WO2021223390A1 - 一种适用于变轨性能研究的双驱动轮变轨机构 - Google Patents

一种适用于变轨性能研究的双驱动轮变轨机构 Download PDF

Info

Publication number
WO2021223390A1
WO2021223390A1 PCT/CN2020/127723 CN2020127723W WO2021223390A1 WO 2021223390 A1 WO2021223390 A1 WO 2021223390A1 CN 2020127723 W CN2020127723 W CN 2020127723W WO 2021223390 A1 WO2021223390 A1 WO 2021223390A1
Authority
WO
WIPO (PCT)
Prior art keywords
rail
changing
change
rocker arm
wheel
Prior art date
Application number
PCT/CN2020/127723
Other languages
English (en)
French (fr)
Inventor
陈熔
王东亚
苏建
张伟伟
张程
邱雯婕
林慧英
朱婷婷
苗晓峰
Original Assignee
吉林大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 吉林大学 filed Critical 吉林大学
Priority to US17/413,477 priority Critical patent/US11609155B2/en
Publication of WO2021223390A1 publication Critical patent/WO2021223390A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/08Railway vehicles
    • G01M17/10Suspensions, axles or wheels

Definitions

  • the invention relates to a rail change system, in particular, a dual drive wheel rail change mechanism suitable for the study of rail change performance, relates to a train gauge change technology, and belongs to the field of train rail change.
  • the present invention provides a dual-drive wheel rail-change mechanism suitable for rail-change performance research with a simple structure. Simulating the actual track-change movement of the rail-change car can also measure the required track-change force, which can effectively verify the track-change performance of the train wheelset through experiments, and facilitate the analysis of the feasibility and reliability of the wheel-set track change.
  • the present invention provides a dual-drive wheel track change mechanism suitable for the study of track change performance, aiming to verify before the actual application of the track change train The feasibility of continuous track change of the wheelset verifies the reliability of track change.
  • connection should be understood in a broad sense unless otherwise clearly specified and limited. For example, they can be fixed or detachable. Connection or integral connection; it can be mechanical connection or electrical connection; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two elements, it can be a flexible connection, a rigid connection or an active link.
  • connection or integral connection can be mechanical connection or electrical connection; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two elements, it can be a flexible connection, a rigid connection or an active link.
  • a dual-drive wheel rail-changing mechanism suitable for the study of rail-change performance including: left lifting support rail-changing moving body 1, right lifting support rail-changing moving body 2, four-hole connection rail-changing force measuring rocker arm 3, and No. 1 double ring Connect the load cell 4-1, No. 2 double ring connects the load cell 4-2, the rail-change drive actuator 5 and the central shaft base 6, the four-hole connecting rail-change force measurement rocker arm 3 passes through the No. 1 and 2 double ring
  • the load cells 4-1, 4-2 are connected to the left lifting support rail-changing moving body 1 and the right lifting supporting rail-changing moving body 2 respectively, the left lifting supporting rail-changing moving body 1 and the right lifting supporting rail-changing moving body 1 2.
  • the rail change drive actuator 5 is connected with the rail change force measurement rocker arm 3 through four holes to drive the left lift support rail change mobile body 1 and the right lift support rail change mobile body 2 Change track.
  • the four-hole connecting rail-change force measuring rocker arm 3 includes: a four-hole connecting rail-changing force measuring rocker arm body 7 and two four-hole connections mounted on the four-hole connecting orbit changing force measuring rocker arm body 7
  • the arm connecting bearing 9 is connected to the central shaft base 6, and the pin shaft 8 of the rocker arm bearing pin shaft 8 is connected to the No. 1 double ring connection load cell 4-1 and 4-2 through the two four-hole connection.
  • the rail drive connecting pin 10 is connected with the rail changing drive actuator 5.
  • the left lifting support rail-changing mobile body 1 and the right lifting support rail-changing mobile body 2 have the same structure, and the left lifting support rail-changing mobile body 1 includes: a left mounting rail bottom plate 11 and a left rail-changing sliding middle plate The body 12, the left lifting airbag 13, the left rail-changing vertical moving upper plate 14 and the wheels 15.
  • the left mounting rail bottom plate 11 is fixedly installed on the peripheral integral Ima beam structure, and the left mounting rail bottom plate is provided with two long The guide rail; the left rail-changing sliding middle plate body 12, including: four left vertical lifting and moving guide posts 17 arranged on the left rail-changing sliding support middle plate 16, the left rail-changing guide rail sliding block slider body 18 and No.
  • the left vertical lifting and moving guide column 17 and the left rail sliding guide rail sliding block body 18 are respectively arranged on the upper and lower four corners of the left rail sliding support middle plate 16, and the left Ribs are provided under the rail-changing sliding support middle plate 16, and the four left vertical lifting and moving guide columns 17 are respectively installed on the left rail-changing sliding support middle plate 16 through the left-rail-changing sliding support middle plate through-hole cylindrical cylinder 16-2.
  • 1 bearing pin shaft body 19 is installed on the left rail change sliding support middle plate 16 through the left rail change sliding support middle plate protruding from the hollow square 16-1, the four left rail change guide rail sliding blocks
  • the slider body 18 is respectively fixed under the left rail sliding support middle plate 16 through the bolt connection body 20, and slidably fits with the two long guide rails on the guide rail bottom plate 11; Out of the hollow cube 16-1 and coaxial with the hole of the hollow cube, the No. 1 bearing pin shaft body 19 is inserted into it, and the four holes are connected to the rail-change force measuring rocker arm 3 and the left rail-change sliding support The board 16 is connected.
  • the left rail shifting vertical moving upper plate 14 includes: the left rail shifting vertical moving upper plate base plate 21, four driving wheel assembly bearing seats 22, 8 bearing seat connecting plate bolt connection assemblies 23, The left 1st drive wheel 24-1, the left 2nd drive wheel 24-2, the left motor drive wheel roller sprocket 25, the left double drive wheel connection chain 26, and the left planetary reducer motor assembly 27, the left lift moves
  • the upper base plate 21 is provided with circular holes corresponding to the protruding hollow cube 16-1, and its four corners are provided with hollow left upright movable upper plate bearing cylinders 28, through which are equipped with linear motion bearings 29 and left rails.
  • the four left vertical lifting and moving guide posts 17 in the sliding middle plate body 12 are installed in cooperation and move up and down along the guide posts.
  • the left lift airbag 13 is placed between the left rail-changing sliding support middle plate 16 and the left rail-changing vertical moving upper plate 14, and is circumferentially fixed on the left rail-changing sliding support middle plate 16 with bolts.
  • the left lifting and moving upper base plate 21 is provided with two ribs on the ground, and the left No. 1 drive wheel 24-1 and the left No. 2 drive wheel 24-2 are respectively fixed in the drive wheel assembly bearing seat 22
  • the rib plate is connected by the left double drive wheel connection chain 26, of which the left 1st drive wheel 24-1 is driven by the left motor drive wheel roller sprocket 25 through the left planetary reducer motor assembly 27, and the wheel 15 is placed on the left 1st, 2nd driving wheels 24-1, 24-2, simulate the actual wheel-set changing motion.
  • the rail-change drive actuator 5 is located on the side of the left lifting support rail-change moving body 1, and the rail-change drive actuator connection base 5-2 is installed on the peripheral imam beam structure through the shaft seat 30.
  • the rail drive actuator connecting lock ring 5-1 is connected to the four-hole connection rail-changing force measuring rocker body 3 through the rail-changing drive connecting pin 10, so as to complete the effect of pushing the rail-changing.
