WO2023100739A1 - Liquid composition, laminate, and production methods therefor - Google Patents

Liquid composition, laminate, and production methods therefor Download PDF

Info

Publication number
WO2023100739A1
WO2023100739A1 PCT/JP2022/043343 JP2022043343W WO2023100739A1 WO 2023100739 A1 WO2023100739 A1 WO 2023100739A1 JP 2022043343 W JP2022043343 W JP 2022043343W WO 2023100739 A1 WO2023100739 A1 WO 2023100739A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
liquid composition
spherical silica
liquid
particles
Prior art date
Application number
PCT/JP2022/043343
Other languages
French (fr)
Japanese (ja)
Inventor
創太 結城
渉 笠井
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2023100739A1 publication Critical patent/WO2023100739A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/082Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene

Definitions

  • the present invention relates to a liquid composition containing a tetrafluoroethylene-based polymer and silica, a method for producing the same, a laminate having a polymer layer formed from the liquid composition, and a method for producing the same.
  • Patent Document 1 describes a liquid composition containing a tetrafluoroethylene-based polymer and specific silica particles. Laminates are disclosed that are formed by applying to materials.
  • Patent Document 2 describes that a non-aqueous dispersion containing polytetrafluoroethylene, fine ceramic particles, and a specific fluorine-based additive is added to various resin materials for use.
  • a tetrafluoroethylene-based polymer has a low surface tension and low affinity with other components such as inorganic particles. Therefore, in a molded article formed from a composition containing a tetrafluoroethylene-based polymer and inorganic particles, the dispersibility of the inorganic particles may be insufficient, and the physical properties of each component may not be fully exhibited.
  • silica particles having a specific surface area of 6.5 m 2 /g or more, preferably selected mesoporous silica particles, microporous silica particles, hollow silica particles, and the like.
  • the non-aqueous dispersion described in Patent Document 2 can improve the uniformity and dispersion stability of the composition by increasing the type of fine-particle ceramics as inorganic particles, increasing the amount of fine-particle ceramics added, or further blending other components. It is difficult to obtain a molded article such as a polymer layer having sufficient properties.
  • the present inventors have found that by using tetrafluoroethylene-based polymer particles and specific spherical silica, it is possible to obtain a liquid composition that is excellent in uniformity and dispersion stability, and in which thickening is suppressed. Further, from such a liquid composition, a thick polymer layer having excellent electrical properties such as adhesion to a substrate, thermal conductivity, heat resistance, and dielectric loss tangent can be formed, and a laminate having the polymer layer is a printed wiring board.
  • An object of the present invention is to provide a liquid composition that is excellent in uniformity and dispersion stability and has low viscosity, a method for producing the liquid composition, a method for producing a laminate having a polymer layer obtained from the composition, and the laminate It is the provision of the body.
  • the present invention has the following aspects.
  • Particles of a tetrafluoroethylene-based polymer having a median diameter d ( ⁇ m) of more than 0.6 ⁇ m and not more than 20 ⁇ m, and a product d ⁇ A of the median diameter d and the specific surface area A (m 2 /g) of 2.7 to A liquid composition comprising 5.0 ⁇ m ⁇ m 2 /g spherical silica and a liquid dispersion medium.
  • the liquid composition of [1] wherein the tetrafluoroethylene-based polymer is a heat-melting tetrafluoroethylene-based polymer.
  • the content of the spherical silica is 10 to 60% by mass, and the content of the tetrafluoroethylene-based polymer particles is 10 to 40% by mass, relative to the total mass of the liquid composition, and The liquid composition according to any one of [1] to [5], wherein the content of the liquid dispersion medium is 5% by mass or more.
  • [14] Applying the liquid composition according to any one of [1] to [11] to the surface of a substrate to form a liquid coating composed of the liquid composition, and then removing the liquid dispersion medium from the liquid coating by heating. to form a polymer layer containing the tetrafluoroethylene-based polymer and the spherical silica on the surface of the substrate.
  • [15] A substrate, and a polymer layer provided on the surface of the substrate and containing a tetrafluoroethylene-based polymer formed from the liquid composition according to any one of [1] to [11] and the spherical silica. , laminate.
  • a liquid composition that is excellent in uniformity and dispersion stability and has low viscosity
  • a method for producing the liquid composition and adhesiveness to a substrate, thermal conductivity, and heat resistance obtained from the composition
  • a method for producing a laminate having a polymer layer with excellent physical properties and electrical properties, and the laminate are provided.
  • the melting temperature of a polymer is the temperature corresponding to the maximum melting peak measured by differential scanning calorimetry (DSC).
  • a “glass transition point of a polymer” is a value measured by analyzing a polymer by a dynamic viscoelasticity measurement (DMA) method.
  • Average particle size of tetrafluoroethylene-based polymer particles is the volume-based cumulative 50% diameter of the particle size obtained by measuring the particle size of such particles by a laser diffraction/scattering method (hereinafter also referred to as "D50" ).
  • the particle size distribution of particles is measured by a laser diffraction/scattering method, and a cumulative curve is obtained with the total volume of the group of particles being 100%.
  • the "specific surface area of particles” is a value measured by gas adsorption (constant volume method) BET multipoint method.
  • “Viscosity” is a value measured for a dispersion using a Brookfield viscometer at room temperature (25° C.) and a rotation speed of 30 rpm. The measurement is repeated 3 times, and the average value of the 3 measurements is taken.
  • the “thixotropic ratio” is calculated by dividing the viscosity ⁇ 1 obtained by measuring the liquid composition at a rotation speed of 30 rpm by the viscosity ⁇ 2 obtained by measuring the rotation speed at 60 rpm. is the value ( ⁇ 1 / ⁇ 2 ).
  • a "unit based on a monomer” means an atomic group based on one molecule of the monomer formed by polymerization of the monomer. The units may be units directly formed by a polymerization reaction, or may be units in which some of said units have been converted to another structure by treatment of the polymer. Hereinafter, units based on monomer a are also simply referred to as "monomer a units".
  • the liquid composition of the present invention (hereinafter also referred to as “this composition”) comprises particles (hereinafter also referred to as "F particles”) of a tetrafluoroethylene polymer (hereinafter also referred to as "F polymer”).
  • F particles a tetrafluoroethylene polymer
  • F polymer a tetrafluoroethylene polymer
  • a spherical silica having a median diameter d ( ⁇ m) of more than 0.6 ⁇ m and 20 ⁇ m or less and a product d ⁇ A of the median diameter d and the specific surface area A (m 2 /g) of 2.7 to 5.0 ⁇ m ⁇ m 2 /g (hereinafter also referred to as "the present spherical silica”) and a liquid dispersion medium.
  • the composition has excellent uniformity and dispersion stability and low viscosity.
  • the present composition provides a thick polymer layer having excellent electrical properties such as adhesion to substrates, thermal conductivity, heat resistance, and low dielectric loss tangent.
  • a laminate having such a polymer layer is useful as a material for printed wiring boards, etc., having adhesiveness, thermal conductivity and electrical properties.
  • the F polymer has a low surface energy and its particles tend to agglomerate.
  • the F polymer has a low affinity with inorganic particles such as silica, and the inorganic particles tend to form aggregates in the polymer layer containing the F polymer and the inorganic particles. Such a tendency tends to become remarkable when the content of inorganic particles is high.
  • spherical silica (present spherical silica) having a median diameter d within the specific range and a product d ⁇ A of the median diameter d and the specific surface area A within the specific range is used.
  • the present composition is considered to be excellent in physical properties such as dispersion stability and low viscosity.
  • self-coagulation of the F particles and the present spherical silica is likely to be promoted, in other words, a pseudo coalescence of the F particles and the spherical silica. It is also presumed that the formation of adhering particles is likely to be facilitated. It is considered that this enhances the uniformity of the present composition, and thus the present composition is excellent in physical properties such as dispersion stability and low viscosity.
  • the present composition has excellent physical properties such as dispersion stability and low viscosity, in which both particles are highly interacted, spherical silica will be present even when it is processed into a molded product or in the state of the molded product after processing. It is difficult to powder off, and the spherical silica can be highly dispersed even in the molded product.
  • a molded product with excellent electrical properties such as adhesiveness to substrates, thermal conductivity, heat resistance, and low dielectric loss tangent, which originally possessed the physical properties of silica and F-polymer, was developed. It is believed that it could have been easily formed from the composition.
  • the F polymer in the present composition is a polymer containing units based on tetrafluoroethylene (TFE) (TFE units).
  • the F polymer may be hot melt or non-hot melt.
