the structure in Fig. 3 after removing the protective shell. As shown in Figs. 3 and 4, each box taking mechanism 10 includes Temporary storage board 1, telescopic assembly 2 and shift lever assembly 3. Temporary storage positions are formed on the temporary storage board 1.
  • the temporary storage board 1 is set to temporarily store the cargo box 40 picked up by the box picking mechanism 10;
  • the shift lever assembly 3 is set To move the cargo box 40 to move the cargo box 40 between the temporary storage board 1 and the storage container;
  • the telescopic assembly 2 is connected with the temporary storage board 1 and the shift lever assembly 3, and is arranged to drive the shift lever assembly 3 relative to the temporary storage board 1 Horizontal expansion.
  • the cargo box 40 can be cached on the temporary storage board 1, avoiding the lever assembly 3 or the telescopic assembly 2 from always supporting or carrying the cargo box 40 during the process of carrying the cargo box 40 by the handling robot, improving the access The service life of the box mechanism 10 is improved, and the installation stability of the cargo box 40 on the box taking mechanism 10 is improved.
  • the temporary storage board 1 and the shift lever assembly 3 may not be provided, but a pair of gripping arms are provided on the telescopic assembly 2 to grip and pick the cargo box 40, and the handling robot When the cargo box 40 is being transported, the gripping arms always hold and support the cargo box 40.
  • a pair of gripping arms are provided on the telescopic assembly 2 to grip and pick the cargo box 40, and the handling robot When the cargo box 40 is being transported, the gripping arms always hold and support the cargo box 40.
  • a telescopic component 2 is provided on opposite sides of the temporary storage board 1.
  • the telescopic component 2 is a two-stage synchronous telescopic structure, which is beneficial to increase the maximum length of the telescopic component 2 while reducing the telescopic component. 2 The size when retracted, thereby reducing the overall size of the handling robot, and improving the extension or retraction efficiency of the shift lever assembly 3.
  • the telescopic assembly 2 includes a fixed plate 21, a connecting plate 22 and a telescopic plate 23 arranged in parallel, and a telescopic transmission assembly 25 and a telescopic drive assembly 26 that drive the connecting plate 22 and the telescopic plate 23 to expand and contract synchronously, wherein the fixed plate 21 and The temporary storage board 1 is connected vertically.
  • the telescopic transmission assembly 25 includes a first telescopic transmission component configured to realize horizontal expansion and contraction of the connecting plate 22 relative to the fixed plate 21 and a second telescopic transmission component configured to realize horizontal expansion and contraction of the expansion plate 23 relative to the connecting plate 22.
  • the first telescopic transmission assembly includes two first pulleys 251 arranged at both ends of the fixed plate 21 and a first timing belt 252 wound between the two first pulleys 251.
  • the central shafts of the two first pulleys 251 are located at the same height, and one of the first pulleys 251 is connected to the output shaft of the driving motor in the telescopic drive assembly 26, and the first pulley 251 is driven to rotate by the rotation of the output shaft of the driving motor. Thereby driving the first timing belt 252 to rotate.
  • the connecting plate 22 is located below the first synchronous belt 252, and the upper side of the connecting plate 22 is provided with a transmission rack 257 along its length.
  • the first synchronous belt 252 is a double-sided toothed synchronous belt. It meshes with the transmission rack 257 to make the connecting plate 22 driven by the first timing belt 252 expand and contract horizontally.
  • the second telescopic transmission assembly includes a second timing belt 254 and a second pulley 253.
  • the second pulley 253 is pivotally connected to the second end of the connecting plate 22 and passes through opposite sides of the connecting plate 22.
  • the rotating shaft is vertically arranged, the first end of the second timing belt 254 is fixed to the second end of the telescopic plate 23, and the second end of the second timing belt 254 goes around the second pulley 253 and passes through the connecting plate 22. It is fixed near the first end of the fixing plate 21.
  • the first end of the connecting plate 22, the first end of the telescopic plate 23, and the first end of the fixing plate 21 are all arranged oppositely. Taking the direction shown in FIG. 4 as an example, the first end of the connecting plate 22 One end, the first end of the telescopic plate 23 and the first end of the fixed plate 21 are the ends of the connecting plate 22, the telescopic plate 23 and the fixed plate 21 in FIG. 4 located below.
  • the connecting plate 22 When the connecting plate 22 is retracted relative to the fixed plate 21, since the second timing belt 254 bypasses the second pulley 253 provided on the connecting plate 22, and the length of the second timing belt 254 is constant, the second pulley 253 follows the connecting plate While 22 is moving in translation, the second pulley 253 is rotated relative to the second timing belt 254, which drives the length of the second timing belt 254 on the side of the connecting plate 22 facing the fixed plate 21 to increase, and the length of the side of the connecting plate 22 facing the telescopic plate 23. Decrease, thereby pulling the telescopic plate 23 to retract relative to the connecting plate 22.
  • the connecting plate 22 extends relative to the fixed plate 21
  • the second timing belt 254 and the second pulley 253 drive the telescopic plate 23 to extend relative to the connecting plate 22. Therefore, when the telescopic drive assembly 26 drives the first telescopic transmission assembly to telescopically move, the telescopic plate 23 is synchronously driven to expand and contract with respect to the connecting plate 22, that is, the two-stage synchronous telescopic adjustment of the telescopic adjustment assembly is realized.
  • the telescopic transmission component further includes a third telescopic transmission component
  • the third telescopic transmission component includes a third timing belt 256 and a third pulley 255
  • the third pulley 255 is pivotally connected to the first end of the connecting plate 22 and penetrates On opposite sides of the connecting plate 22, the rotation axis of the third pulley 255 is vertically arranged.
  • the first end of the third timing belt 256 is fixed to the first end of the fixing plate 21, and the second end of the third timing belt 256 goes around the third pulley 255 and passes through the connecting plate 22 to be fixedly connected to the first end of the telescopic plate 23.
  • the working principle of the third telescopic transmission component can refer to the working principle of the second telescopic transmission component, which will not be repeated here.
  • the telescopic assembly 2 further includes a telescopic guide assembly 28.
  • the telescopic guide assembly 28 includes first guide grooves 281 respectively arranged on the inner side of the fixing plate 21 and the connecting plate.
  • the second guide groove 282 on the inner side of 22, the first guide rail 283 provided on the outer side of the connecting plate 22, and the second guide rail 284 provided on the outer side of the telescopic plate 23.
  • the first guide rail 283 is slidably connected to the first guide groove 281, and the second guide rail 284 It is slidably connected to the second guide groove 282.
  • the structure of the telescopic guide assembly 28 in this embodiment is not limited to this, as long as the telescopic guide of the connecting plate 22 relative to the fixed plate 21 and the telescopic guide of the telescopic plate 23 relative to the connecting plate 22 can be realized. Do not elaborate.
  • the two telescopic components 2 share a telescopic drive component 26, and two of the two telescopic components 2 correspond to
  • the first pulleys 251 are connected by a synchronous transmission assembly 27.
  • the synchronous transmission assembly 27 includes a fourth pulley 272 that is coaxially connected to the first pulley 251, a transmission shaft 271 that straddles the two telescopic components 2 and a fifth pulley that is sleeved on both ends of the transmission shaft 271.
  • the pulley 273 winds around the fourth timing belt 274 on the fourth pulley 272 and the fifth pulley 273 on the corresponding side.
  • the synchronous rotation between the two first pulleys 251 can be realized by other transmission structures, such as a sprocket chain structure, etc., which will not be described in detail here.
  • the telescopic assembly 2 provided in this embodiment can realize the bidirectional expansion and contraction of the telescopic plate 23 by controlling the forward and reverse rotation of the drive motor, so that the cargo boxes 40 on the storage containers on opposite sides of the handling robot can be taken and placed, and The transmission form of the synchronous belt is adopted, the structure is simple, the setting is convenient, and the cost is low.
  • the structure of the telescopic component 2 provided in this embodiment is only an exemplary structure, and the telescopic component 2 is not limited to the above structure.
  • the telescopic component 2 can also adopt a structure that can realize two-level synchronous expansion in related technologies.
  • the first telescopic transmission component can be a rack and pinion transmission, a chain sprocket transmission, etc., or the telescopic component 2 can also adopt a structure that can achieve two-stage stepwise expansion and contraction in the related art, which will not be described in detail in this application. .
  • a first protective shell 5 is provided on the upper side of the fixed plate 21, a first accommodating space is formed between the first protective shell 5 and the fixed plate 21, and the first telescopic transmission assembly is located in the first In the accommodating space, the first accommodating space is configured to protect the first telescopic transmission assembly.
  • a second protective shell 6 is provided on the outer sides of both ends of the fixed plate 21, a second accommodating space is formed between the second protective shell 6 and the outer surface of the fixed plate 21, and the telescopic drive assembly 26 is located at one of the second ends of the outer surface of the fixed plate 21
  • the fourth timing belt 274, the fourth pulley 272 and the fifth pulley 273 are located in the second accommodating space at the first end of the outer side surface of the fixing plate 21.
  • the temporary storage board 1 and the fixed plates 21 located on opposite sides thereof form a temporary storage location set to accommodate the cargo box 40.
  • the temporary storage board 1 is provided with telescopic components 2 on opposite sides, and the temporary storage board 1 is provided with baffles 4 corresponding to the telescopic components 2 on the opposite sides.
  • the baffles 4 are located inside the telescopic components 2 and extend along the telescopic components 2 Direction extension.
  • a temporary storage position is formed between the two baffles 4, and the distance between the two baffles 4 is slightly larger than the width of the cargo box 40, so that the cargo box 40 can be accommodated between the two baffles 4, and the baffle 4 can Avoid collision between the cargo box 40 and the telescopic assembly 2.
  • the baffle 4 includes a baffle body 41 that extends along the telescopic direction of the telescopic assembly 2 and a guide plate portion 42 provided at both ends (ends) of the baffle body 41.
  • the first end of the guide plate portion 42 is connected to the stopper.
  • the plate main body 41 is connected, and the second end of the guide plate portion 42 extends obliquely toward the fixed plate 21 in the direction away from the baffle main body 41 (that is, obliquely extends in the direction close to the telescopic assembly 2 on the corresponding side), so that
  • the two baffle main bodies 41 located at the same end of the temporary storage board 1 have an outwardly flaring structure to guide the cargo box 40 into the temporary storage position.
  • the temporary storage board (1) includes a temporary storage board body (11) arranged horizontally and a guide portion 12 provided at the entrances (inlet ends) at both ends of the temporary storage board 1.
  • the first guide portion 12 The end is connected with the temporary storage board main body 11, and the second end of the guide portion 12 extends downwardly in a direction away from the temporary storage board 1 main body, so as to guide the transfer of the cargo box 40 to the temporary storage board 1.
  • the shift lever assembly 3 is arranged at the end of the telescopic plate 23 and includes a shift lever 31 and a shift lever drive member 32.
  • the fixed end of the shift lever drive member 32 is fixed to the telescopic plate 23, and the drive end of the shift lever drive member 32 and the shift lever 31 is connected to drive the lever 31 to switch between the working position where the cargo box 40 can be moved and the idle position where the cargo box 40 cannot be moved.
  • the shift lever driving member 32 is a drive motor
  • the output shaft of the drive motor is consistent with the length of the telescopic plate 23, and the output shaft of the drive motor is connected to one end of the shift lever 31 to drive the shift lever 31 in a vertical plane Internal rotation.
  • the shift lever 31 when the shift lever 31 is in the working position, one end of the shift lever 31 extends between the two telescopic plates 23, and the shift lever 31 is perpendicular to the telescopic plate 23.
  • the shift lever 31 When the shift lever 31 is in the idle position, the shift lever 31 is vertical. Set straight to avoid collision with other structures when the shift lever 31 is not working.
  • the application is not limited to this, and the working position and the idle position of the shift lever 31 can be set according to requirements.
  • the shift lever 31 can not only be rotated in a vertical plane, but also can be rotated in a horizontal plane to switch between the working position and the idle position.
  • the shift lever driving member 32 is a steering gear, which can accurately control the rotation angle of the shift lever 31 through the feedback mechanism and angle setting of the steering gear, and has a small volume, which is beneficial to the installation of the shift lever driving member 32 And settings.
  • the driving motor may also be another driving form capable of controlling the rotation angle, such as a servo motor.
  • Both ends of the telescopic plate 23 along the length direction are provided with shift lever assemblies 3.
  • the two shift lever assemblies 3 on the same telescopic board 23 are respectively located on two opposite sides of the cargo box 40. In order to better realize the movement of the cargo box 40 between the temporary storage position and the inventory container, at the same time, it can realize the transportation of the cargo box 40 on the inventory container on the opposite sides of the handling robot.
  • the telescopic assembly 2 controls the telescopic plate 23 to extend to the left until the two telescopic plates 23 are located on opposite sides of the cargo box 40, and the shift lever of the first shift lever assembly drives The piece 32 controls the shift lever 31 to rotate from the idle position to the working position.
  • the telescopic assembly 2 drives the shift lever 31 to retract to the right.
  • the shift lever 31 contacts one side of the cargo box 40 and drives the cargo box 40 to move to the temporary storage board 1.
  • the shift lever driving member 32 of the first shift lever assembly controls the shift lever 31 to return from the working position to the idle position.
  • the shift lever driving member 32 of the second shift lever assembly controls the shift lever 31 to rotate from the idle position to the working position, and the telescopic assembly 2
  • the extension of the telescopic plate 23 is controlled so that the shift lever 31 of the second shift lever assembly drives the cargo box 40 to move to the storage container; when the telescopic plate 23 has the maximum extension length, the shift lever drive 32 of the second shift lever assembly controls The shift lever 31 rotates from the working position to the idle position, and the telescopic assembly 2 controls the telescopic plate 23 to retract to the initial position.