  • the central shaft base 6 is fixed between the left and right lifting support rail-changing moving bodies, the bottom surfaces of the three are in a straight line, and the central shaft base 6 is bolted to the overall structure constructed by the external imam beam, and the center Axle seat force measuring rocker arm connecting shaft 6-1 is connected to the four-hole connecting orbit-changing force measuring rocker arm body 7 by passing through the central axle seat force measuring rocker arm connecting bearing 9; the No. 1 and 2 double rings are connected to the force sensor 4 The two ends of -1 and 4-2 are respectively connected with the four-hole connection force measuring rocker arm bearing pin shaft body 8 and the four-hole connection force measuring rocker body 7, and the two double rings are connected to the load cell and the force measuring force.
  • the connecting rocker arms are arranged in a "Z" shape.
  • the left and right lifting support rail-changing moving bodies in a dual-drive wheel rail-changing mechanism suitable for rail-change performance research of the present invention have the same structure, which are distributed on both sides of the central shaft seat, and each rail-change
  • the supporting lifting body contains two driving wheels to facilitate the stable placement of the rail-changing wheel pair, and to facilitate the operation of the driving wheel and the wheels to ensure the successful and accurate progress of the rail-changing movement and avoid the instability of a single driving wheel.
  • the lifting airbag in the rail-changing support lifting body can be inflated and deflated to control the driving wheel to contact or disengage the wheel, which is convenient for the wheel-set to change rail and rotate at a high speed.
  • the four-hole connection of the four-hole connection in the orbit-changing force measuring rocker arm in the dual-drive wheel rail-changing mechanism suitable for the study of the orbit change performance of the present invention contains four different sizes.
  • a round hole, hole 2 can be used as a fulcrum of the lever at most.
  • Hole 1 and hole 3 are the same size, which is convenient for four-hole connection for rail-change force measurement.
  • the rocker body is connected with double-ring connection load cell.
  • the rocker body is connected to the rail-changing drive actuator to connect the lock ring.
  • the positions of the four circular holes are not randomly distributed.
  • the ratio of the distance from hole 2 to hole 4 to the distance from hole 2 to hole 1 or hole 2 to hole 3 is approximately 2.2 , This is calculated according to the knowledge of mechanics according to the 100mm range of the actuator used in the system and the realization of the orbit change.
  • the dual-driving-wheel rail-change mechanism of the present invention which is suitable for the study of rail-change performance, can effectively verify the rail-change performance of the rail-change wheel set.
  • the system can also be connected with other equipment to realize the rail-change wheel set.
  • the unlocking-orbiting-locking movement in the actual rail change can also be used for the research of the fatigue test of the rail change.
  • Figure 1 is a front axonometric view of the dual drive wheel rail changing mechanism
  • Figure 2 is an axonometric view of the back of the dual drive wheel rail changing mechanism
  • Figure 3 is the right side view of the dual drive wheel rail changing mechanism
  • Figure 4 is an axonometric view of the central shaft seat
  • Figure 5 is an axonometric view of a four-hole connection rail-change force measuring rocker arm
  • Figure 6 is an axonometric view of a four-hole connection rail-changing force measuring rocker body
  • Figure 7 is the rear view of the four-hole connection rail-changing force measuring rocker body
  • Figure 8 is a top view of a four-hole connection rail-changing force measuring rocker body
  • Figure 9 is an axonometric view of the double-ring connection load cell
  • Figure 10 is an axonometric view of the moving body of the left lifting support rail changing
  • FIG. 11 Axonometric view of the left mounting rail bottom plate
  • Figure 12 is an axonometric view of the plate body in the sliding left track
  • Figure 13 is an axonometric view of the middle plate of the left rail sliding bearing
  • Figure 14 is the bottom view of the left rail sliding support middle plate
  • Figure 15 is an axonometric view of the right sliding middle plate support body
  • Figure 16 is an axonometric view of the upper plate moving vertically on the left rail
  • Figure 17 is an axonometric view of the foundation plate of the upper slab moved vertically on the left rail
  • Figure 18 is an isometric view of the driving wheel
  • Figure 19 is a front view of the lifting and moving guide column
  • Figure 20 is an axonometric view of the chain connecting the double drive wheels
  • Figure 21 is an axonometric view of the sliding seat body of the sliding guide rail
  • Figure 22 is an axonometric view of the connecting base of the rail-change drive actuator
  • Figure 23 is an axonometric view of the connecting lock ring of the rail-changing drive actuator
  • Figure 24 is an axonometric view of the shaft seat
  • Left rail change sliding support middle plate 16-1. Left rail change sliding support middle plate protrudes from the hollow square, 16-2. Left change Rail sliding support middle plate through-hole cylindrical cylinder, 17. Left vertical lifting and moving guide column, 18. Left rail sliding guide rail sliding card seat slider body 19.1 bearing pin shaft body, 20. Bolt connection body, 21. Left rail change Vertically move the upper base plate, 22. Drive wheel assembly bearing seat, 23. Bearing seat connecting plate bolt connection assembly, 24-1. Left No. 1 drive wheel, 24-2. Left No. 2 drive wheel, 25. Left Motor drive wheel roller sprocket, 26. Left double drive wheel connection chain, 27. Left planetary reducer motor assembly, 28. Left vertical moving upper plate bearing cylinder, 29. Linear motion ball bearing, 30. Shaft seat, 30-1. 1 side of shaft seat, 30-2. 2 side of shaft seat
  • a dual-drive wheel rail change mechanism suitable for the study of rail change performance includes a four-hole connection rail change force measuring rocker arm 3 and a four-hole connection rail change measuring force rocker.
  • the No. 1 and No. 2 double rings on both sides of the arm 3 are connected to the load cells 4-1 and 4-2, and the four holes are connected to the left of the rail-changing force rocker arm 3 by connecting the double rings to the load cells 4-1 and 4-2.
  • the left lifting support rail-changing mobile body 1 and the right lifting support rail-changing mobile body 2 of the present invention have the same structure and contain the same parts.
  • the right lifting support rail-changing mobile body 2 is the left lifting support rail-changing mobile body 1 in the horizontal plane.
  • the upper rotation angle is 180°, so the two are diagonally symmetrically distributed.
  • the central shaft base 6 is fixedly placed at the intermediate position of the left lifting support rail-changing mobile body 1 and the right lifting support rail-changing mobile body 2 and serves as the rotation center of the horizontal plane of the two.
  • the central shaft base 6 is equipped with a four-hole connection rail-change force measuring rocker arm 3, and the four-hole connection rail-change force measurement rocker arm 3 is installed on both sides of the circular hole of the central shaft base 6 to connect with the No.
  • the rail change drive actuator 5 is placed laterally on the side of the left lifting support rail change moving body 1, the rail change drive actuator connecting base 5-2 is connected to the vertical shaft seat of the overall structure, and the working end is changed
  • the rail drive actuator connection lock ring 5-1 is connected to the four-hole connection rail-changing force measuring rocker arm 3 to promote the rail-changing function.
  • the central shaft seat 6 is fixedly placed along the center line between the left and right lifting support rail-changing moving bodies, so that the three bottom surfaces are centered on a straight line, and the central shaft seat 6 is roughly a rectangular parallelepiped.
  • the bottom surface is larger and bolted to the overall structure built by the external imam beam to play a fixed and stable role.
  • the upper surface is slightly smaller than the ground.
  • the upper center has a central shaft seat force measuring rocker arm connecting shaft 6-1.
