WO2022032868A1 - 一种制备n-甲基牛磺酸钠的反应系统及方法 - Google Patents

一种制备n-甲基牛磺酸钠的反应系统及方法 Download PDF

Info

Publication number
WO2022032868A1
WO2022032868A1 PCT/CN2020/122733 CN2020122733W WO2022032868A1 WO 2022032868 A1 WO2022032868 A1 WO 2022032868A1 CN 2020122733 W CN2020122733 W CN 2020122733W WO 2022032868 A1 WO2022032868 A1 WO 2022032868A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
methylamine
micro
separation tank
liquid separation
Prior art date
Application number
PCT/CN2020/122733
Other languages
English (en)
French (fr)
Inventor
张志炳
周政
张锋
李磊
孟为民
王宝荣
杨高东
罗华勋
杨国强
田洪舟
曹宇
Original Assignee
南京延长反应技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京延长反应技术研究院有限公司 filed Critical 南京延长反应技术研究院有限公司
Publication of WO2022032868A1 publication Critical patent/WO2022032868A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/32Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of salts of sulfonic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/42Separation; Purification; Stabilisation; Use of additives
    • C07C303/44Separation; Purification

Definitions

  • the invention relates to the technical field of preparing sodium N-methyl taurate, in particular to a reaction system and method for preparing sodium N-methyl taurate.
  • Sodium N-methyl taurine is an important derivative of sodium taurine, which can be used as an important intermediate for daily chemicals, medicines and surfactants.
  • a variety of high value-added products can be synthesized, such as sodium cocoyl-N-methyl taurate, hydroxyethyl acrylate/sodium acryloyl dimethyl taurate copolymer, polyacryloyl Sodium dimethyl taurate, etc., can also be used as mild surfactants due to their mild properties. With the increasing improvement of people's living standards, the demand for mild surfactants is also greatly increased.
  • the synthesis of sodium N-methyl taurine is the most critical reaction.
  • the main method for industrially synthesizing sodium N-methyl taurine is reductive amination method.
  • the required temperature is 230°C-280°C
  • the required pressure is 10MPa-20MPa
  • the industrial cost is ,
  • the equipment cost and loss are huge, and it has many disadvantages such as high pressure, high temperature and low conversion rate.
  • the first object of the present invention is to provide a reaction system for preparing sodium N-methyl taurate.
  • the reaction system can disperse and break the material into micro-interface generators after setting the micro-interface generator inside the amination reaction kettle. bubbles, thereby increasing the phase interface area between the gas phase and the liquid phase, making the mass transfer space fully satisfied, increasing the residence time of the gas in the liquid phase, reducing the energy consumption, and improving the reaction efficiency;
  • the operating temperature and pressure inside the amination reactor improve the safety and stability of the entire reaction system.
  • the second object of the present invention is to provide a method for preparing sodium N-methyl taurate by using the above reaction system, which is beneficial to reduce energy consumption and achieve a better reaction effect than the prior art.
  • the invention provides a reaction system for preparing sodium N-methyl taurate, comprising: an amination reaction kettle; an amination reaction product from the amination reaction kettle is reacted in a tubular reactor and then enters a first gas liquid separation tank;
  • the inside of the amination reaction kettle is provided with a micro-interface generator for dispersing broken materials into micro-bubbles, and the side wall of the amination reaction kettle is provided with a liquid-phase material inlet for feeding sodium isethionate and methylamine.
  • the inlet, the methylamine inlet is equipped with a methylamine delivery pipeline, and the methylamine delivery pipeline enters the amination reactor and is connected with the micro-interface generator, so that methylamine is passed into the micro-interface to generate inside of the device;
  • the bottom of the first gas-liquid separation tank is provided with a first liquid phase outlet, and the first liquid phase outlet is connected with a first heat exchanger for liquefying the liquid phase product, and the liquefied product enters the second gas phase
  • the liquid separation tank is further separated; the bottom of the second gas-liquid separation tank is provided with a second liquid phase outlet for collecting products.
  • the main method of industrially synthesizing sodium N-methyl taurine is reductive amination method.
  • the required temperature is 230 °C-280 °C
  • the required pressure is 10MPa-20MPa.
  • the cost and loss are huge, and it has the disadvantages of high pressure and high temperature, and because methylamine and sodium isethionate cannot be fully mixed in the reactor, resulting in the problem of low system reaction efficiency.
  • the reaction system of sodium sulfonate can disperse and break the material into microbubbles, thereby increasing the phase interface area between the gas phase and the liquid phase, so that the mass transfer space is fully satisfied, the residence time of the gas in the liquid phase is increased, and the The energy consumption is improved, and the reaction efficiency is improved; on the other hand, the operating temperature and pressure inside the amination reaction kettle are reduced, and the safety and stability of the entire reaction system are improved.
  • the micro-interface generator is arranged inside the amination reaction kettle, and the methylamine is directly transported to the micro-interface generator through the methylamine delivery pipeline, so that the methylamine can be dispersed and broken into microbubbles immediately after being dispersed and broken into microbubbles.
  • the amination reaction of sodium isethionate occurs precisely because the applicant has found through a lot of practice that the microbubbles will continue to dissolve during the movement process.
  • the dispersed and broken micro-bubbles dissolve in the process of entering the amination reaction kettle, and the number of micro-bubbles decreases, so that the expected effect cannot be achieved. Therefore, it is necessary to set the micro-interface generator inside the amination reaction kettle.
  • the micro-interface generator is set inside the reactor, preferably in the lower part of the middle of the reactor. This setting is mainly because a large number of bubbles generated by the micro-interface generator have enough space to move upward, and they continue to move upward during the upward movement. Collision emulsification with the liquid phase increases the residence time of the bubbles in the liquid phase. In addition, it is not easy for bubbles to coalesce, and the original shape can be maintained, so that the contact area between the gas phase and the liquid phase in the reactor increases geometrically, and the emulsification and mixing are more sufficient and stable, so as to achieve enhanced mass transfer and macroscopic reaction. Effect.
  • micro-interface generators In order to improve the effect of the micro-interface, it is better to set the number of micro-interface generators to more than one. Multiple micro-interface generators can be arranged in parallel from top to bottom in sequence. The bubbles move downward, the bubbles generated by the micro-interface generator below move upward, and the two collide to generate smaller bubbles to achieve hedging, further increasing the contact area and speeding up the reaction efficiency. It can also be arranged in series in the horizontal direction. When the series is arranged in series in the horizontal direction, the micro-bubbles generated by the micro-interface generator set in the front enter the micro-interface generator set in the rear, and further, the micro-bubbles are broken into smaller ones. It can also prolong the residence time of the gas in the liquid phase and fully improve the mass transfer effect.
  • the number of micro-interface generators is set to 2, and 2 can ensure the effect of dispersion and crushing.
  • the amination reaction time can be further extended, and the conversion rate of the reaction can be improved.
  • methylamine conveying pipeline includes a methylamine conveying pipeline, and the methylamine conveying pipeline is connected to the micro-interface generator through the wall surface of the amination reaction kettle, so as to pass methylamine into the interior of the micro-interface generator.
  • micro-interface generator is selected from one or more of a pneumatic micro-interface generator, a hydraulic micro-interface generator and a gas-liquid linkage micro-interface generator.