  • the second lever assembly is used to move the cargo box 40 on the inventory container to the temporary storage board 1; when it is necessary to transfer the cargo box 40 on the temporary storage board 1
  • the first shift lever assembly is used to move the cargo box 40 on the temporary storage board 1 to the inventory container, which will not be repeated here.
  • each shift lever 31 is correspondingly provided with a shift lever driving member 32 to realize individual control of each shift lever 31 on the shift lever 31. In other embodiments, it may also be located in the same telescopic position.
  • the shift levers 31 at both ends of the plate 23 are driven by the same shift lever driving member 32.
  • one end of each telescopic plate 23 is provided with a shift lever 31.
  • the end of the telescopic plate 23 may also be provided with at least two shift levers 31 at intervals along the height direction.
  • each box taking mechanism 10 is correspondingly provided with a lifting mechanism.
  • the lifting mechanism can be, but not limited to, rack and pinion transmission, sprocket and chain transmission, timing belt transmission, screw nut transmission, connecting rod drive and friction roller transmission, etc.
  • the above-mentioned transmission forms are all relatively conventional lifting in related technologies.
  • this application does not limit the transmission form and structure of the lifting assembly, and it is sufficient to refer to the structure of any lifting assembly that can realize the lifting movement of the shift lever assembly 3 and the temporary storage board 1 in the related art.
  • two opposite sides of the temporary storage board 1 are respectively provided with a lifting mechanism to improve the lifting stability of the temporary storage board 1.
  • the two lifting mechanisms of the same box taking mechanism 10 can be driven synchronously by the same lifting drive unit, or can be driven separately by two lifting drive units, which is not limited in this embodiment.
  • the handling robot is also provided with a control system, and the control system is configured to control the operation of various actions of the handling robot.
  • the control system includes a controller, an order management module, a navigation module, an information transmission module, an information processing module, an identification module, a display module, an alarm module, and a power supply module.
  • the drive wheel mechanism, the lifting drive unit, the telescopic drive assembly 26, the shift lever drive 32, the detection assembly, and various modules in the control system are all connected to the controller.
  • the navigation module is set to realize the autonomous navigation function of the mobile chassis 30, so that the handling robot can plan the optimal path according to the position of the cargo box 40 and automatically navigate to the front of the inventory container where the cargo box 40 is located according to the optimal planned path.
  • the navigation method of the mobile chassis 30 may be two-dimensional code, barcode, and radar simultaneous localization and mapping (Simultaneous Localization And Mapping, SLAM) navigation, or the mobile chassis 30 may be guided to the target position through a traditional electric or magnetic guidance method.
  • the information transmission module includes a wireless communication module configured to realize the communication between the handling robot and the outside, and a wired communication module configured to realize the internal communication of the handling robot.
  • the wireless communication module is mainly set to wirelessly communicate with the order management center in the warehousing logistics system to receive order information, so as to realize the scheduling of the handling robot by the order management center.
  • the wired communication module is mainly set up as the internal communication between the controller and the mobile chassis 30, the lifting drive unit, the telescopic assembly 2 and the lever assembly 3 to control the mobile chassis 30 to move to a specific position and the lever assembly 3 to raise or lower to In a specific position, the shift lever assembly 3 is extended or retracted, or the shift lever is rotated to a specific angle, so as to realize the accurate acquisition and placement of the cargo box 40 by the box taking mechanism 10.
  • the order management module is set to receive the information sent by the order management center to the handling robot, and update the completed orders and uncompleted orders in a timely manner according to the handling actions of the handling robot, so that the system can monitor the order completion in real time.
  • the identification module is set to identify external information and convert it into an information form that can be processed by the controller, such as identifying the bar code information pasted on the ground to realize the path navigation of the mobile chassis 30, and identifying the tag code information pasted on the inventory container. Obtain the placement of the cargo box 40 on the inventory container, or identify the label code information on the cargo box 40, and obtain the information of the goods in the cargo box 40.
  • the label code information can be a QR code, a barcode or a radio frequency identification (Radio Frequency Identification, RFID) radio frequency codes, etc.
  • the power supply module is configured to perform power control on the mobile chassis 30, and includes a rechargeable battery, a charging port, and a power on/off circuit provided on the mobile chassis 30.
  • the power supply module may be a wired charging module or a wireless charging module.
  • the display module is set to display the operating status of the handling robot, such as setting the status indicator to display the power status of the handling robot, and setting the display screen to display the order processing status, etc.
  • the alarm module is set to alarm the abnormal operating state of the handling robot to facilitate the staff to find the fault in time.
  • the alarm module may include at least one of a buzzer, a voice broadcaster, and a light emitting diode (LED) display.
  • LED light emitting diode
  • the detection component includes an environment monitoring module set to capture external environmental information and an obstacle avoidance sensor set to detect obstacles. Both the environment detection module and obstacle avoidance sensor are connected to the controller, and the environment detection module and obstacle avoidance sensor are set to assist the mobile chassis 30 Carry out navigation and obstacle avoidance to realize the smooth walking of the handling robot.
  • the detection component also includes a first detection sensor arranged at the middle of the inlet end of the temporary storage board 1 and configured to detect and identify the label information on the inventory container;
  • the second detection sensor set on the telescoping board 23, set to detect whether the cargo box 40 is located at the location of the third detection sensor.
  • the first detection sensor and the second detection sensor may be an RFID tag reader or a two-dimensional code reader
  • the third detection sensor may be a through-beam photoelectric sensor.
  • the first detection sensor, the second detection sensor, and the third detection sensor are conventional settings in the field, and will not be repeated in this embodiment.
  • the handling robot provided in this embodiment also includes a mobile chassis 30, a stand 20 arranged on the mobile chassis 30, and at least arranged along the height direction of the stand 20
  • Each box picking mechanism 10 includes a telescopic assembly 2, a temporary storage board 1 and a shift lever assembly 3.
  • the difference is that the structure of the telescopic component 2 provided in this embodiment is different from that of the first embodiment. This embodiment only details the structure of the telescopic component 2 and will not repeat the description of the same structure as the first embodiment.
  • Fig. 5 is a schematic structural diagram of the box taking mechanism 10 provided by an embodiment of the present application.
  • Fig. 6 is a structural diagram of the box taking mechanism 10 provided by an embodiment of the present application after the temporary storage board 1 is removed.
  • the telescopic assembly 2 is a three-stage synchronous telescopic structure, which can increase the extension length of the telescopic plate 23 and realize the picking of the cargo box 40 located on the inner side of the double-deep storage container.
  • the double-deep inventory storage means that the inventory container has two storage positions arranged side by side along the depth direction (the direction of expansion and contraction of the telescopic component).
  • the warehouse management of the warehousing logistics system in order to improve the space utilization of the warehouse, usually for each inventory container, one inventory container is arranged next to it on one side, and another inventory container is arranged on the other side at intervals. A passage for the handling robot to pass is formed between the storage containers.
  • the cargo box 40 located in the inner cargo space needs the extension plate of the telescopic assembly 2 to cross the outer cargo space before it can be moved by the lever assembly 3. Therefore, to pick up the cargo in the double-deep cargo space For the cargo box 40 in the inner cargo space of the position, the maximum extension length of the telescopic assembly 2 needs to be increased.
  • the telescopic assembly 2 includes a fixed plate 21, a connecting plate 22, an extension plate 24, and a telescopic plate 23 that are sequentially arranged from the outside to the inside, and also includes a connecting plate 22, a fixed plate 21, and a telescopic plate 23 that are set to achieve synchronous expansion and contraction.
  • Telescopic drive assembly 25 and telescopic drive assembly 26 are included in the telescopic drive assembly 26.
  • the telescopic drive assembly 26 includes a drive motor
  • the telescopic transmission assembly 25 includes a first telescopic transmission assembly configured to realize horizontal expansion and contraction of the connecting plate 22 relative to the fixed plate 21, and a second telescopic transmission assembly configured to realize horizontal expansion and contraction of the extension plate 24 relative to the connecting plate 22.
  • the transmission assembly and the third telescopic transmission assembly arranged to realize the horizontal expansion and contraction of the expansion board 23 relative to the extension board 24.
  • the first end of the connecting plate 22, the first end of the telescopic plate 23, the first end of the extension plate 24, and the first end of the fixing plate 21 are the connecting plate 22 and the telescopic plate in FIG. 23.
  • the extension plate 24 and the fixing plate 21 are located at the lower end.
  • the first telescopic transmission assembly includes first pulleys 251 arranged at both ends of the fixed plate 21 in the longitudinal direction and a first timing belt 252 wound on the two first pulleys 251.
  • the central axes of the two first pulleys 251 are located At the same height, one of the two first pulleys 251 is connected to the output shaft of the driving motor, and the second end of the connecting plate 22 is detachably connected to the first timing belt 252 through the first connecting member 7.
  • the driving motor drives one of the first pulleys 251 to rotate
  • the first pulley 251 drives the first timing belt 252 to rotate
  • the connecting plate 22 moves with the first timing belt 252 to realize the horizontal expansion and contraction of the connecting plate 22 relative to the fixed plate 21.
  • the second telescopic transmission assembly includes second pulleys 253 arranged at both ends of the connecting plate 22 and a second synchronous belt 254 arranged on the two second pulleys 253, the centers of the two second pulleys 253 are located at the same height,
  • the second timing belt 254 is connected to the extension plate 24 through a second connecting member.
  • the third telescopic transmission assembly includes third pulleys 255 arranged at both ends of the length direction of the extension plate 24 and a third synchronous belt 256 arranged on the third pulley 255.
  • the centers of the two third pulleys 255 are located at the same height.
  • the telescopic plate 23 is connected to the third timing belt 256 through a third connecting member.
  • Adopting the three synchronous belt transmission structure can realize the horizontal expansion and contraction of the connecting plate 22, the extension plate 24 and the expansion plate 23, the structure is simple, and the cost is low.
  • the telescopic assembly 2 is in the contracted state, that is, the initial state, the first connecting piece 7 is located near the second end of the fixing plate 21, the second connecting piece is located near the second end of the connecting plate 22, and the third connecting piece is located on the extension plate 24.
  • the first connecting member 7 is located near the first end of the fixing plate 21
  • the second connecting member is located near the first end of the connecting plate 22
  • the third connecting member is located near the first end of the extension plate 24. That is, the telescopic stroke of the connecting plate 22, the extension plate 24 and the telescopic plate 23 is smaller than the distance between the pulleys at the two ends of the connected synchronous belt.
  • the telescopic assembly 2 provided by the present application has a simple structure and convenient installation, and can realize the bidirectional expansion and contraction of the telescopic assembly 2, so as to realize synchronous picking of the cargo boxes 40 in the inventory containers on opposite sides of the handling robot. It can be understood that the present application is not limited to the use of the above-mentioned telescopic assembly 2 to achieve three-stage telescopic. In other embodiments, other three-stage synchronous telescopic structures in the related art can also be used to implement the extension plate 24, the connecting plate 22, and the telescopic plate. Synchronous expansion and contraction of 23, or a structure in which the connecting plate 22, the extension plate 23 and the expansion plate 23 can be expanded and contracted in stages to achieve the maximum extension of the expansion plate 23.
  • the total length of the telescopic assembly 2 is greater than the sum of the lengths of the three cargo boxes 40, so that the telescopic plate 23 can pass over the front side of the double-deep cargo position.
  • One cargo space picks up the cargo box 40 in the rear cargo space.
  • two opposite sides of the temporary storage board 1 are provided with telescopic components 2, and the two telescopic components 2 are driven synchronously by the same telescopic driving component 26, and the telescopic driving component 26 drives the two telescopic components respectively through the synchronous transmission component 27.
  • the synchronous transmission assembly 27 includes a fourth pulley 272 sleeved on the output shaft of the drive motor, a transmission shaft 271 sleeved on the first pulley 251 of the two telescopic components 2 at both ends, and sleeved on the transmission shaft.
  • this embodiment is not limited to adopting the above-mentioned structure of the synchronous transmission assembly, and other structures that can realize the synchronous rotation of the two first pulleys 251 can also be adopted, and this embodiment will not be described one by one.
  • the handling robot provided in this embodiment is not only suitable for picking and placing the cargo box 40 in a double-deep storage container, but also suitable for picking and placing the cargo box 40 in a three-deep and four-deep storage container. And for double-deep and four-deep storage containers, when placed in a warehouse, every two adjacent storage containers are arranged at intervals to form a passage for the handling robot to pass between the two storage containers.
  • This embodiment also provides a warehousing logistics system, including the above-mentioned handling robot.
  • the warehousing logistics system provided by this application improves the efficiency of the warehousing logistics system by using the above-mentioned handling robot to pick and place cargo boxes.
  • FIG. 7 is a flow chart of a method for taking a box provided by an embodiment of the application. As shown in FIG. 7, this embodiment provides a method for taking a box. 40 for picking to achieve order picking tasks.
