WO2022145333A1 - Aqueous dispersion and method for producing same - Google Patents

Aqueous dispersion and method for producing same Download PDF

Info

Publication number
WO2022145333A1
WO2022145333A1 PCT/JP2021/047823 JP2021047823W WO2022145333A1 WO 2022145333 A1 WO2022145333 A1 WO 2022145333A1 JP 2021047823 W JP2021047823 W JP 2021047823W WO 2022145333 A1 WO2022145333 A1 WO 2022145333A1
Authority
WO
WIPO (PCT)
Prior art keywords
dispersion
polymer
aqueous dispersion
particles
resin
Prior art date
Application number
PCT/JP2021/047823
Other languages
French (fr)
Japanese (ja)
Inventor
創太 結城
渉 笠井
蔵 藤岡
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to JP2022573034A priority Critical patent/JPWO2022145333A1/ja
Priority to CN202180087420.6A priority patent/CN116635161A/en
Priority to KR1020237014531A priority patent/KR20230126703A/en
Publication of WO2022145333A1 publication Critical patent/WO2022145333A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/04Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C09D127/08Homopolymers or copolymers of vinylidene chloride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L39/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Compositions of derivatives of such polymers
    • C08L39/04Homopolymers or copolymers of monomers containing heterocyclic rings having nitrogen as ring member
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/10Block- or graft-copolymers containing polysiloxane sequences
    • C08L83/12Block- or graft-copolymers containing polysiloxane sequences containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09D127/18Homopolymers or copolymers of tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • C09D5/024Emulsion paints including aerosols characterised by the additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • C09D5/024Emulsion paints including aerosols characterised by the additives
    • C09D5/027Dispersing agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/45Anti-settling agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic

