WO2021227135A1 - 一种苯选择性加氢反应系统及方法 - Google Patents

一种苯选择性加氢反应系统及方法 Download PDF

Info

Publication number
WO2021227135A1
WO2021227135A1 PCT/CN2020/092788 CN2020092788W WO2021227135A1 WO 2021227135 A1 WO2021227135 A1 WO 2021227135A1 CN 2020092788 W CN2020092788 W CN 2020092788W WO 2021227135 A1 WO2021227135 A1 WO 2021227135A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogenation reactor
micro
benzene
catalyst
outlet
Prior art date
Application number
PCT/CN2020/092788
Other languages
English (en)
French (fr)
Inventor
张志炳
周政
张锋
李磊
孟为民
王宝荣
杨高东
罗华勋
杨国强
田洪舟
曹宇
Original Assignee
南京延长反应技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京延长反应技术研究院有限公司 filed Critical 南京延长反应技术研究院有限公司
Priority to EP20935874.6A priority Critical patent/EP4151309A1/en
Priority to US17/617,948 priority patent/US11370727B1/en
Priority to JP2022562251A priority patent/JP2023521195A/ja
Publication of WO2021227135A1 publication Critical patent/WO2021227135A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/10Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of aromatic six-membered rings
    • C07C5/11Partial hydrogenation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J10/00Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor
    • B01J10/002Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor carried out in foam, aerosol or bubbles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/001Feed or outlet devices as such, e.g. feeding tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/245Stationary reactors without moving elements inside placed in series
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/16Systems containing only non-condensed rings with a six-membered ring the ring being unsaturated

