WO2021226951A1 - 聚酰亚胺膜及其制造方法 - Google Patents

聚酰亚胺膜及其制造方法 Download PDF

Info

Publication number
WO2021226951A1
WO2021226951A1 PCT/CN2020/090321 CN2020090321W WO2021226951A1 WO 2021226951 A1 WO2021226951 A1 WO 2021226951A1 CN 2020090321 W CN2020090321 W CN 2020090321W WO 2021226951 A1 WO2021226951 A1 WO 2021226951A1
Authority
WO
WIPO (PCT)
Prior art keywords
dianhydride
polyimide
polyimide film
aromatic
residue
Prior art date
Application number
PCT/CN2020/090321
Other languages
English (en)
French (fr)
Inventor
赖柏宏
唐伟哲
黄堂杰
Original Assignee
律胜科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 律胜科技股份有限公司 filed Critical 律胜科技股份有限公司
Priority to US17/623,397 priority Critical patent/US20220372227A1/en
Priority to PCT/CN2020/090321 priority patent/WO2021226951A1/zh
Priority to CN202080045607.5A priority patent/CN114008110A/zh
Publication of WO2021226951A1 publication Critical patent/WO2021226951A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/1064Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1078Partially aromatic polyimides wholly aromatic in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/206Applications use in electrical or conductive gadgets use in coating or encapsulating of electronic parts