  • the four-hole connecting rail-changing force measuring rocker arm 3 includes a four-hole connecting rail-changing force measuring rocker arm body 7, a four-hole connecting orbit changing force measuring rocker arm bearing pin shaft body 8, and a central shaft seat force measuring rocker arm connecting bearing 9 and the rail-changing drive connecting pin 10.
  • the upper bottom surface of the four-hole connecting rail-changing force measuring rocker body 7 is similar to that of two diamond-shaped plates.
  • the ratio of the distance from hole 2 to hole 4 to the distance from hole 2 to hole 3 (or hole 1) is approximately 2.2. This proportional relationship is calculated based on the knowledge of mechanics according to the actuator range and the final goal of motion.
  • the central axis seat force measuring rocker arm connecting shaft 6-1 is connected to the four-hole connecting rail force measuring rocker arm body 7 by passing through the central axis seat force measuring rocker arm connecting bearing 9 and the No. 1 and 2 double rings are connected to the load cell 4- Both ends of 1 and 4-2 have through holes of the same size for connection. The round holes of one end of the load cell 4-1 and 4-2 are connected to the four holes to connect the rail bearing pin of the load cell.
  • the body 8 is connected with the four-hole connecting rail-changing force measuring rocker body 7, and the two double-ring connecting load cells and the rail-changing force measuring connecting rocker are arranged in a Z-shaped connection.
  • the left lifting support rail-changing mobile body 1 includes a left mounting rail bottom plate 11, a left rail-changing sliding middle plate body 12, a left lifting airbag 13, a left rail-changing vertical moving upper plate 14, and Wheel 15.
  • the left mounting rail bottom plate 11 is a rectangular plate with a certain thickness as the bottom surface and installed on the peripheral integral Ima beam structure.
  • the rectangular plate has two long rails installed along two wide sides.
  • the left rail-changing sliding middle plate body 12 includes a left-rail-changing sliding support middle plate 16, four left vertical lifting and moving guide pillars 17, four left-rail changing guide rail sliding holder slider bodies 18, and No. 1 bearing pins.
  • the upper surface of the left rail-changing sliding support middle plate 16 is a rectangular plate.
  • the inner surface of the plate bottom has two long ribs along the wide side. There are three small ribs at the same distance between the two ribs. The ribs are distributed vertically to support and stabilize.
  • Each of the four cylinders is equipped with a left vertical lifting and moving guide column 17, and one A protruding hollow square 16-1 is located on the side close to the cylinder.
  • This square has a middle plate supporting base plate as the bottom surface, and is formed by three side plates and an upper plate, with a circular hole penetrating through the middle.
  • the four left rail sliding guide rail slide holder slider bodies 18 are respectively connected to the four corners of the left rail sliding support middle plate 16 through the bolt connection body 20, corresponding to the two mounting rails on the bottom plate 11 Long guide rail, convenient guide rail
  • the sliding seat body can move horizontally along the two long guide rails in order to complete the rail change.
  • the round hole on the other side of the No. 1 double-ring connection load cell can be placed in the protruding hollow square 16-1 and coaxial with the round hole of the hollow square, so that the No. 1 bearing pin shaft 19 is sleeved in it, so that One end of the No. 1 double-ring connection force sensor is connected to the four-hole connection force measuring rocker arm 3 for the rail-changing force measurement rocker arm 3, and the other end is connected to the left rail-changing sliding support middle plate 16.
  • the left rail vertical moving upper plate 14 includes a left rail vertical moving upper plate base plate 21, four drive wheel assembly bearing seats 22, 8 bearing seat connecting plate bolt connection assemblies 23, and left No. 1 drive Wheel 24-1, left 2nd drive wheel 24-2, left motor drive wheel roller sprocket 25, left double drive wheel connection chain 26, and left planetary reducer motor assembly 27.
  • the left lifting movement to work foundation plate 21 is a square plate with a certain thickness. There is a through hole on the plate corresponding to the round hole of the protruding hollow cube 16-1. Each of the four corners of the plate has a hollow left upright moving upper plate bottom plate bearing cylinder. 28.
  • the cylinder is equipped with linear motion bearings 29.
  • the four left vertical lifting and moving guide posts 17 in the left rail-changing sliding middle plate body 12 can be sleeved on the linear motion bearings in the left vertical moving upper plate bearing cylinder 28, It is convenient for the upper base plate to move up and down along the direction of the guide column.
  • the left lift airbag 13 is placed between the left rail-changing sliding support middle plate 16 and the left rail-changing vertical moving upper plate 14, and is circumferentially fixed on the left rail-changing sliding support middle plate 16 with bolts.
  • the corresponding cylindrical shaft is sleeved with a left motor drive wheel roller sprocket 25, and the shaft of the left planetary reducer motor assembly 27 is connected to the left motor drive wheel roller sprocket 25 through a large circular hole on an irregular vertical plate. It is convenient for the motor to drive the dual drive wheels to rotate.
  • the wheel 15 is placed on the left 1st and 2nd driving wheels 24-1 and 24-2, which is convenient for simulating the actual wheel set track change movement.
  • the rail-change drive actuator 5 is placed on the side of the left lifting support rail-change moving body, and the rail-change drive actuator connection base 5-2 contained in it is fixedly mounted on the shaft by bolts.
  • the first side 30-1 of the seat 30 and the second side 30-2 of the shaft seat are installed on the outer Ima beam structure. It is connected to the four-hole connection rail-changing force measuring rocker body 3 to complete the function of pushing the orbit-changing.
  • the central shaft seat 6 in the dual-drive wheel rail-changing mechanism suitable for the study of rail-change performance of the present invention is placed in the middle position, and its two sides are the left lifting support rail-changing moving body 1 and the right lifting support of the same structure.
  • the planetary reducer motor assembly and the double-ring connection load cell are installed in the orbit-changing supporting lifting body, which are on the same side, and this side faces the central shaft seat, which facilitates the realization of the orbit-changing movement.
  • Step 1 The left and right lifting airbags 13 and 2-12 can be inflated and then the left and right lifting moving upper plates are pushed up along the left and right vertical lifting moving guide posts 17 and 2-5 to move upwards so that the double drive wheels are in contact with the wheel sets ,
  • the left and right planetary reducer motor assemblies 27 and 2-8 drive the drive wheel No. 1 with the left and right drive roller sprocket 26 to rotate, and are driven by the left and right double drive wheels connecting the chain 26 and 2-7.
  • the connected driving wheel No. 2 rotates synchronously, and the wheels 15 and 2-1 placed on it are driven by the driving wheel to start to rotate.
  • Step 2 After a given command, the rail-change drive actuator 5 receives the command, the rod in the actuator starts to move outwards, and the rod pushes the rail-change drive actuator connected to the lock ring 5-1 and is installed on the central axis
  • the four-hole connecting rail-change force measuring rocker arm 3 on the base 6 makes it rotate a certain angle around the central axis base load-measurement rocker arm connecting shaft 6-1, and at the same time it drives the four-hole connecting rail-change force measuring rocker arm 3 and The left and right lifting support rail-changing moving body 1 and 2 between the No.
  • Step 3 The lifting airbag can be deflated to make the left and right lifting moving upper plates stand upright along the left and right lifting moving guide posts 17 and 6-5 downward movement to reset, so that the driving wheel and the wheel set are out of contact, and it is convenient for the wheel set to be in contact. High-speed advance during actual movement.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

