WO2021221038A1 - Method for producing dispersion, paste, and kneaded powder - Google Patents

Method for producing dispersion, paste, and kneaded powder Download PDF

Info

Publication number
WO2021221038A1
WO2021221038A1 PCT/JP2021/016727 JP2021016727W WO2021221038A1 WO 2021221038 A1 WO2021221038 A1 WO 2021221038A1 JP 2021016727 W JP2021016727 W JP 2021016727W WO 2021221038 A1 WO2021221038 A1 WO 2021221038A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
mass
inorganic filler
dispersion
resin
Prior art date
Application number
PCT/JP2021/016727
Other languages
French (fr)
Japanese (ja)
Inventor
敦美 山邊
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to CN202180031149.4A priority Critical patent/CN115516008A/en
Priority to KR1020227029831A priority patent/KR20230002304A/en
Priority to JP2022518072A priority patent/JPWO2021221038A1/ja
Publication of WO2021221038A1 publication Critical patent/WO2021221038A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/05Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media from solid polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • C08J3/11Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids from solid polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/124Treatment for improving the free-flowing characteristics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron

Definitions

  • the present invention relates to a method for producing a dispersion liquid containing a tetrafluoroethylene polymer powder and a predetermined other material, and a paste and kneaded powder preferably used in the production method.
  • the tetrafluoroethylene polymer is excellent in physical properties such as electrical insulation, water and oil repellency, chemical resistance, and heat resistance. Therefore, the dispersion liquid in which the powder is dispersed in water or an oil-based solvent is useful as a material for forming a resist, an adhesive, an electrically insulating layer, a lubricant, an ink, a paint, and the like.
  • the tetrafluoroethylene polymer has a low surface energy, and the powders tend to aggregate with each other. Therefore, it is difficult to obtain a low-viscosity dispersion having excellent dispersion stability.
  • Patent Document 1 discloses a non-aqueous dispersion liquid using an additive from the viewpoint of improving the dispersibility of the dispersion liquid and adjusting the physical characteristics of the dispersion liquid.
  • the dispersion stability of the dispersion liquid described in Patent Document 1 is still insufficient.
  • the dispersion liquid containing the powder of the tetrafluoroethylene-based polymer and further added with other functional materials such as an inorganic filler or a resin different from the tetrafluoroethylene-based polymer has other functionalities in the molded product formed from the dispersion. There is a possibility that the physical properties of the material can also be imparted.
  • the affinity between the tetrafluoroethylene polymer and other functional materials is generally low, and the dispersion stability of such a dispersion tends to be further lowered.
  • the dispersion stability of such a dispersion tends to be further lowered.
  • other functional materials if high shear is applied to disperse the tetrafluoroethylene polymer powder, air entrainment, alteration of the tetrafluoroethylene polymer, etc. will cause foaming and agglutination. It is easy to occur. As a result, in the molded product obtained from the dispersion liquid, the uniformity of the component distribution and the water resistance due to the generation of voids tend to decrease.
  • the present inventors have excellent dispersion stability, which contains a powder of a tetrafluoroethylene-based polymer and at least one other material selected from the group consisting of an inorganic filler and a resin different from the tetrafluoroethylene-based polymer.
  • a method for producing such a dispersion was studied, and the present invention was completed.
  • the present invention provides a method for producing a dispersion liquid containing a tetrafluoroethylene polymer powder and the above-mentioned other materials and having excellent dispersion stability, and a paste and a kneaded powder preferably used in the production method. The purpose.
  • a kneaded product is obtained by kneading a powder of a tetrafluoroethylene polymer, at least one other material selected from the group consisting of an inorganic filler and a resin different from the tetrafluoroethylene polymer, and a liquid compound.
  • a method for producing a dispersion liquid wherein the kneaded product and a liquid compound are mixed to obtain a dispersion liquid.
  • the production method according to [1] wherein the solid content of the kneaded product is 40% by mass or more.
  • the kneaded product contains the inorganic filler, and the ratio of the powder to the inorganic filler in the kneaded product is such that the mass of the powder is 1 and the mass of the inorganic filler is 0.5 to 2.
  • the kneaded product contains the different resin, and the ratio of the powder to the different resin in the kneaded product is 0.01 to 0.5, where the mass of the powder is 1, and the mass of the different resin is 0.01 to 0.5.
  • the kneaded product contains the different resin, and the ratio of the powder to the different resin in the kneaded product is 1 for the mass of the powder and 2 to 1000 for the mass of the different resin.
  • a powder of a tetrafluoroethylene polymer, a resin different from the tetrafluoroethylene polymer, a liquid compound and a surfactant are kneaded to obtain a kneaded product, and the kneaded product and the liquid compound are mixed to prepare a dispersion liquid.
  • a method for producing a dispersion liquid [10] A mixture containing a tetrafluoroethylene polymer powder and an inorganic filler and a mixture containing a resin and a liquid compound different from the tetrafluoroethylene polymer are kneaded to obtain a kneaded product, and the kneaded product and the liquid are obtained.
  • a method for producing a dispersion which comprises mixing with a compound to obtain a dispersion.
  • the paste according to [11] which contains the inorganic filler and has a ratio of the powder to the inorganic filler, wherein the mass of the powder is 1 and the mass of the inorganic filler is 0.5 to 2.
  • the present invention it is excellent in dispersion stability and contains a powder of a tetrafluoroethylene-based polymer and at least one other material selected from the group consisting of an inorganic filler and a resin different from the tetrafluoroethylene-based polymer.
  • a dispersion can be produced.
  • pastes and kneaded powders containing a powder of a tetrafluoroethylene-based polymer and other materials are provided.
  • the following terms have the following meanings.
  • the "tetrafluoroethylene-based polymer” is a polymer containing a unit based on tetrafluoroethylene, and is also simply referred to as "F polymer”.
  • the "glass transition point (Tg) of the polymer” is a value measured by analyzing the polymer by the dynamic viscoelasticity measurement (DMA) method.
  • the “polymer melting temperature (melting point)” is the temperature corresponding to the maximum value of the melting peak measured by the differential scanning calorimetry (DSC) method.
  • D50 is the average particle size of the object (powder and filler), and is the volume-based cumulative 50% diameter of the object determined by the laser diffraction / scattering method.
  • the particle size distribution of the object is measured by the laser diffraction / scattering method, the cumulative curve is obtained with the total product of the group of the objects as 100%, and the particle size at the point where the cumulative volume is 50% on the cumulative curve.
  • “D90” is the cumulative volume particle size of the object, and is the volume-based cumulative 90% diameter of the object obtained in the same manner as “D50”.
  • the "viscosity of the paste and the dispersion liquid” is a value measured for the dispersion liquid at room temperature (25 ° C.) and at a rotation speed of 30 rpm using a B-type viscometer. The measurement is repeated 3 times, and the average value of the measured values for 3 times is used.
  • the "monomer-based unit” means an atomic group based on the monomer formed by polymerization of the monomer.
  • the unit may be a unit directly formed by a polymerization reaction, or may be a unit in which a part of the unit is converted into another structure by processing a polymer.
  • the unit based on the monomer a is also simply referred to as “monomer a unit”.
  • the production method of the present invention (hereinafter, also referred to as the present method) consists of a group consisting of an F polymer powder (hereinafter, also referred to as the present powder), an inorganic filler and a resin different from the F polymer (hereinafter, also referred to as the present different resin). At least one selected other material (hereinafter, also referred to as other material) and a liquid compound (hereinafter, also referred to as liquid compound 1) are kneaded to obtain a kneaded product (hereinafter, also referred to as this kneaded product).
  • a kneaded product hereinafter, also referred to as this kneaded product
  • a liquid compound hereinafter, also referred to as liquid compound 2
  • a dispersion liquid hereinafter, also referred to as the present dispersion liquid.
  • This dispersion is a dispersion in which the powder is dispersed.
  • the F polymer in the present invention is a polymer containing a unit (hereinafter, also referred to as TFE unit) based on tetrafluoroethylene (hereinafter, also referred to as TFE).
  • the fluorine content of the F polymer is preferably 70 to 76% by mass.
  • Such an F polymer having a high fluorine content is excellent in physical properties such as electrical properties of the F polymer, but has a low polarity, so that not only is it low in affinity with other materials, but the powder is easily aggregated. Therefore, when the dispersion liquid is prepared, its dispersibility is further lowered. According to this method, even in such a dispersion, the physical properties of the entire F polymer are not impaired, and a dispersion having excellent dispersibility can be obtained.
  • the F polymer is a polymer having a high degree of rigidity, it is considered that the F polymer is easily denatured in the dispersion liquid by the method of mixing with the dispersion medium by shearing as is generally performed to improve the dispersibility. As a result, the dispersibility of the F polymer in the dispersion medium may decrease. According to this method, since it is possible to mix the liquid compound 1 and the liquid compound 2 without applying high shearing, the present dispersion can be obtained without impairing the dispersibility. Further, according to this method, the dispersion liquid can be produced while suppressing the entrainment of air contained in the powder and other materials. Therefore, it is considered that a dense molded product can be obtained from this dispersion, the molded product has excellent water resistance, uniformly contains F polymer and other materials, and highly expresses the physical characteristics of both.
  • the melting temperature of the F polymer in the present invention is preferably 180 ° C. or higher, more preferably 200 ° C. or higher, and even more preferably 260 ° C. or higher.
  • the melting temperature of the F polymer is preferably 325 ° C. or lower, more preferably 320 ° C. or lower.
  • the melting temperature of the F polymer is particularly preferably 180 to 325 ° C.
  • the glass transition point of the F polymer is preferably 50 ° C. or higher, more preferably 75 ° C. or higher.
  • the glass transition point of the F polymer is preferably 150 ° C. or lower, more preferably 125 ° C. or lower.
  • the F polymer includes a polymer containing polytetrafluoroethylene (hereinafter, also referred to as PTFE), a TFE unit and a unit based on perfluoro (alkyl vinyl ether) (hereinafter, also referred to as PAVE) (hereinafter, also referred to as PAVE unit) (hereinafter, PFA).
  • PTFE polytetrafluoroethylene
  • PAVE perfluoro (alkyl vinyl ether)
  • PFA perfluoro (alkyl vinyl ether)
  • PFA perfluoro (alkyl vinyl ether)
  • PFA polymer containing a unit based on TFE and hexafluoropropylene
  • FEP hexafluoropropylene
  • PFA or FEP is more preferable
  • PFA is further preferable.
  • These polymers may further contain units based on other comonomeres.
  • CF 2 CFOCF 3
  • CF 2 CFOCF 2 CF 3
  • CF 2 CFOCF 2 CF 3
  • PPVE CFOCF 2 CF 2 CF 3
  • the F polymer preferably has an atomic group containing an oxygen atom. According to this method, the physical characteristics of the F polymer based on such atomic groups are not impaired, and the physical characteristics of the molded product obtained by using the present dispersion are further improved.
  • the atomic group may be contained in the monomer unit in the F polymer, or may be contained in the terminal group of the main chain of the polymer. Examples of the latter aspect include an F polymer having the above-mentioned atomic group as a terminal group derived from a polymerization initiator, a chain transfer agent, or the like.
  • the atomic group containing an oxygen atom is preferably a hydroxyl group-containing group or a carbonyl group-containing group, and a carbonyl group-containing group is particularly preferable.
  • the number of carbonyl group-containing groups in the F polymer is preferably 10 to 5000, more preferably 100 to 3000, and even more preferably 50 to 1500, per 1 ⁇ 10 6 carbon atoms in the main chain.
  • the number of carbonyl group-containing groups in the F polymer can be quantified by the composition of the polymer or the method described in International Publication No. 2020/145133.
  • the hydroxyl group-containing group is preferably an alcoholic hydroxyl group-containing group, more preferably -CF 2 CH 2 OH or -C (CF 3 ) 2 OH.
  • the carbonyl group-containing group is a group containing a carbonyl group (> C (O)), a carboxyl group, an alkoxycarbonyl group, an amide group, an isocyanate group, a carbamate group (-OC (O) NH 2 ), and an acid anhydride residue.
  • a group (-C (O) OC (O)-), an imide residue (-C (O) NHC (O)-etc.) or a carbonate group (-OC (O) O-) is preferred, and an acid anhydride residue. Is more preferable.
  • F polymer a polymer containing PTFE units and PAVE units, containing 1.5 to 5.0 mol% of PAVE units with respect to all units, and having a melting temperature of 280 to 320 ° C. is preferable, and TFE units and PAVE units are used.
  • No F polymer (2) is more preferable. Since these polymers form microspherulites in the molded product, the characteristics of the molded product are likely to be improved.
  • the F polymer (1) is preferably a polymer containing a TFE unit, a PAVE unit, and a unit based on a monomer having a hydroxyl group-containing group or a carbonyl group-containing group.
  • the F polymer (1) has 90 to 98 mol% of TFE units, 1.5 to 9.97 mol% of PAVE units, and 0.01 to 3 mol% of units based on the above-mentioned monomers, based on all the units. It is preferable to include each.
  • the monomer is preferably itaconic anhydride, citraconic anhydride or 5-norbornene-2,3-dicarboxylic acid anhydride (also known as hymic anhydride; hereinafter also referred to as “NAH”). Specific examples of the F polymer (1) include the polymers described in International Publication No. 2018/16644.
  • the F polymer (2) is composed of only TFE units and PAVE units, and preferably contains 95 to 98 mol% of TFE units and 2 to 5 mol% of PAVE units with respect to all the monomer units.
  • the content of PAVE units in the F polymer (2) is preferably 2.1 mol% or more, more preferably 2.2 mol% or more, based on all the monomer units.
  • the fact that the F polymer (2) does not have an atomic group containing an oxygen atom means that the number of atomic groups containing an oxygen atom contained in the polymer per 1 ⁇ 10 6 carbon atoms constituting the polymer main chain. , Means less than 500 pieces.
  • the number of atomic groups containing oxygen atoms is preferably 100 or less, more preferably less than 50.
  • the lower limit of the number of atomic groups containing oxygen atoms is usually zero.
  • the F polymer (2) may be produced by using a polymerization initiator, a chain transfer agent, or the like that does not generate an atomic group containing an oxygen atom as a terminal group of the polymer chain, and has an atomic group containing an oxygen atom.
  • the polymer may be fluorinated to produce it. Examples of the fluorination treatment method include a method using fluorine gas (see JP-A-2019-194314, etc.).
  • the present powder in the present invention is a powder containing an F polymer, and the amount of the F polymer in the present powder is preferably 80% by mass or more, more preferably 100% by mass.
  • the D50 of this powder is preferably 20 ⁇ m or less, more preferably 8 ⁇ m or less.
  • the D50 of this powder is preferably 0.1 ⁇ m or more, more preferably 0.3 ⁇ m or more.
  • the D90 of this powder is more preferably 50 ⁇ m or less.
  • the powder may contain other resins or inorganic substances different from the F polymer.
  • resins include aromatic polymers.
  • aromatic polymers include aromatic polyimides, aromatic polyamideimides, aromatic maleimides, aromatic elastomers such as styrene elastomers, and aromatic polyamic acids.
  • inorganic substances include silica.
  • This powder containing another resin or an inorganic substance preferably has a core-shell structure having an F polymer as a core and another resin or an inorganic substance as a shell. The present powder is obtained, for example, by coalescing (colliding, agglutinating, etc.) an F polymer powder with another resin or inorganic powder.
  • the other material in the present invention may be only the inorganic filler, only the different resins, or both the inorganic filler and the different resins.
  • a preferred embodiment of the inorganic filler will be described in detail in the present method (1) described later, and a preferred embodiment of the different resin will be described in detail in the present method (2) described later.
  • the liquid compound 1 in the present invention is a liquid having a function of dissolving, dispersing, or gelling the present powder and other materials, and when the present powder and other materials are used as a composition of the liquid compound, it is usually composed.
  • the substance is a liquid composition, specifically, a slurry-like or gel-like composition.
  • the liquid compound 1 used for kneading and the liquid compound 2 to be mixed with the kneaded product in order to obtain a dispersion liquid may be the same or different. Both are preferably the same.
  • liquid compounds 1 and 2 one type may be used alone, or two or more types may be used in combination.
  • the liquid compounds 1 and 2 are preferably degassed from the viewpoint of reducing the uniformity of the component distribution of the molded product and suppressing voids.
  • the liquid compounds 1 and 2 are preferably low-viscosity liquids or high-viscosity liquids.
  • the low-viscosity liquid is a liquid compound having a viscosity at 25 ° C. of more than 0 mPa ⁇ s and 10 mPa ⁇ s or less, and is preferably a liquid compound that does not react with the F polymer and the different resins.
  • the boiling point of the low-viscosity liquid is preferably 75 ° C. or higher, more preferably 100 ° C. or higher.
  • the boiling point of the low-viscosity liquid is preferably 300 ° C. or lower, more preferably 250 ° C. or lower.
  • the low-viscosity liquid may be water or a non-aqueous dispersion medium. As the non-aqueous dispersion medium, amides, ketones or esters are preferable.
  • ketone examples include acetone, methyl ethyl ketone, methyl isopropyl ketone, methyl isobutyl ketone, methyl n-pentyl ketone, methyl isopentyl ketone, 2-heptanone, cyclopentanone, cyclohexanone, and cycloheptanone.
  • Esters include methyl acetate, ethyl acetate, butyl acetate, methyl lactate, ethyl lactate, methyl pyruvate, ethyl pyruvate, methyl methoxypropionate, ethyl ethoxypropionate, ethyl 3-ethoxypropionate, ⁇ -butyrolactone, ⁇ - Valerolactone can be mentioned.
  • N-methyl-2-pyrrolidone N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethylpropanamide, 3-methoxy-N, N-dimethylpropanamide, 3-butoxy- Examples thereof include N, N-dimethylpropanamide, N, N-diethylformamide, hexamethylphosphoric triamide, 1,3-dimethyl-2-imidazolidinone and the like.
  • Suitable specific examples of low-viscosity liquids include water, N-methyl-2-pyrrolidone, ⁇ -butyrolactone, cyclohexanone or cyclopentanone.
  • the highly viscous liquid is a liquid compound having a viscosity of more than 10 mPa ⁇ s at 25 ° C., and is preferably a liquid compound that does not react with the F polymer and the different resins.
  • the viscosity of the highly viscous liquid is preferably 200 mPa ⁇ s or less.
  • the boiling point of the highly viscous liquid is preferably 100 ° C. or higher.
  • the boiling point of the highly viscous liquid is preferably 350 ° C. or lower, more preferably 300 ° C. or lower.
  • the highly viscous liquid is preferably glycol, glycol ether or glycol acetate, more preferably glycol monoalkyl ether, glycol monoaryl ether, glycol monoalkyl ether acetate or glycol monoaryl ether acetate, and even more preferably glycol monoalkyl ether.
  • the highly viscous liquid examples include ethylene glycol mono-2-ethylhexyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, dipropylene glycol monobutyl ether, triethylene glycol monomethyl ether, tripropylene glycol monobutyl ether, and propylene.
  • Glycol monophenyl ether, diethylene glycol monoethyl ether acetate or diethylene glycol monobutyl ether acetate can be mentioned.
  • the present powder, other materials and the liquid compound 1 are kneaded to obtain the present kneaded product.
  • kneading it is preferable to knead the powder, other materials, and the liquid compound 1 so that the total mass does not substantially change, and it is preferable to knead in a closed system. That is, it is preferable to knead the liquid compound 1 so that it does not evaporate during kneading.
  • each component is uniformly kneaded to obtain a highly defoamed main kneaded product.
  • a kneader equipped with a stirring tank and uniaxial or multiaxial stirring blades.
  • the number of stirring blades is preferably two or more in order to obtain a high kneading action.
  • the kneading method may be either a batch method or a continuous method.
  • the kneader used for batch kneading is preferably a Henschel mixer, a pressurized kneader, a Banbury mixer or a planetary mixer, and more preferably a planetary mixer.
  • the planetary mixer has a biaxial stirring blade that rotates and revolves with each other, and has a structure for stirring and kneading the kneaded material in the stirring tank. Therefore, there is little dead space in the stirring tank that the stirring blades do not reach, the load on the blades is reduced, and advanced kneading becomes possible.
  • the F powder and other materials can be mixed while suppressing the aggregation of the F polymer and wetting the F powder with the liquid compound while highly interacting with each other.
  • the dispersion medium can be added to the obtained kneaded product as it is, and the dispersion liquid can be produced as it is. That is, the kneading in this method is preferably performed by stirring in a stirring tank having a biaxial stirring blade that rotates and revolves with each other.
  • the F polymer becomes sticky, so that a load is applied to the stirring blade of the kneader, and as a result, the F polymer is subjected to. Shear force tends to increase. In particular, when a plurality of stirring blades are used, a shearing force is likely to be applied to the F polymer between the stirring blades or between the stirring blades and the stirring tank.
  • the other material is an inorganic filler, not only the present powder and the inorganic filler are sufficiently mixed, but also the present powder or the inorganic filler is finely pulverized to form a dense present mixture.
  • the end point of kneading can be determined by the change in the monitor of the current consumption because the load applied to the stirring blade becomes smaller and the current consumption of the kneader decreases as the kneading progresses. Further, the kneading may be controlled by using the value obtained by dividing the load current of the kneader by the shear rate of the kneader as the force and energy given to the kneaded product or the composition. Specifically, it is preferable to increase the load current from the start of kneading and gradually decrease it.
  • the continuous kneader examples include a twin-screw extrusion kneader and a millstone kneader.
  • the twin-screw extrusion kneader is, for example, a twin-screw continuous kneading device that kneads a kneaded product or composition by a shearing force between two screws arranged in parallel in close proximity to each other.
  • the stone mill type kneader is, for example, a tubular fixed portion having an internal space through which the kneaded material or the composition can pass, and a kneaded product which is arranged in the internal space of the fixed portion and passes through the internal space by rotating. It is a kneading machine having a rotating portion that conveys in the direction of the rotation axis while continuously kneading.
  • the kneading method includes, for example, a method of collectively kneading the present powder, other materials and the liquid compound 1, a method of mixing these to form a composition once, and a method of kneading the obtained composition, and then sequentially to the liquid compound 1. , The method of kneading while adding the present powder and other materials, and the method of sequentially adding the present powder and other materials to the liquid compound 1 and finally kneading. Further, a method of preparing a mixture of the present powder and another material in advance and kneading the mixture with the liquid compound 1, a composition of the present powder and the liquid compound 1, and a composition of the other material and the liquid compound 1.
  • compositions are mixed and kneaded.
  • a method in which the present powder, another material and the liquid compound 1 are mixed to form a composition once, and the obtained composition is kneaded is preferable, and the composition is more preferably a liquid composition. ..
  • the present kneaded product obtained as described above has a high viscosity and is usually a semi-solid or solid solidified product, preferably a paste or a kneaded powder.
  • the paste means a solidified product having fluidity and viscosity
  • the kneaded powder means a lumpy or clay-like solidified product.
  • the viscosity of the present kneaded product (hereinafter, also referred to as the present paste), which is a paste, is preferably 800 mPa ⁇ s or more, more preferably 1000 mPa ⁇ s or more, and further preferably 10,000 mPa ⁇ s or more.
  • the viscosity of this paste is preferably 100,000 mPa ⁇ s or less, more preferably 80,000 mPa ⁇ s or less.
  • the viscosity of this paste is preferably 800 to 100,000 mPa ⁇ s, more preferably 1000 to 100,000 mPa ⁇ s.
  • a preferred embodiment of the paste is a paste containing the powder, other materials, and a liquid compound, having a solid content of 40% by mass or more and a viscosity of 800 to 100,000 mPa ⁇ s.
  • the ratio of the powder to the inorganic filler is preferably 0.5 to 2, more preferably 0.6 to 1.5, and 0.7 to 1 with the mass of the powder being 1. Is even more preferable. In such a case, the present paste tends to have excellent dispersion stability.
  • the mass ratio of the powder to the different resins is preferably 0.01 to 0.5 or 2 to 1000, where 1 is the mass of the powder.
  • the present paste tends to have excellent dispersibility, and the obtained dispersion liquid tends to have excellent dispersion stability. That is, when the above ratio is within the former range, a component that can be regarded as a composite in which the powder is coated with different resins is formed, and the dispersibility of the paste is likely to be improved. Further, when the above ratio is in the latter range, the powder is highly dispersed in the different resins, and the dispersibility of the paste is likely to be improved.
  • the ratio in the former range is more preferably 0.05 to 0.2, still more preferably 0.08 to 0.1.
  • the ratio in the latter range is more preferably 3 to 500 and even more preferably 5 to 100.
  • the present paste and the obtained dispersion liquid tend to have excellent dispersion stability even when the present dispersion does not contain a surfactant.
  • the solid content in the present paste means the total amount of substances forming the solid content in the molded product formed from the present paste or the present dispersion.
  • the present paste contains an F polymer and an inorganic filler and / or a different resin described later, the total content of these components is the solid content in the present paste.
  • the solid content in this paste is preferably 40% by mass or more, more preferably 50% by mass or more, and even more preferably 60% by mass or more.
  • the solid content is preferably 90% by mass or less, more preferably 80% by mass or less. In this case, it is easy to obtain the present dispersion liquid having excellent dispersion stability from the present paste.
  • the content of the present powder in the solid content is preferably 25% by mass or more, more preferably 30% by mass or more.
  • the content of this powder is preferably 60% by mass or less, more preferably 50% by mass or less.
  • the content of the inorganic filler in the solid content is preferably 10% by mass or more, more preferably 25% by mass or more.
  • the content of the inorganic filler is preferably 75% by mass or less, more preferably 60% by mass or less.
  • the content of the different resins in the solid content is preferably 1% by mass or more, more preferably 5% by mass or more.
  • the content of the different resins is preferably 20% by mass or less, more preferably 10% by mass or less.
  • the total amount of the powder, the inorganic filler, and the different resins in the solid content is 25% by mass or more, the inorganic filler is 25% by mass or more, or the different resins, assuming that the solid content is 100% by mass.
  • the content is preferably 1% by mass or more, and the solid content is 100% by mass, the powder is 25% by mass or more, the inorganic filler is 25% by mass or more, and the content of the different resins is 1% by mass or more. More preferred.
  • the ratio of the present powder to the inorganic filler and the present different resin is such that the mass of the present powder is 1, the mass of the inorganic filler is 0.5 to 2, or the mass of the different resin is 0.01 to 0.5. Is preferable, the mass of the present powder is 1, the mass of the inorganic filler is 0.5 to 2, and the mass of the different resins is more preferably 0.01 to 0.5.
  • the solid content in the present paste means the total amount of substances forming the solid content in the molded product formed from the present paste or the present dispersion.
  • the present paste contains an F polymer and an inorganic filler and / or a different resin described later, the total content of these components is the solid content in the present paste.
  • the content of the liquid compound 1 in the paste is preferably 50% by mass or less, and more preferably 40% by mass or less.
  • the content of the liquid compound 1 in the main dough is preferably 20% by mass or more, and more preferably 25% by mass or more.
  • the solid content of the main kneaded product (hereinafter, also referred to as the main kneaded powder) which is the kneaded powder is preferably more than 50% by mass, more preferably 60% by mass or more.
  • the solid content is preferably 99% by mass or less, more preferably 95% by mass or less.
  • the main dough tends to have excellent dispersibility, and the obtained main dispersion tends to have excellent dispersion stability.
  • the solid content in the main kneading powder means the total amount of substances forming the solid content in the molded product formed from the main kneading powder or the main dispersion liquid.
  • the total content of these components is the solid content in the main dough.
  • the ratio of the powder to the inorganic filler is preferably 0.5 to 2, more preferably 0.6 to 1.5, and 0.7, with the mass of the powder as 1. To 1 is more preferable.
  • the ratio of the present powder to the present different resins is preferably 0.01 to 0.5 or 2 to 1000, where the mass of the present powder is 1.
  • the main dough tends to have excellent dispersibility
  • the obtained main dispersion tends to have excellent dispersion stability. That is, when the above ratio is within the former range, a component that can be regarded as a composite in which the powder is coated with the different resins is formed, and the dispersibility of the kneaded powder is likely to be improved. Further, when the above ratio is in the latter range, the powder is highly dispersed in the different resins, and the dispersibility of the kneaded powder is likely to be improved.
  • the ratio in the former range is more preferably 0.05 to 0.2, still more preferably 0.08 to 0.1.
  • the ratio in the latter range is more preferably 3 to 500 and even more preferably 5 to 100.
  • the powder and the obtained dispersion are likely to have excellent dispersion stability even when they do not contain a surfactant.
  • the dough contains both the inorganic filler and the different resins, it is preferable that at least one of the inorganic filler or the different resins is within the above range, and more preferably both are within the above range.
  • the ratio of the powder to the inorganic filler and the different resins is such that the mass of the powder is 1 and the mass of the inorganic filler is 0.5 to 2, or the mass of the different resins is 0.001 to 0.5. It is preferably from 2 to 1000, and the mass of the present powder is 1, the mass of the inorganic filler is 0.5 to 2, and the mass of the different resins is 0.001 to 0.5. More preferably, it is 1000.
  • the content of the powder in the solid content is preferably 25% by mass or more, more preferably 30% by mass or more.
  • the content of this powder is preferably 60% by mass or less, more preferably 50% by mass or less.
  • the content of the inorganic filler in the solid content is preferably 10% by mass or more, more preferably 25% by mass or more.
  • the content of the inorganic filler is preferably 75% by mass or less, more preferably 60% by mass or less.
  • the content of the different resins in the solid content is preferably 1% by mass or more, more preferably 5% by mass or more.
  • the content of the different resins is preferably 50% by mass or less, more preferably 20% by mass or less.
  • the dough contains both the inorganic filler and the different resins, it is preferable that at least one of the inorganic filler or the different resins is within the above range, and more preferably both are within the above range.
  • the main powder contains both the inorganic filler and the different resins, the total amount of the powder, the inorganic filler and the different resins in the solid content is 25% by mass or more, assuming that the solid content is 100% by mass.
  • the inorganic filler is preferably 10% by mass or more, or the content of the different resins is preferably 1% by mass or more, and the solid content is 100% by mass, the powder is 25% by mass or more, and the inorganic filler is 10% by mass or more. Moreover, the content of the different resins is more preferably 1% by mass or more.
  • the content of the liquid compound 1 in the main dough is preferably 50% by mass or less, and more preferably 40% by mass or less.
  • the content of the liquid compound 1 in the main dough is preferably 20% by mass or more, and more preferably 25% by mass or more.
  • the viscosity of this kneaded powder is from 10000 when the viscosity is measured by a capillograph (temperature: 25 ° C., shear rate: 1 / sec, capillary length: 10 mm, capillary radius: 1 mm, furnace body diameter: 9.55 mm, load cell capacity: 2 t). It is preferably 100,000 Pa ⁇ s.
  • the main kneading powder having such a viscosity can be produced by controlling the kneading time and the shearing force in kneading. Specifically, it can be produced by lengthening the kneading time and increasing the shearing force.
  • the main dispersion liquid is obtained, and when the main paste or the main kneaded powder and the liquid compound 2 are mixed as the main kneaded product, the main dispersion liquid is obtained more efficiently.
  • the mixing of the kneaded product and the liquid compound 2 in the present invention is an ultrasonic homogenized baint shaker, a ball mill, an attritor, a basket mill, a sand mill, and a sand grinder from the viewpoint of the dispersibility and dispersion stability of the obtained dispersion.
  • Dyno Mill, Dispermat, SC Mill, Spike Mill, Agitator Mill, and other media-free dispersers Preferably, it is more preferable to use a disperser using media.
  • the collision type disperser is a disperser in which a pressurized liquid compound 2 is made to collide with the present paste and dispersed by the impact force or the like.
  • a disperser that pressurizes and collides with the paste and the liquid compound 2 or a disperser that collides the liquid compound 2 with pressure on the paste may be used.
  • the former disperser include a nanomizer, Genus PY, an ultimateizer, Aqua, and a microfluidizer, and examples of the latter disperser include a homogenizer.
  • the main kneaded product and the liquid compound 2 are mixed in a kneading machine having a stirring tank and a stirring blade used for the kneading.
  • a kneading machine having a stirring tank and a stirring blade used for the kneading.
  • examples thereof include a method of mixing with 2 and a method of taking out the main kneaded product from the kneading machine used for kneading and mixing the main kneaded product with the liquid compound 2 by another kneading machine.
  • the kneader include batch type and continuous type kneaders similar to the above.
  • the viscosity of the dispersion is preferably 50 mPa ⁇ s or more, more preferably 75 mPa ⁇ s or more, and even more preferably 100 mPa ⁇ s or more.
  • the viscosity of the dispersion is preferably less than 10,000 mPa ⁇ s, more preferably 5000 mPa ⁇ s or less, and even more preferably 1000 mPa ⁇ s or less.
  • the thixotropy ratio of the present dispersion is preferably 1 to 10, and more preferably 1 to 7. This dispersion having such a thixotropy ratio is excellent in coatability and homogeneity.
  • the thixotropy is calculated by dividing the viscosity of the dispersion liquid measured under the condition of a rotation speed of 30 rpm by the viscosity of the main dispersion liquid measured under the condition of a rotation speed of 60 rpm.
  • the foam volume ratio in the present dispersion is preferably less than 10%, more preferably less than 5%.
  • the foam volume ratio is preferably 0% or more.
  • the foam volume ratio measures the standard atmospheric pressure and 20 of the dispersion at °C volume (V N), it was combined foam when the pressure was reduced to 0.003MPa volume and (V V), below It is a value obtained by the calculation formula of.
  • Foam volume ratio [%] 100 ⁇ (V V -V N) / V N
  • the present powder, the inorganic filler and the liquid compound 1 are kneaded to form the present kneaded product (hereinafter, also referred to as the present kneaded product 1). Then, an embodiment in which the kneaded product 1 and the liquid compound 2 are mixed to obtain the present dispersion liquid (hereinafter, also referred to as the present dispersion liquid 1) can be mentioned.
  • the kneading method includes, for example, a method of kneading the present powder, the inorganic filler and the liquid compound 1 all at once, a method of mixing these to form a composition once, and a method of kneading the obtained composition, and then sequentially to the liquid compound 1.
  • a method of kneading while adding the present powder and the inorganic filler and a method of sequentially adding the present powder and the inorganic filler to the liquid compound 1 and finally kneading.
  • Examples thereof include a method of preparing, mixing both compositions, and kneading.
  • the composition in the present method (1) is preferably a liquid composition.
  • the main kneaded product 1 in the present method (1) may be a paste (hereinafter, also referred to as the main paste 1) or a kneaded powder (hereinafter, also referred to as the main kneaded powder 1).
  • the powder, the inorganic filler and the liquid compound 1 are mixed to form a composition once, and the obtained composition is kneaded to obtain the kneaded product 1 to obtain the kneaded product 1 and the liquid compound 2. Is preferred to obtain the present dispersion 1.
  • the inorganic filler in the method (1) is used to improve the physical characteristics of the obtained molded product when the dispersion liquid 1 is used for forming various molded products, and the type thereof depends on the purpose of the molded product. Is selected as appropriate.
  • an inorganic filler having a high dielectric constant is used for the purpose of improving the dielectric constant of a molded product.
  • the high dielectric constant inorganic filler means a filler having a dielectric constant at 25 ° C. of 10 or more, preferably 25 or more, and more preferably 50 or more.
  • a perovskite type ferroelectric filler or a bismuth layered perovskite type ferroelectric filler is preferable.
  • perovskite-type ferroelectric substance examples include barium titanate, lead zirconate titanate, lead titanate, zirconium oxide, and titanium oxide.
  • examples of the bismuth layered perovskite type ferroelectric substance include bismuth strontium tantalate, bismuth strontium niobate, and bismuth titanate.
  • an inorganic filler having a low dielectric constant and low dielectric loss tangent or a low coefficient of linear expansion is used.
  • an inorganic filler a boron nitride filler, a beryllium oxide filler (berilia filler), a silicon oxide filler (silica filler), a wollastonite filler, or a magnesium metasilicate filler (steatite filler) is preferable.
  • a metal oxide filler is used for the purpose of improving the thermal conductivity or scratch resistance of the molded product.
  • the metal oxide is selected from the group consisting of aluminum oxide, lead oxide, iron oxide, tin oxide, magnesium oxide, titanium oxide, zinc oxide, antimony trioxide, zirconium oxide, lanthanum oxide, neodium oxide, cerium oxide and niobium oxide. At least one of the above is preferable, and aluminum oxide is more preferable.
  • These metal oxides are also preferable in terms of high thermal conductivity and Mohs hardness.
  • a glass fiber filler or a carbon filler may be used as the inorganic filler other than these.
  • the carbon filler include a garbon filler containing at least one selected from the group consisting of carbon fiber (carbon fiber), carbon black, graphene, graphene oxide, fullerene, graphite, and graphite oxide.
  • carbon fibers include polyacrylonitrile-based carbon fibers, pitch-based carbon fibers, vapor-grown carbon fibers, and carbon nanotubes (single-wall, double-wall, multi-wall, cup-laminated type, etc.).
  • the inorganic filler is preferably a boron nitride filler, a silica filler or a magnesium metasilicate filler, more preferably a silica filler or a boron nitride filler, and even more preferably a silica filler. These fillers may be fired ceramic fillers.
  • the inorganic filler is preferably a filler containing silicon oxide or magnesium metasilicate.
  • the content of silicon oxide or magnesium metasilicate in this inorganic filler is preferably 50% by mass or more, more preferably 75% by mass.
  • the content of silicon oxide or magnesium metasilicate is preferably 100% by mass or less, more preferably 90% by mass or less.
  • the shape of the inorganic filler is appropriately selected according to the intended purpose, and may be in the form of particles or fibers. If a particulate filler is used, the surface flatness of the molded product is improved, the slidability of the surface is improved, and the scratch resistance is likely to be improved. On the other hand, if a fibrous inorganic filler is used, a part of the filler particles is exposed on the surface of the molded product, and for example, it is easy to improve the abrasion resistance and the scratch resistance of the product surface.
  • the inorganic filler examples include spherical, scaly, layered, leafy, apricot kernel, columnar, chicken crown, equiaxed, leafy, mica, block, flat plate, wedge, rosette, and mesh. It may be spherical or prismatic, preferably spherical or scaly.
  • the average particle size of D50 is preferably 0.02 to 200 ⁇ m, more preferably 0.1 to 20 ⁇ m, and even more preferably 1 to 10 ⁇ m.
  • the average fiber length thereof is preferably 0.05 to 300 ⁇ m.
  • the average fiber diameter of the fibrous inorganic filler is preferably 0.01 to 15 ⁇ m.
  • the inorganic filler may have various shapes such as a hollow shape and a honeycomb shape in addition to the above shape, but from the viewpoint of improving the low dielectric property and the low dielectric loss tangent property of the molded product, the hollow shape is formed. It is preferable to have the shape of.
  • the hollow ratio which is the average value of the volume ratio of the voids per particle of the hollow inorganic filler, is preferably 40 to 80%.
  • the particle strength of the hollow inorganic filler is preferably 20 MPa or more. The particle strength is the particle strength when the residual ratio of the hollow inorganic filler when pressure-pressed is 50%. The particle strength can be calculated from the apparent density of the hollow inorganic filler and the apparent density of the pellets obtained by press-pressing the medium spherical inorganic filler.
  • the surface of the inorganic filler is surface-treated.
  • the surface treatment agent used for such surface treatment include polyhydric alcohols such as trimethylolethane, pentaeristol and propylene glycol, saturated fatty acids such as stearic acid and lauric acid, and esters thereof, alkanolamines, trimethylamines and triethylamines.
  • examples include amines, paraffin waxes, silane coupling agents, silicones and polysiloxanes.
  • the inorganic filler is preferably an inorganic filler surface-treated with a silane coupling agent.
  • Such an inorganic filler has an excellent affinity with the present powder and easily improves the dispersibility of the present dispersion. Further, in the melt firing of the F polymer when forming a molded product from the present dispersion liquid containing the same, the flow of the inorganic filler is promoted by thermal decomposition to generate gas, and the uniformity of the molded product is likely to be improved. it is conceivable that.
  • the silane coupling agent is preferably a silane coupling agent having a functional group, 3-aminopropyltriethoxysilane, vinyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3 -Methacryloxypropyltriethoxysilane or 3-isocyanuppropyltriethoxysilane is more preferred.
  • inorganic filler one kind of inorganic filler may be used alone, or two or more kinds of inorganic fillers may be used in combination. In the latter case, it is preferable to use at least a silica filler, and it is more preferable to use two kinds of silica fillers. Further, in the latter case, it is preferable to use a hollow inorganic filler and a non-hollow inorganic filler in combination.
  • Suitable specific examples of the inorganic filler include silica filler (“Admafine (registered trademark)” series manufactured by Admatex Co., Ltd.), zinc oxide surface-treated with an ester such as propylene glycol dicaprate (Sakai Chemical Industry Co., Ltd.). "FINEX (registered trademark)” series, etc.), spherical fused silica (“SFP (registered trademark)” series, etc.