Definitions

  • the invention relates to a polyimide film, in particular to a polyimide film that is colorless and transparent, has low UV absorption and small phase difference.
  • Polyimide polymers are formed by the condensation and polymerization of two monomers, dianhydride and diamine. At present, polyimide polymers with thermal stability are mostly aromatic, and their flat rigid structure provides Polyimide materials have excellent heat resistance, mechanical strength and chemical resistance. However, because the dianhydride group acts as an electron donor in the polymer structure, and the diamine group acts as an electron acceptor, its plane resonance is likely to cause molecular The charge transfer between the inner and the molecule causes the aromatic polyimide film to easily show yellowing, which limits its application.
  • a linkage group can generally be introduced to make the main chain flexible, for example: (-O-), (-SO 2 -) (-CO-), (-CH 2 -), (-C(CF 3 ) 2 -), etc.; or some larger groups can be introduced to destroy the stacking situation, and the effect can also be achieved.
  • the wires used have been changed from traditional ITO ceramic materials to nano silver wires or metal grids. At this time, the metal wires will have broken wires during the UV aging test. In addition to being transparent, the film also needs to have UV absorption to protect the metal wires.
  • TW I332580 discloses a transparent polyimide film with low birefringence, the film does not have the function of UV absorption.
  • WO2016021746A1 discloses a transparent polyimide film, the yellowness of the film is too high.
  • the purpose of the present invention is to provide a polyimide film that not only has transparency, but also has UV absorption characteristics, and has a low phase difference.
  • the present invention provides a polyimide film comprising polyimide, and the polyimide is dried on the surface at 75°C to 155°C in the process of forming the polyimide film, and
  • the polyimide contains the structure represented by formula (I):
  • A is the residue of an aromatic diamine containing sulfonyl in the main chain;
  • R1 is the residue of an aromatic dianhydride;
  • R2 is the residue of an aliphatic dianhydride;
  • m and n are each independently a positive integer,
  • the diamine monomer which comprises this polyimide consists only of the aromatic diamine which contains a sulfonyl group in a main chain.
  • the sulfonyl-containing aromatic diamine comprises 4,4'-bis(3-aminophenoxy)diphenyl sulfone, 4,4'-bis(4-aminophenoxy)diphenyl sulfone, 4,4 diamino diphenyl sulfone or 3, 3 diamino diphenyl sulfone.
  • the aromatic dianhydride comprises 3,3′,4,4′-biphenyltetracarboxylic dianhydride, 3,3′,4,4′-tetracarboxylic benzophenone dianhydride, 2,3,3 ',4-Biphenyltetracarboxylic dianhydride, 2,3,3',4-tetracarboxylic benzophenone dianhydride, bisphenol A type diether dianhydride or 4,4-oxydiphthalic anhydride.
  • the aliphatic dianhydride comprises bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride , Cyclobutane tetracarboxylic dianhydride or other hydrogenated aromatic dianhydrides.
  • the ratio of the n to the m is 1:19 to 3:7.
  • the polyimide film has a visible light transmittance of less than 10% at 360 nm, and a yellowness of less than 3.
  • the polyimide film has a phase difference of less than or equal to 25, a thermal expansion coefficient of less than 50 ppm/°C, and a glass transition temperature of greater than 230°C.
  • the present invention also provides a method for manufacturing a polyimide film, which comprises the following steps: coating a solution containing polyimide on a substrate to obtain a coated substrate; and the coated substrate The material is surface-dried at 75°C to 155°C, and then heat treated at a temperature greater than or equal to 200°C; wherein, the polyimide includes a structure represented by formula (I):
  • A is a residue of an aromatic diamine containing a sulfonyl group in the main chain;
  • R 1 is a residue of an aromatic dianhydride;
  • R 2 is a residue of an aliphatic dianhydride;
  • m and n are each independently a positive integer, and
  • the diamine monomer which comprises this polyimide consists only of the aromatic diamine which contains a sulfonyl group in a main chain.
  • the polyimide film provided by the present invention is formed by copolymerizing at least one diamine monomer and at least two dianhydride monomers. By introducing a specific monomer structure, the polyimide film can not only have transparency and low yellowness, but also have UV absorption characteristics and low phase difference.
  • the polyimide film provided by the present invention includes polyimide, and the polyimide includes a structure represented by formula (I):
  • A is a residue of an aromatic diamine containing a sulfonyl group in the main chain
  • R 1 is a residue of an aromatic dianhydride
  • R 2 is a residue of an aliphatic dianhydride
  • m and n are each independently a positive integer
  • the diamine monomer constituting the polyimide is composed only of an aromatic diamine containing a sulfonyl group in the main chain, and the polyimide undergoes a temperature of 75°C to 155°C during the process of forming the polyimide film. The surface of the interval is dry.
  • the polyimide of the present invention is formed by copolymerizing at least one aromatic diamine monomer and at least two dianhydride monomers, one of which is an aromatic dianhydride monomer, and the other is an aromatic dianhydride monomer.
  • the body is an aliphatic dianhydride monomer, and the aromatic diamine monomer contains a sulfonyl group in the main chain.
  • the aromatic diamine monomer of the polyimide can be derived from two or more diamine monomers. These diamine monomers can be the same or different, but these diamine monomers must be uniform in the main chain. Contains sulfonyl groups.
  • the A in the repeating unit n may be the same as or different from the A in the repeating unit m, but these A must be residues of an aromatic diamine whose main chain contains a sulfonyl group.
  • the aromatic diamine containing sulfonyl comprises 4,4'-bis(3-aminophenoxy)diphenylsulfone, 4,4'-bis(4 -Aminophenoxy) diphenyl sulfone, 4,4 diamino diphenyl sulfone or 3,3 diamino diphenyl sulfone.
  • the aromatic dianhydride comprises 3,3',4,4'-biphenyltetracarboxylic dianhydride, 3,3',4,4'-tetracarboxylic benzophenone dianhydride, 2 ,3,3',4-Biphenyltetracarboxylic dianhydride, 2,3,3',4-tetracarboxylic benzophenone dianhydride, bisphenol A type diether dianhydride or 4,4-oxybis-phthalic anhydride Dicarboxylic anhydride.
  • the aliphatic dianhydride comprises bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, 1,2,4,5-cyclohexane Tetracarboxylic dianhydride, cyclobutane tetracarboxylic dianhydride or other hydrogenated aromatic tetracarboxylic dianhydrides.
  • the ratio of the n to the m is 1:19 to 3:7, for example 2:8.
  • the polyimide film of the present invention preferably has a visible light transmittance of less than 10% for 360 nm, and has a yellowness of less than 3, more preferably a yellowness of less than 1.9, and particularly preferably a yellowness of less than 1.55.
  • the polyimide film of the present invention preferably has a phase difference of less than or equal to 25 (e.g., less than or equal to 24, less than or equal to 20, less than or equal to 14, or less than or equal to 10), and has a phase difference of less than 50ppm/°C (e.g., less than 45ppm /°C), and has a glass transition temperature greater than 230°C (for example, greater than 239°C, greater than 244°C, greater than 250°C, or greater than 270°C).
  • the manufacturing method of the polyimide film includes: applying a solution containing the polyimide to a substrate to obtain a coated substrate; Surface drying is performed at a temperature of °C to 155°C, and then heat treatment is performed at a temperature of 200°C or more.
  • the surface drying is preferably performed at 80°C to 150°C, for example, at 80°C, 90°C, 100°C, 110°C, 120°C, 130°C, 140°C, or 150°C.
  • the temperature for surface drying is between any two of the aforementioned values, for example, between 90°C and 130°C, between 90°C and 120°C, or between 100°C and 120°C.
  • This heat treatment is preferably carried out at 200°C to 250°C, for example at 200°C, 205°C, 210°C, 215°C, 220°C, 225°C, 230°C, 235°C, 240°C, 245°C or 250°C.
  • the temperature for performing the heat treatment is between any two of the aforementioned values, for example, between 210°C and 240°C or between 210°C and 230°C.
  • the solution is obtained by dissolving at least one aromatic diamine and at least two dianhydrides in a solvent for one-step copolymerization, wherein one dianhydride monomer is an aromatic dianhydride monomer , Another dianhydride monomer is an aliphatic dianhydride monomer, and the aromatic diamine monomer contains a sulfonyl group in the main chain.
  • the solvent is not particularly limited as long as it can dissolve the reaction components.
  • the solvent can be m-cresol (m-Cresol), N-methylpyrrolidone (NMP), ⁇ -butyrolactone ( ⁇ -GBL) or dimethyl sulfoxide (DMSO), etc., preferably ⁇ -butyrolactone ( ⁇ -GBL).
  • the coating method is also not particularly limited, and it can be drop coating, blade coating, spin coating, or dip coating, etc. .
  • the polyimide is preferably soluble in the aforementioned solvent.
  • the coating (ie film) is surface-dried in an oven to remove Solvent on the surface of the coating. Then, a high-temperature oven is used for the film curing process (ie, heat treatment) to remove the solvent.
  • the thickness of the coating (ie film) is fixed at 10 ⁇ m.
  • the baking condition for the surface drying is 80°C and baking for 15 minutes.
  • the maturation heat treatment conditions are 220°C baking for 60 minutes.
  • the preparation method of the polyimide film, the baking conditions for surface drying, and the heat treatment conditions of the polyimide film of Example 2 are the same as those of Example 1.
  • the preparation method of the polyimide film of Example 3 the baking conditions for surface drying, and the heat treatment conditions are the same as those of Example 1.
  • the preparation method of the polyimide film of Example 4 is the same as those of Example 1.
  • the preparation method of the polyimide film of Example 5 is the same as those of Example 1.
  • the preparation method of the polyimide film of Example 6 is the same as that of Example 1.
  • the baking condition for surface drying is 100°C and baking for 15 minutes.
  • the maturation heat treatment conditions are 220°C baking for 60 minutes.
  • the preparation method of the polyimide film of Example 7 is the same as that of Example 1.
  • the baking condition for surface drying is 120°C and baking for 15 minutes.
  • the maturation heat treatment conditions are 220°C baking for 60 minutes.
  • the preparation method of the polyimide film of Example 8 is the same as that of Example 1.
  • the baking condition for surface drying is 150°C and baking for 20 minutes.
  • the heat treatment conditions are 220°C baking for 60 minutes.
  • the preparation method of the polyimide film, the baking conditions for surface drying, and the heat treatment conditions of the polyimide film of Example 9 are the same as those of Example 1.
  • the preparation method of the polyimide film of Example 10 the baking conditions for surface drying, and the heat treatment conditions are the same as those of Example 1.
  • the preparation method of the polyimide film of Example 11 the baking conditions for surface drying, and the heat treatment conditions are the same as those of Example 1.
  • the preparation method of the polyimide film of Example 12 the baking conditions for surface drying, and the heat treatment conditions are the same as those of Example 1.
  • the preparation method of the polyimide film of Comparative Example 1, the baking conditions for surface drying, and the heat treatment conditions are the same as those of Example 1.
  • the preparation method of the polyimide film of Comparative Example 2 the baking conditions of the surface drying, and the heat treatment conditions are the same as those of Example 1.
  • the preparation method of the polyimide film of Comparative Example 3, the baking conditions for surface drying, and the heat treatment conditions are the same as those of Example 1.
  • the preparation method of the polyimide film of Comparative Example 4 the baking conditions for surface drying, and the heat treatment conditions are the same as those of Example 1.
  • the preparation method of the polyimide film of Comparative Example 5 the baking conditions of the surface drying, and the heat treatment conditions are the same as those of Example 1.
  • the preparation method of the polyimide film of Comparative Example 6, the baking conditions of the surface drying, and the heat treatment conditions are the same as those of Example 1.
  • the preparation method of the polyimide film of Comparative Example 7 the baking conditions of the surface drying, and the heat treatment conditions are the same as those of Example 1.
  • the preparation method of the polyimide film of Comparative Example 8 the baking conditions of the surface drying, and the heat treatment conditions are the same as those of Example 1.
  • the preparation method of the polyimide film of Comparative Example 9 was the same as that of Example 1.
  • the baking condition for surface drying is 40°C and baking for 15 minutes.
  • the maturation heat treatment conditions are 220°C baking for 60 minutes.
  • the preparation method of the polyimide film of Comparative Example 10 was the same as that of Example 1.
  • the baking condition for surface drying is 50°C and baking for 15 minutes.
  • the maturation heat treatment conditions are 220°C baking for 60 minutes.
  • the preparation method of the polyimide film of Comparative Example 11 was the same as that of Example 1.
  • the baking condition for surface drying is 60°C and baking for 15 minutes.
  • the curing heat treatment condition is 220°C baking for 60 minutes.
  • thermomechanical analyzer (TA Instrument TMA Q400EM) to measure the CTE value and glass transition temperature (Tg) from 50°C to 200°C.
  • TMA glass transition temperature
  • TMA Q400EM thermomechanical analyzer
  • all polyimide films were heat-treated at 220°C for 1 hour, and then the glass transition temperature was measured with TMA.
  • a heating rate of 10°C/min and a constant load of 30 mN were applied.
  • the linear thermal expansion coefficient measured by TMA at a temperature of 50-200°C, the load strain is 30mN, and the heating rate is 10°C/min.
  • the yellow index YI is measured by measuring the transmittance of 400-700nm light with a spectrophotometer to measure three stimulus values (x, y, z), and calculate YI by the following formula.
  • a UV-Vis spectrophotometer was used to measure the transmittance of UV-Vis to a polyimide film with a thickness of 10 ⁇ m at a wavelength of 360nm.
  • the in-plane retardation R0 and the thickness retardation Rth are measured using the X, Y, and Z modes of Kobra 21ADH, a photoelastic constant measuring device manufactured by Oji Measuring Instruments Co., Ltd., to measure the in-plane retardation and the thickness of the transparent polyimide layer. Thickness phase difference.
  • the measurement temperature was set to 25°C, and the measurement wavelength was set to 529 nm.
  • a photoelastic constant measuring device is used to measure the refractive index of the polyimide film in the X, Y, and Z directions, and R0 and Rth are calculated by the following formulas.
  • Thickness phase difference Rth [(nx+ny)/2-nz] ⁇ d
  • nx, ny, and nz are the refractive indices in the X, Y, and Z directions, respectively, and d is the film thickness.
  • a polyimide film with a thickness of 10 ⁇ m synthesized with a sulfonyl-containing diamine has a phase difference of less than 15; if it is used to make a polyimide film If the diamine contains a diamine that does not contain a sulfonyl group, the phase difference of the polyimide film will increase. This is because the phase difference value of the polyimide synthesized with linear dianhydride will be determined by the type of diamine, such as m-BAPS, DDS. From another perspective, it can be seen from the results of Example 5 and Comparative Example 5 that the diamine in the polyimide film of the present invention does not contain sulfonyl-free diamine, and therefore has a low retardation.
  • Example 11 It is known from Example 11 and Comparative Example 2 that increasing the amount of aromatic dianhydride having UV absorption increases the UV absorption efficiency of the polyimide film formed by polymerization.
  • the surface drying temperature can affect the phase difference value of the polyimide film.
  • the higher the surface drying temperature the lower the phase difference value of the polyimide film. From this, it can be seen that in the present invention, the molecular arrangement of the polyimide is affected by surface drying, thereby affecting the phase difference of the polyimide film.
  • phase difference value of the polyimide film synthesized with HPMDA is lower than that of the polyimide film synthesized with B1317.
  • the Tg value is that the polyimide film synthesized by B1317 is higher than that synthesized by HPMDA. This is because the structure of B1317 is relatively hard and the molecular structure is not easy to bend.
  • the total light transmittance of the polyimide film of the present invention is greater than 89%
  • the glass transition temperature is greater than 230°C
  • the coefficient of thermal expansion (CTE) is less than 50ppm/°C
  • the phase The difference is less than 25nm.
  • the present invention introduces a specific monomer structure into the polyimide, so that the polyimide film prepared therefrom not only has transparency and colorlessness, but also has low phase difference and UV absorption characteristics. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