一种适用于变轨性能研究的双驱动轮变轨机构,包括四孔连接变轨测力摇臂(3)和连接在四孔连接变轨测力摇臂(3)两侧的1、2号双环连接测力传感器(4-1、4-2),通过连接双环连接测力传感器(4-1、4-2)而连接四孔连接变轨测力摇臂(3)的左升降支承变轨移动体(1)与右升降支承变轨移动体(2),以及固定安装在架构上充当四孔连接变轨测力摇臂(3)安装座的中心轴座(6),通过销轴(10)连接在四孔连接变轨测力摇臂(3)一端的变轨驱动作动器(5);其中左右升降支承变轨移动体(1、2)结构相同,系统简单,在模拟轮对实际变轨运动过程中所受到的各种应力的同时还可验证轮对变轨的可行性与变轨可靠性。

Description

一种适用于变轨性能研究的双驱动轮变轨机构 技术领域
本发明涉及变轨系统,具体地说,是一种适用于变轨性能研究的双驱动轮变轨机构,涉及列车轨距变换技术,属于列车变轨领域。
背景技术
随着经济与高新科技的发展,铁路运输运用方便而广泛,针对不同国家地区铁路轨距的差异,变轨距技术的研究迫在眉睫。但是在变轨列车投入生产之前其轮对变轨的可行性与稳定性需要进一步的测试研究,因此,本发明提供的一种适用于变轨性能研究的双驱动轮变轨机构结构简单,在模拟实际变轨车变轨运动的同时还可测出所需的变轨力,能够通过试验有效地验证列车轮对的变轨性能,方便对轮对变轨的可行性和可靠性的分析。
发明内容
为了攻克现有轨距变换技术中轮对变轨不稳定和自动变轨的难题,本发明提供一种适用于变轨性能研究的双驱动轮变轨机构,旨在变轨列车实际应用之前验证轮对持续变轨的可行性,验证变轨可靠性。
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。下面列举的实施例仅为对本发明技术方案的进一步理解和实施,并不构成对本发明权利要求的进一步限定,因此。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,若所涉及的术语,如:“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或部(元)件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可 以是可拆卸连接,或一体连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通,可以是柔性连接、刚性连接或活动链接。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
一种适用于变轨性能研究的双驱动轮变轨机构,包括:左升降支承变轨移动体1、右升降支承变轨移动体2、四孔连接变轨测力摇臂3、1号双环连接测力传感器4-1、2号双环连接测力传感器4-2、变轨驱动作动器5和中心轴座6,所述四孔连接变轨测力摇臂3通过1、2号双环连接测力传感器4-1、4-2分别与左升降支承变轨移动体1和右升降支承变轨移动体2连接,所述左升降支承变轨移动体1和右升降支承变轨移动体2,布置在中心轴座6左右两侧,所述变轨驱动作动器5通过四孔连接变轨测力摇臂3驱动左升降支承变轨移动体1和右升降支承变轨移动体2变轨。
进一步地,所述四孔连接变轨测力摇臂3,包括:四孔连接变轨测力摇臂体7、安装在四孔连接变轨测力摇臂体7上的两个四孔连接变轨测力摇臂轴承销轴体8、中心轴座测力摇臂连接轴承9和变轨驱动连接销轴10,所述四孔连接变轨测力摇臂3通过中心轴座测力摇臂连接轴承9与中心轴座6连接,通过两个四孔连接变轨测力摇臂轴承销轴体8分别与1、2号双环连接测力传感器4-1、4-2连接,通过变轨驱动连接销轴10与变轨驱动作动器5连接。
进一步地,所述左升降支承变轨移动体1与右升降支承变轨移动体2结构相同,所述左升降支承变轨移动体1,包括:左安装导轨底板11、左变轨滑动中板体12、左举升气囊13、左变轨竖向移动上板14以及车轮15,所述左安装导轨底板11固定安装在外围整体伊玛梁架构上,左安装导轨底板上设有两条长导轨;所述左变轨滑动中板体12,包括:设在左变轨滑动支承中板16上的四个左竖立升降移动导向柱17、左变轨导向轨滑动卡座滑块体18和1号轴承销轴体19,所述左竖立升降移动导向柱17和左变轨导向轨滑动卡座滑块体18分别设在左变轨滑动支承中板16上下面的四角上,所述左变轨滑动支承中板16下面设有肋条,所述四个左竖立升降移动导向柱17分别通过左变轨滑动支承中板通孔圆柱筒16-2安装在左变轨滑动支承中板16上,所述1号轴承销轴体19通过左变轨滑动支 承中板凸出空心四方体16-1安装在左变轨滑动支承中板16上,所述四个左变轨导向轨滑动卡座滑块体18分别通过螺栓连接体20固定在左变轨滑动支承中板16的下面,与导轨底板11上的两个长导轨滑动配合;1号双环连接测力传感器一端的圆孔放置在凸出空心方体16-1里并与空心方体的圆孔同轴心,使1号轴承销轴体19套入其中,将四孔连接变轨测力摇臂3与左变轨滑动支承中板16连接。
进一步地,所述左变轨竖向移动上板14,包括:左变轨竖向移动上板基础板21、四个驱动轮装配轴承座22、8个轴承座连接板螺栓连接装配体23、左1号驱动轮24-1、左2号驱动轮24-2、左电机驱动轮滚子链轮25、左双驱动轮连接链条26以及左行星减速器电机装配体27,所述左升降移动上板基础板21上设有与凸出空心方体16-1对应的圆孔,其四角设有空心的左竖立移动上板底板轴承筒28,通过筒内装有直线运动轴承29与左变轨滑动中板体12中的四个左竖立升降移动导向柱17配合安装,并沿导向柱上下移动。
进一步地,所述左举升气囊13放置在左变轨滑动支承中板16和左变轨竖向移动上板14中间,用螺栓周向固定在左变轨滑动支承中板16上。
进一步地,所述左升降移动上板基础板21地面设有两块肋板,所述左1号驱动轮24-1和左2号驱动轮24-2分别通过驱动轮装配轴承座22固定在肋板上,并通过左双驱动轮连接链条26连接,其中左1号驱动轮24-1由左电机驱动轮滚子链轮25通过左行星减速器电机装配体27驱动,车轮15放置在左1、2号驱动轮24-1、24-2上,模拟实际轮对变轨运动。
进一步地,所述变轨驱动作动器5位于左升降支承变轨移动体1的一侧,变轨驱动作动器连接底座5-2通过轴座30安装在外围伊玛梁架构上,变轨驱动作动器连接锁环5-1通过变轨驱动连接销轴10与四孔连接变轨测力摇臂体3连接,以完成推动变轨作用。