  • the hot-melt polymer is a melt-fluid polymer that has a melt flow rate of 1 to 1000 g/10 minutes at a temperature that is 20°C or more higher than the melting temperature of the polymer under a load of 49 N. means Two or more types of F polymers may be used.
  • the melting temperature of the hot-melt F polymer is preferably 200° C. or higher, more preferably 260° C. or higher.
  • the melting temperature of the F polymer is preferably 325° C. or lower, more preferably 320° C. or lower. In such a case, a molded article formed from the present composition tends to have excellent heat resistance.
  • the fluorine content in the F polymer is preferably 70% by mass or more, more preferably 72 to 76% by mass. According to this method, due to the mechanism of action described above, it is easy to obtain a polymer layer in which the present spherical silica is excellent in dispersibility even when using the F polymer, which has a high fluorine content and a low affinity for inorganic particles.
  • the glass transition point of F polymer is preferably 50° C. or higher, more preferably 75° C. or higher.
  • the glass transition point of the F polymer is preferably 150° C. or lower, more preferably 125° C. or lower.
  • F polymers include polytetrafluoroethylene (PTFE), polymers containing TFE units and ethylene units, polymers containing TFE units and propylene units, and units based on TFE units and perfluoro(alkyl vinyl ether) (PAVE) (PAVE units).
  • PFA polymers containing TFE units
  • FEP hexafluoropropene units
  • PTFE may be non-heat-fusible PTFE or heat-fusible PTFE.
  • PFA and FEP are preferred, and PFA is more preferred.
  • the F polymer preferably has oxygen-containing polar groups.
  • the affinity between the F particles and the present spherical silica tends to increase, and the present spherical silica tends to disperse well in the polymer layer.
  • the composition is heated, cross-linking of the F polymer is likely to be formed, and it is believed that a polymer layer having excellent mechanical properties is likely to be obtained.
  • the use of such an F-polymer tends to highly exhibit the above-described mechanism of action, particularly the effect of self-coagulation.
  • the oxygen-containing polar group may be contained in a unit based on a monomer in the F polymer, or may be contained in a terminal group of the main chain of the F polymer.
  • F polymer having an oxygen-containing polar group as a terminal group derived from a polymerization initiator, chain transfer agent, etc. F polymer having an oxygen-containing polar group obtained by plasma treatment or ionizing radiation treatment of F polymer polymers.
  • the number of oxygen-containing polar groups in the F polymer is preferably 100 to 10,000, more preferably 500 to 5,000 per 1 ⁇ 10 6 carbon atoms in the main chain. preferable.
  • the oxygen-containing polar group a hydroxyl group-containing group, a carbonyl group-containing group and a phosphono group-containing group are preferable, and from the viewpoint of dispersibility of the present spherical silica in the polymer layer, a hydroxyl group-containing group and a carbonyl group-containing group are more preferable, and a carbonyl group. Containing groups are more preferred.
  • the hydroxyl group-containing group is preferably a group containing an alcoholic hydroxyl group, more preferably -CF 2 CH 2 OH, -C(CF 3 ) 2 OH and 1,2-glycol group (-CH(OH)CH 2 OH). preferable.
  • a carbonyl group-containing group is a group containing a carbonyl group (>C(O)), and examples of the carbonyl group-containing group include a carboxyl group, an alkoxycarbonyl group, an amide group, an isocyanate group, and a carbamate group (--OC(O)NH 2 ), acid anhydride residues (-C(O)OC(O)-), imide residues (-C(O)NHC(O)-, etc.) and carbonate groups (-OC(O)O-) are preferred. , acid anhydride residues are more preferred.
  • the carbonyl group-containing group may be contained in a monomer unit in the F polymer, or may be contained in a terminal group of the main chain of the polymer.
  • the latter embodiment includes an F polymer having a carbonyl group-containing group as a terminal group derived from a polymerization initiator, a chain transfer agent, or the like.
  • the number of carbonyl group-containing groups in the F polymer is preferably 100 to 10000, more preferably 500 to 5000, more preferably 800 per 1 ⁇ 10 6 carbon atoms in the main chain. ⁇ 1500 is more preferred. In this case, the affinity between the F polymer and the present spherical silica is likely to be improved.
  • the number of carbonyl group-containing groups in the F polymer can be quantified by the composition of the polymer or the method described in WO2020/145133.
  • the F polymer a polymer containing TFE units and PAVE units and having an oxygen-containing polar group is preferable, and a polymer containing TFE units and PAVE units and having a carbonyl group-containing group or a hydroxyl group-containing group is more preferable. Further preferred are polymers comprising units and units based on monomers having carbonyl group-containing groups.
  • the F polymer contains 90 to 99 mol% of TFE units, 0.5 to 9.97 mol% of PAVE units, and 0.01 to 3 units based on the monomer having the carbonyl group-containing group, based on the total units. mol %, respectively, is particularly preferred.
  • the monomer having a carbonyl group-containing group itaconic anhydride, citraconic anhydride and 5-norbornene-2,3-dicarboxylic anhydride (hereinafter also referred to as "NAH") are preferable.
  • NASH 5-norbornene-2,3-dicarboxylic anhydride
  • Specific examples of such polymers include those described in WO2018/16644.
  • the particles of these F polymers not only have excellent dispersion stability, but also tend to be densely and homogeneously distributed in a molded article (polymer layer, etc.) obtained from the present composition. Furthermore, it is easy to form microspherulites in the molding, and the adhesiveness with other components including the present spherical silica is easy to increase. As a result, it is easier to obtain a molding excellent in various physical properties such as electrical properties.
  • the D50 of the F particles is preferably 25 ⁇ m or less, more preferably 10 ⁇ m or less, and more preferably 8 ⁇ m or less.
  • D50 of the F particles is preferably 0.1 ⁇ m or more, more preferably more than 0.3 ⁇ m, and even more preferably 1 ⁇ m or more.
  • the suppression of particle aggregation and the interaction between the F particles and the present spherical silica are highly balanced, and the dispersion stability of the present composition tends to be improved.
  • the present spherical silica tends to be highly dispersed in the polymer layer.
  • the bulk density of F particles is preferably 0.15 g/m 2 or more.
  • the bulk density of the F particles is preferably 0.50 g/m 2 or less.
  • the specific surface area of the F particles is preferably 25 m 2 /g or less, more preferably 8 m 2 /g or less, and even more preferably 5 m 2 /g or less.
  • the specific surface area of the F particles is preferably 1 m 2 /g or more. In this case, aggregation of particles is highly suppressed, and the interaction between the F particles and the present spherical silica is likely to be improved.
  • the F particles preferably contain heat-melting F polymer particles and non-heat-melting F polymer particles, and the F polymer having a melting temperature of 200 to 320° C. (preferably contains the TFE units and PAVE units described above, and more preferably contains particles of a polymer having an oxygen-containing polar group) and particles of non-thermally fusible PTFE. Further, it is more preferable that the content of the latter particles is higher than the content of the former particles. In this case, the F polymer is moderately fibrillated while maintaining physical properties, and the F particles are easily carried in the molded product formed from the present composition, and the strength of the molded product is likely to be further improved.
  • the ratio of the former particles to the total of the former particles and the latter particles is preferably 50% by mass or less, more preferably 25% by mass or less. Moreover, the ratio in this case is preferably 0.1% by mass or more, more preferably 1% by mass or more.
  • the composition of the present invention not only tends to be excellent in dispersion stability, uniformity and handleability, but also facilitates the formation of an adhesive molding having excellent physical properties based on non-heat-melting PTFE.
  • the D50 of the F polymer particles having a melting temperature of 200 to 320° C. is 0.1 to 1 ⁇ m
  • the D50 of the non-thermally fusible PTFE particles is 0.1 to 1 ⁇ m.
  • the non-thermally fusible polymer means a polymer that does not have a temperature at which the melt flow rate is 1 g or more and 1000 g or less/10 minutes under the condition of a load of 49 N.
  • the F particles may contain resins or inorganic substances other than the F polymer, but preferably contain the F polymer as the main component.
  • the content of the F polymer in the F particles is preferably 80% by mass or more, more preferably 100% by mass.
  • the spherical silica in the present composition is solid silica having a median diameter d ( ⁇ m) of more than 0.6 ⁇ m and not more than 20 ⁇ m and a product d ⁇ A of the median diameter d and the specific surface area A (m 2 /g) of It is in the range of 2.7 to 5.0 ⁇ m ⁇ m 2 /g (2.7 ⁇ A ⁇ d50 ( ⁇ m ⁇ m 2 /g) ⁇ 5.0).
