WO2022062859A1 - 单轮对变轨试验装置 - Google Patents

单轮对变轨试验装置 Download PDF

Info

Publication number
WO2022062859A1
WO2022062859A1 PCT/CN2021/115612 CN2021115612W WO2022062859A1 WO 2022062859 A1 WO2022062859 A1 WO 2022062859A1 CN 2021115612 W CN2021115612 W CN 2021115612W WO 2022062859 A1 WO2022062859 A1 WO 2022062859A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
rail
rocker arm
wheelset
support platform
Prior art date
Application number
PCT/CN2021/115612
Other languages
English (en)
French (fr)
Inventor
谭富星
玄东升
郑志威
杜洪军
Original Assignee
中车长春轨道客车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202011043831.9A external-priority patent/CN112179686A/zh
Priority claimed from CN202022180828.3U external-priority patent/CN212513653U/zh
Application filed by 中车长春轨道客车股份有限公司 filed Critical 中车长春轨道客车股份有限公司
Publication of WO2022062859A1 publication Critical patent/WO2022062859A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/08Railway vehicles
    • G01M17/10Suspensions, axles or wheels

Definitions

  • the invention relates to the technical field of rail vehicle testing, in particular to a single wheel pair track change test device.
  • the present invention provides a single wheelset track change test device, which can simulate the running state of the vehicle wheelset to realize the synchronous track change of the wheels on both sides, and can measure the track change force of the two sides of the wheelset during the track change process. , to provide a good technical guarantee for ensuring the wheelset track change function.
  • the single wheelset track change test device comprises two wheelset support seats arranged opposite to each other along the axial direction of the wheelset to be tested, and each of the wheelset support seats has a support part for supporting the wheelset axle box;
  • the rail changing device is arranged between the two wheelset support bases; wherein, the rail changing device includes a fixedly arranged guide rail slide, and the left wheel support platform and the right side are symmetrically arranged on the guide rail slide.
  • the wheel support platforms are used to support the wheels respectively; and between the left wheel support platform and the right wheel support platform and the guide rail sliding platform, a rail-change sliding matching pair is arranged to drive the wheels to change rails;
  • Its rail-changing actuator is used to provide a driving force for rail-changing to drive the left wheel support platform and the right wheel support platform to slide and displace relative to the guide rail slide table; its dynamometer is used for the rail change action.
  • the actuator drives the resistance along the sliding direction in the sliding displacement of the left wheel support platform and the right wheel support platform.
  • the rail change device further comprises: a rocker arm central axle seat, which is arranged between the left wheel support platform and the right wheel support platform; a rocker arm, which is hinged to the rocker arm through a middle pin shaft A central axle seat, one side of the rocker arm is hinged with the output end of the rail-changing actuator; the first rocker arm link and the second rocker link are hinged on both sides of the two ends respectively.
  • the left wheel support platform and the right wheel support platform on both sides and corresponding sides of the rocker arm are used to transmit the track change driving force.
  • the first hinge point on the rocker arm which is adapted to the first rocker link link and the second rocker link link, is arranged symmetrically with respect to the middle pin axis; the track change actuation
  • the second hinge point of the clutch and the rocker arm is located at the outer end of the first hinge point on the side.
  • both the first rocker arm link and the second rocker arm link are composed of two sections of links and a dynamometer arranged between the two sections of links.
  • a position sensor is integrally configured with the rail-change actuator to acquire the working stroke of the corresponding rail-change actuator.
  • the left wheel support platform and the right wheel support platform are symmetrical structures, and both include: a support platform body, on which is provided a hinge pin adapted to the rocker link;
  • the drive conical wheel and the conical drum on the support platform body, the driving conical wheel is located on the inner side of the conical drum along the axial direction of the wheel pair; and the conical drum can be pressed against the corresponding side along the axial direction of the wheel set
  • the driving conical wheel is driven to rotate by a driving component placed inside the supporting platform body, so as to drive the wheels on the corresponding side to rotate.
  • the rotation axes of the driving conical wheel and the conical drum are both inclined inwardly at the top.
  • a vehicle speed measuring code disc is also provided on the support platform body beside the conical drum, and the speed measuring wheel of the vehicle speed measuring code disc can be in contact with the pedal of the wheel to be measured to measure the rotational speed of the wheel.
  • it also includes a locking wrench arranged under the conical drum, the locking wrench is hinged with the top of the support table body, and the rotation center of the conical drum is relative to the rotation center of the locking wrench.
  • the hinge center is eccentrically arranged to drive the conical drum to press against the wheel on the corresponding side through the rotation of the locking wrench.
  • the locking wrench comprises: a deflection body, which is hinged with the top of the support table body on the first hinge centerline, so as to drive the conical drum to press against the wheel on the corresponding side; a wrench, which is connected to the deflection body One side of the hinge is hinged to the second hinge centerline to switch between the working position and the non-working position relative to the deflecting body, and is configured such that the wrench, which is rotated and lifted relative to the deflecting body, is in the non-working position.
  • the wrench which is rotated and pressed down relative to the deflecting body, is in the working position;
  • an upper loading rocker arm which is arranged on the uprights on both sides of the support table body, and the upper loading rocker arm has a vertical actuator to apply a force to the wheel pair to be tested.
  • one end of the upper loading rocker arm is pivotally connected to the top of the first column located on one side, and the other end face of the upper loading rocker arm is provided with a slotted hole, which is fastened by a thread passing through the slotted hole The piece is fixedly connected with the second column on the other side.
  • the present invention innovatively proposes a routine test solution. Specifically, two wheelset support seats are arranged opposite to each other along the axial direction of the wheelset to be tested to support the wheelset axle box, and the track change device is arranged between the two wheelset support seats; wherein, in the track change device
  • the rail slide table is symmetrically provided with a left wheel support table and a right wheel support table for supporting the wheels on both sides.
  • the platform slides and displaces relative to the guide rail slide table, thereby realizing the wheelset track change; at the same time, the dynamometer is used to collect the resistance along the sliding direction of the wheel support platform on both sides in the sliding displacement driven by the track change actuator. In this way, during the track change test process, the corresponding track change resistance can also be collected.
  • the structure is simple and the design is reasonable, and it can be widely used in the routine test of single wheel pair synchronous track change of different models.
  • the rail changing device realizes the transmission of the driving force for rail changing through the rocker arm hinged on the central axle seat of the rocker arm and the two rocker arm connecting rods, and the two side ends of the rocker arm are respectively connected with the first variable speed arm.
  • the output ends of the rail actuator and the second rail-changing actuator are hinged, and the two side ends of the first rocker link and the second rocker link are hinged to the two sides of the rocker arm and the corresponding side ends respectively.
  • the left wheel support platform and the right wheel support platform are used to transmit the driving force of the track change through the rocker arm and the rocker arm link on the corresponding side in turn.
  • the overall structure is relatively compact and takes up less space.
  • the second hinge point between the rail change actuator and the rocker arm is located outside the first hinge point between the rocker arm link and the rocker arm on that side, so that the rail change actuator provides a small drive The torque can complete the track change operation.