Definitions

  • the present invention relates to an aqueous dispersion containing particles of a tetrafluoroethylene polymer and a specific aromatic imide resin, and a method for producing such an aqueous dispersion.
  • Tetrafluoroethylene-based polymers such as polytetrafluoroethylene (PTFE) have excellent physical properties such as electrical properties, water and oil repellency, chemical resistance, and heat resistance, and are used in various industrial applications (Patent Documents). 1).
  • a coating agent used to impart the physical properties to the surface of the base material a dispersion liquid containing particles of a tetrafluoroethylene-based polymer is known.
  • a dispersion containing tetrafluoroethylene polymer particles has attracted attention as a material having excellent electrical properties such as low dielectric constant and low dielectric loss tangent, which forms a dielectric layer of a printed circuit board corresponding to frequencies in the high frequency band. Has been done.
  • Patent Document 2 discloses a laminate formed by applying an aqueous dispersion of a fluororesin to one or both sides of a resin film and heating the resin film.
  • Patent Document 3 discloses a composition containing an aqueous polyimide precursor, a fluororesin, and water, and these are uniformly mixed.
  • the aqueous dispersion of the tetrafluoroethylene polymer is generally inferior in the dispersed state as compared with the non-aqueous dispersion. Therefore, in coating and firing on the base material, the packing of the particles of the tetrafluoroethylene-based polymer becomes loose, and a problem tends to occur in the denseness of the polymer layer to be formed. Specifically, when the polymer layer is formed on a substrate such as a resin film by a continuous production process such as roll-to-roll, cracks and pinholes are likely to occur in the polymer layer. According to the studies by the present inventors, it has been found that these tendencies become remarkable when the aqueous dispersion of the prior art document is used.
  • a dispersion liquid containing tetrafluoroethylene polymer particles, a specific aromatic imide resin, and water and having a pH in a specific range is excellent in dispersion stability.
  • the molded product obtained from such a dispersion is dense, has excellent low dielectric loss tangent and low coefficient of linear expansion, flexibility such as bending resistance, UV absorption, and adhesion to plastic films such as polyimide film. It was found that the adhesion was improved.
  • An object of the present invention is to provide an aqueous dispersion having excellent dispersion stability, flexibility such as bending resistance, UV absorption, and adhesiveness / adhesion to a resin film such as a polyimide film. It is an offer.
  • the present invention has the following aspects.
  • the particles of the tetrafluoroethylene-based polymer include particles of the non-heat-meltable tetrafluoroethylene-based polymer and particles of the heat-meltable tetrafluoroethylene-based polymer, according to ⁇ 1> or ⁇ 2>.
  • ⁇ 5> The aqueous dispersion according to any one of ⁇ 1> to ⁇ 4>, further containing an inorganic filler.
  • ⁇ 6> The aqueous dispersion according to any one of ⁇ 1> to ⁇ 5>, further containing a nonionic surfactant.
  • ⁇ 7> The aqueous dispersion according to any one of ⁇ 1> to ⁇ 6>, further containing at least one nonionic polymer selected from the group consisting of a polyvinyl alcohol-based polymer, a polyvinylpyrrolidone-based polymer, and a polysaccharide.
  • ⁇ 8> The aqueous dispersion according to any one of ⁇ 1> to ⁇ 7>, which contains amine or ammonia.
  • ⁇ 9> Any of ⁇ 1> to ⁇ 8>, wherein the ratio of the mass of the aromatic imide resin to the mass of the particles of the tetrafluoroethylene polymer is in the range of 0.001 to 0.1.
  • Aqueous dispersion. ⁇ 11> The aqueous dispersion according to any one of ⁇ 1> to ⁇ 10>, which has a viscosity of 50 to 3000 mPa ⁇ s.
  • ⁇ 12> The aqueous dispersion according to any one of ⁇ 1> to ⁇ 11>, which is used to form a polymer layer containing a tetrafluoroethylene polymer by applying it to at least one surface of a resin film and heating it.
  • ⁇ 13> The aqueous dispersion according to any one of ⁇ 1> to ⁇ 12>, wherein the resin constituting the resin film is a polyimide resin.
  • a composition containing the tetrafluoroethylene polymer particles, the aromatic imide resin, and water is kneaded to obtain a kneaded product, and the kneaded product and water are mixed to obtain the aqueous dispersion.
  • any of the aqueous dispersions of ⁇ 1> to ⁇ 13> is applied to both surfaces of the resin film and heated to form the polymer layer containing the tetrafluoroethylene polymer.
  • the aqueous dispersion of the present invention has excellent physical properties such as low dielectric loss tangent and low transmission loss, flexibility such as bending resistance, UV absorption, and adhesion to resin films such as polyimide film. A molded body having excellent adhesion can be formed. Therefore, the aqueous dispersion of the present invention is useful, for example, as a constituent material for a printed circuit board.
  • the average particle diameter (D50) is a volume-based cumulative 50% diameter of an object (particle and filler) determined by a laser diffraction / scattering method. That is, the particle size distribution is measured by the laser diffraction / scattering method, the cumulative curve is obtained with the total volume of the group of objects (particles and fillers) as 100%, and the particles at the point where the cumulative volume is 50% on the cumulative curve.
  • the D50 of the object (particles and filler) is a laser that disperses the object (particles and filler) in water and uses a laser diffraction / scattering type particle size distribution measuring device (LA-920 measuring instrument manufactured by HORIBA, Ltd.).
  • the "melting temperature” is the temperature corresponding to the maximum value of the melting peak of the polymer measured by the differential scanning calorimetry (DSC) method.
  • the "viscosity” is determined by measuring an object (dispersion liquid and kneaded product) at 25 ° C. and a rotation speed of 30 rpm using a B-type viscometer. The measurement is repeated 3 times, and the average value of the measured values for 3 times is used.
  • the "thixotropic ratio” is the viscosity ⁇ 1 of the object (dispersion liquid and kneaded product) measured under the condition of 30 rpm divided by the viscosity ⁇ 2 measured under the condition of 60 rpm.
  • the "HLB value of polyoxyalkylene-modified polydimethylsiloxane” is a value calculated by the Griffin formula, and is obtained by multiplying the molecular weight of the polyoxyalkylene portion in the molecule by the molecular weight of organopolysiloxane by 20. Be done.
  • "Static surface tension” is determined by the Wilhelmy method using an automatic surface tension meter CBVP-Z type (manufactured by Kyowa Surface Science Co., Ltd.) and a 0.1% by mass aqueous solution of polyoxyalkylene-modified polydimethylsiloxane. ..
  • “Dynamic surface tension” is the dynamic surface tension of a 0.1% by mass aqueous solution of polyoxyalkylene-modified polydimethylsiloxane at 25 ° C. at a bubble generation cycle of 6 Hz by the maximum foam pressure method, and is polyoxyalkylene-modified.
  • the dynamic surface tension of an aqueous solution containing polydimethylsiloxane at a ratio of 0.1% by mass was immersed in the aqueous solution by immersing the sensor of the dynamic surface tension meter Theta t60 manufactured by Eiko Seiki Co., Ltd. in an environment at a temperature of 25 ° C. It is a value measured by the maximum foam pressure method.
  • unit in a polymer is meant an atomic group based on the monomer formed by polymerization of the monomer.
  • the unit may be a unit directly formed by a polymerization reaction, or may be a unit in which a part of the unit is converted into another structure by processing a polymer.
  • the unit based on the monomer a is also simply referred to as “monomer a unit”.
  • the aqueous dispersion of the present invention is a particle of a tetrafluoroethylene-based polymer (hereinafter, also referred to as “F polymer”) (hereinafter, also referred to as “F particle”). It contains an aromatic imide-based resin having an acid value of 20 to 100 mg / KOH (hereinafter, also referred to as “imide-based resin P”) and water, and has a pH of 5 to 10.
  • This dispersion has excellent dispersion stability.
  • the molded product (baked product) formed from this dispersion has excellent physical properties based on the tetrafluoroethylene polymer such as electrical characteristics, excellent surface smoothness, flexibility such as bending resistance, and UV absorption. It also has excellent properties and adhesiveness and adhesion to resin films such as polyimide films.
  • the reason why the dispersion stability of this dispersion is improved is not always clear, but it is estimated as follows, for example. Since the imide-based resin P in the present invention has a specific acid value, it easily interacts with F particles and water, and not only acts as a dispersant for F particles in the dispersion liquid, but also acts as a viscosity modifier for the dispersion liquid.
  • the dispersion stability of this dispersion is improved.
  • the fact that the pH of the present dispersion is in a specific range not only enhances such an action, but also enhances the reactivity of the imide-based resin P when the present dispersion is heated to form a molded product.
  • the interaction between the imide-based resin P and the F polymer or the base material is enhanced, and the flexibility, adhesiveness and adhesion (binder ability) of the obtained molded product are improved.
  • this dispersion has excellent dispersion stability, and a molded product having excellent electrical characteristics, bending resistance, UV absorption, etc. could be formed from this dispersion by a continuous production process such as roll-to-roll. Be done.
  • the F polymer in this dispersion is a polymer containing a unit (TFE unit) based on tetrafluoroethylene (TFE).
  • TFE unit a unit based on tetrafluoroethylene
  • the F polymer may be hot meltable or non-hot meltable, but at least one of the F polymers is preferably hot meltable.
  • the molded product formed from the present dispersion tends to have excellent flexibility and adhesiveness / adhesion to a resin film such as a polyimide film.
  • the thermal meltability is a melt-fluid polymer having a melt flow rate of 0.1 to 1000 g / 10 minutes at a temperature 20 ° C.
  • the melting temperature is preferably 200 to 320 ° C, more preferably 260 to 320 ° C. In such a case, the molded product formed from the present dispersion tends to have excellent heat resistance.
  • the fluorine atom content in the F polymer is preferably 70% by mass or more, and more preferably 70 to 76% by mass. Due to the above-mentioned mechanism of action, the present dispersion is particularly likely to improve the dispersibility of F polymer particles having a high fluorine atom content in water.
  • the glass transition point of the F polymer is preferably 75 to 125 ° C, more preferably 80 to 100 ° C.
  • F-polymers include polytetrafluoroethylene (PTFE), polymers containing TFE units and units based on ethylene (ETFE), polymers containing TFE units and units based on perfluoro (alkyl vinyl ether) (PAVE) (PAVE units) (PFA). ), Polymers (FEPs) containing TFE units and units based on hexafluoropropene (HFP). Each of ETFE, PFA and FEP may further contain other units.
  • CF 2 CFOCF 3
  • the F polymer is preferably PFA or FEP, more preferably PFA.
  • At least one of the F polymers preferably has an oxygen-containing polar group.
  • this dispersion tends to be excellent in dispersion stability.
  • the F polymer reacts with the imide resin P to form a crosslink when the present dispersion is fired, and as a result, the calcined product (polymer layer or the like) obtained from the present dispersion has electrical characteristics. It is considered that the surface smoothness and physical properties such as adhesiveness and adhesion to a resin film such as a polyimide film are further excellent.
  • the oxygen-containing polar group may be contained in a unit in the F polymer, or may be contained in the terminal group of the main chain of the F polymer.
  • oxygen-containing polar group a hydroxyl group-containing group, a carbonyl group-containing group and a phosphono group-containing group are preferable, and a hydroxyl group-containing group and a carbonyl group-containing group are more preferable, and a carbonyl group-containing group is more preferable from the viewpoint of dispersion stability of this dispersion. More preferred.
  • the hydroxyl group-containing group is preferably a group containing an alcoholic hydroxyl group, more preferably -CF 2 CH 2 OH, -C (CF 3 ) 2 OH and 1,2-glycol group (-CH (OH) CH 2 OH). ..
  • the carbonyl group-containing group is a group containing a carbonyl group (> C (O)), a carboxyl group, an alkoxycarbonyl group, an amide group, an isocyanate group, a carbamate group (-OC (O) NH 2 ), and an acid anhydride residue.
  • the F polymer has a carbonyl group-containing group
  • the number of carbonyl group-containing groups in the F polymer is preferably 10 to 5000, more preferably 100 to 3000, and more preferably 800 per 1 ⁇ 10 6 carbon atoms in the main chain. ⁇ 1500 pieces are more preferable.
  • the number of carbonyl group-containing groups in the F polymer can be quantified by the composition of the polymer or the method described in International Publication No. 2020/145133.
  • the F polymer a polymer having an oxygen-containing polar group containing a TFE unit and a PAVE unit is preferable, and a polymer containing a unit based on a monomer having a TFE unit, a PAVE unit and an oxygen-containing polar group is more preferable, and all of them are used. It is more preferable that the polymer contains 90 to 99 mol%, 0.5 to 9.97 mol%, 0.01 to 3 mol% of these units in this order with respect to the unit.
  • the monomer having an oxygen-containing polar group itaconic anhydride, citraconic anhydride or 5-norbornen-2,3-dicarboxylic acid anhydride (hereinafter, also referred to as “NAH”) is preferable.
  • NASH 5-norbornen-2,3-dicarboxylic acid anhydride
  • Specific examples of such polymers include the polymers described in WO 2018/16644. Not only are the particles of these F polymers excellent in dispersion stability, but they are also likely to be more densely and uniformly distributed in the molded product (polymer layer or the like) obtained from the present dispersion. Further, it is easy to form fine spherulites in the molded product, and it is easy to improve the adhesion with other components. As a result, it is easier to obtain a molded product having excellent various physical characteristics such as electrical characteristics.
  • non-heat-meltable F polymer examples include non-heat-meltable PTFE.
  • the number average molecular weight of the non-thermally meltable PTFE is preferably 1 million to 100 million.
  • the number average molecular weight of the non-thermally meltable PTFE is a value calculated based on the following formula (1).
  • Mn 2.1 ⁇ 10 10 ⁇ ⁇ Hc- 5.16 ...
  • Mn indicates the number average molecular weight of the non-thermally meltable PTFE
  • ⁇ Hc indicates the amount of heat of crystallization (cal / g) of the non-thermally meltable PTFE measured by the differential scanning calorimetry method. ..
  • the number average molecular weight is in the range, the F polymer is less likely to be fibrillated, and the present dispersion is likely to have excellent dispersion stability.
  • the D50 of F particles is preferably 0.1 to 25 ⁇ m.
  • the D50 of the F particles is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less, and even more preferably 8 ⁇ m or less.
  • the D50 of the F particles is preferably 0.1 ⁇ m or more, more preferably 1 ⁇ m or more, still more preferably 2 ⁇ m or more. In D50 in this range, the fluidity and dispersibility of F particles tend to be good.
  • the bulk density of the F particles is preferably 0.15 g / m 2 or more, more preferably 0.20 g / m 2 or more.
  • the bulk density of the F particles is preferably 0.50 g / m 2 or less, more preferably 0.35 g / m 2 or less.
  • the specific surface area of the F particles is preferably 1 to 8 m 2 / g, more preferably 1 to 3 m 2 / g.
  • F particle may be used, or two or more types may be used.
  • F particles it is preferable to include non-heat-meltable F polymer particles and heat-meltable F polymer particles, and the non-heat-meltable PTFE (preferably having the above-mentioned number average molecular weight).
  • PTFE preferably having the above-mentioned number average molecular weight.
  • the ratio of the content mass of both particles may be such that the content mass of the former particle is larger than the content mass of the latter particle, and the content mass of the former particle may be less than the content mass of the latter particle. .. And it is more preferable that the content mass of the former particles is larger than the content mass of the latter particles.
  • the ratio of the latter particles to the total of the former particles and the latter particles is preferably 25% by mass or less, more preferably 15% by mass or less. Further, the ratio in this case is preferably 0.1% by mass or more, more preferably 1% by mass or more.
  • This dispersion liquid is not only easy to be excellent in dispersion stability, handleability and long-term storage stability, but is also easy to form an adhesive molded product having excellent physical characteristics based on PTFE.
  • the ratio of the former particles to the total of the former particles and the latter particles is preferably less than 50% by mass, more preferably 25% by mass or less. Further, the ratio is preferably 5% by mass or more, more preferably 10% by mass or more.
  • the D50 of the non-heat-melting PTFE particles is 0.1 to 1 ⁇ m
  • the melting temperature is An embodiment in which the D50 of the particles of the F polymer having a temperature of 200 to 320 ° C. is 0.1 to 1 ⁇ m, the D50 of the particles of the non-thermally meltable PTFE is 0.1 to 1 ⁇ m, and the melting temperature is 200 to 320 ° C. It is preferable that the D50 of the polymer particles is 1 to 4 ⁇ m.
  • the F particles may contain a resin other than the F polymer or an inorganic filler, but the F polymer is preferably the main component.
  • the content of the F polymer in the F particles is preferably 80% by mass or more, more preferably 100% by mass.
  • the resin include heat-resistant resins such as aromatic polyester, polyamide-imide, (thermoplastic) polyimide, polyphenylene ether, polyphenylene oxide, and maleimide.
  • the inorganic filler include silicon oxide (silica), metal oxides (berylium oxide, cerium oxide, alumina, soda alumina, magnesium oxide, zinc oxide, titanium oxide, etc.), boron nitride, and magnesium metasilicate (steatite). ..
  • F particles containing a resin or inorganic filler other than the F polymer have a core-shell structure having the F polymer as the core and the resin or the inorganic filler other than the F polymer in the shell, or the F polymer as the shell and other than the F polymer. It may have a core-shell structure having a resin or an inorganic filler in the core.
  • F particles are obtained, for example, by coalescing (collision, agglomeration, etc.) particles of an F polymer with particles of a resin or an inorganic filler other than the F polymer.
  • the imide-based resin P constituting the present dispersion improves the dispersion stability of the present dispersion and imparts flexibility such as bending resistance and UV absorption to the molded product obtained from the present dispersion. Further, when the present dispersion is applied to the surface of a resin film such as a polyimide film to form a polymer layer containing an F polymer, the polymer layer is imparted with properties such as adhesiveness and adhesion to the resin film.
  • the imide-based resin P includes a modified aromatic polyimide having a polar functional group such as an aromatic polyimide, an aromatic polyimide precursor (polyamic acid or a salt thereof), an aromatic polyamideimide, an aromatic polyamideimide precursor, and a carboxylic acid group.
  • a modified aromatic polyimide precursor modified aromatic polyamideimide, modified aromatic polyamideimide precursor, aromatic polyetherimide or aromatic polyetherimide precursor.
  • aromatic polyimide or its precursor polyamic acid or a salt thereof
  • aromatic polyamideimide or its precursor is preferable, and water-soluble aromatic polyimide precursor and water-soluble aromatic polyamide-imide precursor are more preferable. Water-soluble aromatic polyamide-imide precursors are more preferred.
  • water-soluble aromatic polyimide precursor examples include a polyamic acid obtained by polymerizing a tetracarboxylic acid dianhydride and a diamine in a solvent, and a polyamic acid salt obtained by reacting the polyamic acid with aqueous ammonia or an organic amine. ..
  • An aqueous solution of a polyamic acid can be prepared by dissolving the polyamic acid salt in water.
  • the tetracarboxylic acid dianhydride examples include pyromellitic acid anhydride and biphenyltetracarboxylic acid anhydride.
  • diamine examples include N, N'-diaminodiphenyl ether and p-diaminobenzene.
  • Examples of the solvent include N-methylpyrrolidone and N, N-dimethylformamide.
  • Examples of the organic amine include primary amines such as methylamine, ethylamine, n-propylamine, 2-ethanolamine and 2-amino-2-methyl-1-propanol; dimethylamine, 2- (methylamino) ethanol, 2 -Secondary amines such as (ethylamino) ethanol; tertiary amines such as 2-dimethylaminoethanol, 2-diethylaminoethanol and 1-dimethylamino-2-propanol; 4 such as tetramethylammonium hydroxide and tetraethylammonium hydroxide. Examples include grade ammonium salts.
  • the water-soluble aromatic polyamide-imide resin or its precursor is a polyamide-imide resin obtained by reacting diisocyanate and / or diamine with a tribasic acid anhydride (or tribasic acid chloride) as an acid component or a polyamide-imide resin thereof.
  • a tribasic acid anhydride or tribasic acid chloride
  • Examples include precursors.
  • diisocyanate examples include 4,4'-diphenylmethane diisocyanate, xylylene diisocyanate, 3,3'-dimethylbiphenyl-4,4'-diisocyanate, 3,3'-diphenylmethane diisocyanate, 3,3'-dimethoxybiphenyl-4, Examples thereof include 4'-diisocyanate, paraphenylenediocyanate, hexamethylene diisocyanate, tolylene diisocyanate, naphthalene diisocyanate, tolylene diisocyanate and isophorone diisocyanate. These diisocyanates may be used alone or in combination of two or more.
  • a block-type isocyanate in which an isocyanate group is stabilized with a blocking agent may be used as the diisocyanate.
  • the blocking agent include alcohol, phenol, oxime and the like.
  • diamine examples include 3,3'-dimethylbiphenyl-4,4'-diamine, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3,3'-.
  • diamines examples include diaminodiphenyl sulfone, xylylene diamine, phenylenediamine and isophoronediamine. These diamines may be used alone or in combination of two or more.
  • tribasic acid anhydride examples include trimellitic acid anhydride
  • tribasic acid chloride examples include trimellitic acid anhydride chloride.
  • trimellitic acid anhydride is preferable from the viewpoint of reducing the burden on the environment.
  • dicarboxylic acid When producing an aromatic polyamide imide resin, in addition to the above-mentioned tribasic acid anhydride (or tribasic acid chloride), dicarboxylic acid, tetracarboxylic acid dianhydride and the like are used as acid components in the characteristics of the polyamideimide resin. May be used as long as it does not impair.
  • dicarboxylic acid include terephthalic acid, isophthalic acid, adipic acid, and sebacic acid.
  • tetracarboxylic acid dianhydride include pyromellitic acid dianhydride, benzophenone tetracarboxylic acid dianhydride, and biphenyltetracarboxylic acid dianhydride.
  • the total amount of carboxylic acids (dicarboxylic acid and tetracarboxylic acid) other than tribasic acid is preferably in the range of 0 to 30 mol% in the total carboxylic acid from the viewpoint of maintaining the characteristics of the polyamide-imide resin.
  • the ratio of diisocyanate and / or diamine and acid component (total amount of tribasic acid anhydride or tribasic acid anhydride chloride and dicarboxylic acid and tetracarboxylic acid dianhydride used as needed) is the polyamide produced.
  • the diisocyanate compound and / or the diamine compound is preferably 0.8 to 1.1 mol, and 0.95 to 1. It is more preferably 08 mol, and even more preferably 1.0 to 1.08 mol.
  • the water-soluble aromatic polyamide-imide resin or its precursor is obtained by copolymerizing the above diisocyanate and / or diamine with the above acid component in a polar solvent.
  • the polar solvent include N-methyl-2-pyrrolidone, N-formylmorpholine, N-acetylmorpholine, N, N'-dimethylethyleneurea, N, N-dimethylacetamide, N, N-dimethylformamide, ⁇ -butyrolactone and the like.
  • a solvent having a high boiling point is preferable from the viewpoint of carrying out the amidimidization reaction at a high temperature for a short time, and N-methyl-2-pyrrolidone is generally used from the viewpoint of solubility.
  • N-formylmorpholine is also preferable from the viewpoint of work environment and ease of safety management.
  • the amount of the polar solvent used is usually 50 to 500 parts by mass with respect to 100 parts by mass of the total amount of diisocyanate or diamine and the acid component, from the viewpoint of solubility of the obtained aromatic polyamide-imide resin or its precursor. Is preferable.
  • the polymerization temperature is usually in the range of 80 to 180 ° C., and in order to reduce the influence of moisture in the air, it is preferable to carry out the polymerization in an atmosphere such as nitrogen.
  • the water-soluble aromatic polyamideimide resin or its precursor is, for example, (1) a method of using an acid component and a diisocyanate component and / or a diamine component at a time and reacting them; (2) an acid component and a diisocyanate component and /.
  • a method of reacting with an excess amount of the diamine component to synthesize an amidimide oligomer having an isocyanate group or an amino group at the terminal and then adding an acid component to react with the isocyanate group and / or the amino group at the terminal; 3) After reacting the excess amount of the acid component with the diisocyanate component and / or the diamine component to synthesize an amidimide oligomer having an acid or acid anhydride group at the terminal, the diisocyanate component and / or the diamine component is added. It can be produced by a method of reacting with a terminal acid or an acid anhydride group;
  • the number average molecular weight (Mn) of the water-soluble aromatic polyamide-imide resin or its precursor is preferably 5000 or more, more preferably 10,000 or more, still more preferably 15,000 or more.
  • Mn is preferably 50,000 or less, more preferably 30,000 or less, and even more preferably 25,000 or less.
  • the Mn of the aromatic polyamide-imide resin or its precursor is appropriately sampled at the time of polymerization and measured by gel permeation chromatography (GPC) using a standard polystyrene calibration curve to obtain the desired Mn. By polymerizing up to, it can be controlled within the above range.
  • aromatic polyetherimide examples include an amorphous polymer having an imide bond and an ether bond in the main chain, and 2,2-bis [4- (3,4-dicarboxyphenoxy) phenyl] propane and m-. A polycondensate with phenylenediamine is preferred. Examples of commercially available aromatic polyetherimides include "Ultem 1000F3SP" (manufactured by SABIC).
  • the acid value of the imide-based resin P is 20 to 100 mg / KOH.
  • the acid value of the imide-based resin P is adjusted to such a range to balance its functions. That is, when the acid value of the imide-based resin P is less than 20 mg / KOH, the reaction rate of the imide-based resin P when forming the molded product from the dispersion liquid is improved and the physical properties of the molded product are improved, but the dispersing action is performed. It decreases and the dispersion stability of the dispersion liquid is lowered.
  • the acid value of the imide-based resin P exceeds 100 mg / KOH, the dispersion action of the imide-based resin P in the dispersion liquid is enhanced, but the reaction rate of the imide-based resin P when forming a molded product from the dispersion liquid is high. It deteriorates and deteriorates the physical properties of the molded product. More specifically, when the acid value is 20 mgKOH / g or more, since it has many acidic groups, the imide-based resin P tends to be easily solubilized, and the imide-based resin P interacts with F particles and water. There is a tendency that the molded product formed from the present dispersion tends to have excellent adhesiveness to the base material.
  • the acid value of the imide resin P is preferably 35 to 70 mgKOH / g.
  • the acid value when the acid anhydride group is opened is defined as the acid value of the imide-based resin P.
  • the acid value about 0.5 g of the imide resin P was collected, about 0.15 g of 1,4-diazabicyclo [2.2.2] octane was added thereto, and about 60 g of N-methyl-2-pyrrolidone was added. Add about 1 ml of ion-exchanged water and stir until the imide resin P is completely dissolved. This can be measured by titrating with a potentiometric titrator using a 0.05 mol / L ethanolic potassium hydroxide solution.
  • imide-based resin P examples include “HPC-1000” and “HPC-2100D” (both manufactured by Showa Denko Materials Co., Ltd.).
  • the content of F particles in the present dispersion is preferably 10% by mass or more, more preferably 25% by mass or more, based on the total mass of the present dispersion.
  • the content of the F particles is preferably 80% by mass or less, more preferably 70% by mass or less, based on the total mass of the dispersion.
  • the content of the imide-based resin P in the dispersion is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, based on the total mass of the dispersion.
  • the content of the imide-based resin P is preferably 30% by mass or less, more preferably 10% by mass or less.
  • the total content of the F particles and the imide-based resin P in the dispersion liquid is preferably 20% by mass or more with respect to the total mass of the dispersion liquid.
  • the total content is more preferably 30% by mass or more, further preferably 40% by mass or more.
  • the total content is preferably 80% by mass or less. Specific examples of the preferred range of the total content include 30 to 80% by mass.
  • a molded product such as a coating film can be formed from the dispersion liquid with high uniformity, and the physical characteristics of the F polymer and the physical properties of the imide resin P are highly likely to be exhibited. That is, even if the content of the polymer component is in such a high range, the present dispersion is excellent in dispersion stability and can improve the physical characteristics of the molded product by the above-mentioned mechanism of action.
  • the ratio of the mass of the imide-based resin P to the mass of the F particles in the dispersion liquid is preferably 0.001 or more, more preferably 0.005 or more, and 0.01 or more. It is even more preferable to have it.
  • the ratio is preferably 0.1 or less, more preferably 0.09 or less, still more preferably 0.05 or less. Specific examples of the preferred range of the ratio include 0.001 to 0.1. When the ratio is in such a low range, the dispersion stability of the F particles is improved, and the physical properties of the molded product obtained from the present dispersion liquid are particularly likely to be improved.
  • the acid value of the imide-based resin P and the pH of the aqueous dispersion are in a predetermined range, and the imide-based resin P is a small amount component with respect to the F particles.
  • the imide-based resin P is highly likely to function as a dispersant and binder for low-hydrophilic F particles, in other words, the imide-based resin P adheres to the surface of the F particles, and F is formed when the molded product is formed. It is considered that this is to promote the precise firing of the particles.
  • the content of water in this dispersion is preferably 40% by mass or more, more preferably 50% by mass or more.
  • the water content is preferably 90% by mass or less, more preferably 80% by mass or less. In such a range, the dispersion stability of the present dispersion is more likely to be improved by the above-mentioned mechanism of action.
  • the present dispersion may further contain a water-soluble dispersion medium other than water as the dispersion medium.
  • a water-soluble dispersion medium a water-soluble compound that is liquid at 25 ° C. classified as polar under atmospheric pressure is preferable, and for example, N, N-dimethylformamide, N, N-dimethylacetamide, 3-methoxy-N, Examples thereof include N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropanamide and N-methyl-2-pyrrolidone.
  • the dispersion may further contain a surfactant.
  • the surfactant is nonionic
  • the hydrophobic moiety of the surfactant preferably has an acetylene group or a polysiloxane group
  • the hydrophilic moiety is an oxyalkylene group or an alcohol. It preferably has a sex hydroxyl group. That is, when the present dispersion further contains a surfactant, a nonionic surfactant having an alcoholic hydroxyl group is preferable, and a polyoxyalkylene alkyl ether, an acetylene-based surfactant or a silicone-based surfactant is more preferable.
  • These surfactants may be used alone or in combination of two or more.
  • the polyoxyalkylene alkyl ether stabilizes the long-term dispersibility of the F particles and improves the liquid physical properties such as the viscosity of the present dispersion
  • the silicone surfactant improves the initial dispersibility of the F particles.
  • Polyoxyalkylene alkyl ether and silicone-based surfactant are preferably used in combination.
  • the present dispersion further contains a surfactant, the amount thereof is preferably 1 to 15% by mass with respect to the total mass of the present dispersion. In this case, the affinity between the components is enhanced, and the dispersion stability of the present dispersion is likely to be further improved.
  • the silicone-based surfactant is a polyoxyalkylene-modified polydimethylsiloxane having a weight average molecular weight of 3000 or less and an HLB value of 1 to 18 calculated from the Griffin formula, which suppresses the load on the environment. It is preferable from the viewpoint of possible and stability in the present dispersion.
  • modified polydimethylsiloxane is an organopolysiloxane having a polyoxyalkylene structure as a hydrophilic group and a polydimethylsiloxane structure as a hydrophobic group, and is linear. It is preferably a polymer.
  • the weight average molecular weight of the modified polydimethylsiloxane is 3000 or less, preferably 2500 or less, and more preferably 2000 or less.
  • the weight average molecular weight is preferably 100 or more, more preferably 500 or more.
  • the number average molecular weight of the modified polydimethylsiloxane is preferably 3000 or less, more preferably 1500 or less.
  • the number average molecular weight is preferably 100 or more, more preferably 500 or more.
  • the molecular weight dispersion of the modified polydimethylsiloxane is preferably less than 2.0, more preferably 1.8 or less.
  • the lower limit of the molecular weight dispersion is preferably more than 1.0.
  • the HLB value of the modified polydimethylsiloxane is 1 to 18, preferably 3 or more, more preferably 6 or more, further preferably 10 or more, and particularly preferably 12 or more.
  • the HLB value is preferably 16 or less, more preferably 15 or less.
  • the static surface tension of the modified polydimethylsiloxane is preferably 28 mN / m or less, more preferably 26 mN / m or less.
  • the static surface tension is preferably 15 mN / m or more, more preferably 20 mN / m or more.
  • the dynamic surface tension of the modified polydimethylsiloxane is preferably 40 mN / m or less, more preferably 35 mN / m or less, and the dynamic surface tension is preferably 20 mN / m or more.
  • the modified polydimethylsiloxane may have a dimethylsiloxane unit (-(CH 3 ) 2 SiO 2/2- ) in the main chain, or may have a dimethylsiloxane unit in the side chain, and may have a main chain and a dimethylsiloxane unit. Both sides may have dimethylsiloxane units.
  • the modified polydimethylsiloxane contains a dimethylsiloxane unit in the main chain and a modified polydimethylsiloxane having an oxyalkylene group in the side chain, or a modified polydimethylsiloxane having a dimethylsiloxane unit in the main chain and an oxyalkylene group at the end of the main chain. Didimethylsiloxane is preferred.
  • modified polydimethylsiloxane examples include “BYK-347”, “BYK-349”, “BYK-378”, “BYK-3450”, “BYK-3451”, “BYK-3455”, and “BYK-3456”. (The above is manufactured by Big Chemie Japan Co., Ltd.); “KF-6011” and “KF-6043” (the above are manufactured by Shin-Etsu Chemical Co., Ltd.).
  • the modified polydimethylsiloxane Since the modified polydimethylsiloxane has a small weight average molecular weight and an HLB value in a predetermined range, it can be said that its hydrophobicity and hydrophilicity are highly balanced. It is considered that such modified polydimethylsiloxane is likely to enhance the interaction with F particles, and as a result, the dispersion stability of the present dispersion is considered to be improved. Further, since the modified dimethylsiloxane is excellent in thermal decomposition property, it is easily decomposed when the present dispersion is heated to form a calcined product. As a result, the fired product tends to have high physical characteristics based on the F polymer.
  • Polyoxyalkylene alkyl ethers include polyoxyethylene decyl ether, polyoxyethylene undecyl ether, polyoxyethylene dodecyl ether, polyoxyethylene tridecyl ether, polyoxyethylene tetradecyl ether, triethylene glycol monomethyl ether, and polyethylene glycol trimethylnonyl.
  • ethylene glycol mono-2-ethylhexyl ether diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, dipropylene glycol monobutyl ether, triethylene glycol monomethyl ether, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate are More preferably, it is polyoxyethylene decyl ether, polyoxyethylene undecyl ether, polyoxyethylene dodecyl ether, polyoxyethylene tridecyl ether, or polyoxyethylene tetradecyl ether.
  • the polyoxyalkylene alkyl ether can be obtained as a commercial product, specifically, "Tergitol TMN-100X” (manufactured by Dow Chemical Co., Ltd.); "Lutensol TO8", “Lutensol XL70", “Lutensol XL80”, “Lutensol XL90”, “Lutensol XL90”.
  • the polyoxyalkylene alkyl ether can be obtained as a commercially available product, and specific examples thereof include “Tergitol TMN-100X” (manufactured by Dow Chemical Co., Ltd.); “Lutensol TO8".
  • the amount thereof is preferably 0.1% by mass or more, more preferably 0.1% by mass or more, based on the total mass of the dispersion. The amount is preferably 15% by mass or less.
  • the dispersion may further contain at least one nonionic polymer selected from the group consisting of a polyvinyl alcohol-based polymer, a polyvinylpyrrolidone-based polymer, and a polysaccharide.
  • the nonionic polymer is a water-soluble polymer.
  • the interaction between the water-soluble polymer and the imide-based resin P improves not only the dispersion stability of the dispersion but also the rheological characteristics, and the handleability of the dispersion such as film formation is further improved.
  • Cheap As a result, it is easier to form a thick molded product or a molded product having an arbitrary shape from the present dispersion liquid.
  • the polyvinyl alcohol-based polymer may be a partially acetylated or partially acetalized polyvinyl alcohol.
  • the polysaccharide include glycogens, amicropectins, dextrins, glucans, fructans, chitins, amyloses, agaroses, amicropectins, and celluloses.
  • examples of celluloses include methyl cellulose, ethyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose and hydroxypropyl cellulose.
  • nonionic polysaccharides are preferable, nonionic celluloses are more preferable, and hydroxymethyl cellulose, hydroxyethyl cellulose or hydroxypropyl cellulose is further preferable.
  • specific examples of such nonionic polysaccharides include "Sunrose (registered trademark)” series (manufactured by Nippon Paper Industries), “Metroise (registered trademark)” series (manufactured by Shin-Etsu Chemical Co., Ltd.), and "HEC CF grade” (manufactured by Shin-Etsu Chemical Co., Ltd.). Sumitomo Seika Co., Ltd.).
  • the amount thereof is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, based on the total mass of the dispersion. .. The amount is preferably less than 1% by mass.
  • the ratio of the mass of the water-soluble nonionic polymer to the mass of the F particles in this dispersion is preferably 0.001 or more, more preferably 0.01 or more. Further, the previous ratio is preferably less than 0.1.
  • the interaction between the water-soluble polymer and the imide-based resin P makes it easy to obtain the effect of improving the liquid physical characteristics and the film-forming property of the present dispersion by containing a small amount of the water-soluble polymer.
  • the residual amount of the water-soluble polymer in the molded product obtained from the present dispersion is reduced, and a molded product having better physical properties such as electrical characteristics can be easily obtained from the present dispersion. This tendency is particularly remarkable when the water-soluble polymer has a nonionic hydroxyl group.
  • the present dispersion may further contain amine or ammonia.
  • Amine or ammonia also has a role as a pH adjuster and is considered to contribute to the improvement of dispersion stability and storage stability of this dispersion.
  • the amount thereof may be an amount such that the pH of the present dispersion is 5 to 10.
  • amine examples include dimethylamine, diethylamine, diisopropylamine, diethanolamine, triethanolamine, tripropanolamine, triethylamine, triamylamine, pyridine and N-methylmorpholine.
  • a pH buffer may be further added to stabilize the pH of the liquid composition.
  • the pH buffer include tris (hydroxymethyl) aminomethane, ethylenediaminetetraacetic acid, ammonium hydrogencarbonate, ammonium carbonate and ammonium acetate.
  • the present dispersion may further contain a resin material other than the F polymer and the imide-based resin P from the viewpoint of improving the adhesiveness and low linear expansion property of the molded product formed from the present dispersion.
  • a resin material may be thermosetting or thermoplastic, may be modified, may be dissolved in the present dispersion, or may be dispersed without being dissolved.
  • resin materials include acrylic resin, phenol resin, liquid crystal polyester, liquid crystal polyester amide, polyolefin resin, modified polyphenylene ether, polyfunctional cyanate ester resin, polyfunctional maleimide-cyanic acid ester resin, polyfunctional maleimide, and styrene.
  • Aromatic elastomers such as elastomers, vinyl ester resins, urea resins, diallyl phthalate resins, melamine resins, guanamine resins, melamine-urea cocondensate resins, polycarbonates, polyarylates, polysulfones, polyallylsulfones, aromatic polyamides, aromatic poly Examples thereof include ether amide, polyphenylen sulphide, polyallyl ether ketone, polyphenylene ether, epoxy resin and the like.
  • the content thereof is preferably 40% by mass or less with respect to the total mass of the present dispersion.
  • Preferred embodiments of the resin material include aromatic polymers.
  • the aromatic polymer is preferably polyphenylene ether or an aromatic elastomer (styrene elastomer or the like).
  • styrene elastomer styrene elastomer or the like.
  • the liquid properties (viscosity, thixotropic ratio, etc.) of the present dispersion can be balanced, so that the handling property is easy to handle. Is easy to improve.
  • examples of the styrene elastomer include copolymers of styrene and conjugated diene or (meth) acrylic acid esters (styrene-butadiene rubber, styrene-based core-shell type copolymers, styrene-based block copolymers, etc.), and rubber and plastic.
  • Styrene elastomers having both properties, which are plasticized by heating and exhibit flexibility, are preferred.
  • the dispersion may further contain an inorganic filler.
  • the molded product produced from the present dispersion tends to be excellent in electrical characteristics and low linear expansion.
  • the present dispersion liquid contains an inorganic filler, it has excellent dispersion stability due to the above-mentioned mechanism of action, and it is easy to obtain a dense molded product. Therefore, it is easy to produce a molded product having the physical characteristics of the F polymer, the imide-based resin P, and the inorganic filler from the present dispersion liquid containing the inorganic filler.
  • the inorganic filler is preferably a nitride filler or an inorganic oxide filler, preferably a boron nitride filler, an aluminum nitride filler, a beryllia filler (a filler of an oxide of beryllium), and a silicate filler (silica filler, a wollastonite filler, and a talc filler).
  • a metal oxide (cerium oxide, aluminum oxide, magnesium oxide, zinc oxide, titanium oxide, etc.) filler is more preferable, and a silica filler is further preferable.
  • At least a part of the surface of the inorganic filler is a silane coupling agent (3-aminopropyltriethoxysilane, vinyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3).
  • -It is preferable that the surface is treated with (methacryloxypropyltriethoxysilane, 3-isocyandiapropyltriethoxysilane, etc.).
  • the D50 of the inorganic filler is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less.
  • the D50 is preferably 0.01 ⁇ m or more, more preferably 0.1 ⁇ m or more.
  • the shape of the inorganic filler may be granular, needle-shaped (fibrous), or plate-shaped. Specific shapes of the inorganic filler include spherical, scaly, layered, leafy, apricot kernel, columnar, chicken crown, equiaxed, leafy, mica, block, flat plate, wedge, rosette, and mesh. The shape and the prismatic shape can be mentioned.
  • the inorganic filler one kind may be used alone, or two or more kinds may be used in combination.
  • the present dispersion further contains an inorganic filler, the amount thereof is preferably 1 to 50% by mass, more preferably 5 to 40% by mass, based on the total mass of the dispersion.
  • Suitable specific examples of the inorganic filler include silica filler (“Admafine (registered trademark)” series manufactured by Admatex Co., Ltd.), zinc oxide surface-treated with an ester such as propylene glycol dicaprate (Sakai Chemical Industry Co., Ltd.). "FINEX (registered trademark)” series, etc.), spherical molten silica (“SFP (registered trademark)” series, etc.
  • the present dispersion contains a tyxonicity-imparting agent, a viscosity modifier, an antifoaming agent, a silane coupling agent, a dehydrating agent, a plasticizer, a weathering agent, and an antioxidant, as long as the effects of the present invention are not impaired.
  • Other components such as agents, heat stabilizers, lubricants, antistatic agents, whitening agents, colorants, conductive agents, mold release agents, surface treatment agents, flame retardants, and various fillers may be further contained.
  • the viscosity of this dispersion is preferably 10 mPa ⁇ s or more, more preferably 30 mPa ⁇ s or more, and even more preferably 50 mPa ⁇ s or more.
  • the viscosity of this dispersion is preferably 3000 mPa ⁇ s or less, more preferably 1000 mPa ⁇ s or less, and even more preferably 800 mPa ⁇ s or less.
  • the viscosity of this dispersion is preferably 50 to 3000 mPa ⁇ s, more preferably 50 to 1000 mPa ⁇ s.
  • the thixotropic ratio of this dispersion is preferably 1.0 or more.
  • the thixotropic ratio of this dispersion is preferably 3.0 or less, more preferably 2.0 or less.
  • the present dispersion is excellent in coatability and homogeneity, and it is easy to form a more dense molded product (polymer layer or the like).
  • the pH of this dispersion is 5-10.
  • the function of the imide-based resin P is balanced by adjusting the pH within such a range. That is, when the pH of the dispersion liquid is less than 5, the reactivity of the imide-based resin P is increased, but the dispersion action thereof is lowered and the dispersion stability of the dispersion liquid is lowered.
  • the pH of the dispersion liquid is more than 10, the dispersion action of the imide-based resin P is enhanced, but the reactivity thereof is lowered, and the physical properties of the molded product obtained from the dispersion liquid are lowered.
  • the pH of this dispersion is preferably 7-9. In this case, the hue and long-term storage stability of this dispersion are likely to be excellent.
  • the dispersion layer ratio is preferably 60% or more, more preferably 70% or more, and further preferably 80% or more.
  • the dispersion layer ratio means that when a dispersion liquid (18 mL) is placed in a screw tube (internal volume: 30 mL) and allowed to stand at 25 ° C. for 14 days, the entire dispersion liquid in the screw tube after standing has been allowed to stand. It is a value calculated by the following formula from the height and the height of the sedimentation layer (dispersion layer). If the sedimentation layer is not confirmed after standing and there is no change in the state, it is assumed that the height of the entire dispersion liquid does not change, and the dispersion layer ratio is 100%.
  • Dispersion layer ratio (%) (height of sedimentation layer) / (height of the entire dispersion) ⁇ 100
  • the fluctuation range (absolute value) of the thixotropic ratio of the present dispersion before and after standing is preferably 3 or less, and preferably less than 1.
  • This dispersion can be prepared by mixing F particles, an imide resin P, and water as a dispersion medium.
  • F particles and imide-based resin P are added to water all at once or sequentially and mixed; F particles and water, and imide-based resin P and water are mixed in advance, respectively, and a mixture of the two obtained is obtained. A method of further mixing; and the like.
  • F particles are dispersed in water in advance, and then the imide resin P is added as it is (directly) or in a state of being mixed with water and mixed to prepare the dispersion, or water.
  • the imide-based resin P it is advantageous to prepare by adding the imide-based resin P to the water in advance and then adding the F particles as they are (directly) or in a state of being mixed with water and mixing them from the viewpoint of more uniformly dispersing the F particles. Yes, preferred.
  • a surfactant, other resin material or an inorganic filler is further contained in the dispersion liquid, it is added at the same time when the F particles are pre-dispersed in water, or it is added to water before the F particles are dispersed. It is preferable to add it in advance.
  • a stirring device equipped with blades (stirring blades) such as propeller blades, turbine blades, paddle blades, and shell-shaped blades on a single axis or multiple axes, a henshell mixer, and pressurization.
  • blades such as propeller blades, turbine blades, paddle blades, and shell-shaped blades on a single axis or multiple axes
  • a henshell mixer a henshell mixer
  • a preferred embodiment of the method for producing the present dispersion is an embodiment in which F particles and a composition containing water are kneaded to obtain a kneaded product, and the kneaded product and water are further mixed.
  • the imide-based resin P may be added to the composition or may be added when the kneaded product and water are further mixed, and the former is preferable. That is, it is preferable to knead the composition containing F particles, the imide resin P, and water to obtain a kneaded product, and further mix the kneaded product and water.
  • the kneading can be carried out by the above-mentioned mixing method, and it is preferable to use a Henschel mixer, a pressurized kneader, a Banbury mixer, a rotation / revolution stirrer or a planetary mixer, and more preferably a planetary mixer.
  • the planetary mixer has a biaxial stirring blade that rotates and revolves with each other, and has a structure for stirring and kneading the kneaded material in the stirring tank. Therefore, there is little dead space in the stirring tank where the stirring blades do not reach, the load on the blades can be reduced, and the composition can be highly kneaded.
  • the dispersion stability is improved. It is easy to obtain an excellent dispersion. Further, it is easy to adjust the component concentration of the present dispersion, and it is easy to obtain the present dispersion capable of forming a thick molded product (polymer layer or the like) having excellent surface smoothness and uniformity.
  • the content of F particles in the composition is preferably 20% by mass or more, more preferably 40% by mass or more, based on the total mass of the composition.
  • the content of F particles is preferably 90% by mass or less.
  • the content of the imide-based resin P in the composition is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, based on the total mass of the composition.
  • the content of the imide-based resin P is preferably 10% by mass or less.
  • the total content of the F particles and the imide-based resin P in the composition is preferably 40% by mass or more, more preferably 60% by mass or more, based on the total mass of the composition.
  • the total content is preferably 90% by mass or less.
  • the ratio of the mass of the imide-based resin P to the mass of the F particles in the composition is preferably 0.001 or more, more preferably 0.005 or more, and more preferably 0.01 or more. Is even more preferable.
  • the ratio is preferably 0.1 or less, more preferably 0.09 or less, still more preferably 0.05 or less.
  • the dispersion liquid having excellent dispersion stability in which the ratio of the mass of the imide-based resin P to the mass of the F particles is in the range of 0.001 to 0.1 is obtained. Easy to obtain.
  • the kneaded product is a semi-solid or solid solidified product, and is preferably a kneaded paste or a kneaded powder.
  • the kneaded paste is a kneaded product having fluidity and viscosity
  • the kneaded powder is a kneaded product in a lumpy and clay-like state.
  • the viscosity of the kneaded paste is preferably 800 to 100,000 mPa ⁇ s, more preferably 1000 to 10,000 mPa ⁇ s or more.
  • the water content of the dough is preferably 50% by mass or less, and preferably 40% by mass or less.
  • the water content of the dough is preferably 20% by mass or more, and more preferably 25% by mass or more.
  • a surfactant, another resin material or an inorganic filler when a surfactant, another resin material or an inorganic filler is further contained in the present dispersion, these may be added to the composition, and the mixture may be added at the time of mixing the kneaded product and water. You may.
  • F particles, other resin materials or inorganic fillers, and a composition containing water are kneaded to obtain a kneaded product, and the kneaded product and the imide-based resin P are obtained. And may be obtained by mixing with a mixture containing water. In this case, the dispersion stability and long-term storage stability of the present dispersion are likely to be improved.
  • This dispersion is also excellent in dispersion stability and long-term storage stability, and forms a molded product that has excellent flexibility such as bending resistance, that is, crack resistance, and exhibits strong adhesiveness to a substrate.
  • This dispersion is applied to at least one surface of the substrate to form a liquid film, the liquid film is heated to remove the dispersion medium to form a dry film, and the dry film is further heated to form an F polymer.
  • F layer a laminate having a polymer layer containing the F polymer and the imide resin P (hereinafter, also referred to as “F layer”) on the surface of the base material (hereinafter, also referred to as “main laminate”) can be obtained. ..
  • the present dispersion is applied to both surfaces of the base material and heated to bake the F polymer, a laminate having F layers on both sides of the base material layer composed of the base material can be obtained.
  • a metal substrate copper, nickel, aluminum, titanium, metal foil such as an alloy thereof, etc.
  • a resin film tetrafluoroethylene polymer, polyimide, polyarylate, polysulfone, polyallylsulfone, polyamide, polyether, etc.
  • heat-resistant resin film containing one or more of heat-resistant resins such as amide, polyphenylene sulfide, polyallyl ether ketone, polyamideimide, liquid crystal polyester, and liquid crystal polyester amide, and is a multilayer film even if it is a single-layer film.
  • Prepreg precursor of fiber-reinforced resin substrate
  • ceramic substrate ceramic substrate such as silicon carbide, aluminum nitride, silicon nitride
  • glass substrate glass substrate.
  • a resin film is preferable, and it is more preferable that the resin constituting the resin film is a polyimide resin.
  • This dispersion is suitably used for forming an F layer by applying it to at least one surface of a resin film and drying it.
  • the shape of the base material include a planar shape, a curved surface shape, and an uneven shape.
  • the shape of the base material may be foil-like, plate-like, film-like, or fibrous.
  • any method may be used as long as a stable liquid film (wet film) composed of the present dispersion liquid is formed on the surface of the resin film (base material).
  • a stable liquid film composed of the present dispersion liquid is formed on the surface of the resin film (base material).
  • examples thereof include a droplet ejection method and a dipping method, and a coating method is preferable. If the coating method is used, a liquid film can be efficiently formed on the surface of the resin film with simple equipment.
  • the coating methods include spray method, roll coat method, spin coat method, gravure coat method, micro gravure coat method, gravure offset method, knife coat method, kiss coat method, bar coat method, die coat method, fountain Mayer bar method, and slit coat.
  • the method, the slot die coat method, and the dip coat method can be mentioned.
  • the liquid film When the liquid film is dried, the liquid film is heated at a temperature at which the dispersion medium (water) volatilizes, and the dry film is formed on the surface of the resin film.
  • the heating temperature in such drying is preferably 100 to 200 ° C. Air may be blown in the step of removing the dispersion medium.
  • the dispersion medium does not necessarily have to be completely volatilized, and may be volatilized to the extent that the layer shape after holding is stable and the self-supporting film can be maintained.
  • the heating temperature is preferably 380 ° C. or lower.
  • each heating method include a method using an oven, a method using a ventilation drying furnace, and a method of irradiating heat rays such as infrared rays.
  • the heating may be performed under either normal pressure or reduced pressure.
  • the heating atmosphere may be any of an oxidizing gas atmosphere (oxygen gas, etc.), a reducing gas atmosphere (hydrogen gas, etc.), and an inert gas atmosphere (helium gas, neon gas, argon gas, nitrogen gas, etc.). ..
  • the heating time is preferably 0.1 to 30 minutes, more preferably 0.5 to 20 minutes.
  • the thickness of the F layer is preferably 0.1 to 150 ⁇ m, more preferably 10 ⁇ m or more.
  • the thickness of the F layer is preferably 10 to 30 ⁇ m.
  • the thickness of the F layer is preferably 10 to 150 ⁇ m, more preferably 15 to 50 ⁇ m.
  • the peel strength between the F layer and the base material layer is preferably 10 N / cm or more, more preferably 15 N / cm or more. The peel strength is preferably 100 N / cm or less.
  • the porosity of the F layer is preferably 30% or less, more preferably 20% or less.
  • the porosity is preferably 0.1% or more, more preferably 1% or more. From this dispersion, it is easy to form an F layer with a low porosity. In particular, even when the porosity of the dry film is 1% or more, it is easy to form an F layer having a low porosity.
  • the void ratio is determined by image processing to determine the void portion of the F layer from the SEM photograph of the cross section of the molded product observed using a scanning electron microscope (SEM), and the area occupied by the void portion is the area occupied by the F layer. It is the ratio (%) divided by the area. The area occupied by the void portion is obtained by approximating the void portion to a circle.
  • the present dispersion may be applied to only one surface of the base material, or may be applied to both sides of the base material.
  • a base material layer composed of the base material and the present laminate having an F layer on one surface of the base material layer are obtained, and in the latter, a base material layer composed of the base material and a base material layer are obtained.
  • the present laminate having the F layer on both surfaces of the base material layer can be obtained. Since the latter laminated body is less likely to warp, it is excellent in handleability during its processing.
  • Specific examples of the present laminate include a metal foil, a metal-clad laminate having an F layer on at least one surface of the metal foil, a polyimide film, and a multilayer film having an F layer on both surfaces of the polyimide film. Can be mentioned. Since these laminated bodies are excellent in various physical characteristics such as electrical characteristics, they are suitable as printed circuit board materials and the like, and can be used for manufacturing flexible printed circuit boards and rigid printed circuit boards.
  • the present dispersion is applied to one surface of the base material and heated to remove the liquid dispersion medium, and the present dispersion is applied to the other surface of the base material. It is preferably obtained by applying, heating to remove the liquid dispersion medium, and further heating to fire the F polymer to form each F layer.
  • the present dispersion liquid is applied to both surfaces of the base material, heated to remove the liquid dispersion medium, and further heated to bake the F polymer.
  • the F layers on both surfaces may be formed at the same time.
  • the base material is immersed in the main dispersion liquid to be applied to both surfaces of the base material, and then passed through a firing furnace and heated. It is preferable to obtain it. Specifically, it is more preferable to immerse the base material in the main dispersion liquid and then heat the base material by passing it through a firing furnace while pulling it up from the main dispersion liquid.
  • the direction in which the base material is pulled up and passed through the firing furnace is preferably vertically upward. In this case, a smooth F layer is likely to be formed.
  • the base material may be further heated while being pulled down vertically, or the base material may be pulled down vertically without heating to take over the base material.
  • the amount of the present dispersion liquid to be applied to the base material can be adjusted by passing the base material to which the present dispersion liquid is attached between a pair of rolls.
  • Such a laminated body can be suitably manufactured by using an apparatus having a dip coater and a firing furnace. Examples of the firing furnace include a vertical firing furnace. Further, as such a device, a glass cloth coating device manufactured by Tabata Machinery Co., Ltd. can be mentioned.
  • the outermost surface of the base material may be further surface-treated in order to further improve its low line expandability and adhesiveness.
  • the surface treatment method include annealing treatment, corona treatment, plasma treatment, ozone treatment, excimer treatment, and silane coupling treatment.
  • the conditions for the annealing treatment are preferably 120 to 180 ° C., a pressure of 0.005 to 0.015 MPa, and a time of 30 to 120 minutes.
  • the gas used for the plasma treatment include oxygen gas, nitrogen gas, rare gas (argon, etc.), hydrogen gas, ammonia gas, and vinyl acetate. One type of these gases may be used, or two or more types may be used in combination.
  • the ten-point average roughness of the surface of the base material is preferably 0.01 to 0.05 ⁇ m.
  • This laminate in which the base material layer is a resin film (preferably a polyimide film) is useful as a release film or a carrier film. Since this laminated body has excellent adhesiveness between the F layer and the base material layer and is difficult to delaminate, it can be used repeatedly as a carrier film. Further, since the F layer has excellent heat resistance, the releasability does not easily deteriorate even after repeated use.
  • a resin film preferably a polyimide film
  • a dispersion liquid or varnish containing a resin or an inorganic filler is applied to the surface of the F layer of the laminated body and dried to form a coating film, and then the main laminated body is peeled off from the coating film. Then, an independent coating film can be obtained.
  • the coating film side of the present laminate having such a coating film and another base material are bonded to each other, and the present laminate is peeled off.
  • a laminate of the base material and the coating film is obtained.
  • it may be heated at a temperature equal to or lower than the melting point of the F polymer during drying. Since this laminate has excellent heat resistance, it is not easily deformed even after repeated heat treatment.
  • the present laminate is a carrier film for forming a ceramic green sheet, a carrier film for forming a secondary battery, a carrier film for forming a solid polymer electrolyte membrane, and a carrier film for forming a catalyst of a solid polymer electrolyte membrane. It is useful as.
  • the ratio of the thickness of the end portion to the thickness of the central portion of the present laminate is preferably 1.1 or less from the viewpoint of obtaining the coating film having a uniform thickness. .07 or less is more preferable, and 1.04 or less is more preferable. The thickness ratio is 1 or more.
  • Another substrate may be further laminated on the outermost surface of the laminated body.
  • substrates include a metal substrate, a heat-resistant resin film, a prepreg which is a precursor of a fiber-reinforced resin plate, a laminate having a heat-resistant resin film layer, and a laminate having a prepreg layer.
  • the prepreg is a sheet-like substrate in which a base material (tow, woven fabric, etc.) of reinforcing fibers (glass fibers, carbon fibers, etc.) is impregnated with a thermosetting resin or a thermoplastic resin.
  • the metal substrate include the above-mentioned metal substrate.
  • the heat-resistant resin film is a film containing one or more heat-resistant resins, and examples of the heat-resistant resin include the above-mentioned resins.
  • the laminating method examples include a method of heat-pressing the main laminated body with another substrate.
  • the hot press conditions are preferably such that the temperature is 120 to 400 ° C., the atmospheric pressure is a vacuum of 20 kPa or less, and the press pressure is 0.2 to 10 MPa. Since this laminate has an F layer having excellent electrical characteristics, it is suitable as a printed circuit board material, and specifically, it can be used as a flexible metal-clad laminate or a rigid metal-clad laminate for manufacturing a printed circuit board. It can be suitably used for manufacturing a flexible printed circuit board as a flexible metal-clad laminate.
  • This laminated body in which the base material layer is a metal foil, and a metal-clad laminate (resin film) in which a metal foil is further laminated on the main laminated body having an F layer in which the base material layer is a resin film. And the metal foil with F layer) is etched to form a transmission circuit to obtain a printed substrate.
  • a method of etching a metal foil to process it into a predetermined transmission circuit, or a method of processing a metal foil into a predetermined transmission circuit by an electrolytic plating method (semi-additive method (SAP method), MSAP method, etc.). can be used to manufacture printed circuit boards.
  • a printed circuit board manufactured from a metal foil with an F layer and a resin film and a metal foil with an F layer has a transmission circuit formed from the metal foil and an F layer in this order.
  • Specific examples of the configuration of the printed circuit board include a transmission circuit / F layer / prepreg layer, a transmission circuit / F layer / prepreg layer / F layer / transmission circuit, a transmission circuit / F layer / polyimide film layer, and a transmission circuit / F layer /.
  • Examples include a polyimide film layer / F layer / transmission circuit.
  • an interlayer insulating film may be formed on the transmission circuit, a solder resist may be laminated on the transmission circuit, or a coverlay film may be laminated on the transmission circuit.
  • These interlayer insulating films, solder resists and coverlay films may be formed with the present dispersion.
  • this laminate in which the base material layer is a metal substrate is excellent in insulating property and heat dissipation property, it is also useful as a heat dissipation board, and can be particularly preferably used as a board for mounting a power semiconductor.
  • the shape of the base material is preferably plate-like, and the base material is preferably a copper plate or an aluminum plate.
  • the thickness of the base material is preferably 0.1 to 3 mm.
  • the slit coating method is preferable as a method of applying the present dispersion liquid to the base material.
  • the F polymer in such a case, an F polymer having a melting temperature of 200 to 320 ° C. is preferable, and a polymer having an oxygen-containing polar group containing the above-mentioned TFE unit and PAVE unit is more preferable.
  • the F layer further contains an inorganic filler.
  • the inorganic filler a boron nitride filler, an aluminum nitride filler or an aluminum oxide filler is preferable. That is, in the present laminate used as the heat dissipation substrate, the F polymer is a polymer having an oxygen-containing polar group containing the above-mentioned TFE unit and PAVE unit, and the imide-based resin P is an aromatic polyimide or an aromatic polyimide precursor.
  • the body, aromatic polyamideimide or aromatic polyamideimide precursor is preferable, and the F layer thereof preferably contains a boron nitride filler, an aluminum nitride filler or an aluminum oxide filler.
  • the insulation and heat dissipation of the laminated body as a heat dissipation substrate are particularly likely to be improved.
  • the present laminated body is processed into a laminated body having a metal layer, an F layer, and a metal layer in this order.
  • a laminate may be obtained by thermocompression-bonding a metal substrate to the surface of the F layer of the present laminate, laminating the two present laminates so that the F layers face each other, and thermocompression-bonding the F layer.
  • the latter is preferable.
  • a hot press is preferable.
  • the thicknesses of the two metal layers in such a laminate may be the same or different. Further, the metals in the two metal layers may be the same or different.
  • the F layer of the main laminate having an F layer on the surface of an aluminum plate having a thickness of 1 mm and the F layer of the main laminate having an F layer on the surface of a copper plate having a thickness of 0.5 mm are heat-pressed.
  • an aluminum plate, an F layer, and a copper plate are provided in this order, and a laminate having two metal layers having different thicknesses can be obtained.
  • This laminate and the laminate of this laminate and other substrates are useful as antenna parts, printed substrates, aircraft parts, automobile parts, sports equipment, food industry supplies, paints, heat dissipation parts, cosmetics, etc. , Specifically, wire coating materials (aircraft wires, etc.), electrical insulating tapes, insulating tapes for oil drilling, materials for printed substrates, separation membranes (precision filtration membranes, ultrafiltration membranes, back-penetration membranes, ion exchange).
  • the present invention is not limited to the configuration of the above-described embodiment.
  • the present dispersion and the present laminate may be added to any other configuration or may be replaced with any configuration exhibiting the same function in the configuration of the above embodiment.
  • the method for producing the present dispersion may additionally have any other step in the configuration of the above embodiment, or may be replaced with any step that produces the same action.
  • F particle 1 Contains 97.9 mol%, 0.1 mol%, and 2.0 mol% of TFE units, NAH units, and PPVE units in this order, and contains carbonyl group-containing groups per 1 ⁇ 10 6 main chain carbon atoms.
  • Particles (D50: 2.1 ⁇ m) consisting of 1000 polymers (melting temperature: 300 ° C)
  • F particle 2 A polymer containing 97.5 mol% and 2.5 mol% of TFE units and PPVE units in this order and having 25 carbonyl group-containing groups per 1 ⁇ 10 6 main chain carbon atoms (melting temperature 305 ° C.).
  • F particle 3 Particles made of non-heat-meltable PTFE (D50: 0.2 ⁇ m) [F dispersion liquid]
  • F dispersion liquid 1 Water dispersion liquid containing 60% by mass of F particles 3 (“AD-911E” manufactured by AGC).
  • Varnish of imide resin Water varnish containing a precursor (acid value: 50 mgKOH / g) of aromatic polyamide-imide (PAI1)
  • Surfactant 1 Polyoxyalkylene-modified polydimethylsiloxane having a dimethylsiloxane unit in the main chain and an oxyethylene group at the end of the main chain or the side chain (weight average molecular weight: 1600, dispersibility: 1.5, HLB value: 13) , Static surface tension: 25 mN / m, dynamic surface tension of 0.1% by mass aqueous solution: 30 mN / m)
  • Amine 1 Triethanolamine Acid 1: Formic acid [Nonionic polymer] Polysaccharide 1: Hydroxyethyl cellulose (“HEC CF-Y” manufactured by Sumitomo Seika Chemical Co., Ltd.) [Water-soluble polymer having a nonionic hydroxyl group] [Resin film (base
  • Example 1-1 F particles 1, varnish 1, surfactant 1, and water were put into the pot, and zirconia balls were put into the pot. Then, the pot was rolled at 150 rpm for 1 hour, amine 1 was added, and F particles 1 (60 parts by mass), PAI 1 (0.6 parts by mass), surfactant 1 (3 parts by mass) and water (46 parts by mass) were added. A dispersion 1 containing (4 parts by mass) was obtained. The viscosity of the obtained dispersion liquid 1 was 1000 mPa ⁇ s, and the pH was 8.0. Even when the dispersion liquid 1 was stored at 25 ° C. for a long period of time, no agglomerates were visually recognized and the dispersion liquid 1 was excellent in dispersibility.
  • Example 1-2 F particles 1, varnish 1, surfactant 1 and water were added to the pot and mixed to prepare a composition. This composition is kneaded in a planetary mixer and then taken out, and F particles 1 (60 parts by mass), PAI 1 (0.6 parts by mass), surfactant 1 (3 parts by mass) and water (20 parts by mass) are taken out. 1 was obtained. Water was added to the kneaded powder 1 in a plurality of times, and the mixture was stirred while defoaming at 2000 rpm with a rotating revolution stirrer. Further, water is added in a plurality of times while stirring, and amine 1 is added to F particles 1 (60 parts by mass), PAI 1 (0.6 parts by mass), surfactant 1 (3 parts by mass) and. A dispersion 2 containing water (46.4 parts by mass) was obtained. The viscosity of the obtained dispersion liquid 2 was 800 mPa ⁇ s, and the pH was 8.0.
  • Example 1-3 to [Example 1-6] Dispersions 3 to 6 were obtained in the same manner as in Example 1-2, except that the types or amounts of F particles, varnish, pH adjuster and water were changed as shown in Table 1.
  • Example 1-7 F particles 1, varnish 1, surfactant 1 and water were added to the pot and mixed to prepare a composition. This composition is kneaded in a planetary mixer and then taken out, and F particles 1 (50 parts by mass), PAI (0.6 parts by mass), surfactant 1 (3 parts by mass) and water (20 parts by mass) are taken out. 7 was obtained. The F dispersion liquid 1 was added to the kneaded powder 7, and water was further added in a plurality of times, and the mixture was stirred while defoaming at 2000 rpm with a rotation / revolution stirrer.
  • a dispersion 7 containing activator 1 (3 parts by mass) and water (46.4 parts by mass) was obtained.
  • the viscosity of the obtained dispersion 7 was 700 mPa ⁇ s, and the pH was 8.0.
  • Example 1-8 F particles 1, varnish 1, surfactant 1, polysaccharide 1 and water were added to the pot and mixed to prepare a composition. This composition is kneaded in a planetary mixer and then taken out, and F particles 1 (50 parts by mass), PAI (0.6 parts by mass), surfactant 1 (3 parts by mass), and polysaccharide 1 (0. A kneaded powder 8 containing 3 parts by mass) and water (20 parts by mass) was obtained. The F dispersion liquid 1 was added to the kneaded powder 8, and water was further added in a plurality of times, and the mixture was stirred while defoaming at 2000 rpm with a rotating revolution stirrer.
  • the viscosity of the obtained dispersion liquid 8 was 3000 mPa ⁇ s, and the pH was 8.0.
  • Example 2-1 By a roll-to-roll process, the dispersion liquid 1 obtained according to Example 1-1 is applied to one surface of the polyimide film 1 by a small-diameter gravure reverse method, and passed through a ventilation drying furnace (fired temperature 150 ° C.) in 3 minutes. The water was removed to form a dry film. Further, the dispersion liquid 1 was similarly applied to the other surface of the polyimide film 1 and dried to form a dry film. Next, the polyimide film 1 having the dry film formed on both sides is passed through a far-infrared furnace (a furnace temperature of 300 ° C. near the inlet and outlet of the furnace, a furnace temperature of 360 ° C.
  • a far-infrared furnace a furnace temperature of 300 ° C. near the inlet and outlet of the furnace, a furnace temperature of 360 ° C.
  • Multilayer films 2 to 7 were obtained in the same manner as in Example 2-1 except that the dispersion liquids 2 to 8 were used instead of the dispersion liquid 1.
  • the porosity of the polymer layer of each multilayer film was smaller in the order of multilayer film 2, multilayer film 1, multilayer films 3 and 4, and multilayer films 5 and 6, and the polymer layer of multilayer film 2 was the densest.
  • the dielectric loss tangent of the multilayer films 7 and 8 is the lowest, and both multilayer films are electric. It was superior to the characteristics.
  • the thickness of the polymer layer having surface smoothness and interlayer adhesion that can be formed in a single laminating body manufacturing process was the largest when the dispersion liquid 8 was used.
  • the aqueous dispersion of the present invention has excellent dispersion stability and can be easily processed into films, fiber reinforced films, prepregs, and metal laminated plates (metal foils with resin).
  • the obtained processed article can be used as a material for antenna parts, printed circuit boards, aircraft parts, automobile parts, sports equipment, food industry supplies, sliding bearings and the like.
  • the laminate of the present invention is excellent in heat resistance and releasability, a carrier film for forming a ceramic green sheet, a carrier film for forming a secondary battery electrode film, a carrier film for forming a solid polymer electrolyte film, and a solid are used. It can also be used as a carrier film for forming a catalyst for a polymer electrolyte membrane.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