Definitions

  • the invention belongs to the technical field of micro-interface strengthening reactions, and specifically relates to a benzene selective hydrogenation reaction system and method.
  • the existing process for the selective hydrogenation of benzene to produce cyclohexene is as follows: benzene, hydrogen, and catalyst are carried out in two reactors connected in series with stirring.
  • the reactor usually adopts a bubbling oxidation reactor. Larger than 3mm, or even centimeter level, the mass transfer boundary phase area is limited, the gas utilization rate is low, and the reaction efficiency is low.
  • the bubbling reactor In order to strengthen the gas-liquid mass transfer, the bubbling reactor generally has internal parts such as trays and static mixers in the tower. In order to strengthen the mixing, the bubble diameter after mixing is usually 3-30mm, and the phase boundary area and mass transfer coefficient (liquid side, gas side) provided are limited, so it is difficult to achieve breakthrough improvement in reaction performance, which affects the reaction. In order to ensure the uniformity of the reaction, the three phases of gas, liquid and solid are required to be fully mixed. Therefore, the prior art has higher requirements for stirring in the reactor and requires greater stirring kinetic energy to ensure the gas and liquid The mixing of solid and solid three-phases has high energy consumption and low reaction efficiency. In addition, because the temperature and pressure during the reaction are too high, the by-products increase, the yield of cyclohexene is low, the energy consumption is high, and the system risk is increased.
  • the first object of the present invention is to provide a benzene selective hydrogenation reaction system.
  • the reaction system is equipped with a micro-interface unit inside the first hydrogenation reactor and the second hydrogenation reactor.
  • the hydrogen can be dispersed and broken into micro-bubbles with a diameter of micrometers, increasing the area of the phase boundary between the hydrogen and the liquid phase material, so that the mass transfer space is fully satisfied, and the residence time of the hydrogen in the liquid phase is increased, thereby reducing
  • the consumption of hydrogen is greatly improved, thereby greatly improving the reaction efficiency and significantly reducing the energy consumption of the reaction process; on the other hand, the reaction temperature and pressure are reduced, thereby increasing the yield of cyclohexene, reducing energy consumption, and improving system safety sex.
  • the second object of the present invention is to provide a method for reaction using the above reaction system.
  • the method has milder operating conditions, reduces reaction temperature and pressure while ensuring reaction efficiency, and has high safety performance and low energy consumption. A better reaction effect than the existing process is achieved.
  • the present invention provides a benzene selective hydrogenation reaction system, which includes a benzene refiner, a first hydrogenation reactor, a second hydrogenation reactor and a separator connected in sequence; wherein,
  • the bottom of the benzene refiner is provided with a discharge port
  • the first hydrogenation reactor is provided with a first inlet and a first outlet
  • the second hydrogenation reactor is provided with a second inlet and a second outlet;
  • the first inlet is connected with the discharge port of the benzene refiner;
  • the first outlet is connected with the second inlet;
  • the second outlet is connected with the separator for separating the catalyst in the reaction product;
  • a catalyst outlet is provided at the bottom of the separator, and the catalyst outlet is connected to the first hydrogenation reactor for the catalyst to enter the first hydrogenation reactor for recycling;
  • Both the first hydrogenation reactor and the second hydrogenation reactor are provided with a micro-interface unit, and the micro-interface unit is used to disperse and crush hydrogen into micro-bubbles with a diameter of micrometers.
  • the reaction of selective hydrogenation of benzene to produce cyclohexene has the following problems: On the one hand, the gas-liquid mass transfer area of the existing reactor is limited, and the reaction mixture raw materials and hydrogen cannot be fully mixed during the reaction process. The energy consumption is large and the reaction efficiency is low; on the other hand, due to the excessively high temperature and pressure during the reaction, the by-products increase, the yield of cyclohexene is low, the energy consumption is high, and the system risk is increased.
  • the benzene selective hydrogenation reaction system of the present invention can disperse and break hydrogen gas into micro-sized micro-bubbles with a diameter of micrometers by dispersing and breaking hydrogen gas into micro-bubbles with a diameter of micrometers, and increase the amount of hydrogen gas.
  • the phase boundary area between the liquid phase material and the liquid phase material makes the mass transfer space fully satisfied, and increases the residence time of hydrogen in the liquid phase, reduces the consumption of hydrogen, thereby greatly improving the reaction efficiency and significantly reducing the energy consumption of the reaction process ;
  • the reaction temperature and pressure are reduced, thereby increasing the yield of cyclohexene, reducing energy consumption and improving system safety.
  • the top of the benzene refiner is provided with a raw material benzene inlet, and the bottom is provided with a discharge port; the benzene refiner is provided with a desulfurization adsorbent packing layer, and the benzene refiner can refine the raw benzene, It is used to remove the sulfur-containing impurities in the raw material benzene.
  • the sulfur content of the benzene from the benzene refiner is less than or equal to 5PPb, so as to avoid the catalyst poisoning caused by the impurities contained in the raw material benzene.
  • first hydrogenation reactor and the second hydrogenation reactor are both fixed-bed catalytic reactors. Since the internal catalyst of the fixed-bed catalytic reactor is directly packed on the fixed bed, it is not easy to wear in the bed and can be used for a long time. In addition, the structure of the reactor is simple and the operation is convenient.
  • the micro-interface unit includes a first micro-interface generator and a second micro-interface generator arranged up and down, the first micro-interface generator is connected with an air duct, and the top end of the air duct protrudes from the first micro-interface generator.
  • the liquid level of a hydrogenation reactor is used to recover air, the side wall of the first hydrogenation reactor is also provided with an air inlet, and the end of the air inlet extends into the second micro-interface generator, so
  • the structure of the micro-interface unit in the second hydrogenation reactor is the same as that of the first hydrogenation reactor.
  • the first micro-interface generator is a hydraulic micro-interface generator
  • the second micro-interface generator is a pneumatic micro-interface generator
  • the first micro-interface generator and the second micro-interface generator are There are supports for mutual support between the devices.
  • the specific material, shape and number of the supports are not limited, as long as they can achieve a supporting effect, preferably tubular, rod-shaped or plate-shaped.
  • the hydrogen gas flows into the inside of the second micro-interface generator to be dispersed and broken into micro-sized micro-bubbles, which effectively increases the mass transfer area between the ammonia gas and the liquid phase material, reduces the mass transfer resistance, and improves the reaction efficiency.
  • micro-interface generator used in the present invention has been embodied in the inventor’s previous patents, such as application numbers CN201610641119.6, 201610641251.7, CN201710766435.0, CN106187660, CN105903425A, CN109437390A, CN205833127U and CN207581700U patents.
  • the prior patent CN201610641119.6 detailed the specific product structure and working principle of the micro-bubble generator (that is, the micro-interface generator).