  • the height of the inventory container is basically the same as the height of the handling robot, so that the handling robot can pick up the boxes 40 on each layer of the inventory container.
  • the height of each box taking mechanism 10 is less than or equal to the height of the cargo box 40, so as to avoid that when the two box taking mechanisms 10 pick up the cargo boxes 40 on two adjacent floors respectively, the box taking mechanism 10 pairs adjacent boxes.
  • the box removal operation of the mechanism 10 causes interference.
  • the box retrieval method provided in this embodiment includes step S301 to step S306.
  • step S301 the control system assigns the task of taking boxes to the handling robot.
  • the distribution of the container picking tasks follows the following principles:
  • N target containers 40 are located at different levels of the inventory container, or there are n1 target containers 40 located at the Fn1 level of the inventory container, and n1 ⁇ Fn1-sum (F ⁇ Fn1), and n1 ⁇ Fmax-Fn1 -sum(F>Fn1)+1, where Fmax is the storey height label of the highest level of the inventory container, sum(F ⁇ Fn1) refers to the sum of the number of all target containers 40 whose storey height is less than Fn1, sum(F>Fn1 ) Refers to the sum of the number of all target containers 40 with a floor height greater than Fn1.
  • the boxes 40 picked up by multiple box picking mechanisms 10 can be selected as target boxes 40 corresponding to the same order, or can be target boxes 40 in different orders.
  • the container retrieval task there are at least two target containers 40 located in the same column of the same inventory container, so that multiple container retrieval mechanisms 10 can simultaneously perform container retrieval operations on the target container 40 to improve container retrieval efficient.
  • step S302 the control system plans an optimal container-taking journey path according to the locations of all target containers 40 in the container-taking task.
  • the optimal travel path for taking the box can be selected as the shortest travel path among all feasible paths to improve the efficiency of taking the box.
  • step S303 the control system allocates a box-removing mechanism 10 for each target container 40 to the container according to the layer height ranking of all the target containers 40.
  • each target container 40 is assigned the container picking mechanism 10, if the floor height of the target container 40 is The order of all the target containers 40 is Kh from low to high, and the height order of the picking mechanism 10 set to pick up the target container 40 among all the picking mechanisms 10 is Kq from low to high, then Kh ⁇ Kq , And N-Kn ⁇ M-Kq.
  • the container picking mechanism 10 at the lowest level is set to pick up the target container 40 located on the first level, which is located in the middle level.
  • the box taking mechanism 10 is set to take the target container 40 of the second layer, and the box taking mechanism 10 located on the highest layer is set to take the target box 40 of the third layer.
  • the n1 containers 40 When there are n1 containers 40 on the same floor of the inventory container, the n1 containers 40 have the same floor heights.
  • sorting the floor heights first, based on the layers of the n1 containers 40 The height is sorted by the storey height of the floor where all the containers 40 are located, and n1 container picking mechanisms 10 are allocated to pick up the n1 containers 40, and for the n1 containers 40, n1 container picking mechanisms can be used Any one of the box picking mechanisms 10 in 10 picks up the box 40 therein.
  • A1 container 40 is located on the first floor
  • A2 and A3 containers 40 are located on the third floor
  • A4 containers 40 are located on the fifth floor
  • the B1 box taking mechanism 10 is used to pick up the A1 box 40
  • the B2 and B3 box pickup mechanisms 10 are used to pick up the A2 and A3 boxes 40.
  • the B4 box taking mechanism 10 picks up the A4 box 40
  • one of the B2 and B3 box pickup mechanisms 10 picks up any one of the boxes 40 in A2 and A3, and the other picks up the remaining boxes 40 in A2 and A3.
  • step S304 the handling robot runs to the front of each target container 40 in turn according to the optimal travel path, and picks each target container 40 by using the assigned box picking mechanism 10, where, when all the target containers 40 are When the plurality of target containers 40 are located in the same column of the inventory container, the plurality of container picking mechanisms 10 corresponding to the plurality of target containers 40 perform the picking operation at the same time.
  • the picking operation of the target box 40 by the box picking mechanism 10 includes step S3041 to step S3045.
  • step S3041 the box picking mechanism 10 is lifted to the front of the corresponding target cargo box 40.
  • step S3042 the controller controls the two telescopic plates 23 of the telescopic assembly 2 to extend until they are located on both sides of the target cargo box 40.
  • step S3043 the controller controls the shift lever driving member 32 of the shift lever assembly 3 located at the front end of the telescopic plate 23 to move, so that the shift lever 31 rotates to the working position.
  • step S3044 the controller controls the retractable assembly 2 to retract.
  • the lever 31 contacts the target container 40 and drives the target container 40 to move from the storage position of the inventory container to the temporary storage position of the temporary storage board 1. .
  • step S3045 the controller controls the shift lever driving member 32 of the shift lever assembly 3 located at the front end of the telescopic plate 23 to move, so that the shift lever 31 rotates to the idle position.
  • step S305 after the handling robot has picked up all the target boxes 40, it moves to the picking point.
  • step S306 the box picking mechanism 10 is sequentially raised and lowered to a height position suitable for picking by the picking staff.
  • the handling robot in the first embodiment is used to carry out the box taking operation, when multiple boxes 40 are located in the same column of the same inventory container, the multiple box taking mechanisms 10 located on the handling robot The box-taking operation can be carried out at the same time, which makes the box-taking operation convenient and quick, improves the efficiency of the box-taking, thereby improving the efficiency of goods picking and logistics.
  • Fig. 8 is a flow chart of a method for taking a box provided by an embodiment of the application. As shown in Fig. 8, this embodiment provides a method for taking a box based on a handling robot, which uses the handling robot provided in the second embodiment to load a storage container. The target container 40 is picked up, and the inventory container has an inner container and an outer container arranged side by side in the depth direction.
  • the box retrieval method provided in this embodiment includes steps S401 to S410.
  • step S401 the control system assigns the task of taking boxes to the handling robot.
  • step S402 it is judged whether there is an internal container 40 in the container retrieval task. If there is an internal container 40 in the container retrieval task, step S403 is executed. If there is no internal container 40 in the container retrieval task, execute Step S406.
  • step S403 it is determined whether the number n2 of the target container 40 on the same floor as the internal container 40 satisfies n2 ⁇ Fn2-sum(F ⁇ Fn2)-1 and n2 ⁇ Fmax-Fn2-sum(F>Fn2)+1 , When n2 satisfies n2 ⁇ Fn2-sum(F ⁇ Fn2)-1 and n2 ⁇ Fmax-Fn2-sum(F>Fn2)+1, execute step S404, and if n2 does not satisfy n2 ⁇ Fn2-sum( When F ⁇ Fn2)-1 and n2 do not satisfy at least one of n2 ⁇ Fmax-Fn2-sum(F>Fn2)+1, step S405 is executed.
  • Fn2 refers to the floor height label of the layer where the internal cargo box is located
  • Fmax is the floor height label of the highest floor of the inventory container
  • sum (F ⁇ Fn2) refers to the floor height label of the target cargo box whose floor height is less than Fn2.
  • the sum of the quantity, sum (F>Fn2) refers to the sum of the quantity of all the target containers whose floor height label is greater than the Fn2 floor.
  • step S404 the outer container 40 corresponding to the inner container 40 is used as the additional target container 40 of the container retrieval task.
  • the above step S404 is to add the outer container 40 outside the inner container 40 as the additional target container 40 to the task of taking the container.
  • step S405 the outer container 40 corresponding to the inner container 40 is assigned as a new container removal task to other handling robots, and the outer container 40 is first executed.
  • step S405 is that the control system deploys other transport robots to transport the outer container 40.
  • step S406 the control system plans an optimal container-taking journey path according to the locations of all target containers 40 in the container-taking task.
  • step S407 the control system allocates a box-removing mechanism 10 for each target container 40 according to the height of the floor where all the target containers 40 are located.
  • the target container 40 includes the target container 40 allocated in the initial task allocation of the order management center and the additional target container 40 formed based on the internal target container 40.
  • step S303 of the third embodiment For the operation of allocating the container taking mechanism 10 to the target container 40, refer to step S303 of the third embodiment
  • step S408 the handling robot runs to the front of each target container 40 in turn according to the optimal container-taking stroke path and picks up each target container 40 by using the assigned container-taking mechanism 10, where the additional target container After the internal target cargo box 40 corresponding to the box 40 is picked up, the additional target cargo box 40 is returned to the internal cargo space corresponding to the additional target cargo box 40.
  • the outer cargo box 40 corresponding to the internal target cargo box 40 (ie, the additional target cargo box 40) is returned to the internal cargo location where the internal target cargo box 40 was originally located.
  • the target container 40 can be directly returned to the outer position after the target container 40 is selected, avoiding the return of the container to the outer position.
  • the inner cargo position causes the operation of taking the container 40 on the outer cargo position, and improves the efficiency of returning the container.
  • the return operation of the additional target container is performed by the handling robot, and after the current inner target container is picked up, another operation is performed.
  • One target container is taken before the operation; when the internal target container and the additional target container are taken by different handling robots, the return operation of the additional target container and the removal operation of another target container Can be synchronized.
  • step S409 after the handling robot has picked up all the target boxes 40, it moves to the picking point.
  • step S410 the box taking mechanism 10 is raised and lowered to a height position suitable for picking by the picking staff.
  • the handling robot in the second embodiment is used to carry out the box taking operation, when multiple boxes 40 are located in the same column of the same inventory container, the multiple box taking mechanisms 10 located on the handling robot
  • the box-taking operation can be carried out at the same time, which makes the box-taking operation convenient and fast, improves the efficiency of the box-taking, thereby improving the efficiency of goods picking and logistics; and the box-taking method provided in this embodiment can be applied to double-deep, three-deep or four-deep
  • the internal cargo box taking operation of the storage container improves the efficiency of taking the box and improves the utilization rate of the warehouse.
  • FIG. 9 is a flowchart of a method for loading a container provided by an embodiment of the present application. As shown in FIG. 9, this embodiment provides a method for loading a container based on a handling robot for loading a container 40 to In the target position of the inventory container, the efficiency of loading the container 40 by the handling robot or returning the container after picking is improved.
  • the loading method provided in this embodiment is applicable to the handling robot in the first embodiment or the second embodiment.
  • the loading of the container can be a return operation of picking up the container from the inventory container due to the picking operation and returning the picked container to the storage container of the inventory container. It can also be the return operation of the new
  • the loading operation of replenishing the container into the inventory container may also be the operation of placing the container in the inventory container due to other reasons, which is not limited in this embodiment.
  • the loading method provided in this embodiment includes step S501 to step S503.
  • step S501 the control system assigns a cargo loading task to the handling robot.
  • the allocation principle of loading tasks corresponds to the principle of allocation of cargo positions, so I won’t repeat them here.
  • At least two target cargo spaces are located on the same column of the same storage container, so that at least two container picking mechanisms can load cargo containers at the same time. Operation to improve the efficiency of loading containers.
  • the box picking mechanism 10 can expand and contract in both directions, and when the handling robot picks up the target box, if there are multiple target boxes located in the inventory containers on opposite sides of the handling robot, they are located in the height direction. If the same column is arranged in a staggered position, the box taking mechanism 10 corresponding to a plurality of the target cargo boxes performs the box taking operation at the same time.
  • step S502 the control system plans the optimal loading itinerary path according to the positions of all the target containers 40 in the loading task.
  • step S503 the handling robot runs to the front of the target cargo position corresponding to each target container 40 according to the optimal loading travel path, and places each target container 40 in the corresponding target cargo position, and when the cargo is loaded
  • the box loading task when the target positions corresponding to the multiple target boxes 40 of all the target boxes 40 are located in the same column of the same inventory container, the multiple target boxes 40 are placed in the multiple target boxes 40 at the same time.
  • the telescopic mechanism 10 can be extended and contracted in both directions, and when the handling robot is loading the container, if there are multiple target positions in the inventory container located on opposite sides of the handling robot If they are located in the same column in the height direction and are arranged in a staggered position, the container picking mechanism 10 corresponding to a plurality of the target cargo positions simultaneously executes the cargo loading operation.
  • the operation of the box taking mechanism 10 to place the cargo box 40 in the target cargo position includes step S5031 to step S5034.
  • step S5031 the box taking mechanism 10 is lifted to the front of the target cargo position.
  • step S5032 the controller controls the shift lever driving member 32 of the shift lever assembly 3 on the side far away from the target cargo position to move, so that the shift lever 31 rotates to the working position.
  • step S5032 the controller controls the telescopic assembly 2 to extend until the target cargo box 40 falls into the target cargo position.
  • step S5033 the controller controls the corresponding lever 31 to rotate from the working position to the idle position.
  • step S5034 the controller controls the telescopic assembly 2 to retract to the initial state.
  • step S5033 and step S5034 can be exchanged or can be performed synchronously.
  • the handling robot in Embodiment 1 or Embodiment 2 is used to carry out cargo loading operations, when the target cargo positions corresponding to multiple containers 40 are located in the same column of the same inventory container At the same time, multiple box picking mechanisms 10 located on the handling robot can perform cargo loading operations at the same time, making the loading operations convenient and quick, and improving the loading efficiency of the cargo boxes, thereby improving loading, product picking and logistics efficiency.