本发明提供一种聚酰亚胺膜,其包含聚酰亚胺,该聚酰亚胺在形成该聚酰亚胺膜的过程中经75℃~155℃的表面干燥,且该聚酰亚胺包含式(I)所示的结构:(I) 其中,A为主链含有磺酰基(sulfonyl)的芳香族二胺的残基;R1为芳香族二酐的残基;R2为脂肪族二酐的残基;m及n各自独立为正整数,且构成该聚酰亚胺的二胺单体仅由主链含有磺酰基(sulfonyl)的芳香族二胺构成。本发明的聚酰亚胺膜不仅具有透明性,还具有UV吸收特性。

Description

聚酰亚胺膜及其制造方法 技术领域
本发明涉及一种聚酰亚胺膜,特别涉及一种无色透明、UV吸收低且相位差小的聚酰亚胺膜。
背景技术
随着OLED技术的发展,玻璃基板已从硬质玻璃基板往可挠式玻璃基板发展。由于可挠式OLED显示器的轻薄、可弯曲等特色,现今所使用的基板已不是传统的玻璃基板,而是选择薄型化、可挠曲的塑料薄膜基板。
聚酰亚胺高分子是经由二酐与二胺两种单体缩合聚合而成,而目前具热稳定性的聚酰亚胺高分子多以芳香族为主,其平面钢性的结构提供了聚酰亚胺材料优异的耐热性质、机械强度以及耐化学性质,然而,因二酸酐基团在高分子结构中作为电子给体,二胺基团作为电子受体,其平面共振容易造成分子内与分子间的电荷转移,导致芳香族的聚酰亚胺薄膜容易呈现黄化现象,使得在应用上受限。
为了降低电荷转移的现象,一般可引入连接基团(linkage group),使之主链具有柔软性,例如:(-O-),(-SO 2-)(-CO-),(-CH 2-),(-C(CF 3) 2-)等;或是可以引入一些较大的基团,破坏其堆叠的情况,亦能达到效果。
然而在柔性显示器触控应用上,因所使用的导线已由传统的ITO陶瓷材料改为纳米银线或金属网格,此时金属导线在UV老化测试时,会产生断线等不良结果,因此,膜除需要透明外,亦需要具有UV吸收以保护金属导线。TW I332580虽披露一种低双折射率的透明聚酰亚胺薄膜,但该薄膜并不具有UV吸收功能。WO2016021746A1虽披露一种透明聚酰亚胺薄膜,然而该薄膜的黄度过高。
发明内容
鉴于上述技术问题,本发明的目的是提供一种不仅具透明性,亦具UV吸收特性,更具有低相位差的聚酰亚胺膜。
为达到上述目的,本发明提供一种聚酰亚胺膜,其包含聚酰亚胺,该聚酰亚胺在形成该聚酰亚胺膜的过程中经75℃~155℃的表面干燥,且该聚酰亚胺包含式(I)所示的结构:
Figure PCTCN2020090321-appb-000001
其中,A为主链含有磺酰基(sulfonyl)的芳香族二胺的残基;R1为芳香族二酐的残基;R2为脂肪族二酐的残基;m及n各自独立为正整数,且构成该聚酰亚胺的二胺单体仅由主链含有磺酰基的芳香族二胺构成。
优选地,该含有磺酰基的芳香族二胺包含4,4′-双(3-氨基苯氧基)二苯基砜、4,4′-双(4-氨基苯氧基)二苯砜、4,4二氨基二苯砜或3,3二氨基二苯砜。
优选地,该芳香族二酐包含3,3′,4,4′-联苯四甲酸二酐、3,3′,4,4′-四甲酸二苯甲酮二酐、2,3,3′,4-联苯四甲酸二酐、2,3,3′,4-四甲酸二苯甲酮二酐、双酚A型二醚二酐或4,4-氧双邻苯二甲酸酐。
优选地,该脂肪族二酐包含双环[2.2.2]辛-7-烯-2,3,5,6-四羧酸二酐、1,2,4,5-环己烷四甲酸二酐、环丁烷四甲酸二酐或其他经氢化的芳香族二酐。
优选地,该n与该m的比例为1∶19至3∶7。
优选地,该聚酰亚胺膜对于360nm的可见光穿透率小于10%,且黄度小于3。
优选地,该聚酰亚胺膜具有小于或等于25的相位差,具有小于50ppm/℃的热膨胀系数,且具有大于230℃的玻璃化转变温度。
本发明还提供一种聚酰亚胺膜的制造方法,其包含以下步骤:将含聚酰亚胺的溶液涂布于基材,得到经涂布的基材;以及对该经涂布的基材在75℃~155℃下进行表面干燥,接着,在大于或等于200℃的温度下进行热处理;其中,该聚酰亚胺包含式(I)所示的结构:
Figure PCTCN2020090321-appb-000002
其中,A为主链含有磺酰基的芳香族二胺的残基;R 1为芳香族二酐的残基;R 2为脂肪族二酐的残基;m及n各自独立为正整数,且构成该聚酰亚胺的二胺单体仅由主链含有磺酰基的芳香族二胺构成。
本发明所提供的聚酰亚胺膜,其所用的聚酰亚胺由至少一种二胺单体与至少两种二酐单体共聚而成。该聚酰亚胺经由导入特定的单体结构,可使其所制得的聚酰亚胺膜不仅具有透明性和低黄度,还具有UV吸收特性,更具有低相位差。
具体实施方式
本发明所提供的聚酰亚胺膜包含聚酰亚胺,该聚酰亚胺包含式(I)所示的结构:
Figure PCTCN2020090321-appb-000003
其中,A为主链含有磺酰基的芳香族二胺的残基;R 1为芳香族二酐的残基;R 2为脂肪族二酐的残基;m及n各自独立为正整数,且构成该聚酰亚胺的二胺单体仅由主链含有磺酰基的芳香族二胺构成,并且,该聚酰亚胺在形成该聚酰亚胺膜的过程中经75℃~155℃温度区间的表面干燥。
本发明的聚酰亚胺由至少一种芳香族二胺单体与至少两种二酐 单体共聚而成,其中一种二酐单体是芳香族二酐单体,另一种二酐单体是脂肪族二酐单体,且该芳香族二胺单体在主链上含有磺酰基。
在本发明中,该聚酰亚胺的芳香族二胺单体可来自两种以上的二胺单体,这些二胺单体可以相同或不同,但这些二胺单体必须在主链上均含有磺酰基。举例来说,式(I)中,重复单元n中的A可与重复单元m中的A相同或不同,但这些A必须为主链均含有磺酰基的芳香族二胺的残基。
在一个优选实施方式中,该含有磺酰基(-SO 2-)的芳香族二胺包含4,4′-双(3-氨基苯氧基)二苯基砜、4,4′-双(4-氨基苯氧基)二苯砜、4,4二氨基二苯砜或3,3二氨基二苯砜。
在一个优选实施方式中,该芳香族二酐包含3,3′,4,4′-联苯四甲酸二酐、3,3′,4,4′-四甲酸二苯甲酮二酐、2,3,3′,4-联苯四甲酸二酐、2,3,3′,4-四甲酸二苯甲酮二酐、双酚A型二醚二酐或4,4-氧双邻苯二甲酸酐。
在一个优选实施方式中,该脂肪族二酐包含双环[2.2.2]辛-7-烯-2,3,5,6-四羧酸二酐、1,2,4,5-环己烷四甲酸二酐、环丁烷四甲酸二酐或其他经氢化的芳香族四羧酸二酐。
在一个优选实施方式中,该n与该m的比例为1∶19至3∶7,例如2∶8。
本发明的聚酰亚胺膜优选对于360nm的可见光穿透率小于1O%,且黄度小于3,更优选黄度小于1.9,特别优选黄度小于1.55。
本发明的聚酰亚胺膜优选具有小于或等于25(例如小于或等于24、小于或等于20、小于或等于14、或小于或等于1O)的相位差,具有小于50ppm/℃(例如小于45ppm/℃)的热膨胀系数,且具有大于230℃(例如大于239℃、大于244℃、大于250℃或大于270℃)的玻璃化转变温度。
在本发明中,该聚酰亚胺膜的制造方法包含:将含该聚酰亚胺的溶液涂布于基材,得到经涂布的基材;以及对该经涂布的基材在75℃~155℃的温度下进行表面干燥,接着,在大于或等于200℃的 温度下进行热处理。
该表面干燥优选在80℃~150℃下进行,例如在80℃、90℃、100℃、110℃、120℃、130℃、140℃或150℃下进行。在一些实施方式中,进行表面干燥的温度介于前述任两个数值之间,例如90~130℃之间、90℃~120℃之间或100℃~120℃之间。该热处理优选在200℃~250℃下进行,例如200℃、205℃、210℃、215℃、220℃、225℃、230℃、235℃、240℃、245℃或250℃下进行。在一些实施方式中,进行该热处理的温度介于前述任两个数值之间,例如210℃~240℃之间或210℃~230℃之间。