进一步地,所述中心轴座6固定在左、右升降支承变轨移动体之间,三者底面中心在一条直线上,中心轴座6螺栓连接在外部伊玛梁搭建的整体架构上,中心轴座测力摇臂连接轴6-1通过穿过中心轴座测力摇臂连接轴承9与四孔连接变轨测力摇臂体7相连;所述1、2号双环连接测力传感器4-1与4-2两端分别通过四孔连接变轨测力摇臂轴承销轴体8与四孔 连接变轨测力摇臂体7连接,两个双环连接测力传感器与变轨测力连接摇臂之间呈“Z”字型连接排布。
与现有技术相比本发明的有益效果是:
1、本发明所述的一种适用于变轨性能研究的双驱动轮变轨机构中的左、右升降支承变轨移动体结构相同,分布在中心轴座的两侧,且每个变轨支承升降体中包含两个驱动轮,方便变轨轮对的稳定放置,方便驱动轮与车轮一起运作保证变轨运动成功准确进行又能避免单一驱动轮的不稳定度。变轨支承升降体中的举升气囊可充放气控制使驱动轮与车轮接触或脱离,方便轮对变轨及高速转动。
2、本发明所述的一种适用于变轨性能研究的双驱动轮变轨机构中的四孔连接变轨测力摇臂中的四孔连接变轨测力摇臂体含有四个大小不一的圆孔,孔2最大可充当杠杆的支点,孔1与孔3相同大小,方便四孔连接变轨测力摇臂体连接双环连接测力传感器,孔4为四孔连接变轨测力摇臂体连接变轨驱动作动器连接锁环,这四个圆孔的位置并非随意分布,孔2到孔4的距离与孔2到孔1或孔2到孔3距离之比大致为2.2,这是根据系统中所用作动器100mm量程以及实现变轨而依照力学知识推算出来的。
3、本发明所述的一种适用于变轨性能研究的双驱动轮变轨机构能有效地验证变轨轮对的变轨性能,此外,该系统还可和其他设备连实现变轨轮对实际变轨中的解锁-变轨-锁紧运动,还可进行变轨的疲劳性试验的研究。
附图说明
图1是双驱动轮变轨机构正面轴测图
图2是双驱动轮变轨机构背面轴测图
图3是双驱动轮变轨机构右视图
图4是中心轴座轴测图
图5是四孔连接变轨测力摇臂轴测图
图6是四孔连接变轨测力摇臂体轴测图
图7是四孔连接变轨测力摇臂体后视图
图8是四孔连接变轨测力摇臂体上视图
图9是双环连接测力传感器轴测图
图10是左升降支承变轨移动体轴测图
图11左安装导轨底板轴测图
图12是左变轨滑动中板体轴测图
图13是左变轨滑动支承中板轴测图
图14是左变轨滑动支承中板下视图
图15是右滑动中板支承体轴测图
图16是左变轨竖向移动上板轴测图
图17是左变轨竖向移动上板基础板轴测图
图18是驱动轮轴测图
图19是升降移动导向柱前视图
图20是双驱动轮连接链条轴测图
图21是滑动导向轨滑座体轴测图
图22是变轨驱动作动器连接底座轴测图
图23是变轨驱动作动器连接锁环轴测图
图24是轴座轴测图
图中:1.左升降支承变轨移动体,2.右升降支承变轨移动体,2-1.车轮,2-2.安装导轨底板,2-3.右变轨滑动支承中板基板,2-4.右升降移动上板基础板,2-41.右上板基础板轴承筒,2-5.右竖立升降移动导向柱,2-6.右电机驱动轮滚子链轮,2-7.右双驱动轮连接链条,2-8.右行星减速器电机装配体,2-9.右1号驱动轮,2-10.右2号驱动轮,2-11.右变轨导向轨滑动卡座滑块体,2-12.右举升气囊,2-13.2号轴承销轴体,2-14.右变轨滑动支承中板通孔圆柱筒,3.四孔连接变轨测力摇臂,4-1.1号双环连接测力传感器,4-2.2号双环连接测力传感器,5.变轨驱动作动器,5-1.变轨驱动作动器连接锁环,5-2.变轨驱动作动器连接底座,6.中心轴座,6-1.中心轴座测力摇臂连接轴,7.四孔连接变轨测力摇臂体,8.四孔连接变轨测力摇臂轴承销轴体,9.中心轴座测力摇臂连接轴承,10.变轨驱动连接销轴,11.左安装导轨底板,12.左变轨滑动中板体,13.左举升气囊,14.左变轨竖向移动上板,15.车轮,16.左变轨滑动支承中板,16-1.左变轨滑动支承中板凸出空心四方体,16-2.左变轨滑动支承中板通孔圆柱筒,17.左竖立升降 移动导向柱,18.左变轨导向轨滑动卡座滑块体19.1号轴承销轴体,20.螺栓连接体,21.左变轨竖向移动上板基础板,22.驱动轮装配轴承座,23.轴承座连接板螺栓连接装配件,24-1.左1号驱动轮,24-2.左2号驱动轮,25.左电机驱动轮滚子链轮,26.左双驱动轮连接链条,27.左行星减速器电机装配体,28.左竖立移动上板底板轴承筒,29.直线运动球轴承,30.轴座,30-1.轴座1面,30-2.轴座2面
具体实施方式
下面结合附图对本发明做进一步的详细说明,能够使本领域技术人员参照说明书文字能够据以实施。
参阅图1-图3,本发明所述的一种适用于变轨性能研究的双驱动轮变轨机构,包括四孔连接变轨测力摇臂3和连接在四孔连接变轨测力摇臂3两侧的1、2号双环连接测力传感器4-1和4-2,通过连接双环连接测力传感器4-1与4-2而连接四孔连接变轨测力摇臂3的左升降支承变轨移动体1与右升降支承变轨移动体2,以及固定安装在架构上充当四孔连接变轨测力摇臂3安装座的中心轴座6,通过销轴连接在四孔连接变轨测力摇臂3一端的变轨驱动作动器5。
本发明所述的左升降支承变轨移动体1与右升降支承变轨移动体2结构相同,包含相同的零部件,右升降支承变轨移动体2是左升降支承变轨移动体1在水平面上转动角度180°相对放置,故而两者是呈对角线对称分布。所述中心轴座6固定放置在左升降支承变轨移动体1与右升降支承变轨移动体2中间位置,充当两者的水平面的转动中心。中心轴座6上安装着四孔连接变轨测力摇臂3,而四孔连接变轨测力摇臂3安装在中心轴座6的圆孔两侧分别连接着1号双环连接测力传感器4-1和2号双环连接测力传感器4-2,1、2号双环连接测力传感器另一侧则连接着左升降支承变轨移动体1和右升降支承变轨移动体2,实现连接同步变轨作用。所述变轨驱动作动器5则横向放置在左升降支承变轨移动体1的一侧,变轨驱动作动器连接底座5-2连接在整体架构的竖立轴座上,工作的一端变轨驱动作动器连接锁环5-1连接在四孔连接变轨测力摇臂3上,起到推动变轨作用。