  • a dielectric loss tangent can be significantly reduced when the median diameter d exceeds 0.6 ⁇ m.
  • the grain gauge value increases (measured by JIS K5400 grain gauge method).
  • the median diameter d is preferably more than 0.6 ⁇ m and 10 ⁇ m or less, more preferably 1 to 5 ⁇ m.
  • the median diameter d of the present spherical silica can be determined by a laser diffraction particle size distribution analyzer (for example, "MT3300EXII” manufactured by Microtrack Bell Co., Ltd.). Specifically, after the spherical silica powder is dispersed by irradiating ultrasonic waves three times for 60 seconds in the apparatus, measurement is performed twice for 60 seconds, and the average value is obtained.
  • the product d ⁇ A of the median diameter d and the specific surface area A of the present spherical silica is 2.7 to 5.0 ⁇ m ⁇ m 2 /g, preferably 2.7 to 4.5 ⁇ m ⁇ m 2 /g, More preferably, it is 2.7 to 4.0 ⁇ m ⁇ m 2 /g.
  • the larger the value of d ⁇ A the larger the specific surface area per particle size and the larger the dielectric loss tangent. 0 ⁇ m ⁇ m 2 /g or less.
  • the specific surface area A of the present spherical silica is preferably in the range of 0.2 to 2.0 m 2 /g.
  • the specific surface area is 0.2 m 2 /g or more, when the present spherical silica is contained in the present composition, there are sufficient contact points with the F polymer, so that compatibility with the F polymer is improved.
  • it is 0 m 2 /g or less, the dielectric loss tangent can be reduced, so that the molded article obtained from the present composition can exhibit excellent low dielectric loss tangent, and the dispersibility in the molded article is improved.
  • the fact that there are few particles with a small median diameter and few surface roughnesses is considered to contribute to suppression of thickening of the present composition.
  • the specific surface area A is more preferably 1.5 m 2 /g or less, still more preferably 1.0 m 2 /g or less, and particularly preferably 0.8 m 2 /g or less. In addition, it is substantially difficult to obtain one having a specific surface area A of less than 0.2 m 2 /g.
  • the specific surface area of the present spherical silica is determined by nitrogen adsorption using a specific surface area/pore distribution measuring device (e.g., "BELSORP-miniII” manufactured by Microtrac Bell, “Tristar II” manufactured by Micromeritic, etc.). Calculated by the BET method based on the law.
  • a specific surface area/pore distribution measuring device e.g., "BELSORP-miniII” manufactured by Microtrac Bell, “Tristar II” manufactured by Micromeritic, etc.
  • the spherical silica preferably has a sphericity of 0.75 to 1.0. Since the specific surface area increases as the sphericity decreases, the dielectric loss tangent tends to increase, so the sphericity is preferably 0.75 or more. The sphericity is more preferably 0.90 or more, even more preferably 0.93 or more, and the closer to 1.0, the more preferable. The sphericity is determined by measuring the maximum diameter (DL) and the short diameter (DS ) are measured, and the ratio (DS/DL) of the minimum diameter (DS) to the maximum diameter (DL) is calculated and can be represented by the average value.
  • DL maximum diameter
  • DS short diameter
  • the spherical silica preferably has a dielectric loss tangent of 0.0020 or less, more preferably 0.0010 or less, and even more preferably 0.0008 or less at a frequency of 1 GHz.
  • the dielectric loss tangent is 0.0020 or less, an excellent dielectric loss suppressing effect can be obtained, so that a substrate or sheet with improved high frequency characteristics can be obtained.
  • the dielectric loss tangent can be measured by a perturbation resonator method using a dedicated device (for example, "Vector Network Analyzer E5063A" manufactured by Keycom Co., Ltd. (measurement conditions: test frequency 1 GHz, test temperature about 24 ° C., humidity about 45%, 3 measurements).
  • the spherical silica is preferably spherical silica having a viscosity of 5000 mPa ⁇ s or less in a kneaded product containing spherical silica measured by the following measuring method. Measurement method: 6 parts by mass of boiled linseed oil specified in JIS K 5421:2000 and 8 parts by mass of spherical silica were mixed and kneaded at 2000 rpm for 3 minutes. -1 for 30 seconds and determine the viscosity at 30 seconds.
  • the IR peak intensity near 3746 cm ⁇ 1 derived from isolated silanol groups on the surface of the present spherical silica is preferably 0.1 or less, more preferably 0.08 or less, and even more preferably 0.06 or less.
  • An isolated silanol group is a silanol (Si—OH) group that is not bound to water or the like adsorbed to silica particles.
  • the amount of isolated silanol (Si—OH) on the silica particle surface is obtained by IR measurement. Specifically, after normalizing the IR spectrum at 800 cm ⁇ 1 and adjusting the baseline at 3800 cm ⁇ 1 , the relative value of the Si—OH peak intensity near 3746 cm ⁇ 1 is obtained. Dielectric loss can be reduced when the IR peak intensity near 3746 cm ⁇ 1 derived from isolated silanol groups on the surface of the present spherical silica is 0.1 or less.
  • the maximum IR peak intensity at 3300 to 3700 cm ⁇ 1 derived from the bonded silanol groups on the surface of the present spherical silica is preferably 0.2 or less, more preferably 0.17 or less, and 0.15 or less. More preferred.
  • the bonded silanol group is a silanol (Si—OH) group bonded to water adsorbed to silica particles, silanol on the silica surface, or the like. The amount of bound silanol (Si—OH) on the silica particle surface is obtained by IR measurement.
  • the relative value of the bonded Si—OH peak intensity is determined from the maximum peak among those at 3300 to 3700 cm ⁇ 1 . . If the maximum IR peak intensity at 3300 to 3700 cm ⁇ 1 derived from the bonded silanol groups on the surface of the spherical silica is 0.2 or less, the dielectric loss can be reduced.
  • the spherical silica is preferably nonporous particles from the viewpoint of electrical properties such as dielectric loss tangent and physical properties such as the viscosity of the composition.
  • the present spherical silica preferably has an oil absorption of 100 ml/100 g or less, more preferably 70 ml/100 g or less, and most preferably 50 ml/100 g or less.
  • the present spherical silica preferably contains titanium (Ti) in the range of 30 to 1500 ppm, more preferably 100 to 1000 ppm, even more preferably 100 to 500 ppm.
  • the present spherical silica may further contain other elements.
  • Other elements include, for example, Na, K, Mg, Ca, Al, and Fe.
  • the total content of alkali metals and alkaline earth metals is preferably 2000 ppm or less, more preferably 1000 ppm or less, and even more preferably 200 ppm or less.
  • the spherical silica may be treated with a silane coupling agent.
  • a silane coupling agent By treating the surface of this spherical silica with a silane coupling agent, the amount of residual silanol groups on the surface is reduced, the surface is made hydrophobic, water adsorption can be suppressed, and dielectric loss can be improved. , the dispersibility and the strength of a molded article such as a polymer layer obtained from the present composition are improved.
  • Silane coupling agents include aminosilane-based coupling agents, epoxysilane-based coupling agents, mercaptosilane-based coupling agents, organosilazane compounds, and the like. Two or more of these may be used in combination.
  • the amount of the silane coupling agent attached is such that all the silanol groups present on the surface of the present spherical silica can react. Specifically, it is preferably 0.01 parts by mass or more, more preferably 0.05 parts by mass or more, more preferably 2 parts by mass or less, and 1 part by mass or less with respect to 100 parts by mass of the present spherical silica. is more preferred.
  • the spherical silica is preferably spherical silica obtained by heat-treating a spherical silica precursor formed by a wet method.
  • the wet method refers to a method including a step of using a liquid silica source and gelling it to obtain a raw material for spherical silica powder.
  • the wet method includes, for example, a spraying method, an emulsion/gelation method, and the like.
  • the pore volume of the spherical silica precursor obtained by the wet method is desirably 0.3 to 2.2 ml/g.
  • the pore volume is determined by a nitrogen adsorption method using a specific surface area/pore distribution measuring device (e.g., "BELSORP-miniII” manufactured by Microtrac Bell, “Tristar II” manufactured by Micromeritic, etc.). It is obtained by the BJH method based on
  • the ignition loss of the silica precursor obtained by the wet method is desirably 5.0 to 15.0% by mass.
  • the ignition loss is obtained as the mass loss when 1 g of the silica precursor is dried by heating at 850° C. for 0.5 hours in accordance with JIS K0067.