  • micro-interface generator used in the present invention has been embodied in the inventor's prior patents, such as application numbers CN201610641119. Patents of CN205833127U and CN207581700U. In the previous patent CN201610641119.6, the specific product structure and working principle of the micro-bubble generator (that is, the micro-interface generator) were introduced in detail.
  • the body is provided with an inlet communicating with the cavity, the opposite first and second ends of the cavity are open, wherein the cross-sectional area of the cavity is from the middle of the cavity to the first and second ends of the cavity.
  • the second end is reduced; the secondary crushing piece is arranged at at least one of the first end and the second end of the cavity, a part of the secondary crushing piece is arranged in the cavity, and both ends of the secondary crushing piece and the cavity are open An annular channel is formed between the through holes of the micro-bubble generator.
  • the micro-bubble generator also includes an air inlet pipe and a liquid inlet pipe.” From the specific structure disclosed in the application document, we can know that its specific working principle is: the liquid enters the micron tangentially through the liquid inlet pipe.
  • the micro-bubble generator in this patent belongs to the pneumatic micro-interface generation. device.
  • the previous patent 201610641251.7 records that the primary bubble breaker has a circulating liquid inlet, a circulating gas inlet and a gas-liquid mixture outlet, and the secondary bubble breaker communicates the feed port with the gas-liquid mixture outlet, indicating that the bubble breaker is both It needs to be mixed with gas and liquid.
  • the primary bubble breaker mainly uses circulating liquid as power, so in fact, the primary bubble breaker belongs to the hydraulic micro-interface generator, and the secondary bubble breaker is a gas-liquid breaker. The mixture is simultaneously fed into the elliptical rotating ball for rotation, so that the bubbles are broken during the rotation, so the secondary bubble breaker is actually a gas-liquid linkage type micro-interface generator.
  • both hydraulic micro-interface generators and gas-liquid linkage micro-interface generators belong to a specific form of micro-interface generators.
  • the micro-interface generators used in the present invention are not limited to the above-mentioned forms.
  • the specific structure of the bubble breaker described in the prior patent is only one of the forms that the micro-interface generator of the present invention can take.
  • the previous patent 201710766435.0 records that "the principle of the bubble breaker is to achieve high-speed jets to achieve gas collision", and it is also stated that it can be used in micro-interface enhanced reactors to verify the relationship between the bubble breaker and the micro-interface generator.
  • the prior patent CN106187660 also has related records for the specific structure of the bubble breaker, see the specific description in paragraphs [0031]-[0041], and the accompanying drawings, which are related to the bubble breaker S-2 The specific working principle of the bubble breaker is explained in detail.
  • the top of the bubble breaker is the liquid phase inlet, and the side is the gas phase inlet.
  • the liquid phase entering from the top provides the entrainment power, so as to achieve the effect of crushing into ultra-fine bubbles, which can also be seen in the accompanying drawings.
  • the bubble breaker has a conical structure, and the diameter of the upper part is larger than that of the lower part, so that the liquid phase can provide better entrainment power.
  • micro-interface generator Since the micro-interface generator was just developed in the early stage of the previous patent application, it was named as micro-bubble generator (CN201610641119.6), bubble breaker (201710766435.0), etc., and later changed its name to micro-interface generator with continuous technological improvement.
  • the micro-interface generator in the present invention is equivalent to the previous micro-bubble generator, bubble breaker, etc., but the names are different.
  • the micro-interface generator of the present invention belongs to the prior art, although some bubble breakers belong to the type of pneumatic bubble breakers, some belong to the type of hydraulic bubble breakers, and some belong to the type of gas bubble breakers.
  • the type of liquid-linked bubble breaker but the difference between the types is mainly selected according to the specific working conditions.
  • the connection between the micro-interface generator and the reactor and other equipment, including the connection structure and connection position depends on the micro-interface generator. It depends on the structure of the interface generator, which is not limited.
  • the top of the second gas-liquid separation tank is provided with a second gas phase outlet, and the second gas phase outlet is connected to the second heat exchanger for liquefying a small amount of material in the gas phase and then discharging.
  • the second gas-liquid separation tank conducts further gas-liquid separation of the product, and the second gas-phase outlet will contain a small amount of methylamine and water. In order to save energy, this small amount of material is purified and collected.
  • the top of the first gas-liquid separation tank is provided with a first gas-phase outlet, and the first gas-phase outlet is sequentially connected with a third heat exchanger and a third gas-liquid separation tank for separating a small amount of methylamine and The recovery of methylamine is carried out after the water. Since the first gas phase outlet contains part of methylamine and water, it is also necessary to purify and collect this part of the material in order to save energy.
  • the top of the third gas-liquid separation tank is provided with a third gas-phase outlet, and the third gas-phase outlet is connected to the fourth gas-liquid separation tank for recovering a small amount of residual methylamine and water.
  • the third gas phase outlet will still contain a small amount of methylamine and water, and the fourth gas-liquid separation tank will collect a small amount of methylamine and water, and the remaining gas will enter the tail gas treatment.
  • the top of the fourth gas-liquid separation tank is provided with a tail gas outlet for collecting a small amount of methylamine for tail gas treatment.
  • first gas-liquid separation tank and the second gas-liquid separation tank are both provided with wire mesh demisters.
  • a wire mesh demister is installed inside the tank.
  • the tubular reactor is a vertical tubular reactor.
  • the vertical tube reactor has a large specific surface area and a large heat transfer area per unit volume. Compared with other tubular reactors, it has the advantages of fast reaction speed and fast flow rate.
  • the present invention also provides a method for preparing sodium N-methyl taurate using the above reaction system, comprising the following steps:
  • the amination reaction is carried out under the action of a catalyst
  • the amination reaction product continues to react to obtain the reaction product
  • the reaction product is liquefied, separated and purified.
  • the sodium isethionate was passed into the interior of the amination reaction kettle, and at the same time, methylamine was passed into the micro-interface generator to be broken into microbubbles with a diameter greater than or equal to 1 ⁇ m and less than 1 mm, and then passed into the interior of the amination reaction kettle, The mass transfer area of the phase boundary between methylamine and sodium isethionate during the amination reaction is increased, so that methylamine is fully contacted with sodium isethionate in the state of microbubbles, and the amination reaction is carried out. The obtained amination reaction product then enters the tubular reactor to continue further reaction, which can prolong the amination reaction time and improve the conversion rate of the reaction;
  • the obtained product enters the first gas-liquid separation tank for gas-liquid separation, the separated liquid-phase product enters the first heat exchanger through the first liquid-phase outlet for liquefaction, and the liquefied product enters the second gas-liquid separation tank For further separation, the product is collected from the bottom of the second knockout tank.
  • the temperature of the amination reaction is 200°C-270°C; the pressure is 5-12MPa.