在一个优选实施方式中,该溶液通过将至少一种芳香族二胺与至少两种二酐溶解在溶剂中,进行一步法共聚而得,其中一种二酐单体是芳香族二酐单体,另一种二酐单体是脂肪族二酐单体,且该芳香族二胺单体在主链上含有磺酰基。
该溶剂并无特别限制,只要可溶解反应成分即可。该溶剂可为间甲酚(m-Cresol)、N-甲基吡咯烷酮(NMP)、γ-丁内酯(γ-GBL)或二甲基亚砜(DMSO)等,优选为γ-丁内酯(γ-GBL)。
该涂布的方式亦无特别限制,可为滴落涂布法(Drop coating)、刮刀涂布法(Blade coating)、旋转涂布法(Spin coating)或含浸涂布法(Dip coating)等方式。
在本发明中,该聚酰亚胺优选是可溶于前述溶剂中的。
为突显本案功效,发明人特依照下文所记载的方式完成实施例及比较例。以下实施例及比较例将对本发明做进一步说明,然这些实施例和比较例并非用来限制本发明的范围,任何熟悉本发明技术领域的人员,在不违背本发明的精神下所做的改变和修饰,均属于本发明的范围。
实施例
实施例1:
取一个配置有机械搅拌器与氮气进入口的500mL反应瓶,加入 43.23g(0.1mol)的4,4′-双(3-氨基苯氧基)二苯基砜(m-BAPS)、6.20g(0.02mol)的4,4-氧双邻苯二甲酸酐(OPDA)、19.86g(0.08mol)的双环[2.2.2]辛-7-烯-2,3,5,6-四羧酸二酐(B1317)、104g的γ-丁内酯(γ-GBL)与0.83g的三乙胺,以得到溶液。在氮气环境下,使上述溶液在反应温度190℃下聚合反应4小时后,待温度降至120℃时,再加入104g的γ-丁内酯,得聚酰亚胺溶液。
将上述的聚酰胺酸溶液用过滤头过滤后,再经由刮刀涂布方式或滴落涂布法涂布于玻璃基材上,再用烘箱对涂层(即膜)进行表面干燥,以移除涂层表面的溶剂。接着,再用高温烘箱进行膜熟化工艺(即热处理),以去除溶剂。该涂层(即膜)的厚度固定为10μm。该表面干燥的烘烤条件为80℃,烘烤15分钟。熟化热处理条件为220℃烘烤60分钟。
实施例2:
取一个配置有机械搅拌器与氮气进入口的500mL反应瓶,加入43.23g(0.1mol)的4,4′-双(3-氨基苯氧基)二苯基砜(m-BAPS)、10.41g(0.02mol)的双酚A型二醚二酐(BPADA)与19.86g(0.08mol)的双环[2.2.2]辛-7-烯-2,3,5,6-四羧酸二酐(B1317)、110g的γ-丁内酯(γ-GBL)及0.88g的三乙胺,以得到溶液。在氮气环境下,使上述溶液在反应温度190℃下聚合反应4小时后,待温度降至120℃时,再加入110g的γ-丁内酯,得聚酰亚胺溶液。
实施例2的聚酰亚胺膜的制备方式、表面干燥的烘烤条件及热处理条件均与实施例1相同。
实施例3:
取一个配置有机械搅拌器与氮气进入口的500mL反应瓶,加入43.23g(0.1mol)的4,4′-双(3-氨基苯氧基)二苯基砜(m-BAPS)、6.20g(0.02mol)的4,4-氧双邻苯二甲酸酐(OPDA)、17.93g(0.08mol)的1,2,4,5-环己烷四甲酸二酐(HPMDA)、101g的γ-丁内酯(γ-GBL)及 0.81g的三乙胺,以得到溶液。在氮气环境下,使上述溶液在反应温度190℃下聚合反应4小时后,待温度降至120℃时,再加入101g的γ-丁内酯,得聚酰亚胺溶液。
实施例3的聚酰亚胺膜的制备方式、表面干燥的烘烤条件及热处理条件均与实施例1相同。
实施例4:
取一个配置有机械搅拌器与氮气进入口的500mL反应瓶,加入43.23g(0.1mol)的4,4′-双(3-氨基苯氧基)二苯基砜(m-BAPS)、10.41g(0.02mol)的双酚A型二醚二酐(BPADA)、17.93g(0.08mol)的1,2,4,5-环己烷四甲酸二酐(HPMDA)、107g的γ-丁内酯(γ-GBL)及0.86g的三乙胺,以得到溶液。在氮气环境下,将上述溶液在反应温度190℃下聚合反应4小时后,待温度降至120℃时,再加入107g的γ-丁内酯,得聚酰亚胺溶液。
实施例4的聚酰亚胺膜的制备方式、表面干燥的烘烤条件及热处理条件均与实施例1相同。
实施例5:
取一个配置有机械搅拌器与氮气进入口的500mL反应瓶,加入43.23g(0.1mol)的4,4′-双(3-氨基苯氧基)二苯基砜(m-BAPS)、8.83g(0.03mol)的3,3′,4,4′-联苯四羧酸二酐(BPDA)、15.69g(0.07mol)的1,2,4,5-环己烷四甲酸二酐(HPMDA)、102g的γ-丁内酯(γ-GBL)及0.81g的三乙胺,以得到溶液。在氮气环境下,将上述溶液在反应温度190℃下聚合反应4小时后,待温度降至120℃时,再加入102g的γ-丁内酯,得聚酰亚胺溶液。
实施例5的聚酰亚胺膜的制备方式、表面干燥的烘烤条件及热处理条件均与实施例1相同。
实施例6:
取一个配置有机械搅拌器与氮气进入口的500mL反应瓶,加入43.23g(0.1mol)的4,4′-双(3-氨基苯氧基)二苯基砜(m-BAPS)、8.83g(0.03mol)的3,3′,4,4′-联苯四羧酸二酐(BPDA)、15.69g(0.07mol)的1,2,4,5-环己烷四甲酸二酐(HPMDA)、102g的γ-丁内酯(γ-GBL)及0.81g的三乙胺,以得到溶液。在氮气环境下,将上述溶液在反应温度190℃下聚合反应4小时后,待温度降至120℃时,再加入102g的γ-丁内酯,得聚酰亚胺溶液。
实施例6的聚酰亚胺膜的制备方式与实施例1相同。表面干燥的烘烤条件为100℃,烘烤15分钟。熟化热处理条件为220℃烘烤60分钟。
实施例7:
取一个配置有机械搅拌器与氮气进入口的500mL反应瓶,加入43.23g(0.1mol)的4,4′-双(3-氨基苯氧基)二苯基砜(m-BAPS)、8.83g(0.03mol)的3,3′,4,4′-联苯四羧酸二酐(BPDA)、15.69g(0.07mol)的1,2,4,5-环己烷四甲酸二酐(HPMDA)、102g的γ-丁内酯(γ-GBL)及0.81g的三乙胺,以得到溶液。在氮气环境下,将上述溶液在反应温度190℃下聚合反应4小时后,待温度降至120℃时,再加入102g的γ-丁内酯,得聚酰亚胺溶液。
实施例7的聚酰亚胺膜的制备方式与实施例1相同。表面干燥的烘烤条件为120℃,烘烤15分钟。熟化热处理条件为220℃烘烤60分钟。
实施例8:
取一个配置有机械搅拌器与氮气进入口的500mL反应瓶,加入43.23g(0.1mol)的4,4′-双(3-氨基苯氧基)二苯基砜(m-BAPS)、8.83g(0.03mol)的3,3′,4,4′-联苯四羧酸二酐(BPDA)、15.69g(0.07mol)的1,2,4,5-环己烷四甲酸二酐(HPMDA)、102g的γ-丁内酯(γ-GBL)及0.81g的三乙胺,以得到溶液。在氮气环境下,将上述溶液在反应 温度190℃下聚合反应4小时后,待温度降至120℃时,再加入102g的γ-丁内酯,得聚酰亚胺溶液。
实施例8的聚酰亚胺膜的制备方式与实施例1相同。表面干燥的烘烤条件为150℃,烘烤20分钟。热处理条件为220℃烘烤60分钟。
实施例9:
取一个配置有机械搅拌器与氮气进入口的500mL反应瓶,加入43.23g(0.1mol)的4,4′-双(3-氨基苯氧基)二苯基砜(m-BAPS)、5.88g(0.02mol)的2,3,3′,4′-联苯四甲酸二酐(a-BPDA)、17.93g(0.08mol)的1,2,4,5-环己烷四甲酸二酐(HPMDA)、101g的γ-丁内酯(γ-GBL)及0.80g的三乙胺,以得到溶液。在氮气环境下,将上述溶液在反应温度190℃下聚合反应4小时后,待温度降至120℃时,再加入101g的γ-丁内酯,得聚酰亚胺溶液。
实施例9的聚酰亚胺膜的制备方式、表面干燥的烘烤条件及热处理条件均与实施例1相同。
实施例10:
取一个配置有机械搅拌器与氮气进入口的500mL反应瓶,加入24.83g(0.1mol)的3,3′-二氨基二苯砜(3,3-DDS)、8.83g(0.03mol)的3,3′,4,4′-联苯四羧酸二酐(BPDA)、15.69g(0.07mol)的1,2,4,5-环己烷四甲酸二酐(HPMDA)、73g的γ-丁内酯(γ-GBL)及0.58g的三乙胺,以得到溶液。在氮气环境下,将上述溶液在反应温度190℃下聚合反应4小时后,待温度降至120℃时,再加入73g的γ-丁内酯,得聚酰亚胺溶液。
实施例10的聚酰亚胺膜的制备方式、表面干燥的烘烤条件及热处理条件均与实施例1相同。
实施例11:
取一个配置有机械搅拌器与氮气进入口的500mL反应瓶,加入43.23g(0.1mol)的4,4′-双(3-氨基苯氧基)二苯基砜(m-BAPS)、6.44g(0.02mol)的3,3′,4,4′-四甲酸二苯甲酮二酐(BTDA)、19.86g(0.08mol)的双环[2.2.2]辛-7-烯-2,3,5,6-四羧酸二酐(B1317)、104g的γ-丁内酯(γ-GBL)及0.83g的三乙胺,以得到溶液。在氮气环境下,将上述溶液在反应温度190℃下聚合反应4小时后,待温度降至120℃时,再加入104g的γ-丁内酯,得聚酰亚胺溶液。
实施例11的聚酰亚胺膜的制备方式、表面干燥的烘烤条件及热处理条件均与实施例1相同。
实施例12:
取一个配置有机械搅拌器与氮气进入口的500mL反应瓶,加入43.23g(0.1mol)的4,4′-双(3-氨基苯氧基)二苯基砜(m-BAPS)、6.44g(0.02mol)的3,3′,4,4′-四甲酸二苯甲酮二酐(BTDA)、17.93g(0.08mol)的1,2,4,5-环己烷四甲酸二酐(HPMDA)、101g的γ-丁内酯(γ-GBL)及0.83g的三乙胺,以得到溶液。在氮气环境下,将上述溶液在反应温度190℃下聚合反应4小时后,待温度降至120℃时,再加入101g的γ-丁内酯,得聚酰亚胺溶液。
实施例12的聚酰亚胺膜的制备方式、表面干燥的烘烤条件及热处理条件均与实施例1相同。
比较例1:
取一个配置有机械搅拌器与氮气进入口的500mL反应瓶,加入43.23g(0.1mol)的4,4′-双(3-氨基苯氧基)二苯基砜(m-BAPS)、6.73g(0.03mol)的1,2,4,5-环己烷四甲酸二酐(HPMDA)、17.37g(0.07mol)的[2.2.2]辛-7-烯-2,3,5,6-四羧酸二酐(B1317)、101g的γ-丁内酯(γ-GBL)及0.81g的三乙胺,以得到溶液。在氮气环境下,将上述溶液在反应温度190℃下聚合反应4小时后,待温度降至120℃时,再加入101g的γ-丁内酯,得聚酰亚胺溶液。
比较例1的聚酰亚胺膜的制备方式、表面干燥的烘烤条件及热处理条件均与实施例1相同。
比较例2:
取一个配置有机械搅拌器与氮气进入口的500mL反应瓶,加入3.23g(0.1mol)的4,4′-双(3-氨基苯氧基)二苯基砜(m-BAPS)、17.37g(0.1mol)的[2.2.2]辛-7-烯-2,3,5,6-四羧酸二酐(B1317)、91g的γ-丁内酯(γ-GBL)及0.72g的三乙胺,以得到溶液。在氮气环境下,将上述溶液在反应温度190℃下聚合反应4小时后,待温度降至120℃时,再加入91g的γ-丁内酯,得聚酰亚胺溶液。
比较例2的聚酰亚胺膜的制备方式、表面干燥的烘烤条件及热处理条件均与实施例1相同。
比较例3:
取一个配置有机械搅拌器与氮气进入口的500mL反应瓶,加入34.60g(0.08mol)的4,4′-双(3-氨基苯氧基)二苯基砜(m-BAPS)、6.40g(0.02mol)的2,2′-双(三氟甲基)-4,4′-二氨基联苯(TFMB)、22.43g(0.1mol)的1,2,4,5-环己烷四甲酸二酐(HPMDA)、101.5g的γ-丁内酯(γ-GBL)及0.81g的三乙胺,以得到溶液。在氮气环境下,将上述溶液在反应温度190℃下聚合反应4小时后,待温度降至120℃时,再加入101.5g的γ-丁内酯,得聚酰亚胺溶液。
比较例3的聚酰亚胺膜的制备方式、表面干燥的烘烤条件及热处理条件均与实施例1相同。
比较例4:
取一个配置有机械搅拌器与氮气进入口的500mL反应瓶,加入3.23g(0.1mol)的4,4′-双(3-氨基苯氧基)二苯基砜(m-BAPS)、44.43g(0.1mol)的4,4′-(六氟异丙烯)二酞酸酐(6FDA)、123.44g的γ-丁内酯(γ-GBL)及0.99g的三乙胺,以得到溶液。在氮气环境下,将上 述溶液在反应温度190℃下聚合反应4小时后,待温度降至120℃时,再加入123.44g的γ-丁内酯,得聚酰亚胺溶液。
比较例4的聚酰亚胺膜的制备方式、表面干燥的烘烤条件及热处理条件均与实施例1相同。
比较例5:
取一个配置有机械搅拌器与氮气进入口的500mL反应瓶,加入34.60g(0.08mol)的4,4′-双(3-氨基苯氧基)二苯基砜(m-BAPS)、6.40g(0.02mol)的2,2′-双(三氟甲基)-4,4′-二氨基联苯(TFMB)、8.83g(0.03mol)的3,3′,4,4′-联苯四羧酸二酐(BPDA)、15.69g(0.07mol)的1,2,4,5-环己烷四甲酸二酐(HPMDA)、102g的γ-丁内酯(γ-GBL)及0.81g的三乙胺,以得到溶液。在氮气环境下,将上述溶液在反应温度190℃下聚合反应4小时后,待温度降至120℃时,再加入102g的γ-丁内酯,得聚酰亚胺溶液。
比较例5的聚酰亚胺膜的制备方式、表面干燥的烘烤条件及热处理条件均与实施例1相同。
比较例6:
取一个配置有机械搅拌器与氮气进入口的500mL反应瓶,加入32.96g(0.09mol)的2,2-双(3-氨基-4-羟基苯基)六氟丙烷(AHHFP)、2.00g(0.01mol)的4,4′-二氨基二苯醚(ODA)、32.2g(0.1mol)的3,3′,4,4′-四甲酸二苯甲酮二酐(BTDA)、201.5g的γ-丁内酯(γ-GBL),以得到溶液中。在氮气环境下,将上述溶液于室温反应24小时后,即得聚酰亚胺溶液。
比较例6的聚酰亚胺膜的制备方式、表面干燥的烘烤条件及热处理条件均与实施例1相同。
比较例7:
取一个配置有机械搅拌器与氮气进入口的500mL反应瓶,加入 21.62g(0.05mol)的4,4′-双(3-氨基苯氧基)二苯基砜(m-BAPS)、16g(0.05mol)的2,2′-双(三氟甲基)-4,4′-二氨基联苯(TFMB)、32.2g(0.1mol)的3,3′,4,4′-四甲酸二苯甲酮二酐(BTDA)及209.5g的γ-丁内酯(γ-GBL),以得到溶液。在氮气环境下,将上述溶液于室温反应24小时后,即得聚酰亚胺溶液。