  • the content of the liquid compound 1 in the kneaded product 1 is preferably 10% by mass or more.
  • the content of the liquid compound 1 is preferably 60% by mass or less, more preferably 25% by mass or less.
  • the kneading proceeds while the powder is always in a wet state, and the powder, the inorganic filler and the liquid compound 1 are uniformly mixed, and the highly degassed main kneaded product 1 can be easily obtained.
  • the solid content in the kneaded product 1 contains the above powder and the inorganic filler.
  • the solid content of the kneaded product 1 also includes substances other than the powder and the inorganic filler that form the solid content in the molded product formed from the dispersion liquid 1.
  • the main paste 1 is the main paste 1
  • the total mass of the main paste 1 is 100% by mass
  • the solid content is 40% by mass or more. It is preferable, and more preferably 50% by mass or more.
  • the solid content is preferably 90% by mass or less, more preferably 75% by mass or less.
  • the solid content may contain non-volatile components other than the present powder and the inorganic filler, and the total amount of the present powder and the inorganic filler in the solid content is 80% by mass or more, assuming that the total mass of the solid content is 100% by mass. Is preferable, and 90% by mass or more is more preferable. The total amount is preferably 100% by mass or less.
  • the ratio of the present powder to the inorganic filler in the kneaded product 1 is preferably 0.5 to 2 with the mass of the present powder being 1.
  • the amount of the present powder in the solid content is preferably 25% by mass or more, more preferably 30% by mass or more, with the solid content as 100% by mass.
  • the amount of this powder is preferably 50% by mass or less, more preferably 40% by mass or less.
  • the amount of the inorganic filler in the solid content of the kneaded product 1 is 25% by mass or more, assuming that the solid content is 100% by mass.
  • 50% by mass or more is more preferable, and 60% by mass or more is further preferable.
  • the amount of the inorganic filler is preferably 75% by mass or less, more preferably 60% by mass or less.
  • the composition 1 when the composition 1 is kneaded to obtain the main kneaded product 1, the composition 1 can be prepared by mixing the present powder, the inorganic filler, and the liquid compound 1.
  • the mixing method include a method of collectively mixing the present powder, the inorganic filler and the liquid compound 1, and a method of mixing the present powder, the inorganic filler and the liquid compound 1 while sequentially adding them.
  • Specific methods for mixing include, for example, a method in which the powder and the inorganic filler are collectively added to the liquid compound 1 and mixed, and a method in which the powder and the inorganic filler are sequentially added to the liquid compound 1 and mixed.
  • Examples thereof include a method of further mixing the obtained two kinds of mixtures.
  • a method in which the powder and the inorganic filler are mixed in advance and the obtained mixture and the liquid compound 1 are mixed is preferable.
  • the kneaded product 1 in the present method (1) may contain components other than the present powder, the inorganic filler and the liquid compound 1.
  • a component may be a component that forms a solid content in the molded product formed from the present dispersion liquid 1, or may be a component that does not form a solid content.
  • examples of such a component include a resin different from the F polymer.
  • Examples of the different resin include the same resin as the present different resin in the present method (2), which will be described later, and an aromatic polymer is preferable from the viewpoint of improving the adhesiveness and low linear expansion property of the molded product.
  • the amount of such a component contained in the solid content in the present kneaded product 1 is preferably 20% by mass or less, more preferably 10% by mass or less.
  • aromatic polymer aromatic elastomers such as aromatic polyimides, aromatic maleimides and styrene-based elastomers or aromatic polyamic acids are preferable, and aromatics such as aromatic polyimides, aromatic maleimides, polyphenylene ethers and styrene-based elastomers are preferable. Elastomers are more preferred, and aromatic polyimides or aromatic polyamic acids are even more preferred.
  • the aromatic polyimide may be thermoplastic or thermosetting.
  • the thermoplastic polyimide means a polyimide that has been imidized and does not undergo a further imidization reaction.
  • the main kneaded product 1 in the present method (1) contains a different resin
  • the main kneaded product 1 mixes the present powder and the inorganic filler, and the obtained mixture, the liquid compound 1 and a different resin are mixed. It is preferable to prepare the composition 1 and knead the composition 1 to obtain the composition 1.
  • the main kneaded product 1 in the present method (1) is preferably the main paste 1 or the main kneaded powder 1.
  • the kneaded product 1 in the present method (1) preferably contains a surfactant from the viewpoint of improving the dispersion stability and handleability of the dispersion liquid.
  • the present paste containing the surfactant may be prepared by kneading the powder, the inorganic filler, the liquid compound 1 and the surfactant all at once, or kneading the composition 1 containing the surfactant.
  • the composition 1 containing no surfactant may be kneaded, and then a surfactant may be added and kneaded to prepare the composition.
  • the surfactant examples include anionic, cationic and nonionic surfactants, and nonionic surfactants are preferable.
  • the hydrophilic moiety of the surfactant preferably has an oxyalkylene group or an alcoholic hydroxyl group.
  • the oxyalkylene group may be composed of one kind or two or more kinds. In the latter case, different types of oxyalkylene groups may be arranged in a random manner or in a block shape.
  • the oxyalkylene group is preferably an oxyethylene group.
  • the hydrophobic moiety of the surfactant preferably has an acetylene group, a polysiloxane group, a perfluoroalkyl group or a perfluoroalkenyl group.
  • the surfactant is preferably an acetylene-based surfactant, a silicone-based surfactant or a fluorine-based surfactant, and more preferably a silicone-based surfactant.
  • a fluorine-based surfactant a fluorine-based surfactant having a hydroxyl group, particularly an alcoholic hydroxyl group or an oxyalkylene group, and a perfluoroalkyl group or a perfluoroalkenyl group is preferable.
  • surfactants include the "Futergent” series (Futergent manufactured by Neos Co., Ltd. is a registered trademark), the “Surflon” series (Surflon manufactured by AGC Seimi Chemical Co., Ltd. is a registered trademark), and the “Mega Fuck” series (DIC). Megafuck Co., Ltd. is a registered trademark), "Unidyne” series (Unidyne manufactured by Daikin Kogyo Co., Ltd.
  • the main kneaded product 1 contains a surfactant
  • the content in the main kneaded product 1 is preferably 1 to 15% by mass. In this case, the affinity between the components is increased, and the dispersion stability of the present dispersion 1 is likely to be further improved.
  • the present powder, the present different resin and the liquid compound 1 are kneaded and kneaded (hereinafter, also referred to as the present kneaded product 2). Then, an embodiment in which the kneaded product 2 and the liquid compound 2 are mixed to obtain a dispersion liquid (hereinafter, also referred to as the main dispersion liquid 2) can be mentioned.
  • the method for obtaining the kneaded product 2 is, for example, a method of kneading the powder, the different resins and the liquid compound 1 in a batch, a method of mixing these to form a composition once, and a method of kneading the obtained composition, a liquid.
  • Examples thereof include a method of sequentially adding the present powder and the present different resins to the compound 1 and kneading, and a method of sequentially adding the present powder and the inorganic filler to the liquid compound 1 and finally kneading.
  • Examples thereof include a method of preparing each compound, mixing both compositions, and kneading them.
  • the composition in the present method (2) is preferably a liquid composition.
  • the main kneaded product 2 in the present method (2) may be a paste (hereinafter, also referred to as the main paste 2) or a kneaded powder (hereinafter, also referred to as the main kneaded powder 2).
  • composition 2 a composition (hereinafter, also referred to as composition 2), and the obtained composition 2 is kneaded to obtain the kneaded product 2.
  • a method of obtaining the present dispersion 2 by mixing the present kneaded product 2 and the liquid compound 2 is preferable.
  • the different resin in the present method (2) is a resin different from the F polymer and does not contain TFE units.
  • the different resins may be thermosetting resins or thermoplastic resins.
  • the different resins include aromatic polyester, aromatic polyimide, aromatic polyamic acid, aromatic polyamideimide, epoxy resin, maleimide resin, urethane resin, thermoplastic elastomer, non-aromatic polyamideimide, polyphenylene ether, polyphenylene oxide, and liquid crystal.
  • polyester examples thereof include polyester, polysaccharides, nylon, acrylic resin, methacrylic resin, butyral, cyanate ester resin, ABR rubber, cellulose, PVA acrylic methacryl, polyalkylene ether, polyoxyethylene alkyl ether, and fluoropolymers other than F polymer.
  • the different resins are preferably aromatic polyesters, aromatic polyimides, aromatic polyamic acids, aromatic polyamideimides, polyphenylene ethers, epoxy resins, maleimide resins or thermoplastic elastomers.
  • the aromatic polyimide may be thermoplastic or thermosetting.
  • the different resins are preferably aromatic polymers.
  • aromatic polyimides include “Neoprim (registered trademark)” series (manufactured by Mitsubishi Gas Chemical Company), “Spixeria (registered trademark)” series (manufactured by Somar), and “Q-PILON (registered trademark)” series ( PI Technology Research Institute), “WINGO” series (Wingo Technology), “Toimide (registered trademark)” series (T & K TOKA), “KPI-MX” series (Kawamura Sangyo), “Yupia (Yupia) Registered trademark) -AT “series (manufactured by Ube Industries, Ltd.) can be mentioned.
  • aromatic polyamide-imide include “HPC-1000” and “HPC-2100D” (manufactured by Showa Denko Materials Co., Ltd.).
  • the urethane resin may be, for example, urethane fine particles containing an acrylic component, or a homopolymer or a copolymer. Specific examples thereof include commercially available dimic beads CM (manufactured by Dainichiseika Kogyo Co., Ltd.), art pearl (manufactured by Negami Kogyo Co., Ltd.), and grand pearl (manufactured by Aica Kogyo Co., Ltd.).
  • CM commercially available dimic beads CM (manufactured by Dainichiseika Kogyo Co., Ltd.), art pearl (manufactured by Negami Kogyo Co., Ltd.), and grand pearl (manufactured by Aica Kogyo Co., Ltd.).
  • Polysaccharides include xanthan gum, guar gum, casein, arabic gum, gelatin, amylose, agarose, agaropectin, arabinan, curdlan, callose, carboxymethyl starch, chitin, chitosan, quince seed, glucomannan, gellan gum, tamarin seed gum, dextran. , Nigeran, hyaluronic acid, starchulan, funoran, pectin, porphyran, laminarin, likenan, carrageenan, alginic acid, polysaccharide gum, alkathy gum, locust bean gum and the like.
  • acrylic resin or methacrylic resin examples include polyacrylic acid, polymethacrylic acid, ethylene-methyl methacrylate copolymer, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, ethylene-butyl acrylate copolymer, and ethylene-.
  • acrylic resin or methacrylic resin examples include vinyl acetate copolymers.
  • acrylic resin or methacrylic resin include the Neocryl series manufactured by Kusumoto Kasei Co., Ltd. as a commercially available product.
  • Nylons include ⁇ -caprolactam (nylon 6), undecanlactam (nylon 11), lauryllactam (nylon 12), aminocaproic acid, enantractum, 7-aminoheptanoic acid, 11-aminoundecanoic acid, 9-aminononanoic acid, ⁇ .
  • -Polymers such as pyrrolidone, ⁇ -piperidone; diamines such as hexamethylenediamine, nonanediamine, nonanemethylenediamine, methylpentadiamine, undecamethylenediamine, dodecamethylenediamine, metaxylenediamine, and adibic acid, sebacic acid, terephthalic acid.
  • butyral resin examples include Sekisui Chemical's Eslek (registered trademark) B series, K (KS) series, SV series, and Kuraray's Mobital (registered trademark) series.
  • the cyanate ester resin examples include a resin composed of at least a bifunctional aliphatic cyanate ester, at least a bifunctional aromatic cyanate ester, or a mixture thereof.
  • Specific examples of the cyanate ester resin include 1,3,5-trisianatobenzene, 1,3-disyanatonaphthalene, 1,4-disyanatonaphthalene, 1,6-disyanatonaphthalene, and 1,8-.
  • Hydrogenated hydrogenated product bisphenol F type cyanate ester resin or hydrogenated hydrogenated product, 6F bisphenol A dicyanic acid ester resin, bisphenol E type dicyanic acid ester resin, tetramethylbisphenol F dicyanic acid ester resin , Bisphenol M bisphenol ester resin, dicyclopentadiene bisphenol dicyanic acid ester resin, or at least one citrate novolak resin.
  • epoxy resin examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, tert-butyl-catechol type epoxy resin, naphthalene type epoxy resin, naphthylene ether type epoxy resin, and glycidylamine type epoxy.
  • the thermoplastic elastomer is an elastomer that plasticizes when heated, and is, for example, an olefin-based elastomer, a styrene-based elastomer, a vinyl chloride-based thermoplastic elastomer, a urethane-based elastomer, a polyamide-based elastomer, a polyester-based elastomer, or a polybutadiene-based elastomer. Examples thereof include acrylic elastomers and silicone elastomers.
  • the olefin-based elastomer examples include an olefin-based elastomer in which an olefin-based rubber is finely dispersed in a matrix of an olefin-based resin such as PP.
  • the styrene-based elastomer examples include styrene-butadiene copolymer, hydrogenated-styrene-butadiene copolymer, hydrogenated-styrene-isoprene copolymer, styrene-butadiene-styrene block copolymer, and styrene-isoprene-styrene block.
  • polyester-based elastomer examples include a polyester-polyester copolymer, a polyurethane-polyester / polyester copolymer, and a nylon-polyester / polyester copolymer.
  • the commercially available products include TR series (styrene / butadiene thermoplastic elastomer, manufactured by JSR Co., Ltd.), RB series (polybutadiene-based thermoplastic elastomer, manufactured by JSR Co., Ltd.), JSR EXELINK (olefin-based thermoplastic elastomer, manufactured by JSR Co., Ltd.).
  • thermoplastic elastomer manufactured by JSR Co., Ltd.
  • Thermolan registered trademark
  • olefin-based thermoplastic elastomer manufactured by Mitsubishi Chemical Corporation
  • Epox TPE olefin-based thermoplastic elastomer, Sumitomo Chemical Co., Ltd.
  • Septon registered trademark
  • hydrogenated styrene-based thermoplastic elastomer manufactured by Kuraray Co., Ltd.
  • Tough Tech registered trademark
  • hydroogenized styrene-based thermoplastic elastomer manufactured by Asahi Kasei Co., Ltd.
  • fluoropolymer other than the F polymer include polyvinyl fluoride, polyvinylidene fluoride, polychlorotrifluoroethylene and the like.
  • an aqueous dispersion such as a vinyl resin, a thermoplastic resin, a curable resin, a thermoplastic block copolymer, and an elastomer, which are binder resins
  • vinyl resin include aqueous dispersions of vinyl acetate resin, acrylic resin, styrene resin and the like.
  • thermoplastic resin include aqueous dispersions of polyolefin resins, ethylene-vinyl acetate copolymers, polyamide resins and the like.
  • the curable resin include aqueous dispersions of epoxy resin, urethane resin, polyimide resin, unsaturated polyester resin and the like.
  • the curable resin may be any of a room temperature curable resin, a thermosetting resin, and a photocurable resin.
  • the different resins may be compounds that are polymerized or crosslinked by external energy such as heat or light to become the resin, or may consist of a monomer of the resin, a reactant of the monomer, or a curing agent.
  • Such embodiments include a combination of isocyanate and diol in a urethane resin, a combination of a copolymer of bisphenol A and epichlorohydrin in an epoxy resin, and a curing agent such as polyamine or acid anhydride, and a cyanate ester resin. Cyanic acid ester can be mentioned.
  • cyanate ester the above-mentioned cyanate ester can be mentioned.
  • an epoxy resin a copolymer that gives the above-mentioned epoxy resin can be mentioned.
  • the resin component in these embodiments does not need to be completely polymerized or crosslinked, and may be partially unpolymerized or uncrosslinked.
  • the kneaded product 2 in the present method (2) may further contain an inorganic filler.
  • the definition and scope of the inorganic filler in the present method (2) are the same as those of the inorganic filler in the present method (1), including preferred embodiments.
  • the amount of the inorganic filler in the kneaded product 2 is preferably 1 to 50% by mass.
  • the content of the liquid compound 1 in the kneaded product 2 in the present method (2) is preferably 10% by mass or more.
  • the content of the liquid compound 1 is preferably 60% by mass or less, more preferably 25% by mass or less.
  • the solid content in the kneaded product 2 contains the above powder, the F polymer, and a different resin.
  • the solid content of the kneaded product 2 also includes substances other than the powder and the different resins that form the solid content in the molded product formed from the dispersion liquid 2, such as the inorganic filler.
  • the total mass of the main kneaded product 2 is 100% by mass, and the solid content is preferably 40% by mass or more, more preferably 50% by mass or more. Further, from the viewpoint of dispersibility of the present dispersion, the solid content is preferably 90% by mass or less, more preferably 75% by mass or less.
  • the solid content may contain non-volatile components other than the present powder and the present different resin, and the total amount of the present powder and the present different resin in the solid content is 60 mass with 100% by mass of the total mass of the solid content. % Or more is preferable, and 70% by mass or more is more preferable. The total amount is preferably 100% by mass or less.
  • the mass ratio of the present powder to the present different resin in the present kneaded product 2 is whether the mass of the present different resin is 0.01 to 0.5, where the mass of the present powder is 1. It is preferably 2 to 1000.
  • the kneaded product 2 tends to have excellent dispersibility, and the obtained dispersion liquid 2 tends to have excellent dispersion stability. That is, when the above ratio is within the former range, a component that can be regarded as a composite in which the powder is coated with different resins is formed, and the dispersibility of the paste 2 is likely to be improved.
  • the powder is highly dispersed in the different resins, and the dispersibility of the paste 2 is likely to be improved.
  • the ratio in the former range is more preferably 0.005 to 0.2 and even more preferably 0.01 to 0.1.
  • the ratio in the latter range is more preferably 3 to 500 and even more preferably 5 to 100. In this case, the kneaded product 2 and the obtained dispersion liquid 2 tend to have excellent dispersion stability even when they do not contain a surfactant.
  • the solid content in the kneaded product 2 is preferably 25% by mass or more, more preferably 50% by mass or more, with the solid content as 100% by mass.
  • the amount of this powder is preferably 99% by mass or less, more preferably 90% by mass or less.
  • the amount of the different resins in the solid content is preferably 1% by mass or more, more preferably 5% by mass or more, with the solid content as 100% by mass.
  • the amount of the different resins is preferably 30% by mass or less, more preferably 20% by mass or less. It is more preferable that the amount of the present powder in the solid content is 25% by mass or more and the amount of the different resins is 1% by mass or more, assuming that the solid content is 100% by mass.
  • the composition 2 when the composition 2 is kneaded to obtain the main kneaded product 2, the composition 2 can be prepared by mixing the present powder with a different resin and the liquid compound 1.
  • the mixing method include a method of collectively mixing the powder, the different resin and the liquid compound 1, and a method of sequentially adding the powder, the different resin and the liquid compound 1 and mixing them.
  • Specific methods for mixing include, for example, a method in which the powder and the different resins are collectively added to the liquid compound 1 and mixed, and the powder and the different resins are sequentially added to the liquid compound 1.
  • a method in which the different resin and the liquid compound 1 are mixed in advance and the obtained mixture and the present powder are mixed is preferable.
  • the main kneaded product 2 in the present method (2) is preferably the main paste 2 or the main kneaded powder 2.
  • the paste 2 preferably contains a surfactant.
  • the surfactant include the same surfactants as those in the above-mentioned method (1).
  • the present paste 2 contains a surfactant, the content of the surfactant in the present paste 2 is preferably 1 to 15% by mass. In this case, the affinity between the components is increased, and the dispersion stability of the present dispersion 2 is likely to be further improved.
  • the present paste 2 containing the surfactant may be prepared by kneading the composition containing the present powder, the present different resin and the surfactant, or the composition containing the present powder, the present different resin and the liquid compound 1. May be prepared by kneading, and then adding a surfactant and kneading to prepare.
  • the composition containing the present powder, the surfactant and the liquid compound 1 is kneaded, and further, the present different resin is added and kneaded to prepare.
  • the powder is likely to be sheared when the composition is kneaded, the viscosity of the paste 2 is lowered, and the dispersion stability of the obtained dispersion liquid 2 is more likely to be improved.
  • a method for obtaining the dispersion liquid 2 containing the different resin, the surfactant and the inorganic filler, a mixture of the inorganic filler and the powder, the liquid compound 1 and the different resin are kneaded and kneaded.
  • the method is preferable in which the kneaded product and the surfactant are kneaded to obtain the present paste 2 and the present paste 2 and the liquid compound 2 are mixed.
  • the method kneads the mixture containing the powder and the inorganic filler with the mixture containing the different resin and the liquid compound 1.
  • the present kneaded product may be obtained, and the present kneaded product and the liquid compound 2 may be mixed to obtain the present dispersion liquid.
  • the mixture containing the present powder and the inorganic filler is preferably in the form of powder. According to such an embodiment, not only the dispersion stability of the kneaded product and the obtained dispersion liquid is improved, but also the storage stability of the dispersion liquid when it is stored for a long period of time is likely to be improved. When the dispersion liquid is allowed to stand at 25 ° C.
  • the fluctuation range of the thixotropy ratio is preferably 3 or less and preferably less than 1 as an absolute value.
  • the kneaded product or the dispersion liquid in such an embodiment preferably does not contain a surfactant. Even when a surfactant is not contained, the present paste and the obtained dispersion liquid tend to have excellent dispersion stability, and it is easy to obtain a molded product having excellent electrical characteristics. These effects tend to be particularly remarkable when the main kneaded product is the main kneaded powder.
  • a laminate having the base material and the F layer can be produced.
  • the F layer may be formed on at least one side of the surface of the base material, the F layer may be formed on only one side of the base material, and the F layer is formed on both sides of the base material. You may.
  • the surface of the base material may be surface-treated with a silane coupling agent or the like.
  • the spray method roll coating method, spin coating method, gravure coating method, micro gravure coating method, gravure offset method, knife coating method, kiss coating method, bar coating method, die coating method, fountain Mayer bar method .
  • the application method of the slot die coating method can be used.
  • the F layer is preferably formed by removing the liquid compound 1 and the liquid compound 2 (hereinafter, also collectively referred to as liquid compounds) by heating, and then firing the F polymer by heating.
  • the temperature for removing the liquid compound is preferably as low as possible, and is preferably 50 to 150 ° C. lower than the lower boiling point of the boiling point of the liquid compound 1 and the boiling point of the liquid compound 2.
  • N-methyl-2-pyrrolidone having a boiling point of about 200 ° C. is used as the liquid compounds 1 and 2, it is preferable to heat the dispersion at 150 ° C. or lower, preferably 100 to 120 ° C. It is preferable to blow air in the step of removing the liquid compound.
  • the base material After removing the liquid compound, it is preferable to heat the base material to a temperature range in which the F polymer is fired to form the F layer.
  • a temperature range in which the F polymer is fired For example, it is preferable to fire the F polymer in the range of 300 to 400 ° C. That is, the F layer preferably contains a fired product of the F polymer.
  • the F layer is formed through the steps of coating, drying, and firing the dispersion liquid. Each of these steps may be performed once or twice or more.
  • the step of applying the above dispersion liquid to the surface of the base material, removing the liquid compound by heating to form a film is repeated twice, and the film having an increased thickness is heated to heat the F polymer. May be formed by firing.
  • the thickness of the F layer is preferably 0.1 ⁇ m or more, and more preferably 1 ⁇ m or more.
  • the upper limit of the thickness is 200 ⁇ m. In this range, the F layer having excellent crack resistance can be easily formed.
  • the peel strength between the F layer and the base material is preferably 10 N / cm or more, more preferably 15 N / cm or more.
  • the peel strength is preferably 100 N / cm or less.
  • the porosity of the F layer is preferably 5% or less, more preferably 4% or less.
  • the porosity is preferably 0.01% or more, more preferably 0.1% or more.
  • the void portion of the F layer is determined by image processing from the SEM photograph of the cross section of the molded product observed using a scanning electron microscope (SEM), and the area occupied by the void portion is the area occupied by the F layer. It is the ratio (%) divided by the area.
  • the area occupied by the void portion is obtained by approximating the void portion to a circle.
  • the base material examples include metal substrates such as metal foils such as copper, nickel, aluminum, titanium, and alloys thereof, polyimides, polyarylates, polysulfones, polyallylsulfones, polyamides, polyetheramides, polyphenylene sulfides, and polyallyl ether ketones.
  • metal substrates such as metal foils such as copper, nickel, aluminum, titanium, and alloys thereof, polyimides, polyarylates, polysulfones, polyallylsulfones, polyamides, polyetheramides, polyphenylene sulfides, and polyallyl ether ketones.
  • metal substrates such as metal foils such as copper, nickel, aluminum, titanium, and alloys thereof, polyimides, polyarylates, polysulfones, polyallylsulfones, polyamides, polyetheramides, polyphenylene sulfides, and polyallyl ether ketones.
  • examples thereof include a resin film of a film such as polyamide
  • Examples of the shape of the base material include a flat shape, a curved surface shape, and an uneven shape, and further, any of a foil shape, a plate shape, a film shape, and a fibrous shape may be used.
  • the ten-point average roughness of the surface of the base material is preferably less than 0.1 ⁇ m, more preferably 0.05 ⁇ m or less.
  • the ten-point average roughness is preferably 0.001 ⁇ m or more. Even with such a non-roughened base material, a laminated body having excellent peel strength can be obtained from the present dispersion, and a printed circuit board or the like having excellent transmission characteristics can be formed from the laminated body.
  • the ten-point average roughness of the surface of the base material is a value specified in Annex JA of JIS B 0601: 2013.
  • the thickness of the base material is preferably 2 to 100 ⁇ m.
  • the thickness of the base material is preferably 1 to 35 ⁇ m.
  • the base material may be a metal foil with a carrier, which is an ultrathin copper foil having a thickness of 2 to 5 ⁇ m laminated on the carrier copper foil via a release layer.
  • the laminate include a metal-clad laminate having a metal foil and an F layer formed on at least one surface thereof, and a multilayer film having a resin film and an F layer formed on at least one surface thereof.
  • the metal foil in the metal-clad laminate is preferably a copper foil.
  • Such a metal-clad laminate is particularly useful as a printed circuit board material.
  • the resin film in the multilayer film is preferably a polyimide film. Such a multilayer film is useful as an electric wire coating material and a printed circuit board material.
  • the printed circuit board includes a flexible printed circuit board and a rigid printed circuit board.
  • Another base material may be further laminated on the side opposite to the base material of the F layer to form a multilayer laminate.
  • Lamination can be performed, for example, by thermocompression bonding.
  • the structure of such a multilayer laminate includes a base material / F layer / another base material / F layer / base material, a metal substrate layer / another base material layer / F layer / another base material layer / metal substrate layer, and the like. Can be mentioned.
  • Each layer may further contain a glass cloth or filler.
  • Such laminates are useful as antenna parts, printed substrates, aircraft parts, automobile parts, sports equipment, food industry supplies, paints, cosmetics, etc. Specifically, wire coating materials such as aircraft electric wires, electricity.
  • Insulating tapes Insulating tapes, insulating tapes for oil drilling, materials for printed substrates, precision filtration membranes, ultrafiltration membranes, reverse osmosis membranes, ion exchange membranes, separation membranes such as dialysis membranes and gas separation membranes, lithium secondary batteries and fuels.
  • an impregnated woven fabric in which the F polymer is impregnated in the woven fabric is obtained.
  • the impregnated woven fabric can also be said to be a coated woven fabric in which the woven fabric is coated with the F layer or embedded in the F layer.
  • the woven fabric is preferably a glass fiber woven fabric, a carbon fiber woven fabric, an aramid fiber woven fabric or a metal fiber woven fabric, and more preferably a glass fiber woven fabric or a carbon fiber woven fabric.
  • the woven fabric may be treated with a silane coupling agent from the viewpoint of enhancing the adhesiveness with the F layer.
  • the total content of the F polymer in the impregnated woven fabric is preferably 30 to 80% by mass.
  • Examples of the method of impregnating the woven fabric with the present dispersion include a method of immersing the woven fabric in the present dispersion and a method of applying the present dispersion to the woven fabric.
  • the F polymer When the woven fabric is dried, the F polymer may be fired.
  • the method of firing the F polymer include a method of passing the woven fabric through a ventilation drying oven in an atmosphere of 300 to 400 ° C. The drying of the woven fabric and the firing of the polymer may be carried out in one step.
  • the impregnated woven fabric is excellent in characteristics such as high adhesion (adhesiveness) between the F layer and the woven fabric, high surface smoothness, and little distortion. By thermocompression bonding the impregnated woven fabric and the metal foil, a metal-clad laminate having high peel strength and resistance to warping can be obtained, which can be suitably used as a printed circuit board material.
  • the woven fabric impregnated with the dispersion liquid is placed on the surface of the base material by sticking or the like, and is heated and dried to cause the impregnated woven fabric containing the F polymer and the woven fabric.
  • a fabric layer may be formed to produce a laminate in which the base material and the impregnated woven fabric layer are laminated in this order.
  • the mode is also not particularly limited, and if a woven fabric impregnated with the present dispersion is attached to a part or all of the inner wall surface of a member such as a tank, a pipe, or a container, and the member is heated while rotating.
  • An impregnated woven fabric layer can be formed on a part or all of the inner wall surface of the member. This manufacturing method is also useful as a lining method for the inner wall surface of members such as tanks, pipes, and containers.
  • this dispersion has excellent dispersion stability and can be efficiently impregnated into a porous or fibrous material.
  • porous or fibrous materials include materials other than the above-mentioned woven fabrics, specifically, plate-like, columnar or fibrous materials. These materials may be pretreated with a curable resin, a silane coupling agent, or the like, or may be further filled with an inorganic filler or the like. In addition, these materials may be twisted to form threads, cables, and wires. At the time of twisting, an interposition layer made of another polymer such as polyethylene may be arranged.
  • An embodiment in which such a material is impregnated with the present dispersion to produce a molded product includes an embodiment in which a curable resin or a fibrous material on which the cured product is supported is impregnated with the present dispersion.
  • the fibrous material examples include high-strength and low-elongation fibers such as carbon fiber, aramid fiber, and silicon carbide fiber.
  • a thermosetting resin such as an epoxy resin, an unsaturated polyester resin, or a polyurethane resin is preferable.
  • Specific examples of such an embodiment include a composite cable formed by impregnating a cable in which carbon fibers supported by a thermosetting resin are twisted with the present dispersion liquid and further heating the cable to fire an F polymer.
  • Such a composite cable is useful as a cable for large structures, ground anchors, oil drilling, cranes, cableways, elevators, agriculture, forestry and fisheries, and slinging cables.
  • the kneaded product can be obtained by kneading the liquid compound 1 with at least one other material selected from the group consisting of the powder, the inorganic filler and the different resins.
  • a dispersion liquid having excellent dispersibility and dispersion stability can be obtained.
  • the present invention is not limited to the configuration of the above-described embodiment.
  • the method for producing a dispersion liquid of the present invention may additionally have any other step in the configuration of the above embodiment, or may be replaced with any step that produces the same action.
  • the paste and the dough of the present invention may be added with any other composition or may be replaced with any composition exhibiting the same function in the composition of the above-described embodiment.
  • Powder 1 Contains 97.9 mol%, 0.1 mol%, and 2.0 mol% of TFE units, NAH units, and PPVE units in this order, and has 1000 carbonyl groups per 1 ⁇ 10 6 main chain carbon atoms.
  • Powder 2 A powder consisting of a polymer containing 98.7 mol% and 1.3 mol% of TFE units and PPVE units in this order and having 40 carbonyl groups per 1 ⁇ 10 6 main chain carbon atoms (D50: 1. 8 ⁇ m)
  • [Inorganic filler] Filler 1: Hollow spherical silica filler (D50: 0.7 ⁇ m, surface treated with silane coupling agent) Filler 2: Non-hollow silica filler (D50: 0.4 ⁇ m, particle strength; 20 MPa or more) Filler 3: Steatite Filler Filler 4: Scale-like filler made of boron nitride (D50: 14.6 ⁇ m)
  • Varnish 1 Varnish in which thermoplastic aromatic polyimide (PI1) is dissolved in NMP [surfactant]
  • NMP N-methyl-2-pyrrolidone
  • Polyimide film 1 Aromatic polyimide film with a thickness of 50 ⁇ m (manufactured by Toray DuPont Co., Ltd., “Kapton 100LK”)
  • Example 1 Production example of dispersion liquid
  • powder 1 and NMP were put into a pot and mixed. Further, the filler 1, the filler 2, the surfactant 1 and the varnish 1 were put into the pot and mixed to prepare a liquid composition. Subsequently, the prepared liquid composition is put into a planetary mixer, kneaded, and powder 1 (35 parts by mass), filler 1 (14 parts by mass), filler 2 (14 parts by mass), PI1 (7 parts by mass). ), Surfactant 1 (3 parts by mass) and NMP (27 parts by mass) to obtain a paste 1. The viscosity of the paste 1 was 28,000 mPa ⁇ s.
  • NMP was added to the paste 1 in a plurality of times, stirred, and defoamed at 2000 rpm for 1 minute with a rotation / revolution stirrer. Further, NMP was added in a plurality of times and stirred, and 80 parts by mass of NMP as a whole was added to the paste 1 to obtain a dispersion liquid 1.
  • the viscosity of the dispersion liquid 1 was 400 mPa ⁇ s.
  • Pastes 2 to 4 were obtained in the same manner as in Paste 1, and dispersions 2 to 4 were prepared in the same manner as in dispersion 1 except that the types or amounts of powder and filler were changed.
  • Example 5 Varnish 1 and NMP were put into a pot and mixed. Further, a dry blend of powder 1, filler 1 and filler 2 was put into a pot and mixed to prepare a liquid composition. Subsequently, the prepared liquid composition was put into a planetary mixer and kneaded. Further, the surfactant 1 is put into a planetary mixer, kneaded, and the powder 1 (35 parts by mass), the filler 1 (14 parts by mass), the filler 2 (14 parts by mass), the PI1 (7 parts by mass), and the interface. A paste 5 containing activator 1 (3 parts by mass) and NMP (27 parts by mass) was obtained. The viscosity of the paste 5 was 11000 mPa ⁇ s.
  • NMP was added to the paste 5 in a plurality of times and stirred, and defoamed at 2000 rpm for 1 minute with a rotation / revolution stirrer. Further, NMP was added in a plurality of times and stirred, and 80 parts by mass of NMP as a whole was added to the paste 5 to prepare a dispersion liquid to obtain a dispersion liquid 5.
  • the viscosity of the dispersion liquid 5 was 200 mPa ⁇ s.
  • Example 6 Varnish 1 and NMP were put into a pot and mixed. Further, powder 1 was put into a pot and mixed to prepare a liquid composition. Subsequently, the prepared liquid composition was put into a planetary mixer and kneaded to obtain a paste 6 containing powder 1 (5 parts by mass), PI1 (50 parts by mass) and NMP (45 parts by mass). The viscosity of the paste 6 was 30,000 mPa ⁇ s. NMP was added to the paste 6 in a plurality of times and stirred, and defoamed at 2000 rpm for 1 minute with a rotation / revolution stirrer.
  • the NMP was stirred in a plurality of times, and 80 parts by mass of NMP as a whole was added to the paste 6 to prepare a dispersion liquid to obtain a dispersion liquid 6.
  • the viscosity of the dispersion liquid 6 was 300 mPa ⁇ s.
  • Example 7 (Comparative example)] Powder 1, filler 1, filler 2, varnish 1, surfactant 1 and NMP were put into the pot, and zirconia balls were put into the pot. Then, the pot was rolled at 150 rpm for 1 hour to obtain powder 1 (35 parts by mass), filler 1 (14 parts by mass), filler 2 (14 parts by mass), PI1 (7 parts by mass), and an interface without obtaining a paste. A dispersion 7 containing activator 1 (3 parts by mass) and NMP (97 parts by mass) was obtained.
  • Example 8 Varnish 1 and NMP were put into a pot and mixed. Further, a powder mixture of powder 1 and filler 4 was put into a pot and mixed to prepare a composition. This composition is kneaded in a planetary mixer and then taken out, and the powder 1 containing powder 1 (50 parts by mass), filler 4 (40 parts by mass) and PI1 (10 parts by mass), and NMP (30 parts by mass). Got The kneaded powder 1 was lumpy and clay-like. NMP was added to the dough 1 in a plurality of times, and the mixture was stirred while defoaming at 2000 rpm with a rotation / revolution stirrer.
  • the NMP was stirred in a plurality of times, and 80 parts by mass of NMP as a whole was added to the kneaded powder 1 to prepare a dispersion liquid, and a dispersion liquid 8 was obtained.
  • the viscosity of the dispersion liquid 8 was 300 mPa ⁇ s.
  • Example 9 Powder 1, filler 4, varnish 1, and NMP were added to the pot and mixed to prepare a composition.
  • This composition is kneaded in a planetary mixer and then taken out, and a kneaded powder 2 containing powder 1 (50 parts by mass), filler 4 (40 parts by mass), PI1 (10 parts by mass) and NMP (30 parts by mass).
  • Got The kneaded powder 2 was lumpy and clay-like.
  • NMP was added to the dough 2 in a plurality of times, and the mixture was stirred while defoaming at 2000 rpm with a rotation / revolution stirrer.
  • the NMP was stirred in a plurality of times, and 80 parts by mass of NMP as a whole was added to the kneaded powder 2 to prepare a dispersion liquid, and a dispersion liquid 9 was obtained.
  • the viscosity of the dispersion liquid 9 was 300 mPa ⁇ s.
  • Example 10 (Comparative example)
  • Powder 1 35 parts by mass
  • filler 1 (30 parts by mass) were added and stirred and mixed to obtain a powder mixture 1.
  • the obtained powder mixture 1 and NMP 110 parts by mass
  • the dispersion liquid 10 it was visually observed that agglomerates were precipitated immediately after the preparation, and the dispersibility was poor.
  • Example 2 The same as in Example 1 except that the dry blend of powder 1, filler 1 and filler 2 is charged into the planetary mixer, and the liquid composition containing the surfactant 1, varnish 1 and NMP is further charged. Even after kneading, a paste equivalent to that of Paste 1 was obtained.
  • a wet film was formed by applying the dispersion liquid 1 after long-term storage to the surface of a long copper foil having a thickness of 18 ⁇ m using a bar coater.
  • the copper foil on which the wet film was formed was passed through a drying oven at 110 ° C. for 5 minutes and dried by heating to obtain a dry film.
  • the dry membrane was heated at 380 ° C. for 3 minutes in a nitrogen oven.
  • a laminate 1 having a polymer layer having a thickness of 20 ⁇ m as a molded product was produced, which contained a copper foil and a melt-fired product of powder 1 and a filler 1, filler 2 and PI1 on the surface thereof.
  • Laminates 2 to 9 were produced in the same manner as the laminate 1 except that the dispersion 1 was changed from the dispersion 2 to 9.
  • the thickness of the polymer layer was set to 50 ⁇ m. Since the dispersion liquid 10 had poor dispersibility, no laminate was produced from the dispersion liquid 10.
  • the dispersion liquid 1 was applied to the surface of a long copper foil having a thickness of 18 ⁇ m using a bar coater to form a wet film.
  • the copper foil on which the wet film was formed was passed through a drying oven at 110 ° C. for 5 minutes and dried by heating to obtain a dry film.
  • a dispersion liquid is applied onto the dry film using a bar coater to form a wet film, and then the dry film and the copper foil on which the wet film is formed are passed through a drying oven at 110 ° C. for 5 minutes. , It was dried by heating to obtain a two-layer dry film.
  • a polymer layer having a thickness of 50 ⁇ m was formed in the same manner as in the laminated body 1, and the laminated body 10 was manufactured.
  • the cross section of the polymer layer was observed using a scanning electron microscope (SEM)
  • the void ratio of the polymer layer of the laminate other than the laminate 7 was 5% or less
  • the void ratio of the polymer layer of the laminate 7 was 5% or less. The rate was over 5%.
  • Evaluation 4-1 Evaluation of dispersion stability of dispersions After each dispersion was stored in a container at 25 ° C. for a long period of time, its dispersibility was visually confirmed, and the dispersion stability was evaluated according to the following criteria. [Evaluation criteria] ⁇ : Aggregates are not visible. ⁇ : Fine agglomerates are visually recognized on the side wall of the container. When lightly stirred, it was uniformly redispersed. X: It can be visually confirmed that the agglomerates are also settled on the bottom of the container. Strong shear agitation was required for redispersion.
  • thixotropy 4-2. Evaluation of thixotropy of dispersions Each dispersion was stored in a container at 25 ° C. for 30 days, the fluctuation range of the thixotropy ratio before and after storage was measured, and the thixotropy was evaluated according to the following criteria. [Evaluation criteria] ⁇ : The thixotropy fluctuation range (absolute value) is less than 1. ⁇ : The thixotropy fluctuation range (absolute value) is 1 or more and 3 or less. ⁇ : The thixotropy fluctuation range (absolute value) is 3. Is super
  • Dielectric Dissipation Factor of Laminates For each laminate, the copper foil of the laminate is removed by etching with an aqueous ferric chloride solution to prepare a single polymer layer, which is then subjected to the SPDR (split post dielectric resonance) method. The dielectric loss tangent (measurement frequency: 10 GHz) of the polymer layer was measured and evaluated according to the following criteria. The laminate 7 was not evaluated because the polymer layer had a high porosity. [Evaluation criteria] ⁇ : The dielectric loss tangent is less than 0.0010. ⁇ : The dielectric loss tangent is 0.0010 or more and 0.0025 or less. X: The dielectric loss tangent is more than 0.0025.
  • Example of manufacturing a laminated film A dispersion liquid 3 prepared from a paste 3 is applied to one surface of a polyimide film 1 by a small-diameter gravure reverse method, and the NMP is passed through a ventilation drying furnace having a furnace temperature of 150 ° C. for 3 minutes. It was removed to form a dry film. Further, the dispersion liquid 3 was similarly applied to and dried on the other surface of the polyimide film 1 to form a dry film. Next, a polyimide film having a dry film formed on both sides was passed through a far-infrared furnace in 20 minutes to melt-fire the powder 1.
  • the temperature of the furnace near the inlet and outlet of the far infrared path was 300 ° C, and the temperature of the furnace near the center was 340 ° C.
  • a polymer layer having a thickness of 25 ⁇ m containing F polymer 1 and PI1 is formed on both sides of the polyimide film 1, and a laminated film 1 in which the polymer layer, the polyimide film, and the polymer layer are directly formed in this order is obtained.
  • rice field When the cross section of the laminated film 1 was observed using a scanning electron microscope (SEM), the porosity of the polymer layer was 5% or less.
  • SEM scanning electron microscope
  • the dispersion liquid prepared by this method has excellent dispersibility and dispersion stability, and the cross section of the laminate obtained by applying it to the substrate is dense with no voids. there were. Therefore, the laminate using the dispersion obtained by this method was excellent in the uniformity of the component distribution and excellent in various physical properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