  • the body is provided with an inlet communicating with the cavity, the opposite first end and the second end of the cavity are both open, and the cross-sectional area of the cavity is from the middle of the cavity to the first end of the cavity and The second end is reduced; the secondary crushing piece is provided at at least one of the first end and the second end of the cavity, a part of the secondary crushing piece is set in the cavity, and the secondary crushing piece is open to both ends of the cavity An annular channel is formed between the through holes.
  • the micro-bubble generator also includes an air inlet pipe and a liquid inlet pipe.” From the specific structure disclosed in the application document, it can be known that the specific working principle is: the liquid enters the micron tangentially through the liquid inlet pipe.
  • the micro-bubble generator In the bubble generator, ultra-high-speed rotation and cutting the gas, the gas bubbles are broken into micron-level micro-bubbles, thereby increasing the mass transfer area between the liquid phase and the gas phase, and the micro-bubble generator in this patent belongs to a pneumatic micro-interface generation Device.
  • the primary bubble breaker has a circulating liquid inlet, a circulating gas inlet and a gas-liquid mixture outlet.
  • the secondary bubble breaker connects the feed port with the gas-liquid mixture outlet, indicating that the bubble breakers are all It needs to be mixed with gas and liquid.
  • the primary bubble breaker mainly uses circulating fluid as power, so in fact, the primary bubble breaker belongs to the hydraulic micro-interface generator, and the secondary bubble breaker is The mixture is simultaneously passed into the elliptical rotating sphere for rotation, so as to achieve bubble breakage during the rotation, so the secondary bubble breaker is actually a gas-liquid linkage micro-interface generator.
  • micro-interface generator used in the present invention is not limited to the above-mentioned forms.
  • the specific structure of the bubble breaker described in the previous patent is only one of the forms that the micro-interface generator of the present invention can adopt.
  • the previous patent 201710766435.0 records that "the principle of the bubble breaker is high-speed jets to achieve gas collisions", and also explained that it can be used in a micro-interface strengthening reactor, verifying the difference between the bubble breaker and the micro-interface generator.
  • the previous patent CN106187660 is also a related record in the previous patent CN106187660 about the specific structure of the bubble breaker. For details, see paragraphs [0031]-[0041] in the specification, as well as the part of the drawings, which is related to the bubble breaker S-2 The specific working principle of the bubble breaker is explained in detail.
  • the top of the bubble breaker is the liquid phase inlet, and the side is the gas phase inlet.
  • the liquid phase coming in from the top provides the entrainment power to achieve the effect of crushing into ultra-fine bubbles, which can also be seen in the attached drawings.
  • the bubble breaker has a cone-shaped structure, and the diameter of the upper part is larger than that of the lower part, which is also for the liquid phase to provide better entrainment power.
  • micro-interface generator Since the micro-interface generator was just developed at the early stage of the patent application, it was named micro-bubble generator (CN201610641119.6) and bubble breaker (201710766435.0) in the early days. With continuous technological improvement, it was later renamed as micro-interface generator. Now the micro-interface generator in the present invention is equivalent to the previous micro-bubble generator, bubble breaker, etc., but the name is different.
  • the micro-interface generator of the present invention belongs to the prior art. Although some bubble breakers are pneumatic bubble breakers, some bubble breakers are hydraulic bubble breakers, and some are pneumatic bubble breakers.
  • the type of liquid-linked bubble breaker but the difference between the types is mainly selected according to the specific working conditions.
  • connection of the micro-interface generator and the reactor, and other equipment, including the connection structure and the connection position, according to the micro-interface It depends on the structure of the interface generator, which is not limited.
  • the pipeline connecting the separator and the first hydrogenation reactor is provided with a catalyst regenerator for removing impurities in the catalyst to restore the activity of the catalyst.
  • the catalyst regenerator is divided from bottom to top into a gas stripping section, a reaction section, and a catalyst settling section.
  • the diameter of the catalyst settling section is larger than the diameter of the reaction section, and the settling section is provided with heat exchange components.
  • the heat exchange components can be It is a serpentine heat exchanger or a series heat exchange box heat exchanger.
  • an oil phase outlet is provided on the top of the separator, and a membrane filter is connected to the oil phase outlet for separating the catalyst in the oil phase material.
  • the membrane filter can be a ceramic membrane filter.
  • the core component of the inorganic ceramic membrane has excellent thermal stability and pore stability, not only high strength, but also chemical corrosion resistance, good cleaning and regeneration performance, and both high-efficiency filtration and precision filtration. The double advantage.
  • a catalyst recovery port is provided at the bottom of the membrane filter, and the catalyst recovery port is connected to the side wall of the separator for returning the separated water phase material containing the catalyst to the separator.
  • the water-phase material containing the catalyst passes through the catalyst regenerator to remove impurities, and then returns to the first hydrogenation reactor for reuse after recovering the activity to the greatest extent. This reduces the loss of the catalyst, and the catalyst can be continuously taken out, regenerated and combined. In addition, high activity and high selectivity are maintained, so that cyclohexene can be produced continuously and stably for a long time.
  • the side wall of the membrane filter is also provided with a product outlet for discharging reaction products. After the oil phase material passes through the membrane filter, the small amount of catalyst contained in the product can be completely separated, and the purity of the product is improved.
  • a heat exchanger is provided on the pipeline between the discharge port of the benzene refiner and the first inlet, for cooling the refined benzene before entering the first hydrogenation reactor.
  • the heat exchanger is a tubular heat exchanger. Compared with other heat exchangers, the tubular heat exchanger has the characteristics of simple and compact structure, low cost, large heat transfer area, and good heat transfer effect.
  • the present invention also provides a method for the selective hydrogenation of benzene, which includes the following steps:
  • the hydrogen After the hydrogen is dispersed and broken into microbubbles, it undergoes a hydrogenation reaction with refined benzene under the action of a catalyst, and the reaction product is separated by the catalyst and collected.
  • the refined benzene is firstly cooled by heat exchange and then passed into the first hydrogenation reactor, and at the same time, hydrogen is passed into the micro-interface unit set inside the first hydrogenation reactor, so that it is broken into micron-level diameters.
  • Micro-bubbles After the hydrogen is dispersed and broken into micro-bubbles, it reacts with refined benzene under the action of a catalyst.
  • the mixture of the reacted material and the catalyst slurry enters the second hydrogenation reactor, and at the same time, the hydrogen is passed into the micro-interface unit set in the second hydrogenation reactor, so that it is broken into micrometers with a diameter of micrometers.
  • the hydrogen gas is dispersed and broken into microbubbles, it continues to react with the mixture from the first hydrogenation reactor to obtain a cyclohexene mixture, and then the cyclohexene mixture enters the separator to separate the catalyst and is discharged from the product outlet.