  • the spherical silica powder is sintered to densify the shell, reduce the amount of silanol groups on the surface, and lower the dielectric loss tangent.
  • the heat treatment temperature is preferably 700 to 1600°C.
  • the method of the heat treatment includes, for example, heat treatment by a stationary method, heat treatment by a rotary kiln method, heat treatment by spray combustion, and the like.
  • the present spherical silica obtained by such a method may be surface-treated with a silane coupling agent to allow the silanol groups present on the surface of the present spherical silica to react with the silane coupling agent.
  • a silane coupling agent examples include the above-described compounds, and two or more of them may be used in combination.
  • the treatment amount of the silane coupling agent is preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the spherical silica.
  • Examples of the method of surface treatment with a silane coupling agent include a dry method in which the silane coupling agent is sprayed onto the spherical silica, and a wet method in which the spherical silica is dispersed in a solvent and then the silane coupling agent is added for reaction. is mentioned.
  • the liquid dispersion medium contained in the present composition is a liquid having a function of dissolving, dispersing, or gelling the F particles or the present spherical silica, and the present composition is usually slurry or gel.
  • the term "liquid” means that the viscosity is 10 mPa ⁇ s or less at 25°C.
  • the liquid dispersion medium is preferably degassed from the viewpoint of making the distribution of the present spherical silica uniform in the polymer layers constituting the layered product described below and suppressing voids.
  • the liquid dispersion medium may be water or a non-aqueous dispersion medium. Further, the liquid dispersion medium may be an aprotic dispersion medium or a protic dispersion medium.
  • Liquid dispersion media include compounds that are liquid at 25° C. under atmospheric pressure, such as water, alcohols, amides, ketones and esters. Alcohols include methanol, ethanol, isopropanol, glycols (ethylene glycol, propylene glycol, trimethylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol, tripropylene glycol, etc.).
  • Amides include N-methyl-2-pyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, N,N-dimethylpropanamide, 3-methoxy-N,N-dimethylpropanamide, 3-butoxy- N,N-dimethylpropanamide, N,N-diethylformamide, hexamethylphosphoric triamide, 1,3-dimethyl-2-imidazolidinone and the like.
  • Ketones include acetone, methyl ethyl ketone, methyl isopropyl ketone, methyl isobutyl ketone, methyl n-pentyl ketone, methyl isopentyl ketone, 2-heptanone, cyclopentanone, cyclohexanone, cycloheptanone.
  • Esters include methyl acetate, ethyl acetate, butyl acetate, methyl lactate, ethyl lactate, methyl pyruvate, ethyl pyruvate, methyl methoxypropionate, ethyl ethoxypropionate, ethyl 3-ethoxypropionate, ⁇ -butyrolactone, ⁇ - Valerolactone can be mentioned.
  • Two or more liquid dispersion media may be used in combination. When two or more types are used in combination, it is preferable that the liquid dispersion media of different types are compatible with each other.
  • the boiling point of the liquid dispersion medium is preferably in the range of 50 to 240°C.
  • the content of the liquid dispersion medium in the composition is preferably 5% by mass or more, more preferably 20% by mass or more, and even more preferably 40% by mass or more, relative to the total mass of the composition.
  • the content of the liquid dispersion medium is preferably 80% by mass or less, more preferably 70% by mass or less. Within this range, the present composition can be preferably handled as a liquid dispersion or a paste, and its dispersion stability and coatability are likely to be improved.
  • the content of the F particles in the composition is preferably 10% by mass or more, more preferably 20% by mass or more, relative to the total mass of the composition. From the viewpoint of dispersion stability of the composition, the content of the F particles is preferably 40% by mass or less, more preferably 30% by mass or less, relative to the total mass of the composition.
  • the content of the spherical silica in the present composition is preferably 10% by mass or more, more preferably 20% by mass or more, relative to the total mass of the composition. From the viewpoint of dispersion stability of the composition, the content of the spherical silica is preferably 60% by mass or less, more preferably 50% by mass or less, relative to the total mass of the composition.
  • the content of the spherical silica is 10 to 60% by mass, preferably in the range of 20 to 50% by mass, and the content of the F particles is 10 to 40% by mass, based on the total mass of the composition. % by weight, preferably in the range of 10 to 30% by weight. Furthermore, the content of the present spherical silica in the present composition is preferably higher than the content of the F particles. Within this range, it is easy to obtain the present composition having excellent dispersion stability while suppressing an increase in viscosity, and it is easy to form a polymer layer having an arbitrary thickness, particularly a thick polymer layer, from the present composition.
  • the total content of the F particles and the spherical silica in the composition is preferably 20% by mass or more, more preferably 50% by mass or more, relative to the total mass of the composition.
  • the total content of the F particles and the present spherical silica is preferably 95% by mass or less, more preferably 75% by mass or less, relative to the total mass of the composition.
  • the present composition may further contain an inorganic filler different from the present spherical silica, if necessary.
  • the inorganic filler is a filler different from the present spherical silica, for example, boron nitride filler, aluminum nitride filler, beryllium oxide filler, silicate filler (silica filler, wollastonite filler, talc filler), metal oxide ( cerium oxide, aluminum oxide, magnesium oxide, zinc oxide, titanium oxide, etc.) fillers and magnesium metasilicate (steatite) fillers. These fillers may be fired ceramic fillers. At least part of the surface of the inorganic filler may be surface-treated with a silane coupling agent. Such a surface-treated inorganic filler has excellent affinity with the F particles and tends to improve the dispersibility of the present composition.
  • the composition may further contain a surfactant.
  • the surfactant is nonionic.
  • the hydrophilic portion of the surfactant preferably has an oxyalkylene group or an alcoholic hydroxyl group.
  • the hydrophobic portion of the surfactant preferably has an acetylene group, polysiloxane group, perfluoroalkyl group or perfluoroalkenyl group.
  • the surfactant is preferably an acetylene-based surfactant, a silicone-based surfactant or a fluorine-based surfactant, and more preferably a silicone-based surfactant.
  • surfactants include “Futhergent (registered trademark)” series (manufactured by Neos Co., Ltd.), “Surflon (registered trademark)” series (manufactured by AGC Seimi Chemical Co., Ltd.), “Megafac (registered trademark) ” series (manufactured by DIC Corporation), “Unidyne (registered trademark)” series (manufactured by Daikin Industries, Ltd.), “BYK-347”, “BYK-349”, “BYK-378”, “BYK-3450”, “ BYK-3451”, “BYK-3455", “BYK-3456” (manufactured by BYK-Chemie Japan Co., Ltd.), “KF-6011", “KF-6043” (manufactured by Shin-Etsu Chemical Co., Ltd.), “Tergitol” series ( manufactured by Dow Chemical Company, "Tergitol TMN-
  • the composition may further contain an aromatic polymer.
  • Aromatic polymers may be thermoplastic or thermoset. Aromatic polymers may be included in the composition as precursors thereof. The aromatic polymer may be included in the composition as particles or dissolved in a liquid dispersion medium. If the composition contains water, the aromatic polymer is preferably water soluble.
  • aromatic polymers include aromatic polyimides, aromatic polyimide precursors (polyamic acids or salts thereof), aromatic polyamideimides, aromatic polyamideimide precursors, aromatic polyetherimides, aromatic polyetherimide precursors, aromatic group sulfide resins, aromatic sulfone resins, phenolic resins, aromatic epoxy resins, aromatic polyester resins (liquid crystalline aromatic polyesters, etc.), aromatic polyester amides (liquid crystalline aromatic polyester amides, etc.), aromatic maleimides, Polyphenylene ethers may be mentioned, with aromatic polyimide precursors, aromatic polyamideimides and aromatic polyamideimide precursors being preferred.
  • the aromatic polymer is likely to interact with the F polymer, and the molded article formed from the present composition tends to be excellent in adhesion to substrates such as metal foils and in UV absorption.
  • the composition contains water, water-soluble aromatic polyamideimide precursors and water-soluble aromatic polyimide precursors are preferred.
  • aromatic polyimide precursors examples include polyamic acid obtained by polymerizing tetracarboxylic dianhydride and diamine in a solvent, and polyamic acid salt obtained by reacting the polyamic acid with aqueous ammonia or organic amine.
  • aromatic polyimides or their precursors include "Neoplim (registered trademark)” series (manufactured by Mitsubishi Gas Chemical Company), “Spixeria (registered trademark)” series (manufactured by Somar), and “Q-PILON (registered trademark).” )” series (manufactured by PI Technical Research Institute), “WINGO” series (manufactured by Wingo Technology), “Tomide (registered trademark)” series (manufactured by T&K TOKA), “KPI-MX” series (manufactured by Kawamura Sangyo) , and “Upia (registered trademark)-AT” series (manufactured by Ube Industries, Ltd.).