Provided are: a method for producing a dispersion which includes a powder of a tetrafluoroethylene-based polymer and either an inorganic filler or a resin different from the tetrafluoroethylene-based polymer and is excellent in terms of dispersibility; a paste; and a kneaded powder. The method for producing a dispersion comprises kneading a powder of a tetrafluoroethylene-based polymer, at least one other material selected from the group consisting of inorganic fillers and resins different from the tetrafluoroethylene-based polymer, and a liquid compound to obtain a kneaded mixture and mixing the kneaded mixture with a liquid compound to obtain the dispersion. The paste or kneaded powder is obtained by kneading a powder of a tetrafluoroethylene-based polymer and said other material.

Description

分散液の製造方法、ペーストおよび練粉Dispersion manufacturing method, paste and kneading powder
 本発明は、テトラフルオロエチレン系ポリマーのパウダーと、所定の他の材料を含む分散液の製造方法、該製造方法に好適に用いられるペーストおよび練粉に関する。 The present invention relates to a method for producing a dispersion liquid containing a tetrafluoroethylene polymer powder and a predetermined other material, and a paste and kneaded powder preferably used in the production method.
 テトラフルオロエチレン系ポリマーは、電気絶縁性、撥水撥油性、耐薬品性、耐熱性等の物性に優れている。このため、そのパウダーが水や油性溶剤中に分散した分散液は、レジスト、接着剤、電気絶縁層、潤滑剤、インク、塗料等を形成するための材料として有用である。しかし、テトラフルオロエチレン系ポリマーは、表面エネルギーが低く、そのパウダー同士は、凝集しやすい。このため、分散安定性に優れた、低粘性の分散液を得ることはむずかしい。
 例えば、特許文献1には、分散液の分散性を向上させ、その液物性を調整する観点から、添加剤を使用した非水系分散液が開示されている。
The tetrafluoroethylene polymer is excellent in physical properties such as electrical insulation, water and oil repellency, chemical resistance, and heat resistance. Therefore, the dispersion liquid in which the powder is dispersed in water or an oil-based solvent is useful as a material for forming a resist, an adhesive, an electrically insulating layer, a lubricant, an ink, a paint, and the like. However, the tetrafluoroethylene polymer has a low surface energy, and the powders tend to aggregate with each other. Therefore, it is difficult to obtain a low-viscosity dispersion having excellent dispersion stability.
For example, Patent Document 1 discloses a non-aqueous dispersion liquid using an additive from the viewpoint of improving the dispersibility of the dispersion liquid and adjusting the physical characteristics of the dispersion liquid.
国際公開2016/159102号International Publication 2016/159102
 しかしながら、特許文献1に記載の分散液も、その分散安定性は未だ充分ではない。
 また、テトラフルオロエチレン系ポリマーのパウダーを含み、さらに無機フィラーまたはテトラフルオロエチレン系ポリマーとは異なる樹脂等の他の機能性材料を添加した分散液は、それから形成する成形物において、他の機能性材料の物性も付与できる可能性がある。
However, the dispersion stability of the dispersion liquid described in Patent Document 1 is still insufficient.
Further, the dispersion liquid containing the powder of the tetrafluoroethylene-based polymer and further added with other functional materials such as an inorganic filler or a resin different from the tetrafluoroethylene-based polymer has other functionalities in the molded product formed from the dispersion. There is a possibility that the physical properties of the material can also be imparted.
 しかしながら、テトラフルオロエチレン系ポリマーと他の機能性材料との親和性は、総じて低く、かかる分散液においては、その分散安定性がさらに低下する傾向にある。
 また、他の機能性材料を添加する際に、高せん断を加えてテトラフルオロエチレン系ポリマーのパウダーを分散させようとすると、空気の巻き込み、テトラフルオロエチレン系ポリマーの変質等により、発泡や凝集が生じやすい。
 その結果、上記分散液から得られる成形物における、成分分布の均一性の低下や空隙の発生による耐水性の低下が生じやすい。
However, the affinity between the tetrafluoroethylene polymer and other functional materials is generally low, and the dispersion stability of such a dispersion tends to be further lowered.
In addition, when adding other functional materials, if high shear is applied to disperse the tetrafluoroethylene polymer powder, air entrainment, alteration of the tetrafluoroethylene polymer, etc. will cause foaming and agglutination. It is easy to occur.
As a result, in the molded product obtained from the dispersion liquid, the uniformity of the component distribution and the water resistance due to the generation of voids tend to decrease.
 本発明者らは、テトラフルオロエチレン系ポリマーのパウダーと、無機フィラーおよびテトラフルオロエチレン系ポリマーとは異なる樹脂からなる群から選ばれる少なくとも1種の他の材料とを含有する、分散安定性に優れた分散液を得るべく、かかる分散液の製造方法を検討し、本発明の完成に至った。
 本発明は、テトラフルオロエチレン系ポリマーのパウダーと上記他の材料とを含有し、分散安定性に優れた分散液の製造方法と、該製造方法に好適に用いられるペーストおよび練粉との提供を目的とする。
The present inventors have excellent dispersion stability, which contains a powder of a tetrafluoroethylene-based polymer and at least one other material selected from the group consisting of an inorganic filler and a resin different from the tetrafluoroethylene-based polymer. In order to obtain a solid dispersion, a method for producing such a dispersion was studied, and the present invention was completed.
The present invention provides a method for producing a dispersion liquid containing a tetrafluoroethylene polymer powder and the above-mentioned other materials and having excellent dispersion stability, and a paste and a kneaded powder preferably used in the production method. The purpose.
 本発明は、下記の態様を有する。
[1] テトラフルオロエチレン系ポリマーのパウダーと、無機フィラーおよびテトラフルオロエチレン系ポリマーとは異なる樹脂からなる群から選ばれる少なくとも1種の他の材料と、液状化合物とを混練して混練物を得、前記混練物と液状化合物とを混合して分散液を得る、分散液の製造方法。
[2] 前記混練物の固形分量が、40質量%以上である、[1]の製造方法。
[3] 前記混練物が、前記無機フィラーを含み、前記混練物における前記パウダーと前記無機フィラーとの比が、前記パウダーの質量を1として、前記無機フィラーの質量が、0.5から2である、[1]または[2]の製造方法。
[4] 前記無機フィラーが、シリカフィラーまたは窒化ホウ素フィラーである、[1]から[3]のいずれかの製造方法。
[5] 前記混練物が、前記異なる樹脂を含み、前記混練物における前記パウダーと前記異なる樹脂との比が、前記パウダーの質量を1として、前記異なる樹脂の質量が0.01から0.5である、[1]から[4]のいずれかの製造方法。
[6] 前記混練物が、前記異なる樹脂を含み、前記混練物における前記パウダーと前記異なる樹脂との比が、前記パウダーの質量を1として、前記異なる樹脂の質量が2から1000である、[1]から[4]のいずれかの製造方法。
[7] 前記異なる樹脂が、芳香族ポリマーである、[1]から[6]のいずれかの製造方法。
[8] 前記液状化合物が、低粘性液体または高粘性液体である、[1]から[7]のいずれかの製造方法。
[9] テトラフルオロエチレン系ポリマーのパウダー、テトラフルオロエチレン系ポリマーとは異なる樹脂、液状化合物および界面活性剤を混練して混練物を得、前記混練物と液状化合物とを混合して分散液を得る、分散液の製造方法。
[10] テトラフルオロエチレン系ポリマーのパウダーおよび無機フィラーを含有する混合物と、テトラフルオロエチレン系ポリマーとは異なる樹脂および液状化合物を含有する混合物とを混練して混練物を得、前記混練物と液状化合物とを混合して分散液を得る、分散液の製造方法。
[11] テトラフルオロエチレン系ポリマーのパウダーと、無機フィラーおよびテトラフルオロエチレン系ポリマーとは異なる樹脂からなる群から選ばれる少なくとも1種の他の材料と、液状化合物とを混練して得られる、固形分量が40質量%以上であり、粘度が800から100000mPa・sである、ペースト。
[12] 前記無機フィラーを含み、前記パウダーと前記無機フィラーとの比が、前記パウダーの質量を1として、前記無機フィラーの質量が0.5から2である、[11]のペースト。
[13] 前記異なる樹脂を含み、前記パウダーと前記異なる樹脂との比が、前記パウダーの質量を1として、前記異なる樹脂の質量が、0.01から0.5である、[11]または[12]のペースト。
[14] テトラフルオロエチレン系ポリマーのパウダーと、無機フィラーおよびテトラフルオロエチレン系ポリマーとは異なる樹脂からなる群から選ばれる少なくとも1種の他の材料と、液状化合物とを混練して得られる、練粉。
[15] 前記異なる樹脂を含み、前記パウダーと前記異なる樹脂との比が、前記パウダーの質量を1として、前記異なる樹脂の質量が0.01から0.5である、[14]の練粉。
The present invention has the following aspects.
[1] A kneaded product is obtained by kneading a powder of a tetrafluoroethylene polymer, at least one other material selected from the group consisting of an inorganic filler and a resin different from the tetrafluoroethylene polymer, and a liquid compound. , A method for producing a dispersion liquid, wherein the kneaded product and a liquid compound are mixed to obtain a dispersion liquid.
[2] The production method according to [1], wherein the solid content of the kneaded product is 40% by mass or more.
[3] The kneaded product contains the inorganic filler, and the ratio of the powder to the inorganic filler in the kneaded product is such that the mass of the powder is 1 and the mass of the inorganic filler is 0.5 to 2. There is a manufacturing method of [1] or [2].
[4] The production method according to any one of [1] to [3], wherein the inorganic filler is a silica filler or a boron nitride filler.
[5] The kneaded product contains the different resin, and the ratio of the powder to the different resin in the kneaded product is 0.01 to 0.5, where the mass of the powder is 1, and the mass of the different resin is 0.01 to 0.5. The production method according to any one of [1] to [4].
[6] The kneaded product contains the different resin, and the ratio of the powder to the different resin in the kneaded product is 1 for the mass of the powder and 2 to 1000 for the mass of the different resin. The production method according to any one of 1] to [4].
[7] The production method according to any one of [1] to [6], wherein the different resin is an aromatic polymer.
[8] The production method according to any one of [1] to [7], wherein the liquid compound is a low-viscosity liquid or a high-viscosity liquid.
[9] A powder of a tetrafluoroethylene polymer, a resin different from the tetrafluoroethylene polymer, a liquid compound and a surfactant are kneaded to obtain a kneaded product, and the kneaded product and the liquid compound are mixed to prepare a dispersion liquid. A method for producing a dispersion liquid.
[10] A mixture containing a tetrafluoroethylene polymer powder and an inorganic filler and a mixture containing a resin and a liquid compound different from the tetrafluoroethylene polymer are kneaded to obtain a kneaded product, and the kneaded product and the liquid are obtained. A method for producing a dispersion, which comprises mixing with a compound to obtain a dispersion.
[11] A solid obtained by kneading a powder of a tetrafluoroethylene polymer, at least one other material selected from the group consisting of an inorganic filler and a resin different from the tetrafluoroethylene polymer, and a liquid compound. A paste having a quantity of 40% by mass or more and a viscosity of 800 to 100,000 mPa · s.
[12] The paste according to [11], which contains the inorganic filler and has a ratio of the powder to the inorganic filler, wherein the mass of the powder is 1 and the mass of the inorganic filler is 0.5 to 2.
[13] [11] or [11] or [13], which contains the different resins, the ratio of the powder to the different resins is 0.01 to 0.5, where the mass of the powder is 1. 12] paste.
[14] A kneading obtained by kneading a powder of a tetrafluoroethylene polymer, at least one other material selected from the group consisting of an inorganic filler and a resin different from the tetrafluoroethylene polymer, and a liquid compound. powder.
[15] The kneaded powder of [14], which contains the different resins, and the ratio of the powder to the different resins is 0.01 to 0.5, where the mass of the powder is 1, and the mass of the different resins is 0.01 to 0.5. ..
 本発明によれば、分散安定性に優れ、テトラフルオロエチレン系ポリマーのパウダーと、無機フィラーおよびテトラフルオロエチレン系ポリマーとは異なる樹脂からなる群から選ばれる少なくとも1種の他の材料とを含有する分散液が製造できる。また、本発明によれば、テトラフルオロエチレン系ポリマーのパウダーと、他の材料とを含有する、ペーストおよび練粉が提供される。 According to the present invention, it is excellent in dispersion stability and contains a powder of a tetrafluoroethylene-based polymer and at least one other material selected from the group consisting of an inorganic filler and a resin different from the tetrafluoroethylene-based polymer. A dispersion can be produced. Further, according to the present invention, there are provided pastes and kneaded powders containing a powder of a tetrafluoroethylene-based polymer and other materials.
 以下の用語は、以下の意味を有する。
 「テトラフルオロエチレン系ポリマー」とは、テトラフルオロエチレンに基づく単位を含有するポリマーであり、単に「Fポリマー」とも記す。
 「ポリマーのガラス転移点(Tg)」は、動的粘弾性測定(DMA)法でポリマーを分析して測定される値である。
 「ポリマーの溶融温度(融点)」は、示差走査熱量測定(DSC)法で測定した融解ピークの最大値に対応する温度である。
 「D50」は、対象物(パウダーおよびフィラー)の平均粒子径であり、レーザー回折・散乱法によって求められる対象物の体積基準累積50%径である。すなわち、レーザー回折・散乱法によって対象物の粒度分布を測定し、対象物の集団の全体積を100%として累積カーブを求め、その累積カーブ上で累積体積が50%となる点の粒子径である。
 「D90」は、対象物の累積体積粒径であり、「D50」と同様にして求められる対象物の体積基準累積90%径である。
 「ペーストおよび分散液の粘度」は、B型粘度計を用いて、室温下(25℃)で回転数が30rpmの条件下で分散液について測定される値である。測定を3回繰り返し、3回分の測定値の平均値とする。
 「モノマーに基づく単位」とは、モノマーの重合により形成された前記モノマーに基づく原子団を意味する。単位は、重合反応によって直接形成された単位であってもよく、ポリマーを処理することによって前記単位の一部が別の構造に変換された単位であってもよい。以下、モノマーaに基づく単位を、単に「モノマーa単位」とも記す。
The following terms have the following meanings.
The "tetrafluoroethylene-based polymer" is a polymer containing a unit based on tetrafluoroethylene, and is also simply referred to as "F polymer".
The "glass transition point (Tg) of the polymer" is a value measured by analyzing the polymer by the dynamic viscoelasticity measurement (DMA) method.
The “polymer melting temperature (melting point)” is the temperature corresponding to the maximum value of the melting peak measured by the differential scanning calorimetry (DSC) method.
“D50” is the average particle size of the object (powder and filler), and is the volume-based cumulative 50% diameter of the object determined by the laser diffraction / scattering method. That is, the particle size distribution of the object is measured by the laser diffraction / scattering method, the cumulative curve is obtained with the total product of the group of the objects as 100%, and the particle size at the point where the cumulative volume is 50% on the cumulative curve. be.
“D90” is the cumulative volume particle size of the object, and is the volume-based cumulative 90% diameter of the object obtained in the same manner as “D50”.
The "viscosity of the paste and the dispersion liquid" is a value measured for the dispersion liquid at room temperature (25 ° C.) and at a rotation speed of 30 rpm using a B-type viscometer. The measurement is repeated 3 times, and the average value of the measured values for 3 times is used.
The "monomer-based unit" means an atomic group based on the monomer formed by polymerization of the monomer. The unit may be a unit directly formed by a polymerization reaction, or may be a unit in which a part of the unit is converted into another structure by processing a polymer. Hereinafter, the unit based on the monomer a is also simply referred to as “monomer a unit”.
 本発明の製造方法(以下、本法とも記す)は、Fポリマーのパウダー(以下、本パウダーとも記す)、無機フィラーおよびFポリマーとは異なる樹脂(以下、本異なる樹脂とも記す)からなる群から選ばれる少なくとも1種の他の材料(以下、他の材料とも記す)と、液状化合物(以下、液状化合物1とも記す)を混練して混練物(以下、本混練物とも記す)を得て、本混練物と液状化合物(以下、液状化合物2とも記す)とを混合して分散液(以下、本分散液とも記す)を得る方法である。本分散液は、本パウダーが分散している分散液である。 The production method of the present invention (hereinafter, also referred to as the present method) consists of a group consisting of an F polymer powder (hereinafter, also referred to as the present powder), an inorganic filler and a resin different from the F polymer (hereinafter, also referred to as the present different resin). At least one selected other material (hereinafter, also referred to as other material) and a liquid compound (hereinafter, also referred to as liquid compound 1) are kneaded to obtain a kneaded product (hereinafter, also referred to as this kneaded product). This is a method of mixing the kneaded product and a liquid compound (hereinafter, also referred to as liquid compound 2) to obtain a dispersion liquid (hereinafter, also referred to as the present dispersion liquid). This dispersion is a dispersion in which the powder is dispersed.
 本発明におけるFポリマーは、テトラフルオロエチレン(以下、TFEとも記す)に基づく単位(以下、TFE単位とも記す)を含むポリマーである。
 Fポリマーのフッ素含有量は、70から76質量%であるのが好ましい。かかるフッ素含有量が高いFポリマーは、Fポリマーの電気物性等の物性に優れる反面、極性が低いため、他の材料との親和性が低いだけでなく、そのパウダーは凝集しやすい。そのため、分散液を調製した際に、その分散性がさらに低下する。本法によれば、かかる分散液においても、全体のFポリマーの物性が損なわれず、分散性に優れた分散液が得られる。
The F polymer in the present invention is a polymer containing a unit (hereinafter, also referred to as TFE unit) based on tetrafluoroethylene (hereinafter, also referred to as TFE).
The fluorine content of the F polymer is preferably 70 to 76% by mass. Such an F polymer having a high fluorine content is excellent in physical properties such as electrical properties of the F polymer, but has a low polarity, so that not only is it low in affinity with other materials, but the powder is easily aggregated. Therefore, when the dispersion liquid is prepared, its dispersibility is further lowered. According to this method, even in such a dispersion, the physical properties of the entire F polymer are not impaired, and a dispersion having excellent dispersibility can be obtained.
 Fポリマーは、剛直性に富むポリマーであるため、分散性を改良するために一般に行われるような剪断をかけて分散媒と混合する方法では、分散液中で変性しやすいとも考えられる。その結果、Fポリマーの分散媒中の分散性が低下する場合がある。
 本法によれば、高剪断をかけることなく、液状化合物1および液状化合物2と混合することが可能となるため、分散性が損なわれることなく、本分散液が得られる。
 また、本法によると、本パウダー、他の材料に含まれる空気の巻き込みを抑制しつつ、本分散液を製造できる。そのため、本分散液からは緻密な成形物が得られ、成形物は、耐水性に優れ、Fポリマーや他の材料を均一に含み、両者の物性を高度に発現したと考えられる。
Since the F polymer is a polymer having a high degree of rigidity, it is considered that the F polymer is easily denatured in the dispersion liquid by the method of mixing with the dispersion medium by shearing as is generally performed to improve the dispersibility. As a result, the dispersibility of the F polymer in the dispersion medium may decrease.
According to this method, since it is possible to mix the liquid compound 1 and the liquid compound 2 without applying high shearing, the present dispersion can be obtained without impairing the dispersibility.
Further, according to this method, the dispersion liquid can be produced while suppressing the entrainment of air contained in the powder and other materials. Therefore, it is considered that a dense molded product can be obtained from this dispersion, the molded product has excellent water resistance, uniformly contains F polymer and other materials, and highly expresses the physical characteristics of both.
 本発明におけるFポリマーの溶融温度は、180℃以上が好ましく、200℃以上がより好ましく、260℃以上がさらに好ましい。Fポリマーの溶融温度は、325℃以下が好ましく、320℃以下がより好ましい。Fポリマーの溶融温度は、180から325℃が特に好ましい。
 Fポリマーのガラス転移点は、50℃以上が好ましく、75℃以上がより好ましい。Fポリマーのガラス転移点は、150℃以下が好ましく、125℃以下がより好ましい。
The melting temperature of the F polymer in the present invention is preferably 180 ° C. or higher, more preferably 200 ° C. or higher, and even more preferably 260 ° C. or higher. The melting temperature of the F polymer is preferably 325 ° C. or lower, more preferably 320 ° C. or lower. The melting temperature of the F polymer is particularly preferably 180 to 325 ° C.
The glass transition point of the F polymer is preferably 50 ° C. or higher, more preferably 75 ° C. or higher. The glass transition point of the F polymer is preferably 150 ° C. or lower, more preferably 125 ° C. or lower.
 Fポリマーとしては、ポリテトラフルオロエチレン(以下、PTFEとも記す)、TFE単位とペルフルオロ(アルキルビニルエーテル)(以下、PAVEとも記す)に基づく単位(以下、PAVE単位とも記す)を含むポリマー(以下、PFAとも記す)またはTFEとヘキサフルオロプロピレンに基づく単位を含むコポリマー(以下、FEPとも記す)が好ましく、PFAまたはFEPがより好ましく、PFAがさらに好ましい。これらのポリマーには、さらに他のコモノマーに基づく単位が含まれていてもよい。
 PAVEとしては、CF=CFOCF、CF=CFOCFCFまたはCF=CFOCFCFCF(以下、PPVEとも記す)が好ましく、PPVEがより好ましい。
The F polymer includes a polymer containing polytetrafluoroethylene (hereinafter, also referred to as PTFE), a TFE unit and a unit based on perfluoro (alkyl vinyl ether) (hereinafter, also referred to as PAVE) (hereinafter, also referred to as PAVE unit) (hereinafter, PFA). (Also also referred to as) or a polymer containing a unit based on TFE and hexafluoropropylene (hereinafter, also referred to as FEP) is preferable, PFA or FEP is more preferable, and PFA is further preferable. These polymers may further contain units based on other comonomeres.
As the PAVE, CF 2 = CFOCF 3 , CF 2 = CFOCF 2 CF 3 or CF 2 = CFOCF 2 CF 2 CF 3 (hereinafter, also referred to as PPVE) is preferable, and PPVE is more preferable.
 Fポリマーは、酸素原子を含む原子団を有するのが好ましい。本法によれば、かかる原子団に基づくFポリマーの物性が損なわれず、本分散液を用いて得られた成形物の物性がさらに向上する。
 上記原子団は、Fポリマー中のモノマー単位に含まれていてもよく、ポリマーの主鎖の末端基に含まれていてもよい。後者の態様としては、重合開始剤、連鎖移動剤等に由来する末端基として上記原子団を有するFポリマーが挙げられる。
 酸素原子を含む原子団は、水酸基含有基またはカルボニル基含有基が好ましく、カルボニル基含有基が特に好ましい。
 Fポリマーにおけるカルボニル基含有基の数は、主鎖炭素数1×10個あたり、10~5000個が好ましく、100~3000個がより好ましく、50~1500個がさらに好ましい。なお、Fポリマーにおけるカルボニル基含有基の数は、ポリマーの組成または国際公開2020/145133号に記載の方法によって定量できる。
The F polymer preferably has an atomic group containing an oxygen atom. According to this method, the physical characteristics of the F polymer based on such atomic groups are not impaired, and the physical characteristics of the molded product obtained by using the present dispersion are further improved.
The atomic group may be contained in the monomer unit in the F polymer, or may be contained in the terminal group of the main chain of the polymer. Examples of the latter aspect include an F polymer having the above-mentioned atomic group as a terminal group derived from a polymerization initiator, a chain transfer agent, or the like.
The atomic group containing an oxygen atom is preferably a hydroxyl group-containing group or a carbonyl group-containing group, and a carbonyl group-containing group is particularly preferable.
The number of carbonyl group-containing groups in the F polymer is preferably 10 to 5000, more preferably 100 to 3000, and even more preferably 50 to 1500, per 1 × 10 6 carbon atoms in the main chain. The number of carbonyl group-containing groups in the F polymer can be quantified by the composition of the polymer or the method described in International Publication No. 2020/145133.
 水酸基含有基は、アルコール性水酸基を含有する基が好ましく、-CFCHOHまたは-C(CFOHがより好ましい。
 カルボニル基含有基は、カルボニル基(>C(O))を含む基であり、カルボキシル基、アルコキシカルボニル基、アミド基、イソシアネート基、カルバメート基(-OC(O)NH)、酸無水物残基(-C(O)OC(O)-)、イミド残基(-C(O)NHC(O)-等)またはカーボネート基(-OC(O)O-)が好ましく、酸無水物残基がより好ましい。
The hydroxyl group-containing group is preferably an alcoholic hydroxyl group-containing group, more preferably -CF 2 CH 2 OH or -C (CF 3 ) 2 OH.
The carbonyl group-containing group is a group containing a carbonyl group (> C (O)), a carboxyl group, an alkoxycarbonyl group, an amide group, an isocyanate group, a carbamate group (-OC (O) NH 2 ), and an acid anhydride residue. A group (-C (O) OC (O)-), an imide residue (-C (O) NHC (O)-etc.) or a carbonate group (-OC (O) O-) is preferred, and an acid anhydride residue. Is more preferable.
 Fポリマーとしては、PTFE単位およびPAVE単位を含み、全単位に対してPAVE単位を1.5から5.0モル%含む、溶融温度が280から320℃のポリマーが好ましく、TFE単位およびPAVE単位を含み、酸素原子を含む原子団を有するFポリマー(1)、または、TFE単位およびPAVE単位を含み、全モノマー単位に対してPAVE単位を2から5モル%含み、酸素原子を含む原子団を有さないFポリマー(2)がより好ましい。これらのポリマーは、成形物中において微小球晶を形成するため、成形物の特性が向上しやすい。 As the F polymer, a polymer containing PTFE units and PAVE units, containing 1.5 to 5.0 mol% of PAVE units with respect to all units, and having a melting temperature of 280 to 320 ° C. is preferable, and TFE units and PAVE units are used. F polymer (1) containing atomic groups containing oxygen atoms, or containing TFE units and PAVE units, containing 2 to 5 mol% of PAVE units with respect to all monomer units, and having atomic groups containing oxygen atoms. No F polymer (2) is more preferable. Since these polymers form microspherulites in the molded product, the characteristics of the molded product are likely to be improved.
 Fポリマー(1)は、TFE単位と、PAVE単位と、水酸基含有基またはカルボニル基含有基を有するモノマーに基づく単位とを含むポリマーが好ましい。Fポリマー(1)は、全単位に対して、TFE単位を90から98モル%、PAVE単位を1.5から9.97モル%、および上記モノマーに基づく単位を0.01から3モル%、それぞれ含むのが好ましい。上記モノマーは、無水イタコン酸、無水シトラコン酸または5-ノルボルネン-2,3-ジカルボン酸無水物(別称:無水ハイミック酸;以下、「NAH」とも記す)が好ましい。
 Fポリマー(1)の具体例としては、国際公開第2018/16644号に記載されるポリマーが挙げられる。
The F polymer (1) is preferably a polymer containing a TFE unit, a PAVE unit, and a unit based on a monomer having a hydroxyl group-containing group or a carbonyl group-containing group. The F polymer (1) has 90 to 98 mol% of TFE units, 1.5 to 9.97 mol% of PAVE units, and 0.01 to 3 mol% of units based on the above-mentioned monomers, based on all the units. It is preferable to include each. The monomer is preferably itaconic anhydride, citraconic anhydride or 5-norbornene-2,3-dicarboxylic acid anhydride (also known as hymic anhydride; hereinafter also referred to as “NAH”).
Specific examples of the F polymer (1) include the polymers described in International Publication No. 2018/16644.
 Fポリマー(2)は、TFE単位およびPAVE単位のみからなり、全モノマー単位に対して、TFE単位を95から98モル%、PAVE単位を2から5モル%含有するのが好ましい。
 Fポリマー(2)におけるPAVE単位の含有量は、全モノマー単位に対して、2.1モル%以上が好ましく、2.2モル%以上がより好ましい。
 なお、Fポリマー(2)が酸素原子を含む原子団を有さないとは、ポリマー主鎖を構成する炭素原子数の1×10個あたり、ポリマーが有する酸素原子を含む原子団の数が、500個未満であることを意味する。酸素原子を含む原子団の数は、100個以下が好ましく、50個未満がより好ましい。酸素原子を含む原子団の数の下限は、通常、0個である。
The F polymer (2) is composed of only TFE units and PAVE units, and preferably contains 95 to 98 mol% of TFE units and 2 to 5 mol% of PAVE units with respect to all the monomer units.
The content of PAVE units in the F polymer (2) is preferably 2.1 mol% or more, more preferably 2.2 mol% or more, based on all the monomer units.
The fact that the F polymer (2) does not have an atomic group containing an oxygen atom means that the number of atomic groups containing an oxygen atom contained in the polymer per 1 × 10 6 carbon atoms constituting the polymer main chain. , Means less than 500 pieces. The number of atomic groups containing oxygen atoms is preferably 100 or less, more preferably less than 50. The lower limit of the number of atomic groups containing oxygen atoms is usually zero.
 Fポリマー(2)は、ポリマー鎖の末端基として酸素原子を含む原子団を生じない、重合開始剤や連鎖移動剤等を使用して製造してもよく、酸素原子を含む原子団を有するFポリマーをフッ素化処理して製造してもよい。フッ素化処理の方法としては、フッ素ガスを使用する方法(特開2019-194314号公報等を参照)が挙げられる。 The F polymer (2) may be produced by using a polymerization initiator, a chain transfer agent, or the like that does not generate an atomic group containing an oxygen atom as a terminal group of the polymer chain, and has an atomic group containing an oxygen atom. The polymer may be fluorinated to produce it. Examples of the fluorination treatment method include a method using fluorine gas (see JP-A-2019-194314, etc.).
 本発明における本パウダーは、Fポリマーを含有するパウダーであり、本パウダー中のFポリマーの量は、80質量%以上であるのが好ましく、100質量%であるのがより好ましい。
 本パウダーのD50は、20μm以下であるのが好ましく、8μm以下であるのがより好ましい。本パウダーのD50は、0.1μm以上が好ましく、0.3μm以上がより好ましい。また、本パウダーのD90は、50μm以下であるのがより好ましい。本パウダーのD50およびD90が、かかる範囲にあれば、その表面積が大きくなり、本パウダーの分散性が一層改良されやすい。
The present powder in the present invention is a powder containing an F polymer, and the amount of the F polymer in the present powder is preferably 80% by mass or more, more preferably 100% by mass.
The D50 of this powder is preferably 20 μm or less, more preferably 8 μm or less. The D50 of this powder is preferably 0.1 μm or more, more preferably 0.3 μm or more. Further, the D90 of this powder is more preferably 50 μm or less. When D50 and D90 of the present powder are within such a range, the surface area thereof becomes large, and the dispersibility of the present powder is likely to be further improved.
 本パウダーは、Fポリマーと異なる他の樹脂または無機物を含有してもよい。
 他の樹脂の具体例としては、芳香族ポリマーが挙げられる。芳香族ポリマーは、芳香族ポリイミド、芳香族ポリアミドイミド、芳香族マレイミド、スチレンエラストマーのような芳香族エラストマー、芳香族ポリアミック酸が挙げられる。
 無機物の具体例としては、シリカが挙げられる。
 他の樹脂または無機物を含む本パウダーは、Fポリマーをコアとし、他の樹脂または無機物をシェルに有するコアシェル構造を有するのが好ましい。かかる本パウダーは、例えば、Fポリマーのパウダーと、他の樹脂または無機物のパウダーとを合着(衝突、凝集等)させて得られる。
The powder may contain other resins or inorganic substances different from the F polymer.
Specific examples of other resins include aromatic polymers. Examples of the aromatic polymer include aromatic polyimides, aromatic polyamideimides, aromatic maleimides, aromatic elastomers such as styrene elastomers, and aromatic polyamic acids.
Specific examples of inorganic substances include silica.
This powder containing another resin or an inorganic substance preferably has a core-shell structure having an F polymer as a core and another resin or an inorganic substance as a shell. The present powder is obtained, for example, by coalescing (colliding, agglutinating, etc.) an F polymer powder with another resin or inorganic powder.
 本発明における他の材料は、無機フィラーのみであってもよく、本異なる樹脂のみであってもよく、無機フィラーおよび本異なる樹脂の両方でもよい。
 無機フィラーの好適な態様は、後述する本法(1)において、本異なる樹脂の好適な態様は、後述する本法(2)において、詳述する。
The other material in the present invention may be only the inorganic filler, only the different resins, or both the inorganic filler and the different resins.
A preferred embodiment of the inorganic filler will be described in detail in the present method (1) described later, and a preferred embodiment of the different resin will be described in detail in the present method (2) described later.
 本発明における液状化合物1は、本パウダーおよび他の材料を溶解、分散、またはゲル化する機能を有する液体であり、本パウダーおよび他の材料と液状化合物との組成物とした時、通常、組成物は液状組成物であり、具体的には、スラリー状またはゲル状の組成物である。
 本発明において、混練に用いる液状化合物1と、分散液を得るために本混練物と混合する液状化合物2とは、同一であってもよく、異なっていてもよい。両者は、同一であるのが好ましい。
The liquid compound 1 in the present invention is a liquid having a function of dissolving, dispersing, or gelling the present powder and other materials, and when the present powder and other materials are used as a composition of the liquid compound, it is usually composed. The substance is a liquid composition, specifically, a slurry-like or gel-like composition.
In the present invention, the liquid compound 1 used for kneading and the liquid compound 2 to be mixed with the kneaded product in order to obtain a dispersion liquid may be the same or different. Both are preferably the same.
 液状化合物1および2は、1種類を単独で用いてもよく、2種以上を併用してもよい。液状化合物1および2は、成形物の成分分布の均一性の低下や空隙の抑制の観点から、脱気されているのが好ましい。
 液状化合物1および2は、低粘性液体または高粘性液体であるのが好ましい。
As the liquid compounds 1 and 2, one type may be used alone, or two or more types may be used in combination. The liquid compounds 1 and 2 are preferably degassed from the viewpoint of reducing the uniformity of the component distribution of the molded product and suppressing voids.
The liquid compounds 1 and 2 are preferably low-viscosity liquids or high-viscosity liquids.
 低粘性液体は、25℃における粘度が0mPa・s超10mPa・s以下の液状化合物であり、Fポリマーおよび本異なる樹脂と反応しない液状化合物であるのが好ましい。
 低粘性液体の沸点は、75℃以上が好ましく、100℃以上がより好ましい。低粘性液体の沸点は、300℃以下が好ましく、250℃以下がより好ましい。
 低粘性液体は、水であってもよく、非水系分散媒であってもよい。非水系分散媒としては、アミド、ケトンまたはエステルが好ましい。
The low-viscosity liquid is a liquid compound having a viscosity at 25 ° C. of more than 0 mPa · s and 10 mPa · s or less, and is preferably a liquid compound that does not react with the F polymer and the different resins.
The boiling point of the low-viscosity liquid is preferably 75 ° C. or higher, more preferably 100 ° C. or higher. The boiling point of the low-viscosity liquid is preferably 300 ° C. or lower, more preferably 250 ° C. or lower.
The low-viscosity liquid may be water or a non-aqueous dispersion medium. As the non-aqueous dispersion medium, amides, ketones or esters are preferable.
 ケトンとしては、アセトン、メチルエチルケトン、メチルイソプロピルケトン、メチルイソブチルケトン、メチルn-ペンチルケトン、メチルイソペンチルケトン、2-へプタノン、シクロペンタノン、シクロヘキサノン、シクロヘプタノンが挙げられる。
 エステルとしては、酢酸メチル、酢酸エチル、酢酸ブチル、乳酸メチル、乳酸エチル、ピルビン酸メチル、ピルビン酸エチル、メトキシプロピオン酸メチル、エトキシプロピオン酸エチル、3-エトキシプロピオン酸エチル、γ-ブチロラクトン、γ-バレロラクトンが挙げられる。
Examples of the ketone include acetone, methyl ethyl ketone, methyl isopropyl ketone, methyl isobutyl ketone, methyl n-pentyl ketone, methyl isopentyl ketone, 2-heptanone, cyclopentanone, cyclohexanone, and cycloheptanone.
Esters include methyl acetate, ethyl acetate, butyl acetate, methyl lactate, ethyl lactate, methyl pyruvate, ethyl pyruvate, methyl methoxypropionate, ethyl ethoxypropionate, ethyl 3-ethoxypropionate, γ-butyrolactone, γ- Valerolactone can be mentioned.
 アミドとしては、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルプロパンアミド、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、N,N-ジエチルホルムアミド、ヘキサメチルホスホリックトリアミド、1,3-ジメチル-2-イミダゾリジノン等が挙げられる。
 低粘性液体の好適な具体例としては、水、N-メチル-2-ピロリドン、γ-ブチロラクトン、シクロヘキサノンまたはシクロペンタノンが挙げられる。
As amides, N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethylpropanamide, 3-methoxy-N, N-dimethylpropanamide, 3-butoxy- Examples thereof include N, N-dimethylpropanamide, N, N-diethylformamide, hexamethylphosphoric triamide, 1,3-dimethyl-2-imidazolidinone and the like.