比较例7的聚酰亚胺膜的制备方式、表面干燥的烘烤条件及热处理条件均与实施例1相同。
比较例8:
取一个配置有机械搅拌器与氮气进入口的500mL反应瓶,加入25.92g(0.05mol)的2,2-双[4-(4-氨基苯氧基)苯基]六氟丙烷(6FBAPP)、12.42g(0.05mol)的3,3′-二氨基二苯砜(3,3-DDS)、32.2g(0.1mol)的3,3′,4,4′-四甲酸二苯甲酮二酐(BTDA)及211.6g的γ-丁内酯(γ-GBL),以得到溶液。在氮气环境下,将上述溶液于室温反应24小时,即得聚酰亚胺溶液。
比较例8的聚酰亚胺膜的制备方式、表面干燥的烘烤条件及热处理条件均与实施例1相同。
比较例9:
取一个配置有机械搅拌器与氮气进入口的500mL反应瓶,加入43.23g(0.1mol)的4,4′-双(3-氨基苯氧基)二苯基砜(m-BAPS)、8.83g(0.03mol)的3,3′,4,4′-联苯四羧酸二酐(BPDA)、15.69g(0.07mol)的1,2,4,5-环己烷四甲酸二酐(HPMDA)、102g的γ-丁内酯(γ-GBL)及0.81g的三乙胺,以得到溶液。在氮气环境下,将上述溶液在反应温度190℃下聚合反应4小时后,待温度降至120℃时,再加入102g的γ-丁内酯,得聚酰亚胺溶液。
比较例9的聚酰亚胺膜的制备方式与实施例1相同。表面干燥的烘烤条件为40℃,烘烤15分钟。熟化热处理条件为220℃烘烤60分钟。
比较例10:
取一个配置有机械搅拌器与氮气进入口的500mL反应瓶,加入43.23g(0.1mol)的4,4′-双(3-氨基苯氧基)二苯基砜(m-BAPS)、8.83g(0.03mol)的3,3′,4,4′-联苯四羧酸二酐(BPDA)、15.69g(0.07mol)的1,2,4,5-环己烷四甲酸二酐(HPMDA)、102g的γ-丁内酯(γ-GBL)及0.81的三乙胺,以得到溶液。在氮气环境下,将上述溶液在反应温度190℃下聚合反应4小时后,待温度降至120℃时,再加入102g的γ-丁内酯,得聚酰亚胺溶液。
比较例10的聚酰亚胺膜的制备方式与实施例1相同。表面干燥的烘烤条件为50℃,烘烤15分钟。熟化热处理条件为220℃烘烤60分钟。
比较例11:
取一个配置有机械搅拌器与氮气进入口的500mL反应瓶,加入43.23g(0.1mol)的4,4′-双(3-氨基苯氧基)二苯基砜(m-BAPS)、8.83g(0.03mol)的3,3′,4,4′-联苯四羧酸二酐(BPDA)、15.69g(0.07mol)的1,2,4,5-环己烷四甲酸二酐(HPMDA)、102g的γ-丁内酯(γ-GBL)及0.81g的三乙胺,以得到溶液。在氮气环境下,将上述溶液在反应温度190℃下聚合反应4小时后,待温度降至120℃时,再加入102g的γ-丁内酯,得聚酰亚胺溶液。
比较例11的聚酰亚胺膜的制备方式与实施例1相同。表面干燥的烘烤条件为60℃,烘烤15分钟。熟化热处理条件为220℃烘烤60分钟。
以下说明本发明厚度10μm的聚酰亚胺膜的性质的测试方法。
<热膨胀系数>及<玻璃化转变温度>
使用热机械分析仪(TA Instrument TMA Q400EM)测量50℃至200℃的CTE值与玻璃化转变温度(Tg)。在热分析前,所有聚酰亚胺膜先在220℃下热处理1小时,再用TMA测定玻璃化转变温度, 在薄膜模式下,以10℃/分钟的加热速率并以30mN恒定施加荷重。相同地,以TMA测定温度50~200℃线性热膨胀系数其负载应变为30mN,加热速率为10℃/min。
<黄度>
根据ASTM E313使用Nippon Denshoku COH 5500测量覆盖基板的黄色指数YI值。黄色指数YI是利用分光亮度计针对400-700nm的光进行透过率测定而测得三个刺激值(x,y,z),并通过下式计算出YI。
YI=100×(1.2769x-1.0592z)/y
<全光穿透率(TT)>及<雾度>
根据ASTM D1003使用Nippon Denshoku COH 5500测量覆盖基板的全光光穿透率和雾度。
<UV吸收度(T-360)>
使用紫外光可见光分光光谱仪(UV-Vis spectrophotometer)测量UV-Vis对于360nm波长下厚度为10μm聚酰亚胺膜的穿透率。
<相位差>
面内相位差R0与厚度相位差Rth,是利用王子计测机器株式会社制造的光弹性常数测定装置Kobra 21ADH的X、Y、Z模式来测定该透明聚酰亚胺层的面内相位差与厚度相位差。测定温度设定为25℃,测定波长设定为529nm。具体而言,利用光弹性常数测定装置来测定聚酰亚胺膜的X、Y、Z方向的折射率,并经由下列公式计算R0与Rth。
面内向位差R0=(nx-ny)×d
厚度相位差Rth=[(nx+ny)/2-nz]×d
其中nx、ny、nz分别为X、Y和Z方向的折射率,d为膜厚度。
上述性质的测试结果如表1所示。
Figure PCTCN2020090321-appb-000004
Figure PCTCN2020090321-appb-000005
从比较例1~4得知,用于形成聚酰亚胺膜的聚酰亚胺如无添加特定芳香族二酐,如:BPDA、OPDA、BPADA、BTDA,则360nm波长光穿透率大于65%,不具备UV吸收特性。相对于此,本发明的聚酰亚胺膜因添加20mol%的芳香族二酐,则使360nm波长光穿透率降至10%以下。
从实施例5、10与比较例3、5得知,用含磺酰基的二胺合成的10μm膜厚的聚酰亚胺膜,其相位差小于15;如果用来制造聚酰亚胺膜的二胺包含不含磺酰基的二胺,则该聚酰亚胺膜的相位差将增加。这是因为用直链型二酐合成的聚酰亚胺,其相位差数值将由二胺的种类决定,如:m-BAPS、DDS。从另一角度而言,由实施例5及比较例5的结果可知,本发明的聚酰亚胺膜中的二胺因不包含不含磺酰基的二胺,而具有较低的相位差。
比较例6~8,其使用两种二胺单体与一种二酐单体合成聚酰亚胺,如此的聚酰亚胺虽可制得相位差小于30的聚酰亚胺膜,然而此聚酰亚胺膜的黄度会大于20。
从实施例11及比较例2得知,提高具备UV吸收的芳香族二酐的添加量,聚合而成的聚酰亚胺薄膜的UV吸收效能越高。
由实施例5~8与比较例9~11可知,表面干燥温度能影响聚酰亚胺膜的相位差数值。聚酰亚胺膜刚成型时(即溶剂尚未移除而呈现湿膜的状态时),表面干燥温度越高,其聚酰亚胺膜的相位差数值越低。由此可知,本发明通过表面干燥,使聚酰亚胺的分子排列受到影响,从而影响聚酰亚胺膜的相位差。
从实施例1~12得知,用HPMDA合成的聚酰亚胺膜的相位差数值低于用B1317合成的。Tg数值,则是B1317合成的聚酰亚胺膜高于用HPMDA合成的,这是因为B1317结构较为坚硬,分子结构不易弯折。
此外,由实施例1~12亦可得知,本发明的聚酰亚胺膜的全光穿透率大于89%、玻璃化转变温度大于230℃、热膨胀系数(CTE)小于50ppm/℃、相位差低于25nm。
从实施例1~12与比较例1~2得知,聚酰亚胺中的脂肪族二酐的比例大于或等于70mol%以上,则相位差数值小于36。
综上所述,本发明通过将特定的单体结构引入聚酰亚胺中,使得通过其制得的聚酰亚胺膜不仅具有透明性、无色外,还具有低相位差与UV吸收特性。
然而以上所述的仅是本发明的优选实施例而已,不能以此限定本发明实施的范围,即,只要是依照本发明专利申请的范围以及发明说明书的内容所作的简单的等效变化与修饰,皆仍属于本发明专利涵盖的范围内。