参阅图4-图9,所述的中心轴座6沿中心线固定放置在左、右升降支 承变轨移动体之间,使其三者底面中心在一条直线上,中心轴座6大体呈长方体结构,底面较大些用螺栓连接在外部伊玛梁搭建的整体架构上起到固定稳定作用,上面比地面稍小些,上面中心位置有一中心轴座测力摇臂连接轴6-1。所述的四孔连接变轨测力摇臂3包括四孔连接变轨测力摇臂体7、四孔连接变轨测力摇臂轴承销轴体8、中心轴座测力摇臂连接轴承9以及变轨驱动连接销轴10。其中四孔连接变轨测力摇臂体7的上底面类似与两块菱形板搭建而成,上面有四个大小不一的圆孔,四个圆孔并非均布,圆孔位置之间的存在比例关系,孔2到孔4的距离与孔2到孔3(或孔1)距离之比大致为2.2,这种比例关系是依靠力学知识按作动器量程和运动最终目标推算出来的。中心轴座测力摇臂连接轴6-1通过穿过中心轴座测力摇臂连接轴承9与四孔连接变轨测力摇臂体7相连,1、2号双环连接测力传感器4-1与4-2两端各有大小相同的通孔,用以连接,双环连接测力传感器4-1与4-2的一端圆孔通过套入四孔连接变轨测力摇臂轴承销轴体8与四孔连接变轨测力摇臂体7相连接,两个双环连接测力传感器与变轨测力连接摇臂之间呈Z字型连接排布。
参阅图10-图21,所述的左升降支承变轨移动体1包括左安装导轨底板11、左变轨滑动中板体12、左举升气囊13、左变轨竖向移动上板14以及车轮15。所述左安装导轨底板11是带有一定厚度的长方形板块当作底面安装在外围整体伊玛梁架构上,长方形板上有两条长导轨沿两条宽边安装。所述的左变轨滑动中板体12包含左变轨滑动支承中板16、四个左竖立升降移动导向柱17、四个左变轨导向轨滑动卡座滑块体18、1号轴承销轴体19以及螺栓连接体20。左变轨滑动支承中板16上表面为长方形板,板底的内表面沿宽边有两条长肋板条,两个肋板条之间有三条小肋条相距同样的间距,小肋条与长肋板呈垂直分布,起到支承稳固作用。长方形板上表面接近四角位置各有一个左变轨滑动支承中板通孔圆柱筒16-2且圆筒的孔贯穿支承板,四个圆筒内各安装一个左竖立升降移动导向柱17,有一侧靠近圆柱筒的位置有一凸出空心方体16-1,此四方体以中板支承基础板为底面,由三块侧板与一块上板搭成,中间有圆孔贯穿。所述的四个左变轨导向轨滑动卡座滑块体18分别通过螺栓连接体20连接在左变轨滑动支承中板16的内测的四角上,对应着安装导轨底板11上的 两个长导轨,方便导向轨滑座体可沿着两个长导轨进行横向移动,以便完成变轨。1号双环连接测力传感器另一侧的圆孔可放置在凸出空心方体16-1里并与空心方体的圆孔同轴心,使1号轴承销轴体19套入其中,使1号双环连接测力传感器一端连接四孔连接变轨测力摇臂3另一端连接左变轨滑动支承中板16。
所述的左变轨竖向移动上板14包括左变轨竖向移动上板基础板21、四个驱动轮装配轴承座22、8个轴承座连接板螺栓连接装配体23、左1号驱动轮24-1、左2号驱动轮24-2、左电机驱动轮滚子链轮25、左双驱动轮连接链条26以及左行星减速器电机装配体27。左升降移动上班基础板21是有一定厚度的方形板,板上有一通孔位置对应着凸出空心方体16-1的圆孔,板的四角位置各有一空心左竖立移动上板底板轴承筒28,筒内有装有直线运动轴承29,左变轨滑动中板体12中的四个左竖立升降移动导向柱17可套入左竖立移动上板底板轴承筒28内的直线运动轴承上,方便上板基础板沿着导向柱的方向上下移动。左举升气囊13放置在左变轨滑动支承中板16和左变轨竖向移动上板14中间,用螺栓周向固定在左变轨滑动支承中板16上。上板基础板21外表面的两个宽边的轴承筒之间各有一个肋板,四个轴承筒所围的区域内有两块方板块,左1号驱动轮24-1与左2号驱动轮24-2的两边圆柱轴通过驱动轮装配轴承座22与轴承座连接板螺栓连接装配体连接在基础板21上的两块方块板上,两个驱动轮之间连接着左双驱动轮连接链条26且基础板21一侧长边的轴承筒之间有一不规则竖板,竖板一边有一大圆孔,圆孔位置对着一个驱动轮的圆柱轴。所对应的圆柱轴上套有左电机驱动轮滚子链轮25,左行星减速器电机装配体27的轴通过不规则竖板上的大圆孔与左电机驱动轮滚子链轮25相连接,方便电机带动双驱动轮转动。车轮15放置在左1、2号驱动轮24-1与24-2上,方便模拟实际轮对变轨运动。
参阅图22-图24,所述的变轨驱动作动器5放置在左升降支承变轨移动体的一侧,其包含的变轨驱动作动器连接底座5-2通过螺栓固定安装在轴座30的1面30-1,而轴座2面30-2安装在外围伊玛梁架构上,变轨驱动作动器连接锁环5-1中的圆孔通过变轨驱动连接销轴10连接在四孔连接变轨测力摇臂体3上,以完成推动变轨作用。
本发明所述的一种适用于变轨性能研究的双驱动轮变轨机构中的中心轴座6放置在中间位置,其两侧为结构相同的左升降支承变轨移动体1与右升降支承变轨移动体2,变轨支承升降体中装有行星减速器电机装配体和双环连接测力传感器是同一侧,且这一侧对着中心轴座,方便变轨运动的实现。
具体的运动过程(以宽轨变窄轨为例)如下所述
步骤一:左、右举升气囊13与2-12可充气继而推动左、右升降移动上板沿着左、右竖立升降移动导向柱17与2-5向上移动使双驱动轮与轮对接触,左、右行星减速器电机装配体27与2-8带动着装有左、右驱动滚子链轮26的驱动轮1号转动,并通过左、右双驱动轮连接链条26与2-7带动所连接的驱动轮2号同步转动,其上放置的车轮15与2-1则由驱动轮带动开始转动。
步骤二:给定命令后变轨驱动作动器5接收命令,作动器中的杆开始向外运动,杆推动着与变轨驱动作动器连接锁环5-1相连的安装在中心轴座6上的四孔连接变轨测力摇臂3使其绕中心轴座测力摇臂连接轴6-1转动一定的角度,同时带动着连接在四孔连接变轨测力摇臂3和左、右升降支承变轨移动体1与2之间的1、2号双环连接测力传感器4-1与4-2朝着中心轴座方向拉动着左升降支承变轨移动体1与右升降支承变轨移动体2使其沿着固定不动的底板上长导轨向中心轴座方向移动一定的距离,使其完成宽轨变窄轨运动。
步骤三:举升气囊可放气使左、右升降移动上板沿着左、右竖立升降移动导向柱17与6-5向下运动复位,使驱动轮与轮对脱离接触,方便轮对在实际运动过程中的高速前进。
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用。它完全可以被适用于各种适合本发明的领域。对于熟悉本领域的人员而言,可容易地实现另外的修改。因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节和这里示出与描述的图例。