Abstract

本申请属于仓储物流技术领域,公开了一种搬运机器人、取箱方法、货箱上货方法及仓储物流系统。其中,搬运机器人包括:移动底盘(30);立架(20),所述立架(20)竖直设置在所述移动底盘(30)上;至少两个取箱机构(10),所述至少两个取箱机构(10)沿所述立架(20)的高度方向设置,每个所述取箱机构(10)均能够相对所述移动底盘(30)水平伸缩及竖直升降,以拾取库存容器上的货箱(40)或将所述货箱(40)放置至所述库存容器上。取箱方法应用上述搬运机器人进行取箱操作,货箱上货方法基于上述搬运机器人进行货箱上货操作,仓储物流系统包括上述的仓储物流系统。

Description

一种搬运机器人、取箱方法、货箱上货方法及仓储物流系统
本申请要求在2020年5月13日提交中国专利局、申请号为202010401241.2的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及仓储物流领域,例如一种搬运机器人、取箱方法、货箱上货方法及仓储物流系统。
背景技术
电子商务的快速发展,既给仓储物流行业带来了前所未有的发展机遇,也给仓储物流服务提出了严峻的挑战,如何高效率、低成本、灵活准确地进行包裹拣选一直是仓储物流行业所面临的难题。随着机器人技术的不断发展,出现了采用机器人将存放有待取放货物的目标库存容器搬运至人工工位,再由人工工位将库存容器上的产品取出放入订单箱中的分拣方式。但传统的“库存容器到人”的分拣方式,需要机器人将整个库存容器搬运至拣货区域,增加了机器人搬运的负载,造成了极大的资源浪费。
图1为相关技术提供了一种搬运货箱的机器人,如图1所示,其包括驱动单元100、货箱存储单元200和货箱传输单元300,其中驱动单元100承载货箱存储单元200和货箱运输单元300共同运动,货箱存储单元200包括至少一个货箱存储空间,货箱传输单元300被配置为在货箱存储空间和库存容器之间传输货箱40。其中,货箱传输单元300包括设置为放置货箱的框架310、设置为带动货箱40升降的升降装置320、设置为带动货箱40伸缩的伸缩叉齿330以及设置为带动货箱40旋转的旋转装置340。
但由于相关技术中货箱传输单元中,需要采用升降装置320、伸缩叉齿330配合旋转装置340才能将货箱40顺利地从库存容器上输送至货箱存储单元200中,货箱传输单元300结构复杂;且在货箱取放过程中,仅能一次对一个货箱40进行 取放,货箱40取放效率较低,从到导致拣选和物流效率难以得到有效提高。
发明内容
本申请提供一种搬运机器人,提高搬运机器人对货箱的取放效率,提高拣选和物流效率。
本申请还提供一种取箱方法,提高搬运机器人对货箱的取箱效率,从而提高拣选和物流效率。
本申请还提供一种货箱上货方法,提高搬运机器人对货箱上货效率,从而提高拣选、上货和物流效率。
本申请还提供一种仓储物流系统,提高仓储物流系统的效率。
本申请采用下述技术方案:
第一方面,一种搬运机器人,包括:
移动底盘;
立架,所述立架竖直设置在所述移动底盘上;
至少两个取箱机构,所述至少两个取箱机构沿所述立架的高度方向设置,每个所述取箱机构均能够相对所述移动底盘水平伸缩及竖直升降,以拾取库存容器上的货箱或将所述货箱放置至所述库存容器上。
第二方面,一种取箱方法,采用搬运机器人对库存容器上的货箱进行拾取,所述搬运机器人包括移动底盘、竖直设置在所述移动底盘上的立架和设置在所述立架上的至少两个取箱机构,所述至少两个取箱机构沿所述立架的高度方向设置,每个所述取箱机构均能够相对所述移动底盘水平伸缩及竖直升降,所述取箱方法包括:
控制系统为所述搬运机器人分配取箱任务;
所述控制系统根据所述取箱任务中所有目标货箱所在位置,规划取箱行程路径;
所述控制系统根据所有所述目标货箱所在层的层高排序为每个所述目标货 箱分配用于取箱的所述取箱机构;
所述搬运机器人根据所述取箱行程路径依次运行到每个所述目标货箱的前方并对所述每个目标货箱采用分配的所述取箱机构进行拾取,且响应于确定所有目标货箱中的多个所述目标货箱位于所述库存容器的同一纵列,对所述多个所述目标货箱对应的所述取箱机构同时进行拾取操作。
第三方面,一种货箱上货方法,采用搬运机器人将货箱上货至库存容器上的目标货位中,所述搬运机器人包括移动底盘、竖直设置在所述移动底盘上的立架和设置在所述立架上的至少两个取箱机构,所述至少两个取箱机构沿所述立架的高度方向设置,每个所述取箱机构均能够相对所述移动底盘水平伸缩及竖直升降,所述货箱上货方法包括:
控制系统为所述搬运机器人分配货箱上货任务;
所述控制系统根据所述货箱上货任务中所有目标货箱所对应目标货位位置,规划上货行程路径;
所述搬运机器人根据上货行程路径依次运行到每个目标货箱所对应的目标货位前方并将所述每个目标货箱放置至对应的目标货位中,且响应于确定所述货箱上货任务中所有目标货箱中的多个目标货箱所对应的所述目标货位位于同一库存容器的同一纵列,将所述多个目标货箱同时放置至所述多个目标货箱一一对应的多个目标货位中。
第四方面,一种仓储物流系统,包括如上所述的搬运机器人。
附图说明
图1是相关技术提供的搬运货箱的机器人的结构示意图;
图2是本申请实施例一提供的搬运机器人的结构示意图;
图3是本申请实施例一提供的取箱机构的结构示意图;
图4是图3中结构去掉保护壳体之后的结构示意图;
图5是本申请实施例二提供的取箱机构的结构示意图;
图6是本申请实施例二提供的取箱机构去掉暂存板之后的结构示意图;
图7是本申请实施例三提供的取箱方法的流程图;
图8是本申请实施例四提供的取箱方法的流程图;
图9是本申请实施例五提供的货箱上货方法的流程图。
其中,相关技术对应的附图1中附图标记为:
100-驱动单元;200-货箱存储单元;220-托板;300-货箱传输单元;310-框架;320-升降装置;330-伸缩叉齿;340-旋转装置;40-货箱;
具体实施例方式对应的附图2-附图6中附图标记为:
10-取箱机构;20-立架;201-支撑柱;202-加强横梁;30-移动底盘;40-货箱;
1-暂存板;11-暂存板本体;12-导向部;
2-伸缩组件;21-固定板;22-连接板;23-伸缩板;24-延伸板;25-伸缩传动组件;251-第一带轮;252-第一同步带;253-第二带轮;254-第二同步带;255-第三带轮;256-第三同步带;257-传动齿条;26-伸缩驱动组件;27-同步传动组件;271-传动轴;272-第四带轮;273-第五带轮;274-第四同步带;28-伸缩导向组件;281-第一导槽;282-第二导槽;283-第一导轨;284-第二导轨;
3-拨杆组件;31-拨杆;32-拨杆驱动件;
4-挡板;41-挡板本体;42-导向板部;
5-第一保护壳;6-第二保护壳;7-第一连接件。
具体实施方式
在本申请的描述中,除非另有明确的规定和限定,术语“相连”、“连接”、“固定”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本实施例的描述中,术语“上”、“下”、“右”、等方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述和简化操作,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅仅用于在描述上加以区分,并没有特殊的含义。
实施例一
图2为本申请实施例提供的搬运机器人的结构示意图,如图2所示,本实施例提供了一种搬运机器人,设置为实现对货箱40的搬运和取放,其主要应用于仓储物流行业,对存放有订单货物或快递的货箱40进行取放和运输,以实现基于订单的取货或上货操作。其也可以应用到需要对货箱40或货物进行搬运的其他场所,本实施例中对搬运机器人的应用仅为示例性,本实施例不对此进行限制。
如图2所示,本实施例提供的搬运机器人包括移动底盘30、立架20、取箱机构10、检测组件和控制器。其中,移动底盘30设置为实现搬运机器人在地面上的移动,以实现搬运机器人对货箱40的运输;立架20设置在移动底盘30上,设置为固定和支撑取箱机构10;取箱机构10沿立架20的高度方向至少设置有两个,每个取箱机构10均能够相对移动底盘30水平伸缩及竖直升降,以拾取库存容器上的货箱40或将所述货箱40放置至库存容器上;检测组件设置为检测搬运机器人的工作状态及外界环境状态;控制器设置为获取仓储物流的订单 信息,并基于订单信息和检测组件的检测结果,对搬运机器人的运行进行智能化调控。
本实施例提供的搬运机器人,通过在立架20的高度方向上设置至少两个取箱机构10,能够使不同高度上的取箱机构10对库存容器上不同层上的货箱40进行同时拾取,或能够将不同高度上的取箱机构10携带的货箱40放置在库存容器不同层上,提高搬运机器人对货箱40的取放效率,从而提高搬运机器人对货箱40的拣选和搬运效率,进而提高货物拣选和仓储物流效率。示例性的,移动底盘30包括底盘本体和设置在底盘本体底部的驱动轮机构,驱动轮机构设置为实现移动底盘30的运动。驱动轮机构可以采用差速驱动的形式,驱动轮机构包括驱动轮电机、两个设置在底盘本体底部的驱动轮以及连接驱动轮电机和两个驱动轮的连接组件等。两个驱动轮分别设置在底盘本体的两侧,驱动轮电机设置在底盘本体的内部,且其转动输出轴与驱动轮连接并带动驱动轮运动,实现移动底盘30的直线或转弯运动。
在本实施例中,驱动轮机构设置在移动底盘30的中部两侧,有利于提高移动底盘30的运动平稳性。底盘本体上还可以设置多个万向从动轮,如可以在底盘本体的前部和后部分别设置一对万向从动轮,且使两对万向从动轮相对一对驱动轮对称设置,有利于提高移动底盘30的平稳运动,尤其是移动底盘30的转弯运动平稳性,防止移动底盘30在运动过程中向一侧倾倒。
驱动轮机构还可以采用其他能够带动底盘本体运动的机构,本实施例不对驱动轮机构的形式进行限制,也不对移动底盘30的结构进行限制,只要能够实现带动立架20移动的结构均可以,如相关技术中的机器人结构等。
立架20包括竖直且相对间隔设置的两个支撑柱201,取箱机构10设置在支撑柱201之间并与两个支撑柱201通过升降机构连接,以使取箱机构10能够相对立架201竖直升降,两个支撑柱201之间形成有供货箱40和取箱机构10竖直升降的活动空间。
在本实施例中,立架20上不设置暂存隔板,取箱机构10上设置有设置为货箱40暂存的暂存位,货箱40被取箱机构10拾取后保持在取箱机构10上,使取箱机构10能够带动货箱40竖直升降,以使货箱40在拣选过程中能够下降至适合拣选工作人员进行拣选的高度,提高工作效率,使搬运机器人能够更好地适用于具有较高层数的库存容器上货箱40取放,提高货箱40拣选效率和搬运机器人的适用性,且能够为拣选工作人员的拣选操作提供较大便利;同时,由于每个取箱机构10均能竖直升降,能够增大货物拣选时相邻两个货箱40之间的距离,增大拣选空间,方便操作;再者,由于立架20上不设置暂存隔板,能够避免取箱机构10运行过程中与暂存隔板之间的结构干涉,提高取箱机构10的设置便利性,简化搬运机器人的整体结构,简化取箱机构10的控制复杂性。
在一个实施例中,每个支撑柱201均包括竖直设置的支撑立板和竖直设置且位于支撑立板相对两侧的支撑立柱,两个支撑柱201的支撑立板平行且间隔设置,两个支撑立柱位于支撑立板的内侧,且两个支撑立柱和支撑立板形成开口朝向另一支撑柱201的U型结构。该种设置,能够对设置在U型结构的U型槽中的结构进行保护。
示例性的,支撑立板呈板状状态,支撑立柱采用方形钢加工形成,提高立架20的整体结构强度,且方便取箱机构10与支撑立柱连接。在一个实施例中,为提高立架20的结构强度,相邻两个支撑立柱之间连接有加强筋条。可选地,两个支撑柱201的顶端设置有加强横梁202,避免支撑柱201高度较高时引起的末端晃动等情况。
本实施例提供的立架20整体结构简单,加工方便。在其他实施例中,取箱机构10的每一侧均可沿取箱机构10的伸缩方向间隔设置至少两个支撑柱201,本实施例对立架20的结构不做过多限制。
示例性的,取箱机构10能够双向伸缩,以分别拾取所述搬运机器人相对两侧库存容器中的货箱40。
图3是本申请实施例一提供的取箱机构10的结构示意图,图4是图3中结构去掉保护壳体之后的结构示意图,如图3和4所示,每个取箱机构10均包括暂存板1、伸缩组件2及拨杆组件3,暂存板1上形成有暂存位,暂存板1设置为对取箱机构10拾取的货箱40进行暂存;拨杆组件3设置为拨动货箱40,以使货箱40在暂存板1和库存容器之间移动;伸缩组件2与暂存板1及拨杆组件3连接,设置为带动拨杆组件3相对暂存板1水平伸缩。
通过设置暂存板1,能够使货箱40缓存在暂存板1上,避免拨杆组件3或伸缩组件2在搬运机器人搬运货箱40过程中始终对货箱40进行支承或携带,提高取箱机构10的使用寿命,且提高货箱40在取箱机构10上的设置稳定性。
在其他实施例中,也可以不设置暂存板1和拨杆组件3,而是通过在伸缩组件2上设置一对夹抱臂的方式对货箱40进行夹抱拾取,且在搬运机器人对货箱40进行搬运过程中,夹抱臂始终保持对货箱40的夹抱支撑。关于夹抱臂对货箱40的夹取过程及夹抱臂的结构可参考专利CN209536130U,此处不再进行赘述。
暂存板1的相对两侧分别设置一个伸缩组件2,在本实施例中,伸缩组件2为二级同步伸缩结构,有利于在增加伸缩组件2伸出的最大长度的同时,减小伸缩组件2缩回时的尺寸,从而减小搬运机器人的整体尺寸,提高拨杆组件3的伸出或缩回效率。示例性的,伸缩组件2包括平行设置的固定板21、连接板22和伸缩板23以及驱动连接板22和伸缩板23同步伸缩的伸缩传动组件25和伸缩驱动组件26,其中,固定板21与暂存板1垂直连接。
伸缩传动组件25包括设置为实现连接板22相对固定板21水平伸缩的第一伸缩传动组件及设置为实现伸缩板23相对连接板22水平伸缩的第二伸缩传动组件。
如图4所示,第一伸缩传动组件包括设置在固定板21两端的两个第一带轮251及绕设在两个第一带轮251之间的第一同步带252。两个第一带轮251的中心轴位于同一高度,且其中一个第一带轮251与伸缩驱动组件26中的驱动电机 输出轴连接,由驱动电机的输出轴转动带动第一带轮251转动,从而带动第一同步带252转动。
连接板22位于第一同步带252的下方,且连接板22的上侧边沿其长度方向设置有传动齿条257,第一同步带252为双面齿同步带,双面齿同步带的外齿与传动齿条257啮合,使第一同步带252的带动连接板22水平伸缩。
第二伸缩传动组件包括第二同步带254和第二带轮253,第二带轮253枢接于连接板22的第二端处并贯通连接板22的相对两侧,第二带轮253的转动轴竖直设置,第二同步带254的第一端固接在伸缩板23的第二端,且第二同步带254的第二端绕过第二带轮253并穿过连接板22而固接于固定板21的第一端附近。当伸缩组件2位于收缩状态时,连接板22的第一端、伸缩板23的第一端及固定板21的第一端均相对设置,以图4所示方向为例,连接板22的第一端、伸缩板23的第一端及固定板21的第一端为图4中连接板22、伸缩板23及固定板21位于下方的一端。