  • the aromatic polyamideimide or its precursor includes a polyamideimide resin or a precursor thereof obtained by reacting a diisocyanate and/or a diamine with a tribasic acid anhydride (or tribasic acid chloride) as an acid component. be done.
  • Specific examples of the aromatic polyamideimide or its precursor include "HPC-1000" and “HPC-2100D” (manufactured by Showa Denko Materials).
  • the content thereof is preferably 0.01% by mass or more, more preferably 1% by mass or more, relative to the total mass of the composition.
  • the content of the aromatic polymer is preferably 5% by mass or less, more preferably 3% by mass or less.
  • the content of the aromatic polymer in the composition is preferably less than 10% by mass, more preferably 5% by mass or less, relative to the content of the F polymer in the composition.
  • the content of the aromatic polymer is preferably 0.1% by mass or more relative to the content of the F polymer.
  • the aromatic polymer functions as a dispersant or a binder for the present spherical silica and the F polymer, and tends to form a dense polymer layer. easy to disperse. If the content of the aromatic polymer is within such a low range, the polymer layer tends to have excellent electrical properties.
  • the present composition contains a thixotropic agent, a viscosity modifier, an antifoaming agent, a silane coupling agent, a dehydrating agent, a plasticizer, a weathering agent, an antioxidant, Additives such as heat stabilizers, lubricants, antistatic agents, brighteners, colorants, conductive agents, mold release agents, surface treatment agents and flame retardants may be further contained.
  • the viscosity of the present composition is preferably 10 mPa ⁇ s or more, more preferably 50 mPa ⁇ s or more.
  • the viscosity of the present composition is preferably 10000 mPa ⁇ s or less, more preferably 1000 mPa ⁇ s or less, and even more preferably 500 mPa ⁇ s or less.
  • the viscosity of the composition is preferably in the range of 50-1000 mPa ⁇ s. In this case, since the present composition has excellent coatability, it is easy to form a molded product such as a polymer layer having an arbitrary thickness from the present composition.
  • the thixotropic ratio of the present composition is preferably 1 or more.
  • the thixotropic ratio of the present composition is preferably 3 or less, more preferably 2 or less.
  • the present composition is not only excellent in coatability but also excellent in homogeneity, so that it is easy to form a molded product such as a denser polymer layer.
  • the present composition can be produced by mixing the F particles, the present spherical silica, and a liquid dispersion medium.
  • the mixing method is not particularly limited as long as the F particles, the present spherical silica, the liquid dispersion medium and, if necessary, other components are uniformly mixed.
  • the F particles and the present spherical silica are mixed in advance to form a powder mixture, and the resulting powder mixture and a liquid dispersion medium are mixed.
  • the above method (b) or (c) is preferable from the viewpoint that the resulting composition tends to be homogeneous.
  • the present composition further contains an inorganic filler, a surfactant, an aromatic polymer, other components that may be optionally added, etc.
  • the liquid dispersion medium, the F particles, and the present spherical silica are mixed. It is preferable to add it to the liquid dispersion medium in advance.
  • the composition may be mixed with the F particles as a varnish of the aromatic polymer. Solvents constituting the varnish include N-methyl-2-pyrrolidone, cyclohexanone and toluene.
  • Mixing devices used to obtain the present composition include stirring devices equipped with blades (Henschel mixer, pressure kneader, Banbury mixer, planetary mixer, etc.), grinding devices equipped with media (ball mills, attritors, baskets, etc.). mill, sand mill, sand grinder, dyno mill, dispermat, SC mill, spike mill or agitator mill, etc.), dispersing equipment with other mechanisms (microfluidizer, nanomizer, 8%zer, ultrasonic homogenizer, desolver, disper, high-speed impeller, rotation/revolution stirrer, colloid mill, thin-film swirling high-speed mixer, etc.).
  • the F particles, the present spherical silica, and part of the liquid dispersion medium are kneaded in advance to obtain a kneaded product, and the remaining liquid dispersion medium is added to the kneaded product. are added and mixed to obtain the present composition.
  • the liquid dispersion medium used for kneading and addition may be the same type of liquid dispersion medium or different types of liquid dispersion mediums.
  • the present composition further contains other components such as inorganic fillers, surfactants, and aromatic polymers
  • the other components may be mixed during kneading, and when the remaining liquid dispersion medium is added to the kneaded product, may be mixed into
  • Examples of the method for mixing each component when pre-kneading the F particles, the present spherical silica, and part of the liquid dispersion medium include the methods (a), (b), and (c) described above.
  • the above method (b) or (c) is preferable from the viewpoint that the resulting composition tends to be homogeneous.
  • Mixing in kneading is preferably carried out using a planetary mixer.
  • a planetary mixer is a stirring device having two stirring blades that rotate and revolve with each other. Mixing in the addition is preferably carried out using a thin-film rotating high-speed mixer.
  • a thin-film swirling high-speed mixer is a stirring device that spreads F particles and a liquid dispersion medium in a thin film form on the inner wall surface of a cylindrical stirring tank, swirls them, and mixes them while exerting centrifugal force.
  • the kneaded product obtained by kneading may be a paste (a paste having a viscosity of 1000 to 100000 mPa s, etc.), or a wet powder (a wet powder having a viscosity of 10000 to 100000 Pa s as measured by a capillograph). (dough), etc.).
  • the viscosity measured by a capillary graph is defined by using a capillary with a capillary length of 10 mm and a capillary radius of 1 mm, a furnace body diameter of 9.55 mm, a load cell capacity of 2 t, a temperature of 25 ° C., and a shear rate of 1 s ⁇ It is a value measured as 1 .
  • the composition is useful as a coating material for imparting insulation, heat resistance, corrosion resistance, chemical resistance, water resistance, impact resistance, and thermal conductivity.
  • the present composition can be used for printed wiring boards, thermal interface materials, substrates for power modules, coils used in power devices such as motors, automotive engines, heat exchangers, vials, syringes, Ampoules, medical wires, secondary batteries such as lithium ion batteries, primary batteries such as lithium batteries, radical batteries, solar cells, fuel cells, lithium ion capacitors, hybrid capacitors, capacitors, capacitors (aluminum electrolytic capacitors, tantalum electrolytic capacitors, etc.) ), electrochromic elements, electrochemical switching elements, electrode binders, electrode separators, and electrodes (positive and negative electrodes).
  • the composition is also useful as an adhesive for bonding parts together.
  • the composition can be used for adhesion of ceramic parts, adhesion of metal parts, adhesion of electronic parts such as IC chips, resistors and capacitors on substrates of semiconductor elements and module parts, adhesion of circuit boards and heat sinks, LED It can be used for bonding chips to substrates.
  • the present composition is useful as a material for forming a polymer layer in a printed wiring board, specifically a copper foil with a polymer layer having a polymer layer formed from the present composition on the surface of the copper foil.
  • Table 1 spherical silica itself is inherently excellent in electrical properties (especially dielectric loss tangent) and low linear expansion, but in the polymer layer of the polymer layer-coated copper foil, it is difficult to express such physical properties at a high level. was difficult.
  • a polymer layer-coated copper foil having a polymer layer having such spherical silica physical properties and F polymer physical properties can be easily obtained due to the mechanism of action described above.
  • the present composition is applied to at least one surface of a substrate and heated to form a polymer layer containing the F polymer and the present spherical silica (hereinafter also referred to as "F layer"). It is preferably used.
  • the present composition is applied to the surface of a substrate to form a liquid coating (wet film) composed of the present composition, and then the liquid dispersion medium is removed from the liquid coating by heating to form F on the surface of the substrate.
  • a polymer layer can be formed that includes the polymer and the spherical silica. Furthermore, it is preferable to bake the F polymer of the obtained polymer layer.
  • Substrates include metal substrates such as metal foils of copper, nickel, aluminum, titanium and alloys thereof, tetrafluoroethylene-based polymers, polyimides, polyarylates, polysulfones, polyallylsulfones, polyamides, polyetheramides, and polyphenylene sulfides. , polyallyl ether ketone, polyamideimide, liquid crystalline polyester, and liquid crystalline polyester amide. and glass substrates.
  • Examples of the shape of the substrate include planar, curved, and uneven shapes. Moreover, the shape of the substrate may be any of foil, plate, film, and fiber.
  • the ten-point average roughness of the substrate surface is preferably less than 0.1 ⁇ m, more preferably 0.05 ⁇ m or less.