Claims (8)

  1. 一种聚酰亚胺膜,其包含聚酰亚胺,该聚酰亚胺在形成该聚酰亚胺膜的过程中经75℃~155℃的表面干燥,且该聚酰亚胺包含式(I)所示的结构:
    Figure PCTCN2020090321-appb-100001
    其中,A为主链含有磺酰基的芳香族二胺的残基;R 1为芳香族二酐的残基;R 2为脂肪族二酐的残基;m及n各自独立为正整数,且构成该聚酰亚胺的二胺单体仅由主链含有磺酰基的芳香族二胺构成。
  2. 如权利要求1所述的聚酰亚胺膜,其中该含有磺酰基的芳香族二胺包含4,4′-双(3-氨基苯氧基)二苯基砜、4,4′-双(4-氨基苯氧基)二苯砜、4,4二氨基二苯砜或3,3二氨基二苯砜。
  3. 如权利要求1所述的聚酰亚胺膜,其中该芳香族二酐包含3,3′,4,4′-联苯四甲酸二酐、3,3′,4,4′-四甲酸二苯甲酮二酐、2,3,3′,4-联苯四甲酸二酐、2,3,3′,4-四甲酸二苯甲酮二酐、双酚A型二醚二酐或4,4-氧双邻苯二甲酸酐。
  4. 如权利要求1所述的聚酰亚胺膜,其中该脂肪族二酐包含双环[2.2.2]辛-7-烯-2,3,5,6-四羧酸二酐、1,2,4,5-环己烷四甲酸二酐、环丁烷四甲酸二酐或其他经氢化的芳香族四羧酸二酐。
  5. 如权利要求1所述的聚酰亚胺膜,其中该n与该m的比例为1∶19至3∶7。
  6. 如权利要求1所述的聚酰亚胺膜,其对于360nm的可见光穿透率小于10%,且黄度小于3。
  7. 如权利要求1所述的聚酰亚胺膜,其具有小于或等于25的相位差,具有小于50ppm/℃的热膨胀系数,且具有大于230℃的玻璃 化转变温度。
  8. 一种聚酰亚胺膜的制造方法,其包含以下步骤:
    将含聚酰亚胺的溶液涂布于基材,得到经涂布的基材;以及
    对该经涂布的基材在75℃~155℃的温度下进行表面干燥,接着,在等于或大于200℃的温度下进行热处理;
    其中,该聚酰亚胺包含式(I)所示的结构:
    Figure PCTCN2020090321-appb-100002
    其中,A为主链含有磺酰基的芳香族二胺的残基;R 1为芳香族二酐的残基;R 2为脂肪族二酐的残基;m及n各自独立为正整数,且构成该聚酰亚胺的二胺单体仅由主链含有磺酰基的芳香族二胺构成。
PCT/CN2020/090321 2020-05-14 2020-05-14 聚酰亚胺膜及其制造方法 WO2021226951A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/623,397 US20220372227A1 (en) 2020-05-14 2020-05-14 Polyimide Film and Manufacturing Method Thereof
PCT/CN2020/090321 WO2021226951A1 (zh) 2020-05-14 2020-05-14 聚酰亚胺膜及其制造方法
CN202080045607.5A CN114008110A (zh) 2020-05-14 2020-05-14 聚酰亚胺膜及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/090321 WO2021226951A1 (zh) 2020-05-14 2020-05-14 聚酰亚胺膜及其制造方法