当连接板22相对固定板21缩回时,由于第二同步带254绕过设置在连接板22上的第二带轮253,且第二同步带254长度一定,第二带轮253随连接板22平移运动的同时,使第二带轮253相对第二同步带254转动,带动第二同步带254位于连接板22朝向固定板21一面的长度增加,位于连接板22朝向伸缩板23一面的长度减小,从而拉动伸缩板23相对连接板22缩回。同理,当连接板22相对固定板21伸出时,第二同步带254和第二带轮253带动伸缩板23相对连接板22伸出。从而,当伸缩驱动组件26驱动第一伸缩传动组件伸缩运动时,同步带动伸缩板23相对连接板22的伸缩,即实现伸缩调节组件的两级同步伸缩调节。
示例性的,伸缩传动组件还包括第三伸缩传动组件,第三伸缩传动组件包括第三同步带256和第三带轮255,第三带轮255枢接于连接板22的第一端并贯通连接板22的相对两侧,第三带轮255的转动轴竖直设置。第三同步带256 的第一端固定于固定板21的第一端,第三同步带256的第二端绕过第三带轮255并穿过连接板22而固定接于伸缩板23的第二端。第三伸缩传动组件的工作原理可参考第二伸缩传动组件的动作原理,此处不再进行赘述。
在本实施例中,为了提高伸缩组件2的伸缩运动平稳性,伸缩组件2还包括伸缩导向组件28,伸缩导向组件28包括分别设置在固定板21内侧的第一导槽281、设置在连接板22内侧的第二导槽282、设置在连接板22外侧的第一导轨283和设置在伸缩板23外侧的第二导轨284,第一导轨283与第一导槽281滑动连接,第二导轨284和第二导槽282滑动连接。但本实施例对伸缩导向组件28的结构并不限于此,只要能够实现连接板22相对固定板21的伸缩导向及伸缩板23相对连接板22的伸缩导向的结构均可,本实施例对此不做详述。
在本实施例中,为提高暂存板1相对两侧的两个伸缩组件2的伸缩同步性,两个伸缩组件2共用一个伸缩驱动组件26,且两个伸缩组件2中的两个对应的第一带轮251之间通过同步传动组件27连接。示例性的,同步传动组件27包括与第一带轮251同轴连接的第四带轮272,跨设于两个伸缩组件2之间的传动轴271、套设在传动轴271两端的第五带轮273,绕设在对应侧的第四带轮272和第五带轮273上的第四同步带274。在其他实施例中,两个第一带轮251之间的同步转动可以采用其他的传动结构实现,如链轮链条结构等,此处不再进行详述。
本实施例提供的伸缩组件2,通过控制驱动电机的正反转,可以实现伸缩板23的双向伸缩,以对位于搬运机器人相对两侧的库存容器上的货箱40均能进行取放,且采用同步带的传动形式,结构简单,设置方便,成本较低。但可以理解的是,本实施例提供的伸缩组件2的结构仅为示例性结构,伸缩组件2并不限于以上结构,伸缩组件2还可以采用相关技术中的能够实现二级同步伸缩的结构,如第一伸缩传动组件可以为齿轮齿条传动、链条链轮传动等,或伸缩组件2还可以采用相关技术中的能够实现二级分步伸缩的结构,本申请对此不做一一详述。
为对取箱机构10进行保护,固定板21的上侧设置有第一保护壳5,第一保护壳5与固定板21之间形成有第一容置空间,第一伸缩传动组件位于第一容置空间中,第一容置空间设置为对第一伸缩传动组件进行保护。固定板21的两端外侧设置有第二保护壳6,第二保护壳6与固定板21外侧面之间形成有第二容置空间,伸缩驱动组件26位于固定板21外侧面第二端的一个第二容置空间中,第四同步带274、第四带轮272及第五带轮273位于固定板21外侧面第一端的第二容置空间中。
暂存板1和位于其相对两侧的固定板21合围形成设置为容纳货箱40的暂存位,为避免货箱40进入暂存位的过程中与伸缩组件2相干涉,可选地,暂存板1的相对两侧分别设置有伸缩组件2,暂存板1对应相对两侧的伸缩组件2均设置有挡板4,挡板4位于伸缩组件2的内侧且沿伸缩组件2的伸缩方向延伸。两个挡板4之间形成暂存位,两个挡板4之间的间距略大于货箱40的宽度,以使货箱40可以容纳于两个挡板4之间,同时挡板4能够避免货箱40与伸缩组件2相碰撞。
示例性的,挡板4包括沿伸缩组件2的伸缩方向延伸的挡板主体41和设置在挡板主体41两端(端部)的导向板部42,导向板部42的第一端与挡板主体41连接,导向板部42的第二端沿远离挡板主体41的方向向靠近固定板21的方向倾斜延伸(即向靠近对应侧的所述伸缩组件2的方向倾斜延伸),以使位于暂存板1同一端的两个挡板主体41之间呈向外扩口的结构,为货箱40进入暂存位进行导向。
示例性的,所述暂存板(1)包括水平设置的暂存板本体(11)以及设置在暂存板1的两端进口处(进口端)的导向部12,导向部12的第一端与暂存板主体11连接,导向部12的第二端沿远离暂存板1主体的方向向下倾斜延伸,以为货箱40移载到暂存板1上进行导向。
拨杆组件3设置在伸缩板23的端部,其包括拨杆31和拨杆驱动件32,拨 杆驱动件32的固定端与伸缩板23固定,拨杆驱动件32的驱动端与拨杆31连接,以带动拨杆31在能够拨动货箱40的工作位置和不能够拨动货箱40的闲置位置间切换。可选地,拨杆驱动件32为驱动电机,驱动电机的输出轴与伸缩板23的长度方向一致,且驱动电机的输出轴与拨杆31的一端连接,以带动拨杆31在竖直平面内转动。
示例性的,当拨杆31处于工作位置时,拨杆31一端伸入两个伸缩板23之间,且拨杆31与伸缩板23垂直,当拨杆31处于闲置位置时,拨杆31竖直设置,以避免拨杆31未工作时与其他结构发生碰撞。但本申请并不限于此,拨杆31的工作位置和闲置位置可以根据需求进行设定。且拨杆31不仅可以是在在竖直平面内转动,也可以是在水平面内转动以实现工作位置和闲置位置间的切换。
在本实施例中,拨杆驱动件32为舵机,能够通过舵机的反馈机制和角度设置实现对拨杆31转动角度的精确控制,且体积较小,有利于拨杆驱动件32的安装和设置。在其他实施例中,驱动电机还可以为伺服电机等能够控制旋转角度的其他驱动形式。
伸缩板23沿其长度方向的两端均设置有拨杆组件3,当货箱40位于暂存板1上时,同一伸缩板23上的两个拨杆组件3分别位于货箱40的相对两侧,以更好地实现货箱40在暂存位和库存容器之间的移动,同时,能够实现对搬运机器人相对两侧的库存容器上的货箱40的搬运。
如以图3中所示方位为例,将位于左侧的拨杆组件3称为第一拨杆组件,将位于右侧的拨杆组件3称为第二拨杆组件,存在以下几种货箱40的取放情况:
当需要对搬运机器人左侧的货箱40进行拾取时,伸缩组件2控制伸缩板23向左伸出至两个伸缩板23位于货箱40的相对两侧,第一拨杆组件的拨杆驱动件32控制拨杆31从闲置位置转动至工作位置,伸缩组件2带动拨杆31向右缩回,同时,拨杆31与货箱40一侧面接触并带动货箱40移动至暂存板1上,当伸缩板23缩回至初始位置时,第一拨杆组件的拨杆驱动件32控制拨杆31从工 作位置回复至闲置位置。
当需要将货箱40从暂存板1上转移至搬运机器人左侧的库存容器上时,第二拨杆组件的拨杆驱动件32控制拨杆31从闲置位置转动至工作位置,伸缩组件2控制伸缩板23伸出,使第二拨杆组件的拨杆31带动货箱40移动至库存容器上;当伸缩板23具有最大伸出长度时,第二拨杆组件的拨杆驱动件32控制拨杆31从工作位置转动至闲置位置,伸缩组件2控制伸缩板23缩回至初始位置。
当需要对搬运机器人右侧的货箱40进行拾取时,采用第二拨杆组件将库存容器上的货箱40拨动至暂存板1上;当需要将暂存板1上的货箱40移载到搬运机器人右侧的库存容器时,采用第一拨杆组件拨动暂存板1上的货箱40至库存容器上,此处不再一一赘述。
在本实施例中,每个拨杆31均对应设置有拨杆驱动件32,以实现每个拨杆驱动件32对拨杆31的单独控制,在其他实施例中,也可以是位于同一伸缩板23两端的拨杆31采用同一拨杆驱动件32驱动。且在本实施例中,每个伸缩板23的一端均设置有一个拨杆31,在其他实施例中,伸缩板23的端部也可以沿其高度方向间隔设置至少两个拨杆31。
为实现取箱机构10在立架20上的竖直升降,每个取箱机构10对应设置一个升降机构。在本申请中,升降机构可以但不限于齿轮齿条传动、链轮链条传动、同步带传动、丝杠螺母传动、连杆驱动及摩擦滚轮传动等,上述传动形式均为相关技术中较为常规升降传动形式,本申请对升降组件的传动形式和结构不做限制,参考相关技术中任意能够实现拨杆组件3及暂存板1的升降运动的升降组件的结构即可。
在本实施例中,暂存板1的相对两侧分别设置有一个升降机构,以提高暂存板1的升降稳定性。同一取箱机构10的两个升降机构可以采用同一升降驱动单元同步驱动,也可以采用两个升降驱动单元分别驱动,本实施例对此不做限 制。
在本实施例中,搬运机器人还设置有控制系统,控制系统设置为控制搬运机器人各个动作的运行。控制系统包括控制器、订单管理模块、导航模块、信息传输模块、信息处理模块、识别模块、显示模块、报警模块及电源模块等。驱动轮机构、升降驱动单元、伸缩驱动组件26、拨杆驱动件32、检测组件及控制系统中的各类模块均与控制器连接。
导航模块设置为实现移动底盘30的自主导航功能,使搬运机器人能够根据货箱40位置进行最优路径规划并依据最优规划路径自动导航至货箱40所在库存容器前方。移动底盘30的导航方式可以为二维码、条形码以及雷达同步定位与地图绘制(Simultaneous Localization And Mapping,SLAM)导航,也可以是通过传统的电或磁引导方式引导移动底盘30运行至目标位置。
信息传输模块包括设置为实现搬运机器人与外部通讯的无线通讯模块以及设置为实现搬运机器人内部通讯的有线通讯模块。无线通讯模块主要设置为与仓储物流系统中的订单管理中心进行无线通讯以接收订单信息,以实现订单管理中心对搬运机器人的调度。有线通讯模块主要设置为控制器与移动底盘30、升降驱动单元、伸缩组件2及拨杆组件3之间的内部通讯,以控制移动底盘30移动至特定位置、拨杆组件3升高或降低至特定位置、使拨杆组件3伸出或缩回,或使拨杆旋转至特定角度,从而实现取箱机构10对货箱40的准确获取和放置。
订单管理模块设置为接收订单管理中心派送至搬运机器人的信息,并根据搬运机器人的搬运动作对已完成订单和未完成订单进行及时更新,方便系统对订单完成情况进行实时监控。识别模块设置为识别外部信息,并转化为控制器能够处理的信息形式,如识别贴覆在地面上的条形码信息用于实现移动底盘30的路径导航,识别贴覆在库存容器的标签码信息以获取库存容器上货箱40的放置情况,或识别货箱40上的标签码信息,获取货箱40中货物的信息,其中标 签码信息可以为二维码、条形码或射频识别(Radio Frequency Identification,RFID)射频码等。电源模块设置为对移动底盘30进行电力控制,其包括设置在移动底盘30上的充电电池、充电端口和电源通断线路,电源模块可以为有线充电模块,也可以为无线充电模块。显示模块设置为显示搬运机器人的运行状态,如通过设置状态指示灯显示搬运机器人的电力状况,通过设置显示屏显示订单处理状况等。报警模块设置为对搬运机器人的异常运行状态进行报警,以方便工作人员及时发现故障,报警模块可以包括蜂鸣器、语音播报器和发光二极管(Light Emitting Diode,LED)显示等中的至少一个。
检测组件包括设置为拍摄外部环境信息的环境监测模块和设置为检测障碍物的避障传感器,环境检测模块和避障传感器均与控制器连接,环境检测模块和避障传感器设置为辅助移动底盘30进行导航和避障,实现搬运机器人的顺利行走。
检测组件还包括设置在暂存板1进口端中部,设置为检测识别库存容器上的标签信息的第一检测传感器;设置在暂存板1两侧,设置为识别货箱40上的标签信息的第二检测传感器;设置在伸缩板23上,设置为检测货箱40所在位置是否存在货箱40的第三检测传感器。其中,第一检测传感器和第二检测传感器可以为RFID标签读卡器或二维码读卡器,第三检测传感器可以为对射式光电传感器。第一检测传感器、第二检测传感器和第三检测传感器为本领域的常规设置,本实施例不再进行赘述。
实施例二
本实施例提供了一种搬运机器人,与实施例一相比,本实施例提供的搬运机器人同样包括移动底盘30、设置在移动底盘30上的立架20、沿立架20的高度方向至少设置两个的取箱机构10及带动取箱机构10相对立架20竖直升降的升降机构,每个取箱机构10均包括伸缩组件2、暂存板1及拨杆组件3。不同之处在于,本实施例提供的伸缩组件2的结构与实施例一不同,本实施例仅对 伸缩组件2的结构进行详述,不再对与实施例一相同的结构进行赘述。
图5是本申请实施例提供的取箱机构10的结构示意图,图6是本申请实施例提供的取箱机构10去掉暂存板1之后的结构示意图,如图5和6所示,在本实施例中,伸缩组件2为三级同步伸缩结构,其能够增大伸缩板23伸出的长度,实现对双深位库存容器中对位于内侧的货箱40的拾取。
在本实施例中,双深位库存容置指库存容器沿纵深方向(伸缩组件的伸缩方向)并排设置有两个货位。在仓储物流系统的仓库管理中,为了提高仓库的空间利用率,通常对于每一个库存容器,其一侧紧邻设置有一个库存容器,另一侧面间隔设置有另一库存容器,且间隔设置的两个库存容器之间形成有供搬运机器人通过的通道。
该种设置下,双深位货位中,位于内侧货位的货箱40需要伸缩组件2的伸出板越过外侧货位才能被拨杆组件3拨动,因此,为拾取位于双深位货位中内侧货位中的货箱40,需要增大伸缩组件2的最大伸出长度。
示例性的,伸缩组件2包括由外至内依次设置的固定板21、连接板22、延伸板24和伸缩板23,还包括设置为实现连接板22、固定板21和伸缩板23同步伸缩的伸缩传动组件25和伸缩驱动组件26。其中,伸缩驱动组件26包括驱动电机,伸缩传动组件25包括设置为实现连接板22相对固定板21水平伸缩的第一伸缩传动组件、设置为实现延伸板24相对连接板22水平伸缩的第二伸缩传动组件及设置为实现伸缩板23相对延伸板24水平伸缩的第三伸缩传动组件。
以图6所示方向为例,连接板22的第一端、伸缩板23的第一端、延伸板24的第一端及固定板21的第一端为图6中连接板22、伸缩板23、延伸板24及固定板21位于下方的一端。
第一伸缩传动组件包括设置在固定板21长度方向两端的第一带轮251及绕设在两个第一带轮251上的第一同步带252,两个第一带轮251的中心轴位于同一高度,两个第一带轮251中的一个与驱动电机的输出轴连接,连接板22的第 二端通过第一连接件7与第一同步带252可拆卸连。
即,当驱动电机带动其中一个第一带轮251转动时,第一带轮251带动第一同步带252转动,由于第一同步带252位于两个第一带轮251之间的部分水平设置且与连接板22连接,连接板22随第一同步带252动作,实现连接板22相对固定板21的水平伸缩。
第二伸缩传动组件包括设置在连接板22两端的第二带轮253及绕设在两个第二带轮253上的第二同步带254,两个第二带轮253的中心位于同一高度,第二同步带254通过第二连接件与延伸板24连接。
第三伸缩传动组件包括设置在延伸板24长度方向两端的第三带轮255及绕设在第三带轮255上的第三同步带256,两个第三带轮255的中心位于同一高度,伸缩板23通过第三连接件与第三同步带256连接。