  • the ten-point average roughness is preferably 0.001 ⁇ m or more. Even with such a non-roughened base material, according to this method, a polymer layer with excellent uniformity can be obtained, so a laminate with excellent peel strength can be obtained.
  • the ten-point average roughness of the surface of the base material is a value specified in Annex JA of JIS B 0601:2013.
  • the thickness of the substrate is preferably 2-100 ⁇ m. When the substrate is a metal foil, the thickness of the substrate is preferably 1-35 ⁇ m.
  • the substrate may also be a carrier-attached copper foil, which is an ultra-thin copper foil (thickness of 2 to 5 ⁇ m) laminated on a carrier copper foil via a release layer.
  • the thickness of the substrate is preferably 10-50 ⁇ m.
  • the outermost surface of the substrate may be further surface-treated in order to further improve the low linear expansion property and adhesiveness of the laminate.
  • surface treatment methods include annealing treatment, corona treatment, plasma treatment, ozone treatment, excimer treatment, and silane coupling treatment.
  • the annealing conditions are preferably a temperature of 120 to 180° C., a pressure of 0.005 to 0.015 MPa, and a time of 30 to 120 minutes.
  • Gases used for plasma treatment include oxygen gas, nitrogen gas, rare gas (such as argon), hydrogen gas, ammonia gas, and vinyl acetate. These gases may be used in combination of two or more.
  • the method of applying the present composition to the surface of the substrate may be any method as long as a stable liquid film (wet film) composed of the present composition is formed on the surface of the substrate. , immersion method, and coating method is preferred.
  • a liquid coating can be efficiently formed on the surface of the metal substrate with simple equipment.
  • Coating methods include spray method, roll coating method, spin coating method, gravure coating method, micro gravure coating method, gravure offset method, knife coating method, kiss coating method, bar coating method, die coating method, fountain-meyer bar method, and slot die coating. law.
  • the F layer is preferably formed by removing the liquid dispersion medium from the liquid film (wet film) by heating, and then heating to a higher temperature to bake the polymer.
  • the temperature for removing the liquid dispersion medium is preferably as low as possible, preferably 50 to 150° C. lower than the boiling point of the liquid dispersion medium.
  • N-methyl-2-pyrrolidone having a boiling point of about 200°C it is preferable to heat at 150°C or lower, preferably 100 to 120°C.
  • air may be blown to promote the removal of the liquid dispersion medium by air drying. In this heating, the liquid dispersion medium does not necessarily have to be completely removed, and may be removed to such an extent that the layer formed by packing the F particles can maintain a self-supporting film.
  • the polymer layer on the substrate is preferably heated to a temperature range where the F polymer is baked to form an F layer containing the baked product of the F polymer. It is preferred to calcine the polymer.
  • the F layer preferably contains a sintered F polymer.
  • a heating apparatus for each heating includes an oven and a ventilation drying oven.
  • the heat source in the apparatus may be a contact heat source (hot air, hot plate, etc.) or a non-contact heat source (infrared radiation, etc.). Each heating may be performed under normal pressure or under reduced pressure.
  • the atmosphere in each heating may be either an air atmosphere or an inert gas (helium gas, neon gas, argon gas, nitrogen gas, etc.) atmosphere.
  • the F layer is formed through the steps of applying the present composition to the substrate surface and heating.
  • the application and heating of the present composition may be repeated multiple times to form the F layer.
  • the composition may be applied to the surface of a substrate and heated to form an F layer, and the composition may be applied to the surface of the F layer and heated to form a second F layer.
  • the present composition may be further applied to the surface and heated to form the F layer.
  • the thickness of the F layer is preferably 50 ⁇ m or more, more preferably 100 ⁇ m or more.
  • the thickness of the F layer is preferably 1000 ⁇ m or less. Even when the F layer is thick, it is possible to obtain a polymer layer in which the present spherical silica has excellent dispersibility due to the mechanism of action described above.
  • the peel strength between the F layer and the substrate layer is preferably 10 N/cm or more, more preferably 15 N/cm or more.
  • the peel strength is preferably 100 N/cm or less.
  • the tensile strength of the F layer is preferably 5 MPa or more, more preferably 10 MPa or more.
  • the tensile strength is preferably 100 MPa or less.
  • the composition may be applied to only one surface of the substrate or may be applied to both surfaces of the substrate.
  • a laminate having a substrate layer and an F layer on one surface of the substrate layer is obtained, and in the latter case, the substrate layer and the F layer are provided on both surfaces of the substrate layer.
  • a laminate is obtained.
  • Preferred specific examples of the laminate include a metal foil and a metal-clad laminate having an F layer on at least one surface of the metal foil, a polyimide film, and a multilayer film having an F layer on both surfaces of the polyimide film. is mentioned. These laminates are excellent in various physical properties such as electrical properties, and thus are suitable as printed circuit board materials and the like, and can be used for manufacturing flexible printed circuit boards and rigid printed circuit boards.
  • Another substrate may be further laminated on the outermost surface of the laminate.
  • Other substrates include a metal substrate, a heat-resistant resin film, a prepreg that is a precursor of a fiber-reinforced resin plate, a laminate having a heat-resistant resin film layer, and a laminate having a prepreg layer.
  • the metal substrate include the metal substrates described above.
  • a heat-resistant resin film is a film containing one or more heat-resistant resins, and examples of heat-resistant resins include the resins described above.
  • the substrate may be removed from the laminate. In this case, a film consisting of a single F layer is obtained.
  • Laminates, laminates of laminates with other substrates, and films composed of F layers are useful as antenna parts, printed circuit boards, aircraft parts, automobile parts, sporting goods, food industry supplies, paints, cosmetics, and the like.
  • electric wire coating materials wires for aircraft, etc.
  • enameled wire coating materials used for motors of electric vehicles, etc. electrical insulating tapes, insulating tapes for oil drilling, materials for printed circuit boards, separation membranes (precision filtration membranes, ultrafiltration membranes, reverse osmosis membranes, ion exchange membranes, dialysis membranes, gas separation membranes, etc.), electrode binders (for lithium secondary batteries, fuel cells, etc.), copy rolls, furniture, automobile dashboards, home appliances
  • Product covers sliding parts (load bearings, slide shafts, valves, bearings, bushes, seals, thrust washers, wear rings, pistons, slide switches, gears, cams, belt conveyors, food conveyor belts, etc.), wear pads , wear strips, tube lamps, test sockets, wa
  • compositions, the method for producing the composition, the method for producing a laminate having a polymer layer formed from the composition, and the laminate have been described above. Not limited.
  • the present composition and the laminate may be added with any other configuration in the configurations of the above-described embodiments, or may be replaced with any configuration that exhibits similar functions.
  • the method for producing the present composition and the method for producing the laminate may additionally have any other step in the configuration of the above embodiment, or may be replaced with any step that produces the same effect. It's okay.
  • F particle 1 containing 97.9 mol%, 0.1 mol% and 2.0 mol% of TFE units, NAH units and PPVE units in this order, a fluorine content of 76% by mass, and a carbonyl group-containing group in the main chain Particles composed of F polymer 1 having 1000 carbon atoms per 1 ⁇ 10 6 carbon atoms (D50: 2.1 ⁇ m)
  • F particle 2 containing 97.5 mol% and 2.5 mol% of TFE units and PPVE units in this order, a fluorine content of 76% by mass, and 25 carbonyl group-containing groups per 1 ⁇ 10 6 main chain carbon atoms Particles made of F polymer 2 (D50: 2.5 ⁇ m)
  • Spherical silica Spherical silica 1: Spherical silica powder ("H-31" manufactured by AGC Si Tech Co
  • Spherical silica 3 Spherical silica having a median diameter d of 0.6 ⁇ m and a specific surface area of 6.2 m 2 /g [liquid dispersion medium]
  • NMP N-methylpyrrolidone [surfactant]
  • Surfactant 1 nonionic surfactant (Ftergent 710FL)
  • Example 1 25 parts by mass of F particles 1, 50 parts by mass of spherical silica 1, 5 parts by mass of surfactant 1, and 20 parts by mass of NMP are kneaded in a rotation or revolution mixer (Awatori Mixer, manufactured by Thinky) to form a paste. 55 parts by mass of NMP was further added to this kneaded product and stirred at 2000 rpm for 5 minutes to obtain a liquid composition 1. The resulting liquid composition 1 had a viscosity of less than 100 mPa ⁇ s.