  • the hinge pin shaft provided on the support table body is used to match the rocker link, and the support table body is provided with a drive cone wheel and a cone drum, and the drive cone wheel is located on the cone drum.
  • the inner side along the axial direction of the wheelset, the conical roller can be pressed against the wheel on the corresponding side along the axial direction of the wheelset, so that the positioning and fit between the wheel and the driving conical wheel on the corresponding side are ensured, so that under the driving of the driving component Turn it to more accurately simulate the state of the wheelset running on the line.
  • a locking wrench is added under the conical drum, the locking wrench is hinged with the top of the support table body, and the rotation center of the conical drum is eccentrically arranged relative to the hinge center of the locking wrench ,
  • the operator operates the locking wrench to rotate, and based on the eccentric position relationship, the cone roller can be driven to press the wheel on the corresponding side to ensure that the wheel in the test state can be reliably clamped on the drive cone wheel and the cone roller. between. Has better operability.
  • an upper loading rocker arm is added to the uprights on both sides of the support table body, and the vertical actuator arranged on the upper loading rocker arm can exert a force on the wheel pair to be tested,
  • the simulated vehicle weight is thus loaded, so as to more comprehensively and realistically simulate the running state of the vehicle wheelset on the line and ensure the test accuracy.
  • Fig. 1 is the axonometric schematic diagram of the single wheel pair track change test device according to the specific embodiment
  • Fig. 2 is the schematic diagram of the use state of the single wheel pair track change test device shown in Fig. 1;
  • Fig. 3 is the structural representation of the wheelset support seat shown in Fig. 1;
  • Fig. 4 is the overall structure schematic diagram of the track changing device shown in Fig. 1;
  • FIG. 5 is a schematic structural diagram of the track change actuator described in the specific embodiment
  • FIG. 6 is a schematic structural diagram of the wheel support platform described in the specific embodiment
  • FIG. 7 is a schematic diagram of the assembly relationship between the upper loading rocker arm and one side column shown in FIG. 1;
  • FIG. 8 is a schematic structural diagram of the other side column shown in FIG. 1 .
  • Wheelset support base 10 support part 11, rail changing device 20, guide rail slide table 21, left wheel support table 22a, right wheel support table 22b, support table body 221, drive cone wheel 222, cone roller 223, hinged Pin shaft 224, vehicle speed measuring code disc 225, locking wrench 226, deflection body 2261, wrench 2262, limiter 2263, elastic piece 2264, rail change actuator 23, position sensor 231, rocker arm center shaft seat 24, rocker Arm 25, middle pin 251, first rocker link 26a, second rocker link 26b, dynamometer 261, first rod section 262, second rod section 263, upper loading rocker arm 30, vertical action Actuator 31 , slot 32 , first column 41 , second column 42 , threaded fastener 43 , wheel set 50 , wheel set axle box 51 , and wheel 52 .
  • the wheelset shown in the figure is used as the main body of description, and the track change test scheme proposed for a single wheelset is described in detail.
  • the wheels on both sides of the wheelset can be adjusted along the wheel axle by changing rails, and the axle ends on both sides of the wheelset are equipped with wheelset axle boxes.
  • the main body of the wheelset constitutes not the core invention of the present application, and its specific implementation method There is no substantial restriction on the technical solution claimed in this application.
  • FIG. 1 is a schematic axonometric view of the single wheel pair rail change test device according to the present embodiment
  • FIG. 2 is a schematic diagram of the use state of the single wheel pair rail change test device.
  • the single wheelset track change test device includes two wheelset support seats 10 , which are disposed opposite to each other along the axial direction of the wheelset 50 to be tested. Please refer to FIG. 3 , which is a schematic structural diagram of the wheelset support seat.
  • Each wheelset support base 10 has a support portion 11 for supporting the wheelset axle box 51 to stably support the wheelset to be tested.
  • the track changing device 20 is arranged between the two wheelset support bases 10 to perform track changing operation.
  • the rail changing device 20 includes a fixed guide rail slide 21 , and a left wheel support base 22a and a right wheel support base 22b symmetrically arranged on the guide rail slide 21 for supporting the wheels 52 respectively. It is understandable that, relative to the same functional structure and structure of the wheels on both sides, the present case is arranged in a symmetrical manner.
  • a rail change sliding adaptation pair is arranged to drive the wheels to change rails; the construction of the rail change sliding adaptation pair can be in one
  • the sliding rail is set on the upper part, and the matching chute is set on the other part.
  • the left wheel support platform 22a can be displaced relative to the guide rail slide 21, and similarly, the right wheel support platform 22b can also be displaced relative to the guide rail slide 21.
  • the wheels 52 on both sides can change the track relative to the axle.
  • the rail change device 20 in this solution provides a rail change driving force through the rail change actuator 23 to drive the left wheel support platform 22a and the right wheel support platform 22b to slide and displace relative to the guide rail slide table 21; the rail change actuation
  • the actuator 23 can be selected from a hydraulic cylinder, an air cylinder or a linear motor to provide the above-mentioned pushable sliding displacement, as long as it can meet the functional requirements, it is within the scope of the claimed protection of the present application.
  • the use of hydraulic cylinders to provide track-change driving force has better operability and is convenient for operation control.
  • the rail changing device 20 is also provided with a force measuring device 261.
  • the force measuring device 261 collects the data along the sliding movement during the process. direction resistance. In this way, during the track change test process, the corresponding track change resistance can also be collected to feed back the corresponding test data.
  • the track change actuator 23 stops moving.
  • the rail changing device 20 further includes a rocker arm central axle seat 24, a rocker arm 25, and a first rocker arm link 26a and a second rocker arm link 26b symmetrically arranged on both sides. Please refer to FIG. 4 together. A schematic diagram of the overall structure of the track change device shown in FIG. 1 .
  • the rocker arm center shaft seat 24 is arranged between the left wheel support platform 22a and the right wheel support platform 22b; as shown in the figure, the rocker arm 25 is hinged to the rocker arm center axis seat 24 through the middle pin 251, and the rocker arm One side of the arm 25 is hinged with the output end of the rail-changing actuator 23; The left wheel support stand 22a and the right wheel support stand 22b are used to transmit the track change driving force output by the track change actuator 23 .
  • the overall structure is relatively compact and takes up less space.
  • the track change actuator 23 needs to be fixedly arranged on the fixed structure, that is, a special fixed structure can be configured for the track change actuator 23, or a fixed structure with other functions of the device can be used, such as but not limited to , fixed on the foundation of the test bench by bolts, or set on the column used to carry the upper loading device.
  • the hinge point on the rocker arm 25 that is adapted to the first rocker arm link 26a and the second rocker arm link 26b can be defined as the first hinge point A, and the two first hinge points A are relative to the middle
  • the pin shafts 251 are arranged symmetrically, so as to achieve synchronous rail change of the wheels on both sides.
  • the corresponding hinge relationship can be established by selecting the pin shaft as required.
  • the hinge point between the track changing actuator 23 and the rocker arm 25 can be defined as the second hinge point B, where the second hinge point B is located at the outer end of the first hinge point A on the side. That is to say, relative to the rotation center (middle pin 251 ), the force application position of the track change operation is located outside the transmission position, so that the track change actuator 23 only provides a small driving torque to complete the track change operation.