Suitable specific examples of low-viscosity liquids include water, N-methyl-2-pyrrolidone, γ-butyrolactone, cyclohexanone or cyclopentanone.
 高粘性液体は、25℃における粘度が10mPa・s超の液状化合物であり、Fポリマーおよび本異なる樹脂と反応しない液状化合物であるのが好ましい。
 高粘性液体の粘度は、200mPa・s以下であるのが好ましい。高粘性液体の沸点は、100℃以上が好ましい。高粘性液体の沸点は、350℃以下が好ましく、300℃以下がより好ましい。
 高粘性液体は、グリコール、グリコールエーテルまたはグリコールアセテートが好ましく、グリコールモノアルキルエーテル、グリコールモノアリールエーテル、グリコールモノアルキルエーテルアセテートまたはグリコールモノアリールエーテルアセテートがより好ましく、グリコールモノアルキルエーテルがさらに好ましい。
The highly viscous liquid is a liquid compound having a viscosity of more than 10 mPa · s at 25 ° C., and is preferably a liquid compound that does not react with the F polymer and the different resins.
The viscosity of the highly viscous liquid is preferably 200 mPa · s or less. The boiling point of the highly viscous liquid is preferably 100 ° C. or higher. The boiling point of the highly viscous liquid is preferably 350 ° C. or lower, more preferably 300 ° C. or lower.
The highly viscous liquid is preferably glycol, glycol ether or glycol acetate, more preferably glycol monoalkyl ether, glycol monoaryl ether, glycol monoalkyl ether acetate or glycol monoaryl ether acetate, and even more preferably glycol monoalkyl ether.
 高粘性液体の具体例としては、エチレングリコールモノ-2-エチルヘキシルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジプロピレングリコールモノブチルエーテル、トリエチレングリコールモノメチルエーテル、トリプロピレングリコールモノブチルエーテル、プロピレングリコールモノフェニルエーテル、ジエチレングリコールモノエチルエーテルアセテートまたはジエチレングリコールモノブチルエーテルアセテートが挙げられる。 Specific examples of the highly viscous liquid include ethylene glycol mono-2-ethylhexyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, dipropylene glycol monobutyl ether, triethylene glycol monomethyl ether, tripropylene glycol monobutyl ether, and propylene. Glycol monophenyl ether, diethylene glycol monoethyl ether acetate or diethylene glycol monobutyl ether acetate can be mentioned.
 本発明においては、本パウダー、他の材料および液状化合物1を混練して本混練物が得られる。
 混練に際しては、本パウダー、他の材料および液状化合物1の合計質量が実質的に変化しない様に混練するのが好ましく、閉鎖系で混練するのが好ましい。すなわち、混練中に液状化合物1が蒸発しない様に混練するのが好ましい。その結果、各成分が均一に混練され、高度に脱泡された本混練物が得られる。
 混練に際しては、撹拌槽と、一軸あるいは多軸の撹拌羽根を備えた混練機を使用するのが好ましい。撹拌羽根の数は、高い混練作用を得るためには、2つ以上が好ましい。混練の方法は、バッチ式および連続式のいずれでもよい。
In the present invention, the present powder, other materials and the liquid compound 1 are kneaded to obtain the present kneaded product.
In kneading, it is preferable to knead the powder, other materials, and the liquid compound 1 so that the total mass does not substantially change, and it is preferable to knead in a closed system. That is, it is preferable to knead the liquid compound 1 so that it does not evaporate during kneading. As a result, each component is uniformly kneaded to obtain a highly defoamed main kneaded product.
For kneading, it is preferable to use a kneader equipped with a stirring tank and uniaxial or multiaxial stirring blades. The number of stirring blades is preferably two or more in order to obtain a high kneading action. The kneading method may be either a batch method or a continuous method.
 バッチ式混練に用いられる混練機は、ヘンシェルミキサー、加圧ニーダー、バンバリーミキサーまたはプラネタリーミキサーが好ましく、プラネタリーミキサーがより好ましい。プラネタリーミキサーは、互いに自転と公転を行う2軸の撹拌羽根を有し、撹拌槽中の混練物を撹拌、混練する構造を有している。そのため、撹拌槽中に撹拌羽根の到達しないデッドスペースが少なく、羽根の負荷を軽減して、高度な混練が可能となる。すなわち、Fポリマーの凝集を抑制しつつ、液状化合物でFパウダーを濡らしながら、Fパウダーと他の材料を高度に相互作用させながら混合できる。また、混練終了後、得られた本混練物にそのまま分散媒を添加して、そのまま本分散液を製造できる。
 つまり、本法における混練は、互いに自転と公転を行う2軸の撹拌羽根を有する撹拌槽中にて撹拌して行うのが好ましい。
The kneader used for batch kneading is preferably a Henschel mixer, a pressurized kneader, a Banbury mixer or a planetary mixer, and more preferably a planetary mixer. The planetary mixer has a biaxial stirring blade that rotates and revolves with each other, and has a structure for stirring and kneading the kneaded material in the stirring tank. Therefore, there is little dead space in the stirring tank that the stirring blades do not reach, the load on the blades is reduced, and advanced kneading becomes possible. That is, the F powder and other materials can be mixed while suppressing the aggregation of the F polymer and wetting the F powder with the liquid compound while highly interacting with each other. Further, after the kneading is completed, the dispersion medium can be added to the obtained kneaded product as it is, and the dispersion liquid can be produced as it is.
That is, the kneading in this method is preferably performed by stirring in a stirring tank having a biaxial stirring blade that rotates and revolves with each other.
 また、所定の温度に加温し、本パウダー、他の材料および液状化合物1を混練すると、Fポリマーが粘ちょうとなるので、混練機の撹拌羽根に負荷がかかり、その結果、Fポリマーへの剪断力が大きくなりやすい。特に、複数の撹拌羽根を用いた場合、撹拌羽根同士、または撹拌羽根と撹拌槽との間で、Fポリマーに剪断力が付与されやすくなる。その結果、他の材料が無機フィラーである場合には、本パウダーと無機フィラーとが充分に混合されるだけでなく、本パウダーまたは無機フィラーの微粉砕化が進行し、緻密な本混合物が形成されやすい。また、他の材料が本異なる樹脂である場合には、本パウダーと本異なる樹脂が高度に相互作用したコンポジットともみなせる混練物が形成し、緻密な本混練物が形成されやすい。 Further, when the powder, the other material, and the liquid compound 1 are kneaded by heating to a predetermined temperature, the F polymer becomes sticky, so that a load is applied to the stirring blade of the kneader, and as a result, the F polymer is subjected to. Shear force tends to increase. In particular, when a plurality of stirring blades are used, a shearing force is likely to be applied to the F polymer between the stirring blades or between the stirring blades and the stirring tank. As a result, when the other material is an inorganic filler, not only the present powder and the inorganic filler are sufficiently mixed, but also the present powder or the inorganic filler is finely pulverized to form a dense present mixture. Easy to be done. Further, when the other material is a different resin, a kneaded product which can be regarded as a composite in which the powder and the different resin are highly interacted is formed, and a dense main kneaded product is likely to be formed.
 混練の終点は、混練の進行にともない、撹拌羽根にかかる負荷が小さくなり、混練機の消費電流が減少するため、消費電流のモニターでの変化により判断できる。
 また、混練機の負荷電流を混練機の剪断速度で除した値を混練物や組成物に与える力およびエネルギーとして、混練を制御してもよい。具体的には、混練開始から負荷電流を増大させて、徐々に減少させるのが好ましい。
The end point of kneading can be determined by the change in the monitor of the current consumption because the load applied to the stirring blade becomes smaller and the current consumption of the kneader decreases as the kneading progresses.
Further, the kneading may be controlled by using the value obtained by dividing the load current of the kneader by the shear rate of the kneader as the force and energy given to the kneaded product or the composition. Specifically, it is preferable to increase the load current from the start of kneading and gradually decrease it.
 連続式混練機としては、二軸型押出混練機や石臼型混練機が挙げられる。
 二軸型押出混練機とは、例えば、混練物や組成物を平行に近接配置された二本のスクリュ間の剪断力によって混練する二軸スクリュ式の連続混練装置である。
 石臼型混練機とは、例えば、混練物や組成物が通過可能な内部空間を備える筒状の固定部と、固定部の内部空間に配置され、回転することで内部空間を通過する混練物を連続的に混練しながら、回転軸方向に搬送する回転部とを有する混練機である。
Examples of the continuous kneader include a twin-screw extrusion kneader and a millstone kneader.
The twin-screw extrusion kneader is, for example, a twin-screw continuous kneading device that kneads a kneaded product or composition by a shearing force between two screws arranged in parallel in close proximity to each other.
The stone mill type kneader is, for example, a tubular fixed portion having an internal space through which the kneaded material or the composition can pass, and a kneaded product which is arranged in the internal space of the fixed portion and passes through the internal space by rotating. It is a kneading machine having a rotating portion that conveys in the direction of the rotation axis while continuously kneading.
 混練の方法は、例えば、本パウダー、他の材料および液状化合物1を一括で混練する方法、これらを混合して一旦、組成物とし、得られた組成物を混練する方法、液状化合物1に順次、本パウダー、他の材料を添加しながら混練する方法、液状化合物1に順次、本パウダー、他の材料を添加し、最後に混練する方法が挙げられる。また、予め、本パウダーと他の材料との混合物を作成し、それと液状化合物1とを混練する方法、本パウダーと液状化合物1との組成物、および他の材料と液状化合物1との組成物をそれぞれ作成し、両組成物を混合し、混練する方法等が挙げられる。
 これら方法の中でも、本パウダー、他の材料および液状化合物1を混合して一旦、組成物とし、得られた組成物を混練する方法が好ましく、前記組成物は液状組成物であるのがより好ましい。
The kneading method includes, for example, a method of collectively kneading the present powder, other materials and the liquid compound 1, a method of mixing these to form a composition once, and a method of kneading the obtained composition, and then sequentially to the liquid compound 1. , The method of kneading while adding the present powder and other materials, and the method of sequentially adding the present powder and other materials to the liquid compound 1 and finally kneading. Further, a method of preparing a mixture of the present powder and another material in advance and kneading the mixture with the liquid compound 1, a composition of the present powder and the liquid compound 1, and a composition of the other material and the liquid compound 1. Each of these is prepared, and both compositions are mixed and kneaded.
Among these methods, a method in which the present powder, another material and the liquid compound 1 are mixed to form a composition once, and the obtained composition is kneaded is preferable, and the composition is more preferably a liquid composition. ..
 上記のようにして得られた本混練物は、粘性が高く、通常、半固体状あるいは固体状の固練品であり、ペーストまたは練粉であるのが好ましい。なお、本明細書においては、ペーストは流動性と粘性を有する固練品を、練粉は塊状か粘土状の固練品を意味する。 The present kneaded product obtained as described above has a high viscosity and is usually a semi-solid or solid solidified product, preferably a paste or a kneaded powder. In the present specification, the paste means a solidified product having fluidity and viscosity, and the kneaded powder means a lumpy or clay-like solidified product.
 ペーストである本混練物(以下、本ペーストとも記す)の粘度は、800mPa・s以上が好ましく、1000mPa・s以上がより好ましく、10000mPa・s以上がさらに好ましい。本ペーストの粘度は、100000mPa・s以下が好ましく、80000mPa・s以下がより好ましい。本ペーストの粘度は、800から100000mPa・sが好ましく、1000から100000mPa・sがより好ましい。 The viscosity of the present kneaded product (hereinafter, also referred to as the present paste), which is a paste, is preferably 800 mPa · s or more, more preferably 1000 mPa · s or more, and further preferably 10,000 mPa · s or more. The viscosity of this paste is preferably 100,000 mPa · s or less, more preferably 80,000 mPa · s or less. The viscosity of this paste is preferably 800 to 100,000 mPa · s, more preferably 1000 to 100,000 mPa · s.
 本ペーストの好適な態様としては、本パウダーと、他の材料と、液状化合物とを含有する、固形分量が40質量%以上であり、粘度が800から100000mPa・sであるペーストが挙げられる。 A preferred embodiment of the paste is a paste containing the powder, other materials, and a liquid compound, having a solid content of 40% by mass or more and a viscosity of 800 to 100,000 mPa · s.
 無機フィラーを含む本ペーストは、本パウダーと無機フィラーとの比が、本パウダーの質量を1として、0.5から2が好ましく、0.6から1.5がより好ましく、0.7から1がさらに好ましい。かかる場合、本ペーストが分散安定性に優れやすい。 In this paste containing an inorganic filler, the ratio of the powder to the inorganic filler is preferably 0.5 to 2, more preferably 0.6 to 1.5, and 0.7 to 1 with the mass of the powder being 1. Is even more preferable. In such a case, the present paste tends to have excellent dispersion stability.
 本異なる樹脂を含む本ペーストは、本パウダーと本異なる樹脂との質量比が、本パウダーの質量を1として、0.01から0.5であるか、2から1000であるのが好ましい。この場合、本ペーストが分散性に優れやすく、得られる本分散液が分散安定性に優れやすい。すなわち、上記比が前者の範囲にあれば、本パウダーが本異なる樹脂で被覆されたコンポジットともみなせる成分が形成され、本ペーストの分散性が向上しやすい。また、上記比が後者の範囲にあれば、本異なる樹脂中に本パウダーが高度に分散し、本ペーストの分散性が向上しやすい。
 前者の範囲にある上記比は、0.05から0.2がより好ましく、0.08から0.1がさらに好ましい。後者の範囲にある上記比は、3から500がより好ましく、5から100がさらに好ましい。この場合、本ペーストと得られる本分散液が、界面活性剤を含まない場合にも分散安定性に優れやすい。
In the paste containing the different resins, the mass ratio of the powder to the different resins is preferably 0.01 to 0.5 or 2 to 1000, where 1 is the mass of the powder. In this case, the present paste tends to have excellent dispersibility, and the obtained dispersion liquid tends to have excellent dispersion stability. That is, when the above ratio is within the former range, a component that can be regarded as a composite in which the powder is coated with different resins is formed, and the dispersibility of the paste is likely to be improved. Further, when the above ratio is in the latter range, the powder is highly dispersed in the different resins, and the dispersibility of the paste is likely to be improved.
The ratio in the former range is more preferably 0.05 to 0.2, still more preferably 0.08 to 0.1. The ratio in the latter range is more preferably 3 to 500 and even more preferably 5 to 100. In this case, the present paste and the obtained dispersion liquid tend to have excellent dispersion stability even when the present dispersion does not contain a surfactant.
 本ペーストにおける固形分量とは、本ペーストまたは本分散液から形成される成形物において固形分を形成する物質の総量を意味する。例えば、本ペーストが、Fポリマーと、後述する無機フィラーおよび/または本異なる樹脂とを含む場合には、これらの成分の総含有量が本ペーストにおける固形分量となる。
 本ペーストにおける固形分量は、40質量%以上が好ましく、50質量%以上がより好ましく、60質量%以上がさらに好ましい。固形分量は、90質量%以下が好ましく、80質量%以下がより好ましい。この場合、本ペーストから分散安定性に優れた本分散液を得やすい。
The solid content in the present paste means the total amount of substances forming the solid content in the molded product formed from the present paste or the present dispersion. For example, when the present paste contains an F polymer and an inorganic filler and / or a different resin described later, the total content of these components is the solid content in the present paste.
The solid content in this paste is preferably 40% by mass or more, more preferably 50% by mass or more, and even more preferably 60% by mass or more. The solid content is preferably 90% by mass or less, more preferably 80% by mass or less. In this case, it is easy to obtain the present dispersion liquid having excellent dispersion stability from the present paste.
 本ペーストにおいて、固形分に占める本パウダーの含有量は、25質量%以上が好ましく、30質量%以上がより好ましい。また、本パウダーの含有量は、60質量%以下が好ましく、50質量%以下がより好ましい。
 無機フィラーを含む本ペーストにおいて、固形分に占める無機フィラーの含有量は、10質量%以上が好ましく、25質量%以上がより好ましい。無機フィラーの含有量は、75質量%以下が好ましく、60質量%以下がより好ましい。
 本異なる樹脂を含む本ペーストにおいて、固形分に占める本異なる樹脂の含有量は、1質量%以上が好ましく、5質量%以上がより好ましい。本異なる樹脂の含有量は、20質量%以下が好ましく、10質量%以下がより好ましい。
 無機フィラーおよび本異なる樹脂の両方を含む本ペーストにおいて、無機フィラーまたは本異なる樹脂の少なくともいずれかが前記範囲内であるのが好ましく、両方が前記範囲内であるのがより好ましい。
 例えば、固形分に占める本パウダー、無機フィラーおよび本異なる樹脂の合計量は、固形分量を100質量%として、本パウダーは25質量%以上であり、無機フィラーは25質量%以上または本異なる樹脂の含有量は1質量%以上のいずれかが好ましく、固形分量を100質量%として、本パウダーは25質量%以上、無機フィラーは25質量%以上、かつ本異なる樹脂の含有量は1質量%以上がより好ましい。
 また例えば、本パウダーと無機フィラーおよび本異なる樹脂との割合は、本パウダーの質量を1として、無機フィラーの質量が0.5から2、または本異なる樹脂の質量が0.01から0.5のいずれかが好ましく、本パウダーの質量を1として、無機フィラーの質量が0.5から2、かつ本異なる樹脂の質量が0.01から0.5がより好ましい。
In the present paste, the content of the present powder in the solid content is preferably 25% by mass or more, more preferably 30% by mass or more. The content of this powder is preferably 60% by mass or less, more preferably 50% by mass or less.
In the present paste containing the inorganic filler, the content of the inorganic filler in the solid content is preferably 10% by mass or more, more preferably 25% by mass or more. The content of the inorganic filler is preferably 75% by mass or less, more preferably 60% by mass or less.
In the present paste containing the different resins, the content of the different resins in the solid content is preferably 1% by mass or more, more preferably 5% by mass or more. The content of the different resins is preferably 20% by mass or less, more preferably 10% by mass or less.
In the paste containing both the inorganic filler and the different resins, it is preferable that at least one of the inorganic filler or the different resins is within the above range, and more preferably both are within the above range.
For example, the total amount of the powder, the inorganic filler, and the different resins in the solid content is 25% by mass or more, the inorganic filler is 25% by mass or more, or the different resins, assuming that the solid content is 100% by mass. The content is preferably 1% by mass or more, and the solid content is 100% by mass, the powder is 25% by mass or more, the inorganic filler is 25% by mass or more, and the content of the different resins is 1% by mass or more. More preferred.
Further, for example, the ratio of the present powder to the inorganic filler and the present different resin is such that the mass of the present powder is 1, the mass of the inorganic filler is 0.5 to 2, or the mass of the different resin is 0.01 to 0.5. Is preferable, the mass of the present powder is 1, the mass of the inorganic filler is 0.5 to 2, and the mass of the different resins is more preferably 0.01 to 0.5.
 なお本ペーストにおける固形分量とは、本ペーストまたは本分散液から形成される成形物において固形分を形成する物質の総量を意味する。例えば、本ペーストが、Fポリマーと、後述する無機フィラーおよび/または本異なる樹脂とを含む場合には、これらの成分の総含有量が本ペーストにおける固形分量となる。
 本ペーストに占める液状化合物1の含有量は、50質量%以下であるのが好ましく、40質量%以下であるのがより好ましい。本練粉に占める液状化合物1の含有量は、20質量%以上であるのが好ましく、25質量%以上であるのがより好ましい。
The solid content in the present paste means the total amount of substances forming the solid content in the molded product formed from the present paste or the present dispersion. For example, when the present paste contains an F polymer and an inorganic filler and / or a different resin described later, the total content of these components is the solid content in the present paste.
The content of the liquid compound 1 in the paste is preferably 50% by mass or less, and more preferably 40% by mass or less. The content of the liquid compound 1 in the main dough is preferably 20% by mass or more, and more preferably 25% by mass or more.
 練粉である本混練物(以下、本練粉とも記す)の固形分量は、50質量%超が好ましく、60質量%以上がより好ましい。固形分量は、99質量%以下が好ましく、95質量%以下がより好ましい。この場合、本練粉が分散性に優れやすく、得られる本分散液が分散安定性に優れやすい。
 なお、本練粉における固形分量とは、本練粉または本分散液から形成される成形物において固形分を形成する物質の総量を意味する。例えば、本練粉が、Fポリマーと、後述する無機フィラーおよび/または本異なる樹脂を含む場合には、これらの成分の総含有量が本練粉における固形分量となる。
 本練粉が無機フィラーを含む場合、本パウダーと無機フィラーとの比は、本パウダーの質量を1として、0.5から2が好ましく、0.6から1.5がより好ましく、0.7から1がさらに好ましい。
The solid content of the main kneaded product (hereinafter, also referred to as the main kneaded powder) which is the kneaded powder is preferably more than 50% by mass, more preferably 60% by mass or more. The solid content is preferably 99% by mass or less, more preferably 95% by mass or less. In this case, the main dough tends to have excellent dispersibility, and the obtained main dispersion tends to have excellent dispersion stability.
The solid content in the main kneading powder means the total amount of substances forming the solid content in the molded product formed from the main kneading powder or the main dispersion liquid. For example, when the main dough contains an F polymer and an inorganic filler and / or a different resin described later, the total content of these components is the solid content in the main dough.
When the dough contains an inorganic filler, the ratio of the powder to the inorganic filler is preferably 0.5 to 2, more preferably 0.6 to 1.5, and 0.7, with the mass of the powder as 1. To 1 is more preferable.
 本練粉が本異なる樹脂を含む場合、本パウダーと本異なる樹脂との比は、本パウダーの質量を1として、0.01から0.5であるか、2から1000であるのが好ましい。この場合、本練粉が分散性に優れやすく、得られる本分散液が分散安定性に優れやすい。すなわち、上記比が前者の範囲にあれば、本パウダーが本異なる樹脂で被覆されたコンポジットともみなせる成分が形成され練粉の分散性が向上しやすい。また、上記比が後者の範囲にあれば、本異なる樹脂中に本パウダーが高度に分散し、本練粉の分散性が向上しやすい。
 前者の範囲にある上記比は、0.05から0.2がより好ましく、0.08から0.1がさらに好ましい。後者の範囲にある上記比は、3から500がより好ましく、5から100がさらに好ましい。この場合、本練粉と得られる本分散液が、界面活性剤を含まない場合にも分散安定性に優れやすい。
 本練粉が無機フィラーおよび本異なる樹脂の両方を含む場合、無機フィラーまたは本異なる樹脂の少なくともいずれかが前記範囲内であるのが好ましく、両方が前記範囲内であるのがより好ましい。
 例えば、本パウダーと無機フィラーおよび本異なる樹脂との割合は、本パウダーの質量を1として、無機フィラーの質量が0.5から2、または本異なる樹脂の質量が0.001から0.5であるか2から1000のいずれか、が好ましく、本パウダーの質量を1として、無機フィラーの質量が0.5から2、かつ本異なる樹脂の質量が0.001から0.5であるか2から1000、であるのがより好ましい。
When the present kneaded powder contains the present different resins, the ratio of the present powder to the present different resins is preferably 0.01 to 0.5 or 2 to 1000, where the mass of the present powder is 1. In this case, the main dough tends to have excellent dispersibility, and the obtained main dispersion tends to have excellent dispersion stability. That is, when the above ratio is within the former range, a component that can be regarded as a composite in which the powder is coated with the different resins is formed, and the dispersibility of the kneaded powder is likely to be improved. Further, when the above ratio is in the latter range, the powder is highly dispersed in the different resins, and the dispersibility of the kneaded powder is likely to be improved.
The ratio in the former range is more preferably 0.05 to 0.2, still more preferably 0.08 to 0.1. The ratio in the latter range is more preferably 3 to 500 and even more preferably 5 to 100. In this case, the powder and the obtained dispersion are likely to have excellent dispersion stability even when they do not contain a surfactant.
When the dough contains both the inorganic filler and the different resins, it is preferable that at least one of the inorganic filler or the different resins is within the above range, and more preferably both are within the above range.
For example, the ratio of the powder to the inorganic filler and the different resins is such that the mass of the powder is 1 and the mass of the inorganic filler is 0.5 to 2, or the mass of the different resins is 0.001 to 0.5. It is preferably from 2 to 1000, and the mass of the present powder is 1, the mass of the inorganic filler is 0.5 to 2, and the mass of the different resins is 0.001 to 0.5. More preferably, it is 1000.
 無機フィラーおよび/または本異なる樹脂を含む本練粉において、固形分に占める本パウダーの含有量は、25質量%以上が好ましく、30質量%以上がより好ましい。また、本パウダーの含有量は、60質量%以下が好ましく、50質量%以下がより好ましい。
 本練粉において、固形分に占める無機フィラーの含有量は、10質量%以上が好ましく、25質量%以上がより好ましい。無機フィラーの含有量は、75質量%以下が好ましく、60質量%以下がより好ましい。
 本練粉において、固形分に占める本異なる樹脂の含有量は、1質量%以上が好ましく、5質量%以上がより好ましい。本異なる樹脂の含有量は、50質量%以下が好ましく、20質量%以下がより好ましい。
 本練粉が無機フィラーおよび本異なる樹脂の両方を含む場合、無機フィラーまたは本異なる樹脂の少なくともいずれかが前記範囲内であるのが好ましく、両方が前記範囲内であるのがより好ましい。
 本練粉が無機フィラーおよび本異なる樹脂の両方を含む場合、固形分に占める本パウダー、無機フィラーおよび本異なる樹脂の合計量は、固形分量を100質量%として、本パウダーは25質量%以上であり、無機フィラーは10質量%以上または本異なる樹脂の含有量は1質量%以上のいずれかが好ましく、固形分量を100質量%として、本パウダーは25質量%以上、無機フィラーは10質量%以上、かつ本異なる樹脂の含有量は1質量%以上がより好ましい。
In the dough containing the inorganic filler and / or the different resins, the content of the powder in the solid content is preferably 25% by mass or more, more preferably 30% by mass or more. The content of this powder is preferably 60% by mass or less, more preferably 50% by mass or less.
In this kneaded powder, the content of the inorganic filler in the solid content is preferably 10% by mass or more, more preferably 25% by mass or more. The content of the inorganic filler is preferably 75% by mass or less, more preferably 60% by mass or less.
In the present dough, the content of the different resins in the solid content is preferably 1% by mass or more, more preferably 5% by mass or more. The content of the different resins is preferably 50% by mass or less, more preferably 20% by mass or less.
When the dough contains both the inorganic filler and the different resins, it is preferable that at least one of the inorganic filler or the different resins is within the above range, and more preferably both are within the above range.
When the main powder contains both the inorganic filler and the different resins, the total amount of the powder, the inorganic filler and the different resins in the solid content is 25% by mass or more, assuming that the solid content is 100% by mass. The inorganic filler is preferably 10% by mass or more, or the content of the different resins is preferably 1% by mass or more, and the solid content is 100% by mass, the powder is 25% by mass or more, and the inorganic filler is 10% by mass or more. Moreover, the content of the different resins is more preferably 1% by mass or more.
 本練粉に占める液状化合物1の含有量は、50質量%以下であるのが好ましく、40質量%以下であるのがより好ましい。本練粉に占める液状化合物1の含有量は、20質量%以上であるのが好ましく、25質量%以上であるのがより好ましい。
 本練粉は、キャピログラフによる粘度測定(温度:25℃、剪断速度:1/秒、キャピラリー長:10mm、キャピラリー半径:1mm、炉体径:9.55mm、ロードセル容量:2t)において粘度が10000から100000Pa・sであるのが好ましい。特に、固形分量が60から70質量%である本練粉の粘度が、かかる範囲にある場合、それを液状化合物2と混合する際の分散性、得られる本分散液の分散安定性が特に向上しやすい。かかる粘度の本練粉は、混練時間と混練における剪断力とを制御して製造することができ、具体的には、混練時間を長くし、剪断力を高めることにより製造できる。
The content of the liquid compound 1 in the main dough is preferably 50% by mass or less, and more preferably 40% by mass or less. The content of the liquid compound 1 in the main dough is preferably 20% by mass or more, and more preferably 25% by mass or more.
The viscosity of this kneaded powder is from 10000 when the viscosity is measured by a capillograph (temperature: 25 ° C., shear rate: 1 / sec, capillary length: 10 mm, capillary radius: 1 mm, furnace body diameter: 9.55 mm, load cell capacity: 2 t). It is preferably 100,000 Pa · s. In particular, when the viscosity of the main dough having a solid content of 60 to 70% by mass is in such a range, the dispersibility when mixing it with the liquid compound 2 and the dispersion stability of the obtained main dispersion are particularly improved. It's easy to do. The main kneading powder having such a viscosity can be produced by controlling the kneading time and the shearing force in kneading. Specifically, it can be produced by lengthening the kneading time and increasing the shearing force.
 本混練物を液状化合物2と混合すれば、本分散液が得られ、本混練物として本ペーストまたは本練粉と液状化合物2とを混合すれば、より効率的に本分散液が得られる。
 本発明における本混練物と液状化合物2との混合は、得られる本分散液の分散性および分散安定性の観点から、超音波ホモジナイザードベイントシェーカー、ボールミル、アトライター、バスケットミル、サンドミル、サンドグラインダー、ダイノーミル、ディスパーマット、SCミル、スパイク・ミル、アジテーターミル等のメディアを使用する分散機、超音波ホモジナイザー、ナノマイザー、デゾルバー、ディスパー、高速インペラー分散機等のメディアを使用しない分散機を用いるのが好ましく、メディアを使用した分散機を用いるのがより好ましい。
When the main kneaded product is mixed with the liquid compound 2, the main dispersion liquid is obtained, and when the main paste or the main kneaded powder and the liquid compound 2 are mixed as the main kneaded product, the main dispersion liquid is obtained more efficiently.
The mixing of the kneaded product and the liquid compound 2 in the present invention is an ultrasonic homogenized baint shaker, a ball mill, an attritor, a basket mill, a sand mill, and a sand grinder from the viewpoint of the dispersibility and dispersion stability of the obtained dispersion. , Dyno Mill, Dispermat, SC Mill, Spike Mill, Agitator Mill, and other media-free dispersers, ultrasonic homogenizers, nanomizers, resolvers, dispersers, high-speed impeller dispersers, and other media-free dispersers. Preferably, it is more preferable to use a disperser using media.
 また、衝突式分散機を用いて混合すると、本分散液の分散安定性が向上するので、衝突式分散機を用いるのが好ましい。衝突式分散機とは、加圧した液状化合物2を本ペーストに衝突させ、その衝撃力等によって分散を行う分散機である。
 かかる分散機は、本ペーストおよび液状化合物2のそれぞれを加圧して衝突させる分散機、本ペーストに加圧した液状化合物2を衝突させる分散機のいずれを使用してもよい。
 前者の分散機としては、ナノマイザー、ジーナスPY、アル ティマイザー、Aqua、マイクロフルイダイザーが挙げられ、後者の分散機としては、ホモゲナイザーが挙げられる。
Further, when mixing using a collision type disperser, the dispersion stability of the present dispersion is improved, so it is preferable to use a collision type disperser. The collision type disperser is a disperser in which a pressurized liquid compound 2 is made to collide with the present paste and dispersed by the impact force or the like.
As the disperser, either a disperser that pressurizes and collides with the paste and the liquid compound 2 or a disperser that collides the liquid compound 2 with pressure on the paste may be used.
Examples of the former disperser include a nanomizer, Genus PY, an ultimateizer, Aqua, and a microfluidizer, and examples of the latter disperser include a homogenizer.
 また、本混練物と液状化合物2とを混合する方法として、本混練物を調製する際の混練に引き続き、混練に使用した撹拌槽と撹拌羽根とを有する混練機中で本混練物と液状化合物2とを混合する方法、混練に使用した混練機から上記本混練物を取り出し、別の混練機によって本混練物と液状化合物2と混合する方法等が挙げられる。混練機としては、上記と同様のバッチ式および連続式の混練機が挙げられる。 Further, as a method of mixing the main kneaded product and the liquid compound 2, following the kneading when preparing the main kneaded product, the main kneaded product and the liquid compound are mixed in a kneading machine having a stirring tank and a stirring blade used for the kneading. Examples thereof include a method of mixing with 2 and a method of taking out the main kneaded product from the kneading machine used for kneading and mixing the main kneaded product with the liquid compound 2 by another kneading machine. Examples of the kneader include batch type and continuous type kneaders similar to the above.
 本分散液の粘度は、50mPa・s以上が好ましく、75mPa・s以上がより好ましく、100mPa・s以上がさらに好ましい。本分散液の粘度は、10000mPa・s未満が好ましく、5000mPa・s以下がより好ましく、1000mPa・s以下がさらに好ましい。
 また、本分散液のチキソ比は、1から10が好ましく、1から7がより好ましい。かかるチキソ比を有する本分散液は、塗工性と均質性とに優れる。なお、チキソ比は、回転数が30rpmの条件で測定される本分散液の粘度を、回転数が60rpmの条件で測定される本分散液の粘度で除して算出される。
The viscosity of the dispersion is preferably 50 mPa · s or more, more preferably 75 mPa · s or more, and even more preferably 100 mPa · s or more. The viscosity of the dispersion is preferably less than 10,000 mPa · s, more preferably 5000 mPa · s or less, and even more preferably 1000 mPa · s or less.
The thixotropy ratio of the present dispersion is preferably 1 to 10, and more preferably 1 to 7. This dispersion having such a thixotropy ratio is excellent in coatability and homogeneity. The thixotropy is calculated by dividing the viscosity of the dispersion liquid measured under the condition of a rotation speed of 30 rpm by the viscosity of the main dispersion liquid measured under the condition of a rotation speed of 60 rpm.
 本分散液から得られる成形物の成分分布の均一性の低下や空隙の抑制の観点から、本分散液中の泡沫体積比率は、10%未満が好ましく、5%未満がより好ましい。泡沫体積比率は、0%以上が好ましい。
 なお、泡沫体積比率は、標準大気圧かつ20℃における本分散液の体積(V)と、それを0.003MPaまで減圧した際の泡を合わせた体積(V)とを測定し、以下の算出式で求められる値である。
 泡沫体積比率[%]=100×(V-V)/V
From the viewpoint of reducing the uniformity of the component distribution of the molded product obtained from the present dispersion and suppressing voids, the foam volume ratio in the present dispersion is preferably less than 10%, more preferably less than 5%. The foam volume ratio is preferably 0% or more.
Incidentally, the foam volume ratio measures the standard atmospheric pressure and 20 of the dispersion at ℃ volume (V N), it was combined foam when the pressure was reduced to 0.003MPa volume and (V V), below It is a value obtained by the calculation formula of.
Foam volume ratio [%] = 100 × (V V -V N) / V N
 本発明の好ましい第1の態様(以下、本法(1)とも記す)としては、本パウダー、無機フィラーおよび液状化合物1を混練して本混練物(以下、本混練物1とも記す。)を得て、本混練物1と液状化合物2とを混合して本分散液(以下、本分散液1とも記す。)を得る態様が挙げられる。
混練の方法は、例えば、本パウダー、無機フィラーおよび液状化合物1を一括で混練する方法、これらを混合して一旦、組成物とし、得られた組成物を混練する方法、液状化合物1に順次、本パウダーおよび無機フィラーを添加しながら混練する方法、液状化合物1に順次、本パウダーおよび無機フィラーを添加し、最後に混練する方法が挙げられる。また、予め、本パウダーと無機フィラーとの混合物を作成し、それと液状化合物1とを混練する方法、本パウダーと液状化合物1との組成物、および無機フィラーと液状化合物1との組成物をそれぞれ作成し、両組成物を混合し、混練する方法等が挙げられる。
 なお、本法(1)における前記組成物は、液状組成物であるのが好ましい。また、本法(1)における本混練物1は、ペースト(以下、本ペースト1とも記す。)であっても、練粉(以下、本練粉1とも記す。)であってもよい。
 これら方法の中でも、本パウダー、無機フィラーおよび液状化合物1を混合して一旦、組成物とし、得られた組成物を混練して本混練物1を得て、本混練物1と液状化合物2とを混合して本分散液1を得る方法が好ましい。