  • the reaction system of the present invention for preparing sodium N-methyl taurine is provided with a micro-interface generator inside the amination reaction kettle, on the one hand, the material can be dispersed and broken into micro-bubbles, thereby increasing the gas phase and the liquid phase.
  • the phase boundary area makes the mass transfer space fully satisfied, increases the residence time of the gas in the liquid phase, reduces the energy consumption, and improves the reaction efficiency; on the other hand, it also reduces the operating temperature and pressure inside the amination reaction kettle. , which improves the safety and stability of the entire reaction system.
  • Fig. 1 is the reaction system structure schematic diagram of the present invention that prepares sodium N-methyl taurate provided by the embodiment of the present invention 1;
  • Example 2 is a schematic structural diagram of the reaction system for preparing sodium N-methyl taurate of the present invention provided in Example 2 of the present invention;
  • Example 3 is a schematic structural diagram of the reaction system for preparing sodium N-methyl taurate of the present invention provided in Example 3 of the present invention.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • installed should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • Fig. 1 it is a reaction system for preparing sodium N-methyl taurate of the present invention, which comprises an amination reaction kettle 1, and the amination reaction product from the amination reaction kettle 1 passes through a tubular reactor 2 Enter the first gas-liquid separation tank 3 after the reaction;
  • the amination reactor 1 is provided with a micro-interface generator 101 for dispersing broken materials into micro-bubbles, and the side wall of the amination reactor 1 is provided with a liquid-phase material inlet 11 and a methylamine inlet 12, and the methylamine transports
  • the pipeline 102 enters the amination reactor 1 through the methylamine inlet 12 and is connected to the micro-interface generator 101 , so as to pass methylamine into the interior of the micro-interface generator 101 .
  • the number of the micro-interface generators 101 is one.
  • the type of the amination reaction kettle 1 is not limited, as long as it can provide an amination reaction site, and at the same time, the type of heat exchanger is not limited, as long as it can ensure that the heat exchange can be achieved. cooling effect.
  • the bottom of the first gas-liquid separation tank 3 is provided with a first liquid-phase outlet 31, and the first liquid-phase outlet 31 is connected with a first heat exchanger 4 for liquefying the liquid-phase product, and the liquefied product is Enter into the second gas-liquid separation tank 5 for further separation; the bottom of the second gas-liquid separation tank 5 is provided with a second liquid phase outlet 51 for collecting products.
  • the top of the second gas-liquid separation tank 5 is provided with a second gas-phase outlet 52, and the second gas-phase outlet 52 is connected to the second heat exchanger 6 for liquefying and discharging a small amount of material in the gas-phase.
  • the top of the first gas-liquid separation tank 3 is provided with a first gas-phase outlet 32, and the first gas-phase outlet 32 is connected with a third heat exchanger 7 and a third gas-liquid separation tank 8 in sequence.
  • the top of the third gas-liquid separation tank 8 is provided with a third gas-phase outlet 81, the third gas-liquid separation tank 81 is connected to the fourth gas-liquid separation tank 9, and the top of the fourth gas-liquid separation tank 9 is provided with a tail gas outlet 91 for collecting tail gas Exhaust gas treatment.
  • wire mesh demisters are provided inside the first gas-liquid separation tank 3 and the second gas-liquid separation tank 5 .
  • the tubular reactor 2 is a vertical tubular reactor.
  • Methylamine is fully contacted with sodium isethionate in the state of microbubbles, and an amination reaction is performed, and the obtained amination reaction product enters the tubular reactor 2 for further reaction, so that the amination reaction time can be prolonged, Improve the conversion rate of the reaction;
  • the obtained product enters the first gas-liquid separation tank 3 for gas-liquid separation, the separated liquid-phase product enters the first heat exchanger 4 through the first liquid-phase outlet 31 for liquefaction, and the liquefied product enters the second gas-liquid
  • the separation tank 5 is further separated, the product is collected from the bottom of the second separation tank 5, and a small amount of methylamine and water are directly collected and discharged after being liquefied by the second heat exchanger 6.
  • the gas phase separated from the first gas-liquid separation tank 3 enters the third heat exchanger 7 through the first gas-phase outlet 32, and then enters the third gas-liquid separation tank 8 for further gas-liquid separation after liquefaction.
  • the phase methylamine and water are directly collected and discharged, the gas phase is passed into the fourth gas-liquid separation tank 9, and the separated gas is collected and processed through the tail gas outlet 91.
  • this embodiment differs from Embodiment 1 only in the number of micro-interface generators, the temperature and pressure settings set by the system, and the number of micro-interface generators in this embodiment is 2 and from top to bottom
  • the lower parallel is set, the system temperature is set to 230°C, and the pressure is set to 8MPa.
  • the yield of sodium N-methyl taurine was detected, and the conversion rate of methylamine was calculated to be 94%.
  • this embodiment differs from Embodiment 1 only in the number of micro-interface generators, the temperature and pressure settings set by the system, and the number of micro-interface generators in this embodiment is 2 and the horizontal direction is in turn.
  • the system temperature is set to 230°C
  • the pressure is set to 8MPa. The yield of sodium N-methyl taurine was detected, and the conversion rate of methylamine was calculated to be 94%.
  • Example 2 The specific operation steps are the same as those in Example 1, except that the micro-interface generator 101 is not provided, and methylamine and sodium isethionate are directly introduced into the amination reaction kettle 1 to carry out the amination reaction.
  • the yield of sodium N-methyl taurine was detected, and the conversion rate of methylamine was calculated to be 88%.
  • Example 2 The specific operation steps are the same as those in Example 2, except that the micro-interface generator 101 is not provided, and methylamine and sodium isethionate are directly introduced into the amination reaction kettle 1 to carry out the amination reaction.
  • the yield of sodium N-methyl taurate was detected, and the conversion rate of methylamine was calculated to be 86%.
  • Example 3 The specific operation steps are the same as those in Example 3, except that the micro-interface generator 101 is not provided, and methylamine and sodium isethionate are directly introduced into the amination reaction kettle 1 to carry out the amination reaction.
  • the yield of sodium N-methyl taurine was detected, and the conversion rate of methylamine was calculated to be 83%.
  • the micro-interface generator is used to break the methylamine into micro-bubbles and then pass it into the amination reaction kettle 1, which increases the During the amination reaction, the phase boundary mass transfer area between methylamine and sodium isethionate enables methylamine to fully contact with sodium isethionate in the state of microbubbles to carry out the amination reaction, so that the product N- The yield of sodium methyl taurate was significantly higher than that of the comparative example.
  • the reaction system of the present invention for preparing sodium N-methyl taurate is provided with a micro-interface generator inside the amination reaction kettle.
  • the interfacial area between the two phases makes the mass transfer space fully satisfied, increases the residence time of the gas in the liquid phase, reduces the energy consumption, and improves the reaction efficiency; on the other hand, the operating temperature inside the amination reaction kettle and the pressure, which improves the safety and stability of the entire reaction system.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种制备N-甲基牛磺酸钠的反应系统及方法,包括:胺化反应釜;从胺化反应釜出来的胺化反应产物通过管式反应器反应后进入第一气液分离罐;胺化反应釜内部设置有用于分散破碎物料成微气泡的微界面发生器,胺化反应釜的侧壁设置有用于通入羟乙基磺酸钠的液相物料进口和甲胺进口,甲胺进口穿设甲胺输送管道,甲胺输送管道进入所述胺化反应釜内和微界面发生器连接,以用于将甲胺通入微界面发生器的内部。通过在胺化反应釜内部设置微界面反应器,解决了现有技术中由于甲胺和羟乙基磺酸钠在反应釜内部无法得到充分混合,导致系统反应效率低下的问题。