  • both the first rocker link 26a and the second rocker link 26b are composed of two-segment links: a first link 262 and a second link 263 and two links (the first link 262 and the second link 263)
  • the dynamometer 261 between the second rod segments 263) is formed, in the process of driving the corresponding side wheel bearing platform (the left wheel bearing platform 22a, the right wheel bearing platform 22b) to move relative to the guide rail slide 21, directly The track change force of the corresponding side is collected.
  • the structure is simple and reasonable.
  • the position sensor 231 is integrally configured with the rail changing actuator 23 in this solution to obtain the working stroke of the corresponding rail changing actuator 23 .
  • FIG. 5 is a schematic structural diagram of the track-changing actuator.
  • the track-changing actuator 23 can be controlled by displacement, and the position sensor 231 transmits the collected displacement signal into the control system, and by comparing with the target displacement, the track-changing actuator 23 is extended or shortened according to the command, Thereby controlling the movement of the actuator.
  • each wheel support platform can adopt such a design, which specifically includes a support platform body 221 and a drive conical wheel 222 and a conical roller 223 arranged on the corresponding support platform body 221.
  • FIG. 6 is a wheel support on one side Schematic diagram of the structure of the platform.
  • the support table body 221 is provided with a hinge pin 224 adapted to the rocker link (the first rocker link 26a, the second rocker link 26b); preferably, the first rocker
  • the connecting rod 26a and the second rocker arm connecting rod 26b are respectively adapted to the hinge pin shafts 224 on the corresponding sides through a spherical hinge.
  • the driving cone wheel 222 is located on the inner side of the cone drum 223 along the wheelset axial direction; and the cone drum 223 can be pressed against the wheel 52 on the corresponding side along the wheelset axial direction to ensure the distance between the wheel and the driving cone wheel 222 on the corresponding side.
  • the driving cone wheel 222 is driven and rotated by a driving component (not shown in the figure, such as but not limited to a driving motor) placed inside the support table body 221 to drive the wheels 52 on the corresponding side to rotate.
  • a driving component not shown in the figure, such as but not limited to a driving motor
  • the eccentric conical drum 223 exerts force on the wheel
  • the wheel moves inward
  • the conical drum 223 exerts force on the wheel, the wheel moves outward.
  • the rotation is driven by the driving component, which can more accurately simulate the running state of the wheelset on the line.
  • the rotation axes of the driving conical wheel 222 and the conical drum 223 are arranged in an inwardly inclined shape, that is, the tops of the two are inclined inwardly toward each other.
  • a vehicle speed measurement code disc 225 is also provided, and the speed measuring wheel of the vehicle speed measurement code disc 225 can be in contact with the pedal of the wheel 52 to be measured to measure the wheel speed.
  • an eccentric locking wrench 226 placed under the conical drum 223 can be used to drive the conical drum 223 to press against the wheel 52 positioned on the corresponding side.
  • the locking wrench 226 is hinged with the top of the corresponding side support table body 221 , and the rotation center of the conical drum 223 is eccentric with respect to the hinge center of the locking wrench 226 and the support table body 221 , that is to say , the two rotation center lines are parallel and non-coincidental to construct the eccentric relationship, so that the rotation of the locking wrench 226 drives the conical drum 223 to press against the wheel 52 on the corresponding side.
  • the operator operates the locking wrench 226 to rotate, and based on the eccentric positional relationship, the conical drum 223 can be driven to press against the wheel on the corresponding side.
  • the locking wrench 226 includes a deflection body 2261, a spanner 2262, a limiting portion 2263 and an elastic member 2264, wherein the deflection body 2261 and the top of the support table body 221 are hinged on the first hinge centerline to drive the The conical drum 223 is pressed against the wheel 52 on the corresponding side; the wrench 2262 and one side of the deflection body 2261 are hinged on the second hinge centerline to switch between the working position and the non-working position relative to the deflection body 2261, and are configured as: The wrench 2262 that is turned upward relative to the deflecting body 2261 is in the non-working position; the wrench 2262 that is rotated and pressed relative to the deflecting body 2261 is in the working position.
  • the limit portion 2263 adapted to the wrench 2262 has a plurality of spaced limit slots on its upper surface, and is configured to lock and restrict the lower edge of the wrench 2263 in the working position, and the multiple limit slots are respectively adapted to
  • the elastic piece 2264 is arranged between the deflecting body 2261 and the side surface of the spanner 2262, and is configured such that when the spanner 2262 is switched to the working position, the elastic piece The 2264 is deformed to further restrict the wrench 2262 in the corresponding limit slot to ensure that it is in a stable setting state.
  • the single-wheel-pair rail change test device provided in this solution may further be provided with an upper loading rocker arm 30 . 7 and 8 , FIG. 7 is a schematic diagram of the assembly relationship between the upper loading rocker arm and one side column shown in FIG. 1 , and FIG. 8 is a schematic structural diagram of the other side column shown in FIG. 1 .
  • the upper loading rocker arm 30 is disposed on the uprights (41, 42) on both sides of the support table body 221, and the upper loading rocker arm 30 has a vertical actuator 31 to exert a force on the wheel pair to be tested.
  • the upper loading rocker arm 30 and the upright columns (41, 42) on both sides are arranged axially symmetrically with respect to the wheelset, as shown in the figure, so as to exert force respectively on the wheelset to be tested on the corresponding side, thereby loading the simulated vehicle weight, so as to more comprehensively and realistically simulate the state of the vehicle wheelset running on the line.
  • one end of the upper loading rocker arm 30 is pivotally connected to the top of the first column 41 located on one side, and the other end face of the upper loading rocker arm 30 is pivoted.
  • a slotted hole 32 is formed, and is fixedly connected to the second upright column 42 on the other side through a threaded fastener 43 passing through the slotted hole 32 , as shown in FIG. 8 .
  • the threaded fasteners 43 are loosened, the upper loading rocker arm 30 is disengaged from the second column 42, and rotated around the first column to open.
  • the wheelset 50 is placed on the synchronous rail change device by the crane, wherein the wheelset axle box 51 falls on the wheelset support base 10, the upper loading rocker arm 30 is rotated to close, and the threaded fastener 43 is clamped into the corresponding side In the slot 32, screw and fix.
  • operate the locking wrench 226 to clamp the wheel through the outer conical roller 223, whereby the driving conical wheel 222 connected to the inner side of the motor drives the wheel pair to be tested to rotate through friction.
  • the control system outputs commands to control the rail-changing actuator 23 to extend or retract, and transmits the collected displacement signal into the control system through the displacement sensor 231.
  • the actuator is extended or shortened, Thereby, the movement of the actuator is controlled to the target position; and at the same time, the force measuring device 261 is used to measure the resistance along the movement direction during the movement.
  • the vertical actuator 31 can be loaded to simulate the weight of the vehicle, and then the friction of the inner drive conical wheel 222 is driven by the motor to drive the wheel to rotate; when the fixed speed is reached, the rail-change actuator 23 can be extended and shortening, so as to achieve wheel track change. At this point, the entire track change process is completed.
  • the azimuth or positional relationship indicated by the terms “axial”, “top surface” and “bottom surface”, etc. are defined based on the general reference of the wheelset, only for the convenience of describing the present invention and simplifying the description, while It is not indicated or implied that the indicated device or element must have a particular orientation, be constructed and operate for a particular orientation, and thus should not be construed as limiting the content of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