采用设置三个同步带传动结构能够实现连接板22、延伸板24及伸缩板23的水平伸缩,结构简单,成本较低。且当伸缩组件2处于收缩状态时即初始状态,第一连接件7位于固定板21的第二端附近,第二连接件位于连接板22的第二端附近,第三连接件位于延伸板24的第二端附近,且固定板21的第一端、连接板22的第一端、延伸板24的第一端及伸缩板23的第一端相对设置;当伸缩组件2处于最大伸长状态时,第一连接件7位于固定板21的第一端附近、第二连接件位于连接板22的第一端附近、第三连接件位于延伸板24的第一端附近。即连接板22、延伸板24与伸缩板23的伸缩行程小于所连接的同步带两端的带轮之间的间距。
本申请提供的伸缩组件2结构简单,设置方便,且能够实现伸缩组件2的双向伸缩,以实现对搬运机器人相对两侧的库存容器中的货箱40进行同步拾取。可以理解的是,本申请并不限于采用上述伸缩组件2实现三级伸缩,在其他实施例中,也可以采用相关技术中的其他三级同步伸缩结构实现延伸板24、连接板22和伸缩板23的同步伸缩,或可采用连接板22、延伸板23和伸缩板23分 级伸缩的结构实现伸缩板23的最大伸长。
在本实施例中,当伸缩板23处于最大伸长状态时,伸缩组件2的总长度大于三个货箱40长度的总和,以使伸缩板23能够越过双深位货位中位于前侧的一个货位而对后侧货位中的货箱40进行取箱。
在本实施例中,暂存板1的相对两侧均设置有伸缩组件2,两个伸缩组件2采用同一伸缩驱动组件26同步驱动,且伸缩驱动组件26通过同步传动组件27分别驱动两个伸缩组件2中的第一带轮251。
示例性的,同步传动组件27包括套设在驱动电机输出轴上的第四带轮272、两端分别套设有两个伸缩组件2的第一带轮251的传动轴271、套设在传动轴271上的第五带轮273以及绕设在第四带轮272和第五带轮273上的第四同步带274。
但本实施例并不限于采用上述的同步传动组件的结构形式,还可以采用其他能够实现两个第一带轮251同步转动的其他结构形式,本实施例不再进行一一举例说明。
可以理解的是,本实施例提供的搬运机器人不仅能够适用于双深位库存容器中货箱40的取放,还能适用于三深位和四深位库存容器中货箱40的取放,且对于双深位和四深位库存容器,在仓库中摆放时,每相邻两个库存容器均间隔设置以在两个库存容器之间形成用于搬运机器人通过的通道。
本实施例还提供了一种仓储物流系统,包括上述的搬运机器人。
本申请提供的仓储物流系统,通过采用上述搬运机器人对货箱进行取放,提高仓储物流系统的效率。
实施例三
图7为本申请实施例提供的取箱方法的流程图,如图7所示,本实施例提供了一种取箱方法,其采用实施例一提供的搬运机器人对库存容器上的目标货 箱40进行拾取,以实现订单拣选任务。
在本实施例中,库存容器的高度与搬运机器人的高度基本一致,以使搬运机器人能够对库存容器每一层上的货箱40进行拾取。且每个取箱机构10的高度小于或等于货箱40的高度,以避免两个取箱机构10分别拾取相邻两层货位上的货箱40时,取箱机构10对相邻取箱机构10的取箱操作造成干涉。
本实施例提供的取箱方法包括步骤S301至步骤S306。
在步骤S301中,控制系统为搬运机器人分配取箱任务。
假设订单管理中心分配至搬运机器人的取箱任务中包括的目标货箱40数目为N,搬运机器人上取箱机构10的数量为M,取箱任务的分配遵循以下原则:
(1)N≤M;
(2)N个目标货箱40位于库存容器的不同层,或存在n1个目标货箱40位于库存容器的第Fn1层,且n1≤Fn1-sum(F<Fn1),且n1≤Fmax-Fn1-sum(F>Fn1)+1,其中,Fmax为库存容器的最高层的层高标号,sum(F<Fn1)指层高小于Fn1的所有目标货箱40的数量和,sum(F>Fn1)指层高大于Fn1的所有目标货箱40的数量和。
对上述分配原则进行举例说明:当搬运机器人上存在两个取箱机构10时,库存容器最高层和最底层不能有两个货箱40分配给同一搬运机器人;当搬运机器人存在三个货叉时,库存容器的最高层和最底层不能有两个货箱40同时分配给同一搬运机器人,且当最高层和最底层不存在分配货箱40时,第二层和次高层不能有3个货箱40分配给同一搬运机器人,若最高层和次高层均分配有货箱40时,次高层不能有2个货箱40同时分配给同一搬运机器人。
在本实施例中,搬运机器人在一次搬运过程中,多个取箱机构10拾取的货箱40可选为同一订单对应的目标货箱40,也可以是不同订单中的目标货箱40。
示例性的,取箱任务中,至少存在两个目标货箱40位于同一库存容器的同 一纵列,以使多个取箱机构10可以同时对目标货箱40进行取箱操作,以提高取箱效率。
在步骤S302中,控制系统根据取箱任务中所有目标货箱40所在位置,规划最优取箱行程路径。
最优取箱行程路径可选为所有可行路径中的最短行程路径,以提高取箱效率。
在步骤S303中,控制系统根据所有目标货箱40所在层的层高排序为每个目标货箱40分配用于取箱的取箱机构10。
当所有目标货箱40所在层的层高均不同时,根据目标货箱40所在层的层高排序,为每个目标货箱40分配取箱机构10,若目标货箱40所在层的层高在所有目标货箱40中的排序由低到高为Kh,设置为拾取该目标货箱40的取箱机构10在所有取箱机构10中的高度排序由低到高为Kq,则Kh≤Kq,且N-Kn≤M-Kq。
在一个实施例中,Kh=Kq,即目标货箱40所在层的层高在所有目标货箱40中的排序序号与该目标货箱40对应的取箱机构10的高度排序序号一致。例如,三个目标货箱40分别位于1、2、3层,搬运机器人有三个取箱机构10,则位于最下层的取箱机构10设置为取位于第一层的目标货箱40,位于中层的取箱机构10设置为取第二层的目标货箱40,位于最高层的取箱机构10设置为取第三层的目标货箱40。
当存在有n1个货箱40位于库存容器的同层时,该n1个货箱40由于所在层的层高相同,在进行层高排序时,首先,基于n1个货箱40的所在层的层高在所有货箱40所在层的层高中的层高排序,分配n1个取箱机构10分别设置为拾取该n1个货箱40,且对于该n1个货箱40,可采用n1个取箱机构10中任意一个取箱机构10对其中的货箱40进行拾取。
如存在四个待拾取的目标货箱40,其中A1货箱40位于第1层,A2和A3货箱40位于第三层,A4个货箱40位于第五层时,若存在四个取箱机构10,且 五个取箱机构10由低至高分别为B1、B2、B3和B4,则采用B1取箱机构10拾取A1货箱40,B2和B3取箱机构10拾取A2和A3货箱40,B4取箱机构10拾取A4货箱40,且B2和B3取箱机构10中的一个拾取A2和A3中任一个货箱40,另一个拾取A2和A3中剩下的货箱40。
在步骤S304中,搬运机器人根据最优行程路径依次运行到每个目标货箱40的前方并对每个目标货箱40采用分配的取箱机构10进行拾取,其中,当所有目标货箱40中的多个目标货箱40位于库存容器的同一纵列时,多个目标货箱40对应的多个取箱机构10同时进行拾取操作。
取箱机构10对目标货箱40的拾取操作包括步骤S3041至步骤S3045。
在步骤S3041中,取箱机构10升降至对应目标货箱40正前方。
在步骤S3042中,控制器控制伸缩组件2的两个伸缩板23伸出直至位于目标货箱40的两侧。
在步骤S3043中,控制器控制位于伸缩板23前端的拨杆组件3的拨杆驱动件32动作,使拨杆31转动至工作位置。
在步骤S3044中,控制器控制伸缩组件2缩回,此过程中,拨杆31与目标货箱40接触并带动目标货箱40从库存容器的货位中移动至暂存板1的暂存位中。
在步骤S3045中,控制器控制位于伸缩板23前端的拨杆组件3的拨杆驱动件32动作,使拨杆31转动至闲置位置。
在步骤S305中,当搬运机器人将全部目标货箱40拾取完毕后,运行至拣选点。
在步骤S306中,取箱机构10依次升降至拣选工作人员适合拣选的高度位置。
本实施例提供的取箱方法,由于采用实施例一中的搬运机器人进行取箱操 作,当多个货箱40位于同一库存容器的同一纵列时,位于搬运机器人上的多个取箱机构10可同时进行取箱操作,使取箱操作方便快捷,提高取箱效率,从而提高货品拣选和物流效率。
实施例四
图8为本申请实施例提供的取箱方法的流程图,如图8所示,本实施例提供了一种基于搬运机器人的取箱方法,其采用实施例二提供的搬运机器人对库存容器上的目标货箱40进行拾取,所述库存容器上具有沿纵深方向并排设置的内部货箱和外侧货箱。本实施例提供的取箱方法包括步骤S401至S410。
在步骤S401中,控制系统为搬运机器人分配取箱任务。
在步骤S402中,判断取箱任务中是否有内部货箱40,在取箱任务中有内部货箱40的情况下,执行步骤S403,在取箱任务中没有内部货箱40的情况下,执行步骤S406。
在步骤S403中,判断与内部货箱40同层的目标货箱40的数量n2是否满足n2≤Fn2-sum(F<Fn2)-1且n2≤Fmax-Fn2-sum(F>Fn2)+1,在n2满足n2≤Fn2-sum(F<Fn2)-1且n2≤Fmax-Fn2-sum(F>Fn2)+1的情况下,执行步骤S404,在存在n2不满足n2≤Fn2-sum(F<Fn2)-1和n2不满足n2≤Fmax-Fn2-sum(F>Fn2)+1中的至少之一的情况下,执行步骤S405。
其中,Fn2指所述内部货箱所在层的层高标号,Fmax为库存容器的最高层的层高标号,sum(F<Fn2)指所在层的层高标号小于Fn2的所述目标货箱的数量总和,sum(F>Fn2)指所在层的层高标号大于第Fn2层的所有目标货箱的数量总和。
在步骤S404中,将该内部货箱40对应的外侧货箱40作为取箱任务的附加目标货箱40。
上述步骤S404即将内部货箱40外侧的外侧货箱40作为附加目标货箱40加入取箱任务。
在步骤S405中,将该内部货箱40对应的外侧货箱40作为新的取箱任务分配给其他搬运机器人,并首先执行该外侧货箱40的取箱操作。
上述步骤S405即控制系统调配其他搬运机器人对外侧货箱40进行搬运。
在步骤S406中,控制系统根据取箱任务中所有目标货箱40所在位置,规划最优取箱行程路径。
在步骤S407中,控制系统根据所有目标货箱40所在层的层高对每个目标货箱40分配用于取箱的取箱机构10。
该目标货箱40包括订单管理中心初始任务分配中分配的目标货箱40和基于内部目标货箱40形成的附加目标货箱40。
对目标货箱40分配取箱机构10的操作可参考实施例三的步骤S303;
在步骤S408中,搬运机器人根据最优取箱行程路径依次运行到每个目标货箱40的前方并对每个目标货箱40采用分配的取箱机构10进行拾取,其中,在对附加目标货箱40对应的内部目标货箱40进行拾取后,将附加目标货箱40还箱至附加目标货箱40对应的内部货位。
在对内部目标货箱40进行取箱后,将内部目标货箱40对应的外侧货箱40(即附加目标货箱40)放回至该内部目标货箱40原所在内部货位。通过将附加目标货箱40还箱至附加目标货箱40对应的内部货位,可以使目标货箱40被拣选后,直接将目标货箱40还箱至该外侧货位上,避免还箱至内侧货位造成对外侧货位上的货箱40的取箱操作,提高还箱效率。
当内部目标货箱和附加目标货箱的取箱采用同一搬运机器人进行时,附加目标货箱的还箱操作由该搬运机器人进行,且在完成当前内部目标货箱的取箱操作后且进行另一目标货箱的取箱操作前进行;当内部目标货箱和附加目标货箱的取箱采用不同的搬运机器人进行时,附加目标货箱的还箱操作与另一目标货箱的取箱操作可同步进行。
在步骤S409中,当搬运机器人将全部目标货箱40拾取完毕后,运行至拣选点。
在步骤S410中,取箱机构10升降至拣选工作人员适合拣选的高度位置。
本实施例提供的取箱方法,由于采用实施例二中的搬运机器人进行取箱操作,当多个货箱40位于同一库存容器的同一纵列时,位于搬运机器人上的多个取箱机构10可同时进行取箱操作,使取箱操作方便快捷,提高取箱效率,从而提高货品拣选和物流效率;且本实施例提供的取箱方法,可以应用于双深位、三深位或四深位库存容器的内部货箱取箱操作,提高取箱效率,提高仓库利用率。
实施例五
图9是本申请实施例提供的货箱上货方法的流程图,如图9所示,本实施例提供了一种基于搬运机器人的货箱上货方法,用于将货箱40上货至库存容器的目标货位中,以提高搬运机器人对货箱40上货或拣选后还箱的效率。本实施例提供的上货方法适用于实施例一或实施例二中的搬运机器人。
可以理解的是,货箱上货可以是因拣选操作而从库存容器中拾取货箱进行拣选后,将拣选后的货箱返还至库存容器的货位中的还箱操作,也可以是将新货箱补充至库存容器中的上货操作,还可以是因其他原因需要将货箱放置至库存容器中的操作,本实施例对此不做限制。
本实施例提供的上货方法,包括步骤S501至步骤S503。
在步骤S501中,控制系统为搬运机器人分配货箱上货任务。
上货任务的分配原则与货位分配原则相对应,此处不再进行赘述。
在一个实施例中,货箱上货任务对应的目标货位中,至少有两个目标货位位于同一库存容器的同一纵列上,以实现至少两个取箱机构同时对货箱进行上货操作,提高货箱上货效率。
在一个实施例中,由于取箱机构10能够双向伸缩,且当搬运机器人拾取目标货箱的过程中,若存在位于搬运机器人相对两侧的库存容器中的多个目标货箱在高度方向上位于同一纵列且错位设置,则多个所述目标货箱对应的所述取箱机构10同时执行取箱操作。
在步骤S502中,控制系统根据货箱上货任务中所有目标货箱40所在位置,规划最优上货行程路径。
在步骤S503中,搬运机器人根据最优上货行程路径,依次运行到每个目标货箱40对应的目标货位前方并将每个目标货箱40放置至对应的目标货位中,且当货箱上货任务中所有目标货箱40中的多个目标货箱40所对应的目标货位位于同一库存容器的同一纵列时,将多个目标货箱40同时放置至多个目标货箱40一一对应的多个目标货位中。
示例性的,由于伸缩机构10可双向伸缩,且当所述搬运机器人对所述货箱进行上货的过程中,若存在位于所述搬运机器人相对两侧的库存容器中的多个目标货位在高度方向上位于同一纵列且错位设置,则多个所述目标货位对应的所述取箱机构10同时执行货箱上货操作。
取箱机构10实现货箱40放置至目标货位中的操作包括步骤S5031至步骤S5034。
在步骤S5031中,取箱机构10升降至目标货位正前方。
在步骤S5032中,控制器控制远离目标货位一侧的拨杆组件3的拨杆驱动件32动作,使拨杆31转动至工作位置。
在步骤S5032中,控制器控制伸缩组件2伸出直至目标货箱40落入目标货位中。
在步骤S5033中,控制器控制对应拨杆31从工作位置转动至闲置位置。
在步骤S5034中,控制器控制伸缩组件2缩回至初始状态。
其中,步骤S5033和步骤S5034的先后顺序可以调换或可以同步进行。
本实施例提供的货箱上货方法,由于采用实施例一或实施例二中的搬运机器人进行货箱上货操作,当多个货箱40对应的目标货位位于同一库存容器的同一纵列时,位于搬运机器人上的多个取箱机构10可同时进行货箱上货操作,使货箱上货操作方便快捷,提高货箱上货效率,从而提高上货、货品拣选和物流效率。