Description

一种制备N-甲基牛磺酸钠的反应系统及方法 技术领域
本发明涉及制备N-甲基牛磺酸钠的技术领域,具体而言,涉及一种制备N-甲基牛磺酸钠的反应系统及方法。
背景技术
N-甲基牛磺酸钠是牛磺酸钠的一种重要衍生物,可以用作日用化学、医药、表面活性剂的重要中间体。在日用化学领域,可以合成多种高附加值的产品,例如椰油酰-N-甲基牛磺酸钠、丙烯酸羟乙酯/丙烯酰二甲基牛磺酸钠共聚物、聚丙烯酰基二甲基牛磺酸钠等,由于这些产品具有温和的特性,所以也可以用作温和型表面活性剂。随着人们生活水平的日益提高,温和型表面活性剂的需求量也大大增加。
在甲基牛磺酸钠系列的温和型表面活性剂中,N-甲基牛磺酸钠的合成是其中最关键的反应。目前,工业上合成N-甲基牛磺酸钠的主要方法是还原胺化法,利用此法进行工业生产时,所需温度为230℃-280℃,所需压力为10MPa-20MPa,工业成本、设备成本及损耗巨大,具有压力高,温度高,转化率低等众多弊端。
有鉴于此,特提出本发明。
发明内容
本发明的第一目的在于提供一种制备N-甲基牛磺酸钠的反应系统,该反应系统通过在胺化反应釜内部设置了微界面发生器后,一方面可以将物料分散破碎成微气泡,从而增加气相和液相之间的相界面积,使得传质空间充分满足, 增加了气体在液相中的停留时间,降低了能耗,提高了反应效率;另一方面,同时降低了胺化反应釜内部的操作温度以及压力,提高了整个反应系统的安全性和稳定性。
本发明的第二目的在于提供一种采用上述反应系统制备N-甲基牛磺酸钠的方法,该方法有利于减少能耗,达到比现有工艺更佳的反应效果。
为了实现本发明的上述目的,特采用以下技术方案:
本发明提供了一种制备N-甲基牛磺酸钠的反应系统,包括:胺化反应釜;从所述胺化反应釜出来的胺化反应产物通过管式反应器反应后进入第一气液分离罐;
所述胺化反应釜内部设置有用于分散破碎物料成微气泡的微界面发生器,所述胺化反应釜的侧壁设置有用于通入羟乙基磺酸钠的液相物料进口和甲胺进口,所述甲胺进口穿设甲胺输送管道,所述甲胺输送管道进入所述胺化反应釜内和所述微界面发生器连接,以用于将甲胺通入所述微界面发生器的内部;
所述第一气液分离罐的底部设置有第一液相出口,所述第一液相出口连接有第一换热器以用于将液相产物进行液化,液化后的产物进入第二气液分离罐中进一步分离;所述第二气液分离罐的底部设置有第二液相出口以用于对产品进行收集。
工业上合成N-甲基牛磺酸钠的主要方法是还原胺化法,利用此法进行工业生产时,所需温度为230℃-280℃,所需压力为10MPa-20MPa,工业成本、设备成本及损耗巨大,具有压力高,温度高等弊端,而且由于甲胺和羟乙基磺酸钠在反应釜内部无法得到充分混合,导致系统反应效率低下的问题,本发明的制备N-甲基牛磺酸钠的反应系统一方面可以将物料分散破碎成微气泡,从而增加气相和液相之间的相界面积,使得传质空间充分满足,增加了气体在液相中的停留时间,降低了能耗,提高了反应效率;另一方面,同时降低了胺化反应釜内部的操作温度以及压力,提高了整个反应系统的安全性和稳定性。
需要强调的是,本发明将微界面发生器设置在胺化反应釜的内部,通过甲 胺输送管道直接将甲胺输送至微界面发生器中,使甲胺分散破碎成微气泡后立即能和羟乙基磺酸钠发生胺化反应,正是因为申请人通过大量的实践发现,微气泡在运动过程中会不断溶解,如果将微界面发生器设置在胺化反应釜的外部或者其他位置,分散破碎后的微气泡在进入胺化反应釜内部的过程中发生溶解,微气泡数量减少,从而达不到预期的效果,因此需要将微界面发生器设置在胺化反应釜的内部。
微界面发生器设置在反应器内部,最好是设置在反应器内的中部靠下位置,这样设置主要是因为微界面发生器产生的大量气泡有足够的空间向上运动,在向上运动过程中不断与液相进行碰撞乳化,增加了气泡在液相中的停留时间。而且不容易发生气泡的聚并,可以保持原有形态,使得反应釜内气相与液相的接触面积呈几何倍数的增加,并使得乳化混合更加充分和稳定,从而达到强化传质和宏观反应的效果。为了提高微界面的效果,最好将微界面发生器的个数设置为多个,多个微界面发生器可以依次由上而下并联设置,当采用并联设置时,上面的微界面发生器产生的气泡向下运动,下面的微界面发生器产生的气泡向上运动,两者碰撞产生更小的气泡,实现对冲,进一步增大了接触面积,加快了反应效率。也可水平方向依次串联设置,当采用水平方向依次串联设置时,设置在前的微界面发生器产生的微气泡再进入设置在后的微界面发生器中,进一步的,微气泡破碎成更小的微气泡,而且能够延长气体在液相中的停留时间,充分提高传质效果。优选微界面发生器的个数设置为2个,2个能够保证分散破碎的效果。
此外,通过设置管式反应器可以进一步的延长胺化反应时间,提高反应的转化率。
进一步的,包括甲胺输送管道,所述甲胺输送管道穿设所述胺化反应釜的壁面连接所述微界面发生器,用以将甲胺通入所述微界面发生器的内部。
进一步的,所述微界面发生器选自气动式微界面发生器、液动式微界面发生器以及气液联动式微界面发生器中的一种或多种。
本领域所属技术人员可以理解的是,本发明所采用的微界面发生器在本发明人在先专利中已有体现,如申请号CN201610641119.6、201610641251.7、CN201710766435.0、CN106187660、CN105903425A、CN109437390A、CN205833127U及CN207581700U的专利。在先专利CN201610641119.6中详细介绍了微米气泡发生器(即微界面发生器)的具体产品结构和工作原理,该申请文件中记载了“微米气泡发生器包括本体和二次破碎件、本体内具有空腔,本体上设有与空腔连通的进口,空腔的相对的第一端和第二端均敞开,其中空腔的横截面积从空腔的中部向空腔的第一端和第二端减小;二次破碎件设在空腔的第一端和第二端中的至少一个处,二次破碎件的一部分设在空腔内,二次破碎件与空腔两端敞开的通孔之间形成一个环形通道。微米气泡发生器还包括进气管和进液管。”从该申请文件中公开的具体结构可以知晓其具体工作原理为:液体通过进液管切向进入微米气泡发生器内,超高速旋转并切割气体,使气体气泡破碎成微米级别的微气泡,从而提高液相与气相之间的传质面积,而且该专利中的微米气泡发生器属于气动式微界面发生器。