[Problem] To provide an aqueous dispersion which contains particles of a tetrafluoroethylene polymer and exhibits excellent dispersion stability, while being capable of forming a molded body that is excellent in terms of electrical characteristics such as low dielectric loss tangent and low transmission loss, flexibility such as bending resistance, UV absorption, and bondability/adhesion to resin films such as polyimide films. [Solution] An aqueous dispersion which contains particles of a tetrafluoroethylene polymer, an aromatic imide resin that has an acid value of from 20 mg/KOH to 100 mg/KOH, and water, and which has a pH of from 5 to 10.

Description

水性分散液及びその製造方法Aqueous dispersion and its manufacturing method
 本発明は、テトラフルオロエチレン系ポリマーの粒子及び特定の芳香族イミド系樹脂を含む水性分散液、及びかかる水性分散液の製造方法に関する。 The present invention relates to an aqueous dispersion containing particles of a tetrafluoroethylene polymer and a specific aromatic imide resin, and a method for producing such an aqueous dispersion.
 ポリテトラフルオロエチレン(PTFE)等のテトラフルオロエチレン系ポリマーは、電気特性、撥水撥油性、耐薬品性、耐熱性等の物性に優れており、種々の産業用途に利用されている(特許文献1)。前記物性を基材表面に付与するために用いるコーティング剤として、テトラフルオロエチレン系ポリマーの粒子を含む分散液が知られている。
 特に近年、高周波帯域の周波数に対応するプリント基板の誘電体層を形成する、低誘電率、低誘電正接等の電気特性に優れた材料として、テトラフルオロエチレン系ポリマーの粒子を含む分散液は注目されている。
Tetrafluoroethylene-based polymers such as polytetrafluoroethylene (PTFE) have excellent physical properties such as electrical properties, water and oil repellency, chemical resistance, and heat resistance, and are used in various industrial applications (Patent Documents). 1). As a coating agent used to impart the physical properties to the surface of the base material, a dispersion liquid containing particles of a tetrafluoroethylene-based polymer is known.
In particular, in recent years, a dispersion containing tetrafluoroethylene polymer particles has attracted attention as a material having excellent electrical properties such as low dielectric constant and low dielectric loss tangent, which forms a dielectric layer of a printed circuit board corresponding to frequencies in the high frequency band. Has been done.
 取扱い性の観点からは、前記分散液を水系とするのが好ましい。特許文献2には、フッ素系樹脂の水系分散液を樹脂フィルムの片面又は両面に塗布し加熱することで形成された積層体が開示されている。特許文献3には、水性ポリイミド前駆体と、フッ素樹脂と、水を含み、これらが均一に混合されている組成物が開示されている。 From the viewpoint of handleability, it is preferable to use the dispersion liquid as an aqueous system. Patent Document 2 discloses a laminate formed by applying an aqueous dispersion of a fluororesin to one or both sides of a resin film and heating the resin film. Patent Document 3 discloses a composition containing an aqueous polyimide precursor, a fluororesin, and water, and these are uniformly mixed.
特開2019-218484号公報Japanese Unexamined Patent Publication No. 2019-218484 特開平09-157418号公報Japanese Unexamined Patent Publication No. 09-157418 特開2016-20488号公報Japanese Unexamined Patent Publication No. 2016-20488
 しかし、テトラフルオロエチレン系ポリマーの水系の分散液は、非水系の分散液と比較して分散状態が概して悪い。そのため、基材への塗工及び焼成において、テトラフルオロエチレン系ポリマーの粒子のパッキングが緩くなり、形成されるポリマー層の緻密性に問題が生じやすい。具体的には、ロール・トゥー・ロールのような連続生産プロセスで樹脂フィルム等の基材上に前記ポリマー層を形成させると、かかるポリマー層にクラックやピンホールが発生しやすくなる。本発明者らの検討によれば、先行技術文献の水系の分散液を使用した場合、これらの傾向が顕著になることを知見した。 However, the aqueous dispersion of the tetrafluoroethylene polymer is generally inferior in the dispersed state as compared with the non-aqueous dispersion. Therefore, in coating and firing on the base material, the packing of the particles of the tetrafluoroethylene-based polymer becomes loose, and a problem tends to occur in the denseness of the polymer layer to be formed. Specifically, when the polymer layer is formed on a substrate such as a resin film by a continuous production process such as roll-to-roll, cracks and pinholes are likely to occur in the polymer layer. According to the studies by the present inventors, it has been found that these tendencies become remarkable when the aqueous dispersion of the prior art document is used.
 本発明者らは、鋭意検討した結果、テトラフルオロエチレン系ポリマーの粒子と、特定の芳香族イミド系樹脂と、水とを含有し、pHを特定範囲とした分散液は、分散安定性に優れることを知見した。また、かかる分散液から得られる成形物は緻密であり、低誘電正接及び低線膨張係数等に優れると共に、耐屈曲性等の柔軟性、UV吸収性、ポリイミドフィルムなどのプラスチックフィルムとの接着・密着性が改善されることを知見した。
 本発明の目的は、分散安定性に優れると共に、得られる成形物が耐屈曲性等の柔軟性、UV吸収性、ポリイミドフィルム等の樹脂フィルムとの接着性・密着性に優れる、水性分散液の提供である。
As a result of diligent studies, the present inventors have found that a dispersion liquid containing tetrafluoroethylene polymer particles, a specific aromatic imide resin, and water and having a pH in a specific range is excellent in dispersion stability. I found that. In addition, the molded product obtained from such a dispersion is dense, has excellent low dielectric loss tangent and low coefficient of linear expansion, flexibility such as bending resistance, UV absorption, and adhesion to plastic films such as polyimide film. It was found that the adhesion was improved.
An object of the present invention is to provide an aqueous dispersion having excellent dispersion stability, flexibility such as bending resistance, UV absorption, and adhesiveness / adhesion to a resin film such as a polyimide film. It is an offer.
 本発明は、下記の態様を有する。
<1> テトラフルオロエチレン系ポリマーの粒子と、酸価が20~100mg/KOHである芳香族イミド系樹脂と、水とを含み、pHが5~10である、水性分散液。
<2> 前記テトラフルオロエチレン系ポリマーが、ペルフルオロ(アルキルビニルエーテル)に基づく単位を含む酸素含有極性基を有するテトラフルオロエチレン系ポリマーである、<1>の水性分散液。
<3> 前記テトラフルオロエチレン系ポリマーの粒子が、非熱溶融性のテトラフルオロエチレン系ポリマーの粒子と、熱溶融性のテトラフルオロエチレン系ポリマーの粒子とを含む、<1>又は<2>の水性分散液。
<4> 前記芳香族イミド系樹脂が、水溶性の芳香族ポリアミドイミドの前駆体又は水溶性の芳香族ポリイミドの前駆体である、<1>~<3>のいずれかの水性分散液。
<5> さらに、無機フィラーを含む、<1>~<4>のいずれかの水性分散液。
<6> さらに、ノニオン性界面活性剤を含む、<1>~<5>のいずれかの水性分散液。
<7> さらに、ポリビニルアルコール系高分子、ポリビニルピロリドン系高分子及び多糖類なる群から選ばれる少なくとも1種のノニオン性高分子を含む、<1>~<6>のいずれかの水性分散液。
<8> アミン又はアンモニアを含む、<1>~<7>のいずれかの水性分散液。
<9> 前記テトラフルオロエチレン系ポリマーの粒子の質量に対する、前記芳香族イミド系樹脂の質量の比が、0.001~0.1の範囲である、<1>~<8>のいずれかの水性分散液。
<10> 前記水性分散液における前記粒子と前記芳香族イミド系樹脂の合計含有量が、前記水性分散液の全体質量に対して20質量%以上である、<1>~<9>のいずれかの水性分散液。
<11> 粘度が、50~3000mPa・sである、<1>~<10>のいずれかの水性分散液。
<12> 樹脂フィルムの少なくとも一方の表面に付与して加熱することでテトラフルオロエチレン系ポリマーを含むポリマー層を形成させるために用いられる、<1>~<11>のいずれかの水性分散液。
<13> 前記樹脂フィルムを構成する樹脂がポリイミド系樹脂である、<1>~<12>のいずれかの水性分散液。
<14> 前記テトラフルオロエチレン系ポリマーの粒子と、前記芳香族イミド系樹脂と、水を含有する組成物を混練して混練物を得て、前記混練物と水を混合して前記水性分散液を得る、<1>~<13>のいずれかの水性分散液の製造方法。
<15> <1>~<13>のいずれかの水性分散液を樹脂フィルムの両方の表面に付与し、加熱してテトラフルオロエチレン系ポリマーを含む前記ポリマー層を形成させた、前記樹脂フィルムで構成される基材層の両面に前記ポリマー層を有する積層体。
The present invention has the following aspects.
<1> An aqueous dispersion containing particles of a tetrafluoroethylene polymer, an aromatic imide resin having an acid value of 20 to 100 mg / KOH, and water, and having a pH of 5 to 10.
<2> The aqueous dispersion of <1>, wherein the tetrafluoroethylene-based polymer is a tetrafluoroethylene-based polymer having an oxygen-containing polar group containing a unit based on perfluoro (alkyl vinyl ether).
<3> The particles of the tetrafluoroethylene-based polymer include particles of the non-heat-meltable tetrafluoroethylene-based polymer and particles of the heat-meltable tetrafluoroethylene-based polymer, according to <1> or <2>. Aqueous dispersion.
<4> The aqueous dispersion according to any one of <1> to <3>, wherein the aromatic imide resin is a precursor of a water-soluble aromatic polyamide-imide or a precursor of a water-soluble aromatic polyimide.
<5> The aqueous dispersion according to any one of <1> to <4>, further containing an inorganic filler.
<6> The aqueous dispersion according to any one of <1> to <5>, further containing a nonionic surfactant.
<7> The aqueous dispersion according to any one of <1> to <6>, further containing at least one nonionic polymer selected from the group consisting of a polyvinyl alcohol-based polymer, a polyvinylpyrrolidone-based polymer, and a polysaccharide.
<8> The aqueous dispersion according to any one of <1> to <7>, which contains amine or ammonia.
<9> Any of <1> to <8>, wherein the ratio of the mass of the aromatic imide resin to the mass of the particles of the tetrafluoroethylene polymer is in the range of 0.001 to 0.1. Aqueous dispersion.
<10> Any of <1> to <9>, wherein the total content of the particles and the aromatic imide-based resin in the aqueous dispersion is 20% by mass or more with respect to the total mass of the aqueous dispersion. Aqueous dispersion.
<11> The aqueous dispersion according to any one of <1> to <10>, which has a viscosity of 50 to 3000 mPa · s.
<12> The aqueous dispersion according to any one of <1> to <11>, which is used to form a polymer layer containing a tetrafluoroethylene polymer by applying it to at least one surface of a resin film and heating it.
<13> The aqueous dispersion according to any one of <1> to <12>, wherein the resin constituting the resin film is a polyimide resin.
<14> A composition containing the tetrafluoroethylene polymer particles, the aromatic imide resin, and water is kneaded to obtain a kneaded product, and the kneaded product and water are mixed to obtain the aqueous dispersion. The method for producing an aqueous dispersion according to any one of <1> to <13>.
<15> With the resin film, any of the aqueous dispersions of <1> to <13> is applied to both surfaces of the resin film and heated to form the polymer layer containing the tetrafluoroethylene polymer. A laminate having the polymer layer on both sides of the constituent base material layer.
 本発明によれば、分散安定性に優れる、テトラフルオロエチレン系ポリマーの水性分散液、及びかかる水性分散液の製造方法を提供できる。本発明の水性分散液からは、低誘電正接、低伝送損失等の電気特性等の物性に優れ、また耐屈曲性等の柔軟性、UV吸収性、ポリイミドフィルム等の樹脂フィルムとの接着性・密着性に優れる成形体を形成できる。したがって本発明の水性分散液は、例えばプリント基板の構成材料として有用である。 According to the present invention, it is possible to provide an aqueous dispersion of a tetrafluoroethylene polymer having excellent dispersion stability and a method for producing such an aqueous dispersion. The aqueous dispersion of the present invention has excellent physical properties such as low dielectric loss tangent and low transmission loss, flexibility such as bending resistance, UV absorption, and adhesion to resin films such as polyimide film. A molded body having excellent adhesion can be formed. Therefore, the aqueous dispersion of the present invention is useful, for example, as a constituent material for a printed circuit board.
 以下の用語は、以下の意味を有する。
 「平均粒子径(D50)」は、レーザー回折・散乱法によって求められる、対象物(粒子及びフィラー)の体積基準累積50%径である。すなわち、レーザー回折・散乱法によって粒度分布を測定し、対象物(粒子及びフィラー)の集団の全体積を100%として累積カーブを求め、その累積カーブ上で累積体積が50%となる点の粒子径である。
 対象物(粒子及びフィラー)のD50は、対象物(粒子及びフィラー)を水中に分散させ、レーザー回折・散乱式の粒度分布測定装置(堀場製作所社製、LA-920測定器)を用いたレーザー回折・散乱法により分析して求められる。
 「溶融温度」は、示差走査熱量測定(DSC)法で測定したポリマーの融解ピークの最大値に対応する温度である。
 「粘度」は、B型粘度計を用いて、25℃で回転数が30rpmの条件下で対象物(分散液及び混練物)を測定して求められる。測定を3回繰り返し、3回分の測定値の平均値とする。
 「チキソ比」とは、対象物(分散液及び混練物)の、回転数が30rpmの条件で測定される粘度ηを、回転数が60rpmの条件で測定される粘度ηで除して算出される値である。それぞれの粘度の測定は、3回繰り返し、3回分の測定値の平均値とする。
 「ポリオキシアルキレン変性ポリジメチルシロキサンのHLB値」は、Griffin式にて算出される値であり、分子中のポリオキシアルキレン部分の分子量をオルガノポリシロキサンの分子量で除した値を20倍して求められる。
 「静的表面張力」は、Wilhelmy法によって自動表面張力計CBVP-Z型(協和界面科学株式会社製)を使用し、ポリオキシアルキレン変性ポリジメチルシロキサンの0.1質量%水溶液を用いて求められる。
 「動的表面張力」は、ポリオキシアルキレン変性ポリジメチルシロキサンの0.1質量%水溶液の、25℃における、最大泡圧法の気泡の発生周期6Hzでの動的表面張力であり、ポリオキシアルキレン変性ポリジメチルシロキサンを0.1質量%の割合で含む水溶液の動的表面張力を、温度25℃の環境下、英弘精機株式会社製の動的表面張力計シータt60のセンサーを水溶液に浸漬して、最大泡圧法によって測定される値である。測定は、水溶液の気泡の発生周期を6Hzに設定して実施する。
 ポリマーにおける「単位」とは、モノマーの重合により形成された前記モノマーに基づく原子団を意味する。単位は、重合反応によって直接形成された単位であってもよく、ポリマーを処理することによって前記単位の一部が別の構造に変換された単位であってもよい。以下、モノマーaに基づく単位を、単に「モノマーa単位」とも記す。
The following terms have the following meanings.
The "average particle diameter (D50)" is a volume-based cumulative 50% diameter of an object (particle and filler) determined by a laser diffraction / scattering method. That is, the particle size distribution is measured by the laser diffraction / scattering method, the cumulative curve is obtained with the total volume of the group of objects (particles and fillers) as 100%, and the particles at the point where the cumulative volume is 50% on the cumulative curve. The diameter.
The D50 of the object (particles and filler) is a laser that disperses the object (particles and filler) in water and uses a laser diffraction / scattering type particle size distribution measuring device (LA-920 measuring instrument manufactured by HORIBA, Ltd.). It is obtained by analysis by the diffraction / scattering method.
The "melting temperature" is the temperature corresponding to the maximum value of the melting peak of the polymer measured by the differential scanning calorimetry (DSC) method.
The "viscosity" is determined by measuring an object (dispersion liquid and kneaded product) at 25 ° C. and a rotation speed of 30 rpm using a B-type viscometer. The measurement is repeated 3 times, and the average value of the measured values for 3 times is used.
The "thixotropic ratio" is the viscosity η 1 of the object (dispersion liquid and kneaded product) measured under the condition of 30 rpm divided by the viscosity η 2 measured under the condition of 60 rpm. It is a calculated value. The measurement of each viscosity is repeated 3 times, and the average value of the measured values for 3 times is used.
The "HLB value of polyoxyalkylene-modified polydimethylsiloxane" is a value calculated by the Griffin formula, and is obtained by multiplying the molecular weight of the polyoxyalkylene portion in the molecule by the molecular weight of organopolysiloxane by 20. Be done.
"Static surface tension" is determined by the Wilhelmy method using an automatic surface tension meter CBVP-Z type (manufactured by Kyowa Surface Science Co., Ltd.) and a 0.1% by mass aqueous solution of polyoxyalkylene-modified polydimethylsiloxane. ..
"Dynamic surface tension" is the dynamic surface tension of a 0.1% by mass aqueous solution of polyoxyalkylene-modified polydimethylsiloxane at 25 ° C. at a bubble generation cycle of 6 Hz by the maximum foam pressure method, and is polyoxyalkylene-modified. The dynamic surface tension of an aqueous solution containing polydimethylsiloxane at a ratio of 0.1% by mass was immersed in the aqueous solution by immersing the sensor of the dynamic surface tension meter Theta t60 manufactured by Eiko Seiki Co., Ltd. in an environment at a temperature of 25 ° C. It is a value measured by the maximum foam pressure method. The measurement is carried out by setting the generation cycle of bubbles in the aqueous solution to 6 Hz.
By "unit" in a polymer is meant an atomic group based on the monomer formed by polymerization of the monomer. The unit may be a unit directly formed by a polymerization reaction, or may be a unit in which a part of the unit is converted into another structure by processing a polymer. Hereinafter, the unit based on the monomer a is also simply referred to as “monomer a unit”.
 本発明の水性分散液(以下、「本分散液」とも記す。)は、テトラフルオロエチレン系ポリマー(以下、「Fポリマー」とも記す。)の粒子(以下、「F粒子」とも記す。)と、酸価が20~100mg/KOHである芳香族イミド系樹脂(以下、「イミド系樹脂P」とも記す。)と、水とを含み、pHが5~10である。 The aqueous dispersion of the present invention (hereinafter, also referred to as “the present dispersion”) is a particle of a tetrafluoroethylene-based polymer (hereinafter, also referred to as “F polymer”) (hereinafter, also referred to as “F particle”). It contains an aromatic imide-based resin having an acid value of 20 to 100 mg / KOH (hereinafter, also referred to as “imide-based resin P”) and water, and has a pH of 5 to 10.
 本分散液は分散安定性に優れる。また、本分散液から形成される成形物(焼成物)は、電気特性等の、テトラフルオロエチレン系ポリマーに基づく物性に優れ、表面平滑性に優れると共に、耐屈曲性等の柔軟性、UV吸収性、ポリイミドフィルム等の樹脂フィルムとの接着性・密着性にも優れる。
 本分散液の分散安定性が向上する理由は、必ずしも明確ではないが、例えば以下のように推定している。
 本発明におけるイミド系樹脂Pは特定の酸価を有するため、F粒子及び水と相互作用しやすく、本分散液中でF粒子の分散剤として作用するだけでなく、本分散液の粘度調整剤としても作用して、本分散液の分散安定性を向上させていると考えられる。また、本分散液が特定範囲のpHであることはかかる作用を高めるだけでなく、さらに本分散液を加熱して成形物を形成する際の、イミド系樹脂Pの反応性を高めている。その結果、イミド系樹脂PとFポリマーや基材との相互作用が高まり、得られる成形物の柔軟性や接着性・密着性(バインダー能)が向上したと考えられる。その結果、本分散液は分散安定性に優れ、本分散液から電気特性、耐屈曲性、UV吸収性等に優れた成形物をロール・トゥー・ロールのような連続生産プロセスで形成できたと考えられる。
This dispersion has excellent dispersion stability. In addition, the molded product (baked product) formed from this dispersion has excellent physical properties based on the tetrafluoroethylene polymer such as electrical characteristics, excellent surface smoothness, flexibility such as bending resistance, and UV absorption. It also has excellent properties and adhesiveness and adhesion to resin films such as polyimide films.
The reason why the dispersion stability of this dispersion is improved is not always clear, but it is estimated as follows, for example.
Since the imide-based resin P in the present invention has a specific acid value, it easily interacts with F particles and water, and not only acts as a dispersant for F particles in the dispersion liquid, but also acts as a viscosity modifier for the dispersion liquid. However, it is considered that the dispersion stability of this dispersion is improved. Further, the fact that the pH of the present dispersion is in a specific range not only enhances such an action, but also enhances the reactivity of the imide-based resin P when the present dispersion is heated to form a molded product. As a result, it is considered that the interaction between the imide-based resin P and the F polymer or the base material is enhanced, and the flexibility, adhesiveness and adhesion (binder ability) of the obtained molded product are improved. As a result, it is considered that this dispersion has excellent dispersion stability, and a molded product having excellent electrical characteristics, bending resistance, UV absorption, etc. could be formed from this dispersion by a continuous production process such as roll-to-roll. Be done.
 本分散液におけるFポリマーは、テトラフルオロエチレン(TFE)に基づく単位(TFE単位)を含むポリマーである。Fポリマーは、1種を用いてもよく、2種以上を用いてもよい。Fポリマーは、熱溶融性であっても非熱溶融性であってもよいが、Fポリマーの少なくとも1種は、熱溶融性であるのが好ましい。かかる場合、本分散液から形成される成形物が柔軟性と、ポリイミドフィルム等の樹脂フィルムとの接着性・密着性に優れやすい。なお、熱溶融性とは荷重49Nの条件下、ポリマーの溶融温度よりも20℃以上高い温度において、溶融流れ速度が0.1~1000g/10分となる温度が存在する溶融流動性のポリマーを意味する。
 Fポリマーが熱溶融性の場合、溶融温度は200~320℃であるのが好ましく、260~320℃であるのがより好ましい。かかる場合、本分散液から形成される成形物が耐熱性に優れやすい。
The F polymer in this dispersion is a polymer containing a unit (TFE unit) based on tetrafluoroethylene (TFE). As the F polymer, one kind may be used, or two or more kinds may be used. The F polymer may be hot meltable or non-hot meltable, but at least one of the F polymers is preferably hot meltable. In such a case, the molded product formed from the present dispersion tends to have excellent flexibility and adhesiveness / adhesion to a resin film such as a polyimide film. The thermal meltability is a melt-fluid polymer having a melt flow rate of 0.1 to 1000 g / 10 minutes at a temperature 20 ° C. or higher higher than the melt temperature of the polymer under a load of 49 N. means.
When the F polymer is thermally meltable, the melting temperature is preferably 200 to 320 ° C, more preferably 260 to 320 ° C. In such a case, the molded product formed from the present dispersion tends to have excellent heat resistance.
 Fポリマーにおけるフッ素原子含有量は、70質量%以上であるのが好ましく、70~76質量%であるのがより好ましい。本分散液は、上述した作用機構により、かかるフッ素原子含有量の高いFポリマーの粒子の水中分散性を特に向上させやすい。
 Fポリマーのガラス転移点は、75~125℃が好ましく、80~100℃がより好ましい。
The fluorine atom content in the F polymer is preferably 70% by mass or more, and more preferably 70 to 76% by mass. Due to the above-mentioned mechanism of action, the present dispersion is particularly likely to improve the dispersibility of F polymer particles having a high fluorine atom content in water.
The glass transition point of the F polymer is preferably 75 to 125 ° C, more preferably 80 to 100 ° C.
 Fポリマーとしては、ポリテトラフルオロエチレン(PTFE)、TFE単位及びエチレンに基づく単位を含むポリマー(ETFE)、TFE単位及びペルフルオロ(アルキルビニルエーテル)(PAVE)に基づく単位(PAVE単位)を含むポリマー(PFA)、TFE単位及びヘキサフルオロプロペン(HFP)に基づく単位を含むポリマー(FEP)が挙げられる。ETFE、PFA及びFEPのそれぞれは、さらに他の単位を含んでいてもよい。PAVEとしては、CF=CFOCF、CF=CFOCFCF及びCF=CFOCFCFCF(PPVE)が好ましく、PPVEがより好ましい。
 Fポリマーは、PFA又はFEPであるのが好ましく、PFAであるのがより好ましい。
F-polymers include polytetrafluoroethylene (PTFE), polymers containing TFE units and units based on ethylene (ETFE), polymers containing TFE units and units based on perfluoro (alkyl vinyl ether) (PAVE) (PAVE units) (PFA). ), Polymers (FEPs) containing TFE units and units based on hexafluoropropene (HFP). Each of ETFE, PFA and FEP may further contain other units. As the PAVE, CF 2 = CFOCF 3 , CF 2 = CFOCF 2 CF 3 and CF 2 = CFOCF 2 CF 2 CF 3 (PPVE) are preferable, and PPVE is more preferable.
The F polymer is preferably PFA or FEP, more preferably PFA.
 Fポリマーの少なくとも1種は、酸素含有極性基を有するのが好ましい。この場合、Fポリマーと、イミド系樹脂P及び水との親和性が向上するため、本分散液は分散安定性に優れやすい。またこの場合、本分散液の焼成に際し、Fポリマーはイミド系樹脂Pと反応して架橋を形成すると考えられ、その結果、本分散液から得られる焼成物(ポリマー層等)が、電気特性、表面平滑性、ポリイミドフィルム等の樹脂フィルムとの接着性・密着性等の物性に一層優れると考えられる。
 酸素含有極性基は、Fポリマー中の単位に含まれていてもよく、Fポリマーの主鎖の末端基に含まれていてもよい。後者の態様としては、重合開始剤、連鎖移動剤等に由来する末端基として酸素含有極性基を有するFポリマー、Fポリマーをプラズマ処理や電離線処理して得られる、酸素含有極性基を有するFポリマーが挙げられる。酸素含有極性基は、水酸基含有基、カルボニル基含有基及びホスホノ基含有基が好ましく、本分散液の分散安定性の観点から、水酸基含有基及びカルボニル基含有基がより好ましく、カルボニル基含有基がさらに好ましい。
At least one of the F polymers preferably has an oxygen-containing polar group. In this case, since the affinity between the F polymer and the imide-based resin P and water is improved, this dispersion tends to be excellent in dispersion stability. Further, in this case, it is considered that the F polymer reacts with the imide resin P to form a crosslink when the present dispersion is fired, and as a result, the calcined product (polymer layer or the like) obtained from the present dispersion has electrical characteristics. It is considered that the surface smoothness and physical properties such as adhesiveness and adhesion to a resin film such as a polyimide film are further excellent.
The oxygen-containing polar group may be contained in a unit in the F polymer, or may be contained in the terminal group of the main chain of the F polymer. In the latter aspect, an F polymer having an oxygen-containing polar group as a terminal group derived from a polymerization initiator, a chain transfer agent, or the like, or an F having an oxygen-containing polar group obtained by subjecting the F polymer to plasma treatment or ionization line treatment. Examples include polymers. As the oxygen-containing polar group, a hydroxyl group-containing group, a carbonyl group-containing group and a phosphono group-containing group are preferable, and a hydroxyl group-containing group and a carbonyl group-containing group are more preferable, and a carbonyl group-containing group is more preferable from the viewpoint of dispersion stability of this dispersion. More preferred.
 水酸基含有基は、アルコール性水酸基を含有する基が好ましく、-CFCHOH、-C(CFOH及び1,2-グリコール基(-CH(OH)CHOH)がより好ましい。
 カルボニル基含有基は、カルボニル基(>C(O))を含む基であり、カルボキシル基、アルコキシカルボニル基、アミド基、イソシアネート基、カルバメート基(-OC(O)NH)、酸無水物残基(-C(O)OC(O)-)、イミド残基(-C(O)NHC(O)-等)及びカーボネート基(-OC(O)O-)が好ましく、酸無水物残基がより好ましい。
 Fポリマーがカルボニル基含有基を有する場合、Fポリマーにおけるカルボニル基含有基の数は、主鎖の炭素数1×10個あたり、10~5000個が好ましく、100~3000個がより好ましく、800~1500個がさらに好ましい。なお、Fポリマーにおけるカルボニル基含有基の数は、ポリマーの組成又は国際公開第2020/145133号に記載の方法によって定量できる。
The hydroxyl group-containing group is preferably a group containing an alcoholic hydroxyl group, more preferably -CF 2 CH 2 OH, -C (CF 3 ) 2 OH and 1,2-glycol group (-CH (OH) CH 2 OH). ..
The carbonyl group-containing group is a group containing a carbonyl group (> C (O)), a carboxyl group, an alkoxycarbonyl group, an amide group, an isocyanate group, a carbamate group (-OC (O) NH 2 ), and an acid anhydride residue. Groups (-C (O) OC (O)-), imide residues (-C (O) NHC (O)-etc.) and carbonate groups (-OC (O) O-) are preferred, and acid anhydride residues. Is more preferable.
When the F polymer has a carbonyl group-containing group, the number of carbonyl group-containing groups in the F polymer is preferably 10 to 5000, more preferably 100 to 3000, and more preferably 800 per 1 × 10 6 carbon atoms in the main chain. ~ 1500 pieces are more preferable. The number of carbonyl group-containing groups in the F polymer can be quantified by the composition of the polymer or the method described in International Publication No. 2020/145133.
 Fポリマーとしては、TFE単位及びPAVE単位を含む、酸素含有極性基を有するポリマーが好ましく、TFE単位、PAVE単位及び酸素含有極性基を有するモノマーに基づく単位を含むポリマーであるのがより好ましく、全単位に対して、これらの単位をこの順に、90~99モル%、0.5~9.97モル%、0.01~3モル%、含むポリマーであるのがさらに好ましい。
 また、酸素含有極性基を有するモノマーは、無水イタコン酸、無水シトラコン酸又は5-ノルボルネン-2,3-ジカルボン酸無水物(以下、「NAH」とも記す。)が好ましい。
 かかるポリマーの具体例としては、国際公開第2018/16644号に記載されるポリマーが挙げられる。
 これらのFポリマーは、その粒子が分散安定性に優れるだけでなく、本分散液から得られる成形物(ポリマー層等)中において、より緻密かつ均質に分布しやすい。さらに、成形物中において微小球晶を形成しやすく、他の成分との密着性が高まりやすい。その結果、電気特性等の各種物性に優れた成形物を、より得られやすい。
As the F polymer, a polymer having an oxygen-containing polar group containing a TFE unit and a PAVE unit is preferable, and a polymer containing a unit based on a monomer having a TFE unit, a PAVE unit and an oxygen-containing polar group is more preferable, and all of them are used. It is more preferable that the polymer contains 90 to 99 mol%, 0.5 to 9.97 mol%, 0.01 to 3 mol% of these units in this order with respect to the unit.
Further, as the monomer having an oxygen-containing polar group, itaconic anhydride, citraconic anhydride or 5-norbornen-2,3-dicarboxylic acid anhydride (hereinafter, also referred to as “NAH”) is preferable.
Specific examples of such polymers include the polymers described in WO 2018/16644.
Not only are the particles of these F polymers excellent in dispersion stability, but they are also likely to be more densely and uniformly distributed in the molded product (polymer layer or the like) obtained from the present dispersion. Further, it is easy to form fine spherulites in the molded product, and it is easy to improve the adhesion with other components. As a result, it is easier to obtain a molded product having excellent various physical characteristics such as electrical characteristics.
 非熱溶融性のFポリマーとしては、非熱溶融性のPTFEが挙げられる。
 非熱溶融性PTFEの数平均分子量は、100万~1億が好ましい。なお、非熱溶融性PTFEの数平均分子量は、下式(1)に基づいて算出される値である。
 Mn = 2.1×1010×ΔHc-5.16 ・・・ (1)
 式(1)中、Mnは、非熱溶融性PTFEの数平均分子量を、ΔHcは、示差走査熱量分析法により測定される非熱溶融性PTFEの結晶化熱量(cal/g)を、それぞれ示す。
 数平均分子量がかかる範囲である場合、Fポリマーがフィブリル化しにくく、本分散液が分散安定性に優れやすい。
Examples of the non-heat-meltable F polymer include non-heat-meltable PTFE.
The number average molecular weight of the non-thermally meltable PTFE is preferably 1 million to 100 million. The number average molecular weight of the non-thermally meltable PTFE is a value calculated based on the following formula (1).
Mn = 2.1 × 10 10 × ΔHc- 5.16 ... (1)
In the formula (1), Mn indicates the number average molecular weight of the non-thermally meltable PTFE, and ΔHc indicates the amount of heat of crystallization (cal / g) of the non-thermally meltable PTFE measured by the differential scanning calorimetry method. ..
When the number average molecular weight is in the range, the F polymer is less likely to be fibrillated, and the present dispersion is likely to have excellent dispersion stability.
 本分散液において、F粒子のD50は0.1~25μmであるのが好ましい。F粒子のD50は20μm以下が好ましく、10μm以下がより好ましく、8μm以下がさらに好ましい。F粒子のD50は0.1μm以上が好ましく、1μm以上がより好ましく、2μm以上がさらに好ましい。この範囲のD50において、F粒子の流動性と分散性とが良好となりやすい。 In this dispersion, the D50 of F particles is preferably 0.1 to 25 μm. The D50 of the F particles is preferably 20 μm or less, more preferably 10 μm or less, and even more preferably 8 μm or less. The D50 of the F particles is preferably 0.1 μm or more, more preferably 1 μm or more, still more preferably 2 μm or more. In D50 in this range, the fluidity and dispersibility of F particles tend to be good.
 本分散液の分散安定性の観点から、F粒子の嵩密度は0.15g/m以上が好ましく、0.20g/m以上がより好ましい。F粒子の嵩密度は0.50g/m以下が好ましく、0.35g/m以下がより好ましい。
 また、F粒子の比表面積は、1~8m/gが好ましく、1~3m/gがより好ましい。
From the viewpoint of the dispersion stability of the present dispersion, the bulk density of the F particles is preferably 0.15 g / m 2 or more, more preferably 0.20 g / m 2 or more. The bulk density of the F particles is preferably 0.50 g / m 2 or less, more preferably 0.35 g / m 2 or less.
The specific surface area of the F particles is preferably 1 to 8 m 2 / g, more preferably 1 to 3 m 2 / g.
 F粒子は、1種を用いてもよく、2種以上を用いてもよい。2種のF粒子を用いる場合、非熱溶融性のFポリマーの粒子と、熱溶融性のFポリマーの粒子とを含むのが好ましく、非熱溶融性PTFE(好適には前記した数平均分子量が100万~1億のPTFE)の粒子と、溶融温度が200~320℃であるFポリマー(好適には前記したTFE単位及びPAVE単位を含む、酸素含有極性基を有するポリマー)の粒子とを含むのがより好ましい。 One type of F particle may be used, or two or more types may be used. When two kinds of F particles are used, it is preferable to include non-heat-meltable F polymer particles and heat-meltable F polymer particles, and the non-heat-meltable PTFE (preferably having the above-mentioned number average molecular weight). Contains particles of 1 million to 100 million PTFE) and particles of an F polymer having a melting temperature of 200 to 320 ° C. (preferably a polymer having an oxygen-containing polar group, including the TFE units and PAVE units described above). Is more preferable.
 この場合、両者の粒子の含有質量の割合は、前者の粒子の含有質量が後者の粒子の含有質量より多くてもよく、前者の粒子の含有質量が後者の粒子の含有質量より少なくてもよい。
 そして、前者の粒子の含有質量が後者の粒子の含有質量よりも多い方がより好ましい。
 この場合、前者の粒子と後者の粒子との合計に占める後者の粒子の割合は、25質量%以下が好ましく、15質量%以下がより好ましい。また、この場合の割合は、0.1質量%以上が好ましく、1質量%以上がより好ましい。
 かかる本分散液は、分散安定性と取扱い性と長期保管安定性に優れやすいだけでなく、PTFEに基づく物性に優れた、接着性の成形物を形成しやすい。
In this case, the ratio of the content mass of both particles may be such that the content mass of the former particle is larger than the content mass of the latter particle, and the content mass of the former particle may be less than the content mass of the latter particle. ..
And it is more preferable that the content mass of the former particles is larger than the content mass of the latter particles.
In this case, the ratio of the latter particles to the total of the former particles and the latter particles is preferably 25% by mass or less, more preferably 15% by mass or less. Further, the ratio in this case is preferably 0.1% by mass or more, more preferably 1% by mass or more.
This dispersion liquid is not only easy to be excellent in dispersion stability, handleability and long-term storage stability, but is also easy to form an adhesive molded product having excellent physical characteristics based on PTFE.
 また、前者の粒子の含有質量が後者の粒子の含有質量よりも少ない場合は、接着性と表面平滑性に優れた成形物を形成しやすい観点から好ましい。
 この場合、前者の粒子と後者の粒子との合計に占める前者の粒子の割合は、50質量%未満が好ましく、25質量%以下がより好ましい。また、前記割合は、5質量%以上が好ましく、10質量%以上がより好ましい。
Further, when the content mass of the former particles is smaller than the content mass of the latter particles, it is preferable from the viewpoint that it is easy to form a molded product having excellent adhesiveness and surface smoothness.
In this case, the ratio of the former particles to the total of the former particles and the latter particles is preferably less than 50% by mass, more preferably 25% by mass or less. Further, the ratio is preferably 5% by mass or more, more preferably 10% by mass or more.
 非熱溶融性のFポリマーの粒子と、溶融温度が200~320℃であるFポリマーの粒子とを用いる場合、非熱溶融性PTFEの粒子のD50が0.1~1μmであり、溶融温度が200~320℃であるFポリマーの粒子のD50が0.1~1μmである態様、非熱溶融性PTFEの粒子のD50が0.1~1μmであり、溶融温度が200~320℃であるFポリマーの粒子のD50が1~4μmである態様が好ましい。 When the non-heat-meltable F polymer particles and the F polymer particles having a melting temperature of 200 to 320 ° C. are used, the D50 of the non-heat-melting PTFE particles is 0.1 to 1 μm, and the melting temperature is An embodiment in which the D50 of the particles of the F polymer having a temperature of 200 to 320 ° C. is 0.1 to 1 μm, the D50 of the particles of the non-thermally meltable PTFE is 0.1 to 1 μm, and the melting temperature is 200 to 320 ° C. It is preferable that the D50 of the polymer particles is 1 to 4 μm.
 F粒子は、Fポリマー以外の樹脂又は無機フィラーを含んでいてもよいが、Fポリマーを主成分とするのが好ましい。F粒子におけるFポリマーの含有量は80質量%以上が好ましく、100質量%がより好ましい。
 上記樹脂としては、芳香族ポリエステル、ポリアミドイミド、(熱可塑性)ポリイミド、ポリフェニレンエーテル、ポリフェニレンオキシド、マレイミド等の耐熱性樹脂が挙げられる。無機フィラーとしては、酸化ケイ素(シリカ)、金属酸化物(酸化ベリリウム、酸化セリウム、アルミナ、ソーダアルミナ、酸化マグネシウム、酸化亜鉛、酸化チタン等)、窒化ホウ素、メタ珪酸マグネシウム(ステアタイト)が挙げられる。無機フィラーは、その表面の少なくとも一部が表面処理されていてもよい。
 Fポリマー以外の樹脂又は無機フィラーを含むF粒子は、Fポリマーをコアとし、Fポリマー以外の樹脂又は無機フィラーをシェルに有するコア-シェル構造を有するか、Fポリマーをシェルとし、Fポリマー以外の樹脂又は無機フィラーをコアに有するコア-シェル構造を有していてもよい。かかるF粒子は、例えば、Fポリマーの粒子と、Fポリマー以外の樹脂又は無機フィラーの粒子とを合着(衝突、凝集等)させて得られる。
The F particles may contain a resin other than the F polymer or an inorganic filler, but the F polymer is preferably the main component. The content of the F polymer in the F particles is preferably 80% by mass or more, more preferably 100% by mass.
Examples of the resin include heat-resistant resins such as aromatic polyester, polyamide-imide, (thermoplastic) polyimide, polyphenylene ether, polyphenylene oxide, and maleimide. Examples of the inorganic filler include silicon oxide (silica), metal oxides (berylium oxide, cerium oxide, alumina, soda alumina, magnesium oxide, zinc oxide, titanium oxide, etc.), boron nitride, and magnesium metasilicate (steatite). .. At least a part of the surface of the inorganic filler may be surface-treated.
F particles containing a resin or inorganic filler other than the F polymer have a core-shell structure having the F polymer as the core and the resin or the inorganic filler other than the F polymer in the shell, or the F polymer as the shell and other than the F polymer. It may have a core-shell structure having a resin or an inorganic filler in the core. Such F particles are obtained, for example, by coalescing (collision, agglomeration, etc.) particles of an F polymer with particles of a resin or an inorganic filler other than the F polymer.