一种单轮对变轨试验装置,包括沿待试验轮对的轴向相对设置的两个轮对支撑座,其变轨装置设置在两个轮对支撑座之间,其变轨装置包括固定设置的导轨滑台,对称设置在导轨滑台上的左、右侧车轮支承台分别用于承托车轮;且左、右侧车轮支承台与导轨滑台之间配置有变轨滑动适配副,以带动车轮变轨;其变轨作动器用于提供变轨驱动力,以带动左、右侧车轮支承台相对于导轨滑台滑动位移;其测力器用于变轨作动器带动左、右侧车轮支承台滑动位移中沿滑动方向的阻力。应用本方案,能够模拟车辆轮对运行状态实现两侧车轮同步变轨,并可在测量变轨过程中两侧轮对的变轨力,为确保轮对变轨功能提供良好的技术保障。

Description

单轮对变轨试验装置
本申请要求于2020年09月28日提交中国专利局的申请号为202011043831.9、发明名称为“单轮对变轨试验装置”的中国专利申请,以及申请号为202022180828.3、发明名称为“单轮对变轨试验装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及轨道车辆测试技术领域,具体涉及一种单轮对变轨试验装置。
背景技术
众所周知,除国际通用的标准轨距外,有些国家采用的是宽轨或窄轨,轨距不同直接阻碍跨国交流及贸易往来的畅通。为了增强跨国互联互通,促进贸易往来,现有轨道车辆厂商开发出变轨距轮对,以根据需要进行变轨,从而适应相邻地域之间轨距变化。
有鉴于此,亟待另辟蹊径针对变轨距轮对提供测试解决方案,以验证变轨距轮对是否能够顺利可靠地实现变轨功能。
发明内容
为解决上述技术问题,本发明提供一种单轮对变轨试验装置,以模拟车辆轮对运行状态实现两侧车轮同步变轨,并可在测量变轨过程中两侧轮对的变轨力,为确保轮对变轨功能提供良好的技术保障。
本发明提供的单轮对变轨试验装置,包括沿待试验轮对的轴向相对设置的两个轮对支撑座,每个所述轮对支撑座具有承托轮对轴箱的支撑部;其变轨装置设置在两个所述轮对支撑座之间;其中,所述变轨装置包括固定设置的导轨滑台,对称设置在所述导轨滑台上的左侧车轮支承台和右侧车轮支承台,分别用于承托车轮;且所述左侧车轮支承台和所述右侧车轮 支承台与所述导轨滑台之间配置有变轨滑动适配副,以带动车轮变轨;其变轨作动器用于提供变轨驱动力,以带动所述左侧车轮支承台和所述右侧车轮支承台相对于所述导轨滑台滑动位移;其测力器用于所述变轨作动器带动所述左侧车轮支承台和所述右侧车轮支承台滑动位移中沿滑动方向的阻力。
优选地,所述变轨装置还包括:摇臂中心轴座,设置在所述左侧车轮支承台和所述右侧车轮支承台之间;摇臂,通过中部销轴铰接于所述摇臂中心轴座,所述摇臂的一侧与所述变轨作动器的输出端铰接;第一摇臂连杆和第二摇臂连杆,两者的两侧端部分别铰接于所述摇臂的两侧和相应侧的所述左侧车轮支承台和所述右侧车轮支承台,以传递所述变轨驱动力。
优选地,所述摇臂上与所述第一摇臂连杆和所述第二摇臂连杆适配的第一铰接点,相对于所述中部销轴对称设置;所述变轨作动器与所述摇臂的第二铰接点位于该侧的所述第一铰接点的外侧端。
优选地,所述第一摇臂连杆和所述第二摇臂连杆均由两段连杆及设置在所述两段连杆之间的测力器构成。
优选地,所述变轨作动器集成配置有位置传感器,以获取相应变轨作动器的工作行程。
优选地,所述左侧车轮支承台和所述右侧车轮支承台为对称结构,且均包括:支承台本体,其上设置有与摇臂连杆适配的铰接销轴;设置在相应所述支承台本体上的驱动锥形轮和圆锥滚筒,所述驱动锥形轮位于所述圆锥滚筒的沿轮对轴向的内侧;且所述圆锥滚筒可沿轮对轴向压抵定位相应侧的车轮,所述驱动锥形轮由置于所述支承台本体内部的驱动部件驱动转动,以带动相应侧的车轮转动。
优选地,所述驱动锥形轮和所述圆锥滚筒的回转轴线均呈顶部向内倾斜状设置。
优选地,所述圆锥滚筒的旁侧的所述支承台本体上还设置有车速测量码盘,所述车速测量码盘的测速轮可与待测车轮的踏板接触,以测量车轮转速。
优选地,还包括设置在所述圆锥滚筒下方的锁紧扳手,所述锁紧板手与所述支承台本体的顶部铰接,且所述圆锥滚筒的回转中心相对于所述锁紧板手的铰接中心偏心设置,以通过所述锁紧扳手的转动带动所述圆锥滚筒压抵定位相应侧的车轮。
优选地,所述锁紧扳手包括:偏转体,与所述支承台本体的顶部铰接于第一铰接中心线,以带动所述圆锥滚筒压抵定位相应侧的车轮;扳手,与所述偏转体的一侧铰接于第二铰接中心线,以相对于所述偏转体切换于工作位和非工作位之间,并配置为:相对于所述偏转体转动上抬的所述扳手,处于非工作位;相对于所述偏转体转动下压的所述扳手,处于工作位;限位部,其上表面具有多个间隔布置限位卡槽,并配置为可卡止限制处于工作位的所述扳手的下沿;弹性件,设置在所述偏转体和所述扳手的旁侧表面之间,并配置为:所述扳手切换至所述工作位时,所述弹性件产生形变。
优选地,还包括:上加载摇臂,设置在所述支承台本体两旁的立柱上,所述上加载摇臂具有垂向作动器,以施加作用力于待测轮对。
优选地,所述上加载摇臂的一端与位于一侧的第一立柱顶部枢接,所述上加载摇臂的另一端面开设有槽孔,并通过穿过所述槽孔的螺纹紧固件与位于另一侧的第二立柱固定连接。
针对现有变轨距轮对,本发明创新地提出了例行试验解决方案。具体地,利用沿待试验轮对的轴向相对设置两个轮对支撑座承托轮对轴箱,其变轨装置设置在两个所述轮对支撑座之间;其中,在变轨装置导轨滑台上对称设置有用于承托两侧车轮的左侧车轮支承台和右侧车轮支承台,其变轨作动器提供变轨驱动力,以带动左侧车轮支承台和右侧车轮支承台相对于导轨滑台滑动位移,由此实现轮对变轨;同时,利用测力器采集两侧车轮支承台在变轨作动器带动下滑动位移中,沿滑动方向的阻力。如此设置,在变轨试验过程中,还能够采集相应的变轨阻力。结构简单设计合理,可广泛应用于不同车型的单轮对同步变轨例行试验。
在本发明的优选方案中,其变轨装置通过铰接于摇臂中心轴座的摇臂以及两个摇臂连杆实现变轨驱动力的传递,该摇臂的两侧端分别与第一变 轨作动器和第二变轨作动器的输出端铰接,第一摇臂连杆和第二摇臂连杆的两侧端部,分别铰接于所述摇臂的两侧和相应侧的所述左侧车轮支承台和所述右侧车轮支承台,以依次通过摇臂和相应侧的摇臂连杆传递变轨驱动力。整体上结构布置较为紧凑,占用空间较小。进一步地,变轨作动器与摇臂间的第二铰接点,位于该侧的摇臂连杆与摇臂间的第一铰接点的外侧,由此,变轨作动器提供较小驱动力矩即可完成变轨操作。
在本发明的另一优选方案中,利用支承台本体上设置的铰接销轴与摇臂连杆适配,且支承台本体上设置有驱动锥形轮和圆锥滚筒,驱动锥形轮位于圆锥滚筒的沿轮对轴向的内侧,该圆锥滚筒可沿轮对轴向压抵定位相应侧的车轮,如此设置,确保车轮与相应侧驱动锥形轮间的定位贴合,从而在驱动部件驱动下进行转动,能够更精确地模拟轮对在线路运行的状态。