另外,在先专利201610641251.7中有记载一次气泡破碎器具有循环液进口、循环气进口和气液混合物出口,二次气泡破碎器则是将进料口与气液混合物出口连通,说明气泡破碎器都是需要气液混合进入,另外从后面的附图中可知,一次气泡破碎器主要是利用循环液作为动力,所以其实一次气泡破碎器属于液动式微界面发生器,二次气泡破碎器是将气液混合物同时通入到椭圆形的旋转球中进行旋转,从而在旋转的过程中实现气泡破碎,所以二次气泡破碎器实际上是属于气液联动式微界面发生器。其实,无论是液动式微界面发生器,还是气液联动式微界面发生器,都属于微界面发生器的一种具体形式,然而本发明所采用的微界面发生器并不局限于上述几种形式,在先专利中所记载的气泡破碎器的具体结构只是本发明微界面发生器可采用的其中一种形式而已。
此外,在先专利201710766435.0中记载到“气泡破碎器的原理就是高速射流以达到气体相互碰撞”,并且也阐述了其可以用于微界面强化反应器,验证本 身气泡破碎器与微界面发生器之间的关联性;而且在先专利CN106187660中对于气泡破碎器的具体结构也有相关的记载,具体见说明书中第[0031]-[0041]段,以及附图部分,其对气泡破碎器S-2的具体工作原理有详细的阐述,气泡破碎器顶部是液相进口,侧面是气相进口,通过从顶部进来的液相提供卷吸动力,从而达到粉碎成超细气泡的效果,附图中也可见气泡破碎器呈锥形的结构,上部的直径比下部的直径要大,也是为了液相能够更好的提供卷吸动力。
由于在先专利申请的初期,微界面发生器才刚研发出来,所以早期命名为微米气泡发生器(CN201610641119.6)、气泡破碎器(201710766435.0)等,随着不断技术改进,后期更名为微界面发生器,现在本发明中的微界面发生器相当于之前的微米气泡发生器、气泡破碎器等,只是名称不一样。
综上所述,本发明的微界面发生器属于现有技术,虽然有的气泡破碎器属于气动式气泡破碎器类型,有的气泡破碎器属于液动式气泡破碎器类型,还有的属于气液联动式气泡破碎器类型,但是类型之间的差别主要是根据具体工况的不同进行选择,另外关于微界面发生器与反应器、以及其他设备的连接,包括连接结构、连接位置,根据微界面发生器的结构而定,此不作限定。
进一步的,所述第二气液分离罐的顶部设置有第二气相出口,所述第二气相出口连接第二换热器以用于对气相中少量物料进行液化后排出。第二气液分离罐对产物进行进一步的气液分离,第二气相出口中会含有少量的甲胺和水,为了节约能耗,对这部分少量的物料进行提纯收集。
进一步的,所述第一气液分离罐的顶部设置有第一气相出口,所述第一气相出口依次连接有第三换热器、第三气液分离罐以用于分离出少量甲胺和水后进行甲胺的回收。由于第一气相出口中含有部分甲胺和水,同样为了节约能耗,需要对这部分的物料进行提纯收集。
进一步的,所述第三气液分离罐的顶部设置有第三气相出口,所述第三气相出口连接第四气液分离罐以用于回收残留的少量甲胺和水。第三气相出口中还是会含有少量的甲胺和水,通过第四气液分离罐将少量的甲胺和水收集,剩 余的气体进入尾气处理。
进一步的,所述第四气液分离罐的顶部设置有尾气出口以用于收集少量的甲胺进行尾气处理。
进一步的,所述第一气液分离罐、第二气液分离罐内部均设有丝网除沫器。为了更好的提高气液分离的效果,因此在罐内部加装了丝网除沫器。
进一步的,所述管式反应器为立管式反应器。立管式反应器的比表面积大、单位容积的传热面积大、相比其它管式反应器,其具有反应速度快、流速快的优点。
除此之外,本发明还提供了一种采用上述反应系统制备N-甲基牛磺酸钠的方法,包括如下步骤:
甲胺经过分散破碎成微气泡后,在催化剂作用下进行胺化反应;
胺化反应产物继续进行反应得到反应产物;
反应产物进行液化、分离提纯。
进一步的,将羟乙基磺酸钠通入胺化反应釜内部,同时,将甲胺通入微界面发生器内部破碎成直径大于等于1μm、小于1mm的微气泡后通入胺化反应釜内部,增大了胺化反应过程中甲胺与羟乙基磺酸钠之间的相界传质面积,使得甲胺以微气泡的状态与羟乙基磺酸钠充分接触,并进行胺化反应,得到的胺化反应产物再进入管式反应器中继续进一步反应,这样可以延长胺化反应时间,提高反应的转化率;
得到的产物进入第一气液分离罐中进行气液分离,分离出的液相产物通过第一液相出口进入第一换热器中进行液化,液化后的产物进入第二气液分离罐中进一步分离,产物从第二分离罐的底部进行收集。
进一步的,所述胺化反应的温度为200℃-270℃;压力为5-12MPa。
与现有技术相比,本发明的有益效果在于:
本发明的制备N-甲基牛磺酸钠的反应系统通过在胺化反应釜内部设置了微界面发生器后,一方面可以将物料分散破碎成微气泡,从而增加气相和液相之间的相界面积,使得传质空间充分满足,增加了气体在液相中的停留时间,,降低了能耗,提高了反应效率;另一方面,同时降低了胺化反应釜内部的操作温度以及压力,提高了整个反应系统的安全性和稳定性。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本发明实施例1提供的本发明的制备N-甲基牛磺酸钠的反应系统结构示意图;
图2为本发明实施例2提供的本发明的制备N-甲基牛磺酸钠的反应系统结构示意图;
图3为本发明实施例3提供的本发明的制备N-甲基牛磺酸钠的反应系统结构示意图。
附图说明:
1-胺化反应釜;                        101-微界面发生器;
11-液相物料进口;                     12-甲胺进口;
102-甲胺输送管道;                    2-管式反应器;
3-第一气液分离罐;                    31-第一液相出口;