  • the temperature of the oximation reaction is 110-135° C., and the pressure is 2-2.5 MPa.
  • the present invention has the following beneficial effects:
  • the benzene selective hydrogenation reaction system of the present invention can disperse and break hydrogen into micro-bubbles with a diameter of micrometers by dispersing and breaking the hydrogen gas into micro-bubbles with a diameter of micrometers, and increase the hydrogen gas.
  • the phase boundary area between the liquid phase material and the liquid phase material makes the mass transfer space fully satisfied, and increases the residence time of hydrogen in the liquid phase, reduces the consumption of hydrogen, thereby greatly improving the reaction efficiency and significantly reducing the energy consumption of the reaction process ;
  • the reaction temperature and pressure are reduced, thereby increasing the yield of cyclohexene, reducing energy consumption and improving system safety.
  • FIG. 1 is a schematic structural diagram of a built-in micro-interface ammoximation reaction system provided by an embodiment of the present invention.
  • the benzene selective hydrogenation reaction system of an embodiment of the present invention includes a benzene refiner 10, a first hydrogenation reactor 20, a second hydrogenation reactor 30, and a separator 40 that are connected in sequence;
  • the bottom of the benzene refiner 10 is provided with a discharge port 11 and a raw material benzene inlet 12
  • the first hydrogenation reactor 20 is provided with a first inlet 21, a first outlet 22, and the second hydrogenation reactor 30 is provided with a second inlet 31, the second outlet 32;
  • the second inlet 31 is connected to the discharge port 11 of the benzene refiner 10;
  • the first outlet 22 is connected to the second inlet 31;
  • the second outlet 32 is connected to the separator 40 for separating the reaction products
  • the catalyst; the first hydrogenation reactor 20 and the second hydrogenation reactor 30 are equipped with a micro-interface unit 50, used to disperse the broken gas into micro-bubbles with a diameter of micrometers.
  • the micro-interface unit 50 includes a first micro-interface generator and a second micro-interface generator arranged one above the other.
  • the side wall of the first hydrogenation reactor 20 is also provided with an air inlet 23. The end of the air inlet 23 extends to the second micro-interface generator.
  • the structure of the micro-interface unit of the second hydrogenation reactor 30 and the first A micro-interface generator 20 is the same.
  • the first micro-interface generator is a hydraulic micro-interface generator
  • the second micro-interface generator is a pneumatic micro-interface generator
  • the first micro-interface generator and the second micro-interface generator are provided with mutual support
  • the specific material, shape and number of the support members are not limited, as long as they can achieve a supporting effect.
  • the hydrogen gas flows into the interior of the micro-interface unit 50 and is dispersed and broken into micron-level micro bubbles, which effectively increases the mass transfer area between the hydrogen and the liquid phase material, reduces the mass transfer resistance, and improves the reaction efficiency.
  • the bottom of the separator 40 of this embodiment is also provided with a catalyst outlet 41, and the catalyst outlet 41 is connected to the bottom of the first hydrogenation reactor 20 for the catalyst to enter the first hydrogenation reactor 20 for recycling.
  • the pipeline connecting the separator 40 and the first hydrogenation reactor 20 is also provided with a catalyst regenerator 60, and the water phase material containing the catalyst passes through the catalyst regenerator 60 to remove impurities, so as to restore the activity to the greatest extent and then send it back to the second
  • the reuse in a hydrogenation reactor 20 reduces the loss of the catalyst, and the catalyst can be continuously taken out, regenerated and replenished, maintaining high activity and high selectivity, so that cyclohexene can be produced continuously and stably for a long time.
  • the catalyst regenerator 60 is divided into a gas stripping section, a reaction section, and a catalyst settling section from bottom to top.
  • the diameter of the catalyst settling section is larger than the diameter of the reaction section, and the settling section is provided with heat exchange components, which are connected in series. Heat exchange box type heat exchanger.
  • an oil phase outlet 42 is also provided on the top of the separator 40, and the oil phase outlet 42 is connected to a membrane filter 70 for separating the catalyst in the oil phase material.
  • the membrane filter 70 is a ceramic membrane filter.
  • the core component of the inorganic ceramic membrane has excellent thermal stability and pore stability. It not only has high strength, chemical corrosion resistance, good cleaning and regeneration performance, and has the dual advantages of high-efficiency filtration and precision filtration.
  • a catalyst recovery port 71 is provided at the bottom of the membrane filter 70, and the catalyst recovery port 71 is connected to the side wall of the separator 40 for returning the separated water phase material containing the catalyst to the separator 40.
  • the side wall of the membrane filter 70 is also provided with a product outlet 72 for discharging reaction products. After the oil phase material passes through the membrane filter 70, the small amount of catalyst contained in the product can be completely separated from the product, which improves the purity of the product.
  • the benzene refiner 10 is also provided with a desulfurization adsorbent packing layer.
  • the benzene refiner 10 can refine the raw material benzene to remove the sulfur-containing impurities in the raw material benzene, and the benzene from the benzene refiner 10
  • the sulfur content is less than or equal to 5PPb, so as to avoid the catalyst poisoning caused by the impurities contained in the raw material benzene.
  • a heat exchanger 80 is provided on the pipeline between the discharge port 11 of the benzene refiner 10 and the first inlet 21 for cooling the refined benzene before entering the first hydrogenation reactor 20.
  • the heat exchanger 80 is a tubular heat exchanger. Compared with other heat exchangers, the tubular heat exchanger has the characteristics of simple and compact structure, low cost, large heat transfer area, and good heat transfer effect.
  • the first hydrogenation reactor 20 and the second hydrogenation reactor 30 are both fixed-bed catalytic reactors. Since the internal catalyst of the fixed-bed catalyst remains fixed, it is not easy to wear in the bed and can be used for a long time. , And the reactor structure is simple and easy to operate.
  • the hydrogen enters the micro-interface unit 50 through the air inlet 23 to be dispersed and broken into micron-level micro-bubbles.
  • the liquid-phase raw material refined benzene enters the first hydrogenation reactor 20, where the micro-bubbles and the liquid-phase mixed raw material are dispersed and broken. Fully emulsification effectively increases the mass transfer area of the gas-liquid two-phase and reduces the mass transfer resistance.
  • the temperature in the first hydrogenation reactor 20 is 110-135° C. and the pressure is 2-2.5 MPa.
  • the mixture of the reacted material and the catalyst slurry enters the second hydrogenation reactor 30.
  • the hydrogen is passed through the micro-interface unit 50 arranged inside the second hydrogenation reactor 30 to be broken into micrometers in diameter. After the hydrogen gas is dispersed and broken into microbubbles, it continues to react with the mixture from the first hydrogenation reactor 20 to obtain a cyclohexene mixture, and then the cyclohexene mixture exits the second outlet 32 and enters the separator 40.
  • the oil phase material exits the oil phase outlet 42 and enters the membrane filter 70.
  • the product after the catalyst is completely separated is discharged from the product outlet 72.
  • the water phase material containing the catalyst passes through the catalyst recovery port 71 and passes through the catalyst regenerator 60 to restore activity. Then it is returned to the first hydrogenation reactor 20 for reuse.