在本发明的又一优选方案中,在圆锥滚筒下方增设有锁紧扳手,该锁紧板手与支承台本体的顶部铰接,且圆锥滚筒的回转中心相对于锁紧板手的铰接中心偏心设置,实际使用时,操作者操作该锁紧扳手转动,可基于该偏心位置关系带动圆锥滚筒压抵定位相应侧的车轮,确保试验状态下的车轮能够可靠地卡置于驱动锥形轮和圆锥滚筒之间。具有较好的可操作性。
在本发明的再一优选方案中,在支承台本体两旁的立柱上增设有上加载摇臂,通过该上加载摇臂上配置的垂向作动器,可施加作用力于待测轮对,由此加载模拟车辆重量,从而更加全面、真实地模拟车辆轮对在线路运行的状态,确保试验精确度。
附图说明
图1为具体实施方式所述单轮对变轨试验装置的轴测示意图;
图2为图1中所示单轮对变轨试验装置的使用状态示意图;
图3为图1中所示轮对支撑座的结构示意图;
图4为图1中所示变轨装置的整体结构示意图;
图5为具体实施方式中所述变轨作动器的结构示意图;
图6为具体实施方式中所述车轮支承台的结构示意图;
图7为图1中所示上加载摇臂与一侧立柱的装配关系示意图;
图8为图1中所示另一侧立柱的结构示意图。
图中:
轮对支撑座10、支撑部11、变轨装置20、导轨滑台21、左侧车轮支承台22a、右侧车轮支承台22b、支承台本体221、驱动锥形轮222、圆锥滚筒223、铰接销轴224、车速测量码盘225、锁紧扳手226、偏转体2261、扳手2262、限位部2263、弹性件2264、变轨作动器23、位置传感器231、摇臂中心轴座24、摇臂25、中部销轴251、第一摇臂连杆26a、第二摇臂连杆26b、测力器261、第一杆段262、第二杆段263、上加载摇臂30、垂向作动器31、槽孔32、第一立柱41、第二立柱42、螺纹紧固件43、轮对50、轮对轴箱51、车轮52。
具体实施方式
为了使本领域的技术人员更好地理解本发明的技术方案,下面结合附图和具体实施例对本发明作进一步的详细说明。
不失一般性,本实施方式以图中所示轮对作为描述主体,详细说明针对单轮对提出的变轨试验方案。该轮对的两侧车轮可沿轮轴进行变轨调节,且其两侧轴端配置有轮对轴箱,应当理解,该轮对的主体构成非本申请的核心发明点所在,其具体实现方式对本申请请求保护的技术方案不具备实质性的限制作用。
请参见图1和图2,其中,图1为本实施方式所述单轮对变轨试验装置的轴测示意图,图2为该单轮对变轨试验装置的使用状态示意图。
该单轮对变轨试验装置包括两个轮对支撑座10,两者沿待试验轮对50的轴向相对设置,请参见图3,该图为轮对支撑座的结构示意图。每个轮对支撑座10具有承托轮对轴箱51的支撑部11,以稳定支撑待试验轮对。变轨装置20设置在两个轮对支撑座10之间,以进行变轨操作。
其中,变轨装置20包括固定设置的导轨滑台21,以及对称设置在导轨滑台21上的左侧车轮支承台22a和右侧车轮支承台22b,分别用于承托车轮52。可理解的是,相对于两侧车轮本案的相同功能构成和结构采用对称方式设置。这里,左侧车轮支承台22a和右侧车轮支承台22b与导轨滑台21之 间配置有变轨滑动适配副,以带动车轮变轨;该变轨滑动适配副的构建可以在一者上设置滑轨、另一者上设置相适配的滑槽来实现。基于变轨滑动适配副的配置,使得左侧车轮支承台22a可相对于导轨滑台21位移,同样地,右侧车轮支承台22b也可相对于导轨滑台21位移,相应设置其上的两侧车轮52即可相对于轮轴变轨动作。
本方案中的变轨装置20通过变轨作动器23提供变轨驱动力,以带动左侧车轮支承台22a和右侧车轮支承台22b相对于导轨滑台21滑动位移;该变轨作动器23可选择液压缸、气缸或者直线电机,以提供上述可推动滑动位移的,只要能够满足该功能需要均在本申请请求保护的范围内。当然,相比较而言,采用液压缸提供变轨驱动力具有较好的可操作性,且便于进行操作控制。
同时,变轨装置20还设置有测力器261,在变轨作动器23带动左侧车轮支承台22a和右侧车轮支承台22b滑动位移中,通过测力器261采集该过程中沿滑动方向的阻力。如此设置,在变轨试验过程中,还能够采集相应的变轨阻力,以反馈相应的试验数据,当变轨力超限时,变轨作动器23停止运动。
在满足上述基础变轨功能的基础上,为了有效控制装置占用空间,可针对变轨装置作进一步优化。该变轨装置20还包括摇臂中心轴座24、摇臂25和对称设置在两侧的第一摇臂连杆26a和第二摇臂连杆26b,请一并参见图4,该图为图1中所示变轨装置的整体结构示意图。
该摇臂中心轴座24设置在左侧车轮支承台22a和右侧车轮支承台22b之间;如图所示,摇臂25通过中部销轴251铰接于摇臂中心轴座24,且该摇臂25的一侧与变轨作动器23的输出端铰接;第一摇臂连杆26a和第二摇臂连杆26b的两侧端部,分别铰接于摇臂25的两侧和相应侧的左侧车轮支承台22a和右侧车轮支承台22b,以传递变轨作动器23输出的变轨驱动力。整体上结构布置较为紧凑,占用空间较小。
可以理解的是,变轨作动器23需要固定设置在固定结构上,即可针对变轨作动器23配置专用固定结构,也可利用装置的具有其他功用的固定结 构上,例如但不限于,通过螺栓固定在试验台基础上,或者,设置在用于承载上加载装置的立柱上。
具体来说,可定义摇臂25上与第一摇臂连杆26a和第二摇臂连杆26b适配的铰点为第一铰接点A,,且两个第一铰接点A相对于中部销轴251对称设置,从而达到两侧车轮同步变轨。进行变轨操作时,当变轨作动器23直线伸出并推动摇臂25相对于摇臂中心轴座24转动,并分别通过第一摇臂连杆26a和第二摇臂连杆26b带动相应侧的车轮承载台(左侧车轮支承台22a、右侧车轮支承台22b)相对于导轨滑台21相向位移,进而带动置于其上的两侧车轮52同步沿轮轴相向位移,轮距减小;当变轨作动器23直线收回并拉动摇臂25相对于摇臂中心轴座24转动,并分别通过第一摇臂连杆26a和第二摇臂连杆26b带动相应侧的车轮承载台(左侧车轮支承台22a、右侧车轮支承台22b)相对于导轨滑台21反向位移,进而带动置于其上的两侧车轮52同步沿轮轴反向位移,轮距增大。
本方案中,相应铰接关系可根据需要选用销轴建立。同时,可定义变轨作动器23与摇臂25间的铰点为第二铰接点B,这里,第二铰接点B位于该侧的第一铰接点A的外侧端。也就是说,相对于转动中心(中部销轴251),变轨操作的施力位置位于传动位置的外侧,由此,变轨作动器23仅提供较小驱动力矩即可完成变轨操作。