32-第一气相出口;                     4-第一换热器;
5-第二气液分离罐;                    51-第二液相出口;
52-第二气相出口;
6-第二换热器;                         7-第三换热器;
8-第三气液分离罐;                     81-第三气相出口;
9-第四气液分离罐;                     91-尾气出口。
具体实施方式
下面将结合附图和具体实施方式对本发明的技术方案进行清楚、完整地描述,但是本领域技术人员将会理解,下列所描述的实施例是本发明一部分实施例,而不是全部的实施例,仅用于说明本发明,而不应视为限制本发明的范围。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
为了更加清晰的对本发明中的技术方案进行阐述,下面以具体实施例的形 式进行说明。
实施例1
参阅图1所示,为本发明的制备N-甲基牛磺酸钠的反应系统,其包括了胺化反应釜1、从胺化反应釜1出来的胺化反应产物通过管式反应器2反应后进入第一气液分离罐3;
具体而言,胺化反应釜1内部设置有用于分散破碎物料成微气泡的微界面发生器101,胺化反应釜1的侧壁设置有液相物料进口11和甲胺进口12,甲胺输送管道102穿过甲胺进口12进入所述胺化反应釜1内和所述微界面发生器101连接,以用于将甲胺通入所述微界面发生器101的内部。本实施例中,所述微界面发生器101的设置数量为1个。可以理解的是,本实施例中对胺化反应釜1的类型不进行限制,只需其能够提供胺化反应场所即可,同时也不对换热器的类型进行限制,只要能够保证达到换热冷却的效果即可。
具体而言,第一气液分离罐3的底部设置有第一液相出口31,第一液相出口31连接有第一换热器4以用于将液相产物进行液化,液化后的产物进入第二气液分离罐5中进一步分离;第二气液分离罐5的底部设置有第二液相出口51以用于对产品进行收集。
第二气液分离罐5的顶部设置有第二气相出口52,第二气相出口52连接第二换热器6以用于对气相中少量物料进行液化后排出。
进一步的,第一气液分离罐3的顶部设置有第一气相出口32,第一气相出口32依次连接有第三换热器7、第三气液分离罐8。第三气液分离罐8的顶部设置有第三气相出口81,第三气相出口81连接第四气液分离罐9,第四气液分离罐9的顶部设置有尾气出口91以用于收集尾气进行尾气处理。
为了满足实际的使用需求,在第一气液分离罐3和第二气液分离罐5的内部均设有丝网除沫器。
本实施例中,管式反应器2为立管式反应器。
工作时,启动系统,系统温度设置为200℃,压力设置为5MPa,将羟乙基磺酸钠通入胺化反应釜1内部,同时,将甲胺通过甲胺输送管道102通入微界面发生器101内部破碎成直径大于等于1μm、小于1mm的微气泡后通入胺化反应釜1内部,增大了胺化反应过程中甲胺与羟乙基磺酸钠之间的相界传质面积,使得甲胺以微气泡的状态与羟乙基磺酸钠充分接触,并进行胺化反应,得到的胺化反应产物再进入管式反应器2中继续进一步反应,这样可以延长胺化反应时间,提高反应的转化率;
得到的产物进入第一气液分离罐3中进行气液分离,分离出的液相产物通过第一液相出口31进入第一换热器4中进行液化,液化后的产物进入第二气液分离罐5中进一步分离,产物从第二分离罐5的底部进行收集,少量甲胺和水经过第二换热器6液化后直接收集排出。
此外,第一气液分离罐3中分离出的气相通过第一气相出口32进入第三换热器7中,液化后再进入第三气液分离罐8中进一步气液分离,分离出的液相甲胺和水直接收集排出,气相通入第四气液分离罐9中,分离出的气体通过尾气出口91进行尾气收集处理。
最后检测N-甲基牛磺酸钠产量,经计算甲胺转化率为91%。
实施例2
参阅图2所示,本实施例与实施例1仅在微界面发生器的设置数量、系统设置的温度、压力设置不同,本实施例的微界面发生器的设置数量为2个且从上至下并联设置、系统温度设置为230℃,压力设置为8MPa。检测N-甲基牛磺酸钠产量,计算甲胺转化率为94%。
实施例3
参阅图3所示,本实施例与实施例1仅在微界面发生器的设置数量、系统设置的温度、压力设置不同,本实施例的微界面发生器的设置数量为2个且水 平方向依次串联、系统温度设置为230℃,压力设置为8MPa。检测N-甲基牛磺酸钠产量,计算甲胺转化率为94%。
比较例1
具体操作步骤与实施例1一致,只不过不设置微界面发生器101,直接将甲胺和羟乙基磺酸钠同时通入胺化反应釜1中进行胺化反应。检测N-甲基牛磺酸钠产量,计算甲胺转化率为88%。
比较例2
具体操作步骤与实施例2一致,只不过不设置微界面发生器101,直接将甲胺和羟乙基磺酸钠同时通入胺化反应釜1中进行胺化反应。检测N-甲基牛磺酸钠产量,计算甲胺转化率为86%。
比较例3
具体操作步骤与实施例3一致,只不过不设置微界面发生器101,直接将甲胺和羟乙基磺酸钠同时通入胺化反应釜1中进行胺化反应。检测N-甲基牛磺酸钠产量,计算甲胺转化率为83%。
显然,将上述实施例1-3和比较例1-3进行比较可以得出,实施例中应用微界面发生器将甲胺破碎成微气泡后后通入胺化反应釜1内部,增大了胺化反应过程中甲胺与羟乙基磺酸钠之间的相界传质面积,使得甲胺以微气泡的状态与羟乙基磺酸钠充分接触后进行胺化反应,使得产物N-甲基牛磺酸钠的产率明显高于对比例。
总之,本发明的制备N-甲基牛磺酸钠的反应系统通过在胺化反应釜内部设置了微界面发生器后,一方面可以将物料分散破碎成微气泡,从而增加气相和液相之间的相界面积,使得传质空间充分满足,增加了气体在液相中的停留时 间,降低了能耗,提高了反应效率;另一方面,同时降低了胺化反应釜内部的操作温度以及压力,提高了整个反应系统的安全性和稳定性。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (9)