 本分散液を構成するイミド系樹脂Pは、本分散液の分散安定性を向上すると共に、本分散液から得られる成形物に、耐屈曲性等の柔軟性、UV吸収性を付与する。また、ポリイミドフィルムなどの樹脂フィルムの表面に本分散液を付与してFポリマーを含むポリマー層を形成する際に、かかるポリマー層に樹脂フィルムとの接着性・密着性等の特性を付与する。 The imide-based resin P constituting the present dispersion improves the dispersion stability of the present dispersion and imparts flexibility such as bending resistance and UV absorption to the molded product obtained from the present dispersion. Further, when the present dispersion is applied to the surface of a resin film such as a polyimide film to form a polymer layer containing an F polymer, the polymer layer is imparted with properties such as adhesiveness and adhesion to the resin film.
 イミド系樹脂Pとしては、芳香族ポリイミド、芳香族ポリイミド前駆体(ポリアミック酸又はその塩)、芳香族ポリアミドイミド、芳香族ポリアミドイミド前駆体、カルボン酸基等の極性官能基を有する変性芳香族ポリイミド、変性芳香族ポリイミド前駆体、変性芳香族ポリアミドイミド、変性芳香族ポリアミドイミド前駆体、芳香族ポリエーテルイミド又は芳香族ポリエーテルイミド前駆体が挙げられる。
 中でも、芳香族ポリイミド又はその前駆体(ポリアミック酸又はその塩)、芳香族ポリアミドイミド又はその前駆体が好ましく、水溶性の芳香族ポリイミド前駆体、水溶性の芳香族ポリアミドイミド前駆体がより好ましく、水溶性の芳香族ポリアミドイミド前駆体がさらに好ましい。
The imide-based resin P includes a modified aromatic polyimide having a polar functional group such as an aromatic polyimide, an aromatic polyimide precursor (polyamic acid or a salt thereof), an aromatic polyamideimide, an aromatic polyamideimide precursor, and a carboxylic acid group. , Modified aromatic polyimide precursor, modified aromatic polyamideimide, modified aromatic polyamideimide precursor, aromatic polyetherimide or aromatic polyetherimide precursor.
Among them, aromatic polyimide or its precursor (polyamic acid or a salt thereof), aromatic polyamideimide or its precursor is preferable, and water-soluble aromatic polyimide precursor and water-soluble aromatic polyamide-imide precursor are more preferable. Water-soluble aromatic polyamide-imide precursors are more preferred.
 水溶性の芳香族ポリイミド前駆体としては、テトラカルボン酸二無水物とジアミンを溶媒中で重合させたポリアミック酸や、該ポリアミック酸と、アンモニア水又は有機アミンを反応させたポリアミック酸塩が挙げられる。ポリアミック酸塩を水に溶解させることで、ポリアミック酸の水溶液を調製できる。
 テトラカルボン酸二無水物としては、例えばピロメリット酸無水物、ビフェニルテトラカルボン酸無水物が挙げられる。ジアミンとしては、例えばN,N’-ジアミノジフェニルエーテル、p-ジアミノベンゼンが挙げられる。溶媒としては、例えばN-メチルピロリドン、N,N-ジメチルホルムアミドが挙げられる。
 有機アミンとしては、例えばメチルアミン、エチルアミン、n-プロピルアミン、2-エタノールアミン、2-アミノ-2-メチル-1-プロパノール等の1級アミン;ジメチルアミン、2-(メチルアミノ)エタノール、2-(エチルアミノ)エタノール等の2級アミン;2-ジメチルアミノエタノール、2-ジエチルアミノエタノール、1-ジメチルアミノ-2-プロパノール等の3級アミン;テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド等の4級アンモニウム塩が挙げられる。
Examples of the water-soluble aromatic polyimide precursor include a polyamic acid obtained by polymerizing a tetracarboxylic acid dianhydride and a diamine in a solvent, and a polyamic acid salt obtained by reacting the polyamic acid with aqueous ammonia or an organic amine. .. An aqueous solution of a polyamic acid can be prepared by dissolving the polyamic acid salt in water.
Examples of the tetracarboxylic acid dianhydride include pyromellitic acid anhydride and biphenyltetracarboxylic acid anhydride. Examples of the diamine include N, N'-diaminodiphenyl ether and p-diaminobenzene. Examples of the solvent include N-methylpyrrolidone and N, N-dimethylformamide.
Examples of the organic amine include primary amines such as methylamine, ethylamine, n-propylamine, 2-ethanolamine and 2-amino-2-methyl-1-propanol; dimethylamine, 2- (methylamino) ethanol, 2 -Secondary amines such as (ethylamino) ethanol; tertiary amines such as 2-dimethylaminoethanol, 2-diethylaminoethanol and 1-dimethylamino-2-propanol; 4 such as tetramethylammonium hydroxide and tetraethylammonium hydroxide. Examples include grade ammonium salts.
 水溶性の芳香族ポリアミドイミド樹脂又はその前駆体としては、ジイソシアネート及び/又はジアミンと、酸成分としての三塩基酸無水物(又は三塩基酸クロリド)とを反応させて得られるポリアミドイミド樹脂又はその前駆体が挙げられる。
 ジイソシアネートとしては、例えば4,4’-ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、3,3’-ジメチルビフェニル-4,4’-ジイソシアネート、3,3’-ジフェニルメタンジイソシアネート、3,3’-ジメトキシビフェニル-4,4’-ジイソシアネート、パラフェニレンジイソシアネート、ヘキサメチレンジイソシアネート、トリレンジイソシアネート、ナフタレンジイソシアネート、トリレンジイソシアレート、イソホロンジイソシアネートが挙げられる。これらのジイソシアネートは、1種類を単独で用いても、2種類以上を組み合わせて用いてもよい。
 なお、芳香族ポリアミドイミド樹脂の安定性を向上する観点から、ジイソシアネートとして、ブロック剤でイソシアネート基を安定化したブロック型イソシアネートを使用してもよい。ブロック剤としては、アルコール、フェノール、及びオキシム等が挙げられる。
The water-soluble aromatic polyamide-imide resin or its precursor is a polyamide-imide resin obtained by reacting diisocyanate and / or diamine with a tribasic acid anhydride (or tribasic acid chloride) as an acid component or a polyamide-imide resin thereof. Examples include precursors.
Examples of the diisocyanate include 4,4'-diphenylmethane diisocyanate, xylylene diisocyanate, 3,3'-dimethylbiphenyl-4,4'-diisocyanate, 3,3'-diphenylmethane diisocyanate, 3,3'-dimethoxybiphenyl-4, Examples thereof include 4'-diisocyanate, paraphenylenediocyanate, hexamethylene diisocyanate, tolylene diisocyanate, naphthalene diisocyanate, tolylene diisocyanate and isophorone diisocyanate. These diisocyanates may be used alone or in combination of two or more.
From the viewpoint of improving the stability of the aromatic polyamide-imide resin, a block-type isocyanate in which an isocyanate group is stabilized with a blocking agent may be used as the diisocyanate. Examples of the blocking agent include alcohol, phenol, oxime and the like.
 ジアミンとしては、例えば3,3’-ジメチルビフェニル-4,4’-ジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、キシリレンジアミン、フェニレンジアミン、イソホロンジアミンが挙げられる。これらのジアミンは、1種類を単独で用いても、2種類以上を組み合わせて用いてもよい。 Examples of the diamine include 3,3'-dimethylbiphenyl-4,4'-diamine, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3,3'-. Examples thereof include diaminodiphenyl sulfone, xylylene diamine, phenylenediamine and isophoronediamine. These diamines may be used alone or in combination of two or more.
 三塩基酸無水物としては、例えばトリメリット酸無水物が挙げられ、三塩基酸クロリドとしては、例えばトリメリット酸無水物クロリドが挙げられる。三塩基酸無水物としては、環境への負荷を軽減させる観点から、トリメリット酸無水物が好ましい。 Examples of the tribasic acid anhydride include trimellitic acid anhydride, and examples of the tribasic acid chloride include trimellitic acid anhydride chloride. As the tribasic acid anhydride, trimellitic acid anhydride is preferable from the viewpoint of reducing the burden on the environment.
 芳香族ポリアミドイミド樹脂を製造する際に、上記の三塩基酸無水物(又は三塩基酸クロリド)の他に、酸成分として、ジカルボン酸、テトラカルボン酸二無水物等を、ポリアミドイミド樹脂の特性を損なわない範囲で用いてもよい。
 ジカルボン酸としては、例えばテレフタル酸、イソフタル酸、アジピン酸、セバシン酸が挙げられる。テトラカルボン酸二無水物としては、例えばピロメリット酸二無水物、ベンゾフェノンテトラカルボン酸二無水物、ビフェニルテトラカルボン酸二無水物が挙げられる。これらは、1種類を単独で用いても、2種類以上を組合せて用いてもよい。
 三塩基酸以外のカルボン酸(ジカルボン酸とテトラカルボン酸)の総量は、ポリアミドイミド樹脂の特性を保つ観点から、全カルボン酸中の0~30モル%の範囲であるのが好ましい。
When producing an aromatic polyamide imide resin, in addition to the above-mentioned tribasic acid anhydride (or tribasic acid chloride), dicarboxylic acid, tetracarboxylic acid dianhydride and the like are used as acid components in the characteristics of the polyamideimide resin. May be used as long as it does not impair.
Examples of the dicarboxylic acid include terephthalic acid, isophthalic acid, adipic acid, and sebacic acid. Examples of the tetracarboxylic acid dianhydride include pyromellitic acid dianhydride, benzophenone tetracarboxylic acid dianhydride, and biphenyltetracarboxylic acid dianhydride. These may be used alone or in combination of two or more.
The total amount of carboxylic acids (dicarboxylic acid and tetracarboxylic acid) other than tribasic acid is preferably in the range of 0 to 30 mol% in the total carboxylic acid from the viewpoint of maintaining the characteristics of the polyamide-imide resin.
 ジイソシアネート及び/又はジアミンと酸成分(三塩基酸無水物又は三塩基酸無水物クロリドと必要に応じて使用するジカルボン酸及びテトラカルボン酸二無水物の合計量)の使用比率は、生成されるポリアミドイミド樹脂の分子量及び架橋度の観点から、酸成分の総量1.0モルに対してジイソシアネート化合物及び/又はジアミン化合物を0.8~1.1モルとすることが好ましく、0.95~1.08モルとすることがより好ましく、1.0~1.08モルとすることがさらに好ましい。 The ratio of diisocyanate and / or diamine and acid component (total amount of tribasic acid anhydride or tribasic acid anhydride chloride and dicarboxylic acid and tetracarboxylic acid dianhydride used as needed) is the polyamide produced. From the viewpoint of the molecular weight and the degree of cross-linking of the imide resin, the diisocyanate compound and / or the diamine compound is preferably 0.8 to 1.1 mol, and 0.95 to 1. It is more preferably 08 mol, and even more preferably 1.0 to 1.08 mol.
 水溶性の芳香族ポリアミドイミド樹脂又はその前駆体は、上記のジイソシアネート及び/又はジアミンと、上記の酸成分とを、極性溶媒中で共重合させて得られる。極性溶媒としては、N-メチル-2-ピロリドン、N-ホルミルモルホリン、N-アセチルモルホリン、N,N’-ジメチルエチレンウレア、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、γ-ブチロラクトン等が挙げられる。アミドイミド化反応を高温で短時間に行う観点からは高沸点の溶媒が好ましく、溶解性の観点から、一般的にN-メチル-2-ピロリドンが用いられる。作業環境や安全管理の容易性の観点からは、N-ホルミルモルホリンも好ましい。
 極性溶媒の使用量は、ジイソシアネート又はジアミンと酸成分の総量100質量部に対して、通常、50~500質量部であるのが、得られる芳香族ポリアミドイミド樹脂又はその前駆体の溶解性の観点から好ましい。
 重合温度は、通常、80~180℃の範囲であり、また、空気中の水分の影響を低減するため、窒素等の雰囲気下で行うことが好ましい。
The water-soluble aromatic polyamide-imide resin or its precursor is obtained by copolymerizing the above diisocyanate and / or diamine with the above acid component in a polar solvent. Examples of the polar solvent include N-methyl-2-pyrrolidone, N-formylmorpholine, N-acetylmorpholine, N, N'-dimethylethyleneurea, N, N-dimethylacetamide, N, N-dimethylformamide, γ-butyrolactone and the like. Can be mentioned. A solvent having a high boiling point is preferable from the viewpoint of carrying out the amidimidization reaction at a high temperature for a short time, and N-methyl-2-pyrrolidone is generally used from the viewpoint of solubility. N-formylmorpholine is also preferable from the viewpoint of work environment and ease of safety management.
The amount of the polar solvent used is usually 50 to 500 parts by mass with respect to 100 parts by mass of the total amount of diisocyanate or diamine and the acid component, from the viewpoint of solubility of the obtained aromatic polyamide-imide resin or its precursor. Is preferable.
The polymerization temperature is usually in the range of 80 to 180 ° C., and in order to reduce the influence of moisture in the air, it is preferable to carry out the polymerization in an atmosphere such as nitrogen.
 水溶性の芳香族ポリアミドイミド樹脂又はその前駆体は、例えば(1)酸成分、及びジイソシアネート成分及び/又はジアミン成分を一度に使用し、反応させる方法;(2)酸成分と、ジイソシアネート成分及び/又はジアミン成分の過剰量とを反応させて、末端にイソシアネート基又はアミノ基を有するアミドイミドオリゴマーを合成した後、酸成分を追加して末端のイソシアネート基及び/又はアミノ基と反応させる方法;(3)酸成分の過剰量と、ジイソシアネート成分及び/又はジアミン成分を反応させて、末端に酸又は酸無水物基を有するアミドイミドオリゴマーを合成した後、ジイソシアネート成分及び/又はジアミン成分を追加して末端の酸又は酸無水物基と反応させる方法;で製造できる。 The water-soluble aromatic polyamideimide resin or its precursor is, for example, (1) a method of using an acid component and a diisocyanate component and / or a diamine component at a time and reacting them; (2) an acid component and a diisocyanate component and /. Alternatively, a method of reacting with an excess amount of the diamine component to synthesize an amidimide oligomer having an isocyanate group or an amino group at the terminal, and then adding an acid component to react with the isocyanate group and / or the amino group at the terminal; 3) After reacting the excess amount of the acid component with the diisocyanate component and / or the diamine component to synthesize an amidimide oligomer having an acid or acid anhydride group at the terminal, the diisocyanate component and / or the diamine component is added. It can be produced by a method of reacting with a terminal acid or an acid anhydride group;
 水溶性の芳香族ポリアミドイミド樹脂又はその前駆体の数平均分子量(Mn)は、5000以上が好ましく、10000以上がより好ましく、15000以上がさらに好ましい。一方、Mnは50000以下が好ましく、30000以下がより好ましく、25000以下がさらに好ましい。Mnがかかる範囲であると、芳香族ポリアミドイミド樹脂又はその前駆体の水への溶解性や、本分散液から得られる成形物の、耐屈曲性等の力学的特性を確保できる。
 なお、芳香族ポリアミドイミド樹脂又はその前駆体のMnは、重合時に反応液を適宜サンプリングして、ゲルパーミエーションクロマトグラフィ(GPC)により標準ポリスチレンの検量線を用いて測定し、目的とするMnになるまで重合を行うことで、上記範囲に管理できる。
The number average molecular weight (Mn) of the water-soluble aromatic polyamide-imide resin or its precursor is preferably 5000 or more, more preferably 10,000 or more, still more preferably 15,000 or more. On the other hand, Mn is preferably 50,000 or less, more preferably 30,000 or less, and even more preferably 25,000 or less. Within such a range, the solubility of the aromatic polyamide-imide resin or its precursor in water and the mechanical properties such as bending resistance of the molded product obtained from the present dispersion can be ensured.
The Mn of the aromatic polyamide-imide resin or its precursor is appropriately sampled at the time of polymerization and measured by gel permeation chromatography (GPC) using a standard polystyrene calibration curve to obtain the desired Mn. By polymerizing up to, it can be controlled within the above range.
 芳香族ポリエーテルイミドとしては、主鎖中にイミド結合とエーテル結合を有する非晶性ポリマーが挙げられ、2,2-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]プロパンとm-フェニレンジアミンとの重縮合体が好ましい。芳香族ポリエーテルイミドの市販品としては、例えば「Ultem 1000F3SP」(SABIC社製)が挙げられる。 Examples of the aromatic polyetherimide include an amorphous polymer having an imide bond and an ether bond in the main chain, and 2,2-bis [4- (3,4-dicarboxyphenoxy) phenyl] propane and m-. A polycondensate with phenylenediamine is preferred. Examples of commercially available aromatic polyetherimides include "Ultem 1000F3SP" (manufactured by SABIC).
 イミド系樹脂Pの酸価は20~100mg/KOHである。本分散液では、イミド系樹脂Pの酸価がかかる範囲に調整されていることで、その機能をバランスさせている。すなわち、イミド系樹脂Pの酸価が20mg/KOH未満であると分散液から成形物を形成する際のイミド系樹脂Pの反応率が向上して成形物の物性を高める反面、その分散作用が低下して分散液の分散安定性を低下させてしまう。また、イミド系樹脂Pの酸価が100mg/KOH超であると、分散液におけるイミド系樹脂Pの分散作用は高まる反面、分散液から成形物を形成する際のイミド系樹脂Pの反応率が低下して成形物の物性を低下させてしまう。
 さらに具体的には、酸価が20mgKOH/g以上であると、酸性基を多く有するため、イミド系樹脂Pの水溶化が容易になる傾向、イミド系樹脂PとF粒子及び水が相互作用しやすい傾向、本分散液から形成される成形物が基材との接着性に優れやすい傾向にある。また、酸価が100mgKOH/g以下であると、本分散液の保存安定性が向上する傾向にある。
 また、これらの観点から、イミド系樹脂Pの酸価は35~70mgKOH/gであることが好ましい。なお、イミド系樹脂Pが酸無水物基を有する場合、酸無水物基を開環させた場合の酸価を、イミド系樹脂Pの酸価とする。
The acid value of the imide-based resin P is 20 to 100 mg / KOH. In this dispersion, the acid value of the imide-based resin P is adjusted to such a range to balance its functions. That is, when the acid value of the imide-based resin P is less than 20 mg / KOH, the reaction rate of the imide-based resin P when forming the molded product from the dispersion liquid is improved and the physical properties of the molded product are improved, but the dispersing action is performed. It decreases and the dispersion stability of the dispersion liquid is lowered. Further, when the acid value of the imide-based resin P exceeds 100 mg / KOH, the dispersion action of the imide-based resin P in the dispersion liquid is enhanced, but the reaction rate of the imide-based resin P when forming a molded product from the dispersion liquid is high. It deteriorates and deteriorates the physical properties of the molded product.
More specifically, when the acid value is 20 mgKOH / g or more, since it has many acidic groups, the imide-based resin P tends to be easily solubilized, and the imide-based resin P interacts with F particles and water. There is a tendency that the molded product formed from the present dispersion tends to have excellent adhesiveness to the base material. Further, when the acid value is 100 mgKOH / g or less, the storage stability of the present dispersion tends to be improved.
From these viewpoints, the acid value of the imide resin P is preferably 35 to 70 mgKOH / g. When the imide-based resin P has an acid anhydride group, the acid value when the acid anhydride group is opened is defined as the acid value of the imide-based resin P.
 上記酸価は、イミド系樹脂Pを約0.5g採取し、これに1,4-ジアザビシクロ[2.2.2]オクタンを約0.15g加え、さらにN-メチル-2-ピロリドン約60gとイオン交換水約1mlを加え、イミド系樹脂Pが完全に溶解するまで撹拌する。これを、0.05モル/Lのエタノール性水酸化カリウム溶液を使用して電位差滴定装置で滴定することで測定できる。 For the acid value, about 0.5 g of the imide resin P was collected, about 0.15 g of 1,4-diazabicyclo [2.2.2] octane was added thereto, and about 60 g of N-methyl-2-pyrrolidone was added. Add about 1 ml of ion-exchanged water and stir until the imide resin P is completely dissolved. This can be measured by titrating with a potentiometric titrator using a 0.05 mol / L ethanolic potassium hydroxide solution.
 イミド系樹脂Pの好適な具体例としては「HPC-1000」、「HPC-2100D」(いずれも昭和電工マテリアルズ社製)が挙げられる。 Preferable specific examples of the imide-based resin P include "HPC-1000" and "HPC-2100D" (both manufactured by Showa Denko Materials Co., Ltd.).
 本分散液におけるF粒子の含有量は、本分散液の全体質量に対して、10質量%以上が好ましく、25質量%以上がより好ましい。F粒子の含有量は、本分散液の全体質量に対して80質量%以下が好ましく、70質量%以下がより好ましい。本分散液におけるイミド系樹脂Pの含有量は、本分散液の全体質量に対して、0.1質量%以上が好ましく、0.3質量%以上がより好ましい。イミド系樹脂Pの含有量は、30質量%以下が好ましく、10質量%以下がより好ましい。 The content of F particles in the present dispersion is preferably 10% by mass or more, more preferably 25% by mass or more, based on the total mass of the present dispersion. The content of the F particles is preferably 80% by mass or less, more preferably 70% by mass or less, based on the total mass of the dispersion. The content of the imide-based resin P in the dispersion is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, based on the total mass of the dispersion. The content of the imide-based resin P is preferably 30% by mass or less, more preferably 10% by mass or less.
 本分散液におけるF粒子とイミド系樹脂Pの合計含有量は、本分散液の全体質量に対して20質量%以上であるのが好ましい。前記合計含有量は、30質量%以上であるのがより好ましく、40質量%以上であるのがさらに好ましい。前記合計含有量は、80質量%以下であるのが好ましい。前記合計含有量の好適な範囲の具体例としては、30~80質量%が挙げられる。
 この場合、本分散液から塗膜等の成形物を均一性高く形成でき、Fポリマーによる物性とイミド系樹脂Pによる物性を高度に発現しやすい。すなわち、ポリマー成分の含有量が、かかる高い範囲にあっても、上述した作用機構により、本分散液は、分散安定性に優れ、その成形物の物性を向上させることができる。
The total content of the F particles and the imide-based resin P in the dispersion liquid is preferably 20% by mass or more with respect to the total mass of the dispersion liquid. The total content is more preferably 30% by mass or more, further preferably 40% by mass or more. The total content is preferably 80% by mass or less. Specific examples of the preferred range of the total content include 30 to 80% by mass.
In this case, a molded product such as a coating film can be formed from the dispersion liquid with high uniformity, and the physical characteristics of the F polymer and the physical properties of the imide resin P are highly likely to be exhibited. That is, even if the content of the polymer component is in such a high range, the present dispersion is excellent in dispersion stability and can improve the physical characteristics of the molded product by the above-mentioned mechanism of action.
 また、本分散液中のF粒子の質量に対する、前記イミド系樹脂Pの質量の比は、0.001以上であるのが好ましく、0.005以上であるのがより好ましく、0.01以上であるのがさらに好ましい。前記比は、0.1以下であるのが好ましく、0.09以下であるのがより好ましく、0.05以下であるのがさらに好ましい。前記比の好適な範囲の具体例としては、0.001~0.1が挙げられる。
 前記比が、かかる低い範囲にあれば、F粒子の分散安定性が向上し、本分散液から得られる成形物の物性が特に向上し易い。その理由は必ずしも明確ではないが、イミド系樹脂Pの酸価と水性分散液のpHとが所定の範囲にあり、イミド系樹脂PがF粒子に対して少量成分となる本分散液においては、イミド系樹脂Pが、低親水性のF粒子の分散剤かつ結着剤として高度に機能しやすくなる、換言すれば、イミド系樹脂PがF粒子の表面に付着し、成形物の形成に際してF粒子の緻密な焼成を促すためであると考えられる。
The ratio of the mass of the imide-based resin P to the mass of the F particles in the dispersion liquid is preferably 0.001 or more, more preferably 0.005 or more, and 0.01 or more. It is even more preferable to have it. The ratio is preferably 0.1 or less, more preferably 0.09 or less, still more preferably 0.05 or less. Specific examples of the preferred range of the ratio include 0.001 to 0.1.
When the ratio is in such a low range, the dispersion stability of the F particles is improved, and the physical properties of the molded product obtained from the present dispersion liquid are particularly likely to be improved. The reason is not always clear, but in this dispersion, the acid value of the imide-based resin P and the pH of the aqueous dispersion are in a predetermined range, and the imide-based resin P is a small amount component with respect to the F particles. The imide-based resin P is highly likely to function as a dispersant and binder for low-hydrophilic F particles, in other words, the imide-based resin P adheres to the surface of the F particles, and F is formed when the molded product is formed. It is considered that this is to promote the precise firing of the particles.
 本分散液における水の含有量は、40質量%以上が好ましく、50質量%以上がより好ましい。水の含有量は、90質量%以下が好ましく、80質量%以下がより好ましい。
 かかる範囲において、上述した作用機構により、本分散液の分散安定性がより向上しやすい。
The content of water in this dispersion is preferably 40% by mass or more, more preferably 50% by mass or more. The water content is preferably 90% by mass or less, more preferably 80% by mass or less.
In such a range, the dispersion stability of the present dispersion is more likely to be improved by the above-mentioned mechanism of action.
 本分散液は、分散媒として、水以外の水溶性分散媒を、さらに含んでいてもよい。かかる水溶性分散媒としては、大気圧下、極性に分類される25℃にて液体の水溶性化合物が好ましく、例えばN,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、N-メチル-2-ピロリドンが挙げられる。 The present dispersion may further contain a water-soluble dispersion medium other than water as the dispersion medium. As such a water-soluble dispersion medium, a water-soluble compound that is liquid at 25 ° C. classified as polar under atmospheric pressure is preferable, and for example, N, N-dimethylformamide, N, N-dimethylacetamide, 3-methoxy-N, Examples thereof include N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropanamide and N-methyl-2-pyrrolidone.
 本分散液は、さらに界面活性剤を含んでいてもよい。本分散液が界面活性剤を含む場合、界面活性剤がノニオン性であり、界面活性剤の疎水部位は、アセチレン基又はポリシロキサン基を有するのが好ましく、親水部位には、オキシアルキレン基又はアルコール性水酸基を有するのが好ましい。
 すなわち、本分散液が界面活性剤をさらに含む場合、アルコール性水酸基を有するノニオン性界面活性剤が好ましく、ポリオキシアルキレンアルキルエーテル、アセチレン系界面活性剤又はシリコーン系界面活性剤がより好ましい。これらの界面活性剤は、1種を単独で使用してもよく、2種以上を併用してもよい。ポリオキシアルキレンアルキルエーテルが、F粒子の長期分散性を安定させ、本分散液の粘度等の液物性を向上させる観点と、シリコーン界面活性剤が、F粒子の初期分散性を向上させる観点とから、ポリオキシアルキレンアルキルエーテルとシリコーン系界面活性剤とを併用するのが好ましい。
 本分散液が界面活性剤をさらに含む場合、その量は、本分散液全体の質量に対して1~15質量%が好ましい。この場合、成分間の親和性が亢進して、本分散液の分散安定性がより向上しやすい。
The dispersion may further contain a surfactant. When this dispersion contains a surfactant, the surfactant is nonionic, the hydrophobic moiety of the surfactant preferably has an acetylene group or a polysiloxane group, and the hydrophilic moiety is an oxyalkylene group or an alcohol. It preferably has a sex hydroxyl group.
That is, when the present dispersion further contains a surfactant, a nonionic surfactant having an alcoholic hydroxyl group is preferable, and a polyoxyalkylene alkyl ether, an acetylene-based surfactant or a silicone-based surfactant is more preferable. These surfactants may be used alone or in combination of two or more. From the viewpoint that the polyoxyalkylene alkyl ether stabilizes the long-term dispersibility of the F particles and improves the liquid physical properties such as the viscosity of the present dispersion, and the silicone surfactant improves the initial dispersibility of the F particles. , Polyoxyalkylene alkyl ether and silicone-based surfactant are preferably used in combination.
When the present dispersion further contains a surfactant, the amount thereof is preferably 1 to 15% by mass with respect to the total mass of the present dispersion. In this case, the affinity between the components is enhanced, and the dispersion stability of the present dispersion is likely to be further improved.
 シリコーン系界面活性剤は、重量平均分子量が3000以下であり、かつ、Griffin式から算出されるHLB値が1~18であるポリオキシアルキレン変性ポリジメチルシロキサンであるのが、環境への負荷を抑制し得る観点、また本分散液中における安定性の観点から好ましい。 The silicone-based surfactant is a polyoxyalkylene-modified polydimethylsiloxane having a weight average molecular weight of 3000 or less and an HLB value of 1 to 18 calculated from the Griffin formula, which suppresses the load on the environment. It is preferable from the viewpoint of possible and stability in the present dispersion.
 前記ポリオキシアルキレン変性ポリジメチルシロキサン(以下、「変性ポリジメチルシロキサン」とも記す。)は、親水基としてポリオキシアルキレン構造を、疎水基としてポリジメチルシロキサン構造を有する、オルガノポリシロキサンであり、線状ポリマーであるのが好ましい。 The polyoxyalkylene-modified polydimethylsiloxane (hereinafter, also referred to as "modified polydimethylsiloxane") is an organopolysiloxane having a polyoxyalkylene structure as a hydrophilic group and a polydimethylsiloxane structure as a hydrophobic group, and is linear. It is preferably a polymer.
 変性ポリジメチルシロキサンの重量平均分子量は3000以下であり、2500以下であるのが好ましく、2000以下であるのがより好ましい。重量平均分子量は100以上であるのが好ましく、500以上であるのがより好ましい。
 変性ポリジメチルシロキサンの数平均分子量は3000以下が好ましく、1500以下がより好ましい。数平均分子量は100以上が好ましく、500以上がより好ましい。
 変性ポリジメチルシロキサンの分子量分散度は2.0未満が好ましく、1.8以下がより好ましい。分子量分散度の下限は1.0超が好ましい。
The weight average molecular weight of the modified polydimethylsiloxane is 3000 or less, preferably 2500 or less, and more preferably 2000 or less. The weight average molecular weight is preferably 100 or more, more preferably 500 or more.
The number average molecular weight of the modified polydimethylsiloxane is preferably 3000 or less, more preferably 1500 or less. The number average molecular weight is preferably 100 or more, more preferably 500 or more.
The molecular weight dispersion of the modified polydimethylsiloxane is preferably less than 2.0, more preferably 1.8 or less. The lower limit of the molecular weight dispersion is preferably more than 1.0.
 変性ポリジメチルシロキサンのHLB値は1~18であり、3以上であるのが好ましく、6以上であるのがより好ましく、10以上であるのがさらに好ましく、12以上であるのが特に好ましい。HLB値は16以下であるのが好ましく、15以下であるのがより好ましい。 The HLB value of the modified polydimethylsiloxane is 1 to 18, preferably 3 or more, more preferably 6 or more, further preferably 10 or more, and particularly preferably 12 or more. The HLB value is preferably 16 or less, more preferably 15 or less.
 変性ポリジメチルシロキサンの静的表面張力は28mN/m以下が好ましく、26mN/m以下がより好ましい。静的表面張力は15mN/m以上が好ましく、20mN/m以上がより好ましい。
 変性ポリジメチルシロキサンの動的表面張力は40mN/m以下が好ましく、35mN/m以下がより好ましい、動的表面張力は20mN/m以上が好ましい。
The static surface tension of the modified polydimethylsiloxane is preferably 28 mN / m or less, more preferably 26 mN / m or less. The static surface tension is preferably 15 mN / m or more, more preferably 20 mN / m or more.
The dynamic surface tension of the modified polydimethylsiloxane is preferably 40 mN / m or less, more preferably 35 mN / m or less, and the dynamic surface tension is preferably 20 mN / m or more.
 変性ポリジメチルシロキサンは、主鎖にジメチルシロキサン単位(-(CHSiO2/2-)を有していてもよく、側鎖にジメチルシロキサン単位を有していてもよく、主鎖及び側鎖の双方にジメチルシロキサン単位を有していてもよい。
 変性ポリジメチルシロキサンは、主鎖にジメチルシロキサン単位を含み、側鎖にオキシアルキレン基を有する変性ポリジメチルシロキサン、又は、主鎖にジメチルシロキサン単位を含み、主鎖末端にオキシアルキレン基を有する変性ポリジメチルシロキサンが好ましい。
The modified polydimethylsiloxane may have a dimethylsiloxane unit (-(CH 3 ) 2 SiO 2/2- ) in the main chain, or may have a dimethylsiloxane unit in the side chain, and may have a main chain and a dimethylsiloxane unit. Both sides may have dimethylsiloxane units.
The modified polydimethylsiloxane contains a dimethylsiloxane unit in the main chain and a modified polydimethylsiloxane having an oxyalkylene group in the side chain, or a modified polydimethylsiloxane having a dimethylsiloxane unit in the main chain and an oxyalkylene group at the end of the main chain. Didimethylsiloxane is preferred.
 変性ポリジメチルシロキサンの具体例としては、「BYK-347」、「BYK-349」、「BYK-378」、「BYK-3450」、「BYK-3451」、「BYK-3455」、「BYK-3456」(以上、ビックケミー・ジャパン社製);「KF-6011」、「KF-6043」(以上、信越化学工業株式会社製)が挙げられる。 Specific examples of the modified polydimethylsiloxane include "BYK-347", "BYK-349", "BYK-378", "BYK-3450", "BYK-3451", "BYK-3455", and "BYK-3456". (The above is manufactured by Big Chemie Japan Co., Ltd.); "KF-6011" and "KF-6043" (the above are manufactured by Shin-Etsu Chemical Co., Ltd.).
 変性ポリジメチルシロキサンは、重量平均分子量が小さくHLB値が所定の範囲にあるため、その疎水性と親水性が高度にバランスしているとも言える。かかる変性ポリジメチルシロキサンは、F粒子との相互作用が亢進しやすいと考えられ、その結果、本分散液の分散安定性が向上すると考えられる。
 また、変性ジメチルシロキサンは熱分解性に優れるため、本分散液を加熱して焼成物を形成する際に分解しやすい。その結果、焼成物がFポリマーに基づく物性を高度に具備しやすい。
Since the modified polydimethylsiloxane has a small weight average molecular weight and an HLB value in a predetermined range, it can be said that its hydrophobicity and hydrophilicity are highly balanced. It is considered that such modified polydimethylsiloxane is likely to enhance the interaction with F particles, and as a result, the dispersion stability of the present dispersion is considered to be improved.
Further, since the modified dimethylsiloxane is excellent in thermal decomposition property, it is easily decomposed when the present dispersion is heated to form a calcined product. As a result, the fired product tends to have high physical characteristics based on the F polymer.
 ポリオキシアルキレンアルキルエーテルは、ポリオキシエチレンデシルエーテル、ポリオキシエチレンウンデシルエーテル、ポリオキシエチレンドデシルエーテル、ポリオキシエチレントリデシルエーテル、ポリオキシエチレンテトラデシルエーテル、トリエチレングリコールモノメチルエーテル、ポリエチレングリコールトリメチルノニルエーテル、エチレングリコールモノ-2-エチルヘキシルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジプロピレングリコールモノブチルエーテル、トリエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテートであるのが好ましく、ポリオキシエチレンデシルエーテル、ポリオキシエチレンウンデシルエーテル、ポリオキシエチレンドデシルエーテル、ポリオキシエチレントリデシルエーテル、又はポリオキシエチレンテトラデシルエーテルであるのがより好ましい。 Polyoxyalkylene alkyl ethers include polyoxyethylene decyl ether, polyoxyethylene undecyl ether, polyoxyethylene dodecyl ether, polyoxyethylene tridecyl ether, polyoxyethylene tetradecyl ether, triethylene glycol monomethyl ether, and polyethylene glycol trimethylnonyl. Ether, ethylene glycol mono-2-ethylhexyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, dipropylene glycol monobutyl ether, triethylene glycol monomethyl ether, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate are More preferably, it is polyoxyethylene decyl ether, polyoxyethylene undecyl ether, polyoxyethylene dodecyl ether, polyoxyethylene tridecyl ether, or polyoxyethylene tetradecyl ether.
 ポリオキシアルキレンアルキルエーテルは市販品として入手でき、具体的には「Tergitol TMN-100X」(ダウケミカル社製);「Lutensol TO8」、「Lutensol XL70」、「Lutensol XL80」、「Lutensol XL90」、「Lutensol XP80」、「Lutensol M5」(以上、BASF社製);「ニューコール 1305」、「ニューコール 1308FA」、「ニューコール 1310」(以上、日本乳化剤社製);「レオコール TDN-90-80」、「レオコール SC-90」(以上、ライオン・スペシャリティ・ケミカルズ社製)が挙げられる。 The polyoxyalkylene alkyl ether can be obtained as a commercial product, specifically, "Tergitol TMN-100X" (manufactured by Dow Chemical Co., Ltd.); "Lutensol TO8", "Lutensol XL70", "Lutensol XL80", "Lutensol XL90", "Lutensol XL90". "Lutensol XP80", "Lutensol M5" (above, manufactured by BASF); "New Call 1305", "New Call 1308FA", "New Call 1310" (above, manufactured by Nippon Emulsifier); "Leocol TDN-90-80" , "Leocol SC-90" (above, manufactured by Lion Specialty Chemicals Co., Ltd.).
 本分散液が界面活性剤を含む場合、ポリオキシアルキレンアルキルエーテルは市販品として入手でき、具体的には「Tergitol TMN-100X」(ダウケミカル社製);「Lutensol TO8」が挙げられる。
 また、本分散液が界面活性剤をさらに含む場合、その量は、本分散液全体の質量に対して、0.1質量%以上が好ましく、0.1質量%以上がより好ましい。また、前記量は、15質量%以下が好ましい。
When this dispersion contains a surfactant, the polyoxyalkylene alkyl ether can be obtained as a commercially available product, and specific examples thereof include "Tergitol TMN-100X" (manufactured by Dow Chemical Co., Ltd.); "Lutensol TO8".
When the dispersion further contains a surfactant, the amount thereof is preferably 0.1% by mass or more, more preferably 0.1% by mass or more, based on the total mass of the dispersion. The amount is preferably 15% by mass or less.
 本分散液は、さらにポリビニルアルコール系高分子、ポリビニルピロリドン系高分子及び多糖類なる群から選ばれる少なくとも1種のノニオン性高分子を含んでいてもよい。かかるノニオン性高分子は水溶性高分子であるのが極めて好ましい。この場合、前記水溶性高分子とイミド系樹脂Pとの相互作用により、本分散液の分散安定性だけでなくレオロジー物性が向上し、本分散液の造膜性等の取扱性がさらに向上しやすい。その結果、本分散液から厚い成形物や任意の形状の成形物をより形成しやすい。特に、前記水溶性高分子がノニオン性水酸基を有すれば、かかる傾向が顕著になりやすい。
 ポリビニルアルコール系高分子は、部分的にアセチル化又は部分的にアセタール化されたポリビニルアルコールであってもよい。
 多糖類としては、グリコーゲン類、アミクロペクチン類、デキストリン類、グルカン類、フルクタン類、キチン類、アミロース類、アガロース類、アミクロペクチン類、セルロース類が挙げられる。セルロース類としては、メチルセルロース、エチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロースが挙げられる。
The dispersion may further contain at least one nonionic polymer selected from the group consisting of a polyvinyl alcohol-based polymer, a polyvinylpyrrolidone-based polymer, and a polysaccharide. It is extremely preferable that the nonionic polymer is a water-soluble polymer. In this case, the interaction between the water-soluble polymer and the imide-based resin P improves not only the dispersion stability of the dispersion but also the rheological characteristics, and the handleability of the dispersion such as film formation is further improved. Cheap. As a result, it is easier to form a thick molded product or a molded product having an arbitrary shape from the present dispersion liquid. In particular, if the water-soluble polymer has a nonionic hydroxyl group, this tendency tends to be remarkable.
The polyvinyl alcohol-based polymer may be a partially acetylated or partially acetalized polyvinyl alcohol.
Examples of the polysaccharide include glycogens, amicropectins, dextrins, glucans, fructans, chitins, amyloses, agaroses, amicropectins, and celluloses. Examples of celluloses include methyl cellulose, ethyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose and hydroxypropyl cellulose.
 水溶性のノニオン性高分子は、ノニオン性の多糖類が好ましく、ノニオン性のセルロース類がより好ましく、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース又はヒドロキシプロピルセルロースがさらに好ましい。
 かかるノニオン性の多糖類の具体例としては、「サンローズ(登録商標)」シリーズ(日本製紙社製)、「メトローズ(登録商標)」シリーズ(信越化学工業社製)、「HEC CFグレード」(住友精化社製)が挙げられる。
As the water-soluble nonionic polymer, nonionic polysaccharides are preferable, nonionic celluloses are more preferable, and hydroxymethyl cellulose, hydroxyethyl cellulose or hydroxypropyl cellulose is further preferable.
Specific examples of such nonionic polysaccharides include "Sunrose (registered trademark)" series (manufactured by Nippon Paper Industries), "Metroise (registered trademark)" series (manufactured by Shin-Etsu Chemical Co., Ltd.), and "HEC CF grade" (manufactured by Shin-Etsu Chemical Co., Ltd.). Sumitomo Seika Co., Ltd.).
 また、本分散液が水溶性のノニオン性高分子をさらに含む場合、その量は、本分散液全体の質量に対して、0.01質量%以上が好ましく、0.1質量%以上がより好ましい。また、前記量は、1質量%未満が好ましい。本分散液におけるF粒子の質量に対する、前記水溶性のノニオン性高分子の質量の比は、0.001以上が好ましく、0.01以上がより好ましい。また、前比は0.1未満が好ましい。
 上述したとおり、前記水溶性高分子とイミド系樹脂Pとの相互作用により、少量の前記水溶性高分子の含有による、本分散液の液物性と造膜性との向上効果が得られやすい。その結果、本分散液から得られる成形物における前記水溶性高分子の残存量を低減し、電気特性等の物性により優れた成形物が本分散液から得られやすい。特に、前記水溶性高分子がノニオン性水酸基を有する場合、この傾向が顕著である。