其中,用于采集变轨力的测力器261可采用不同的方式进行配置,只要能够获取变轨过程中沿滑动方向的阻力均可。作为优选,第一摇臂连杆26a和第二摇臂连杆26b均由两段连杆:第一杆段262和第二杆段263及设置在两段连杆(第一杆段262和第二杆段263)之间的测力器261构成,在带动相应侧的车轮承载台(左侧车轮支承台22a、右侧车轮支承台22b)相对于导轨滑台21位移的过程中,直接采集相应侧的变轨力。结构简单、合理。
此外,本方案中的变轨作动器23集成配置有位置传感器231,以获取相应变轨作动器23的工作行程。具体请一并结合图4和图5,其中,图5为变轨作动器的结构示意图。如此设置,该变轨作动器23可采用位移控制,位置传感器231将采集的位移信号传入控制系统中,通过与目标位移进行比较,使变轨作动器23根据指令伸长或缩短,从而控制作动器的运动。
如前所述,左侧车轮支承台22a和右侧车轮支承台22b为对称结构。每个车轮支承台均可采用这样的设计,具体包括支承台本体221和设置在相应支承台本体221上的驱动锥形轮222和圆锥滚筒223,请参见图6,该图为一侧车轮支承台的结构示意图。
图中所示,该支承台本体221上设置有与摇臂连杆(第一摇臂连杆26a、第二摇臂连杆26b)适配的铰接销轴224;作为优选,第一摇臂连杆26a、第二摇臂连杆26b分别通过球铰与相应侧的铰接销轴224适配。其中,驱动锥形轮222位于圆锥滚筒223的沿轮对轴向的内侧;且圆锥滚筒223可沿轮对轴向压抵定位相应侧的车轮52,确保车轮与相应侧驱动锥形轮222间的定位贴合;该驱动锥形轮222由置于支承台本体221内部的驱动部件(图中未示出,例如但不限于驱动电机)驱动转动,以带动相应侧的车轮52转动。理论上,当偏心圆锥滚筒223对车轮施加作用力时,车轮向内运动,当圆锥滚筒223对车轮施加作用力时,车轮向外运动。实际试验过程中,在驱动部件驱动下进行转动,能够更精确地模拟轮对在线路运行的状态。
作为优选,驱动锥形轮222和圆锥滚筒223的回转轴线均呈顶部向内倾斜状设置,也即两者顶部呈相向内收倾斜状。进一步地,在该圆锥滚筒223的旁侧的支承台本体222上,还设置有车速测量码盘225,该车速测量码盘225的测速轮可与待测车轮52的踏板接触,以测量车轮转速。
为了进一步提高试验装置的可操作性,可以利用一个置于圆锥滚筒223下面的偏心锁紧扳手226,带动圆锥滚筒223压抵定位相应侧的车轮52。如图6所示,该锁紧扳手226与相应侧支承台本体221的顶部铰接,且圆锥滚筒223的回转中心相对于锁紧板手226与支承台本体221的铰接中心偏心设置,也就是说,两个转动中心线采用平行且不重合的方式构建该偏心关系,以通过锁紧扳手226的转动带动圆锥滚筒223压抵定位相应侧的车轮52。实际使用时,操作者操作该锁紧扳手226转动,可基于该偏心位置关系带动圆锥滚筒223压抵定位相应侧的车轮。
当然,不同车型的轮对尺寸参数不同,可针对锁紧扳手226的结构作进一步优化,以提高其可适应性。如图6所示,该锁紧扳手226包括偏转体2261、扳手2262、限位部2263和弹性件2264,其中,偏转体2261与支承台本体221 的顶部铰接于第一铰接中心线,以带动圆锥滚筒223压抵定位相应侧的车轮52;扳手2262与偏转体2261的一侧铰接于第二铰接中心线,以相对于偏转体2261切换于工作位和非工作位之间,并配置为:相对于偏转体2261转动上抬的扳手2262,处于非工作位;相对于偏转体2261转动下压的扳手2262,处于工作位。与扳手2262适配的限位部2263,其上表面具有多个间隔布置限位卡槽,并配置为可卡止限制处于工作位的扳手2263的下沿,多个限位卡槽分别适配于转动至相应工作位的扳手2263;与不同转动位置相应地,弹性件2264设置在偏转体2261和扳手2262的旁侧表面之间,并配置为:扳手2262切换至工作位时,该弹性件2264产生形变,以将扳手2262进一步限制在相应的限位卡槽内,确保其处于稳定的调定状态。
另外,本方案提供的单轮对变轨试验装置,还可以进一步增设有上加载摇臂30。结合图7和图8所示,其中,图7为图1中所示上加载摇臂与一侧立柱的装配关系示意图,图8为图1中所示另一侧立柱的结构示意图。
该上加载摇臂30设置在支承台本体221两旁的立柱(41、42)上,且该上加载摇臂30具有垂向作动器31,以施加作用力于待测轮对。应当理解上加载摇臂30及两侧立柱(41、42)均相对于轮对轴向对称设置,,如图所示,以分别施力于相应侧的待测轮对,由此加载模拟车辆重量,从而更加全面、真实地模拟车辆轮对在线路运行的状态。
这里,为了进一步便于进行待测轮对的安装,如图7所示,该上加载摇臂30的一端与位于一侧的第一立柱41顶部枢接,且上加载摇臂30的另一端面开设有槽孔32,并通过穿过槽孔32的螺纹紧固件43与位于另一侧的第二立柱42固定连接,如图8所示。
下面简要说明本实施方式提供的单轮对变轨试验装置工作原理:
一、待测轮对的安装。
首先,松开螺纹紧固件43,上加载摇臂30脱离第二立柱42,绕第一立柱转动至打开。通过天车将轮对50放置在同步变轨装置上,其中,轮对轴箱51落在轮对支撑座10上,转动上加载摇臂30至闭合,螺纹紧固件43卡入相应侧的槽孔32中,旋紧固定。接下来,操作锁紧扳手226,通过外侧圆锥 滚筒223夹紧车轮,由此,内侧与电机连接的驱动锥形轮222通过摩擦驱动待测轮对旋转。
二、试验方法。
启动驱动电机,通过驱动锥形轮222旋转摩擦带动待测轮对旋转;与此同时,车速测量码盘225上的测速轮与待测车轮踏面接触,能够实时测量轮对行进速度。
控制系统输出指令,控制变轨作动器23伸出或回缩,并通过位移传感器231将采集的位移信号传入控制系统中,通过与目标位移进行比较,使作动器伸长或缩短,从而控制作动器的运动至目标位置;并且,同时利用测力器261测量运动过程中沿运动方向的所受阻力。
此外,还可通过控制垂向作动器31加载,模拟车辆重量,然后通过电机带动内侧驱动锥形轮222的摩擦带动车轮旋转;当达到固定速度后,实现变轨作动器23伸长和缩短,从而实现车轮变轨。至此,完成整个变轨过程。
需要说明的是,该试验装置中所涉及的传感器、测量器及作动器的工作原理非本申请的核心发明点所在,本领域普通技术人员可以采用现有技术实现,故本文不再赘述。
在本发明的描述中,术语“轴向”、“顶面”和“底面”等指示的方位或位置关系是基于轮对的通常基准定义的,仅是为便于描述本发明和简化描述,而不是指示或暗指所指的装置或元件必须具有特定的方位、为特定的方位构造和操作,因而不能理解为对本发明保护内容的限制。
以上仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (12)