Abstract

本发明提供了一种苯选择性加氢反应系统及方法,包括依次连接的苯精制器、第一加氢反应器以及第二加氢反应器和分离器;其中,第一加氢反应器设置有第一进口,第一出口,第二加氢反应器设置有第二进口,第二出口;第一进口与苯精制器的出料口连接;第一出口与第二进口连接;第二出口与分离器连接;催化剂出口与第一加氢反应器连接以用于循环使用;第一加氢反应器与第二加氢反应器内部均设置有微界面机组,微界面机组用于分散破碎氢气成直径成微米级别的微气泡。本发明的苯选择性加氢反应系统,通过在反应器内部设置了微界面机组后,增大了氢气与液相物料之间的传质面积,降低了反应温度和压力,提高了环己烯的收率,增加了系统的安全性。

Description

一种苯选择性加氢反应系统及方法 技术领域
本发明属于微界面强化反应技术领域,具体涉及一种苯选择性加氢反应系统及方法。
背景技术
随着合成纤维和尼龙66聚酰胺工业的发展,苯选择性加氢制环己烯相比传统的苯完全加氢工艺具有经济、安全、环保的优势,是近年来化工领域中一个重要的研究方向,越来越受到人们的重视。苯选择性加氢制备环己烯的现有工艺流程为:苯、氢气、催化剂在两台串联的且带有搅拌的反应器内进行,反应器通常采用鼓泡式氧化反应器,气泡直接通常大于3mm,乃至厘米级,其传质界相面积有限,气体利用率低以致反应效率偏低,为强化气液传质,鼓泡反应器一般在塔内增设塔板、静态混合器等内件以加强混合,然而混合后的气泡直径通常为3-30mm,所提供的相界面积和传质系数(液侧、气侧)有限,故反应性能较难获得突破性的提高,进而影响了反应的整体效率,为了保证反应的均匀性,需要气、液、固三相能充分混合,因此,现有技术对反应器内搅拌的要求较高,需要较大的搅拌动能,才能保证气、液、固三相的混合,能耗大且反应效率低,另外,由于反应过程中温度和压力过高,导致副产物增多,环己烯的收率低、能耗高且系统危险性提高。
有鉴于此,特提出本发明。
发明内容
鉴于此,本发明的第一目的在于提供一种苯选择性加氢反应系统,该反应系统在第一加氢反应器和第二加氢反应器内部设置微界面机组,通过设置了微界面机组后,一方面可以将氢气分散破碎成直径微米级的微气泡,增加氢气和液相物料之间的相界面积,使得传质空间充分满足,而且增加了氢气在液相中的停留时间,降低了氢气的耗量,从而大幅提高反应效率、显著降低反应过程的能耗;另一方面降低了反应温度以及压力,从而提高了环己烯的收率,而且减少了能耗,提高了系统安全性。
本发明的第二目的在于提供一种采用上述反应系统进行反应的方法,该方法的操作条件更加温和,在保证反应效率的同时降低了反应的温度和压力,而且安全性能高、能耗低,达到了比现有工艺更佳的反应效果。
为了实现本发明的上述目的,特采用以下技术方案:
本发明提供了一种苯选择性加氢反应系统,包括依次连接的苯精制器、第一加氢反应器以及第二加氢反应器和分离器;其中,
所述苯精制器底部设置有出料口,所述第一加氢反应器设置有第一进口,第一出口,所述第二加氢反应器设置有第二进口,第二出口;所述第一进口与所述苯精制器的出料口连接;所述第一出口与所述第二进口连接;所述第二出口与所述分离器连接以用于分离反应产物中的催化剂;
所述分离器的底部设置有催化剂出口,所述催化剂出口与所述第一加氢反应器连接以用于催化剂进入所述第一加氢反应器内部循环使用;
所述第一加氢反应器与第二加氢反应器内部均设置有微界面机组,所述微界面机组用于分散破碎氢气成直径成微米级别的微气泡。
现有技术中,苯选择性加氢制备环己烯的反应存在以下问题:一方面,现有反应器的气液相传质面积有限,反应过程中,反应混合原料和氢气无法得到充分混合,能耗大而且反应效率低下;另一方面,由于反应过程中温度和压力 过高,导致副产物增多,环己烯的收率低、能耗高且系统危险性提高。
本发明的苯选择性加氢反应系统,通过在第一加氢反应器和第二加氢反应器内部设置微界面机组后,一方面可以将氢气分散破碎成直径微米级的微气泡,增加氢气和液相物料之间的相界面积,使得传质空间充分满足,而且增加了氢气在液相中的停留时间,降低了氢气的耗量,从而大幅提高反应效率、显著降低反应过程的能耗;另一方面降低了反应温度以及压力,从而提高了环己烯的收率,而且减少了能耗,提高了系统安全性。
进一步的,所述苯精制器的顶部设置有原料苯入口,底部设置有出料口;所述苯精制器的内设置有脱硫吸附剂填料层,所述苯精制器能对原料苯进行精制,用于去除原料苯中的含硫杂质,从苯精制器中出来的苯含硫≤5PPb,从而避免原料苯中所含杂质使催化剂中毒。
进一步的,所述第一加氢反应器和第二加氢反应器均为固定床催化反应器,由于固定床催化反应器内部催化剂直接装填在固定床上,因此在床层内不易磨损,可长期使用,而且反应器结构简单,操作方便。
进一步的,所述微界面机组包括上下布置的第一微界面发生器和第二微界面发生器,所述第一微界面发生器连接有导气管,所述导气管的顶端伸出所述第一加氢反应器的液面用于回收空气,所述第一加氢反应器的侧壁还设置有进气口,所述进气口末端延伸至所述第二微界面发生器内,所述第二加氢反应器内的微界面机组结构与所述第一加氢反应器相同。
进一步的,所述第一微界面发生器为液动式微界面发生器,所述第二微界面发生器为气动式微界面发生器;所述第一微界面发生器和所述第二微界面发生器之间设置有用于互相支撑的支撑件,支撑件的具体材质、形状和数量不限,只要能起到支撑效果,优选管状、杆状或板状。氢气通入第二微界面发生器的内部分散破碎成微米级别的微气泡,有效的增大了氨气与液相物料之间的传质面积,降低传质阻力,提高反应效率。
本领域所属技术人员可以理解的是,本发明所采用的微界面发生器在本发 明人在先专利中已有体现,如申请号CN201610641119.6、201610641251.7、CN201710766435.0、CN106187660、CN105903425A、CN109437390A、CN205833127U及CN207581700U的专利。在先专利CN201610641119.6中详细介绍了微米气泡发生器(即微界面发生器)的具体产品结构和工作原理,该申请文件中记载了“微米气泡发生器包括本体和二次破碎件、本体内具有空腔,本体上设有与空腔连通的进口,空腔的相对的第一端和第二端均敞开,其中空腔的横截面积从空腔的中部向空腔的第一端和第二端减小;二次破碎件设在空腔的第一端和第二端中的至少一个处,二次破碎件的一部分设在空腔内,二次破碎件与空腔两端敞开的通孔之间形成一个环形通道。微米气泡发生器还包括进气管和进液管。”从该申请文件中公开的具体结构可以知晓其具体工作原理为:液体通过进液管切向进入微米气泡发生器内,超高速旋转并切割气体,使气体气泡破碎成微米级别的微气泡,从而提高液相与气相之间的传质面积,而且该专利中的微米气泡发生器属于气动式微界面发生器。
另外,在先专利201610641251.7中有记载一次气泡破碎器具有循环液进口、循环气进口和气液混合物出口,二次气泡破碎器则是将进料口与气液混合物出口连通,说明气泡破碎器都是需要气液混合进入,另外从后面的附图中可知,一次气泡破碎器主要是利用循环液作为动力,所以其实一次气泡破碎器属于液动式微界面发生器,二次气泡破碎器是将气液混合物同时通入到椭圆形的旋转球中进行旋转,从而在旋转的过程中实现气泡破碎,所以二次气泡破碎器实际上是属于气液联动式微界面发生器。其实,无论是液动式微界面发生器,还是气液联动式微界面发生器,都属于微界面发生器的一种具体形式,然而本发明所采用的微界面发生器并不局限于上述几种形式,在先专利中所记载的气泡破碎器的具体结构只是本发明微界面发生器可采用的其中一种形式而已。
此外,在先专利201710766435.0中记载到“气泡破碎器的原理就是高速射流以达到气体相互碰撞”,并且也阐述了其可以用于微界面强化反应器,验证本身气泡破碎器与微界面发生器之间的关联性;而且在先专利CN106187660中 对于气泡破碎器的具体结构也有相关的记载,具体见说明书中第[0031]-[0041]段,以及附图部分,其对气泡破碎器S-2的具体工作原理有详细的阐述,气泡破碎器顶部是液相进口,侧面是气相进口,通过从顶部进来的液相提供卷吸动力,从而达到粉碎成超细气泡的效果,附图中也可见气泡破碎器呈锥形的结构,上部的直径比下部的直径要大,也是为了液相能够更好的提供卷吸动力。
由于在先专利申请的初期,微界面发生器才刚研发出来,所以早期命名为微米气泡发生器(CN201610641119.6)、气泡破碎器(201710766435.0)等,随着不断技术改进,后期更名为微界面发生器,现在本发明中的微界面发生器相当于之前的微米气泡发生器、气泡破碎器等,只是名称不一样。
综上所述,本发明的微界面发生器属于现有技术,虽然有的气泡破碎器属于气动式气泡破碎器类型,有的气泡破碎器属于液动式气泡破碎器类型,还有的属于气液联动式气泡破碎器类型,但是类型之间的差别主要是根据具体工况的不同进行选择,另外关于微界面发生器与反应器、以及其他设备的连接,包括连接结构、连接位置,根据微界面发生器的结构而定,此不作限定。