When the dispersion further contains a water-soluble nonionic polymer, the amount thereof is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, based on the total mass of the dispersion. .. The amount is preferably less than 1% by mass. The ratio of the mass of the water-soluble nonionic polymer to the mass of the F particles in this dispersion is preferably 0.001 or more, more preferably 0.01 or more. Further, the previous ratio is preferably less than 0.1.
As described above, the interaction between the water-soluble polymer and the imide-based resin P makes it easy to obtain the effect of improving the liquid physical characteristics and the film-forming property of the present dispersion by containing a small amount of the water-soluble polymer. As a result, the residual amount of the water-soluble polymer in the molded product obtained from the present dispersion is reduced, and a molded product having better physical properties such as electrical characteristics can be easily obtained from the present dispersion. This tendency is particularly remarkable when the water-soluble polymer has a nonionic hydroxyl group.
 本分散液は、アミン又はアンモニアをさらに含んでいてもよい。アミン又はアンモニアはpH調整剤としての役割も有し、本分散液の分散安定性や保存安定性の向上にも寄与すると考えられる。本分散液がアミン又はアンモニアをさらに含む場合、その量は、本分散液のpHが5~10となる量であればよい。 The present dispersion may further contain amine or ammonia. Amine or ammonia also has a role as a pH adjuster and is considered to contribute to the improvement of dispersion stability and storage stability of this dispersion. When the present dispersion further contains amine or ammonia, the amount thereof may be an amount such that the pH of the present dispersion is 5 to 10.
 アミンとしては、ジメチルアミン、ジエチルアミン、ジイソプロピルアミン、ジエタノールアミン、トリエタノールアミン、トリプロパノールアミン、トリエチルアミン、トリアミルアミン、ピリジン、N-メチルモルホリンが挙げられる。
 この場合、さらにpH緩衝剤を添加して、液状の組成物のpHを安定させてもよい。
pH緩衝剤としては、トリス(ヒドロキシメチル)アミノメタン、エチレンジアミン四酢酸、炭酸水素アンモニウム、炭酸アンモニウム、酢酸アンモニウムが挙げられる。
Examples of the amine include dimethylamine, diethylamine, diisopropylamine, diethanolamine, triethanolamine, tripropanolamine, triethylamine, triamylamine, pyridine and N-methylmorpholine.
In this case, a pH buffer may be further added to stabilize the pH of the liquid composition.
Examples of the pH buffer include tris (hydroxymethyl) aminomethane, ethylenediaminetetraacetic acid, ammonium hydrogencarbonate, ammonium carbonate and ammonium acetate.
 本分散液は、本分散液から形成される成形物の接着性と低線膨張性を向上させる観点から、Fポリマー及びイミド系樹脂P以外の樹脂材料をさらに含んでいてもよい。かかる樹脂材料は熱硬化性であっても熱可塑性であってもよく、変性されていてもよく、本分散液中に溶解していてもよく、溶解せず分散していてもよい。
 かかる樹脂材料としては、アクリル樹脂、フェノール樹脂、液晶性ポリエステル、液晶性ポリエステルアミド、ポリオレフィン樹脂、変性ポリフェニレンエーテル、多官能シアン酸エステル樹脂、多官能マレイミド-シアン酸エステル樹脂、多官能性マレイミド、スチレンエラストマーのような芳香族エラストマー、ビニルエステル樹脂、尿素樹脂、ジアリルフタレート樹脂、メラミン樹脂、グアナミン樹脂、メラミン-尿素共縮合樹脂、ポリカーボネート、ポリアリレート、ポリスルホン、ポリアリルスルホン、芳香族ポリアミド、芳香族ポリエーテルアミド、ポリフェニレンスルファイド、ポリアリルエーテルケトン、ポリフェニレンエーテル、エポキシ樹脂等が挙げられる。
 本分散液が樹脂材料をさらに含む場合、その含有量は本分散液全体の質量に対して40質量%以下が好ましい。
The present dispersion may further contain a resin material other than the F polymer and the imide-based resin P from the viewpoint of improving the adhesiveness and low linear expansion property of the molded product formed from the present dispersion. Such a resin material may be thermosetting or thermoplastic, may be modified, may be dissolved in the present dispersion, or may be dispersed without being dissolved.
Examples of such resin materials include acrylic resin, phenol resin, liquid crystal polyester, liquid crystal polyester amide, polyolefin resin, modified polyphenylene ether, polyfunctional cyanate ester resin, polyfunctional maleimide-cyanic acid ester resin, polyfunctional maleimide, and styrene. Aromatic elastomers such as elastomers, vinyl ester resins, urea resins, diallyl phthalate resins, melamine resins, guanamine resins, melamine-urea cocondensate resins, polycarbonates, polyarylates, polysulfones, polyallylsulfones, aromatic polyamides, aromatic poly Examples thereof include ether amide, polyphenylen sulphide, polyallyl ether ketone, polyphenylene ether, epoxy resin and the like.
When the present dispersion further contains a resin material, the content thereof is preferably 40% by mass or less with respect to the total mass of the present dispersion.
 樹脂材料の好適な態様として、芳香族ポリマーが挙げられる。芳香族ポリマーは、ポリフェニレンエーテル又は芳香族エラストマー(スチレンエラストマー等)であるのが好ましい。この場合、本分散液から形成される成形物の接着性と低線膨張性が一層向上するだけでなく、本分散液の液物性(粘度、チキソ比等)のバランスがとれるため、その取扱い性が向上しやすい。
 ここで、スチレンエラストマーとしては、スチレンと共役ジエン又は(メタ)アクリル酸エステルとのコポリマー(スチレン-ブタジエンゴム、スチレン系コア・シェル型コポリマー、スチレン系ブロックコポリマー等)が挙げられ、ゴムとプラスチックの両方の性質を備え、加熱により可塑化して柔軟性を示すスチレンエラストマーが好ましい。
Preferred embodiments of the resin material include aromatic polymers. The aromatic polymer is preferably polyphenylene ether or an aromatic elastomer (styrene elastomer or the like). In this case, not only the adhesiveness and low linear expansion property of the molded product formed from the present dispersion are further improved, but also the liquid properties (viscosity, thixotropic ratio, etc.) of the present dispersion can be balanced, so that the handling property is easy to handle. Is easy to improve.
Here, examples of the styrene elastomer include copolymers of styrene and conjugated diene or (meth) acrylic acid esters (styrene-butadiene rubber, styrene-based core-shell type copolymers, styrene-based block copolymers, etc.), and rubber and plastic. Styrene elastomers having both properties, which are plasticized by heating and exhibit flexibility, are preferred.
 本分散液は、さらに無機フィラーを含んでいてもよい。この場合、本分散液から生成する成形物が、電気特性と低線膨張性とに優れやすい。また、本分散液は、無機フィラーを含んでいても、上述した作用機構により、分散安定性に優れており、それから緻密な成形物が得られやすい。そのため、無機フィラーを含む本分散液からは、Fポリマー、イミド系樹脂P及び無機フィラーのそれぞれの物性を高度に具備した成形物を製造しやすい。
 無機フィラーは、窒化物フィラー又は無機酸化物フィラーが好ましく、窒化ホウ素フィラー、窒化アルミニウムフィラー、ベリリアフィラー(ベリリウムの酸化物のフィラー)、ケイ酸塩フィラー(シリカフィラー、ウォラストナイトフィラー、タルクフィラー)、又は金属酸化物(酸化セリウム、酸化アルミニウム、酸化マグネシウム、酸化亜鉛、酸化チタン等)フィラーがより好ましく、シリカフィラーがさらに好ましい。
 無機フィラーは、その表面の少なくとも一部が、シランカップリング剤(3-アミノプロピルトリエトキシシラン、ビニルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-イソシアネートプロピルトリエトキシシラン等)で表面処理されているのが好ましい。
The dispersion may further contain an inorganic filler. In this case, the molded product produced from the present dispersion tends to be excellent in electrical characteristics and low linear expansion. Further, even if the present dispersion liquid contains an inorganic filler, it has excellent dispersion stability due to the above-mentioned mechanism of action, and it is easy to obtain a dense molded product. Therefore, it is easy to produce a molded product having the physical characteristics of the F polymer, the imide-based resin P, and the inorganic filler from the present dispersion liquid containing the inorganic filler.
The inorganic filler is preferably a nitride filler or an inorganic oxide filler, preferably a boron nitride filler, an aluminum nitride filler, a beryllia filler (a filler of an oxide of beryllium), and a silicate filler (silica filler, a wollastonite filler, and a talc filler). ) Or a metal oxide (cerium oxide, aluminum oxide, magnesium oxide, zinc oxide, titanium oxide, etc.) filler is more preferable, and a silica filler is further preferable.
At least a part of the surface of the inorganic filler is a silane coupling agent (3-aminopropyltriethoxysilane, vinyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3). -It is preferable that the surface is treated with (methacryloxypropyltriethoxysilane, 3-isocyandiapropyltriethoxysilane, etc.).
 無機フィラーのD50は、20μm以下が好ましく、10μm以下がより好ましい。D50は、0.01μm以上が好ましく、0.1μm以上がより好ましい。
 無機フィラーの形状は、粒状、針状(繊維状)、板状のいずれであってもよい。無機フィラーの具体的な形状としては、球状、鱗片状、層状、葉片状、杏仁状、柱状、鶏冠状、等軸状、葉状、雲母状、ブロック状、平板状、楔状、ロゼット状、網目状、角柱状が挙げられる。
 無機フィラーは、1種を単独で用いてもよく、2種以上を併用してもよい。本分散液が無機フィラーをさらに含む場合、その量は、本分散液全体の質量に対して、1~50質量%が好ましく、5~40質量%がより好ましい。
The D50 of the inorganic filler is preferably 20 μm or less, more preferably 10 μm or less. The D50 is preferably 0.01 μm or more, more preferably 0.1 μm or more.
The shape of the inorganic filler may be granular, needle-shaped (fibrous), or plate-shaped. Specific shapes of the inorganic filler include spherical, scaly, layered, leafy, apricot kernel, columnar, chicken crown, equiaxed, leafy, mica, block, flat plate, wedge, rosette, and mesh. The shape and the prismatic shape can be mentioned.
As the inorganic filler, one kind may be used alone, or two or more kinds may be used in combination. When the present dispersion further contains an inorganic filler, the amount thereof is preferably 1 to 50% by mass, more preferably 5 to 40% by mass, based on the total mass of the dispersion.
 無機フィラーの好適な具体例としては、シリカフィラー(アドマテックス社製の「アドマファイン(登録商標)」シリーズ等)、ジカプリン酸プロピレングリコール等のエステルで表面処理された酸化亜鉛(堺化学工業株式会社製の「FINEX(登録商標)」シリーズ等)、球状溶融シリカ(デンカ社製の「SFP(登録商標)」シリーズ等)、多価アルコール及び無機物で被覆処理された酸化チタン(石原産業社製の「タイペーク(登録商標)」シリーズ等)、アルキルシランで表面処理されたルチル型酸化チタン(テイカ社製の「JMT(登録商標)」シリーズ等)、中空状シリカフィラー(太平洋セメント社製の「E-SPHERES」シリーズ、日鉄鉱業社製の「シリナックス」シリーズ、エマーソン・アンド・カミング社製「エココスフイヤー」シリーズ等)、タルクフィラー(日本タルク社製の「SG」シリーズ等)、ステアタイトフィラー(日本タルク社製の「BST」シリーズ等)、窒化ホウ素フィラー(昭和電工社製の「UHP」シリーズ、デンカ社製の「デンカボロンナイトライド」シリーズ(「GP」、「HGP」グレード)等)が挙げられる。 Suitable specific examples of the inorganic filler include silica filler (“Admafine (registered trademark)” series manufactured by Admatex Co., Ltd.), zinc oxide surface-treated with an ester such as propylene glycol dicaprate (Sakai Chemical Industry Co., Ltd.). "FINEX (registered trademark)" series, etc.), spherical molten silica ("SFP (registered trademark)" series, etc. manufactured by Denka), titanium oxide coated with polyhydric alcohol and inorganic substances (manufactured by Ishihara Sangyo Co., Ltd.) "Typake (registered trademark)" series, etc.), rutile-type titanium oxide surface-treated with alkylsilane ("JMT (registered trademark)" series manufactured by Teika, etc.), hollow silica filler ("E" manufactured by Pacific Cement Co., Ltd.) -SPHERES "series, Nittetsu Mining Co., Ltd." Sirinax "series, Emerson & Cumming Co., Ltd." Ecocos Fire "series, etc.), Tarkufiller (Nippon Tarku Co., Ltd." SG "series, etc.), Steatite Filler ("Steatite Filler" (, etc.) Nippon Tark's "BST" series, etc.), Titanium dioxide filler (Showa Denko's "UHP" series, Denka's "Denka Boron Night Ride" series ("GP", "HGP" grade), etc.) Can be mentioned.
 本分散液は、上記成分以外にも、本発明の効果を損なわない範囲で、チキソ性付与剤、粘度調節剤、消泡剤、シランカップリング剤、脱水剤、可塑剤、耐候剤、酸化防止剤、熱安定剤、滑剤、帯電防止剤、増白剤、着色剤、導電剤、離型剤、表面処理剤、難燃剤、各種フィラー等の他の成分をさらに含んでいてもよい。 In addition to the above-mentioned components, the present dispersion contains a tyxonicity-imparting agent, a viscosity modifier, an antifoaming agent, a silane coupling agent, a dehydrating agent, a plasticizer, a weathering agent, and an antioxidant, as long as the effects of the present invention are not impaired. Other components such as agents, heat stabilizers, lubricants, antistatic agents, whitening agents, colorants, conductive agents, mold release agents, surface treatment agents, flame retardants, and various fillers may be further contained.
 本分散液の粘度は10mPa・s以上が好ましく、30mPa・s以上がより好ましく、50mPa・s以上がさらに好ましい。本分散液の粘度は3000mPa・s以下が好ましく、1000mPa・s以下がより好ましく、800mPa・s以下がさらに好ましい。本分散液の粘度は50~3000mPa・sが好ましく、50~1000mPa・sがより好ましい。 The viscosity of this dispersion is preferably 10 mPa · s or more, more preferably 30 mPa · s or more, and even more preferably 50 mPa · s or more. The viscosity of this dispersion is preferably 3000 mPa · s or less, more preferably 1000 mPa · s or less, and even more preferably 800 mPa · s or less. The viscosity of this dispersion is preferably 50 to 3000 mPa · s, more preferably 50 to 1000 mPa · s.
 本分散液のチキソ比は1.0以上が好ましい。本分散液のチキソ比は3.0以下が好ましく、2.0以下がより好ましい。この場合、本分散液は塗工性及び均質性に優れ、より緻密な成形物(ポリマー層等)を形成しやすい。
 本分散液のpHは、5~10である。本分散液では、かかる範囲にpHを調整することで、イミド系樹脂Pの機能をバランスさせている。すなわち、分散液のpHが5未満であるとイミド系樹脂Pの反応性は高まる反面、その分散作用が低下して分散液の分散安定性が低下してしまう。また、分散液のpHが10超であると、イミド系樹脂Pの分散作用は高まる反面、その反応性が低下して、分散液から得られる成形物の物性が低下してしまう。本分散液のpHは、7~9が好ましい。この場合、本分散液の色相と長期保存安定性とが優れやすい。
The thixotropic ratio of this dispersion is preferably 1.0 or more. The thixotropic ratio of this dispersion is preferably 3.0 or less, more preferably 2.0 or less. In this case, the present dispersion is excellent in coatability and homogeneity, and it is easy to form a more dense molded product (polymer layer or the like).
The pH of this dispersion is 5-10. In this dispersion, the function of the imide-based resin P is balanced by adjusting the pH within such a range. That is, when the pH of the dispersion liquid is less than 5, the reactivity of the imide-based resin P is increased, but the dispersion action thereof is lowered and the dispersion stability of the dispersion liquid is lowered. Further, when the pH of the dispersion liquid is more than 10, the dispersion action of the imide-based resin P is enhanced, but the reactivity thereof is lowered, and the physical properties of the molded product obtained from the dispersion liquid are lowered. The pH of this dispersion is preferably 7-9. In this case, the hue and long-term storage stability of this dispersion are likely to be excellent.
 本分散液においては、分散層率が60%以上であるのが好ましく、70%以上であるのがより好ましく、80%以上であるのがさらに好ましい。ここで、分散層率とは、分散液(18mL)をスクリュー管(内容積:30mL)に入れ、25℃にて14日静置した際、静置後の、スクリュー管中の分散液全体の高さと沈降層(分散層)の高さとから、以下の式により算出される値である。なお、静置後に沈降層が確認されず、状態に変化がない場合には、分散液全体の高さに変化がないとして、分散層率は100%とする。
 分散層率(%)=(沈降層の高さ)/(分散液全体の高さ)×100
In this dispersion, the dispersion layer ratio is preferably 60% or more, more preferably 70% or more, and further preferably 80% or more. Here, the dispersion layer ratio means that when a dispersion liquid (18 mL) is placed in a screw tube (internal volume: 30 mL) and allowed to stand at 25 ° C. for 14 days, the entire dispersion liquid in the screw tube after standing has been allowed to stand. It is a value calculated by the following formula from the height and the height of the sedimentation layer (dispersion layer). If the sedimentation layer is not confirmed after standing and there is no change in the state, it is assumed that the height of the entire dispersion liquid does not change, and the dispersion layer ratio is 100%.
Dispersion layer ratio (%) = (height of sedimentation layer) / (height of the entire dispersion) × 100
 本分散液は、上述した作用機構により、分散安定性、特に長期貯蔵安定性に優れている。本分散液を25℃にて30日間静置した場合における、静置前後での本分散液のチキソ比の変動幅(絶対値)は、3以下が好ましく、1未満が好ましい。 This dispersion is excellent in dispersion stability, especially long-term storage stability, due to the above-mentioned mechanism of action. When the present dispersion is allowed to stand at 25 ° C. for 30 days, the fluctuation range (absolute value) of the thixotropic ratio of the present dispersion before and after standing is preferably 3 or less, and preferably less than 1.
 本分散液は、F粒子と、イミド系樹脂Pと、分散媒としての水を混合して調製できる。混合方法としては、水にF粒子とイミド系樹脂Pを一括添加又は順次添加して混合する方法;F粒子と水、イミド系樹脂Pと水をそれぞれ予め混合し、得られた二種の混合物をさらに混合する方法;等が挙げられる。本分散液は、水にF粒子を予め分散させた後、イミド系樹脂Pを、そのまま(直接)又は水に混合した状態で添加して混合する手順で、本分散液を調製するか、水にイミド系樹脂Pを予め混合した後、F粒子を、そのまま(直接)又は水に混合した状態で添加して混合する手順で調製するのが、F粒子をより均一に分散させる観点から有利であり、好ましい。なお、界面活性剤、他の樹脂材料や無機フィラーを、本分散液にさらに含有させる場合は、F粒子を水に予め分散させる際に同時に添加するか、F粒子を分散させる前に、水に予め添加しておくのが好ましい。 This dispersion can be prepared by mixing F particles, an imide resin P, and water as a dispersion medium. As a mixing method, F particles and imide-based resin P are added to water all at once or sequentially and mixed; F particles and water, and imide-based resin P and water are mixed in advance, respectively, and a mixture of the two obtained is obtained. A method of further mixing; and the like. In this dispersion, F particles are dispersed in water in advance, and then the imide resin P is added as it is (directly) or in a state of being mixed with water and mixed to prepare the dispersion, or water. It is advantageous to prepare by adding the imide-based resin P to the water in advance and then adding the F particles as they are (directly) or in a state of being mixed with water and mixing them from the viewpoint of more uniformly dispersing the F particles. Yes, preferred. When a surfactant, other resin material or an inorganic filler is further contained in the dispersion liquid, it is added at the same time when the F particles are pre-dispersed in water, or it is added to water before the F particles are dispersed. It is preferable to add it in advance.
 本分散液を調製する際の混合方法としては、例えば、プロペラブレード、タービンブレード、パドルブレード、シェル状ブレード等のブレード(撹拌翼)を一軸あるいは多軸で備える撹拌装置や、ヘンシェルミキサー、加圧ニーダー、バンバリーミキサー又はプラネタリーミキサーによる撹拌;ボールミル、アトライター、バスケットミル、サンドミル、サンドグラインダー、ダイノーミル(ガラスビーズ又は酸化ジルコニウムビーズなどの粉砕媒体を用いたビーズミル)、ディスパーマット、SCミル、スパイクミル又はアジテーターミル等のメディアを使用する分散機による混合;マイクロフルイダイザー、ナノマイザー、アルティマイザーなどの高圧ホモジナイザー、超音波ホモジナイザー、デゾルバー、ディスパー、高速インペラー分散機、自転公転撹拌機、薄膜旋回型高速ミキサー等の、メディアを使用しない分散機を用いた混合が挙げられる。 As a mixing method when preparing this dispersion, for example, a stirring device equipped with blades (stirring blades) such as propeller blades, turbine blades, paddle blades, and shell-shaped blades on a single axis or multiple axes, a henshell mixer, and pressurization. Stirring with a kneader, Banbury mixer or planetary mixer; ball mill, attritor, basket mill, sand mill, sand grinder, dyno mill (bead mill using crushing medium such as glass beads or zirconium oxide beads), dispermat, SC mill, spike mill Or mixing with a disperser using media such as an agitator mill; high-pressure homogenizer such as microfluidizer, nanomizer, ultimateizer, ultrasonic homogenizer, resolver, disper, high-speed impeller disperser, rotation / revolution agitator, thin-film swirl high-speed mixer. Etc., mixing using a disperser that does not use media can be mentioned.
 本分散液の製造方法の好適な態様としては、F粒子と、水を含有する組成物を混練して混練物を得て、混練物と水をさらに混合する態様が挙げられる。その際に、イミド系樹脂Pは、組成物に添加してもよく、混練物と水をさらに混合する際に添加してもよく、前者が好ましい。すなわち、F粒子と、イミド系樹脂Pと、水を含有する組成物を混練して混練物を得て、混練物と水をさらに混合する態様が好ましい。
 混練は、上述の混合方法で行うことができ、ヘンシェルミキサー、加圧ニーダー、バンバリーミキサー、自転公転撹拌機又はプラネタリーミキサーを用いるのが好ましく、プラネタリーミキサーを用いるのがより好ましい。
 プラネタリーミキサーは、互いに自転と公転を行う2軸の撹拌羽根を有し、撹拌槽中の混練物を撹拌、混練する構造を有している。そのため、撹拌槽中に撹拌羽根の到達しないデッドスペースが少なく、羽根の負荷を軽減して、高度に組成物を混練できる。つまり、F粒子の凝集を抑制しつつ、水でF粒子を濡らしながら、F粒子とイミド系樹脂Pを高度に相互作用させながら混練できるため、その混練物をさらに水と混合すると分散安定性に優れた本分散液が得られやすい。また、本分散液の成分濃度を調整し易く、表面平滑性と均一性に優れた厚い成形物(ポリマー層等)を形成できる本分散液が得られやすい。
A preferred embodiment of the method for producing the present dispersion is an embodiment in which F particles and a composition containing water are kneaded to obtain a kneaded product, and the kneaded product and water are further mixed. At that time, the imide-based resin P may be added to the composition or may be added when the kneaded product and water are further mixed, and the former is preferable. That is, it is preferable to knead the composition containing F particles, the imide resin P, and water to obtain a kneaded product, and further mix the kneaded product and water.
The kneading can be carried out by the above-mentioned mixing method, and it is preferable to use a Henschel mixer, a pressurized kneader, a Banbury mixer, a rotation / revolution stirrer or a planetary mixer, and more preferably a planetary mixer.
The planetary mixer has a biaxial stirring blade that rotates and revolves with each other, and has a structure for stirring and kneading the kneaded material in the stirring tank. Therefore, there is little dead space in the stirring tank where the stirring blades do not reach, the load on the blades can be reduced, and the composition can be highly kneaded. That is, it is possible to knead the F particles while suppressing the aggregation of the F particles while wetting the F particles with water while highly interacting the F particles with the imide-based resin P. Therefore, when the kneaded product is further mixed with water, the dispersion stability is improved. It is easy to obtain an excellent dispersion. Further, it is easy to adjust the component concentration of the present dispersion, and it is easy to obtain the present dispersion capable of forming a thick molded product (polymer layer or the like) having excellent surface smoothness and uniformity.
 組成物におけるF粒子の含有量は、組成物の全体質量に対して、20質量%以上が好ましく、40質量%以上がより好ましい。F粒子の含有量は、90質量%以下が好ましい。また、組成物におけるイミド系樹脂Pの含有量は、組成物の全体質量に対して、0.1質量%以上が好ましく、0.3質量%以上がより好ましい。イミド系樹脂Pの含有量は、10質量%以下が好ましい。
 組成物におけるF粒子とイミド系樹脂Pの合計含有量は、組成物の全体質量に対して、40質量%以上であるのが好ましく、60質量%以上であるのがより好ましい。前記合計含有量は、90質量%以下であるのが好ましい。
The content of F particles in the composition is preferably 20% by mass or more, more preferably 40% by mass or more, based on the total mass of the composition. The content of F particles is preferably 90% by mass or less. The content of the imide-based resin P in the composition is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, based on the total mass of the composition. The content of the imide-based resin P is preferably 10% by mass or less.
The total content of the F particles and the imide-based resin P in the composition is preferably 40% by mass or more, more preferably 60% by mass or more, based on the total mass of the composition. The total content is preferably 90% by mass or less.
 また、組成物におけるF粒子の質量に対する、前記イミド系樹脂Pの質量の比は、0.001以上であるのが好ましく、0.005以上であるのがより好ましく、0.01以上であるのがさらに好ましい。前記比は、0.1以下であるのが好ましく、0.09以下であるのがより好ましく、0.05以下であるのがさらに好ましい。
 F粒子の含有量、イミド系樹脂Pの含有量、又は前記比が、かかる低い範囲にあれば、組成物の混練において、F粒子とイミド系樹脂Pを高度に相互作用させながら混練できる。そのため、その混練物をさらに水と混合すると、F粒子の質量に対する、前記イミド系樹脂Pの質量の比が0.001~0.1の範囲である、分散安定性に優れた本分散液が得られやすい。
The ratio of the mass of the imide-based resin P to the mass of the F particles in the composition is preferably 0.001 or more, more preferably 0.005 or more, and more preferably 0.01 or more. Is even more preferable. The ratio is preferably 0.1 or less, more preferably 0.09 or less, still more preferably 0.05 or less.
When the content of the F particles, the content of the imide-based resin P, or the ratio is in such a low range, the F particles and the imide-based resin P can be kneaded while highly interacting with each other in the kneading of the composition. Therefore, when the kneaded product is further mixed with water, the dispersion liquid having excellent dispersion stability in which the ratio of the mass of the imide-based resin P to the mass of the F particles is in the range of 0.001 to 0.1 is obtained. Easy to obtain.
 混練物は、半固体状あるいは固体状の固練品であり、混練ペースト又は練粉であるのが好ましい。なお、混練ペーストとは流動性と粘性を有する状態にある固練品であり、練粉とは塊状かつ粘土状の状態にある固練品を意味する。
 混練ペーストの粘度は、800~100000mPa・sが好ましく、1000~10000mPa・s以上がより好ましい。
 練粉の含水率は、50質量%以下であるのが好ましく、40質量%以下であるのが好ましい。練粉の含水率は、20質量%以上であるのが好ましく、25質量%以上であるのがより好ましい。
The kneaded product is a semi-solid or solid solidified product, and is preferably a kneaded paste or a kneaded powder. The kneaded paste is a kneaded product having fluidity and viscosity, and the kneaded powder is a kneaded product in a lumpy and clay-like state.
The viscosity of the kneaded paste is preferably 800 to 100,000 mPa · s, more preferably 1000 to 10,000 mPa · s or more.
The water content of the dough is preferably 50% by mass or less, and preferably 40% by mass or less. The water content of the dough is preferably 20% by mass or more, and more preferably 25% by mass or more.
 また、この態様において、界面活性剤、他の樹脂材料や無機フィラーを、本分散液にさらに含有させる場合は、これらを組成物に添加してもよく、混練物と水との混合時に添加してもよい。
 他の樹脂材料や無機フィラーを含む本分散液は、F粒子と、他の樹脂材料又は無機フィラーと、水を含有する組成物を混練して混練物を得、混練物と、イミド系樹脂P及び水を含む混合物とを混合して得てもよい。この場合、本分散液の分散安定性と長期保存安定性が向上しやすい。
Further, in this embodiment, when a surfactant, another resin material or an inorganic filler is further contained in the present dispersion, these may be added to the composition, and the mixture may be added at the time of mixing the kneaded product and water. You may.
In this dispersion containing other resin materials and inorganic fillers, F particles, other resin materials or inorganic fillers, and a composition containing water are kneaded to obtain a kneaded product, and the kneaded product and the imide-based resin P are obtained. And may be obtained by mixing with a mixture containing water. In this case, the dispersion stability and long-term storage stability of the present dispersion are likely to be improved.
 本分散液は、分散安定性及び長期保存安定性にも優れており、耐屈曲性等の柔軟性、すなわち耐クラック性に優れた、基材に対して強固な接着性を示す成形品を形成できる。
 本分散液を基材の少なくとも一方の表面に付与して液状被膜を形成し、この液状被膜を加熱して分散媒を除去して乾燥被膜を形成し、さらに乾燥被膜を加熱してFポリマーを焼成すれば、Fポリマーとイミド系樹脂Pを含むポリマー層(以下、「F層」とも記す。)を基材の表面に有する積層体(以下、「本積層体」とも記す。)が得られる。
 また、本分散液を基材の両方の表面に付与し、加熱してFポリマーを焼成すれば、前記基材で構成される基材層の両面にF層を有する積層体が得られる。
This dispersion is also excellent in dispersion stability and long-term storage stability, and forms a molded product that has excellent flexibility such as bending resistance, that is, crack resistance, and exhibits strong adhesiveness to a substrate. can.
This dispersion is applied to at least one surface of the substrate to form a liquid film, the liquid film is heated to remove the dispersion medium to form a dry film, and the dry film is further heated to form an F polymer. By firing, a laminate having a polymer layer containing the F polymer and the imide resin P (hereinafter, also referred to as “F layer”) on the surface of the base material (hereinafter, also referred to as “main laminate”) can be obtained. ..
Further, when the present dispersion is applied to both surfaces of the base material and heated to bake the F polymer, a laminate having F layers on both sides of the base material layer composed of the base material can be obtained.
 基材としては、金属基板(銅、ニッケル、アルミニウム、チタン、それらの合金等の金属箔等)、樹脂フィルム(テトラフルオロエチレン系ポリマー、ポリイミド、ポリアリレート、ポリスルホン、ポリアリルスルホン、ポリアミド、ポリエーテルアミド、ポリフェニレンスルフィド、ポリアリルエーテルケトン、ポリアミドイミド、液晶性ポリエステル、液晶性ポリエステルアミド等の耐熱性樹脂の1種以上を含む耐熱性樹脂フィルムであり、単層フィルムであっても多層フィルムであってもよい)、プリプレグ(繊維強化樹脂基板の前駆体)、セラミックス基板(炭化ケイ素、窒化アルミニウム、窒化ケイ素等のセラミックス基板)、ガラス基板が挙げられる。中でも樹脂フィルムが好ましく、樹脂フィルムを構成する樹脂がポリイミド系樹脂であるのがより好ましい。
 本分散液は、樹脂フィルムの少なくとも一方の表面に付与して乾燥することでF層を形成させるために好適に用いられる。
 基材の形状としては、平面状、曲面状、凹凸状が挙げられる。また、基材の形状は、箔状、板状、膜状、繊維状のいずれであってもよい。
As the base material, a metal substrate (copper, nickel, aluminum, titanium, metal foil such as an alloy thereof, etc.), a resin film (tetrafluoroethylene polymer, polyimide, polyarylate, polysulfone, polyallylsulfone, polyamide, polyether, etc.) It is a heat-resistant resin film containing one or more of heat-resistant resins such as amide, polyphenylene sulfide, polyallyl ether ketone, polyamideimide, liquid crystal polyester, and liquid crystal polyester amide, and is a multilayer film even if it is a single-layer film. Prepreg (precursor of fiber-reinforced resin substrate), ceramic substrate (ceramic substrate such as silicon carbide, aluminum nitride, silicon nitride), and glass substrate. Of these, a resin film is preferable, and it is more preferable that the resin constituting the resin film is a polyimide resin.
This dispersion is suitably used for forming an F layer by applying it to at least one surface of a resin film and drying it.
Examples of the shape of the base material include a planar shape, a curved surface shape, and an uneven shape. The shape of the base material may be foil-like, plate-like, film-like, or fibrous.
 本分散液を基材の表面に付与する方法としては、樹脂フィルム(基材)の表面に本分散液からなる安定した液状被膜(ウェット膜)が形成される方法であればよく、塗布法、液滴吐出法、浸漬法が挙げられ、塗布法が好ましい。塗布法を用いれば、簡単な設備で効率よく樹脂フィルムの表面に液状被膜を形成できる。
 塗布法としては、スプレー法、ロールコート法、スピンコート法、グラビアコート法、マイクログラビアコート法、グラビアオフセット法、ナイフコート法、キスコート法、バーコート法、ダイコート法、ファウンテンメイヤーバー法、スリットコート法、スロットダイコート法、ディップコート法が挙げられる。
As a method of applying the present dispersion liquid to the surface of the base material, any method may be used as long as a stable liquid film (wet film) composed of the present dispersion liquid is formed on the surface of the resin film (base material). Examples thereof include a droplet ejection method and a dipping method, and a coating method is preferable. If the coating method is used, a liquid film can be efficiently formed on the surface of the resin film with simple equipment.
The coating methods include spray method, roll coat method, spin coat method, gravure coat method, micro gravure coat method, gravure offset method, knife coat method, kiss coat method, bar coat method, die coat method, fountain Mayer bar method, and slit coat. The method, the slot die coat method, and the dip coat method can be mentioned.
 液状被膜を乾燥する際は、液状被膜を分散媒(水)が揮発する温度で加熱し、乾燥被膜を樹脂フィルムの表面に形成する。かかる乾燥における加熱の温度は、100~200℃が好ましい。なお、分散媒を除去する工程で空気を吹き付けてもよい。
 乾燥時に、分散媒は、必ずしも完全に揮発させる必要はなく、保持後の層形状が安定し、自立膜を維持できる程度まで揮発させればよい。
When the liquid film is dried, the liquid film is heated at a temperature at which the dispersion medium (water) volatilizes, and the dry film is formed on the surface of the resin film. The heating temperature in such drying is preferably 100 to 200 ° C. Air may be blown in the step of removing the dispersion medium.
At the time of drying, the dispersion medium does not necessarily have to be completely volatilized, and may be volatilized to the extent that the layer shape after holding is stable and the self-supporting film can be maintained.
 Fポリマーの焼成の際は、Fポリマーの溶融温度以上の温度で乾燥被膜を加熱するのが好ましい。かかる加熱の温度は380℃以下が好ましい。
 それぞれの加熱の方法としては、オーブンを用いる方法、通風乾燥炉を用いる方法、赤外線等の熱線を照射する方法が挙げられる。加熱は、常圧下及び減圧下のいずれの状態で行ってもよい。また、加熱雰囲気は、酸化性ガス雰囲気(酸素ガス等)、還元性ガス雰囲気(水素ガス等)、不活性ガス雰囲気(ヘリウムガス、ネオンガス、アルゴンガス、窒素ガス等)のいずれであってもよい。
 加熱時間は0.1~30分間が好ましく、0.5~20分間がより好ましい。
 以上のような条件で加熱すれば、高い生産性を維持しつつ、F層を好適に形成できる。
When firing the F polymer, it is preferable to heat the dry film at a temperature equal to or higher than the melting temperature of the F polymer. The heating temperature is preferably 380 ° C. or lower.
Examples of each heating method include a method using an oven, a method using a ventilation drying furnace, and a method of irradiating heat rays such as infrared rays. The heating may be performed under either normal pressure or reduced pressure. The heating atmosphere may be any of an oxidizing gas atmosphere (oxygen gas, etc.), a reducing gas atmosphere (hydrogen gas, etc.), and an inert gas atmosphere (helium gas, neon gas, argon gas, nitrogen gas, etc.). ..
The heating time is preferably 0.1 to 30 minutes, more preferably 0.5 to 20 minutes.
By heating under the above conditions, the F layer can be suitably formed while maintaining high productivity.
 F層の厚さは0.1~150μmが好ましく、10μm以上がより好ましい。基材層が金属箔である場合、F層の厚さは10~30μmが好ましい。基材層が樹脂フィルムである場合、F層の厚さは10~150μmが好ましく、15~50μmがより好ましい。
 F層と基材層との剥離強度は、10N/cm以上が好ましく、15N/cm以上がより好ましい。上記剥離強度は、100N/cm以下が好ましい。本分散液を用いれば、F層におけるFポリマーの物性を損なわずに、かかる本積層体を容易に形成できる。
The thickness of the F layer is preferably 0.1 to 150 μm, more preferably 10 μm or more. When the base material layer is a metal foil, the thickness of the F layer is preferably 10 to 30 μm. When the base material layer is a resin film, the thickness of the F layer is preferably 10 to 150 μm, more preferably 15 to 50 μm.
The peel strength between the F layer and the base material layer is preferably 10 N / cm or more, more preferably 15 N / cm or more. The peel strength is preferably 100 N / cm or less. By using this dispersion, such a laminate can be easily formed without impairing the physical properties of the F polymer in the F layer.
 F層の空隙率は30%以下が好ましく、20%以下がより好ましい。空隙率は0.1%以上が好ましく、1%以上がより好ましい。本分散液からはかかる空隙率の低いF層を形成しやすい。特に、乾燥被膜の空隙率が1%以上である場合にも、空隙率の低いF層を形成しやすい。なお、空隙率は、走査型電子顕微鏡(SEM)を用いて観察される成形物の断面におけるSEM写真から、画像処理にてF層の空隙部分を判定し、空隙部分が占める面積をF層の面積で除した割合(%)である。空隙部分が占める面積は空隙部分を円形と近似して求められる。 The porosity of the F layer is preferably 30% or less, more preferably 20% or less. The porosity is preferably 0.1% or more, more preferably 1% or more. From this dispersion, it is easy to form an F layer with a low porosity. In particular, even when the porosity of the dry film is 1% or more, it is easy to form an F layer having a low porosity. The void ratio is determined by image processing to determine the void portion of the F layer from the SEM photograph of the cross section of the molded product observed using a scanning electron microscope (SEM), and the area occupied by the void portion is the area occupied by the F layer. It is the ratio (%) divided by the area. The area occupied by the void portion is obtained by approximating the void portion to a circle.
 本分散液は、基材の一方の表面にのみ付与してもよく、基材の両面に付与してもよい。前者では、前記基材で構成される基材層と、かかる基材層の片方の表面にF層を有する本積層体が得られ、後者では、前記基材で構成される基材層と、かかる基材層の両方の表面にF層を有する本積層体が得られる。後者の本積層体は、より反りが発生しにくいため、その加工に際する取扱い性に優れる。
 かかる本積層体の具体例としては、金属箔と、その金属箔の少なくとも一方の表面にF層を有する金属張積層体、ポリイミドフィルムと、そのポリイミドフィルムの両方の表面にF層を有する多層フィルムが挙げられる。これらの本積層体は、電気特性等の諸物性に優れるのでプリント基板材料等として好適であり、フレキシブルプリント基板やリジッドプリント基板の製造に使用できる。
The present dispersion may be applied to only one surface of the base material, or may be applied to both sides of the base material. In the former, a base material layer composed of the base material and the present laminate having an F layer on one surface of the base material layer are obtained, and in the latter, a base material layer composed of the base material and a base material layer are obtained. The present laminate having the F layer on both surfaces of the base material layer can be obtained. Since the latter laminated body is less likely to warp, it is excellent in handleability during its processing.
Specific examples of the present laminate include a metal foil, a metal-clad laminate having an F layer on at least one surface of the metal foil, a polyimide film, and a multilayer film having an F layer on both surfaces of the polyimide film. Can be mentioned. Since these laminated bodies are excellent in various physical characteristics such as electrical characteristics, they are suitable as printed circuit board materials and the like, and can be used for manufacturing flexible printed circuit boards and rigid printed circuit boards.