  1. 单轮对变轨试验装置,其特征在于,包括:
    两个轮对支撑座,沿待试验轮对的轴向相对设置,每个所述轮对支撑座具有承托轮对轴箱的支撑部;
    变轨装置,设置在两个所述轮对支撑座之间;
    其中,所述变轨装置包括:
    固定设置的导轨滑台;
    对称设置在所述导轨滑台上的左侧车轮支承台和右侧车轮支承台,分别用于承托车轮;且所述左侧车轮支承台和所述右侧车轮支承台与所述导轨滑台之间配置有变轨滑动适配副,以带动车轮变轨;
    变轨作动器,用于提供变轨驱动力,以带动所述左侧车轮支承台和所述右侧车轮支承台相对于所述导轨滑台滑动位移;
    测力器,用于所述变轨作动器带动所述左侧车轮支承台和所述右侧车轮支承台滑动位移中沿滑动方向的阻力。
  2. 根据权利要求1所述的单轮对变轨试验装置,其特征在于,所述变轨装置还包括:
    摇臂中心轴座,设置在所述左侧车轮支承台和所述右侧车轮支承台之间;
    摇臂,通过中部销轴铰接于所述摇臂中心轴座,所述摇臂的一侧与所述变轨作动器的输出端铰接;
    第一摇臂连杆和第二摇臂连杆,两者的两侧端部分别铰接于所述摇臂的两侧和相应侧的所述左侧车轮支承台和所述右侧车轮支承台,以传递所述变轨驱动力。
  3. 根据权利要求2所述的单轮对变轨试验装置,其特征在于,所述摇臂上与所述第一摇臂连杆和所述第二摇臂连杆适配的第一铰接点,相对于所述中部销轴对称设置;所述变轨作动器与所述摇臂的第二铰接点位于该侧的所述第一铰接点的外侧端。
  4. 根据权利要求3所述的单轮对变轨试验装置,其特征在于,所述第一摇臂连杆和所述第二摇臂连杆均由两段连杆及设置在所述两段连杆之间的测力器构成。
  5. 根据权利要求4所述的单轮对变轨试验装置,其特征在于,所述变轨作动器集成配置有位置传感器,以获取相应变轨作动器的工作行程。
  6. 根据权利要求1至5中任一项所述的单轮对变轨试验装置,其特征在于,所述左侧车轮支承台和所述右侧车轮支承台为对称结构,且均包括:
    支承台本体,其上设置有与摇臂连杆适配的铰接销轴;
    设置在相应所述支承台本体上的驱动锥形轮和圆锥滚筒,所述驱动锥形轮位于所述圆锥滚筒的沿轮对轴向的内侧;且所述圆锥滚筒可沿轮对轴向压抵定位相应侧的车轮,所述驱动锥形轮由置于所述支承台本体内部的驱动部件驱动转动,以带动相应侧的车轮转动。
  7. 根据权利要求6所述的单轮对变轨试验装置,其特征在于,所述驱动锥形轮和所述圆锥滚筒的回转轴线均呈顶部向内倾斜状设置。
  8. 根据权利要求7所述的单轮对变轨试验装置,其特征在于,所述圆锥滚筒的旁侧的所述支承台本体上还设置有车速测量码盘,所述车速测量码盘的测速轮可与待测车轮的踏板接触,以测量车轮转速。
  9. 根据权利要求6所述的单轮对变轨试验装置,其特征在于,还包括设置在所述圆锥滚筒下方的锁紧扳手,所述锁紧板手与所述支承台本体的顶部铰接,且所述圆锥滚筒的回转中心相对于所述锁紧板手的铰接中心偏心设置,以通过所述锁紧扳手的转动带动所述圆锥滚筒压抵定位相应侧的车轮。
  10. 根据权利要求9所述的单轮对变轨试验装置,其特征在于,所述锁紧扳手包括:
    偏转体,与所述支承台本体的顶部铰接于第一铰接中心线,以带动所述圆锥滚筒压抵定位相应侧的车轮;
    扳手,与所述偏转体的一侧铰接于第二铰接中心线,以相对于所述偏转体切换于工作位和非工作位之间,并配置为:相对于所述偏转体转动上 抬的所述扳手,处于非工作位;相对于所述偏转体转动下压的所述扳手,处于工作位;
    限位部,其上表面具有多个间隔布置限位卡槽,并配置为可卡止限制处于工作位的所述扳手的下沿;
    弹性件,设置在所述偏转体和所述扳手的旁侧表面之间,并配置为:所述扳手切换至所述工作位时,所述弹性件产生形变。
  11. 根据权利要求10所述的单轮对变轨试验装置,其特征在于,还包括:
    上加载摇臂,设置在所述支承台本体两旁的立柱上,所述上加载摇臂具有垂向作动器,以施加作用力于待测轮对。
  12. 根据权利要求11所述的单轮对变轨试验装置,其特征在于,所述上加载摇臂的一端与位于一侧的第一立柱顶部枢接,所述上加载摇臂的另一端面开设有槽孔,并通过穿过所述槽孔的螺纹紧固件与位于另一侧的第二立柱固定连接。
PCT/CN2021/115612 2020-09-28 2021-08-31 单轮对变轨试验装置 WO2022062859A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202011043831.9A CN112179686A (zh) 2020-09-28 2020-09-28 单轮对变轨试验装置
CN202022180828.3 2020-09-28
CN202022180828.3U CN212513653U (zh) 2020-09-28 2020-09-28 单轮对变轨试验装置
CN202011043831.9 2020-09-28