  1. 一种制备N-甲基牛磺酸钠的反应系统,其特征在于,包括:胺化反应釜;从所述胺化反应釜出来的胺化反应产物通过管式反应器反应后进入第一气液分离罐;
    所述胺化反应釜内部设置有用于分散破碎物料成微气泡的微界面发生器,所述胺化反应釜的侧壁设置有用于通入羟乙基磺酸钠的液相物料进口和甲胺进口,所述甲胺进口穿设甲胺输送管道,所述甲胺输送管道进入所述胺化反应釜内和所述微界面发生器连接,以用于将甲胺通入所述微界面发生器的内部;
    所述第一气液分离罐的底部设置有第一液相出口,所述第一液相出口连接有第一换热器以用于将液相产物进行液化,液化后的产物进入第二气液分离罐中进一步分离;所述第二气液分离罐的底部设置有第二液相出口以用于对产品进行收集。
  2. 根据权利要求1所述的制备N-甲基牛磺酸钠的反应系统,其特征在于,所述第二气液分离罐的顶部设置有第二气相出口,所述第二气相出口连接第二换热器以用于对气相中少量物料进行液化后排出。
  3. 根据权利要求1所述的制备N-甲基牛磺酸钠的反应系统,其特征在于,所述第一气液分离罐的顶部设置有第一气相出口,所述第一气相出口依次连接有第三换热器、第三气液分离罐以用于分离出少量甲胺和水后进行甲胺的回收。
  4. 根据权利要求4所述的制备N-甲基牛磺酸钠的反应系统,其特征在于,所述第三气液分离罐的顶部设置有第三气相出口,所述第三气相出口连接第四气液分离罐以用于回收残留的少量甲胺和水。
  5. 根据权利要求5所述的制备N-甲基牛磺酸钠的反应系统,其特征在于,所述第四气液分离罐的顶部设置有尾气出口以用于收集少量的甲胺行尾气处理。
  6. 根据权利要求1所述的制备N-甲基牛磺酸钠的反应系统,其特征在于, 所述第一气液分离罐、第二气液分离罐内部均设有丝网除沫器。
  7. 根据权利要求1所述的制备N-甲基牛磺酸钠的反应系统,其特征在于,所述管式反应器为立管式反应器。
  8. 采用权利要求1-7任一项所述的反应系统制备N-甲基牛磺酸钠的方法,其特征在于,包括如下步骤:
    甲胺经过分散破碎成微气泡后,在催化剂作用下进行胺化反应;
    胺化反应产物继续进行反应得到反应产物;
    反应产物进行液化、分离提纯。
  9. 根据权利要求8所述的方法,其特征在于,所述胺化反应的温度为200℃-270℃;压力为5-12MPa。
PCT/CN2020/122733 2020-08-11 2020-10-22 一种制备n-甲基牛磺酸钠的反应系统及方法 WO2022032868A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010798628.6A CN112010786A (zh) 2020-08-11 2020-08-11 一种制备n-甲基牛磺酸钠的反应系统及方法
CN202010798628.6 2020-08-11