 基材層の両面にF層を有する本積層体は、本分散液を基材の一方の表面に付与し、加熱して液状分散媒を除去し、本分散液を基材の他方の表面に付与し、加熱して液状分散媒を除去し、さらに加熱してFポリマーを焼成させて、それぞれのF層を形成して得るのが好ましい。 In this laminate having F layers on both sides of the base material layer, the present dispersion is applied to one surface of the base material and heated to remove the liquid dispersion medium, and the present dispersion is applied to the other surface of the base material. It is preferably obtained by applying, heating to remove the liquid dispersion medium, and further heating to fire the F polymer to form each F layer.
 また、基材層の両面にF層を有する本積層体は、本分散液を基材の両方の表面に付与し、加熱して液状分散媒を除去し、さらに加熱してFポリマーを焼成させて、両方の表面のF層を同時に形成して得てもよい。
 この場合、基材層の両面にF層を有する本積層体は、基材を本分散液に浸漬して本分散液を基材の両方の表面に付与した後に焼成炉を通過させ加熱して得るのが好ましい。具体的には、基材を本分散液に浸漬した後に、基材を本分散液から引き上げながら焼成炉を通過させ加熱して得るのがより好ましい。
 基材を引き上げ、焼成炉を通過させる方向は、鉛直上向きであるのが好ましい。この場合、平滑なF層が形成されやすい。基材を鉛直上向きに引き上げた後、鉛直下向きに引き下げながらさらに加熱してもよく、加熱せずに鉛直下向きに引き下げて基材を引き取ってもよい。
 また、基材に付与する本分散液の量は、本分散液が付着した基材を、一対のロール間を通過させて調整できる。
 かかる本積層体は、ディップコーターと焼成炉とを有する装置を用いれば好適に製造できる。焼成炉としては、竪型焼成炉が挙げられる。また、かかる装置としては、田端機械工業社製のガラスクロスコーティング装置が挙げられる。
Further, in the present laminate having the F layer on both sides of the base material layer, the present dispersion liquid is applied to both surfaces of the base material, heated to remove the liquid dispersion medium, and further heated to bake the F polymer. Alternatively, the F layers on both surfaces may be formed at the same time.
In this case, in the present laminate having the F layer on both sides of the base material layer, the base material is immersed in the main dispersion liquid to be applied to both surfaces of the base material, and then passed through a firing furnace and heated. It is preferable to obtain it. Specifically, it is more preferable to immerse the base material in the main dispersion liquid and then heat the base material by passing it through a firing furnace while pulling it up from the main dispersion liquid.
The direction in which the base material is pulled up and passed through the firing furnace is preferably vertically upward. In this case, a smooth F layer is likely to be formed. After pulling up the base material vertically upward, the base material may be further heated while being pulled down vertically, or the base material may be pulled down vertically without heating to take over the base material.
Further, the amount of the present dispersion liquid to be applied to the base material can be adjusted by passing the base material to which the present dispersion liquid is attached between a pair of rolls.
Such a laminated body can be suitably manufactured by using an apparatus having a dip coater and a firing furnace. Examples of the firing furnace include a vertical firing furnace. Further, as such a device, a glass cloth coating device manufactured by Tabata Machinery Co., Ltd. can be mentioned.
 ここで、基材の最表面は、その低線膨張性や接着性を一層向上させるために、さらに表面処理されてもよい。
 表面処理の方法としては、アニール処理、コロナ処理、プラズマ処理、オゾン処理、エキシマ処理、シランカップリング処理が挙げられる。
 アニール処理における条件は、温度を120~180℃とし、圧力を0.005~0.015MPaとし、時間を30~120分間とするのが好ましい。
 プラズマ処理に用いるガスとしては、酸素ガス、窒素ガス、希ガス(アルゴン等)、水素ガス、アンモニアガス、酢酸ビニルが挙げられる。これらのガスは、1種を使用してもよく、2種以上を併用してもよい。
 基材の表面の十点平均粗さは、0.01~0.05μmが好ましい。
Here, the outermost surface of the base material may be further surface-treated in order to further improve its low line expandability and adhesiveness.
Examples of the surface treatment method include annealing treatment, corona treatment, plasma treatment, ozone treatment, excimer treatment, and silane coupling treatment.
The conditions for the annealing treatment are preferably 120 to 180 ° C., a pressure of 0.005 to 0.015 MPa, and a time of 30 to 120 minutes.
Examples of the gas used for the plasma treatment include oxygen gas, nitrogen gas, rare gas (argon, etc.), hydrogen gas, ammonia gas, and vinyl acetate. One type of these gases may be used, or two or more types may be used in combination.
The ten-point average roughness of the surface of the base material is preferably 0.01 to 0.05 μm.
 基材層が樹脂フィルム(好適にはポリイミドフィルム)である本積層体は、離型フィルムやキャリアフィルムとして有用である。本積層体は、F層と基材層との接着性に優れ層間剥離しにくいため、キャリアフィルムとして繰り返し使用できる。また、F層は耐熱性に優れるため、繰り返し使用しても離型性も悪化しにくい。 This laminate in which the base material layer is a resin film (preferably a polyimide film) is useful as a release film or a carrier film. Since this laminated body has excellent adhesiveness between the F layer and the base material layer and is difficult to delaminate, it can be used repeatedly as a carrier film. Further, since the F layer has excellent heat resistance, the releasability does not easily deteriorate even after repeated use.
 具体的には、かかる本積層体のF層の表面に、樹脂や無機フィラーを含む分散液やワニスを塗布し、乾燥して塗膜を形成し、続いて、塗膜から本積層体を剥離すれば、独立した塗膜が得られる。例えば、本積層体のF層の表面に前記塗膜を形成した後、かかる塗膜を有する本積層体の塗膜側と他の基材とを貼り合わせ、本積層体を剥離すれば、他の基材と塗膜との積層体が得られる。
 本積層体のF層の表面に塗膜を形成する際に、例えば乾燥時においてFポリマーの融点以下の温度で加熱してもよい。本積層体は耐熱性に優れるため、加熱処理を繰り返しても変形しにくい。
Specifically, a dispersion liquid or varnish containing a resin or an inorganic filler is applied to the surface of the F layer of the laminated body and dried to form a coating film, and then the main laminated body is peeled off from the coating film. Then, an independent coating film can be obtained. For example, after forming the coating film on the surface of the F layer of the present laminate, the coating film side of the present laminate having such a coating film and another base material are bonded to each other, and the present laminate is peeled off. A laminate of the base material and the coating film is obtained.
When forming a coating film on the surface of the F layer of the present laminate, for example, it may be heated at a temperature equal to or lower than the melting point of the F polymer during drying. Since this laminate has excellent heat resistance, it is not easily deformed even after repeated heat treatment.
 本積層体は、具体的には、セラミックグリーンシート形成用のキャリアフィルム、二次電池形成用のキャリアフィルム、固体高分子電解質膜形成用のキャリアフィルム、固体高分子電解質膜の触媒形成用キャリアフィルムとして有用である。
 本積層体をキャリアフィルムとして用いる場合、厚さが均一な前記塗膜を得る観点から、本積層体の中央部の厚さに対する端部の厚さの比は、1.1以下が好ましく、1.07以下がより好ましく、1.04以下がより好ましい。厚さの比は、1以上である。
Specifically, the present laminate is a carrier film for forming a ceramic green sheet, a carrier film for forming a secondary battery, a carrier film for forming a solid polymer electrolyte membrane, and a carrier film for forming a catalyst of a solid polymer electrolyte membrane. It is useful as.
When the present laminate is used as a carrier film, the ratio of the thickness of the end portion to the thickness of the central portion of the present laminate is preferably 1.1 or less from the viewpoint of obtaining the coating film having a uniform thickness. .07 or less is more preferable, and 1.04 or less is more preferable. The thickness ratio is 1 or more.
 本積層体の最表面には、さらに他の基板を積層してもよい。
 他の基板としては、金属基板、耐熱性樹脂フィルム、繊維強化樹脂板の前駆体であるプリプレグ、耐熱性樹脂フィルム層を有する積層体、プリプレグ層を有する積層体が挙げられる。
 なお、プリプレグは、強化繊維(ガラス繊維、炭素繊維等)の基材(トウ、織布等)に熱硬化性樹脂又は熱可塑性樹脂を含浸させたシート状の基板である。
 金属基板としては、上記した金属基板が挙げられる。耐熱性樹脂フィルムは、1種以上の耐熱性樹脂を含むフィルムであり、耐熱性樹脂としては、上記した樹脂が挙げられる。
Another substrate may be further laminated on the outermost surface of the laminated body.
Examples of other substrates include a metal substrate, a heat-resistant resin film, a prepreg which is a precursor of a fiber-reinforced resin plate, a laminate having a heat-resistant resin film layer, and a laminate having a prepreg layer.
The prepreg is a sheet-like substrate in which a base material (tow, woven fabric, etc.) of reinforcing fibers (glass fibers, carbon fibers, etc.) is impregnated with a thermosetting resin or a thermoplastic resin.
Examples of the metal substrate include the above-mentioned metal substrate. The heat-resistant resin film is a film containing one or more heat-resistant resins, and examples of the heat-resistant resin include the above-mentioned resins.
 積層の方法としては、本積層体と他の基板とを熱プレスする方法が挙げられる。
 他の基板がプリプレグである場合の熱プレスの条件は、温度を120~400℃とし、雰囲気の圧力を20kPa以下の真空とし、プレス圧力を0.2~10MPaとするのが好ましい。かかる本積層体は、電気特性に優れるF層を有するため、プリント基板材料として好適であり、具体的にはフレキシブル金属張積層板やリジッド金属張積層板としてプリント基板の製造に使用でき、特に、フレキシブル金属張積層板としてフレキシブルプリント基板の製造に好適に使用できる。
Examples of the laminating method include a method of heat-pressing the main laminated body with another substrate.
When the other substrate is a prepreg, the hot press conditions are preferably such that the temperature is 120 to 400 ° C., the atmospheric pressure is a vacuum of 20 kPa or less, and the press pressure is 0.2 to 10 MPa. Since this laminate has an F layer having excellent electrical characteristics, it is suitable as a printed circuit board material, and specifically, it can be used as a flexible metal-clad laminate or a rigid metal-clad laminate for manufacturing a printed circuit board. It can be suitably used for manufacturing a flexible printed circuit board as a flexible metal-clad laminate.
 基材層が金属箔である本積層体(F層付金属箔)及び、基材層が樹脂フィルムである、F層を有する本積層体にさらに金属箔を積層した金属張積層体(樹脂フィルムとF層付き金属箔)の金属箔をエッチング加工し、伝送回路を形成すればプリント基板が得られる。具体的には、金属箔をエッチング処理して所定の伝送回路に加工する方法や、金属箔を電解めっき法(セミアディティブ法(SAP法)、MSAP法等)によって所定の伝送回路に加工する方法によって、プリント基板を製造できる。
 F層付金属箔及び樹脂フィルムとF層付き金属箔から製造されたプリント基板は、金属箔から形成された伝送回路とF層とをこの順に有する。プリント基板の構成の具体例としては、伝送回路/F層/プリプレグ層、伝送回路/F層/プリプレグ層/F層/伝送回路、伝送回路/F層/ポリイミドフィルム層、伝送回路/F層/ポリイミドフィルム層/F層/伝送回路が挙げられる。
 かかるプリント基板の製造においては、伝送回路上に層間絶縁膜を形成してもよく、伝送回路上にソルダーレジストを積層してもよく、伝送回路上にカバーレイフィルムを積層してもよい。これらの層間絶縁膜、ソルダーレジスト及びカバーレイフィルムを、本分散液で形成してもよい。
This laminated body (metal foil with F layer) in which the base material layer is a metal foil, and a metal-clad laminate (resin film) in which a metal foil is further laminated on the main laminated body having an F layer in which the base material layer is a resin film. And the metal foil with F layer) is etched to form a transmission circuit to obtain a printed substrate. Specifically, a method of etching a metal foil to process it into a predetermined transmission circuit, or a method of processing a metal foil into a predetermined transmission circuit by an electrolytic plating method (semi-additive method (SAP method), MSAP method, etc.). Can be used to manufacture printed circuit boards.
A printed circuit board manufactured from a metal foil with an F layer and a resin film and a metal foil with an F layer has a transmission circuit formed from the metal foil and an F layer in this order. Specific examples of the configuration of the printed circuit board include a transmission circuit / F layer / prepreg layer, a transmission circuit / F layer / prepreg layer / F layer / transmission circuit, a transmission circuit / F layer / polyimide film layer, and a transmission circuit / F layer /. Examples include a polyimide film layer / F layer / transmission circuit.
In the manufacture of such a printed circuit board, an interlayer insulating film may be formed on the transmission circuit, a solder resist may be laminated on the transmission circuit, or a coverlay film may be laminated on the transmission circuit. These interlayer insulating films, solder resists and coverlay films may be formed with the present dispersion.
 基材層が金属基板である本積層体は、絶縁性と放熱性に優れるため、放熱基板としても有用であり、特にパワー半導体の実装用基板に好適に使用できる。
 かかる場合の基材の形状は、板状であるのが好ましく、基材としては、銅板、アルミ板が好ましい。基材の厚さは、0.1~3mmが好ましい。
 かかる場合の本積層体の製造において、基材に本分散液を塗布する方法としては、スリットコート法が好ましい。
 かかる場合のFポリマーとしては、溶融温度が200~320℃であるFポリマーが好ましく、前記したTFE単位及びPAVE単位を含む、酸素含有極性基を有するポリマーがより好ましい。
Since this laminate in which the base material layer is a metal substrate is excellent in insulating property and heat dissipation property, it is also useful as a heat dissipation board, and can be particularly preferably used as a board for mounting a power semiconductor.
In such a case, the shape of the base material is preferably plate-like, and the base material is preferably a copper plate or an aluminum plate. The thickness of the base material is preferably 0.1 to 3 mm.
In the production of the present laminate in such a case, the slit coating method is preferable as a method of applying the present dispersion liquid to the base material.
As the F polymer in such a case, an F polymer having a melting temperature of 200 to 320 ° C. is preferable, and a polymer having an oxygen-containing polar group containing the above-mentioned TFE unit and PAVE unit is more preferable.
 かかる場合のイミド系樹脂Pとしては、芳香族ポリイミド、芳香族ポリイミド前駆体、芳香族ポリアミドイミド又は芳香族ポリアミドイミド前駆体が好ましい。
 かかる場合、F層は無機フィラーをさらに含むのが好ましい。無機フィラーとしては、窒化ホウ素フィラー、窒化アルミニウムフィラー又は酸化アルミニウムフィラーが好ましい。
 つまり、放熱基板として使用される本積層体において、Fポリマーは、前記したTFE単位及びPAVE単位を含む、酸素含有極性基を有するポリマーであり、イミド系樹脂Pが芳香族ポリイミド、芳香族ポリイミド前駆体、芳香族ポリアミドイミド又は芳香族ポリアミドイミド前駆体であるのが好ましく、かつ、そのF層には窒化ホウ素フィラー、窒化アルミニウムフィラー又は酸化アルミニウムフィラーが含まれるのが好ましい。この場合、本積層体の放熱基板としての絶縁性と放熱性が特に向上しやすい。
As the imide-based resin P in such a case, an aromatic polyimide, an aromatic polyimide precursor, an aromatic polyamideimide or an aromatic polyamide-imide precursor is preferable.
In such a case, it is preferable that the F layer further contains an inorganic filler. As the inorganic filler, a boron nitride filler, an aluminum nitride filler or an aluminum oxide filler is preferable.
That is, in the present laminate used as the heat dissipation substrate, the F polymer is a polymer having an oxygen-containing polar group containing the above-mentioned TFE unit and PAVE unit, and the imide-based resin P is an aromatic polyimide or an aromatic polyimide precursor. The body, aromatic polyamideimide or aromatic polyamideimide precursor is preferable, and the F layer thereof preferably contains a boron nitride filler, an aluminum nitride filler or an aluminum oxide filler. In this case, the insulation and heat dissipation of the laminated body as a heat dissipation substrate are particularly likely to be improved.
 本積層体を放熱基板として用いる場合、本積層体は、金属層とF層と金属層とを、この順に有する積層体に加工して用いるのが好ましい。かかる積層体は、本積層体のF層の表面に、金属基板を熱圧着して得てもよく、2つの本積層体を、F層が対向するように積層し、F層を熱圧着して得てもよく、後者が好ましい。
 熱圧着の方法としては、熱プレスが好ましい。
 かかる積層体における2つの金属層の厚さは、同じであってもよく、異なっていてもよい。また、2つの金属層における金属は、同じであってもよく、異なっていてもよい。
 例えば、厚さ1mmのアルミ板の表面にF層を有する本積層体のF層と、厚さ0.5mmの銅板の表面にF層を有する本積層体のF層とを熱プレスして熱圧着すれば、アルミ板とF層と銅板とをこの順に有し、2つの金属層の厚さの異なる積層体が得られる。
When the present laminated body is used as a heat dissipation substrate, it is preferable that the present laminated body is processed into a laminated body having a metal layer, an F layer, and a metal layer in this order. Such a laminate may be obtained by thermocompression-bonding a metal substrate to the surface of the F layer of the present laminate, laminating the two present laminates so that the F layers face each other, and thermocompression-bonding the F layer. The latter is preferable.
As a method of thermocompression bonding, a hot press is preferable.
The thicknesses of the two metal layers in such a laminate may be the same or different. Further, the metals in the two metal layers may be the same or different.
For example, the F layer of the main laminate having an F layer on the surface of an aluminum plate having a thickness of 1 mm and the F layer of the main laminate having an F layer on the surface of a copper plate having a thickness of 0.5 mm are heat-pressed. By crimping, an aluminum plate, an F layer, and a copper plate are provided in this order, and a laminate having two metal layers having different thicknesses can be obtained.
 本積層体や、本積層体と他の基板との積層物は、アンテナ部品、プリント基板、航空機用部品、自動車用部品、スポーツ用具、食品工業用品、塗料、放熱部品、化粧品等として有用であり、具体的には、電線被覆材(航空機用電線等)、電気絶縁性テープ、石油掘削用絶縁テープ、プリント基板用材料、分離膜(精密濾過膜、限外濾過膜、逆浸透膜、イオン交換膜、透析膜、気体分離膜等)、電極バインダー(リチウム二次電池用、燃料電池用等)、コピーロール、家具、自動車ダッシュボート、家電製品等のカバー、摺動部材(荷重軸受、すべり軸、バルブ、ベアリング、歯車、カム、ベルトコンベア、食品搬送用ベルト等)、工具(シャベル、やすり、きり、のこぎり等)、ボイラー、ホッパー、パイプ、オーブン、焼き型、シュート、ダイス、便器、コンテナ被覆材、パワーデバイス用実装放熱基板、トランジスタ、サイリスタ、整流器、トランス、パワーMOS FET、CPU、放熱フィン、金属放熱板、風車や風力発電設備や航空機等のブレード、パソコンやディスプレイの筐体、電子デバイス部材、自動車の内外装部材、低酸素下で加熱処理する加工機や真空オーブン、プラズマ処理装置などのシール部材、スパッタや各種ドライエッチング装置等の処理ユニット内の放熱部品、電磁波シールド部材として有用である。 This laminate and the laminate of this laminate and other substrates are useful as antenna parts, printed substrates, aircraft parts, automobile parts, sports equipment, food industry supplies, paints, heat dissipation parts, cosmetics, etc. , Specifically, wire coating materials (aircraft wires, etc.), electrical insulating tapes, insulating tapes for oil drilling, materials for printed substrates, separation membranes (precision filtration membranes, ultrafiltration membranes, back-penetration membranes, ion exchange). Membranes, dialysis membranes, gas separation membranes, etc.), electrode binders (for lithium secondary batteries, fuel cells, etc.), copy rolls, furniture, automobile dashboards, covers for home appliances, sliding members (load bearings, sliding shafts, etc.) , Valves, bearings, gears, cams, belt conveyors, food transport belts, etc.), tools (shovels, shavings, cuttings, saws, etc.), boilers, hoppers, pipes, ovens, baking molds, chutes, dies, toilet bowls, container coverings. Materials, mounted heat dissipation boards for power devices, transistors, thyristors, rectifiers, transformers, power MOS FETs, CPUs, heat dissipation fins, metal heat dissipation plates, blades for windmills, wind power generation equipment, aircraft, etc., personal computer and display housings, electronic devices It is useful as a member, interior / exterior member of an automobile, a seal member such as a processing machine or vacuum oven that heat-treats under low oxygen, a plasma processing device, a heat dissipation part in a processing unit such as a sputter or various dry etching devices, and an electromagnetic wave shielding member. be.
 以上、本分散液、本分散液の製造方法及び本積層体について説明したが、本発明は、前述した実施形態の構成に限定されない。例えば、本分散液及び本積層体は、上記実施形態の構成において、他の任意の構成を追加してもよいし、同様の機能を発揮する任意の構成と置換されていてよい。また、本分散液の製造方法は、上記実施形態の構成において、他の任意の工程を追加で有してもよいし、同様の作用を生じる任意の工程と置換されていてよい。 Although the present dispersion, the method for producing the present dispersion, and the present laminate have been described above, the present invention is not limited to the configuration of the above-described embodiment. For example, the present dispersion and the present laminate may be added to any other configuration or may be replaced with any configuration exhibiting the same function in the configuration of the above embodiment. In addition, the method for producing the present dispersion may additionally have any other step in the configuration of the above embodiment, or may be replaced with any step that produces the same action.
 以下、実施例によって本発明を詳細に説明するが、本発明はこれらに限定されない。
1.各成分の詳細
[F粒子]
 F粒子1:TFE単位、NAH単位及びPPVE単位を、この順に97.9モル%、0.1モル%、2.0モル%含み、カルボニル基含有基を主鎖炭素数1×10個あたり1000個有するポリマー(溶融温度:300℃)からなる粒子(D50:2.1μm)
 F粒子2:TFE単位及びPPVE単位を、この順に97.5モル%、2.5モル%含み、カルボニル基含有基を主鎖炭素数1×10個あたり25個有するポリマー(溶融温度305℃)からなる粒子(D50:1.8μm)
 F粒子3:非熱溶融性PTFEからなる粒子(D50:0.2μm)
 [F分散液]
 F分散液1:F粒子3を60質量%含む水分散液(AGC社製「AD-911E」)
 [イミド系樹脂のワニス]
 ワニス1:芳香族ポリアミドイミド(PAI1)の前駆体(酸価:50mgKOH/g)を含む水ワニス
 [界面活性剤]
 界面活性剤1:主鎖にジメチルシロキサン単位を、主鎖末端又は側鎖にオキシエチレン基を有するポリオキシアルキレン変性ポリジメチルシロキサン(重量平均分子量:1600、分散度:1.5、HLB値:13、静的表面張力:25mN/m、0.1質量%水溶液の動的表面張力:30mN/m)
 [pH調整剤]
 アミン1:トリエタノールアミン
 酸1:ギ酸
 [ノニオン性高分子]
 多糖類1:ヒドロキシエチルセルロース(住友精化社製「HEC CF-Y」)[ノニオン性の水酸基を有する水溶性高分子]
[樹脂フィルム(基材)]
 ポリイミドフィルム1:厚さ25μmの芳香族性ポリイミドフィルム(PI Advanced Materials社製「FG-100」)
Hereinafter, the present invention will be described in detail by way of examples, but the present invention is not limited thereto.
1. 1. Details of each component [F particles]
F particle 1: Contains 97.9 mol%, 0.1 mol%, and 2.0 mol% of TFE units, NAH units, and PPVE units in this order, and contains carbonyl group-containing groups per 1 × 10 6 main chain carbon atoms. Particles (D50: 2.1 μm) consisting of 1000 polymers (melting temperature: 300 ° C)
F particle 2: A polymer containing 97.5 mol% and 2.5 mol% of TFE units and PPVE units in this order and having 25 carbonyl group-containing groups per 1 × 10 6 main chain carbon atoms (melting temperature 305 ° C.). ) Particles (D50: 1.8 μm)
F particle 3: Particles made of non-heat-meltable PTFE (D50: 0.2 μm)
[F dispersion liquid]
F dispersion liquid 1: Water dispersion liquid containing 60% by mass of F particles 3 (“AD-911E” manufactured by AGC).
[Varnish of imide resin]
Varnish 1: Water varnish containing a precursor (acid value: 50 mgKOH / g) of aromatic polyamide-imide (PAI1) [surfactant]
Surfactant 1: Polyoxyalkylene-modified polydimethylsiloxane having a dimethylsiloxane unit in the main chain and an oxyethylene group at the end of the main chain or the side chain (weight average molecular weight: 1600, dispersibility: 1.5, HLB value: 13) , Static surface tension: 25 mN / m, dynamic surface tension of 0.1% by mass aqueous solution: 30 mN / m)
[PH regulator]
Amine 1: Triethanolamine Acid 1: Formic acid [Nonionic polymer]
Polysaccharide 1: Hydroxyethyl cellulose (“HEC CF-Y” manufactured by Sumitomo Seika Chemical Co., Ltd.) [Water-soluble polymer having a nonionic hydroxyl group]
[Resin film (base material)]
Polyimide film 1: Aromatic polyimide film with a thickness of 25 μm (“FG-100” manufactured by PI Advanced Materials)
2.分散液の製造及び評価
[例1-1]
 ポットに、F粒子1とワニス1と界面活性剤1と水とを投入し、ジルコニアボールを投入した。その後、150rpmにて1時間、ポットを転がし、アミン1を添加して、F粒子1(60質量部)、PAI1(0.6質量部)、界面活性剤1(3質量部)及び水(46.4質量部)を含む、分散液1を得た。得られた分散液1の粘度は1000mPa・sであり、pHは8.0であった。
 分散液1は、25℃にて長期間保管しても、凝集物が視認されず、分散性に優れていた。
2. 2. Production and evaluation of dispersion [Example 1-1]
F particles 1, varnish 1, surfactant 1, and water were put into the pot, and zirconia balls were put into the pot. Then, the pot was rolled at 150 rpm for 1 hour, amine 1 was added, and F particles 1 (60 parts by mass), PAI 1 (0.6 parts by mass), surfactant 1 (3 parts by mass) and water (46 parts by mass) were added. A dispersion 1 containing (4 parts by mass) was obtained. The viscosity of the obtained dispersion liquid 1 was 1000 mPa · s, and the pH was 8.0.
Even when the dispersion liquid 1 was stored at 25 ° C. for a long period of time, no agglomerates were visually recognized and the dispersion liquid 1 was excellent in dispersibility.
[例1-2]
 ポットに、F粒子1とワニス1と界面活性剤1と水を投入して混合し、組成物を調製した。この組成物をプラネタリーミキサー中にて混練してから取り出し、F粒子1(60質量部)、PAI1(0.6質量部)、界面活性剤1(3質量部)及び水(20質量部)を含む練粉1を得た。
 練粉1に、水を複数回に分けて添加しつつ、自転公転撹拌機にて2000rpmで脱泡しながら撹拌した。さらに、水を複数回に分けて添加しながら撹拌し、アミン1を添加して、F粒子1(60質量部)、PAI1(0.6質量部)、界面活性剤1(3質量部)及び水(46.4質量部)を含む、分散液2を得た。得られた分散液2の粘度は800mPa・sであり、pHは8.0であった。
[Example 1-2]
F particles 1, varnish 1, surfactant 1 and water were added to the pot and mixed to prepare a composition. This composition is kneaded in a planetary mixer and then taken out, and F particles 1 (60 parts by mass), PAI 1 (0.6 parts by mass), surfactant 1 (3 parts by mass) and water (20 parts by mass) are taken out. 1 was obtained.
Water was added to the kneaded powder 1 in a plurality of times, and the mixture was stirred while defoaming at 2000 rpm with a rotating revolution stirrer. Further, water is added in a plurality of times while stirring, and amine 1 is added to F particles 1 (60 parts by mass), PAI 1 (0.6 parts by mass), surfactant 1 (3 parts by mass) and. A dispersion 2 containing water (46.4 parts by mass) was obtained. The viscosity of the obtained dispersion liquid 2 was 800 mPa · s, and the pH was 8.0.
[例1-3]~[例1-6]
 F粒子、ワニス、pH調整剤及び水の種類または量を、表1に示す通り変更した以外は、例1-2と同様にして分散液3~6を得た。
[Example 1-3] to [Example 1-6]
Dispersions 3 to 6 were obtained in the same manner as in Example 1-2, except that the types or amounts of F particles, varnish, pH adjuster and water were changed as shown in Table 1.
[例1-7]
 ポットに、F粒子1とワニス1と界面活性剤1と水を投入して混合し、組成物を調製した。この組成物をプラネタリーミキサー中にて混練してから取り出し、F粒子1(50質量部)、PAI(0.6質量部)、界面活性剤1(3質量部)及び水(20質量部)を含む練粉7を得た。
 練粉7に、F分散液1を添加し、さらに水を複数回に分けて添加しつつ、自転公転撹拌機にて2000rpmで脱泡しながら撹拌した。さらに、水を複数回に分けて添加しながら撹拌し、アミン1を添加して、F粒子1(50質量部)、F粒子3(10質量部)、PAI1(0.6質量部)、界面活性剤1(3質量部)及び水(46.4質量部)を含む、分散液7を得た。得られた分散液7の粘度は700mPa・sであり、pHは8.0であった。
[Example 1-7]
F particles 1, varnish 1, surfactant 1 and water were added to the pot and mixed to prepare a composition. This composition is kneaded in a planetary mixer and then taken out, and F particles 1 (50 parts by mass), PAI (0.6 parts by mass), surfactant 1 (3 parts by mass) and water (20 parts by mass) are taken out. 7 was obtained.
The F dispersion liquid 1 was added to the kneaded powder 7, and water was further added in a plurality of times, and the mixture was stirred while defoaming at 2000 rpm with a rotation / revolution stirrer. Further, water is added in a plurality of times while stirring, and amine 1 is added to F particles 1 (50 parts by mass), F particles 3 (10 parts by mass), PAI 1 (0.6 parts by mass), and an interface. A dispersion 7 containing activator 1 (3 parts by mass) and water (46.4 parts by mass) was obtained. The viscosity of the obtained dispersion 7 was 700 mPa · s, and the pH was 8.0.
[例1-8]
 ポットに、F粒子1とワニス1と界面活性剤1と多糖類1と水を投入して混合し、組成物を調製した。この組成物をプラネタリーミキサー中にて混練してから取り出し、F粒子1(50質量部)、PAI(0.6質量部)、界面活性剤1(3質量部)、多糖類1(0.3質量部)及び水(20質量部)を含む練粉8を得た。
 練粉8に、F分散液1を添加し、さらに水を複数回に分けて添加しつつ、自転公転撹拌機にて2000rpmで脱泡しながら撹拌した。さらに、水を複数回に分けて添加しながら撹拌し、アミン1を添加して、F粒子1(50質量部)、F粒子3(10質量部)、PAI1(0.6質量部)、界面活性剤1(3質量部)、多糖類1(0.3質量部)及び水(46.1質量部)を含む、分散液8を得た。得られた分散液8の粘度は3000mPa・sであり、pHは8.0であった。
[Example 1-8]
F particles 1, varnish 1, surfactant 1, polysaccharide 1 and water were added to the pot and mixed to prepare a composition. This composition is kneaded in a planetary mixer and then taken out, and F particles 1 (50 parts by mass), PAI (0.6 parts by mass), surfactant 1 (3 parts by mass), and polysaccharide 1 (0. A kneaded powder 8 containing 3 parts by mass) and water (20 parts by mass) was obtained.
The F dispersion liquid 1 was added to the kneaded powder 8, and water was further added in a plurality of times, and the mixture was stirred while defoaming at 2000 rpm with a rotating revolution stirrer. Further, water is added in a plurality of times while stirring, and amine 1 is added to F particles 1 (50 parts by mass), F particles 3 (10 parts by mass), PAI 1 (0.6 parts by mass), and an interface. A dispersion 8 containing an activator 1 (3 parts by mass), a polysaccharide 1 (0.3 parts by mass) and water (46.1 parts by mass) was obtained. The viscosity of the obtained dispersion liquid 8 was 3000 mPa · s, and the pH was 8.0.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
3.積層体の製造及び評価
[例2-1]
 ロール・ツー・ロールプロセスにより、ポリイミドフィルム1の一方の面に、例1-1に従って得た分散液1を小径グラビアリバース法で塗布し、通風乾燥炉(炉温150℃)に3分間で通過させて、水を除去して乾燥被膜を形成した。また、ポリイミドフィルム1の他方の面にも、同様に分散液1を塗布し、乾燥し、乾燥被膜を形成した。
 次いで、両面に乾燥被膜が形成されたポリイミドフィルム1を、遠赤外線炉(炉内入口、出口付近の炉温度300℃、中心付近の炉温度360℃)に5分間で通過させて、F粒子1を溶融焼成させた。
 これにより、ポリイミドフィルム1の両面にF粒子1の溶融焼成物とPAI1とを含むポリマー層を形成し、ポリマー層、ポリイミドフィルム層及びポリマー層がこの順に直接形成された積層体(多層フィルム1)をロール・ツー・ロールプロセスにより得た。多層フィルム1におけるポリマー層の厚さは25μmであった。
3. 3. Manufacture and evaluation of laminate [Example 2-1]
By a roll-to-roll process, the dispersion liquid 1 obtained according to Example 1-1 is applied to one surface of the polyimide film 1 by a small-diameter gravure reverse method, and passed through a ventilation drying furnace (fired temperature 150 ° C.) in 3 minutes. The water was removed to form a dry film. Further, the dispersion liquid 1 was similarly applied to the other surface of the polyimide film 1 and dried to form a dry film.
Next, the polyimide film 1 having the dry film formed on both sides is passed through a far-infrared furnace (a furnace temperature of 300 ° C. near the inlet and outlet of the furnace, a furnace temperature of 360 ° C. near the center) in 5 minutes, and the F particles 1 are passed. Was melt-fired.
As a result, a polymer layer containing the melt-fired product of F particles 1 and PAI1 is formed on both sides of the polyimide film 1, and the polymer layer, the polyimide film layer, and the polymer layer are directly formed in this order (multilayer film 1). Was obtained by a roll-to-roll process. The thickness of the polymer layer in the multilayer film 1 was 25 μm.
[例2-2]~[例2-8]
 分散液1に代えて、分散液2~8を用いた以外は、例2-1と同様にして、多層フィルム2~7を得た。
 それぞれの多層フィルムのポリマー層の空隙率は、多層フィルム2、多層フィルム1、多層フィルム3及び4、多層フィルム5及び6の順に小さく、多層フィルム2のポリマー層が最も緻密であった。
[Example 2-2] to [Example 2-8]
Multilayer films 2 to 7 were obtained in the same manner as in Example 2-1 except that the dispersion liquids 2 to 8 were used instead of the dispersion liquid 1.
The porosity of the polymer layer of each multilayer film was smaller in the order of multilayer film 2, multilayer film 1, multilayer films 3 and 4, and multilayer films 5 and 6, and the polymer layer of multilayer film 2 was the densest.
4.評価
4-1.分散液の分散層率の評価
 それぞれの分散液(18mL)を、をスクリュー管(内容積:30mL)に入れ、25℃にて14日静置した。静置後の、スクリュー管中の分散液全体の高さと沈降層(分散層)の高さとから、以下の式により分散層率を算出し、下記の基準に従って、分散安定性を評価した。
 [評価基準]
 〇:分散層率が80%以上である。
 △:分散層率が60%以上80未満である。
 ×:分散層率が60%未満である。
4. Evaluation 4-1. Evaluation of Dispersion Layer Ratio of Dispersion Liquid Each dispersion liquid (18 mL) was placed in a screw tube (internal volume: 30 mL) and allowed to stand at 25 ° C. for 14 days. The dispersion layer ratio was calculated from the height of the entire dispersion liquid in the screw tube and the height of the sedimentation layer (dispersion layer) after standing still by the following formula, and the dispersion stability was evaluated according to the following criteria.
[Evaluation criteria]
〇: The dispersed layer ratio is 80% or more.
Δ: The dispersed layer ratio is 60% or more and less than 80.
X: The dispersed layer ratio is less than 60%.
4-2.分散液のチキソ比の変動幅
 それぞれの分散液を容器中に25℃にて30日保管し、保管前後におけるチキソ比の変動幅を測定し、下記の基準に従ってチキソ安定性を評価した。
 [評価基準]
 〇:チキソ比の変動幅(絶対値)が、1未満である
 △:チキソ比の変動幅(絶対値)が、1以上3以下である
 ×:チキソ比の変動幅(絶対値)が、3超である
4-2. Fluctuation range of thixotropy of dispersions Each dispersion was stored in a container at 25 ° C. for 30 days, the fluctuation range of thixotropy before and after storage was measured, and the thixotropy stability was evaluated according to the following criteria.
[Evaluation criteria]
〇: Thixotropy fluctuation range (absolute value) is less than 1 Δ: Thixotropy fluctuation range (absolute value) is 1 or more and 3 or less ×: Thixotropy fluctuation range (absolute value) is 3 Is super
4-3.多層フィルムの表面平滑性の評価
 それぞれの多層フィルムのポリマー層の表面を目視で確認し、下記の基準に従って表面平滑性を評価した。
 [評価基準]
 〇:ポリマー層の表面にピンホールが無い。
 ×:ポリマー層の表面にピンホールがある。
4-3. Evaluation of Surface Smoothness of Multilayer Films The surface of the polymer layer of each multilayer film was visually confirmed, and the surface smoothness was evaluated according to the following criteria.
[Evaluation criteria]
〇: There are no pinholes on the surface of the polymer layer.
X: There are pinholes on the surface of the polymer layer.
4-4.多層フィルムの層間密着性の評価
 それぞれの多層フィルムから矩形状(長さ100mm、幅10mm)の試験片を切り出し、試験片の長さ方向の一端から50mmの位置を固定し、引張り速度50mm/分、長さ方向の片端から試験片に対して90°で、ポリマー層とポリイミドフィルム層とを剥離させた。その際にかかる最大荷重を剥離強度とし、下記の基準に従って層間密着性を評価した。
 [評価基準]
 〇:剥離強度が、15N/cm以上である。
 △:剥離強度が、10N/cm以上15N/cm未満である。
 ×:剥離強度が、10N/cm未満である。
 それぞれの評価結果を、まとめて下表2に示す。
4-4. Evaluation of interlayer adhesion of multilayer film A rectangular (length 100 mm, width 10 mm) test piece was cut out from each multilayer film, and a position of 50 mm from one end in the length direction of the test piece was fixed, and a tensile speed of 50 mm / min. The polymer layer and the polyimide film layer were peeled off from one end in the length direction at 90 ° to the test piece. The maximum load applied at that time was taken as the peel strength, and the interlayer adhesion was evaluated according to the following criteria.
[Evaluation criteria]
〇: The peel strength is 15 N / cm or more.
Δ: The peel strength is 10 N / cm or more and less than 15 N / cm.
X: The peel strength is less than 10 N / cm.
The results of each evaluation are summarized in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 なお、それぞれの多層フィルムの誘電正接をSPDR(スプリットポスト誘電体共振)法(測定周波数:10GHz)にて測定した結果、多層フィルム7及び8の誘電正接が最も低くなり、両者の多層フィルムが電気特性により優れていた。また、一回の積層体の製造プロセスで形成できる、表面平滑性及び層間密着性を備えたポリマー層の厚さは、分散液8を使用した場合が最も大きかった。 As a result of measuring the dielectric loss tangent of each multilayer film by the SPDR (split post dielectric resonance) method (measurement frequency: 10 GHz), the dielectric loss tangent of the multilayer films 7 and 8 is the lowest, and both multilayer films are electric. It was superior to the characteristics. In addition, the thickness of the polymer layer having surface smoothness and interlayer adhesion that can be formed in a single laminating body manufacturing process was the largest when the dispersion liquid 8 was used.
 本発明の水性分散液は分散安定性に優れ、フィルム、繊維強化フィルム、プリプレグ、金属積層板(樹脂付金属箔)に容易に加工できる。得られる加工物品は、アンテナ部品、プリント基板、航空機用部品、自動車用部品、スポーツ用具、食品工業用品、すべり軸受け等の材料として使用できる。また本発明の積層体は、耐熱性と離型性に優れるため、セラミックグリーンシート成形用のキャリアフィルム、二次電池電極膜形成用のキャリアフィルム、固体高分子電解質膜形成用のキャリアフィルム、固体高分子電解質膜の触媒形成用キャリアフィルムとしても使用できる。 The aqueous dispersion of the present invention has excellent dispersion stability and can be easily processed into films, fiber reinforced films, prepregs, and metal laminated plates (metal foils with resin). The obtained processed article can be used as a material for antenna parts, printed circuit boards, aircraft parts, automobile parts, sports equipment, food industry supplies, sliding bearings and the like. Further, since the laminate of the present invention is excellent in heat resistance and releasability, a carrier film for forming a ceramic green sheet, a carrier film for forming a secondary battery electrode film, a carrier film for forming a solid polymer electrolyte film, and a solid are used. It can also be used as a carrier film for forming a catalyst for a polymer electrolyte membrane.