As a preferred first aspect of the present invention (hereinafter, also referred to as the present method (1)), the present powder, the inorganic filler and the liquid compound 1 are kneaded to form the present kneaded product (hereinafter, also referred to as the present kneaded product 1). Then, an embodiment in which the kneaded product 1 and the liquid compound 2 are mixed to obtain the present dispersion liquid (hereinafter, also referred to as the present dispersion liquid 1) can be mentioned.
The kneading method includes, for example, a method of kneading the present powder, the inorganic filler and the liquid compound 1 all at once, a method of mixing these to form a composition once, and a method of kneading the obtained composition, and then sequentially to the liquid compound 1. Examples thereof include a method of kneading while adding the present powder and the inorganic filler, and a method of sequentially adding the present powder and the inorganic filler to the liquid compound 1 and finally kneading. Further, a method of preparing a mixture of the present powder and the inorganic filler in advance and kneading the mixture with the liquid compound 1, a composition of the present powder and the liquid compound 1, and a composition of the inorganic filler and the liquid compound 1, respectively. Examples thereof include a method of preparing, mixing both compositions, and kneading.
The composition in the present method (1) is preferably a liquid composition. Further, the main kneaded product 1 in the present method (1) may be a paste (hereinafter, also referred to as the main paste 1) or a kneaded powder (hereinafter, also referred to as the main kneaded powder 1).
Among these methods, the powder, the inorganic filler and the liquid compound 1 are mixed to form a composition once, and the obtained composition is kneaded to obtain the kneaded product 1 to obtain the kneaded product 1 and the liquid compound 2. Is preferred to obtain the present dispersion 1.
 本法(1)における無機フィラーは、本分散液1を種々の成形物の形成に使用した時、得られる成形物の物性を向上させるために使用され、その種類は、成形物の目的に応じて適宜選択される。
 例えば、成形物の誘電率を向上させる目的の場合には、高誘電率の無機フィラーが用いられる。高誘電率の無機フィラーとは、25℃における誘電率が10以上、好ましくは25以上、より好ましくは50以上のフィラーを意味する。
 かかる無機フィラーは、ペロブスカイト型強誘電体フィラーまたはビスマス層状ペロブスカイト型強誘電体フィラーが好ましい。
 ペロブスカイト型強誘電体としては、チタン酸バリウム、ジルコン酸チタン酸鉛、チタン酸鉛、酸化ジルコニウム、酸化チタンが挙げられる。一方、ビスマス層状ペロブスカイト型強誘電体としては、タンタル酸ビスマスストロンチウム、ニオブ酸ビスマスストロンチウム、チタン酸ビスマスが挙げられる。
The inorganic filler in the method (1) is used to improve the physical characteristics of the obtained molded product when the dispersion liquid 1 is used for forming various molded products, and the type thereof depends on the purpose of the molded product. Is selected as appropriate.
For example, for the purpose of improving the dielectric constant of a molded product, an inorganic filler having a high dielectric constant is used. The high dielectric constant inorganic filler means a filler having a dielectric constant at 25 ° C. of 10 or more, preferably 25 or more, and more preferably 50 or more.
As such an inorganic filler, a perovskite type ferroelectric filler or a bismuth layered perovskite type ferroelectric filler is preferable.
Examples of the perovskite-type ferroelectric substance include barium titanate, lead zirconate titanate, lead titanate, zirconium oxide, and titanium oxide. On the other hand, examples of the bismuth layered perovskite type ferroelectric substance include bismuth strontium tantalate, bismuth strontium niobate, and bismuth titanate.
 例えば、成形物の誘電率および誘電正接、若しくは線膨張率を低下させる目的の場合には、低誘電率および低誘電正接、若しくは低線膨張率の無機フィラーが用いられる。
 かかる無機フィラーは、窒化ホウ素フィラー、酸化ベリリウムフィラー(べリリアフィラー)、酸化ケイ素フィラー(シリカフィラー)、ウォラストナイトフィラー、またはメタ珪酸マグネシウムフィラー(ステアタイトフィラー)が好ましい。
For example, for the purpose of reducing the dielectric constant and dielectric loss tangent of the molded product, or the coefficient of linear expansion, an inorganic filler having a low dielectric constant and low dielectric loss tangent or a low coefficient of linear expansion is used.
As such an inorganic filler, a boron nitride filler, a beryllium oxide filler (berilia filler), a silicon oxide filler (silica filler), a wollastonite filler, or a magnesium metasilicate filler (steatite filler) is preferable.
 例えば、成形物の熱伝導性または耐擦傷性を向上させる目的の場合には、金属酸化物のフィラーが用いられる。
 金属酸化物としては、酸化アルミニウム、酸化鉛、酸化鉄、酸化錫、酸化マグネシウム、酸化チタン、酸化亜鉛、五酸化アンチモン、酸化ジルコニウム、酸化ランタン、酸化ネオジウム、酸化セリウムおよび酸化ニオブからなる群より選択される少なくとも1種が好ましく、酸化アルミニウムがより好ましい。これらの金属酸化物(特に、酸化アルムニウム)は、熱伝導率およびモース硬度が高い点でも好ましい。
For example, a metal oxide filler is used for the purpose of improving the thermal conductivity or scratch resistance of the molded product.
The metal oxide is selected from the group consisting of aluminum oxide, lead oxide, iron oxide, tin oxide, magnesium oxide, titanium oxide, zinc oxide, antimony trioxide, zirconium oxide, lanthanum oxide, neodium oxide, cerium oxide and niobium oxide. At least one of the above is preferable, and aluminum oxide is more preferable. These metal oxides (particularly, alumnium oxide) are also preferable in terms of high thermal conductivity and Mohs hardness.
 また、これら以外の無機フィラーとして、ガラス繊維フィラー、カーボンフィラーを用いてもよい。
 カーボンフィラーとしては、炭素繊維(カーボンファイバー)、カーボンブラック、グラフェン、グラフェンオキシド、フラーレン、グラファイト、グラファイトオキシドからなる群から選ばれる少なくとも1種を含むガーボンフィラーが挙げられる。炭素繊維としては、ポリアクリロニトリル系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維、カーボンナノチューブ(シングルウォール、ダブルウォール、マルチウォール、カップ積層型等)が挙げられる。
Further, as the inorganic filler other than these, a glass fiber filler or a carbon filler may be used.
Examples of the carbon filler include a garbon filler containing at least one selected from the group consisting of carbon fiber (carbon fiber), carbon black, graphene, graphene oxide, fullerene, graphite, and graphite oxide. Examples of carbon fibers include polyacrylonitrile-based carbon fibers, pitch-based carbon fibers, vapor-grown carbon fibers, and carbon nanotubes (single-wall, double-wall, multi-wall, cup-laminated type, etc.).
 本分散液1の分散性の観点から、無機フィラーは、窒化ホウ素フィラー、シリカフィラーまたはメタ珪酸マグネシウムフィラーが好ましく、シリカフィラーまたは窒化ホウ素フィラーがより好ましく、シリカフィラーがさらに好ましい。これらのフィラーは、焼成されたセラミックスフィラーであってもよい。
 無機フィラーは、酸化ケイ素またはメタ珪酸マグネシウムを含むフィラーが好ましい。この無機フィラーにおける、酸化ケイ素またはメタ珪酸マグネシウムの含有量は、50質量%以上が好ましく、75質量%がより好ましい。酸化ケイ素またはメタ珪酸マグネシウムの含有量は、100質量%以下が好ましく、90質量%以下がより好ましい。
From the viewpoint of dispersibility of the dispersion liquid 1, the inorganic filler is preferably a boron nitride filler, a silica filler or a magnesium metasilicate filler, more preferably a silica filler or a boron nitride filler, and even more preferably a silica filler. These fillers may be fired ceramic fillers.
The inorganic filler is preferably a filler containing silicon oxide or magnesium metasilicate. The content of silicon oxide or magnesium metasilicate in this inorganic filler is preferably 50% by mass or more, more preferably 75% by mass. The content of silicon oxide or magnesium metasilicate is preferably 100% by mass or less, more preferably 90% by mass or less.
 上記無機フィラーの形状は、目的に応じて適宜選定され、粒子状でも繊維状でもよい。粒子状のフィラーを使用すれば、成形品の表面平坦性が向上し、その表面の摺動性が良好となり、耐擦傷性が向上しやすい。一方、繊維状の無機フィラーを使用すれば、成形物の表面にフィラー粒子の一部が露出し、例えば、製品表面の耐摩耗性と耐擦傷性とを改良しやすい。
 無機フィラーの具体的な形状としては、球状、鱗片状、層状、葉片状、杏仁状、柱状、鶏冠状、等軸状、葉状、雲母状、ブロック状、平板状、楔状、ロゼット状、網目状、角柱状が挙げられ、球状または鱗片状が好ましい。
 粒子状の無機フィラーの場合、その平均粒子径であるD50は、0.02から200μmが好ましく、0.1から20μmがより好ましく、1から10μmがさらに好ましい。また、繊維状の無機フィラーの場合、その平均繊維長は、0.05から300μmが好ましい。繊維状の無機フィラーの平均繊維径は、0.01から15μmが好ましい。
The shape of the inorganic filler is appropriately selected according to the intended purpose, and may be in the form of particles or fibers. If a particulate filler is used, the surface flatness of the molded product is improved, the slidability of the surface is improved, and the scratch resistance is likely to be improved. On the other hand, if a fibrous inorganic filler is used, a part of the filler particles is exposed on the surface of the molded product, and for example, it is easy to improve the abrasion resistance and the scratch resistance of the product surface.
Specific shapes of the inorganic filler include spherical, scaly, layered, leafy, apricot kernel, columnar, chicken crown, equiaxed, leafy, mica, block, flat plate, wedge, rosette, and mesh. It may be spherical or prismatic, preferably spherical or scaly.
In the case of a particulate inorganic filler, the average particle size of D50 is preferably 0.02 to 200 μm, more preferably 0.1 to 20 μm, and even more preferably 1 to 10 μm. Further, in the case of a fibrous inorganic filler, the average fiber length thereof is preferably 0.05 to 300 μm. The average fiber diameter of the fibrous inorganic filler is preferably 0.01 to 15 μm.
 また、上記無機フィラーは、上記形状の他、中空状、ハニカム状等の種々の形状を有してもよいが、成形物の低誘電性と低誘電正接性とを向上させる観点から、中空状の形状を有するのが好ましい。
 中空状の無機フィラーの粒子1個当たりの空隙の体積割合の平均値である中空率は、40から80%が好ましい。
 中空状の無機フィラーの粒子強度は、20MPa以上が好ましい。粒子強度は、加圧プレスした際の中空状の無機フィラーの残存率が50%時の粒子強度である。粒子強度は、中空状の無機フィラーの見掛け密度と、中球状の無機フィラーを加圧プレスして得られるペレットの見掛け密度とから算出できる。
Further, the inorganic filler may have various shapes such as a hollow shape and a honeycomb shape in addition to the above shape, but from the viewpoint of improving the low dielectric property and the low dielectric loss tangent property of the molded product, the hollow shape is formed. It is preferable to have the shape of.
The hollow ratio, which is the average value of the volume ratio of the voids per particle of the hollow inorganic filler, is preferably 40 to 80%.
The particle strength of the hollow inorganic filler is preferably 20 MPa or more. The particle strength is the particle strength when the residual ratio of the hollow inorganic filler when pressure-pressed is 50%. The particle strength can be calculated from the apparent density of the hollow inorganic filler and the apparent density of the pellets obtained by press-pressing the medium spherical inorganic filler.
 上記無機フィラーは、その表面の少なくとも一部が、表面処理されているのが好ましい。かかる表面処理に用いられる表面処理剤としては、トリメチロールエタン、ペンタエリストール、プロピレングリコール等の多価アルコール、ステアリン酸、ラウリン酸等の飽和脂肪酸およびそれらのエステル、アルカノールアミン、トリメチルアミン、トリエチルアミン等のアミン、パラフィンワックス、シランカップリング剤、シリコーン、ポリシロキサンが挙げられる。 It is preferable that at least a part of the surface of the inorganic filler is surface-treated. Examples of the surface treatment agent used for such surface treatment include polyhydric alcohols such as trimethylolethane, pentaeristol and propylene glycol, saturated fatty acids such as stearic acid and lauric acid, and esters thereof, alkanolamines, trimethylamines and triethylamines. Examples include amines, paraffin waxes, silane coupling agents, silicones and polysiloxanes.
 上記無機フィラーは、シランカップリング剤で表面処理されている無機フィラーであるのが好ましい。かかる無機フィラーは、本パウダーとの親和性に優れ、本分散液の分散性を向上させやすい。また、それを含む本分散液から成形物を形成する際のFポリマーの溶融焼成において、熱分解してガスが発生することで無機フィラーの流動が促され、成形物の均一性が向上しやすいと考えられる。
 シランカップリング剤は、官能基を有するシランカップリング剤が好ましく、3-アミノプロピルトリエトキシシラン、ビニルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシランまたは3-イソシアネートプロピルトリエトキシシランがより好ましい。
The inorganic filler is preferably an inorganic filler surface-treated with a silane coupling agent. Such an inorganic filler has an excellent affinity with the present powder and easily improves the dispersibility of the present dispersion. Further, in the melt firing of the F polymer when forming a molded product from the present dispersion liquid containing the same, the flow of the inorganic filler is promoted by thermal decomposition to generate gas, and the uniformity of the molded product is likely to be improved. it is conceivable that.
The silane coupling agent is preferably a silane coupling agent having a functional group, 3-aminopropyltriethoxysilane, vinyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3 -Methacryloxypropyltriethoxysilane or 3-isocyanuppropyltriethoxysilane is more preferred.
 無機フィラーは、1種類の無機フィラーを単独で用いてもよく、2種以上の無機フィラーを併用してもよい。後者の場合、シリカフィラーを少なくとも用いるのが好ましく、2種のシリカフィラーを用いるのがより好ましい。また、後者の場合、中空状の無機フィラーと非中空状の無機フィラーとを併用するのが好ましい。 As the inorganic filler, one kind of inorganic filler may be used alone, or two or more kinds of inorganic fillers may be used in combination. In the latter case, it is preferable to use at least a silica filler, and it is more preferable to use two kinds of silica fillers. Further, in the latter case, it is preferable to use a hollow inorganic filler and a non-hollow inorganic filler in combination.
 無機フィラーの好適な具体例としては、シリカフィラー(アドマテックス社製の「アドマファイン(登録商標)」シリーズ等)、ジカプリン酸プロピレングリコール等のエステルで表面処理された酸化亜鉛(堺化学工業株式会社製の「FINEX(登録商標)」シリーズ等)、球状溶融シリカ(デンカ社製の「SFP(登録商標)」シリーズ等)、多価アルコールおよび無機物で被覆処理された酸化チタン(石原産業社製の「タイペーク(登録商標)」シリーズ等)、アルキルシランで表面処理されたルチル型酸化チタン(テイカ社製の「JMT(登録商標)」シリーズ等)、中空状シリカフィラー(太平洋セメント社製の「E-SPHERES」シリーズ、日鉄鉱業社製の「シリナックス」シリーズ、エマーソン・アンド・カミング社製「エココスフイヤー」シリーズ等)、タルクフィラー(日本タルク社製の「SG」シリーズ等)、ステアタイトフィラー(日本タルク社製の「BST」シリーズ等)、窒化ホウ素フィラー(昭和電工社製の「UHP」シリーズ、デンカ社製の「デンカボロンナイトライド」シリーズ(「GP」、「HGP」グレード)等)が挙げられる。 Suitable specific examples of the inorganic filler include silica filler (“Admafine (registered trademark)” series manufactured by Admatex Co., Ltd.), zinc oxide surface-treated with an ester such as propylene glycol dicaprate (Sakai Chemical Industry Co., Ltd.). "FINEX (registered trademark)" series, etc.), spherical fused silica ("SFP (registered trademark)" series, etc. manufactured by Denka Co., Ltd.), titanium oxide coated with polyhydric alcohol and inorganic substances (manufactured by Ishihara Sangyo Co., Ltd.) "Typake (registered trademark)" series, etc.), rutile-type titanium oxide surface-treated with alkylsilane ("JMT (registered trademark)" series manufactured by Teika Co., Ltd.), hollow silica filler ("E" manufactured by Pacific Cement Co., Ltd.) -SPHERES "series, Nittetsu Mining Co., Ltd." Sirinax "series, Emerson & Cumming Co., Ltd." Ecocos Fire "series, etc.), Tarku Filler (Nippon Tarku Co., Ltd." SG "series, etc.), Steatite Filler (Steatite Filler) Nippon Tarku's "BST" series, etc.), boron nitride filler (Showa Denko's "UHP" series, Denka's "Denka Boron Nitride" series ("GP", "HGP" grade), etc.) Can be mentioned.
 本法(1)において、本混練物1中の液状化合物1の含有量は、10質量%以上が好ましい。液状化合物1の含有量は、60質量%以下が好ましく、25質量%以下がより好ましい。この場合、本パウダーが常に湿潤状態を形成しつつ、混練が進行し、本パウダー、無機フィラーおよび液状化合物1が均一混合し、高度に脱気された本混練物1が得られやすい。 In the present method (1), the content of the liquid compound 1 in the kneaded product 1 is preferably 10% by mass or more. The content of the liquid compound 1 is preferably 60% by mass or less, more preferably 25% by mass or less. In this case, the kneading proceeds while the powder is always in a wet state, and the powder, the inorganic filler and the liquid compound 1 are uniformly mixed, and the highly degassed main kneaded product 1 can be easily obtained.
 本混練物1中の固形分は、上記本パウダーと無機フィラーとを含有する。なお、本混練物1の固形分には、上記本パウダーおよび無機フィラー以外の、本分散液1から形成される成形物において固形分を形成する物質も含まれる。
 本混練物1が本ペースト1である場合、混練により分散性に優れた本ペースト1が得られやすい観点から、本ペースト1の全質量を100質量%として、固形分量は、40質量%以上が好ましく、50質量%以上がより好ましい。また、本分散液1の分散性の観点から、固形分量は、90質量%以下が好ましく、75質量%以下がより好ましい。
 固形分は、本パウダーおよび無機フィラー以外の不揮発性の成分を含んでもよく、固形分中の本パウダーと無機フィラーとの合計量は、固形分の全質量を100質量%として、80質量%以上が好ましく、90質量%以上がより好ましい。上記合計量は、100質量%以下が好ましい。
The solid content in the kneaded product 1 contains the above powder and the inorganic filler. The solid content of the kneaded product 1 also includes substances other than the powder and the inorganic filler that form the solid content in the molded product formed from the dispersion liquid 1.
When the main paste 1 is the main paste 1, from the viewpoint that the main paste 1 having excellent dispersibility can be easily obtained by kneading, the total mass of the main paste 1 is 100% by mass, and the solid content is 40% by mass or more. It is preferable, and more preferably 50% by mass or more. Further, from the viewpoint of dispersibility of the dispersion liquid 1, the solid content is preferably 90% by mass or less, more preferably 75% by mass or less.
The solid content may contain non-volatile components other than the present powder and the inorganic filler, and the total amount of the present powder and the inorganic filler in the solid content is 80% by mass or more, assuming that the total mass of the solid content is 100% by mass. Is preferable, and 90% by mass or more is more preferable. The total amount is preferably 100% by mass or less.
 本法(1)において、本混練物1における本パウダーと無機フィラーとの比は、本パウダーの質量を1として、無機フィラーの質量が0.5から2であるのが好ましい。
 固形分中の本パウダーの量は、固形分量を100質量%として、25質量%以上が好ましく、30質量%以上がさらに好ましい。また、本パウダーの量は、50質量%以下が好ましく、40質量%以下がより好ましい。
 上記比とは別に、本分散液1から成形する成形物の電気特性の観点から、本混練物1における固形分中の無機フィラーの量は、固形分量を100質量%として、25質量%以上が好ましく、50質量%以上がより好ましく、60質量%以上がさらに好ましい。また、無機フィラーの量は、75質量%以下が好ましく、60質量%以下がより好ましい。
In the present method (1), the ratio of the present powder to the inorganic filler in the kneaded product 1 is preferably 0.5 to 2 with the mass of the present powder being 1.
The amount of the present powder in the solid content is preferably 25% by mass or more, more preferably 30% by mass or more, with the solid content as 100% by mass. The amount of this powder is preferably 50% by mass or less, more preferably 40% by mass or less.
Apart from the above ratio, from the viewpoint of the electrical characteristics of the molded product formed from the dispersion liquid 1, the amount of the inorganic filler in the solid content of the kneaded product 1 is 25% by mass or more, assuming that the solid content is 100% by mass. Preferably, 50% by mass or more is more preferable, and 60% by mass or more is further preferable. The amount of the inorganic filler is preferably 75% by mass or less, more preferably 60% by mass or less.
 本法(1)において、組成物1を混練して本混練物1を得る場合、組成物1は、本パウダーと無機フィラーと液状化合物1とを混合して調製できる。
 混合の方法としては、本パウダーと無機フィラーと液状化合物1とを一括して混合する方法、本パウダーと無機フィラーと液状化合物1とを順次添加しながら混合する方法が挙げられる。
 混合の具体的な方法としては、例えば、液状化合物1に、本パウダーと無機フィラーとを一括して添加して混合する方法、液状化合物1に、本パウダーと無機フィラーとを順次添加しながら混合する方法、予め本パウダーと無機フィラーとを混合し、得られた混合物と液状化合物1とを混合する方法、予め本パウダーと液状化合物1とを、無機フィラーと液状化合物1とをそれぞれ混合し、得られた2種の混合物をさらに混合する方法等が挙げられる。
 これらの方法の中では、組成物1の分散性の観点から、予め本パウダーと無機フィラーとを混合し、得られた混合物と上記液状化合物1とを混合する方法が好ましい。
In the present method (1), when the composition 1 is kneaded to obtain the main kneaded product 1, the composition 1 can be prepared by mixing the present powder, the inorganic filler, and the liquid compound 1.
Examples of the mixing method include a method of collectively mixing the present powder, the inorganic filler and the liquid compound 1, and a method of mixing the present powder, the inorganic filler and the liquid compound 1 while sequentially adding them.
Specific methods for mixing include, for example, a method in which the powder and the inorganic filler are collectively added to the liquid compound 1 and mixed, and a method in which the powder and the inorganic filler are sequentially added to the liquid compound 1 and mixed. The method of mixing the present powder and the inorganic filler in advance, and the method of mixing the obtained mixture and the liquid compound 1 in advance, the present powder and the liquid compound 1 in advance, and the inorganic filler and the liquid compound 1 respectively. Examples thereof include a method of further mixing the obtained two kinds of mixtures.
Among these methods, from the viewpoint of dispersibility of the composition 1, a method in which the powder and the inorganic filler are mixed in advance and the obtained mixture and the liquid compound 1 are mixed is preferable.
 本法(1)における本混練物1は、本パウダー、無機フィラーおよび液状化合物1以外の成分を含んでいてもよい。かかる成分は、本分散液1から形成される成形物において固形分を形成する成分であってもよく、固形分を形成しない成分であってもよい。かかる成分としては、Fポリマーとは異なる樹脂が挙げられる。異なる樹脂としては、後述する、本法(2)における本異なる樹脂と同様の樹脂が挙げられ、成形物の接着性と低線膨張性とを向上させる観点から、芳香族ポリマーが好ましい。
 かかる成分が固形分を形成する成分である場合、上記本混練物1中の固形分に含まれるかかる成分の量は、20質量%以下が好ましく、10質量%以下がより好ましい。
The kneaded product 1 in the present method (1) may contain components other than the present powder, the inorganic filler and the liquid compound 1. Such a component may be a component that forms a solid content in the molded product formed from the present dispersion liquid 1, or may be a component that does not form a solid content. Examples of such a component include a resin different from the F polymer. Examples of the different resin include the same resin as the present different resin in the present method (2), which will be described later, and an aromatic polymer is preferable from the viewpoint of improving the adhesiveness and low linear expansion property of the molded product.
When such a component is a component forming a solid content, the amount of such a component contained in the solid content in the present kneaded product 1 is preferably 20% by mass or less, more preferably 10% by mass or less.
 芳香族ポリマーとしては、芳香族ポリイミド、芳香族マレイミド、スチレン系エラストマーのような芳香族エラストマーまたは芳香族ポリアミック酸が好ましく、芳香族ポリイミド、芳香族マレイミド、ポリフェニレンエーテル、スチレン系エラストマーのような芳香族エラストマーがより好ましく、芳香族ポリイミドまたは芳香族ポリアミック酸がさらに好ましい。芳香族ポリイミドは、熱可塑性であってもよく、熱硬化性であってもよい。熱可塑性のポリイミドとは、イミド化が完了した、イミド化反応がさらに生じないポリイミドを意味する。
 本法(1)における本混練物1が異なる樹脂を含む場合、本混練物1は、本パウダーと無機フィラーとを混合し、得られた混合物と、上記液状化合物1と、異なる樹脂とを混合して組成物1を調製し、かかる組成物1を混練して得るのが好ましい。
As the aromatic polymer, aromatic elastomers such as aromatic polyimides, aromatic maleimides and styrene-based elastomers or aromatic polyamic acids are preferable, and aromatics such as aromatic polyimides, aromatic maleimides, polyphenylene ethers and styrene-based elastomers are preferable. Elastomers are more preferred, and aromatic polyimides or aromatic polyamic acids are even more preferred. The aromatic polyimide may be thermoplastic or thermosetting. The thermoplastic polyimide means a polyimide that has been imidized and does not undergo a further imidization reaction.
When the main kneaded product 1 in the present method (1) contains a different resin, the main kneaded product 1 mixes the present powder and the inorganic filler, and the obtained mixture, the liquid compound 1 and a different resin are mixed. It is preferable to prepare the composition 1 and knead the composition 1 to obtain the composition 1.
 本法(1)においては、組成物1を混練して本混練物1を得るのが好ましい。本法(1)における本混練物1は本ペースト1または本練粉1であるのが好ましい。
 本法(1)における本混練物1は、本分散液の分散安定性とハンドリング性とを向上させる観点から、界面活性剤を含むのが好ましい。界面活性剤を含む本ペーストは、本パウダーと無機フィラーと液状化合物1と界面活性剤とを一括して混練して調整してもよく、界面活性剤を含む組成物1を混練して調製してもよく、界面活性剤を含まない組成物1を混練し、さらに界面活性剤を添加し混練して調製してもよい。
In the present method (1), it is preferable to knead the composition 1 to obtain the main kneaded product 1. The main kneaded product 1 in the present method (1) is preferably the main paste 1 or the main kneaded powder 1.
The kneaded product 1 in the present method (1) preferably contains a surfactant from the viewpoint of improving the dispersion stability and handleability of the dispersion liquid. The present paste containing the surfactant may be prepared by kneading the powder, the inorganic filler, the liquid compound 1 and the surfactant all at once, or kneading the composition 1 containing the surfactant. Alternatively, the composition 1 containing no surfactant may be kneaded, and then a surfactant may be added and kneaded to prepare the composition.
 界面活性剤は、アニオン性、カチオン性、ノニオン性の界面活性剤が挙げられ、ノニオン性界面活性剤が好ましい。
 界面活性剤の親水部位は、オキシアルキレン基またはアルコール性水酸基を有するのが好ましい。
 オキシアルキレン基は、1種から構成されていてもよく、2種以上から構成されていてもよい。後者の場合、種類の違うオキシアルキレン基は、ランダム状に配置されていてもよく、ブロック状に配置されていてもよい。
 オキシアルキレン基は、オキシエチレン基が好ましい。
Examples of the surfactant include anionic, cationic and nonionic surfactants, and nonionic surfactants are preferable.
The hydrophilic moiety of the surfactant preferably has an oxyalkylene group or an alcoholic hydroxyl group.
The oxyalkylene group may be composed of one kind or two or more kinds. In the latter case, different types of oxyalkylene groups may be arranged in a random manner or in a block shape.
The oxyalkylene group is preferably an oxyethylene group.
 界面活性剤の疎水部位は、アセチレン基、ポリシロキサン基、ペルフルオロアルキル基またはペルフルオロアルケニル基を有するのが好ましい。換言すれば、界面活性剤は、アセチレン系界面活性剤、シリコーン系界面活性剤またはフッ素系界面活性剤が好ましく、シリコーン系界面活性剤がより好ましい。
 フッ素系界面活性剤としては、水酸基、特に、アルコール性水酸基、またはオキシアルキレン基と、ペルフルオロアルキル基またはペルフルオロアルケニル基とを有するフッ素系界面活性剤が好ましい。
The hydrophobic moiety of the surfactant preferably has an acetylene group, a polysiloxane group, a perfluoroalkyl group or a perfluoroalkenyl group. In other words, the surfactant is preferably an acetylene-based surfactant, a silicone-based surfactant or a fluorine-based surfactant, and more preferably a silicone-based surfactant.
As the fluorine-based surfactant, a fluorine-based surfactant having a hydroxyl group, particularly an alcoholic hydroxyl group or an oxyalkylene group, and a perfluoroalkyl group or a perfluoroalkenyl group is preferable.
 界面活性剤の具体例としては、「フタージェント」シリーズ(株式会社ネオス社製 フタージェントは登録商標)、「サーフロン」シリーズ(AGCセイミケミカル社製 サーフロンは登録商標)、「メガファック」シリーズ(DIC株式会社製 メガファックは登録商標)、「ユニダイン」シリーズ(ダイキン工業株式会社製 ユニダインは登録商標)、「BYK-347」、「BYK-349」、「BYK-378」、「BYK-3450」、「BYK-3451」、「BYK-3455」、「BYK-3456」(ビックケミー・ジャパン株式会社社製)、「KF-6011」、「KF-6043」(信越化学工業株式会社製)が挙げられる。
 本混練物1が界面活性剤を含有する場合、その本混練物1中の含有量は、1から15質量%が好ましい。この場合、成分同士の間の親和性が増し、本分散液1の分散安定性がより向上しやすい。
Specific examples of surfactants include the "Futergent" series (Futergent manufactured by Neos Co., Ltd. is a registered trademark), the "Surflon" series (Surflon manufactured by AGC Seimi Chemical Co., Ltd. is a registered trademark), and the "Mega Fuck" series (DIC). Megafuck Co., Ltd. is a registered trademark), "Unidyne" series (Unidyne manufactured by Daikin Kogyo Co., Ltd. is a registered trademark), "BYK-347", "BYK-349", "BYK-378", "BYK-3450", Examples thereof include "BYK-3451", "BYK-3455", "BYK-3456" (manufactured by BIC Chemie Japan Co., Ltd.), "KF-6011", and "KF-6043" (manufactured by Shin-Etsu Chemical Industry Co., Ltd.).
When the main kneaded product 1 contains a surfactant, the content in the main kneaded product 1 is preferably 1 to 15% by mass. In this case, the affinity between the components is increased, and the dispersion stability of the present dispersion 1 is likely to be further improved.
 本法の好ましい第2の態様(以下、本法(2)とも記す)としては、本パウダー、本異なる樹脂および液状化合物1を混練して混練物(以下、本混練物2とも記す。)を得て、本混練物2と液状化合物2とを混合して分散液(以下、本分散液2とも記す。)を得る態様が挙げられる。
 本混練物2を得る方法は、例えば、本パウダー、本異なる樹脂および液状化合物1を一括で混練する方法、これらを混合して一旦、組成物とし、得られた組成物を混練する方法、液状化合物1に順次、本パウダーおよび本異なる樹脂を添加しながら混練する方法、液状化合物1に順次、本パウダーおよび無機フィラーを添加し、最後に混練する方法が挙げられる。また、予め、本パウダーと本異なる樹脂とのマスターバッチを作成し、それと液状化合物1とを混練する方法、本パウダーと液状化合物1との組成物、および本異なる樹脂と液状化合物1との組成物をそれぞれ作成し、両組成物を混合し、混練する方法等が挙げられる。
 なお、本法(2)における前記組成物は、液状組成物であるのが好ましい。また、本法(2)における本混練物2は、ペースト(以下、本ペースト2とも記す。)であっても、練粉(以下、本練粉2とも記す。)であってもよい。
 これら方法の中でも、本パウダー、本異なる樹脂および液状化合物1を混合して一旦、組成物(以下、組成物2とも記す。)とし、得られた組成物2を混練して本混練物2を得て、本混練物2と液状化合物2とを混合して本分散液2を得る方法が好ましい。
As a preferred second aspect of this method (hereinafter, also referred to as this method (2)), the present powder, the present different resin and the liquid compound 1 are kneaded and kneaded (hereinafter, also referred to as the present kneaded product 2). Then, an embodiment in which the kneaded product 2 and the liquid compound 2 are mixed to obtain a dispersion liquid (hereinafter, also referred to as the main dispersion liquid 2) can be mentioned.
The method for obtaining the kneaded product 2 is, for example, a method of kneading the powder, the different resins and the liquid compound 1 in a batch, a method of mixing these to form a composition once, and a method of kneading the obtained composition, a liquid. Examples thereof include a method of sequentially adding the present powder and the present different resins to the compound 1 and kneading, and a method of sequentially adding the present powder and the inorganic filler to the liquid compound 1 and finally kneading. Further, a method of preparing a master batch of the powder and the different resin in advance and kneading it with the liquid compound 1, a composition of the powder and the liquid compound 1, and a composition of the different resin and the liquid compound 1. Examples thereof include a method of preparing each compound, mixing both compositions, and kneading them.
The composition in the present method (2) is preferably a liquid composition. Further, the main kneaded product 2 in the present method (2) may be a paste (hereinafter, also referred to as the main paste 2) or a kneaded powder (hereinafter, also referred to as the main kneaded powder 2).
Among these methods, the powder, the different resin, and the liquid compound 1 are mixed to form a composition (hereinafter, also referred to as composition 2), and the obtained composition 2 is kneaded to obtain the kneaded product 2. A method of obtaining the present dispersion 2 by mixing the present kneaded product 2 and the liquid compound 2 is preferable.
 本法(2)における本異なる樹脂とは、Fポリマーとは異なる樹脂であり、TFE単位を含まないポリマーである。本異なる樹脂は、熱硬化性樹脂であってもよく、熱可塑性樹脂であってもよい。
 本異なる樹脂としては、芳香族ポリエステル、芳香族ポリイミド、芳香族ポリアミック酸、芳香族ポリアミドイミド、エポキシ樹脂、マレイミド樹脂、ウレタン樹脂、熱可塑性エラストマー、芳香族でないポリアミドイミド、ポリフェニレンエーテル、ポリフェニレンオキシド、液晶ポリエステル、多糖類、ナイロン、アクリル樹脂、メタクリル樹脂、ブチラール、シアン酸エステル樹脂、ABRゴム、セルロース、PVAアクリル メタクリル、ポリアルキレンエーテル、ポリオキシエチレンアルキルエーテル、Fポリマー以外のフルオロポリマーが挙げられる。
The different resin in the present method (2) is a resin different from the F polymer and does not contain TFE units. The different resins may be thermosetting resins or thermoplastic resins.
Examples of the different resins include aromatic polyester, aromatic polyimide, aromatic polyamic acid, aromatic polyamideimide, epoxy resin, maleimide resin, urethane resin, thermoplastic elastomer, non-aromatic polyamideimide, polyphenylene ether, polyphenylene oxide, and liquid crystal. Examples thereof include polyester, polysaccharides, nylon, acrylic resin, methacrylic resin, butyral, cyanate ester resin, ABR rubber, cellulose, PVA acrylic methacryl, polyalkylene ether, polyoxyethylene alkyl ether, and fluoropolymers other than F polymer.
 本異なる樹脂は、芳香族ポリエステル、芳香族ポリイミド、芳香族ポリアミック酸、芳香族ポリアミドイミド、ポリフェニレンエーテル、エポキシ樹脂、マレイミド樹脂または熱可塑性エラストマーが好ましい。芳香族ポリイミドは、熱可塑性であってもよく、熱硬化性であってもよい。また、本異なる樹脂は芳香族ポリマーであるのが好ましい。
 芳香族ポリイミドの具体例としては、「ネオプリム(登録商標)」シリーズ(三菱ガス化学社製)、「スピクセリア(登録商標)」シリーズ(ソマール社製)、「Q-PILON(登録商標)」シリーズ(ピーアイ技術研究所製)、「WINGO」シリーズ(ウィンゴーテクノロジー社製)、「トーマイド(登録商標)」シリーズ(T&K TOKA社製)、「KPI-MX」シリーズ(河村産業社製)、「ユピア(登録商標)-AT」シリーズ(宇部興産社製)が挙げられる。
 芳香族ポリアミドイミドの具体例としては、「HPC-1000」、「HPC-2100D」(昭和電工マテリアルズ社製)が挙げられる。
The different resins are preferably aromatic polyesters, aromatic polyimides, aromatic polyamic acids, aromatic polyamideimides, polyphenylene ethers, epoxy resins, maleimide resins or thermoplastic elastomers. The aromatic polyimide may be thermoplastic or thermosetting. Further, the different resins are preferably aromatic polymers.
Specific examples of aromatic polyimides include "Neoprim (registered trademark)" series (manufactured by Mitsubishi Gas Chemical Company), "Spixeria (registered trademark)" series (manufactured by Somar), and "Q-PILON (registered trademark)" series ( PI Technology Research Institute), "WINGO" series (Wingo Technology), "Toimide (registered trademark)" series (T & K TOKA), "KPI-MX" series (Kawamura Sangyo), "Yupia (Yupia) Registered trademark) -AT "series (manufactured by Ube Industries, Ltd.) can be mentioned.