Publications (1)

Publication Number Publication Date
WO2022032868A1 true WO2022032868A1 (zh) 2022-02-17

Family

ID=73499496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122733 WO2022032868A1 (zh) 2020-08-11 2020-10-22 一种制备n-甲基牛磺酸钠的反应系统及方法

Country Status (2)

Country Link
CN (1) CN112010786A (zh)
WO (1) WO2022032868A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115403487A (zh) * 2022-08-15 2022-11-29 浙江新和成药业有限公司 N-甲基牛磺酸钠的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04360863A (ja) * 1991-06-07 1992-12-14 Tosoh Corp N−アルキルアミノエタンスルホン酸ナトリウムの製造方法
CN102675160A (zh) * 2012-05-07 2012-09-19 黄冈永安药业有限公司 一种管道化连续生产甲基牛磺酸钠的装置及其生产方法
CN205833127U (zh) * 2016-05-11 2016-12-28 南京大学 一种由环己烷制备环己酮的超高效氧化反应装置
CN106268544A (zh) * 2016-08-05 2017-01-04 南京大学 塔式超细气泡反应器
CN210045215U (zh) * 2019-01-29 2020-02-11 南京延长反应技术研究院有限公司 低压气液强化乳化床反应装置
CN110903222A (zh) * 2019-12-16 2020-03-24 万华化学集团股份有限公司 一种n-甲基牛磺酸钠的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04360863A (ja) * 1991-06-07 1992-12-14 Tosoh Corp N−アルキルアミノエタンスルホン酸ナトリウムの製造方法
CN102675160A (zh) * 2012-05-07 2012-09-19 黄冈永安药业有限公司 一种管道化连续生产甲基牛磺酸钠的装置及其生产方法
CN205833127U (zh) * 2016-05-11 2016-12-28 南京大学 一种由环己烷制备环己酮的超高效氧化反应装置
CN106268544A (zh) * 2016-08-05 2017-01-04 南京大学 塔式超细气泡反应器
CN210045215U (zh) * 2019-01-29 2020-02-11 南京延长反应技术研究院有限公司 低压气液强化乳化床反应装置
CN110903222A (zh) * 2019-12-16 2020-03-24 万华化学集团股份有限公司 一种n-甲基牛磺酸钠的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115403487A (zh) * 2022-08-15 2022-11-29 浙江新和成药业有限公司 N-甲基牛磺酸钠的制备方法
CN115403487B (zh) * 2022-08-15 2023-08-08 浙江新和成药业有限公司 N-甲基牛磺酸钠的制备方法

Also Published As

Publication number Publication date
CN112010786A (zh) 2020-12-01

Similar Documents

Publication Publication Date Title
WO2021253311A1 (zh) 一种溶液法制备聚乙烯的微界面强化反应系统及方法
WO2022041425A1 (zh) 一种环状碳酸酯的强化微界面制备系统及方法
WO2022036839A1 (zh) 一种丙烯羰基化制备丁辛醇的外置微界面强化系统及方法
WO2022041426A1 (zh) 一种环状碳酸酯的微界面制备系统及方法
WO2022032868A1 (zh) 一种制备n-甲基牛磺酸钠的反应系统及方法
WO2021227135A1 (zh) 一种苯选择性加氢反应系统及方法
WO2023284030A1 (zh) 一种即时脱水的dmc制备系统及制备方法
WO2022057004A1 (zh) 一种对甲基苯酚的微界面制备系统及方法
JP3238823U (ja) 石炭からエタノールを製造する反応システム
WO2022032869A1 (zh) 一种制备n-甲基牛磺酸钠的微界面强化系统及方法
WO2022052222A1 (zh) 一种草酸酯加氢制备乙醇酸酯的反应系统及方法
CN112717846A (zh) 一种环氧乙烷法制备乙二醇的智能微界面反应系统及方法
WO2020155506A1 (zh) 下置式气液强化乳化固定床反应装置及方法
CN111574342A (zh) 一种苯选择性加氢制备环己酮的强化反应系统及方法
CN112479822A (zh) 一种草酸酯法制备乙二醇的强化微界面反应系统及方法
CN216024809U (zh) 一种2-甲基四氢呋喃的微界面制备系统
WO2021227137A1 (zh) 一种酯化法制备环己酮的外置微界面强化系统及方法
CN112723996A (zh) 一种环氧乙烷法制备乙二醇的强化微界面反应系统及方法
WO2023284024A1 (zh) 正丁醛缩合制辛烯醛的微界面强化系统及制备方法
CN111892675A (zh) 一种制备聚丙烯的强化反应系统及方法
CN105924329A (zh) 醋酸制备乙醇的耦合生产工艺
CN216024767U (zh) 一种催化剂可循环使用的丙烯羰基化反应系统
CN115245792B (zh) 氯乙酸合成系统及合成方法
WO2021253312A1 (zh) 一种浆液法制备聚丙烯的强化反应系统及方法
CN220684694U (zh) 一种多晶硅冷氢化工艺系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949362

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20949362

Country of ref document: EP

Kind code of ref document: A1