Publications (1)

Publication Number Publication Date
WO2021226951A1 true WO2021226951A1 (zh) 2021-11-18

Family

ID=78526253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090321 WO2021226951A1 (zh) 2020-05-14 2020-05-14 聚酰亚胺膜及其制造方法

Country Status (3)

Country Link
US (1) US20220372227A1 (zh)
CN (1) CN114008110A (zh)
WO (1) WO2021226951A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115160566A (zh) * 2022-07-12 2022-10-11 江西沃格光电股份有限公司 聚酰亚胺、浆料、薄膜及其制备方法和柔性显示设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101679633A (zh) * 2007-06-15 2010-03-24 日产化学工业株式会社 热固化膜形成用树脂组合物
CN102382303A (zh) * 2011-08-16 2012-03-21 中国科学院宁波材料技术与工程研究所 无色透明的聚酰亚胺树脂材料及其制备方法
CN102532895A (zh) * 2010-12-23 2012-07-04 财团法人工业技术研究院 共聚酰亚胺溶液、共聚酰亚胺、显示元件及太阳能电池
CN103102489A (zh) * 2013-02-27 2013-05-15 南京岳子化工有限公司 一种热塑性聚酰亚胺树脂及其制备方法
JP2015229691A (ja) * 2014-06-03 2015-12-21 旭化成イーマテリアルズ株式会社 ポリイミド前駆体組成物及びポリイミドフィルム
CN106029743A (zh) * 2014-02-21 2016-10-12 三菱化学株式会社 含聚酰亚胺前驱体和/或聚酰亚胺的组合物,以及聚酰亚胺膜
CN107428934A (zh) * 2015-03-31 2017-12-01 旭化成株式会社 聚酰亚胺膜、聚酰亚胺清漆、使用了聚酰亚胺膜的制品、以及层积体
CN108586744A (zh) * 2018-05-08 2018-09-28 深圳飞世尔新材料股份有限公司 一种无色透明聚酰亚胺薄膜及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101679633A (zh) * 2007-06-15 2010-03-24 日产化学工业株式会社 热固化膜形成用树脂组合物
CN102532895A (zh) * 2010-12-23 2012-07-04 财团法人工业技术研究院 共聚酰亚胺溶液、共聚酰亚胺、显示元件及太阳能电池
CN102382303A (zh) * 2011-08-16 2012-03-21 中国科学院宁波材料技术与工程研究所 无色透明的聚酰亚胺树脂材料及其制备方法
CN103102489A (zh) * 2013-02-27 2013-05-15 南京岳子化工有限公司 一种热塑性聚酰亚胺树脂及其制备方法
CN106029743A (zh) * 2014-02-21 2016-10-12 三菱化学株式会社 含聚酰亚胺前驱体和/或聚酰亚胺的组合物,以及聚酰亚胺膜
JP2015229691A (ja) * 2014-06-03 2015-12-21 旭化成イーマテリアルズ株式会社 ポリイミド前駆体組成物及びポリイミドフィルム
CN107428934A (zh) * 2015-03-31 2017-12-01 旭化成株式会社 聚酰亚胺膜、聚酰亚胺清漆、使用了聚酰亚胺膜的制品、以及层积体
CN108586744A (zh) * 2018-05-08 2018-09-28 深圳飞世尔新材料股份有限公司 一种无色透明聚酰亚胺薄膜及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115160566A (zh) * 2022-07-12 2022-10-11 江西沃格光电股份有限公司 聚酰亚胺、浆料、薄膜及其制备方法和柔性显示设备
CN115160566B (zh) * 2022-07-12 2024-04-16 江西沃格光电股份有限公司 聚酰亚胺、浆料、薄膜及其制备方法和柔性显示设备

Also Published As

Publication number Publication date
CN114008110A (zh) 2022-02-01
US20220372227A1 (en) 2022-11-24

Similar Documents

Publication Publication Date Title
JP6883640B2 (ja) 樹脂前駆体及びそれを含有する樹脂組成物、樹脂フィルム及びその製造方法、並びに、積層体及びその製造方法
JP6817389B2 (ja) ポリイミドフィルムの製造方法
CN109134858B (zh) 一种透明聚酰亚胺薄膜及其制备方法
JP6837974B2 (ja) ポリアミド−イミドフィルム及びこれを含む表示素子
USRE48141E1 (en) Transparent polyamide-imide resin and film using same
US7968670B2 (en) Polyimide resin and liquid crystal alignment layer and polyimide film using the same
TWI516523B (zh) 聚醯亞胺粉末及其製造方法、以及聚醯亞胺薄膜及其製造方法
CN105646919B (zh) 聚酰亚胺薄膜
JP6016561B2 (ja) ポリイミド前駆体及びそれを含有する樹脂組成物、ポリイミドフィルム及びその製造方法、並びに、積層体及びその製造方法
JP6831424B2 (ja) ポリアミック酸、ポリイミド樹脂およびポリイミドフィルム
JP2010513591A (ja) ポリイミド樹脂とこれを用いた液晶配向膜およびポリイミドフィルム
KR101301337B1 (ko) 폴리이미드 필름
TW201627355A (zh) 聚醯胺-醯亞胺前驅物組成物、聚醯胺-醯亞胺薄膜及顯示裝置
KR101292993B1 (ko) 폴리이미드 수지와 이를 이용한 액정 배향막 및 필름
WO2021226951A1 (zh) 聚酰亚胺膜及其制造方法
WO2008072916A1 (en) Polyimide film
TWI723864B (zh) 聚醯亞胺膜及其製造方法
CN114685793B (zh) 聚酰胺酰亚胺共聚物及含其的薄膜
KR101232534B1 (ko) 투명 필름
TWI847056B (zh) 聚醯亞胺膜
JP7227325B2 (ja) 優れた光学特性を有するポリイミドフィルム
KR101142692B1 (ko) 무색투명한 폴리이미드 수지와 이를 이용한 액정 배향막 및필름
CN118339218A (zh) 薄膜和其制造方法、以及图像显示装置
CN112280068A (zh) 聚酰胺酰亚胺膜
KR20200027360A (ko) 폴리아믹산-이미드 조성물 및 이로부터 형성된 폴리이미드 필름

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20934967

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20934967

Country of ref document: EP

Kind code of ref document: A1