Publications (1)

Publication Number Publication Date
WO2022062859A1 true WO2022062859A1 (zh) 2022-03-31

Family

ID=80844903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/115612 WO2022062859A1 (zh) 2020-09-28 2021-08-31 单轮对变轨试验装置

Country Status (1)

Country Link
WO (1) WO2022062859A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110631847A (zh) * 2019-10-28 2019-12-31 吉林大学 一种变轨距轮对变轨功能检测及疲劳可靠性试验台
CN111366386A (zh) * 2020-05-06 2020-07-03 吉林大学 一种同步变轨双滚筒支承轮对试验装配系统试验台
CN111366385A (zh) * 2020-05-06 2020-07-03 吉林大学 一种适用于变轨性能研究的双驱动轮变轨机构
CN112179686A (zh) * 2020-09-28 2021-01-05 中车长春轨道客车股份有限公司 单轮对变轨试验装置
CN112179685A (zh) * 2020-09-25 2021-01-05 中车长春轨道客车股份有限公司 用于变轨距轮对例行试验的同步变轨装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110631847A (zh) * 2019-10-28 2019-12-31 吉林大学 一种变轨距轮对变轨功能检测及疲劳可靠性试验台
CN111366386A (zh) * 2020-05-06 2020-07-03 吉林大学 一种同步变轨双滚筒支承轮对试验装配系统试验台
CN111366385A (zh) * 2020-05-06 2020-07-03 吉林大学 一种适用于变轨性能研究的双驱动轮变轨机构
CN112179685A (zh) * 2020-09-25 2021-01-05 中车长春轨道客车股份有限公司 用于变轨距轮对例行试验的同步变轨装置
CN112179686A (zh) * 2020-09-28 2021-01-05 中车长春轨道客车股份有限公司 单轮对变轨试验装置

Similar Documents

Publication Publication Date Title
WO2020181649A1 (zh) 机器人用精密减速器高精度综合性能检测仪
US11718970B2 (en) Monopile foundation guiding device
CN109406137B (zh) 一种转动轮螺旋轮传动试验台
CN101832865B (zh) 可调式车轮定位角与侧滑量关联模型测试装置
CN102507218A (zh) 机械臂式轮胎综合性能仿真试验平台
CN107907331B (zh) 轮毂轴承刚度试验机
CN103234766A (zh) 一种可调式电动轮悬架系统振动噪声测试台
CN106680000A (zh) 制动夹钳试验台
CN113686656B (zh) 多功能砝码加载摩擦磨损试验机
CN110160904A (zh) 一种基于柔性铰链的复合式摩擦磨损试验机
WO2022062886A1 (zh) 用于变轨距轮对例行试验的同步变轨装置
WO2022062859A1 (zh) 单轮对变轨试验装置
CN209624048U (zh) 机器人用精密减速器高精度综合性能检测仪
CN110884680A (zh) 一种弹射起飞舰载机前起落架转弯寿命试验装置
CN107291050B (zh) 一种直线加载测控系统
CN112179686A (zh) 单轮对变轨试验装置
CN212513653U (zh) 单轮对变轨试验装置
CN116754199A (zh) 一种橡胶关节偏转-扭转刚度集成试验装置
CN114739550B (zh) 一种力矩电机的输出力矩自动测量装置
CN106763313A (zh) 具有集成的磨损校准器的用于轨道车辆的制动缸
CN111024516A (zh) 一种在纯弯曲条件下结构弯矩测量装置
CN205718821U (zh) 带有弹性元件的汽车传动轴长度检测装置
CN211602725U (zh) 一种剪式千斤顶综合试验装置
CN109732548B (zh) 一种基于六杆机构的大倾角倾斜平台
CN207935234U (zh) 一种用于霍普金森压杆与应变片粘贴定位装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21871231

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21871231

Country of ref document: EP

Kind code of ref document: A1