Claims (8)

  1. 一种适用于变轨性能研究的双驱动轮变轨机构,其特征在于,包括:左升降支承变轨移动体(1)、右升降支承变轨移动体(2)、四孔连接变轨测力摇臂(3)、1号双环连接测力传感器(4-1)、2号双环连接测力传感器(4-2)、变轨驱动作动器(5)和中心轴座(6),所述四孔连接变轨测力摇臂(3)通过1、2号双环连接测力传感器(4-1、4-2)分别与左升降支承变轨移动体(1)和右升降支承变轨移动体(2)连接,所述左升降支承变轨移动体(1)和右升降支承变轨移动体(2),布置在中心轴座(6)左右两侧,所述变轨驱动作动器(5)通过四孔连接变轨测力摇臂(3)驱动左升降支承变轨移动体(1)和右升降支承变轨移动体(2)变轨。
  2. 根据权利要求1所述的一种适用于变轨性能研究的双驱动轮变轨机构,其特征在于,所述四孔连接变轨测力摇臂(3),包括:四孔连接变轨测力摇臂体(7)、安装在四孔连接变轨测力摇臂体(7)上的两个四孔连接变轨测力摇臂轴承销轴体(8)、中心轴座测力摇臂连接轴承(9)和变轨驱动连接销轴(10),所述四孔连接变轨测力摇臂(3)通过中心轴座测力摇臂连接轴承(9)与中心轴座(6)连接,通过两个四孔连接变轨测力摇臂轴承销轴体(8)分别与1、2号双环连接测力传感器(4-1、4-2)连接,通过变轨驱动连接销轴(10)与变轨驱动作动器(5)连接。
  3. 根据权利要求1所述的一种适用于变轨性能研究的双驱动轮变轨机构,其特征在于,所述左升降支承变轨移动体(1)与右升降支承变轨移动体(2)结构相同,所述左升降支承变轨移动体(1),包括:左安装导轨底板(11)、左变轨滑动中板体(12)、左举升气囊(13)、左变轨竖向移动上板(14)以及车轮(15),所述左安装导轨底板(11)固定安装在外围整体伊玛梁架构上,左安装导轨底板上设有两条长导轨;所述左变轨滑动中板体(12),包括:设在左变轨滑动支承中板(16)上的四个左竖立升降移动导向柱(17)、左变轨导向轨滑动卡座滑块体(18)和1号轴承销轴体(19),所述左竖立升降移动导向柱(17)和左变轨导向轨滑动卡座滑块体(18)分别设在左变轨滑动支承中板(16)上下面的四角上,所述左变轨滑动支承中板(16)下面设有肋条,所述四个左竖立升降移动导向柱(17)分别通过左变轨滑动支承中板通孔圆柱筒(16-2)安装在左变轨滑动支承中板(16)上,所述1号轴承销轴 体(19)通过左变轨滑动支承中板凸出空心四方体(16-1)安装在左变轨滑动支承中板(16)上,所述四个左变轨导向轨滑动卡座滑块体(18)分别通过螺栓连接体(20)固定在左变轨滑动支承中板(16)的下面,与导轨底板(11)上的两个长导轨滑动配合;1号双环连接测力传感器一端的圆孔放置在凸出空心方体(16-1)里并与空心方体的圆孔同轴心,使1号轴承销轴体(19)套入其中,将四孔连接变轨测力摇臂(3)与左变轨滑动支承中板(16)连接。
  4. 根据权利要求3所述的一种适用于变轨性能研究的双驱动轮变轨机构,其特征在于,所述左变轨竖向移动上板(14),包括:左变轨竖向移动上板基础板(21)、四个驱动轮装配轴承座(22)、8个轴承座连接板螺栓连接装配体(23)、左1号驱动轮(24-1)、左2号驱动轮(24-2)、左电机驱动轮滚子链轮(25)、左双驱动轮连接链条(26)以及左行星减速器电机装配体(27),所述左升降移动上板基础板(21)上设有与凸出空心方体(16-1)对应的圆孔,其四角设有空心的左竖立移动上板底板轴承筒(28),通过筒内装有直线运动轴承(29)与左变轨滑动中板体(12)中的四个左竖立升降移动导向柱(17)配合安装,并沿导向柱上下移动。
  5. 根据权利要求3所述的一种适用于变轨性能研究的双驱动轮变轨机构,其特征在于,所述左举升气囊(13)放置在左变轨滑动支承中板(16)和左变轨竖向移动上板(14)中间,用螺栓周向固定在左变轨滑动支承中板(16)上。
  6. 根据权利要求4所述的一种适用于变轨性能研究的双驱动轮变轨机构,其特征在于,所述左升降移动上板基础板(21)地面设有两块肋板,所述左1号驱动轮(24-1)和左2号驱动轮(24-2)分别通过驱动轮装配轴承座(22)固定在肋板上,并通过左双驱动轮连接链条(26)连接,其中左1号驱动轮(24-1)由左电机驱动轮滚子链轮(25)通过左行星减速器电机装配体(27)驱动,车轮(15)放置在左1、2号驱动轮(24-1)、(24-2)上,模拟实际轮对变轨运动。
  7. 根据权利要求1所述的一种适用于变轨性能研究的双驱动轮变轨机构,其特征在于,所述变轨驱动作动器(5)位于左升降支承变轨移动体(1)的一侧,变轨驱动作动器连接底座(5-2)通过轴座(30)安装在外围伊玛梁架构上,变轨驱动作动器连接锁环(5-1)通过变轨驱动连接销轴(10)与四孔连 接变轨测力摇臂体(3)连接,以完成推动变轨作用。
  8. 根据权利要求1所述的一种适用于变轨性能研究的双驱动轮变轨机构,其特征在于,所述中心轴座(6)固定在左、右升降支承变轨移动体之间,三者底面中心在一条直线上,中心轴座(6)螺栓连接在外部伊玛梁搭建的整体架构上,中心轴座测力摇臂连接轴(6-1)通过穿过中心轴座测力摇臂连接轴承(9)与四孔连接变轨测力摇臂体(7)相连;所述1、2号双环连接测力传感器(4-1)与(4-2)两端分别通过四孔连接变轨测力摇臂轴承销轴体(8)与四孔连接变轨测力摇臂体(7)连接,两个双环连接测力传感器与变轨测力连接摇臂之间呈“Z”字型连接排布。
PCT/CN2020/127723 2020-05-06 2020-11-10 一种适用于变轨性能研究的双驱动轮变轨机构 WO2021223390A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/413,477 US11609155B2 (en) 2020-05-06 2020-11-10 Dual-drive wheel track changing system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010374463.X 2020-05-06
CN202010374463.XA CN111366385B (zh) 2020-05-06 2020-05-06 一种适用于变轨性能研究的双驱动轮变轨机构