Claims (15)

  1.  テトラフルオロエチレン系ポリマーの粒子と、酸価が20~100mg/KOHである芳香族イミド系樹脂と、水とを含み、pHが5~10である、水性分散液。 An aqueous dispersion containing particles of a tetrafluoroethylene polymer, an aromatic imide resin having an acid value of 20 to 100 mg / KOH, and water, and having a pH of 5 to 10.
  2.  前記テトラフルオロエチレン系ポリマーが、ペルフルオロ(アルキルビニルエーテル)に基づく単位を含む酸素含有極性基を有するテトラフルオロエチレン系ポリマーである、請求項1に記載の水性分散液。 The aqueous dispersion according to claim 1, wherein the tetrafluoroethylene polymer is a tetrafluoroethylene polymer having an oxygen-containing polar group containing a unit based on perfluoro (alkyl vinyl ether).
  3.  前記テトラフルオロエチレン系ポリマーの粒子が、非熱溶融性のテトラフルオロエチレン系ポリマーの粒子と、熱溶融性のテトラフルオロエチレン系ポリマーの粒子とを含む、請求項1又は2に記載の水性分散液。 The aqueous dispersion according to claim 1 or 2, wherein the tetrafluoroethylene-based polymer particles include non-heat-meltable tetrafluoroethylene-based polymer particles and heat-meltable tetrafluoroethylene-based polymer particles. ..
  4.  前記芳香族イミド系樹脂が、水溶性の芳香族ポリアミドイミドの前駆体又は水溶性の芳香族ポリイミドの前駆体である、請求項1~3のいずれか1項に記載の水性分散液。 The aqueous dispersion according to any one of claims 1 to 3, wherein the aromatic imide resin is a precursor of a water-soluble aromatic polyamide-imide or a precursor of a water-soluble aromatic polyimide.
  5.  さらに、無機フィラーを含む、請求項1~4のいずれか1項に記載の水性分散液。 The aqueous dispersion according to any one of claims 1 to 4, further comprising an inorganic filler.
  6.  さらに、ノニオン性界面活性剤を含む、請求項1~5のいずれか1項に記載の水性分散液。 The aqueous dispersion according to any one of claims 1 to 5, further comprising a nonionic surfactant.
  7.  さらに、ポリビニルアルコール系高分子、ポリビニルピロリドン系高分子及び多糖類なる群から選ばれる少なくとも1種のノニオン性高分子を含む、請求項1~6のいずれか1項に記載の水性分散液。 The aqueous dispersion according to any one of claims 1 to 6, further comprising at least one nonionic polymer selected from the group consisting of a polyvinyl alcohol-based polymer, a polyvinylpyrrolidone-based polymer, and a polysaccharide.
  8.  アミン又はアンモニアを含む、請求項1~7のいずれか1項に記載の水性分散液。 The aqueous dispersion according to any one of claims 1 to 7, which contains amine or ammonia.
  9.  前記テトラフルオロエチレン系ポリマーの粒子の質量に対する、前記芳香族イミド系樹脂の質量の比が、0.001~0.1の範囲である、請求項1~8のいずれか1項に記載の水性分散液。 The aqueous solution according to any one of claims 1 to 8, wherein the ratio of the mass of the aromatic imide resin to the mass of the particles of the tetrafluoroethylene polymer is in the range of 0.001 to 0.1. Dispersion solution.
  10.  前記水性分散液における前記粒子と前記芳香族イミド系樹脂の合計含有量が、前記水性分散液の全体質量に対して20質量%以上である、請求項1~9のいずれか1項に記載の水性分散液。 The one according to any one of claims 1 to 9, wherein the total content of the particles and the aromatic imide-based resin in the aqueous dispersion is 20% by mass or more with respect to the total mass of the aqueous dispersion. Aqueous dispersion.
  11.  粘度が、50~3000mPa・sである、請求項1~10のいずれか1項に記載の水性分散液。 The aqueous dispersion according to any one of claims 1 to 10, which has a viscosity of 50 to 3000 mPa · s.
  12.  樹脂フィルムの少なくとも一方の表面に付与して加熱することでテトラフルオロエチレン系ポリマーを含むポリマー層を形成させるために用いられる、請求項1~11のいずれか1項に記載の水性分散液。 The aqueous dispersion according to any one of claims 1 to 11, which is used for forming a polymer layer containing a tetrafluoroethylene polymer by applying it to at least one surface of a resin film and heating it.
  13.  前記樹脂フィルムを構成する樹脂がポリイミド系樹脂である、請求項1~12のいずれか1項に記載の水性分散液。 The aqueous dispersion according to any one of claims 1 to 12, wherein the resin constituting the resin film is a polyimide resin.
  14.  前記テトラフルオロエチレン系ポリマーの粒子と、前記芳香族イミド系樹脂と、水を含有する組成物を混練して混練物を得て、前記混練物と水を混合して前記水性分散液を得る、請求項1~13のいずれか1項に記載の水性分散液の製造方法。 A composition containing the tetrafluoroethylene polymer particles, the aromatic imide resin, and water is kneaded to obtain a kneaded product, and the kneaded product and water are mixed to obtain the aqueous dispersion. The method for producing an aqueous dispersion according to any one of claims 1 to 13.
  15.  請求項1~13のいずれか1項に記載の水性分散液を樹脂フィルムの両方の表面に付与し、加熱してテトラフルオロエチレン系ポリマーを含む前記ポリマー層を形成させた、前記樹脂フィルムで構成される基材層の両面に前記ポリマー層を有する積層体。 Consists of the resin film, wherein the aqueous dispersion according to any one of claims 1 to 13 is applied to both surfaces of the resin film and heated to form the polymer layer containing a tetrafluoroethylene polymer. A laminate having the polymer layer on both sides of the base material layer to be formed.
PCT/JP2021/047823 2020-12-28 2021-12-23 Aqueous dispersion and method for producing same WO2022145333A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022573034A JPWO2022145333A1 (en) 2020-12-28 2021-12-23
CN202180087420.6A CN116635161A (en) 2020-12-28 2021-12-23 Aqueous dispersion and method for producing same
KR1020237014531A KR20230126703A (en) 2020-12-28 2021-12-23 Aqueous dispersion and its preparation method