  • Example 2 Liquid composition 2 was obtained in the same manner as in Example 1, except that 50 parts by mass of spherical silica 2 was used instead of 50 parts by mass of spherical silica 1. The obtained liquid composition 2 had a viscosity of more than 100 mPa ⁇ s.
  • Example 3 Liquid composition 3 was obtained in the same manner as in Example 1, except that 50 parts by mass of spherical silica 3 was used instead of 50 parts by mass of spherical silica 1. The resulting liquid composition 3 had a viscosity of more than 100 mPa ⁇ s.
  • Example 4 A liquid composition 4 was obtained in the same manner as in Example 1 except that 25 parts by mass of F particles 2 were used instead of 25 parts by mass of F particles 1 .
  • the resulting liquid composition 4 had a viscosity of less than 100 mPa ⁇ s.
  • Liquid composition 1 was applied to the surface of a copper foil (thickness: 18 ⁇ m) to form a wet film.
  • the metal foil on which the wet film was formed was passed through a drying furnace at 120° C. for 5 minutes and dried by heating to obtain a dry film.
  • the dry film was then heated at 380° C. for 3 minutes in a nitrogen oven.
  • a laminate 1, which is a polymer layer-attached copper foil was produced, which has a copper foil and a polymer layer (thickness: 50 ⁇ m) as a molding containing F polymer and spherical silica 1 on its surface.
  • Example 5-7 In the same manner as in Example 4, except for changing the liquid composition to be used, a laminate 2 (Example 5) was produced from the liquid composition 2, a laminate 3 (Example 6) was produced from the liquid composition 3, and a laminate 3 (Example 6) was produced from the liquid composition 4. Laminate 4 (Example 7) was obtained respectively.
  • Example 8 A copper foil with a polymer layer was produced from each liquid composition in the same manner as in Example 4, except that the thickness of the polymer layer as the molded product was 150 ⁇ m, and the copper foil was removed by etching. of films were produced. The film formed from liquid composition 1 had the highest surface smoothness of the resulting film.
  • a liquid composition having excellent uniformity and dispersion stability and low viscosity can be obtained.
  • a laminate obtained from the liquid composition is excellent in electrical properties such as a low dielectric loss tangent, and can be suitably used as a material for printed wiring boards, for example.
  • the entire contents of the specification, claims and abstract of Japanese Patent Application No. 2021-193907 filed on November 30, 2021 are cited here and incorporated as disclosure of the specification of the present invention. is.

Abstract

Provided are: a liquid composition which has excellent uniformity and dispersion stability and has a low viscosity; a method for producing said liquid composition; a method for producing a laminate which is obtained from said composition and has a polymer layer having excellent adhesiveness to a substrate, thermal conductivity, heat resistance, and electrical characteristics; and said laminate. The liquid composition contains: particles of a tetrafluoroethylene-based polymer; spherical silica which has a median diameter d (μm) of 0.6-20 μm (exclusive of 0.6) and a product d×A of the median diameter d and a specific surface area A (m2/g) of 2.7-5.0 μm∙m2/g; and a liquid dispersion medium.

Description

液状組成物、積層体及びそれらの製造方法Liquid composition, laminate and method for producing the same
 本発明は、テトラフルオロエチレン系ポリマーとシリカを有する液状組成物及びその製造方法、並びに該液状組成物から形成されるポリマー層を有する積層体及びその製造方法に関する。 The present invention relates to a liquid composition containing a tetrafluoroethylene-based polymer and silica, a method for producing the same, a laminate having a polymer layer formed from the liquid composition, and a method for producing the same.
 近年、携帯電話等の移動体通信機器における高速化、高周波化に対応するため、通信機器のプリント基板の材料には高熱伝導、低線膨張係数、低誘電率かつ低誘電正接である材料が求められ、低誘電率かつ低誘電正接であるテトラフルオロエチレン系ポリマーが注目されている。
 テトラフルオロエチレン系ポリマーを含み、より物性に優れた材料を得るべく種々の検討がなされており、例えば、特許文献1には、テトラフルオロエチレン系ポリマーと特定のシリカ粒子を含む液状組成物を基材に塗布して形成した積層体が開示されている。特許文献2には、ポリテトラフルオロエチレンと微粒子セラミックスと特定のフッ素系添加剤を含む非水系分散体を、各種樹脂材料に添加して用いる旨が記載されている。
In recent years, in order to respond to the high speed and high frequency of mobile communication devices such as mobile phones, materials with high thermal conductivity, low coefficient of linear expansion, low dielectric constant and low dielectric loss tangent are required for printed circuit boards of communication devices. A tetrafluoroethylene-based polymer, which has a low dielectric constant and a low dielectric loss tangent, has attracted attention.
Various studies have been made to obtain a material containing a tetrafluoroethylene-based polymer and having more excellent physical properties. For example, Patent Document 1 describes a liquid composition containing a tetrafluoroethylene-based polymer and specific silica particles. Laminates are disclosed that are formed by applying to materials. Patent Document 2 describes that a non-aqueous dispersion containing polytetrafluoroethylene, fine ceramic particles, and a specific fluorine-based additive is added to various resin materials for use.
特開2019-183005号公報Japanese Patent Application Laid-Open No. 2019-183005 特開2016-194017号公報JP 2016-194017 A
 テトラフルオロエチレン系ポリマーは表面張力が低く、無機粒子等の他の成分との親和性が低い。そのため、テトラフルオロエチレン系ポリマーと無機粒子とを含む組成物から形成される成形物においては、無機粒子の分散性が不十分で、各成分の物性が充分に発現しない場合がある。
 特許文献1に記載の液状組成物では、より少ないシリカ添加量で、得られる成形物の線膨張抑制効果を発現する観点から、シリカ粒子として比表面積が6.5m/g以上の、好適にはメソポーラスシリカ粒子、マイクロポーラスシリカ粒子、中空シリカ粒子等を選択している。すなわち、シリカの添加量を高めてシリカに基づく特性をより発揮させる観点からは、なお改良の余地がある。
 特許文献2に記載の非水系分散体は、無機粒子としての微粒子セラミックスの種類や、微粒子セラミックスの添加量を高めたり、他の成分をさらに配合すると、組成物としての均一性や分散安定性が低下し、充分な特性を有するポリマー層等の成形物が得られ難いという問題を有する。
A tetrafluoroethylene-based polymer has a low surface tension and low affinity with other components such as inorganic particles. Therefore, in a molded article formed from a composition containing a tetrafluoroethylene-based polymer and inorganic particles, the dispersibility of the inorganic particles may be insufficient, and the physical properties of each component may not be fully exhibited.
In the liquid composition described in Patent Document 1, from the viewpoint of exhibiting the effect of suppressing linear expansion of the obtained molding with a smaller amount of silica added, silica particles having a specific surface area of 6.5 m 2 /g or more, preferably selected mesoporous silica particles, microporous silica particles, hollow silica particles, and the like. In other words, there is still room for improvement from the viewpoint of enhancing the silica-based properties by increasing the amount of silica added.
The non-aqueous dispersion described in Patent Document 2 can improve the uniformity and dispersion stability of the composition by increasing the type of fine-particle ceramics as inorganic particles, increasing the amount of fine-particle ceramics added, or further blending other components. It is difficult to obtain a molded article such as a polymer layer having sufficient properties.
 本発明者らは、テトラフルオロエチレン系ポリマーの粒子と、特定の球状シリカを用いることで、均一性や分散安定性に優れるとともに増粘が抑制された液状組成物が得られることを知見した。また、かかる液状組成物からは、基材との接着性、熱伝導性、耐熱性、誘電正接等の電気特性に優れる、厚いポリマー層を形成でき、該ポリマー層を有する積層体はプリント配線基板等の材料として有用であることを知得し、本発明の完成に至った。
 本発明の目的は、均一性及び分散安定性に優れかつ低粘性である液状組成物、該液状組成物の製造方法、該組成物から得られるポリマー層を有する積層体の製造方法、並びに該積層体の提供である。
The present inventors have found that by using tetrafluoroethylene-based polymer particles and specific spherical silica, it is possible to obtain a liquid composition that is excellent in uniformity and dispersion stability, and in which thickening is suppressed. Further, from such a liquid composition, a thick polymer layer having excellent electrical properties such as adhesion to a substrate, thermal conductivity, heat resistance, and dielectric loss tangent can be formed, and a laminate having the polymer layer is a printed wiring board. The present invention has been completed by learning that it is useful as a material such as
An object of the present invention is to provide a liquid composition that is excellent in uniformity and dispersion stability and has low viscosity, a method for producing the liquid composition, a method for producing a laminate having a polymer layer obtained from the composition, and the laminate It is the provision of the body.