Claims (17)

  1. 一种搬运机器人,包括:
    移动底盘(30);
    立架(20),所述立架(20)竖直设置在所述移动底盘(30)上;
    至少两个取箱机构(10),所述至少两个取箱机构(10)沿所述立架(20)的高度方向至少设置,每个所述取箱机构(10)均能够相对所述移动底盘(30)水平伸缩及竖直升降,以拾取库存容器上的货箱(40)或将所述货箱(40)放置至所述库存容器上。
  2. 根据权利要求1所述的搬运机器人,其中,所述取箱机构(10)上设置有用于暂存所述货箱(40)的暂存位。
  3. 根据权利要求2所述的搬运机器人,其中,所述取箱机构(10)包括:
    暂存板(1),所述暂存板(1)上形成有所述暂存位;
    拨杆组件(3),被配置为拨动所述货箱(40),以使所述货箱(40)在所述暂存板(1)和所述库存容器之间移动;
    伸缩组件(2),所述伸缩组件(2)与所述暂存板(1)及所述拨杆组件(3)连接,被配置为带动所述拨杆组件(3)相对所述暂存板(1)水平伸缩。
  4. 根据权利要求3所述的搬运机器人,其中,所述伸缩组件(2)为二级同步伸缩结构或所述伸缩组件(2)为三级同步伸缩结构。
  5. 根据权利要求3所述的搬运机器人,其中,所述暂存板(1)的相对两侧分别设置有所述伸缩组件(2),且所述暂存板(1)对应所述相对两侧的所述伸缩组件(2)均设置有挡板(4),所述挡板(4)位于所述伸缩组件(2)的内侧,两个所述挡板(4)之间形成所述暂存位。
  6. 根据权利要求5所述的搬运机器人,其中,
    所述挡板(4)包括沿所述伸缩组件(2)的伸缩方向延伸的挡板主体(41)和设置在所述挡板主体(41)端部的导向板部(42),所述导向板部(42)的第一端与所述挡板主体(41)连接,所述导向板部(42)的第二端沿远离所述挡板主体(41)的方向向靠近对应侧的所述伸缩组件(2)的方向倾斜延伸。
  7. 根据权利要求5或6所述的搬运机器人,其中,所述暂存板(1)包括水平设置的暂存板本体(11)以及设置在所述暂存板(1)进口端的导向部(12),所述导向部(12)的第一端与所述暂存板本体(11)连接,所述导向部(12)的第二端沿远离所述暂存板本体(11)的方向倾斜向下延伸。
  8. 根据权利要求1-7任一项所述的搬运机器人,其中,所述取箱机构(10)能够双向伸缩,以分别拾取位于所述搬运机器人相对两侧的所述库存容器中的所述货箱(40)。
  9. 一种取箱方法,采用搬运机器人对库存容器上的货箱(40)进行拾取,所述搬运机器人包括移动底盘(30)、竖直设置在所述移动底盘(30)上的立架(20)和设置在所述立架(20)上的至少两个取箱机构(10),所述至少两个取箱机构(10)沿所述立架(20)的高度方向设置,每个所述取箱机构(10)均能够相对所述移动底盘(30)水平伸缩及竖直升降,所述取箱方法包括:
    控制系统为所述搬运机器人分配取箱任务;
    所述控制系统根据所述取箱任务中所有目标货箱(40)所在位置,规划取箱行程路径;
    所述控制系统根据所有所述目标货箱(40)所在层的层高排序为每个所述目标货箱(40)分配用于取箱的所述取箱机构(10);
    所述搬运机器人根据所述取箱行程路径依次运行到每个所述目标货箱(40)的前方并对每个所述目标货箱(40)采用分配的所述取箱机构(10)进行拾取,且响应于确定所有目标货箱(40)中的多个所述目标货箱(40)位于所述库存容器的同一纵列,所述多个所述目标货箱(40)对应的所述取箱机构(10)同时进行拾取操作。
  10. 根据权利要求9所述的取箱方法,其中,响应于所述目标货箱(40)的总数目为N,所述搬运机器人上的所述取箱机构(10)的数量为M,所述控制系统基于如下货位分配原则为所述搬运机器人分配取箱任务:
    N≤M;
    N个所述目标货箱(40)位于所述库存容器的不同层,或存在n1个目标货箱(40)位于库存容器的第Fn1层,且n1≤Fn1-sum(F<Fn1),且n1≤Fmax-Fn1-sum(F>Fn1)+1;
    其中,Fmax为库存容器的最高层的层高标号,sum(F<Fn1)指层高标号小于Fn1的所述目标货箱(40)的数量总和,sum(F>Fn1)指层高标号大于第Fn1层的所有目标货箱(40)的数量总和。
  11. 根据权利要求10所述的取箱方法,所述库存容器上具有沿纵深方向并排设置的内部货箱(40)和外侧货箱(40),在分配取箱任务之后,且规划取箱行程路径之前,还包括:
    判断取箱任务中是否有所述内部货箱(40),响应于取箱任务中有所述内部货箱(40),判断与所述内部货箱(40)同层的目标货箱(40)的总数n2是否满足n2≤Fn2-sum(F<Fn2)-1且n2≤Fmax-Fn2-sum(F>Fn2)+1,响应于n2满足n2≤Fn2-sum(F<Fn2)-1且n2≤Fmax-Fn2-sum(F>Fn2)+1,将所述内部货箱(40)对应的所述外侧货箱(40)作为取箱任务的附加目标货箱(40),响应于存在n2不满足n2≤Fn2-sum(F<Fn2)-1和n2不满足n2≤Fmax-Fn2-sum(F>Fn2)+1中的至少之一,所述控制系统调配其他所述搬运机器人对所述外侧货箱(40)进行搬运;
    其中,Fn2指所述内部货箱(40)所在层的层高标号,Fmax为库存容器的最高层的层高标号,sum(F<Fn2)指层高标号小于Fn2的所述目标货箱(40)的数量总和,sum(F>Fn2)指层高标号大于第Fn2层的所有目标货箱(40)的数量总和。
  12. 根据权利要求11所述的取箱方法,还包括:在对所述内部货箱(40)进行取箱后,将所述内部货箱(40)对应的所述外侧货箱(40)放回至所述内部货箱(40)原所在内侧货位。
  13. 根据权利要求9所述的取箱方法,还包括:在所述搬运机器人完成所有所述目标货箱(40)的取箱后,所述搬运机器人运行至拣选点,且所述取箱 机构(10)依次升降至适于拣选工作人员进行拣选操作的高度。
  14. 根据权利要求9-13任一项所述的取箱方法,其中,所述取箱机构(10)能够双向伸缩,且当所述搬运机器人拾取所述目标货箱(40)的过程中,在存在位于所述搬运机器人相对两侧的库存容器中的多个目标货箱(40)在高度方向上位于同一纵列且错位设置的情况下,多个所述目标货箱(40)对应的所述取箱机构(10)同时执行取箱操作。
  15. 一种货箱上货方法,采用搬运机器人将货箱(40)上货至库存容器上的目标货位中,所述搬运机器人包括移动底盘(30)、竖直设置在所述移动底盘(30)上的立架(20)和设置在所述立架(20)上的至少两个取箱机构(10),所述至少两个取箱机构(10)沿所述立架(20)的高度方向设置,每个所述取箱机构(10)均能够相对所述移动底盘(30)水平伸缩及竖直升降,所述货箱(40)上货方法包括:
    控制系统为所述搬运机器人分配货箱上货任务;
    所述控制系统根据所述货箱上货任务中所有目标货箱(40)所对应的目标货位位置,规划上货行程路径;
    所述搬运机器人根据上货行程路径依次运行到每个目标货箱(40)所对应的目标货位前方并将所述每个目标货箱(40)放置至对应的目标货位中,且响应于确定所述货箱上货任务中所有目标货箱(40)中的多个目标货箱(40)所对应的所述目标货位位于同一库存容器的同一纵列,将所述多个目标货箱(40)同时放置至所述多个目标货箱(40)一一对应的多个目标货位中。
  16. 根据权利要求15所述的货箱上货方法,其中,所述取箱机构(10)能够双向伸缩,且当所述搬运机器人对所述目标货箱(40)进行上货的过程中,在存在位于所述搬运机器人相对两侧的库存容器中的多个目标货位在高度方向上位于同一纵列且错位设置的情况下,多个所述目标货位对应的所述取箱机构(10)同时执行目标货箱(40)上货操作。
  17. 一种仓储物流系统,包括如权利要求1-8任一项所述的搬运机器人。
PCT/CN2021/072984 2020-05-13 2021-01-21 一种搬运机器人、取箱方法、货箱上货方法及仓储物流系统 WO2021227551A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010401241.2A CN111409996A (zh) 2020-05-13 2020-05-13 一种搬运机器人、取箱方法、货箱上货方法及仓储物流系统
CN202010401241.2 2020-05-13