进一步的,所述分离器与所述第一加氢反应器连接的管路上设置有催化剂再生器以用于清除催化剂中的杂质以恢复催化剂的活性。所述催化剂再生器自下而上分为气提段、反应段和催化剂沉降段,其中,催化剂沉降段的直径大于反应段的直径,且在沉降段内设有换热组件,换热组件可以为蛇管换热器或串联换热箱式换热器。
进一步的,所述分离器的顶部设置有油相出口,所述油相出口连接有膜过滤器以用于分离油相物料中的催化剂。所述膜过滤器可选择陶瓷膜过滤器,其核心组件无机陶瓷膜具有优良的热稳定性与孔稳定性能,不但强度高、且耐化学腐蚀,清洗再生性能好,兼备有高效过滤与精密过滤的双重优点。
进一步的,所述膜过滤器的底部设置有催化剂回收口,所述催化剂回收口与所述分离器的侧壁连接以用于将分离出的含催化剂的水相物料返回所述分离器中。含有催化剂的水相物料经过催化剂再生器清除杂质,以再大限度恢复 活性后重新送回所述第一加氢反应器内部重复利用,降低了催化剂的损耗,并且催化剂得以连续的取出、再生并补充,保持了高活性和高选择性,从而可长期的、连续稳定的生产环己烯。
进一步的,所述膜过滤器的侧壁还设置有用于反应产物排出的产物出口。油相物料通过所述膜过滤器后,含有的少量催化剂与产物得以完全分离,提高了产物的纯度。
进一步的,所述苯精制器的出料口与所述第一进口之间的管路上设置有换热器,以用于精制苯进入所述第一加氢反应器之前先进行降温。所述换热器为列管式换热器,相比其它换热器,列管式换热器具有结构简单紧凑、造价便宜、传热面积大、传热效果好等特点。
除此之外,本发明还提供了一种苯选择性加氢反应的方法,包括如下步骤:
氢气经过分散破碎成微气泡后,与精制苯在催化剂作用下进行加氢反应,反应产物经催化剂分离后收集。
进一步地,先将精制苯换热冷却后通入第一加氢反应器内部,同时将氢气通入设置在第一加氢反应器内部的微界面机组内,使其破碎成直径为微米级别的微气泡,氢气经过分散破碎成微气泡后,与精制苯在催化剂作用下进行反应。
经过反应后的物料和催化剂浆料的混合物进入第二加氢反应器内部,同时将氢气通入设置在第二加氢反应器内部的微界面机组内,使其破碎成直径为微米级别的微气泡,氢气经过分散破碎成微气泡后,与第一加氢反应器出来的混合物继续反应得到环己烯混合物,随后环己烯混合物进入分离器中分离出催化剂后从产物出口排出。
进一步的,所述肟化反应的温度为110-135℃,压力为2-2.5MPa。
与现有技术相比,本发明的有益效果在于:
本发明的苯选择性加氢反应系统,通过在第一加氢反应器和第二加氢反应器内部设置微界面机组后,一方面可以将氢气分散破碎成直径微米级的微气泡,增加氢气和液相物料之间的相界面积,使得传质空间充分满足,而且增加 了氢气在液相中的停留时间,降低了氢气的耗量,从而大幅提高反应效率、显著降低反应过程的能耗;另一方面降低了反应温度以及压力,从而提高了环己烯的收率,而且减少了能耗,提高了系统安全性。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本发明实施例提供的内置微界面氨肟化反应系统的结构示意图。
附图说明:
10-苯精制器;                      11-出料口;
12-原料苯入口;                    20-第一加氢反应器;
21-第一进口;                      22-第一出口;
23-进气口;                        30-第二加氢反应器;
31-第二进口;                      32-第二出口;
40-隔离器;                        41-催化剂出口;
42-油相出口;                      50-微界面机组;
60-催化剂再生器;                  70-膜过滤器;
71-催化剂回收口;                  72-产物出口;
80-换热器。
具体实施方式
下面将结合附图和具体实施方式对本发明的技术方案进行清楚、完整地描述,但是本领域技术人员将会理解,下列所描述的实施例是本发明一部分实施 例,而不是全部的实施例,仅用于说明本发明,而不应视为限制本发明的范围。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
为了更加清晰的对本发明中的技术方案进行阐述,下面以具体实施例的形式进行说明。
实施例
参阅图1所示,为本发明实施例的苯选择性加氢反应系统,包括依次连接的苯精制器10、第一加氢反应器20以及第二加氢反应器30和分离器40;其中,苯精制器10的底部设置有出料口11和原料苯入口12,第一加氢反应器20设置有第一进口21,第一出口22,第二加氢反应器30设置有第二进口31,第二出口32;第二进口31与苯精制器10的出料口11连接;第一出口22与第二进口31连接;第二出口32与分离器40连接以用于分离反应产物中的催化 剂;第一加氢反应器20和第二加氢反应器30内部均设置有微界面机组50,用于分散破碎气体成直径为微米级别的微气泡。
具体而言,微界面机组50包括上下布置的第一微界面发生器和第二微界面发生器,第一微界面发生器连接有导气管,导气管的顶端伸出反应器的液面用于回收氢气,第一加氢反应器20的侧壁还设置有进气口23,进气口23的末端延伸至第二微界面发生器,第二加氢反应器30的微界面机组结构与第一微界面发生器20相同。优选地,第一微界面发生器为液动式微界面发生器,第二微界面发生器为气动式微界面发生器;第一微界面发生器和第二微界面发生器之间设置有用于互相支撑的支撑件,可以理解的是,支撑件的具体材质、形状和数量不限,只要能起到支撑效果即可。氢气通入微界面机组50的内部分散破碎成微米级别的微气泡,有效的增大了氢气与液相物料之间的传质面积,降低传质阻力,提高反应效率。
该实施例的分离器40的底部还设置有催化剂出口41,催化剂出口41与第一加氢反应器20的底部连接以用于催化剂进入第一加氢反应器20内部循环使用。其中,在分离器40和第一加氢反应器20连接的管路上还设置有催化剂再生器60,含有催化剂的水相物料经过催化剂再生器60清除杂质,以最大限度恢复活性后重新送回第一加氢反应器20内重复利用,降低了催化剂的损耗,并且催化剂得以连续的取出、再生并补充,保持了高活性和高选择性,从而可长期的、连续稳定的生产环己烯。催化剂再生器60自下而上分为气提段、反应段和催化剂沉降段,其中,催化剂沉降段的直径大于反应段的直径,且在沉降段内设有换热组件,换热组件为串联换热箱式换热器。
此外,分离器40的顶部还设置有油相出口42,油相出口42连接有膜过滤器70,以用于分离油相物料中的催化剂,本实施例中,膜过滤器70为陶瓷膜过滤器,其核心组件无机陶瓷膜具有优良的热稳定性与孔稳定性能,不但强度高、且耐化学腐蚀,清洗再生性能好,兼备有高效过滤与精密过滤的双重优点。膜过滤器70的底部设置有催化剂回收口71,催化剂回收口71与分离器40的 侧壁连接以用于将分离出的含催化剂的水相物料返回分离器40中。膜过滤器70的侧壁还设置有用于反应产物排出的产物出口72,油相物料通过膜过滤器70后,含有的少量催化剂与产物得以完全分离,提高了产物的纯度。
本实施例中,苯精制器10内还设置有脱硫吸附剂填料层,苯精制器10能对原料苯进行精制,用于去除原料苯中的含硫杂质,从苯精制器10中出来的苯含硫≤5PPb,从而避免原料苯中所含杂质使催化剂中毒。另外,苯精制器10的出料口11与第一进口21之间的管路上设置有换热器80,以用于精制苯进入第一加氢反应器20之前先进行降温,优选地,换热器80为列管式换热器,相比其它换热器,列管式换热器具有结构简单紧凑、造价便宜、传热面积大、传热效果好等特点。
本实施例中,第一加氢反应器20和第二加氢反应器30均为固定床催化反应器,由于固定床催化剂内部催化剂保持固定不动,因此在床层内不易磨损,可长期使用,而且反应器结构简单,操作方便。
以下简要说明本发明苯选择性加氢反应系统的工作过程和原理。
氢气通过进气口23先进入微界面机组50内进行分散破碎成微米级别的微气泡,同时,液相原料精制苯进入第一加氢反应器20内,分散破碎后的微气泡与液相混合原料充分进行乳化,有效地增大了气液两相的传质面积,降低了传质阻力。
随着,充分乳化后的乳化液在催化剂的作用下在第一加氢反应器20内部进行催化反应,第一加氢反应器20内的温度为110-135℃,压力为2-2.5MPa。经过反应后的物料和催化剂浆料的混合物进入第二加氢反应器30内部,同时,将氢气通过设置在第二加氢反应器30内部的微界面机组50内,使其破碎成直径为微米级别的微气泡,氢气经过分散破碎成微气泡后,与第一加氢反应器20出来的混合物继续反应得到环己烯混合物,随后环己烯混合物从第二出口32出来进入分离器40中,油相物料从油相出口42中出来进入膜过滤器70中,经过催化剂完全分离后的产物从产物出口72中排出,含催化剂的水相物料通 过通过催化剂回收口71经过催化剂再生器60恢复活性后重新送回第一加氢反应器20内重复利用。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (9)