Specific examples of the aromatic polyamide-imide include "HPC-1000" and "HPC-2100D" (manufactured by Showa Denko Materials Co., Ltd.).
 ウレタン樹脂としては、例えば、アクリル成分が含まれるウレタン微粒子、また、ホモポリマーであっても、コポリマーであっても良い。具体的には、市販のダイミックビーズC M (大日精化工業株式会社製)、アートパール(根上工業株式会社製)、グランパール(アイカ工業株式会社製)等が挙げられる。 The urethane resin may be, for example, urethane fine particles containing an acrylic component, or a homopolymer or a copolymer. Specific examples thereof include commercially available dimic beads CM (manufactured by Dainichiseika Kogyo Co., Ltd.), art pearl (manufactured by Negami Kogyo Co., Ltd.), and grand pearl (manufactured by Aica Kogyo Co., Ltd.).
 多糖類としては、キサンタンガム、グアーガム、カゼイン、アラビアガム、ゼラチン、アミロース、アガロース、アガロペクチン、アラビナン、カードラン、カロース、カルボキシメチルデンプン、キチン、キトサン、クインスシード、グルコマンナン、ジェランガム、タマリンシードガム、デキストラン、ニゲラン、ヒアルロン酸、プスツラン、フノラン、ペクチン、ポルフィラン、ラミナラン、リケナン、カラギーナン、アルギン酸、トラガカントガム、アルカシーガム、ローカストビーンガム等が挙げられる。 Polysaccharides include xanthan gum, guar gum, casein, arabic gum, gelatin, amylose, agarose, agaropectin, arabinan, curdlan, callose, carboxymethyl starch, chitin, chitosan, quince seed, glucomannan, gellan gum, tamarin seed gum, dextran. , Nigeran, hyaluronic acid, starchulan, funoran, pectin, porphyran, laminarin, likenan, carrageenan, alginic acid, polysaccharide gum, alkathy gum, locust bean gum and the like.
 アクリル樹脂またはメタクリル樹脂としては、ポリアクリル酸、ポリメタクリル酸、エチレン-メチルメタクリレート共重合体、エチレン-メチルアクリレート共重合体、エチレン- エチルアクリレート共重合体、エチレン-ブチルアクリレート共重合体、エチレン-酢酸ビニル共重合体が挙げられる。
 アクリル樹脂またはメタクリル樹脂としては、例えば、市販品では、楠本化成社製Neocrylシリーズが挙げられる。
Examples of the acrylic resin or methacrylic resin include polyacrylic acid, polymethacrylic acid, ethylene-methyl methacrylate copolymer, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, ethylene-butyl acrylate copolymer, and ethylene-. Examples include vinyl acetate copolymers.
Examples of the acrylic resin or methacrylic resin include the Neocryl series manufactured by Kusumoto Kasei Co., Ltd. as a commercially available product.
 ナイロンとしては、ε-カプロラクタム(ナイロン6)、ウンデカンラクタム(ナイロン11)、ラウリルラクタム(ナイロン12)、アミノカプロン酸、エナントラクタム、7- アミノヘプタン酸、11-アミノウンデカン酸、9-アミノノナン酸、α-ピロリドン、α-ピペリドン等の重合物;ヘキサメチレンジアミン、ノナンジアミン、ノナンメチレンジアミン、メチルペンタジアミン、ウンデカンメチレンジアミン、ドデカンメチレンジアミン、メタキシレンジアミンのようなジアミンと、アジビン酸、セバシン酸、テレフタル酸、イソフタル酸、ドデカンジカルボン酸、グルタル酸のようなジカルボン酸等のカルボン酸化合物と共重合させて得られる共重合体、または、これらの重合体または共重合体の混合物等の少なくとも1種が挙げられる。 Nylons include ε-caprolactam (nylon 6), undecanlactam (nylon 11), lauryllactam (nylon 12), aminocaproic acid, enantractum, 7-aminoheptanoic acid, 11-aminoundecanoic acid, 9-aminononanoic acid, α. -Polymers such as pyrrolidone, α-piperidone; diamines such as hexamethylenediamine, nonanediamine, nonanemethylenediamine, methylpentadiamine, undecamethylenediamine, dodecamethylenediamine, metaxylenediamine, and adibic acid, sebacic acid, terephthalic acid. , Isophthalic acid, dodecandicarboxylic acid, a copolymer obtained by copolymerizing with a carboxylic acid compound such as a dicarboxylic acid such as glutaric acid, or at least one of these polymers or a mixture of the copolymers. Be done.
 ブチラール樹脂としては、例えば、市販品では、積水化学工業社製エスレック(登録商標)Bシリーズ、K(KS)シリーズ、SVシリーズ、クラレ社製モビタール(登録商標)シリーズ等挙げられる。 Examples of the butyral resin include Sekisui Chemical's Eslek (registered trademark) B series, K (KS) series, SV series, and Kuraray's Mobital (registered trademark) series.
 シアン酸エステル樹脂としては、例えば、少なくとも2官能性の脂肪族シアン酸エステル、少なくとも2官能性の芳香族シアン酸エステル、またはこれらの混合物からなる樹脂が挙げられる。
 シアン酸エステル樹脂の具体例としては、例えば、1,3,5-トリシアナトベンゼン、1,3-ジシアナトナフタレン、1,4-ジシアナトナフタレン、1,6-ジシアナトナフタレン、1,8-ジシアナトナフタレン、2,6-ジシアナトナフタレン、および2,7-ジシアナトナフタレンよりなる群から選択された少なくとも1種の多官能シアン酸エステルの重合体、ビスフェノールA型シアン酸エステル樹脂またはこれらに水素を添加した水添物、ビスフェノールF型シアン酸エステル樹脂またはこれらに水素を添加した水添物、6FビスフェノールAジシアン酸エステル樹脂、ビスフェノールE型ジシアン酸エステル樹脂、テトラメチルビスフェノールFジシアン酸エステル樹脂、ビスフェノールMジシアン酸エステル樹脂、ジシクロペンタジエンビスフェノールジシアン酸エステル樹脂、またはシアン酸ノボラック樹脂等の少なくとも1種が挙げられる。
Examples of the cyanate ester resin include a resin composed of at least a bifunctional aliphatic cyanate ester, at least a bifunctional aromatic cyanate ester, or a mixture thereof.
Specific examples of the cyanate ester resin include 1,3,5-trisianatobenzene, 1,3-disyanatonaphthalene, 1,4-disyanatonaphthalene, 1,6-disyanatonaphthalene, and 1,8-. A polymer of at least one polyfunctional cyanate ester selected from the group consisting of disianatonaphthalene, 2,6-disianatonaphthalene, and 2,7-disianatonaphthalene, bisphenol A type cyanate ester resin, or the like. Hydrogenated hydrogenated product, bisphenol F type cyanate ester resin or hydrogenated hydrogenated product, 6F bisphenol A dicyanic acid ester resin, bisphenol E type dicyanic acid ester resin, tetramethylbisphenol F dicyanic acid ester resin , Bisphenol M bisphenol ester resin, dicyclopentadiene bisphenol dicyanic acid ester resin, or at least one citrate novolak resin.
 エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、tert-ブチル-カテコール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、線状脂肪族エポキシ樹脂、脂環式エポキシ樹脂、複素環式エポキシ樹脂、スピロ環含有エポキシ樹脂、シクロヘキサンジメタノール型エポキシ樹脂、トリメチロール型エポキシ樹脂、ハロゲン化エポキシ樹脂等が挙げられる。 Examples of the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, tert-butyl-catechol type epoxy resin, naphthalene type epoxy resin, naphthylene ether type epoxy resin, and glycidylamine type epoxy. Resin, cresol novolac type epoxy resin, biphenyl type epoxy resin, linear aliphatic epoxy resin, alicyclic epoxy resin, heterocyclic epoxy resin, spiro ring-containing epoxy resin, cyclohexanedimethanol type epoxy resin, trimethylol type epoxy resin , Halogenized epoxy resin and the like.
 熱可塑性エラストマーは、加温した際に可塑化するエラストマーであり、例えば、オレフィン系エラストマー、スチレン系エラストマー、塩化ビニル系熱可塑性エラストマー、ウレタン系エラストマー、ポリアミド系エラストマー、ポリエステル系エラストマー、ポリブタジエン系エラストマー、アクリル系エラストマー、およびシリコーン系エラストマーが挙げられる。
 オレフィン系エラストマーとしては、PPなどのオレフィン系樹脂のマトリクス中にオレフィン系ゴムを微分散させたオレフィン系エラストマー等が挙げられる。
 スチレン系エラストマーとしては、スチレン-ブタジエン共重合体、水添-スチレン-ブタジエン共重合体、水添-スチレン-イソプレン共重合体、スチレン-ブタジエン-スチレンブロック共重合体、スチレン-イソプレン-スチレンブロック共重合体、スチレン-ブタジエン-スチレンブロック共重合体の水素添加物、およびスチレン-イソプレン-スチレンブロック共重合体の水素添加物等が挙げられる。
 ポリエステル系エラストマーとしては、ポリエステル-ポリエーテルの共重合体、ポリウレタン-ポリエーテル/ポリエステル共重合体、ナイロン-ポリエーテル/ポリエステル共重合体が挙げられる。
The thermoplastic elastomer is an elastomer that plasticizes when heated, and is, for example, an olefin-based elastomer, a styrene-based elastomer, a vinyl chloride-based thermoplastic elastomer, a urethane-based elastomer, a polyamide-based elastomer, a polyester-based elastomer, or a polybutadiene-based elastomer. Examples thereof include acrylic elastomers and silicone elastomers.
Examples of the olefin-based elastomer include an olefin-based elastomer in which an olefin-based rubber is finely dispersed in a matrix of an olefin-based resin such as PP.
Examples of the styrene-based elastomer include styrene-butadiene copolymer, hydrogenated-styrene-butadiene copolymer, hydrogenated-styrene-isoprene copolymer, styrene-butadiene-styrene block copolymer, and styrene-isoprene-styrene block. Examples thereof include a polymer, a hydrogenated product of a styrene-butadiene-styrene block copolymer, and a hydrogenated product of a styrene-isoprene-styrene block copolymer.
Examples of the polyester-based elastomer include a polyester-polyester copolymer, a polyurethane-polyester / polyester copolymer, and a nylon-polyester / polyester copolymer.
 その市販品としては、TRシリーズ(スチレン・ブタジエン熱可塑性エラストマー、JSR株式会社製)、RBシリーズ(ポリブタジエン系熱可塑性エラストマー、JSR株式会社製)、JSR EXELINK(オレフィン系熱可塑性エラストマー、JSR株式会社製)、DYNARON(登録商標)シリーズ(水添熱可塑性エラストマー、JSR株式会社製)、サーモラン(登録商標)(オレフィン系熱可塑性エラストマー、三菱化学株式会社製)、エポックスTPEシリーズ(オレフィン系熱可塑性エラストマー、住友化学株式会社製)、セプトン(登録商標)シリーズ(水添スチレン系熱可塑性エラストマー、株式会社クラレ製)、タフテック(登録商標)(水添スチレン系熱可塑性エラストマー、旭化成株式会社製)が挙げられる。
 Fポリマー以外のフルオロポリマーとしては、ポリフッ化ビニル、ポリフッ化ビニリデン、ポリクロロトリフロオロエチレン等が挙げられる。
The commercially available products include TR series (styrene / butadiene thermoplastic elastomer, manufactured by JSR Co., Ltd.), RB series (polybutadiene-based thermoplastic elastomer, manufactured by JSR Co., Ltd.), JSR EXELINK (olefin-based thermoplastic elastomer, manufactured by JSR Co., Ltd.). ), DYNARON (registered trademark) series (hydrogenated thermoplastic elastomer, manufactured by JSR Co., Ltd.), Thermolan (registered trademark) (olefin-based thermoplastic elastomer, manufactured by Mitsubishi Chemical Corporation), Epox TPE series (olefin-based thermoplastic elastomer, Sumitomo Chemical Co., Ltd.), Septon (registered trademark) series (hydrogenated styrene-based thermoplastic elastomer, manufactured by Kuraray Co., Ltd.), Tough Tech (registered trademark) (hydrogenized styrene-based thermoplastic elastomer, manufactured by Asahi Kasei Co., Ltd.). ..
Examples of the fluoropolymer other than the F polymer include polyvinyl fluoride, polyvinylidene fluoride, polychlorotrifluoroethylene and the like.
 なお、本異なる樹脂として、バインダー樹脂である、ビニル樹脂、熱可塑性樹脂、硬化性樹脂、熱可塑性ブロック共重合体およびエラストマー等の水分散体を使用してもよい。
 上記ビニル樹脂としては、例えば、酢酸ビニル樹脂、アクリル樹脂およびスチレン樹脂等の水分散体が挙げられる。
 上記熱可塑性樹脂としては、例えば、ポリオレフィン樹脂、エチレン-酢酸ビニル共重合体およびポリアミド樹脂等の水分散体が挙げられる。
 上記硬化性樹脂としては、例えば、エポキシ樹脂、ウレタン樹脂、ポリイミド樹脂および不飽和ポリエステル樹脂等の水分散体が挙げられる。なお、上記硬化性樹脂は、常温硬化型樹脂、熱硬化型樹脂、光硬化型樹脂のいずれであってもよい。
As the present different resin, an aqueous dispersion such as a vinyl resin, a thermoplastic resin, a curable resin, a thermoplastic block copolymer, and an elastomer, which are binder resins, may be used.
Examples of the vinyl resin include aqueous dispersions of vinyl acetate resin, acrylic resin, styrene resin and the like.
Examples of the thermoplastic resin include aqueous dispersions of polyolefin resins, ethylene-vinyl acetate copolymers, polyamide resins and the like.
Examples of the curable resin include aqueous dispersions of epoxy resin, urethane resin, polyimide resin, unsaturated polyester resin and the like. The curable resin may be any of a room temperature curable resin, a thermosetting resin, and a photocurable resin.
 本異なる樹脂は、熱または光等の外部エネルギーにより重合または架橋し、上記樹脂となる化合物であってもよく、上記樹脂のモノマー、モノマーの反応物または硬化剤からなっていてもよい。
 かかる態様としては、ウレタン樹脂におけるイソシアネートとジオールとの組み合わせ、エポキシ樹脂におけるビスフェノールAとエピクロロヒドリンとの共重合体と、ポリアミンや酸無水物等の硬化剤との組み合わせ、シアン酸エステル樹脂におけるシアン酸エステルが挙げられる。
 これらの態様は、本分散液2に含有させることを目的に選定された上述した本異なる樹脂に基づき、そのモノマーから適宜、決定される。例えばシアン酸エステルの場合は、上述のシアン酸エステルが挙げられる。エポキシ樹脂の場合は、上述のエポキシ樹脂を与える共重合体が挙げられる。また、これらの態様における樹脂成分は、完全に重合または架橋している必要はなく、一部未重合や未架橋の状態であってもよい。
The different resins may be compounds that are polymerized or crosslinked by external energy such as heat or light to become the resin, or may consist of a monomer of the resin, a reactant of the monomer, or a curing agent.
Such embodiments include a combination of isocyanate and diol in a urethane resin, a combination of a copolymer of bisphenol A and epichlorohydrin in an epoxy resin, and a curing agent such as polyamine or acid anhydride, and a cyanate ester resin. Cyanic acid ester can be mentioned.
These aspects are appropriately determined from the monomers based on the above-mentioned different resins selected for the purpose of being contained in the dispersion liquid 2. For example, in the case of cyanate ester, the above-mentioned cyanate ester can be mentioned. In the case of an epoxy resin, a copolymer that gives the above-mentioned epoxy resin can be mentioned. Further, the resin component in these embodiments does not need to be completely polymerized or crosslinked, and may be partially unpolymerized or uncrosslinked.
 本法(2)における本混練物2は、さらに無機フィラーを含有してもよい。本法(2)における無機フィラーの定義および範囲は、好適な態様も含めて、本法(1)における無機フィラーと同様である。本混練物2が無機フィラーを含有する場合、本混練物2および本分散液2の分散安定性の観点、本分散液2から成形する成形物の低誘電正接性と低線膨張性との観点から、本混練物2中の無機フィラーの量は、1から50質量%が好ましい。
 本法(2)における本混練物2中の液状化合物1の含有量は、10質量%以上が好ましい。液状化合物1の含有量は、60質量%以下が好ましく、25質量%以下がより好ましい。これにより、本パウダーや本異なる樹脂が常に半溶解または膨潤状態を維持しつつ、混練が進行し、本パウダー、本異なる樹脂および液状化合物1が均一に混合される。
The kneaded product 2 in the present method (2) may further contain an inorganic filler. The definition and scope of the inorganic filler in the present method (2) are the same as those of the inorganic filler in the present method (1), including preferred embodiments. When the kneaded product 2 contains an inorganic filler, the viewpoint of the dispersion stability of the main kneaded product 2 and the main dispersion liquid 2, and the viewpoints of low dielectric adjacency and low linear expansion of the molded product molded from the main dispersion liquid 2. Therefore, the amount of the inorganic filler in the kneaded product 2 is preferably 1 to 50% by mass.
The content of the liquid compound 1 in the kneaded product 2 in the present method (2) is preferably 10% by mass or more. The content of the liquid compound 1 is preferably 60% by mass or less, more preferably 25% by mass or less. As a result, the kneading proceeds while the powder and the different resins are always maintained in a semi-dissolved or swollen state, and the powder, the different resins and the liquid compound 1 are uniformly mixed.
 本混練物2中の固形分は、上記本パウダーとFポリマーと本異なる樹脂とを含有する。なお、本混練物2の固形分には、上記本パウダーおよび本異なる樹脂以外の、本分散液2から形成される成形物において固形分を形成する物質、例えば、上記無機フィラー等も含まれる。
 混練により分散性に優れた本ペースト2が得られやすい観点から、本混練物2の全質量を100質量%として、固形分量は、40質量%以上が好ましく、50質量%以上がより好ましい。また、本分散液の分散性の観点から、固形分量は、90質量%以下が好ましく、75質量%以下がより好ましい。
 固形分は、本パウダーおよび本異なる樹脂以外の不揮発性の成分を含んでもよく、固形分中の本パウダーと本異なる樹脂との合計量は、固形分の全質量を100質量%として、60質量%以上が好ましく、70質量%以上がより好ましい。上記合計量は、100質量%以下が好ましい。
The solid content in the kneaded product 2 contains the above powder, the F polymer, and a different resin. The solid content of the kneaded product 2 also includes substances other than the powder and the different resins that form the solid content in the molded product formed from the dispersion liquid 2, such as the inorganic filler.
From the viewpoint that the present paste 2 having excellent dispersibility can be easily obtained by kneading, the total mass of the main kneaded product 2 is 100% by mass, and the solid content is preferably 40% by mass or more, more preferably 50% by mass or more. Further, from the viewpoint of dispersibility of the present dispersion, the solid content is preferably 90% by mass or less, more preferably 75% by mass or less.
The solid content may contain non-volatile components other than the present powder and the present different resin, and the total amount of the present powder and the present different resin in the solid content is 60 mass with 100% by mass of the total mass of the solid content. % Or more is preferable, and 70% by mass or more is more preferable. The total amount is preferably 100% by mass or less.
 本法(2)において、本混練物2における、本パウダーと本異なる樹脂との質量比は、本パウダーの質量を1として、本異なる樹脂の質量が0.01から0.5であるか、2から1000であるのが好ましい。この場合、本混練物2が分散性に優れやすく、得られる本分散液2が分散安定性に優れやすい。すなわち、上記比が前者の範囲にあれば、本パウダーが本異なる樹脂で被覆されたコンポジットともみなせる成分が形成され、本ペースト2の分散性が向上しやすい。また、上記比が後者の範囲にあれば、本異なる樹脂中に本パウダーが高度に分散し、本ペースト2の分散性が向上しやすい。
 前者の範囲にある上記比は、0.005から0.2がより好ましく、0.01から0.1がさらに好ましい。後者の範囲にある上記比は、3から500がより好ましく、5から100がさらに好ましい。この場合、本混練物2および得られる本分散液2が、界面活性剤を含まない場合にも分散安定性に優れやすい。
In the present method (2), the mass ratio of the present powder to the present different resin in the present kneaded product 2 is whether the mass of the present different resin is 0.01 to 0.5, where the mass of the present powder is 1. It is preferably 2 to 1000. In this case, the kneaded product 2 tends to have excellent dispersibility, and the obtained dispersion liquid 2 tends to have excellent dispersion stability. That is, when the above ratio is within the former range, a component that can be regarded as a composite in which the powder is coated with different resins is formed, and the dispersibility of the paste 2 is likely to be improved. Further, when the above ratio is in the latter range, the powder is highly dispersed in the different resins, and the dispersibility of the paste 2 is likely to be improved.
The ratio in the former range is more preferably 0.005 to 0.2 and even more preferably 0.01 to 0.1. The ratio in the latter range is more preferably 3 to 500 and even more preferably 5 to 100. In this case, the kneaded product 2 and the obtained dispersion liquid 2 tend to have excellent dispersion stability even when they do not contain a surfactant.
 また、上記比とは別に、本混練物2および本分散液2の分散安定性、本分散液2から形成する成形物の低誘電正接性の観点から、本混練物2中の固形分中の本パウダーの量は、固形分量を100質量%として、25質量%以上が好ましく、50質量%以上がより好ましい。本パウダーの量は、99質量%以下が好ましく、90質量%以下がより好ましい。
 固形分中の本異なる樹脂の量は、固形分量を100質量%として、1質量%以上が好ましく、5質量%以上がより好ましい。本異なる樹脂の量は、30質量%以下が好ましく、20質量%以下がより好ましい。
 固形分量を100質量%として、固形分中の本パウダーの量は、25質量%以上、本異なる樹脂の量は、1質量%以上であるのがさらに好ましい。
In addition to the above ratio, from the viewpoint of dispersion stability of the kneaded product 2 and the dispersion liquid 2 and low dielectric loss tangent property of the molded product formed from the dispersion liquid 2, the solid content in the kneaded product 2 The amount of the present powder is preferably 25% by mass or more, more preferably 50% by mass or more, with the solid content as 100% by mass. The amount of this powder is preferably 99% by mass or less, more preferably 90% by mass or less.
The amount of the different resins in the solid content is preferably 1% by mass or more, more preferably 5% by mass or more, with the solid content as 100% by mass. The amount of the different resins is preferably 30% by mass or less, more preferably 20% by mass or less.
It is more preferable that the amount of the present powder in the solid content is 25% by mass or more and the amount of the different resins is 1% by mass or more, assuming that the solid content is 100% by mass.
 本法(2)において、組成物2を混練して本混練物2を得る場合、組成物2は、本パウダーと本異なる樹脂と液状化合物1とを混合して調製できる。
 混合の方法としては、本パウダーと本異なる樹脂と液状化合物1とを一括して混合する方法、本パウダーと本異なる樹脂と液状化合物1とを順次添加しながら混合する方法が挙げられる。
In the present method (2), when the composition 2 is kneaded to obtain the main kneaded product 2, the composition 2 can be prepared by mixing the present powder with a different resin and the liquid compound 1.
Examples of the mixing method include a method of collectively mixing the powder, the different resin and the liquid compound 1, and a method of sequentially adding the powder, the different resin and the liquid compound 1 and mixing them.
 混合の具体的な方法としては、例えば、液状化合物1に、本パウダーと本異なる樹脂とを一括して添加して混合する方法、液状化合物1に、本パウダーと本異なる樹脂とを順次添加しながら混合する方法、予め本パウダーと本異なる樹脂とを混合し、得られた混合物と液状化合物1とを混合する方法、予め本パウダーと液状化合物1とを、本異なる樹脂と液状化合物1とをそれぞれ混合し、得られた2種の混合物をさらに混合する方法等が挙げられる。
 上記混合方法の中では、組成物の分散性の観点から、予め本異なる樹脂と液状化合物1とを混合し、得られた混合物と本パウダーとを混合する方法が好ましい。
Specific methods for mixing include, for example, a method in which the powder and the different resins are collectively added to the liquid compound 1 and mixed, and the powder and the different resins are sequentially added to the liquid compound 1. A method of mixing the powder and the different resin in advance, and a method of mixing the obtained mixture and the liquid compound 1 in advance, the powder and the liquid compound 1 in advance, and the different resin and the liquid compound 1 in advance. Examples thereof include a method of mixing each of them and further mixing the obtained two kinds of mixtures.
Among the above mixing methods, from the viewpoint of dispersibility of the composition, a method in which the different resin and the liquid compound 1 are mixed in advance and the obtained mixture and the present powder are mixed is preferable.
 本法(2)において、組成物2を混練して本混練物2を得るのが好ましい。本法(2)における本混練物2は、本ペースト2または本練粉2であるのが好ましい。
 本ペースト2は、界面活性剤を含むのが好ましい。界面活性剤としては、上述した本法(1)における界面活性剤と同様の界面活性剤が挙げられる。
 本ペースト2が界面活性剤を含む場合、本ペースト2中の界面活性剤の含有量は、1から15質量%が好ましい。この場合、成分同士の間の親和性が増し、本分散液2の分散安定性がより向上しやすい。
In the present method (2), it is preferable to knead the composition 2 to obtain the main kneaded product 2. The main kneaded product 2 in the present method (2) is preferably the main paste 2 or the main kneaded powder 2.
The paste 2 preferably contains a surfactant. Examples of the surfactant include the same surfactants as those in the above-mentioned method (1).
When the present paste 2 contains a surfactant, the content of the surfactant in the present paste 2 is preferably 1 to 15% by mass. In this case, the affinity between the components is increased, and the dispersion stability of the present dispersion 2 is likely to be further improved.
 界面活性剤を含む本ペースト2は、本パウダーと本異なる樹脂と界面活性剤とを含む組成物を混練して調製してもよく、本パウダーと本異なる樹脂と液状化合物1とを含む組成物を混練し、さらに界面活性剤を添加し混練して調製してもよく、本パウダーと界面活性剤と液状化合物1とを含む組成物を混練し、さらに本異なる樹脂を添加し混練して調製してもよく、本パウダーと本異なる樹脂と液状化合物1とを含む組成物を混練し、さらに界面活性剤を添加し混練して調製するのが好ましい。
 この場合、組成物を混練する際に本パウダーに剪断がかかりやすく、本ペースト2の粘度が低下して、得られる本分散液2の分散安定性が一層向上しやすい。
 なお、本異なる樹脂と界面活性剤と無機フィラーとを含む本分散液2を得る方法としては、無機フィラーと本パウダーとの混合物と、液状化合物1と、本異なる樹脂とを混練して混練物を得、混練物と界面活性剤とを混練して本ペースト2を得、本ペースト2と液状化合物2とを混合する方法が好ましい。
The present paste 2 containing the surfactant may be prepared by kneading the composition containing the present powder, the present different resin and the surfactant, or the composition containing the present powder, the present different resin and the liquid compound 1. May be prepared by kneading, and then adding a surfactant and kneading to prepare. The composition containing the present powder, the surfactant and the liquid compound 1 is kneaded, and further, the present different resin is added and kneaded to prepare. However, it is preferable to knead the composition containing the present powder, the present different resin and the liquid compound 1, and further add a surfactant and knead to prepare the composition.
In this case, the powder is likely to be sheared when the composition is kneaded, the viscosity of the paste 2 is lowered, and the dispersion stability of the obtained dispersion liquid 2 is more likely to be improved.
As a method for obtaining the dispersion liquid 2 containing the different resin, the surfactant and the inorganic filler, a mixture of the inorganic filler and the powder, the liquid compound 1 and the different resin are kneaded and kneaded. The method is preferable in which the kneaded product and the surfactant are kneaded to obtain the present paste 2 and the present paste 2 and the liquid compound 2 are mixed.
 本分散液が他の材料として無機フィラーと本異なる樹脂の両方を含む場合、本法は、本パウダーおよび無機フィラーを含有する混合物と、本異なる樹脂および液状化合物1を含有する混合物とを混練して本混練物を得、かかる本混練物と液状化合物2とを混合して本分散液を得る態様で実施してもよい。本パウダーおよび無機フィラーを含有する混合物は、粉体状であるのが好ましい。かかる態様によれば、本混練物と得られる本分散液との分散安定性が向上するだけでなく、本分散液を長期保管した場合の貯蔵安定性も向上しやすい。なお、本分散液を25℃にて30日間静置した場合における、チキソ比の変動幅は絶対値として、3以下が好ましく、1未満が好ましい。
 かかる態様における本混練物または本分散液は、界面活性剤を含まないのが好ましい。界面活性剤を含まない場合にも、本ペーストと得られる本分散液は分散安定性に優れやすく、電気特性に優れた成形物を得やすい。これらの効果は、本混練物が本練粉である場合に、特に顕著になりやすい。
When the dispersion contains both the inorganic filler and the different resin as other materials, the method kneads the mixture containing the powder and the inorganic filler with the mixture containing the different resin and the liquid compound 1. The present kneaded product may be obtained, and the present kneaded product and the liquid compound 2 may be mixed to obtain the present dispersion liquid. The mixture containing the present powder and the inorganic filler is preferably in the form of powder. According to such an embodiment, not only the dispersion stability of the kneaded product and the obtained dispersion liquid is improved, but also the storage stability of the dispersion liquid when it is stored for a long period of time is likely to be improved. When the dispersion liquid is allowed to stand at 25 ° C. for 30 days, the fluctuation range of the thixotropy ratio is preferably 3 or less and preferably less than 1 as an absolute value.
The kneaded product or the dispersion liquid in such an embodiment preferably does not contain a surfactant. Even when a surfactant is not contained, the present paste and the obtained dispersion liquid tend to have excellent dispersion stability, and it is easy to obtain a molded product having excellent electrical characteristics. These effects tend to be particularly remarkable when the main kneaded product is the main kneaded powder.
 本分散液を、基材の表面に塗布し、加熱して、Fポリマーからなる層(以下、F層とも記す)を形成すれば、基材とF層とを有する積層体が製造できる。
 上記積層体の製造においては、基材の表面の少なくとも片面にF層が形成されればよく、基材の片面のみにF層が形成されてもよく、基材の両面にF層が形成されてもよい。
 基材の表面は、シランカップリング剤等により表面処理されていてもよい。
 本分散液の塗布に際しては、スプレー法、ロールコート法、スピンコート法、グラビアコート法、マイクログラビアコート法、グラビアオフセット法、ナイフコート法、キスコート法、バーコート法、ダイコート法、ファウンテンメイヤーバー法、スロットダイコート法の塗布方法を使用できる。
When this dispersion is applied to the surface of a base material and heated to form a layer made of an F polymer (hereinafter, also referred to as an F layer), a laminate having the base material and the F layer can be produced.
In the production of the above-mentioned laminate, the F layer may be formed on at least one side of the surface of the base material, the F layer may be formed on only one side of the base material, and the F layer is formed on both sides of the base material. You may.
The surface of the base material may be surface-treated with a silane coupling agent or the like.
When applying this dispersion, the spray method, roll coating method, spin coating method, gravure coating method, micro gravure coating method, gravure offset method, knife coating method, kiss coating method, bar coating method, die coating method, fountain Mayer bar method , The application method of the slot die coating method can be used.
 F層は、加熱により上記液状化合物1および液状化合物2(以下、総称して、液状化合物とも記す)を除去した後に、さらに加熱によりFポリマーを焼成して形成するのが好ましい。
 液状化合物の除去の温度は、できるだけ低温が好ましく、液状化合物1の沸点および液状化合物2の沸点のうち、低い方の沸点より50から150℃低い温度が好ましい。例えば、沸点が約200℃のN-メチル-2-ピロリドンを液状化合物1および2として用いる場合、150℃以下、好ましくは100から120℃で、本分散液を加熱するのが好ましい。液状化合物を除去する工程で空気を吹き付けるのが好ましい。
 液状化合物を除去した後、基材をFポリマーが焼成する温度領域に加熱してF層を形成するのが好ましく、例えば、300から400℃の範囲でFポリマーを焼成するのが好ましい。すなわち、F層は、Fポリマーの焼成物を含むのが好ましい。
The F layer is preferably formed by removing the liquid compound 1 and the liquid compound 2 (hereinafter, also collectively referred to as liquid compounds) by heating, and then firing the F polymer by heating.
The temperature for removing the liquid compound is preferably as low as possible, and is preferably 50 to 150 ° C. lower than the lower boiling point of the boiling point of the liquid compound 1 and the boiling point of the liquid compound 2. For example, when N-methyl-2-pyrrolidone having a boiling point of about 200 ° C. is used as the liquid compounds 1 and 2, it is preferable to heat the dispersion at 150 ° C. or lower, preferably 100 to 120 ° C. It is preferable to blow air in the step of removing the liquid compound.
After removing the liquid compound, it is preferable to heat the base material to a temperature range in which the F polymer is fired to form the F layer. For example, it is preferable to fire the F polymer in the range of 300 to 400 ° C. That is, the F layer preferably contains a fired product of the F polymer.
 F層は、上述の通り、本分散液の塗布、乾燥、焼成の工程を経て形成される。これらの各工程は、1回でも2回以上行ってもよい。
 例えば、F層は、基材の表面に上記本分散液を塗布し、加熱により液状化合物を除去して膜を形成する工程を2回繰り返し、厚さを大きくした膜を加熱して、Fポリマーを焼成して形成してもよい。
 平滑性に優れた厚いF層を得やすい観点から、本分散液の塗布、乾燥の工程を2回行うのが好ましい。
 F層の厚さは、0.1μm以上が好ましく、1μm以上がより好ましい。厚さの上限は、200μmである。この範囲において、耐クラック性に優れたF層を容易に形成できる。
As described above, the F layer is formed through the steps of coating, drying, and firing the dispersion liquid. Each of these steps may be performed once or twice or more.
For example, in the F layer, the step of applying the above dispersion liquid to the surface of the base material, removing the liquid compound by heating to form a film is repeated twice, and the film having an increased thickness is heated to heat the F polymer. May be formed by firing.
From the viewpoint of easily obtaining a thick F layer having excellent smoothness, it is preferable to carry out the steps of applying and drying the dispersion liquid twice.
The thickness of the F layer is preferably 0.1 μm or more, and more preferably 1 μm or more. The upper limit of the thickness is 200 μm. In this range, the F layer having excellent crack resistance can be easily formed.
 F層と基材との剥離強度は、10N/cm以上が好ましく、15N/cm以上がより好ましい。上記剥離強度は、100N/cm以下が好ましい。本分散液を用いれば、F層におけるFポリマーの物性を損なわずに、かかる本積層体を容易に形成できる。
 F層の空隙率は、5%以下が好ましく、4%以下がより好ましい。空隙率は、0.01%以上が好ましく、0.1%以上がより好ましい。
 なお、空隙率は、走査型電子顕微鏡(SEM)を用いて観察される成形物の断面におけるSEM写真から、画像処理にてF層の空隙部分を判定し、空隙部分が占める面積をF層の面積で除した割合(%)である。空隙部分が占める面積は、空隙部分を円形と近似して求められる。
The peel strength between the F layer and the base material is preferably 10 N / cm or more, more preferably 15 N / cm or more. The peel strength is preferably 100 N / cm or less. By using this dispersion, such a laminate can be easily formed without impairing the physical properties of the F polymer in the F layer.
The porosity of the F layer is preferably 5% or less, more preferably 4% or less. The porosity is preferably 0.01% or more, more preferably 0.1% or more.
For the void ratio, the void portion of the F layer is determined by image processing from the SEM photograph of the cross section of the molded product observed using a scanning electron microscope (SEM), and the area occupied by the void portion is the area occupied by the F layer. It is the ratio (%) divided by the area. The area occupied by the void portion is obtained by approximating the void portion to a circle.
 基材としては、銅、ニッケル、アルミニウム、チタン、それらの合金等の金属箔等の金属基板、ポリイミド、ポリアリレート、ポリスルホン、ポリアリルスルホン、ポリアミド、ポリエーテルアミド、ポリフェニレンスルフィド、ポリアリルエーテルケトン、ポリアミドイミド、液晶性ポリエステル、液晶性ポリエステルアミド等のフィルムの樹脂フィルム、繊維強化樹脂基板の前駆体であるプリプレグが挙げられる。
 基材の形状としては、平面状、曲面状、凹凸状が挙げられ、さらに、箔状、板状、膜状、繊維状のいずれであってもよい。
 基材の表面の十点平均粗さは、0.1μm未満が好ましく、0.05μm以下がより好ましい。前記十点平均粗さは、0.001μm以上が好ましい。かかる無粗化基材であっても、本分散液からは剥離強度に優れた積層体が得られ、かかる積層体から伝送特性に優れたプリント基板等を形成できる。なお、基材の表面の十点平均粗さは、JIS B 0601:2013の附属書JAで規定される値である。
 基材の厚さは、2から100μmが好ましい。基材が金属箔である場合には、基材の厚さは1から35μmであるのが好ましい。また、基材は、剥離層を介してキャリア銅箔上に積層された厚さ2から5μmの極薄銅箔であるキャリア付金属箔であってもよい。
Examples of the base material include metal substrates such as metal foils such as copper, nickel, aluminum, titanium, and alloys thereof, polyimides, polyarylates, polysulfones, polyallylsulfones, polyamides, polyetheramides, polyphenylene sulfides, and polyallyl ether ketones. Examples thereof include a resin film of a film such as polyamideimide, a liquid crystal polyester, and a liquid crystal polyester amide, and a prepreg which is a precursor of a fiber-reinforced resin substrate.
Examples of the shape of the base material include a flat shape, a curved surface shape, and an uneven shape, and further, any of a foil shape, a plate shape, a film shape, and a fibrous shape may be used.
The ten-point average roughness of the surface of the base material is preferably less than 0.1 μm, more preferably 0.05 μm or less. The ten-point average roughness is preferably 0.001 μm or more. Even with such a non-roughened base material, a laminated body having excellent peel strength can be obtained from the present dispersion, and a printed circuit board or the like having excellent transmission characteristics can be formed from the laminated body. The ten-point average roughness of the surface of the base material is a value specified in Annex JA of JIS B 0601: 2013.