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2020218936 2020-12-28
JP2020-218936 2020-12-28
JP2021-019970 2021-02-10
JP2021019970 2021-02-10
JP2021-093470 2021-06-03
JP2021093470 2021-06-03
JP2021113130 2021-07-07
JP2021-113130 2021-07-07

Publications (1)

Publication Number Publication Date
WO2022145333A1 true WO2022145333A1 (en) 2022-07-07

Family

ID=82259358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047823 WO2022145333A1 (en) 2020-12-28 2021-12-23 Aqueous dispersion and method for producing same

Country Status (4)

Country Link
JP (1) JPWO2022145333A1 (en)
KR (1) KR20230126703A (en)
TW (1) TW202235524A (en)
WO (1) WO2022145333A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024053553A1 (en) * 2022-09-09 2024-03-14 Agc株式会社 Aqueous dispersion and method for producing layered product using aqueous dispersion
WO2024075610A1 (en) * 2022-10-03 2024-04-11 Agc株式会社 Water-based composition, and method for producing laminate using water-based composition
WO2024075609A1 (en) * 2022-10-03 2024-04-11 Agc株式会社 Aqueous dispersion

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007500762A (en) * 2003-07-31 2007-01-18 ソルヴェイ Aqueous polymer composition and products produced therefrom
JP2007063482A (en) * 2005-09-01 2007-03-15 Daikin Ind Ltd Aqueous fluorine-containing polymer composition and coated article
JP2016020488A (en) * 2014-06-17 2016-02-04 東邦化成株式会社 Fluorine resin-containing aqueous polyimide precursor composition, laminate using the same, printed circuit board, and method for producing the laminate
JP2017071686A (en) * 2015-10-07 2017-04-13 株式会社森清化工 Perfluoro rubber molding
JP2019218484A (en) * 2018-06-20 2019-12-26 三井・ケマーズ フロロプロダクツ株式会社 Aqueous fluororesin coating composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3581945B2 (en) 1995-10-04 2004-10-27 鐘淵化学工業株式会社 Fluororesin laminate having improved surface properties and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007500762A (en) * 2003-07-31 2007-01-18 ソルヴェイ Aqueous polymer composition and products produced therefrom
JP2007063482A (en) * 2005-09-01 2007-03-15 Daikin Ind Ltd Aqueous fluorine-containing polymer composition and coated article
JP2016020488A (en) * 2014-06-17 2016-02-04 東邦化成株式会社 Fluorine resin-containing aqueous polyimide precursor composition, laminate using the same, printed circuit board, and method for producing the laminate
JP2017071686A (en) * 2015-10-07 2017-04-13 株式会社森清化工 Perfluoro rubber molding
JP2019218484A (en) * 2018-06-20 2019-12-26 三井・ケマーズ フロロプロダクツ株式会社 Aqueous fluororesin coating composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024053553A1 (en) * 2022-09-09 2024-03-14 Agc株式会社 Aqueous dispersion and method for producing layered product using aqueous dispersion
WO2024075610A1 (en) * 2022-10-03 2024-04-11 Agc株式会社 Water-based composition, and method for producing laminate using water-based composition
WO2024075609A1 (en) * 2022-10-03 2024-04-11 Agc株式会社 Aqueous dispersion

Also Published As

Publication number Publication date
TW202235524A (en) 2022-09-16
JPWO2022145333A1 (en) 2022-07-07
KR20230126703A (en) 2023-08-30

Similar Documents

Publication Publication Date Title
WO2022145333A1 (en) Aqueous dispersion and method for producing same
US20230227684A1 (en) Powder dispersion and method for producing composite
WO2022149551A1 (en) Method for producing tetrafluoroethylene-based polymer composition, composition, metal-clad laminate, and stretched sheet
WO2022153931A1 (en) Method for producing liquid composition and composition
WO2021241547A1 (en) Method for producing dispersion
WO2022138483A1 (en) Aqueous dispersion
JP2022163538A (en) Dispersion liquid and laminate
JP2022061412A (en) Production method of liquid composition and production method of laminate
WO2020241607A1 (en) Liquid composition
WO2020250919A1 (en) Method for producing container with content and liquid composition
JP7511117B2 (en) Composite particles, method for producing composite particles, liquid composition, method for producing laminate, and method for producing film
CN116635161A (en) Aqueous dispersion and method for producing same
JP2023019614A (en) Composition and production method of laminate having layer formed from composition
WO2022259992A1 (en) Sheet
JP2023053792A (en) Production method of laminate
JP2022015560A (en) Method of producing dispersion and dispersion
JP2022163537A (en) Aqueous dispersion liquid and method for producing laminate
WO2023100739A1 (en) Liquid composition, laminate, and production methods therefor
WO2023017811A1 (en) Aqueous dispersion and method for producing laminate
WO2024128167A1 (en) Method for storing dispersion liquid container, and dispersion liquid container
JP2023172879A (en) Method for manufacturing laminate
WO2024075610A1 (en) Water-based composition, and method for producing laminate using water-based composition
CN116670222A (en) Method for producing tetrafluoroethylene polymer composition, metal-clad laminate, and stretched sheet
WO2023163025A1 (en) Composition
WO2024075609A1 (en) Aqueous dispersion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21915193

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022573034

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180087420.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21915193

Country of ref document: EP

Kind code of ref document: A1