  1. 一种苯选择性加氢反应系统,其特征在于,包括依次连接的苯精制器、第一加氢反应器以及第二加氢反应器和分离器;其中,
    所述苯精制器底部设置有出料口,所述第一加氢反应器设置有第一进口,第一出口,所述第二加氢反应器设置有第二进口,第二出口;所述第一进口与所述苯精制器的出料口连接;所述第一出口与所述第二进口连接;所述第二出口与所述分离器连接以用于分离反应产物中的催化剂;
    所述分离器的底部设置有催化剂出口,所述催化剂出口与所述第一加氢反应器连接以用于催化剂进入所述第一加氢反应器内部循环使用;
    所述第一加氢反应器与第二加氢反应器内部均设置有微界面机组,所述微界面机组用于分散破碎氢气成直径成微米级别的微气泡。
  2. 根据权利要求1所述的苯选择性加氢发应系统,其特征在于,所述微界面机组包括上下布置的第一微界面发生器和第二微界面发生器,所述第一微界面发生器连接有导气管,所述导气管的顶端伸出所述第一加氢反应器的液面用于回收空气,所述第一加氢反应器的侧壁还设置有进气口,所述进气口末端延伸至所述第二微界面发生器内,所述第二加氢反应器内的微界面机组结构与所述第一加氢反应器相同。
  3. 根据权利要求1所述的苯选择性加氢反应系统,其特征在于,所述分离器与所述第一加氢反应器连接的管路上设置有催化剂再生器以用于清除催化剂中的杂质以恢复催化剂的活性。
  4. 根据权利要求1所述的苯选择性加氢反应系统,其特征在于,所述分离器的顶部设置有油相出口,所述油相出口连接有膜过滤器以用于分离油相物料中催化剂。
  5. 根据权利要求4所述的苯选择性加氢反应系统,其特征在于,所述膜过滤器的底部设置有催化剂回收口,所述催化剂回收口与所述分离器的侧壁连接以用于将分离出的含催化剂的水相物料返回所述分离器中。
  6. 根据权利要求5所述的苯选择性加氢反应系统,其特征在于,所述膜过滤器的侧壁还设置有用于反应产物排出的产物出口。
  7. 根据权利要求1所述的苯选择性加氢反应系统,其特征在于,所述苯精制器的出料口与所述第一进口之间的管路上设置有换热器,以用于精制苯进入所述第一加氢反应器之前先进行降温。
  8. 采用权利要求1-8任一项所述的加氢反应系统进行苯选择性加氢反应的方法,其特征在于,包括如下步骤:
    氢气经过分散破碎成微气泡后,与精制苯在催化剂作用下进行加氢反应,反应产物经催化剂分离后收集。
  9. 根据权利要求8所述的方法,其特征在于,所述第一加氢反应器和第二加氢反应器的温度为110-135℃;压力为2-2.5Mpa。
PCT/CN2020/092788 2020-05-14 2020-05-28 一种苯选择性加氢反应系统及方法 WO2021227135A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20935874.6A EP4151309A1 (en) 2020-05-14 2020-05-28 Benzene selective hydrogenation reaction system and method
US17/617,948 US11370727B1 (en) 2020-05-14 2020-05-28 Benzene selective hydrogenation reaction system and method thereof
JP2022562251A JP2023521195A (ja) 2020-05-14 2020-05-28 ベンゼンの選択的水素添加反応システム及び方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010406024.2 2020-05-14
CN202010406024.2A CN111569815B (zh) 2020-05-14 2020-05-14 一种苯选择性加氢反应系统及方法