The thickness of the base material is preferably 2 to 100 μm. When the base material is a metal foil, the thickness of the base material is preferably 1 to 35 μm. Further, the base material may be a metal foil with a carrier, which is an ultrathin copper foil having a thickness of 2 to 5 μm laminated on the carrier copper foil via a release layer.
 積層体の好適な態様としては、金属箔とその少なくとも一方の表面に形成されたF層とを有する金属張積層体、樹脂フィルムとその少なくとも一方の表面に形成されたF層とを有する多層フィルムが挙げられる。
 金属張積層体における金属箔は、銅箔であるのが好ましい。かかる金属張積層体は、プリント基板材料として特に有用である。
 多層フィルムにおける樹脂フィルムは、ポリイミドフィルムであるのが好ましい。かかる多層フィルムは、電線被覆材料、プリント基板材料として有用である。
 ポリイミドフィルムの具体例としては、「カプトン50EN-S」(東レ・デュポン株式会社製)、「カプトン100EN」(東レ・デュポン株式会社製)、「カプトン100H」(東レ・デュポン株式会社製)、「カプトン100KJ」(デュポン社製)、「カプトン100JP」(米国デュポン社製)、「カプトン100LK」(東レ・デュポン株式会社製)が挙げられる。
 なお、プリント基板には、フレキシブルプリント基板、リジッドプリント基板が含まれる。
Preferable embodiments of the laminate include a metal-clad laminate having a metal foil and an F layer formed on at least one surface thereof, and a multilayer film having a resin film and an F layer formed on at least one surface thereof. Can be mentioned.
The metal foil in the metal-clad laminate is preferably a copper foil. Such a metal-clad laminate is particularly useful as a printed circuit board material.
The resin film in the multilayer film is preferably a polyimide film. Such a multilayer film is useful as an electric wire coating material and a printed circuit board material.
Specific examples of the polyimide film include "Kapton 50EN-S" (manufactured by Toray DuPont Co., Ltd.), "Kapton 100EN" (manufactured by Toray DuPont Co., Ltd.), "Kapton 100H" (manufactured by Toray DuPont Co., Ltd.), and " Examples include "Kapton 100KJ" (manufactured by DuPont), "Kapton 100JP" (manufactured by DuPont in the United States), and "Kapton 100LK" (manufactured by Toray DuPont Co., Ltd.).
The printed circuit board includes a flexible printed circuit board and a rigid printed circuit board.
 F層の基材と反対側には、さらに他の基材を積層して、多層積層体としてもよい。積層は、例えば、熱圧着により行える。
 かかる多層積層体の構成としては、基材/F層/他の基材/F層/基材、金属基板層/他の基材層/F層/他の基材層/金属基板層等が挙げられる。それぞれの層には、さらに、ガラスクロスやフィラーが含まれていてもよい。
 かかる積層体は、アンテナ部品、プリント基板、航空機用部品、自動車用部品、スポーツ用具、食品工業用品、塗料、化粧品等として有用であり、具体的には、航空機用電線等の電線被覆材、電気絶縁性テープ、石油掘削用絶縁テープ、プリント基板用材料、精密濾過膜、限外濾過膜、逆浸透膜、イオン交換膜、透析膜および気体分離膜等の分離膜、リチウム二次電池用および燃料電池用等の電極バインダー、コピーロール、家具、自動車ダッシュボート、家電製品等のカバー、荷重軸受、すべり軸、バルブ、ベアリング、歯車、カム、ベルトコンベア、食品搬送用ベルト等の摺動部材、シャベル、やすり、きり、のこぎり等の工具、ボイラー、ホッパー、パイプ、オーブン、焼き型、シュート、ダイス、便器、コンテナ被覆材として有用である。
Another base material may be further laminated on the side opposite to the base material of the F layer to form a multilayer laminate. Lamination can be performed, for example, by thermocompression bonding.
The structure of such a multilayer laminate includes a base material / F layer / another base material / F layer / base material, a metal substrate layer / another base material layer / F layer / another base material layer / metal substrate layer, and the like. Can be mentioned. Each layer may further contain a glass cloth or filler.
Such laminates are useful as antenna parts, printed substrates, aircraft parts, automobile parts, sports equipment, food industry supplies, paints, cosmetics, etc. Specifically, wire coating materials such as aircraft electric wires, electricity. Insulating tapes, insulating tapes for oil drilling, materials for printed substrates, precision filtration membranes, ultrafiltration membranes, reverse osmosis membranes, ion exchange membranes, separation membranes such as dialysis membranes and gas separation membranes, lithium secondary batteries and fuels. Electrode binders for batteries, copy rolls, furniture, automobile dashboards, covers for home appliances, load bearings, sliding shafts, valves, bearings, gears, cams, belt conveyors, sliding members such as food transport belts, shovels It is useful as a tool for shavings, cuttings, saws, boilers, hoppers, pipes, ovens, baking molds, chutes, dies, toilet bowls, and container covering materials.
 本分散液を、織布に含浸させ、加熱により乾燥させれば、Fポリマーが織布に含浸された含浸織布が得られる。含浸織布は、織布がF層で被覆されたまたはF層に埋設された被覆織布とも言える。
 織布は、ガラス繊維織布、カーボン繊維織布、アラミド繊維織布または金属繊維織布が好ましく、ガラス繊維織布またはカーボン繊維織布がより好ましい。織布は、F層との密着接着性を高める観点から、シランカップリング剤で処理されていてもよい。
 含浸織布における、Fポリマーの総含有量は、30から80質量%が好ましい。本分散液を織布に含浸させる方法は、本分散液に織布を浸漬する方法、本分散液を織布に塗布する方法が挙げられる。
When the woven fabric is impregnated with the dispersion liquid and dried by heating, an impregnated woven fabric in which the F polymer is impregnated in the woven fabric is obtained. The impregnated woven fabric can also be said to be a coated woven fabric in which the woven fabric is coated with the F layer or embedded in the F layer.
The woven fabric is preferably a glass fiber woven fabric, a carbon fiber woven fabric, an aramid fiber woven fabric or a metal fiber woven fabric, and more preferably a glass fiber woven fabric or a carbon fiber woven fabric. The woven fabric may be treated with a silane coupling agent from the viewpoint of enhancing the adhesiveness with the F layer.
The total content of the F polymer in the impregnated woven fabric is preferably 30 to 80% by mass. Examples of the method of impregnating the woven fabric with the present dispersion include a method of immersing the woven fabric in the present dispersion and a method of applying the present dispersion to the woven fabric.
 織布の乾燥に際しては、Fポリマーを焼成させてもよい。Fポリマーを焼成させる方法は、織布を300から400℃の雰囲気にある通風乾燥炉に通す方法が挙げられる。
 なお、織布の乾燥とポリマーの焼成とは、一段階で実施してもよい。含浸織布は、F層と織布との密着性(接着性)が高い、表面の平滑性が高い、歪が少ない等の特性に優れている。
 かかる含浸織布と金属箔とを熱圧着させれば、剥離強度が高く、反りにくい金属張積層体が得られ、プリント基板材料として好適に使用できる。
When the woven fabric is dried, the F polymer may be fired. Examples of the method of firing the F polymer include a method of passing the woven fabric through a ventilation drying oven in an atmosphere of 300 to 400 ° C.
The drying of the woven fabric and the firing of the polymer may be carried out in one step. The impregnated woven fabric is excellent in characteristics such as high adhesion (adhesiveness) between the F layer and the woven fabric, high surface smoothness, and little distortion.
By thermocompression bonding the impregnated woven fabric and the metal foil, a metal-clad laminate having high peel strength and resistance to warping can be obtained, which can be suitably used as a printed circuit board material.
 また、含浸織布の製造において、本分散液を含浸させた織布を、基材の表面に貼着等により配置し、加熱して乾燥させることにより、Fポリマーと織布とを含む含浸織布層を形成して、基材と含浸織布層とが、この順に積層された積層体を製造してもよい。
 その態様も、特に限定されず、槽、配管、容器等の部材の内壁面の一部または全部に本分散液を含浸させた織布を貼着し、上記部材を回転させながら加熱すれば、部材の内壁面の一部または全部に含浸織布層を形成できる。この製造方法は、槽、配管、容器等の部材の内壁面のライニング方法としても有用である。
Further, in the production of the impregnated woven fabric, the woven fabric impregnated with the dispersion liquid is placed on the surface of the base material by sticking or the like, and is heated and dried to cause the impregnated woven fabric containing the F polymer and the woven fabric. A fabric layer may be formed to produce a laminate in which the base material and the impregnated woven fabric layer are laminated in this order.
The mode is also not particularly limited, and if a woven fabric impregnated with the present dispersion is attached to a part or all of the inner wall surface of a member such as a tank, a pipe, or a container, and the member is heated while rotating. An impregnated woven fabric layer can be formed on a part or all of the inner wall surface of the member. This manufacturing method is also useful as a lining method for the inner wall surface of members such as tanks, pipes, and containers.
 本分散液は、前記のとおり、分散安定性に優れており、多孔質または繊維状の材料中に、効率的に含浸できる。かかる多孔質または繊維状の材料としては、上述した織布以外の材料、具体的には、板状、柱状または繊維状の材料も挙げられる。
 これらの材料は、硬化性樹脂、シランカップリング剤等で予め前処理されていてもよく、無機フィラー等がさらに充填されていてもよい。また、これらの材料は、撚り合わせて、糸、ケーブル、ワイヤーを形成していてもよい。撚り合わせに際しては、ポリエチレン等の他のポリマーからなる介在層を配置してもよい。
 かかる材料に本分散液を含浸させて成形物を製造する態様としては、硬化性樹脂またはその硬化物が担持された繊維状の材料に本分散液を含浸させる態様が挙げられる。
As described above, this dispersion has excellent dispersion stability and can be efficiently impregnated into a porous or fibrous material. Examples of such porous or fibrous materials include materials other than the above-mentioned woven fabrics, specifically, plate-like, columnar or fibrous materials.
These materials may be pretreated with a curable resin, a silane coupling agent, or the like, or may be further filled with an inorganic filler or the like. In addition, these materials may be twisted to form threads, cables, and wires. At the time of twisting, an interposition layer made of another polymer such as polyethylene may be arranged.
An embodiment in which such a material is impregnated with the present dispersion to produce a molded product includes an embodiment in which a curable resin or a fibrous material on which the cured product is supported is impregnated with the present dispersion.
 繊維状の材料としては、炭素繊維、アラミド繊維、炭化珪素繊維等の高強度かつ低伸度の繊維が挙げられる。硬化性樹脂としては、エポキシ樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂等の熱硬化性樹脂が好ましい。
 かかる態様の具体例としては、熱硬化性樹脂が担持された炭素繊維を撚り合わせたケーブルに本分散液を含浸させ、さらに加熱してFポリマーを焼成させて形成される複合ケーブルが挙げられる。かかる複合ケーブルは、大型構造物用、グラウンドアンカー用、石油掘削用、クレーン用、索道用、エレベーター用、農林水産用、玉掛索用のケーブルとして有用である。
Examples of the fibrous material include high-strength and low-elongation fibers such as carbon fiber, aramid fiber, and silicon carbide fiber. As the curable resin, a thermosetting resin such as an epoxy resin, an unsaturated polyester resin, or a polyurethane resin is preferable.
Specific examples of such an embodiment include a composite cable formed by impregnating a cable in which carbon fibers supported by a thermosetting resin are twisted with the present dispersion liquid and further heating the cable to fire an F polymer. Such a composite cable is useful as a cable for large structures, ground anchors, oil drilling, cranes, cableways, elevators, agriculture, forestry and fisheries, and slinging cables.
 前記のとおり、本法によれば、本パウダーと無機フィラーおよび本異なる樹脂からなる群から選ばれる少なくとも1種の他の材料と、液状化合物1とを混練することで、本混練物が得られ、かかる本混練物と液状化合物2とを混合することで、分散性と分散安定性とに優れた本分散液が得られる。 As described above, according to this method, the kneaded product can be obtained by kneading the liquid compound 1 with at least one other material selected from the group consisting of the powder, the inorganic filler and the different resins. By mixing the kneaded product with the liquid compound 2, a dispersion liquid having excellent dispersibility and dispersion stability can be obtained.
 以上、本発明の分散液の製造方法、ペーストおよび練粉について説明したが、本発明は、上述した実施形態の構成に限定されない。
 例えば、本発明の分散液の製造方法は、上記実施形態の構成において、他の任意の工程を追加で有してもよいし、同様の作用を生じる任意の工程と置換されていてよい。
 また、本発明のペーストおよび練粉は、上記実施形態の構成において、他の任意の構成を追加してもよいし、同様の機能を発揮する任意の構成と置換されていてよい。
Although the method for producing the dispersion liquid of the present invention, the paste and the kneading powder have been described above, the present invention is not limited to the configuration of the above-described embodiment.
For example, the method for producing a dispersion liquid of the present invention may additionally have any other step in the configuration of the above embodiment, or may be replaced with any step that produces the same action.
Further, the paste and the dough of the present invention may be added with any other composition or may be replaced with any composition exhibiting the same function in the composition of the above-described embodiment.
 以下、実施例によって本発明を詳細に説明するが、本発明はこれらに限定されない。
 1.各成分の準備
 [パウダー]
 パウダー1:TFE単位、NAH単位およびPPVE単位を、この順に97.9モル%、0.1モル%、2.0モル%含み、カルボニル基を主鎖炭素数1×10個あたり1000個有するポリマーからなるパウダー(D50:2.1μm)
 パウダー2:TFE単位およびPPVE単位を、この順に98.7モル%、1.3モル%含み、カルボニル基を主鎖炭素数1×10個あたり40個有するポリマーからなるパウダー(D50:1.8μm)
Hereinafter, the present invention will be described in detail by way of examples, but the present invention is not limited thereto.
1. 1. Preparation of each ingredient [Powder]
Powder 1: Contains 97.9 mol%, 0.1 mol%, and 2.0 mol% of TFE units, NAH units, and PPVE units in this order, and has 1000 carbonyl groups per 1 × 10 6 main chain carbon atoms. Polymer powder (D50: 2.1 μm)
Powder 2: A powder consisting of a polymer containing 98.7 mol% and 1.3 mol% of TFE units and PPVE units in this order and having 40 carbonyl groups per 1 × 10 6 main chain carbon atoms (D50: 1. 8 μm)
 [無機フィラー]
 フィラー1:中空状の球状シリカフィラー(D50:0.7μm、表面がシランカップリング剤により表面処理されている。)
 フィラー2:非中空状のシリカフィラー(D50:0.4μm、粒子強度;20MPa以上)
 フィラー3:ステアタイトフィラー
 フィラー4:窒化ホウ素からなる、鱗片状のフィラー(D50:14.6μm)
[Inorganic filler]
Filler 1: Hollow spherical silica filler (D50: 0.7 μm, surface treated with silane coupling agent)
Filler 2: Non-hollow silica filler (D50: 0.4 μm, particle strength; 20 MPa or more)
Filler 3: Steatite Filler Filler 4: Scale-like filler made of boron nitride (D50: 14.6 μm)
 [芳香族ポリマー]
 ワニス1:熱可塑性の芳香族ポリイミド(PI1)がNMPに溶解したワニス
 [界面活性剤]
 界面活性剤1:CH=C(CH)C(O)OCHCH(CFFとCH=C(CH)C(O)(OCHCH23OHとのコポリマー
 [液状化合物]
 NMP:N-メチル-2-ピロリドン
 [ポリイミドフィルム]
 ポリイミドフィルム1:厚さが50μmの芳香族性ポリイミドフィルム(東レ・デュポン株式会社製、「カプトン100LK」)
[Aromatic polymer]
Varnish 1: Varnish in which thermoplastic aromatic polyimide (PI1) is dissolved in NMP [surfactant]
Surfactant 1: CH 2 = C (CH 3 ) C (O) OCH 2 CH 2 (CF 2 ) 6 F and CH 2 = C (CH 3 ) C (O) (OCH 2 CH 2 ) 23 OH Copolymer [Liquid compound]
NMP: N-methyl-2-pyrrolidone [polyimide film]
Polyimide film 1: Aromatic polyimide film with a thickness of 50 μm (manufactured by Toray DuPont Co., Ltd., “Kapton 100LK”)
 2.分散液の製造例
 [例1]
 まず、パウダー1とNMPとをポットに投入して混合した。さらに、ポットに、フィラー1、フィラー2、界面活性剤1およびワニス1を投入して混合し、液状組成物を調製した。
 続いて、プラネタリーミキサーに、調製した液状組成物を投入し、混練して、パウダー1(35質量部)、フィラー1(14質量部)、フィラー2(14質量部)、PI1(7質量部)、界面活性剤1(3質量部)およびNMP(27質量部)を含むペースト1を得た。ペースト1の粘度は、28000mPa・sであった。
 ペースト1に、NMPを複数回に分けて添加して撹拌し、自転公転撹拌機にて2000rpmで1分間脱泡した。さらに、NMPを、複数回に分けて添加して撹拌し、全体として80質量部のNMPをペースト1に添加して、分散液1を得た。分散液1の粘度は、400mPa・sであった。
2. Production example of dispersion liquid [Example 1]
First, powder 1 and NMP were put into a pot and mixed. Further, the filler 1, the filler 2, the surfactant 1 and the varnish 1 were put into the pot and mixed to prepare a liquid composition.
Subsequently, the prepared liquid composition is put into a planetary mixer, kneaded, and powder 1 (35 parts by mass), filler 1 (14 parts by mass), filler 2 (14 parts by mass), PI1 (7 parts by mass). ), Surfactant 1 (3 parts by mass) and NMP (27 parts by mass) to obtain a paste 1. The viscosity of the paste 1 was 28,000 mPa · s.
NMP was added to the paste 1 in a plurality of times, stirred, and defoamed at 2000 rpm for 1 minute with a rotation / revolution stirrer. Further, NMP was added in a plurality of times and stirred, and 80 parts by mass of NMP as a whole was added to the paste 1 to obtain a dispersion liquid 1. The viscosity of the dispersion liquid 1 was 400 mPa · s.
 [例2から例4]
 パウダーおよびフィラーの種類または量を変更した以外は、ペースト1と同様にしてペースト2から4を得、分散液1と同様にして分散液2から4を調整した。
[Example 2 to Example 4]
Pastes 2 to 4 were obtained in the same manner as in Paste 1, and dispersions 2 to 4 were prepared in the same manner as in dispersion 1 except that the types or amounts of powder and filler were changed.
 [例5]
 ポットに、ワニス1とNMPとを投入し、混合した。さらに、ポットに、パウダー1、フィラー1およびフィラー2のドライブレンド物を投入して混合し、液状組成物を調製した。
 続いて、プラネタリーミキサーに、調製した液状組成物を投入し、混練した。さらに、プラネタリーミキサーに、界面活性剤1を投入し、混練し、パウダー1(35質量部)、フィラー1(14質量部)、フィラー2(14質量部)、PI1(7質量部)、界面活性剤1(3質量部)およびNMP(27質量部)を含むペースト5を得た。ペースト5の粘度は、11000mPa・sであった。
 ペースト5に、NMPを複数回に分けて添加して撹拌し、自転公転撹拌機にて2000rpmで1分間脱泡した。さらに、NMPを、複数回に分けて添加して撹拌し、全体として80質量部のNMPをペースト5に添加して分散液を調製し、分散液5を得た。分散液5の粘度は、200mPa・sであった。
[Example 5]
Varnish 1 and NMP were put into a pot and mixed. Further, a dry blend of powder 1, filler 1 and filler 2 was put into a pot and mixed to prepare a liquid composition.
Subsequently, the prepared liquid composition was put into a planetary mixer and kneaded. Further, the surfactant 1 is put into a planetary mixer, kneaded, and the powder 1 (35 parts by mass), the filler 1 (14 parts by mass), the filler 2 (14 parts by mass), the PI1 (7 parts by mass), and the interface. A paste 5 containing activator 1 (3 parts by mass) and NMP (27 parts by mass) was obtained. The viscosity of the paste 5 was 11000 mPa · s.
NMP was added to the paste 5 in a plurality of times and stirred, and defoamed at 2000 rpm for 1 minute with a rotation / revolution stirrer. Further, NMP was added in a plurality of times and stirred, and 80 parts by mass of NMP as a whole was added to the paste 5 to prepare a dispersion liquid to obtain a dispersion liquid 5. The viscosity of the dispersion liquid 5 was 200 mPa · s.
 [例6]
 ポットに、ワニス1とNMPとを投入し、混合した。さらに、ポットに、パウダー1、を投入して混合し、液状組成物を調製した。
 続いて、プラネタリーミキサーに、調整した液状組成物を投入し、混練し、パウダー1(5質量部)、PI1(50質量部)およびNMP(45質量部)を含むペースト6を得た。ペースト6の粘度は、30000mPa・sであった。
 ペースト6に、NMPを複数回に分けて添加して撹拌し、自転公転撹拌機にて2000rpmで1分間脱泡した。さらに、NMPを、複数回に分けて撹拌し、全体として80質量部のNMPをペースト6に添加して分散液を調製し、分散液6を得た。分散液6の粘度は、300mPa・sであった。
[Example 6]
Varnish 1 and NMP were put into a pot and mixed. Further, powder 1 was put into a pot and mixed to prepare a liquid composition.
Subsequently, the prepared liquid composition was put into a planetary mixer and kneaded to obtain a paste 6 containing powder 1 (5 parts by mass), PI1 (50 parts by mass) and NMP (45 parts by mass). The viscosity of the paste 6 was 30,000 mPa · s.
NMP was added to the paste 6 in a plurality of times and stirred, and defoamed at 2000 rpm for 1 minute with a rotation / revolution stirrer. Further, the NMP was stirred in a plurality of times, and 80 parts by mass of NMP as a whole was added to the paste 6 to prepare a dispersion liquid to obtain a dispersion liquid 6. The viscosity of the dispersion liquid 6 was 300 mPa · s.
 [例7(比較例)]
 ポットに、パウダー1、フィラー1、フィラー2、ワニス1、界面活性剤1およびNMPを投入し、ジルコニアボールを投入した。その後、150rpmにて1時間、ポットを転がし、ペーストを得ることなく、パウダー1(35質量部)、フィラー1(14質量部)、フィラー2(14質量部)、PI1(7質量部)、界面活性剤1(3質量部)およびNMP(97質量部)を含む分散液7を得た。
[Example 7 (Comparative example)]
Powder 1, filler 1, filler 2, varnish 1, surfactant 1 and NMP were put into the pot, and zirconia balls were put into the pot. Then, the pot was rolled at 150 rpm for 1 hour to obtain powder 1 (35 parts by mass), filler 1 (14 parts by mass), filler 2 (14 parts by mass), PI1 (7 parts by mass), and an interface without obtaining a paste. A dispersion 7 containing activator 1 (3 parts by mass) and NMP (97 parts by mass) was obtained.
 それぞれのペーストの、成分および粘度を下表1にまとめて示す。
Figure JPOXMLDOC01-appb-T000001
The components and viscosities of each paste are summarized in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
 [例8]
 ポットに、ワニス1とNMPとを投入し混合した。さらに、ポットに、パウダー1とフィラー4の粉体混合物を投入して混合し、組成物を調製した。この組成物をプラネタリーミキサー中にて混練してから取り出し、パウダー1(50質量部)、フィラー4(40質量部)およびPI1(10質量部)、NMP(30質量部)を含む練粉1を得た。練粉1は、塊状かつ粘土状であった。
 練粉1に、NMPを複数回に分けて添加しつつ、自転公転撹拌機にて2000rpmで脱泡しながら撹拌した。さらに、NMPを、複数回に分けて撹拌し、全体として80質量部のNMPを練粉1に添加して分散液を調製し、分散液8を得た。分散液8の粘度は、300mPa・sであった。
[Example 8]
Varnish 1 and NMP were put into a pot and mixed. Further, a powder mixture of powder 1 and filler 4 was put into a pot and mixed to prepare a composition. This composition is kneaded in a planetary mixer and then taken out, and the powder 1 containing powder 1 (50 parts by mass), filler 4 (40 parts by mass) and PI1 (10 parts by mass), and NMP (30 parts by mass). Got The kneaded powder 1 was lumpy and clay-like.
NMP was added to the dough 1 in a plurality of times, and the mixture was stirred while defoaming at 2000 rpm with a rotation / revolution stirrer. Further, the NMP was stirred in a plurality of times, and 80 parts by mass of NMP as a whole was added to the kneaded powder 1 to prepare a dispersion liquid, and a dispersion liquid 8 was obtained. The viscosity of the dispersion liquid 8 was 300 mPa · s.
 [例9]
 ポットに、パウダー1、フィラー4、ワニス1、NMPを投入して混合し、組成物を調製した。この組成物をプラネタリーミキサー中にて混練してから取り出し、パウダー1(50質量部)、フィラー4(40質量部)、PI1(10質量部)およびNMP(30質量部)を含む練粉2を得た。練粉2は、塊状かつ粘土状であった。
 練粉2に、NMPを複数回に分けて添加しつつ、自転公転撹拌機にて2000rpmで脱泡しながら撹拌した。さらに、NMPを、複数回に分けて撹拌し、全体として80質量部のNMPを練粉2に添加して分散液を調製し、分散液9を得た。分散液9の粘度は、300mPa・sであった。
[Example 9]
Powder 1, filler 4, varnish 1, and NMP were added to the pot and mixed to prepare a composition. This composition is kneaded in a planetary mixer and then taken out, and a kneaded powder 2 containing powder 1 (50 parts by mass), filler 4 (40 parts by mass), PI1 (10 parts by mass) and NMP (30 parts by mass). Got The kneaded powder 2 was lumpy and clay-like.
NMP was added to the dough 2 in a plurality of times, and the mixture was stirred while defoaming at 2000 rpm with a rotation / revolution stirrer. Further, the NMP was stirred in a plurality of times, and 80 parts by mass of NMP as a whole was added to the kneaded powder 2 to prepare a dispersion liquid, and a dispersion liquid 9 was obtained. The viscosity of the dispersion liquid 9 was 300 mPa · s.
 [例10(比較例)]
 パウダー1(35質量部)とフィラー1(30質量部)を入れて撹拌混合して粉体混合物1を得た。得られた粉体混合物1とNMP(110質量部)を混合して分散液10を得た。分散液10は、調製直後に凝集物が沈殿しているのが視認され、分散性が悪かった。
[Example 10 (Comparative example)]
Powder 1 (35 parts by mass) and filler 1 (30 parts by mass) were added and stirred and mixed to obtain a powder mixture 1. The obtained powder mixture 1 and NMP (110 parts by mass) were mixed to obtain a dispersion liquid 10. In the dispersion liquid 10, it was visually observed that agglomerates were precipitated immediately after the preparation, and the dispersibility was poor.
 なお、パウダー1、フィラー1およびフィラー2のドライブレンド物をプラネタリーミキサーに投入し、さらに、界面活性剤1、ワニス1およびNMPを含む液状組成物を投入する以外は、例1と同様にして混練しても、ペースト1と同等のペーストが得られた。 The same as in Example 1 except that the dry blend of powder 1, filler 1 and filler 2 is charged into the planetary mixer, and the liquid composition containing the surfactant 1, varnish 1 and NMP is further charged. Even after kneading, a paste equivalent to that of Paste 1 was obtained.
 3.積層体の製造例
 [積層体1]
 厚さが18μmの長尺の銅箔の表面に、バーコーターを用いて、長期保管後の分散液1を塗布して、ウェット膜を形成した。次いで、このウェット膜が形成された銅箔を、110℃にて5分間、乾燥炉に通し、加熱により乾燥させて、ドライ膜を得た。その後、窒素オーブン中で、ドライ膜を380℃にて3分間、加熱した。これにより、銅箔と、その表面にパウダー1の溶融焼成物、フィラー1、フィラー2およびPI1を含む、成形物として厚さが20μmのポリマー層を有する積層体1を製造した。
3. 3. Manufacturing example of laminated body [Laminated body 1]
A wet film was formed by applying the dispersion liquid 1 after long-term storage to the surface of a long copper foil having a thickness of 18 μm using a bar coater. Next, the copper foil on which the wet film was formed was passed through a drying oven at 110 ° C. for 5 minutes and dried by heating to obtain a dry film. Then, the dry membrane was heated at 380 ° C. for 3 minutes in a nitrogen oven. As a result, a laminate 1 having a polymer layer having a thickness of 20 μm as a molded product was produced, which contained a copper foil and a melt-fired product of powder 1 and a filler 1, filler 2 and PI1 on the surface thereof.
 [積層体2から9]
 分散液1を、分散液2から9に変更した以外は、積層体1と同様にして、積層体2から9を製造した。なお、積層体8および9においては、ポリマー層の厚さは50μmとした。分散液10は分散性が悪かったため、分散液10からは積層体を製造しなかった。
[Laminates 2 to 9]
Laminates 2 to 9 were produced in the same manner as the laminate 1 except that the dispersion 1 was changed from the dispersion 2 to 9. In the laminated bodies 8 and 9, the thickness of the polymer layer was set to 50 μm. Since the dispersion liquid 10 had poor dispersibility, no laminate was produced from the dispersion liquid 10.
 [積層体10]
 厚さが18μmの長尺の銅箔の表面に、バーコーターを用いて分散液1を塗布して、ウェット膜を形成した。次いで、このウェット膜が形成された銅箔を、110℃にて5分間、乾燥炉に通し、加熱により乾燥させて、ドライ膜を得た。さらに、バーコーターを用いてドライ膜上に分散液を塗布して、ウェット膜を形成し、次いで、ドライ膜とウェット膜が形成された銅箔を、110℃にて5分間、乾燥炉に通し、加熱により乾燥させて、2層のドライ膜を得た。その後、積層体1と同様にして厚さが50μmのポリマー層を形成し、積層体10を製造した。
 なお、ポリマー層の断面を、走査型電子顕微鏡(SEM)を用いて観察したところ、積層体7以外の積層体のポリマー層の空隙率は5%以下であり、積層体7のポリマー層の空隙率は、5%超であった。
[Laminated body 10]
The dispersion liquid 1 was applied to the surface of a long copper foil having a thickness of 18 μm using a bar coater to form a wet film. Next, the copper foil on which the wet film was formed was passed through a drying oven at 110 ° C. for 5 minutes and dried by heating to obtain a dry film. Further, a dispersion liquid is applied onto the dry film using a bar coater to form a wet film, and then the dry film and the copper foil on which the wet film is formed are passed through a drying oven at 110 ° C. for 5 minutes. , It was dried by heating to obtain a two-layer dry film. Then, a polymer layer having a thickness of 50 μm was formed in the same manner as in the laminated body 1, and the laminated body 10 was manufactured.
When the cross section of the polymer layer was observed using a scanning electron microscope (SEM), the void ratio of the polymer layer of the laminate other than the laminate 7 was 5% or less, and the void ratio of the polymer layer of the laminate 7 was 5% or less. The rate was over 5%.
 4.評価
 4-1.分散液の分散安定性の評価
 それぞれの分散液を容器中に25℃にて長期保管保存後、その分散性を目視にて確認し、下記の基準に従って分散安定性を評価した。
 [評価基準]
 〇:凝集物が視認されない。
 △:容器側壁に細かな凝集物の付着が視認される。軽く撹拌すると均一に再分散した。
 ×:容器底部にも凝集物が沈殿しているのが視認される。再分散には強いせん断撹拌を要した。
4. Evaluation 4-1. Evaluation of dispersion stability of dispersions After each dispersion was stored in a container at 25 ° C. for a long period of time, its dispersibility was visually confirmed, and the dispersion stability was evaluated according to the following criteria.
[Evaluation criteria]
〇: Aggregates are not visible.
Δ: Fine agglomerates are visually recognized on the side wall of the container. When lightly stirred, it was uniformly redispersed.
X: It can be visually confirmed that the agglomerates are also settled on the bottom of the container. Strong shear agitation was required for redispersion.
 4-2.分散液のチキソ安定性の評価
 それぞれの分散液を容器中に25℃にて30日保管し、保管前後におけるチキソ比の変動幅を測定し、下記の基準に従ってチキソ安定性を評価した。
 [評価基準]
 〇:チキソ比の変動幅(絶対値)が、1未満である
 △:チキソ比の変動幅(絶対値)が、1以上3以下である
 ×:チキソ比の変動幅(絶対値)が、3超である
4-2. Evaluation of thixotropy of dispersions Each dispersion was stored in a container at 25 ° C. for 30 days, the fluctuation range of the thixotropy ratio before and after storage was measured, and the thixotropy was evaluated according to the following criteria.
[Evaluation criteria]
〇: The thixotropy fluctuation range (absolute value) is less than 1. Δ: The thixotropy fluctuation range (absolute value) is 1 or more and 3 or less. ×: The thixotropy fluctuation range (absolute value) is 3. Is super
 分散液に関する評価結果を下表2に示す。
Figure JPOXMLDOC01-appb-T000002
The evaluation results for the dispersion are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
 4-3.積層体の線膨張係数の評価
 それぞれの積層体について、積層体の銅箔を塩化第二鉄水溶液でエッチングにより除去して単独のポリマー層を作製した。作成したポリマー層から180mm角の四角い試験片を切り出し、JIS C 6471:1995に規定される測定方法にしたがって、25℃以上260℃以下の範囲における、試験片の線膨張係数を測定し、下記の基準に従って評価した。なお、積層体7はポリマー層の空隙率が高かったため評価しなかった。
 [評価基準]
 〇:50ppm/℃以下である。
 △:50ppm/℃超、75ppm/℃以下である。
 ×:75ppm/℃超である。
4-3. Evaluation of Linear Expansion Coefficient of Laminates For each laminate, the copper foil of the laminate was removed by etching with an aqueous ferric chloride solution to prepare a single polymer layer. A 180 mm square test piece was cut out from the prepared polymer layer, and the coefficient of linear expansion of the test piece was measured in the range of 25 ° C. or higher and 260 ° C. or lower according to the measurement method specified in JIS C 6471: 1995. Evaluated according to criteria. The laminate 7 was not evaluated because the polymer layer had a high porosity.
[Evaluation criteria]
〇: 50 ppm / ° C or less.
Δ: More than 50 ppm / ° C. and 75 ppm / ° C. or less.
X: Over 75 ppm / ° C.
 4-4.積層体の誘電正接の評価
 それぞれの積層体について、積層体の銅箔を塩化第二鉄水溶液でエッチングにより除去して単独のポリマー層を作製し、SPDR(スプリットポスト誘電体共振)法にて、上記ポリマー層の誘電正接(測定周波数:10GHz)を測定し、下記の基準に従って評価した。なお、積層体7はポリマー層の空隙率が高かったため評価しなかった。
 [評価基準]
 〇:その誘電正接が0.0010未満である。
 △:その誘電正接が0.0010以上0.0025以下である。
 ×:その誘電正接が0.0025超である。
4-4. Evaluation of Dielectric Dissipation Factor of Laminates For each laminate, the copper foil of the laminate is removed by etching with an aqueous ferric chloride solution to prepare a single polymer layer, which is then subjected to the SPDR (split post dielectric resonance) method. The dielectric loss tangent (measurement frequency: 10 GHz) of the polymer layer was measured and evaluated according to the following criteria. The laminate 7 was not evaluated because the polymer layer had a high porosity.
[Evaluation criteria]
〇: The dielectric loss tangent is less than 0.0010.
Δ: The dielectric loss tangent is 0.0010 or more and 0.0025 or less.
X: The dielectric loss tangent is more than 0.0025.
 積層体に関する評価結果を下表3に示す。
Figure JPOXMLDOC01-appb-T000003
The evaluation results for the laminate are shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000003
 5.積層フィルムの製造例
 ポリイミドフィルム1の一方の面に、ペースト3から調製した分散液3を小径グラビアリバース法で塗布し、炉温が150℃の通風乾燥炉に3分間で通過させて、NMPを除去して乾燥被膜を形成した。
 さらに、ポリイミドフィルム1の他方の面にも、同様に、分散液3を塗布、乾燥し、乾燥被膜を形成した。
 次いで、両面に乾燥被膜が形成されたポリイミドフィルムを、遠赤外線炉に20分間で通過させて、パウダー1を溶融焼成させた。遠赤外線路の炉内入口および出口付近の炉の温度は300℃、中心付近の炉温度は340℃であった。これにより、ポリイミドフィルム1の両面にFポリマー1およびPI1を含む厚さが25μmのポリマー層を形成し、上記ポリマー層、上記ポリイミドフィルム、上記ポリマー層がこの順に直接形成された積層フィルム1を得た。
 積層フィルム1の断面を、走査型電子顕微鏡(SEM)を用いて観察したところ、ポリマー層の空隙率は5%以下であった。
 積層フィルム1の線膨張係数と誘電正接を、上記と同様にして評価した結果、線膨張係数は「〇」、誘電正接は「〇」であった。
5. Example of manufacturing a laminated film A dispersion liquid 3 prepared from a paste 3 is applied to one surface of a polyimide film 1 by a small-diameter gravure reverse method, and the NMP is passed through a ventilation drying furnace having a furnace temperature of 150 ° C. for 3 minutes. It was removed to form a dry film.
Further, the dispersion liquid 3 was similarly applied to and dried on the other surface of the polyimide film 1 to form a dry film.
Next, a polyimide film having a dry film formed on both sides was passed through a far-infrared furnace in 20 minutes to melt-fire the powder 1. The temperature of the furnace near the inlet and outlet of the far infrared path was 300 ° C, and the temperature of the furnace near the center was 340 ° C. As a result, a polymer layer having a thickness of 25 μm containing F polymer 1 and PI1 is formed on both sides of the polyimide film 1, and a laminated film 1 in which the polymer layer, the polyimide film, and the polymer layer are directly formed in this order is obtained. rice field.
When the cross section of the laminated film 1 was observed using a scanning electron microscope (SEM), the porosity of the polymer layer was 5% or less.
As a result of evaluating the linear expansion coefficient and the dielectric loss tangent of the laminated film 1 in the same manner as described above, the linear expansion coefficient was "〇" and the dielectric loss tangent was "〇".
 上記結果から明らかなように、本法で作成した分散液は分散性、分散安定性に優れており、基材に塗布して得られた積層体の積層体断面には、空隙がなく緻密であった。したがって本法により得られた分散液を用いた積層体は成分分布の均一性に優れ、諸物性に優れていた。 As is clear from the above results, the dispersion liquid prepared by this method has excellent dispersibility and dispersion stability, and the cross section of the laminate obtained by applying it to the substrate is dense with no voids. there were. Therefore, the laminate using the dispersion obtained by this method was excellent in the uniformity of the component distribution and excellent in various physical properties.