Publications (1)

Publication Number Publication Date
WO2021227551A1 true WO2021227551A1 (zh) 2021-11-18

Family

ID=71487263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/072984 WO2021227551A1 (zh) 2020-05-13 2021-01-21 一种搬运机器人、取箱方法、货箱上货方法及仓储物流系统

Country Status (2)

Country Link
CN (1) CN111409996A (zh)
WO (1) WO2021227551A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114084850A (zh) * 2021-11-24 2022-02-25 杭州海康机器人技术有限公司 Agv的物料搬运方法、agv及仓储系统
CN116119236A (zh) * 2023-02-22 2023-05-16 苏州牧星智能科技有限公司 一种储货系统及其调度方法
TWI807606B (zh) * 2021-01-21 2023-07-01 大陸商北京極智嘉科技股份有限公司 一種貨箱搬運系統和機器人
CN116639158A (zh) * 2023-07-27 2023-08-25 今创集团股份有限公司 货柜移动装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111409996A (zh) * 2020-05-13 2020-07-14 北京极智嘉科技有限公司 一种搬运机器人、取箱方法、货箱上货方法及仓储物流系统
CN111846722B (zh) * 2020-07-23 2022-03-11 福建诚壹实业有限公司 一种用于自动化立体冷库的双立柱巷道式堆垛机
CN111591159B (zh) * 2020-07-24 2020-11-24 北京极智嘉科技有限公司 用于电动搬运设备的供电系统
CN111846728B (zh) * 2020-08-11 2022-06-24 龙岩烟草工业有限责任公司 立体仓库出入库方法及装置、立体仓库
CN112047132A (zh) * 2020-09-09 2020-12-08 王会涛 一种物流运输用货物装卸平台
CN114367972A (zh) * 2020-10-15 2022-04-19 北京极智嘉科技股份有限公司 一种机器人、机器人控制方法
CN112407723B (zh) * 2020-11-20 2021-11-30 深圳市海柔创新科技有限公司 货物整理方法、设备、仓储系统及存储介质
CN112850228A (zh) * 2021-01-07 2021-05-28 许昌学院 一种机械自动化搬运装置
CN113086467B (zh) * 2021-03-24 2023-05-23 北京极智嘉科技股份有限公司 机器人以及基于机器人的料箱检测方法
CN113335865B (zh) * 2021-06-11 2023-02-28 亚轨科技(成都)有限公司 一种轨道快递集装箱的收派件方法及系统
WO2023036335A1 (zh) * 2021-09-13 2023-03-16 北京极智嘉科技股份有限公司 一种搬运机器人及取送箱方法
CN113928773B (zh) * 2021-10-25 2023-12-22 易葫芦科技(苏州)有限公司 一种中药小包装分切发药用药框升降单元
CN114249056A (zh) * 2021-12-31 2022-03-29 深圳市海柔创新科技有限公司 货箱入库方法、装置、设备和机器人
CN114715585A (zh) * 2022-04-19 2022-07-08 江苏安方电力科技有限公司 一种堆叠式料箱存储取放装置
CN116946610B (zh) * 2023-09-21 2023-12-12 中科源码(成都)服务机器人研究院有限公司 一种智能仓储系统货物拾取方法及装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202009002232U1 (de) * 2008-05-13 2009-04-23 Gestión y Tecnología Valenciana, S.L., Almussafes Zwischengeschaltetes Pufferlager in Fertigungsstrassen
CN105730956A (zh) * 2016-03-30 2016-07-06 南通大学 具有双层载物台的堆垛机
CN106379681A (zh) * 2016-07-11 2017-02-08 黄金刚 一种智能仓储机器人、系统及系统控制方法
CN107324246A (zh) * 2017-07-26 2017-11-07 江苏高科物流科技股份有限公司 一种多载物台堆垛机以及自动化立体仓库
CN109264627A (zh) * 2018-10-16 2019-01-25 无锡弘宜智能科技有限公司 前叉后货架式搬运机器人
CN109573449A (zh) * 2019-01-29 2019-04-05 北京极智嘉科技有限公司 一种搬运机器人、仓储物流系统及货箱搬运方法
CN111409996A (zh) * 2020-05-13 2020-07-14 北京极智嘉科技有限公司 一种搬运机器人、取箱方法、货箱上货方法及仓储物流系统
CN212244828U (zh) * 2020-05-13 2020-12-29 北京极智嘉科技有限公司 一种搬运机器人及仓储物流系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202009002232U1 (de) * 2008-05-13 2009-04-23 Gestión y Tecnología Valenciana, S.L., Almussafes Zwischengeschaltetes Pufferlager in Fertigungsstrassen
CN105730956A (zh) * 2016-03-30 2016-07-06 南通大学 具有双层载物台的堆垛机
CN106379681A (zh) * 2016-07-11 2017-02-08 黄金刚 一种智能仓储机器人、系统及系统控制方法
CN107324246A (zh) * 2017-07-26 2017-11-07 江苏高科物流科技股份有限公司 一种多载物台堆垛机以及自动化立体仓库
CN109264627A (zh) * 2018-10-16 2019-01-25 无锡弘宜智能科技有限公司 前叉后货架式搬运机器人
CN109573449A (zh) * 2019-01-29 2019-04-05 北京极智嘉科技有限公司 一种搬运机器人、仓储物流系统及货箱搬运方法
CN111409996A (zh) * 2020-05-13 2020-07-14 北京极智嘉科技有限公司 一种搬运机器人、取箱方法、货箱上货方法及仓储物流系统
CN212244828U (zh) * 2020-05-13 2020-12-29 北京极智嘉科技有限公司 一种搬运机器人及仓储物流系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI807606B (zh) * 2021-01-21 2023-07-01 大陸商北京極智嘉科技股份有限公司 一種貨箱搬運系統和機器人
CN114084850A (zh) * 2021-11-24 2022-02-25 杭州海康机器人技术有限公司 Agv的物料搬运方法、agv及仓储系统
CN116119236A (zh) * 2023-02-22 2023-05-16 苏州牧星智能科技有限公司 一种储货系统及其调度方法
CN116639158A (zh) * 2023-07-27 2023-08-25 今创集团股份有限公司 货柜移动装置
CN116639158B (zh) * 2023-07-27 2023-10-17 今创集团股份有限公司 货柜移动装置

Also Published As

Publication number Publication date
CN111409996A (zh) 2020-07-14

Similar Documents

Publication Publication Date Title
WO2021227551A1 (zh) 一种搬运机器人、取箱方法、货箱上货方法及仓储物流系统
WO2021227550A1 (zh) 一种搬运机器人及仓储物流系统
AU2019412355B2 (en) Transfer robot, warehouse logistics system and article transferring method
US11865707B2 (en) Storage systems and methods for robotic picking
US10676279B1 (en) Systems, methods, and storage units for article transport and storage
CN111620024B (zh) 一种搬运机器人、取货箱方法及放货箱方法
US10395152B2 (en) Amassing pick and/or storage task density for inter-floor transfer
US20200209865A1 (en) Automated Preparation of Deliveries in Delivery Vehicles Using Automated Guided Vehicles
US6315513B1 (en) Automated warehouse and automated warehouse management method
US20200207250A1 (en) Automated Loading of Delivery Vehicles Using Automated Guided Vehicles
CN108064212B (zh) 带有两套互连的轨道体系的自动化存取系统
CN112573058B (zh) 一种取货方法、搬运机器人、处理终端及智能仓储系统
US20210395014A1 (en) Handling robot, material fetching method, material replenishing or returning method, intelligent warehousing system
US10029851B1 (en) Routing based on automation capabilities in inventory system
JP2020508274A (ja) ロボット、搬送システムおよび方法
US20220119208A1 (en) Product pick-up system and product pick-up method
CN116513688A (zh) 仓储管理系统及方法
CN111731746B (zh) 一种搬运机器人及仓储物流系统
CA3120717A1 (en) Systems, methods, and storage units for article transport and storage
WO2020133641A1 (zh) 一种用于仓储的机器人及其工作方法
CN212244828U (zh) 一种搬运机器人及仓储物流系统
CN218087756U (zh) 搬运机器人和分拣系统
CN117228192A (zh) 补货或退货方法、搬运机器人、处理终端及智能仓储系统
CN215045861U (zh) 一种货箱搬运机器人
CN112061654B (zh) 一种分拣机器人、分拣装置、系统及分拣方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21804237

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 11.01.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21804237

Country of ref document: EP

Kind code of ref document: A1