Publications (1)

Publication Number Publication Date
WO2021227135A1 true WO2021227135A1 (zh) 2021-11-18

Family

ID=72123933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092788 WO2021227135A1 (zh) 2020-05-14 2020-05-28 一种苯选择性加氢反应系统及方法

Country Status (5)

Country Link
US (1) US11370727B1 (zh)
EP (1) EP4151309A1 (zh)
JP (1) JP2023521195A (zh)
CN (1) CN111569815B (zh)
WO (1) WO2021227135A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112342055B (zh) * 2020-10-21 2023-03-24 南京延长反应技术研究院有限公司 一种加氢强化微界面系统
CN112322347B (zh) * 2020-10-21 2023-03-24 南京延长反应技术研究院有限公司 一种加氢微界面系统
CN114471377B (zh) * 2020-10-28 2023-07-04 中国石油化工股份有限公司 一种重整生成油脱烯烃反应器及反应方法
CN113499739A (zh) * 2021-07-16 2021-10-15 南京延长反应技术研究院有限公司 一种即时脱水的dmc制备系统及制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0769940A (ja) * 1993-08-27 1995-03-14 Mitsubishi Chem Corp シクロオレフィンの製造方法
CN102241558A (zh) * 2011-05-13 2011-11-16 化学工业第二设计院宁波工程有限公司 一种苯选择性加氢制备环己烯反应装置及工艺
CN105903425A (zh) 2016-04-21 2016-08-31 南京大学 喷射反应器
CN106187660A (zh) 2016-09-08 2016-12-07 南京大学 苯加氢生产环己烷的装置和工艺
CN205831217U (zh) 2016-06-08 2016-12-28 维珍妮国际(集团)有限公司
CN207581700U (zh) 2017-06-19 2018-07-06 南京大学 一种四氯-2-氰基吡啶的液相氯化法生产装置
CN109158113A (zh) * 2018-07-18 2019-01-08 北京华和拓科技开发有限责任公司 一种苯部分加氢催化剂回收系统及其实现方法
CN109437390A (zh) 2018-12-19 2019-03-08 南京大学盐城环保技术与工程研究院 一种臭氧催化氧化废水的反应器及其使用方法
CN210045217U (zh) * 2019-01-29 2020-02-11 南京大学 上下对冲式渣油加氢乳化床微界面强化反应装置
CN210045219U (zh) * 2019-01-30 2020-02-11 南京大学 一种上下对冲式微界面强化反应装置
CN111056903A (zh) * 2019-11-29 2020-04-24 河北美邦膜科技有限公司 一种苯部分加氢催化剂的回收新工艺及装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW218865B (zh) * 1992-01-24 1994-01-11 Asahi Carbon Kabushiki Kaisha
US9834494B2 (en) * 2014-09-29 2017-12-05 Uop Llc Methods and apparatuses for hydrocarbon production

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0769940A (ja) * 1993-08-27 1995-03-14 Mitsubishi Chem Corp シクロオレフィンの製造方法
CN102241558A (zh) * 2011-05-13 2011-11-16 化学工业第二设计院宁波工程有限公司 一种苯选择性加氢制备环己烯反应装置及工艺
CN105903425A (zh) 2016-04-21 2016-08-31 南京大学 喷射反应器
CN205831217U (zh) 2016-06-08 2016-12-28 维珍妮国际(集团)有限公司
CN106187660A (zh) 2016-09-08 2016-12-07 南京大学 苯加氢生产环己烷的装置和工艺
CN207581700U (zh) 2017-06-19 2018-07-06 南京大学 一种四氯-2-氰基吡啶的液相氯化法生产装置
CN109158113A (zh) * 2018-07-18 2019-01-08 北京华和拓科技开发有限责任公司 一种苯部分加氢催化剂回收系统及其实现方法
CN109437390A (zh) 2018-12-19 2019-03-08 南京大学盐城环保技术与工程研究院 一种臭氧催化氧化废水的反应器及其使用方法
CN210045217U (zh) * 2019-01-29 2020-02-11 南京大学 上下对冲式渣油加氢乳化床微界面强化反应装置
CN210045219U (zh) * 2019-01-30 2020-02-11 南京大学 一种上下对冲式微界面强化反应装置
CN111056903A (zh) * 2019-11-29 2020-04-24 河北美邦膜科技有限公司 一种苯部分加氢催化剂的回收新工艺及装置

Also Published As

Publication number Publication date
CN111569815A (zh) 2020-08-25
JP2023521195A (ja) 2023-05-23
US11370727B1 (en) 2022-06-28
US20220204425A1 (en) 2022-06-30
EP4151309A1 (en) 2023-03-22
CN111569815B (zh) 2021-07-30

Similar Documents

Publication Publication Date Title
WO2021227135A1 (zh) 一种苯选择性加氢反应系统及方法
WO2022041425A1 (zh) 一种环状碳酸酯的强化微界面制备系统及方法
CN102241558B (zh) 一种苯选择性加氢制备环己烯反应装置及工艺
CN101293195A (zh) 搅拌/导流多相反应器
CN113499739A (zh) 一种即时脱水的dmc制备系统及制备方法
EP4183480A1 (en) Micro-interface reaction system and method for diesel hydrogenation
CN111777491A (zh) 一种煤制乙醇的微界面反应系统及方法
CN112058185A (zh) 一种石油树脂加氢的反应系统及方法
CN113061081A (zh) 一种丙烯羰基化制丁醛的微界面强化反应系统及方法
CN106479562B (zh) 一种强化氢气在重整生成油中的溶解方法及应用
WO2021227136A1 (zh) 一种苯选择性加氢制备环己酮的强化反应系统及方法
CN111574399A (zh) 一种氨肟化兼回收叔丁醇的反应系统及方法
CN112774592A (zh) 一种粗对苯二甲酸加氢精制的微界面反应系统及方法
CN113061461A (zh) 一种提高柴油品质的装置及方法
WO2023284024A1 (zh) 正丁醛缩合制辛烯醛的微界面强化系统及制备方法
CN215593001U (zh) 一种重整生成油微界面加氢装置
CN215540715U (zh) 一种内置式即时脱水微界面强化dmc制备系统
CN214612318U (zh) 一种柴油加氢的微界面反应系统
CN112774579B (zh) 一种粗对苯二甲酸加氢精制的智能微界面反应系统及方法
WO2021227137A1 (zh) 一种酯化法制备环己酮的外置微界面强化系统及方法
WO2022032868A1 (zh) 一种制备n-甲基牛磺酸钠的反应系统及方法
CN208852555U (zh) 一种双氧水稀品生产装置中氧化尾气的高效除液分离器
CN113061460A (zh) 一种柴油加氢的微界面反应系统及方法
CN112457169A (zh) 一种草酸酯法制备乙二醇的反应系统及方法
CN104415716B (zh) 一种浆态床反应器及其应用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935874

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022562251

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020935874

Country of ref document: EP

Effective date: 20221214