Claims (15)

  1.  テトラフルオロエチレン系ポリマーのパウダーと、無機フィラーおよびテトラフルオロエチレン系ポリマーとは異なる樹脂からなる群から選ばれる少なくとも1種の他の材料と、液状化合物とを混練して混練物を得、前記混練物と液状化合物とを混合して分散液を得る、分散液の製造方法。 A powder of a tetrafluoroethylene polymer, at least one other material selected from the group consisting of an inorganic filler and a resin different from the tetrafluoroethylene polymer, and a liquid compound are kneaded to obtain a kneaded product, and the kneaded product is obtained. A method for producing a dispersion, in which a substance and a liquid compound are mixed to obtain a dispersion.
  2.  前記混練物の固形分量が、40質量%以上である、請求項1に記載の製造方法。 The production method according to claim 1, wherein the solid content of the kneaded product is 40% by mass or more.
  3.  前記混練物が、前記無機フィラーを含み、前記混練物における前記パウダーと前記無機フィラーとの比が、前記パウダーの質量を1として、前記無機フィラーの質量が、0.5から2である、請求項1または2に記載の製造方法。 The kneaded product contains the inorganic filler, and the ratio of the powder to the inorganic filler in the kneaded product is such that the mass of the powder is 1 and the mass of the inorganic filler is 0.5 to 2. Item 2. The manufacturing method according to Item 1 or 2.
  4.  前記無機フィラーが、シリカフィラーまたは窒化ホウ素フィラーである、請求項1から3のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 3, wherein the inorganic filler is a silica filler or a boron nitride filler.
  5.  前記混練物が、前記異なる樹脂を含み、前記混練物における前記パウダーと前記異なる樹脂との比が、前記パウダーの質量を1として、前記異なる樹脂の質量が0.01から0.5である、請求項1から4のいずれか1項に記載の製造方法。 The kneaded product contains the different resin, and the ratio of the powder to the different resin in the kneaded product is 0.01 to 0.5, where the mass of the powder is 1, and the mass of the different resin is 0.01 to 0.5. The production method according to any one of claims 1 to 4.
  6.  前記混練物が、前記異なる樹脂を含み、前記混練物における前記パウダーと前記異なる樹脂との比が、前記パウダーの質量を1として、前記異なる樹脂の質量が2から1000である、請求項1から4のいずれか1項に記載の製造方法。 From claim 1, the kneaded product contains the different resin, and the ratio of the powder to the different resin in the kneaded product is 1 for the mass of the powder and 2 to 1000 for the mass of the different resin. The production method according to any one of 4.
  7.  前記異なる樹脂が、芳香族ポリマーである、請求項1から6のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 6, wherein the different resin is an aromatic polymer.
  8.  前記液状化合物が、低粘性液体または高粘性液体である、請求項1から7のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 7, wherein the liquid compound is a low-viscosity liquid or a high-viscosity liquid.
  9.  テトラフルオロエチレン系ポリマーのパウダー、テトラフルオロエチレン系ポリマーとは異なる樹脂、液状化合物および界面活性剤を混練して混練物を得、前記混練物と液状化合物とを混合して分散液を得る、分散液の製造方法。 A powder of a tetrafluoroethylene polymer, a resin different from the tetrafluoroethylene polymer, a liquid compound and a surfactant are kneaded to obtain a kneaded product, and the kneaded product and the liquid compound are mixed to obtain a dispersion liquid. Liquid manufacturing method.
  10.  テトラフルオロエチレン系ポリマーのパウダーおよび無機フィラーを含有する混合物と、テトラフルオロエチレン系ポリマーとは異なる樹脂および液状化合物を含有する混合物とを混練して混練物を得、前記混練物と液状化合物とを混合して分散液を得る、分散液の製造方法。 A mixture containing a powder of a tetrafluoroethylene polymer and an inorganic filler and a mixture containing a resin and a liquid compound different from the tetrafluoroethylene polymer are kneaded to obtain a kneaded product, and the kneaded product and the liquid compound are mixed. A method for producing a dispersion, which comprises mixing to obtain a dispersion.
  11.  テトラフルオロエチレン系ポリマーのパウダーと、無機フィラーおよびテトラフルオロエチレン系ポリマーとは異なる樹脂からなる群から選ばれる少なくとも1種の他の材料と、液状化合物とを混練して得られる、固形分量が40質量%以上であり、粘度が800から100000mPa・sである、ペースト。 A solid content of 40 obtained by kneading a powder of a tetrafluoroethylene polymer, at least one other material selected from the group consisting of an inorganic filler and a resin different from the tetrafluoroethylene polymer, and a liquid compound. A paste having a mass% or more and a viscosity of 800 to 100,000 mPa · s.
  12.  前記無機フィラーを含み、前記パウダーと前記無機フィラーとの比が、前記パウダーの質量を1として、前記無機フィラーの質量が0.5から2である、請求項11に記載のペースト。 The paste according to claim 11, wherein the paste contains the inorganic filler, and the ratio of the powder to the inorganic filler is 0.5 to 2 with the mass of the powder being 1.
  13.  前記異なる樹脂を含み、前記パウダーと前記異なる樹脂との比が、前記パウダーの質量を1として、前記異なる樹脂の質量が、0.01から0.5である、請求項11または12に記載のペースト。 11. paste.
  14.  テトラフルオロエチレン系ポリマーのパウダーと、無機フィラーおよびテトラフルオロエチレン系ポリマーとは異なる樹脂からなる群から選ばれる少なくとも1種の他の材料と、液状化合物とを混練して得られる、練粉。 A kneaded powder obtained by kneading a tetrafluoroethylene polymer powder, at least one other material selected from the group consisting of an inorganic filler and a resin different from the tetrafluoroethylene polymer, and a liquid compound.
  15.  前記異なる樹脂を含み、前記パウダーと前記異なる樹脂との比が、前記パウダーの質量を1として、前記異なる樹脂の質量が0.01から0.5である、請求項14に記載の練粉。 The kneading powder according to claim 14, further comprising the different resins, wherein the ratio of the powder to the different resins is 0.01 to 0.5, where the mass of the powder is 1.
PCT/JP2021/016727 2020-04-30 2021-04-27 Method for producing dispersion, paste, and kneaded powder WO2021221038A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180031149.4A CN115516008A (en) 2020-04-30 2021-04-27 Method for producing dispersion, paste, and kneaded powder
KR1020227029831A KR20230002304A (en) 2020-04-30 2021-04-27 Method for preparing dispersions, pastes and powders
JP2022518072A JPWO2021221038A1 (en) 2020-04-30 2021-04-27

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2020080448 2020-04-30
JP2020-080448 2020-04-30
JP2020-080449 2020-04-30
JP2020080449 2020-04-30
JP2020-181740 2020-10-29
JP2020181740 2020-10-29
JP2021-019969 2021-02-10
JP2021019969 2021-02-10

Publications (1)

Publication Number Publication Date
WO2021221038A1 true WO2021221038A1 (en) 2021-11-04

Family

ID=78374164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/016727 WO2021221038A1 (en) 2020-04-30 2021-04-27 Method for producing dispersion, paste, and kneaded powder

Country Status (5)

Country Link
JP (1) JPWO2021221038A1 (en)
KR (1) KR20230002304A (en)
CN (1) CN115516008A (en)
TW (1) TW202144071A (en)
WO (1) WO2021221038A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022153931A1 (en) * 2021-01-13 2022-07-21 Agc株式会社 Method for producing liquid composition and composition
WO2023100739A1 (en) * 2021-11-30 2023-06-08 Agc株式会社 Liquid composition, laminate, and production methods therefor
WO2023100653A1 (en) * 2021-11-30 2023-06-08 住友化学株式会社 Composition and film
WO2023100654A1 (en) * 2021-11-30 2023-06-08 住友化学株式会社 Composition and film

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6037415A (en) * 1983-08-09 1985-02-26 Oiles Ind Co Ltd Composite-layered bearing and producing method thereof
JPH05156029A (en) * 1991-11-29 1993-06-22 Nippon Saafuakutanto Kogyo Kk Aqueous dispersion of fluororesin
JP2015504577A (en) * 2011-11-18 2015-02-12 アルケマ フランス Method for preparing a paste-like composition comprising a carbon-based conductive filler
WO2019131805A1 (en) * 2017-12-27 2019-07-04 Agc株式会社 Dispersion, metal laminate plate, and production method for printed board
JP2019183118A (en) * 2018-03-30 2019-10-24 Agc株式会社 Molded body, laminate, powder dispersion, and manufacturing method of powder dispersion
WO2020004339A1 (en) * 2018-06-27 2020-01-02 Agc株式会社 Powder dispersion liquid, laminate, film, and impregnated woven fabric
WO2020071381A1 (en) * 2018-10-03 2020-04-09 Agc株式会社 Dispersion
WO2021024883A1 (en) * 2019-08-06 2021-02-11 Agc株式会社 Substrate and metal laminate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6582448B2 (en) 2015-03-05 2019-10-02 サミー株式会社 Bullet ball machine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6037415A (en) * 1983-08-09 1985-02-26 Oiles Ind Co Ltd Composite-layered bearing and producing method thereof
JPH05156029A (en) * 1991-11-29 1993-06-22 Nippon Saafuakutanto Kogyo Kk Aqueous dispersion of fluororesin
JP2015504577A (en) * 2011-11-18 2015-02-12 アルケマ フランス Method for preparing a paste-like composition comprising a carbon-based conductive filler
WO2019131805A1 (en) * 2017-12-27 2019-07-04 Agc株式会社 Dispersion, metal laminate plate, and production method for printed board
JP2019183118A (en) * 2018-03-30 2019-10-24 Agc株式会社 Molded body, laminate, powder dispersion, and manufacturing method of powder dispersion
WO2020004339A1 (en) * 2018-06-27 2020-01-02 Agc株式会社 Powder dispersion liquid, laminate, film, and impregnated woven fabric
WO2020071381A1 (en) * 2018-10-03 2020-04-09 Agc株式会社 Dispersion
WO2021024883A1 (en) * 2019-08-06 2021-02-11 Agc株式会社 Substrate and metal laminate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022153931A1 (en) * 2021-01-13 2022-07-21 Agc株式会社 Method for producing liquid composition and composition
WO2023100739A1 (en) * 2021-11-30 2023-06-08 Agc株式会社 Liquid composition, laminate, and production methods therefor
WO2023100653A1 (en) * 2021-11-30 2023-06-08 住友化学株式会社 Composition and film
WO2023100654A1 (en) * 2021-11-30 2023-06-08 住友化学株式会社 Composition and film

Also Published As

Publication number Publication date
KR20230002304A (en) 2023-01-05
JPWO2021221038A1 (en) 2021-11-04
CN115516008A (en) 2022-12-23
TW202144071A (en) 2021-12-01

Similar Documents

Publication Publication Date Title
WO2021221038A1 (en) Method for producing dispersion, paste, and kneaded powder
WO2022145333A1 (en) Aqueous dispersion and method for producing same
CN114729171A (en) Dispersion, method for producing dispersion, and molded article
WO2022149551A1 (en) Method for producing tetrafluoroethylene-based polymer composition, composition, metal-clad laminate, and stretched sheet
TW202237710A (en) Method for producing liquid composition and composition
WO2022113926A1 (en) Composition, laminate , and film of tetrafluoroethylene-based polymer
KR20230096971A (en) Composition containing powder particles of a tetrafluoroethylene-based polymer, method for producing the same, method for producing a dispersion from the composition
TW202206535A (en) Powder composition and composite particles
JP2021143327A (en) Liquid composition and method for producing the same
JP7511124B2 (en) Method for producing dispersion and dispersion
JP7511117B2 (en) Composite particles, method for producing composite particles, liquid composition, method for producing laminate, and method for producing film
JP2022015560A (en) Method of producing dispersion and dispersion
JP2022061774A (en) Manufacturing method of dispersion liquid and manufacturing method of laminated body
KR20220158736A (en) Composite particles, method for producing composite particles, liquid composition, method for producing a laminate, and method for producing a film
WO2022009918A1 (en) Sizing agent, sized fibers, prepreg, and dispersion
TW202208543A (en) Dispersion, composite particles, and method for producing composite particles
CN116670222A (en) Method for producing tetrafluoroethylene polymer composition, metal-clad laminate, and stretched sheet
JP2023127849A (en) Method of producing polymer-layered substrate containing tetrafluoroethylene polymer
TW202311422A (en) Sheet
WO2023054649A1 (en) Composition, method for producing composition, and method for producing sheet
WO2023163025A1 (en) Composition
WO2023013569A1 (en) Sheet manufacturing method, laminate sheet manufacturing method and sheet
JP2023172879A (en) Method for manufacturing laminate
TW202319409A (en) Composition
JP2023064413A (en) Liquid composition and method for producing the same, and laminate and method for producing polymer sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21797816

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022518072

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21797816

Country of ref document: EP

Kind code of ref document: A1