Publications (1)

Publication Number Publication Date
WO2021223390A1 true WO2021223390A1 (zh) 2021-11-11

Family

ID=71207475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/127723 WO2021223390A1 (zh) 2020-05-06 2020-11-10 一种适用于变轨性能研究的双驱动轮变轨机构

Country Status (3)

Country Link
US (1) US11609155B2 (zh)
CN (1) CN111366385B (zh)
WO (1) WO2021223390A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111366385B (zh) * 2020-05-06 2024-05-07 吉林大学 一种适用于变轨性能研究的双驱动轮变轨机构
CN112179685B (zh) * 2020-09-25 2022-06-07 中车长春轨道客车股份有限公司 用于变轨距轮对例行试验的同步变轨装置
WO2022062859A1 (zh) * 2020-09-28 2022-03-31 中车长春轨道客车股份有限公司 单轮对变轨试验装置
US20220268651A1 (en) * 2021-02-22 2022-08-25 Diversified Products, LLC Dynamometer For Use With Rail Equipment, And Systems And Methods Of Using Same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2377258A (en) * 2001-06-08 2003-01-08 Keith Ebbrell Rail bearing monitoring & testing apparatus
CN205656018U (zh) * 2016-05-17 2016-10-19 昆明奥通达铁路机械有限公司 可变轨距轮对加载试验台
CN108680371A (zh) * 2018-07-23 2018-10-19 吉林大学 变轨距转向架轮对变轨性能及可靠性试验台
CN109696317A (zh) * 2019-01-03 2019-04-30 中车齐齐哈尔车辆有限公司 用于变轨距轮对的试验设备
CN110631847A (zh) * 2019-10-28 2019-12-31 吉林大学 一种变轨距轮对变轨功能检测及疲劳可靠性试验台
CN110702432A (zh) * 2019-10-28 2020-01-17 中车青岛四方机车车辆股份有限公司 变轨距轮对试验装置及试验方法
CN111024418A (zh) * 2019-12-30 2020-04-17 天津福云天翼科技有限公司 电液伺服控制的列车变轨测试装置
CN111366386A (zh) * 2020-05-06 2020-07-03 吉林大学 一种同步变轨双滚筒支承轮对试验装配系统试验台
CN111366385A (zh) * 2020-05-06 2020-07-03 吉林大学 一种适用于变轨性能研究的双驱动轮变轨机构

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1817380A (en) * 1925-10-01 1931-08-04 Karl Heinrich Combined track gauge control device and train stopping device
DE19715523A1 (de) * 1997-04-14 1998-10-15 Schloemann Siemag Ag Planheitsmeßrolle
JP5364603B2 (ja) * 2010-01-18 2013-12-11 株式会社日立製作所 列車検知装置
DE102012004328A1 (de) * 2012-03-07 2013-09-12 Wolfgang Zappel Zweiwegefahrzeug mit veränderbarer Spurweite
CN110116585B (zh) * 2018-02-06 2022-03-15 比亚迪股份有限公司 轨道车辆的非驱动桥、轨道车辆和轨道交通系统
CN108680370A (zh) * 2018-07-12 2018-10-19 吉林大学 一种轨道车辆轮对跑合综合性能试验台
CN108680372B (zh) * 2018-07-23 2023-09-15 吉林大学 驱动式变轨距轮对变轨性能及可靠性试验台
CN212159077U (zh) * 2020-05-06 2020-12-15 吉林大学 一种适用于变轨性能研究的双驱动轮变轨机构

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2377258A (en) * 2001-06-08 2003-01-08 Keith Ebbrell Rail bearing monitoring & testing apparatus
CN205656018U (zh) * 2016-05-17 2016-10-19 昆明奥通达铁路机械有限公司 可变轨距轮对加载试验台
CN108680371A (zh) * 2018-07-23 2018-10-19 吉林大学 变轨距转向架轮对变轨性能及可靠性试验台
CN109696317A (zh) * 2019-01-03 2019-04-30 中车齐齐哈尔车辆有限公司 用于变轨距轮对的试验设备
CN110631847A (zh) * 2019-10-28 2019-12-31 吉林大学 一种变轨距轮对变轨功能检测及疲劳可靠性试验台
CN110702432A (zh) * 2019-10-28 2020-01-17 中车青岛四方机车车辆股份有限公司 变轨距轮对试验装置及试验方法
CN111024418A (zh) * 2019-12-30 2020-04-17 天津福云天翼科技有限公司 电液伺服控制的列车变轨测试装置
CN111366386A (zh) * 2020-05-06 2020-07-03 吉林大学 一种同步变轨双滚筒支承轮对试验装配系统试验台
CN111366385A (zh) * 2020-05-06 2020-07-03 吉林大学 一种适用于变轨性能研究的双驱动轮变轨机构

Also Published As

Publication number Publication date
CN111366385A (zh) 2020-07-03
CN111366385B (zh) 2024-05-07
US11609155B2 (en) 2023-03-21
US20220307943A1 (en) 2022-09-29

Similar Documents

Publication Publication Date Title
WO2021223390A1 (zh) 一种适用于变轨性能研究的双驱动轮变轨机构
CN101726401B (zh) 一种用于俯仰动导数实验的天平测量装置
WO2021068960A1 (zh) 一种可模拟齿轮传动非惯性系环境的实验系统及方法
CN107179460B (zh) 一种电动汽车无线充电系统测试位置调节装置
CN104359648A (zh) 高超声速风洞三自由度攻角机构
AU2020281397B2 (en) Road simulation test rig
CN105417433A (zh) 六自由度可升降平台车
CN111366386B (zh) 一种同步变轨双滚筒支承轮对试验装配系统试验台
CN105486519A (zh) 双转向轴汽车轮间与轴间侧滑量一体化检测装置
CN115165265A (zh) 一种四自由度的飞机轮胎刚度试验台
CN212159077U (zh) 一种适用于变轨性能研究的双驱动轮变轨机构
CN102680229B (zh) 高速列车架悬式转向架牵引传动系统可靠性试验台
CN202599659U (zh) 高速列车架悬式转向架牵引传动系统可靠性试验台
CN220568416U (zh) 一种齿轨转向架的齿轨线路动态模拟试验台
CN202793661U (zh) 转向架回转阻力矩测定试验台
CN110779675A (zh) 一种车辆和桥梁模型风洞试验装置
CN110103008B (zh) 一种适用于大型箱体对接的机器人工作站
CN102901643B (zh) 转向架回转阻力矩测定试验台
CN210306614U (zh) 一种适用于大型箱体对接的机器人工作站
CN206243196U (zh) 一种自适应双缸起复顶托
CN208043365U (zh) 轨道车辆双六自由度运动测试平台
CN111470311A (zh) 一种用于模块化站台门安装的移动工作台
CN115406610A (zh) 一种电动振动台三轴向自动倒台装置
CN217605291U (zh) 一种平带式轮胎动态测试实验台
CN215093230U (zh) 一种转向架落成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20934405

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20934405

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21-09-2023)