 本発明は、下記の態様を有する。
[1] テトラフルオロエチレン系ポリマーの粒子と、メジアン径d(μm)が0.6μm超20μm以下かつ前記メジアン径dと比表面積A(m/g)の積d×Aが2.7~5.0μm・m/gの球状シリカと、液状分散媒とを含む、液状組成物。
[2] 前記テトラフルオロエチレン系ポリマーが、熱溶融性のテトラフルオロエチレン系ポリマーである、[1]の液状組成物。
[3] 前記テトラフルオロエチレン系ポリマーが、ペルフルオロ(アルキルビニルエーテル)に基づく単位を含み、酸素含有極性基を有するテトラフルオロエチレン系ポリマーである、[1]又は[2]の液状組成物。
[4] 前記球状シリカの比表面積が、0.2~2.0m/gである、[1]~[3]のいずれかの液状組成物。
[5] 前記球状シリカの表面の、結合シラノール基に由来する3300~3700cm-1にある最大IRピーク強度が0.2以下である、[1]~[4]のいずれかの液状組成物。
The present invention has the following aspects.
[1] Particles of a tetrafluoroethylene-based polymer having a median diameter d (μm) of more than 0.6 μm and not more than 20 μm, and a product d×A of the median diameter d and the specific surface area A (m 2 /g) of 2.7 to A liquid composition comprising 5.0 μm·m 2 /g spherical silica and a liquid dispersion medium.
[2] The liquid composition of [1], wherein the tetrafluoroethylene-based polymer is a heat-melting tetrafluoroethylene-based polymer.
[3] The liquid composition of [1] or [2], wherein the tetrafluoroethylene-based polymer contains units based on perfluoro(alkyl vinyl ether) and has an oxygen-containing polar group.
[4] The liquid composition according to any one of [1] to [3], wherein the spherical silica has a specific surface area of 0.2 to 2.0 m 2 /g.
[5] The liquid composition according to any one of [1] to [4], wherein the maximum IR peak intensity at 3300 to 3700 cm −1 derived from bound silanol groups on the surface of the spherical silica is 0.2 or less.
[6] 前記液状組成物の全体質量に対して、前記球状シリカの含有量が10~60質量%であり、前記テトラフルオロエチレン系ポリマーの粒子の含有量が10~40質量%であり、かつ前記液状分散媒の含有量が5質量%以上である、[1]~[5]のいずれかの液状組成物。
[7] 前記球状シリカの含有量が前記テトラフルオロエチレン系ポリマーの粒子の含有量より多い、[1]~[6]のいずれかの液状組成物。
[8] さらに、界面活性剤を含む、[1]~[7]のいずれかの液状組成物。
[9] さらに、芳香族ポリマーを含む、[1]~[8]のいずれかの液状組成物。
[10] さらに、前記球状シリカとは異なる無機フィラーを含む、[1]~[9]のいずれかの液状組成物。
[11] 粘度が、50~1000mPa・sである、[1]~[10]のいずれかの液状組成物。
[6] The content of the spherical silica is 10 to 60% by mass, and the content of the tetrafluoroethylene-based polymer particles is 10 to 40% by mass, relative to the total mass of the liquid composition, and The liquid composition according to any one of [1] to [5], wherein the content of the liquid dispersion medium is 5% by mass or more.
[7] The liquid composition according to any one of [1] to [6], wherein the content of the spherical silica is greater than the content of the tetrafluoroethylene-based polymer particles.
[8] The liquid composition of any one of [1] to [7], further comprising a surfactant.
[9] The liquid composition of any one of [1] to [8], further comprising an aromatic polymer.
[10] The liquid composition according to any one of [1] to [9], further comprising an inorganic filler different from the spherical silica.
[11] The liquid composition of any one of [1] to [10], which has a viscosity of 50 to 1000 mPa·s.
[12] 前記テトラフルオロエチレン系ポリマーの粒子と、前記球状シリカと、前記液状分散媒を混合して液状組成物を得る、[1]~[11]のいずれかの液状組成物の製造方法。
[13] [1]~[11]のいずれかの液状組成物を製造する方法であって、
 前記テトラフルオロエチレン系ポリマーの粒子と、前記球状シリカと、前記液状分散媒の一部を含有する組成物を混練して混練物を得て、さらに前記混練物に残余の前記液状分散媒を添加し混合して前記液状組成物を得る、液状組成物の製造方法。
[14] [1]~[11]のいずれかの液状組成物を基材の表面に付与して前記液状組成物からなる液状被膜を形成し、次いで前記液状被膜から前記液状分散媒を加熱除去して、前記基材の表面上に前記テトラフルオロエチレン系ポリマー及び前記球状シリカを含むポリマー層を形成する、積層体の製造方法。
[15] 基材と、前記基材の表面に設けられ、[1]~[11]のいずれかの液状組成物から形成されたテトラフルオロエチレン系ポリマー及び前記球状シリカを含むポリマー層とを有する、積層体。
[12] The method for producing a liquid composition according to any one of [1] to [11], wherein the tetrafluoroethylene-based polymer particles, the spherical silica, and the liquid dispersion medium are mixed to obtain a liquid composition.
[13] A method for producing the liquid composition according to any one of [1] to [11],
A composition containing the particles of the tetrafluoroethylene-based polymer, the spherical silica, and a part of the liquid dispersion medium is kneaded to obtain a kneaded material, and the remaining liquid dispersion medium is added to the kneaded material. and mixing to obtain the liquid composition.
[14] Applying the liquid composition according to any one of [1] to [11] to the surface of a substrate to form a liquid coating composed of the liquid composition, and then removing the liquid dispersion medium from the liquid coating by heating. to form a polymer layer containing the tetrafluoroethylene-based polymer and the spherical silica on the surface of the substrate.
[15] A substrate, and a polymer layer provided on the surface of the substrate and containing a tetrafluoroethylene-based polymer formed from the liquid composition according to any one of [1] to [11] and the spherical silica. , laminate.
 本発明によれば、均一性及び分散安定性に優れかつ低粘性である液状組成物、該液状組成物の製造方法、該組成物から得られる、基材との接着性、熱伝導性、耐熱性及び電気特性に優れたポリマー層を有する積層体の製造方法、並びに該積層体が提供される。 According to the present invention, a liquid composition that is excellent in uniformity and dispersion stability and has low viscosity, a method for producing the liquid composition, and adhesiveness to a substrate, thermal conductivity, and heat resistance obtained from the composition A method for producing a laminate having a polymer layer with excellent physical properties and electrical properties, and the laminate are provided.
 以下の用語は、以下の意味を有する。
 「ポリマーの溶融温度」は、示差走査熱量測定(DSC)法で測定した融解ピークの最大値に対応する温度である。
 「ポリマーのガラス転移点」は、動的粘弾性測定(DMA)法でポリマーを分析して測定される値である。
 「テトラフルオロエチレン系ポリマーの粒子の平均粒径」は、かかる粒子の粒径をレーザー回折・散乱法によって測定し、得られた粒径の体積基準累積50%径(以下、「D50」とも記す。)である。すなわち、レーザー回折・散乱法によって粒子の粒度分布を測定し、粒子の集団の全体積を100%として累積カーブを求め、その累積カーブ上で累積体積が50%となる点の粒子径である。
 「粒子の比表面積」は、ガス吸着(定容法)BET多点法により測定される値である。
 「粘度」は、B型粘度計を用いて、室温下(25℃)で回転数が30rpmの条件下で分散液について測定される値である。測定を3回繰り返し、3回分の測定値の平均値とする。
 「チキソ比」とは、液状組成物を回転数が30rpmの条件で測定して求められる粘度ηを、回転数が60rpmの条件で測定して求められる粘度ηで除して算出される値(η/η)である。
 「モノマーに基づく単位」とは、モノマーの重合により形成された前記モノマー1分子に基づく原子団を意味する。単位は、重合反応によって直接形成された単位であってもよく、ポリマーを処理することによって前記単位の一部が別の構造に変換された単位であってもよい。以下、モノマーaに基づく単位を、単に「モノマーa単位」とも記す。
The following terms have the following meanings.
The "melting temperature of a polymer" is the temperature corresponding to the maximum melting peak measured by differential scanning calorimetry (DSC).
A "glass transition point of a polymer" is a value measured by analyzing a polymer by a dynamic viscoelasticity measurement (DMA) method.
"Average particle size of tetrafluoroethylene-based polymer particles" is the volume-based cumulative 50% diameter of the particle size obtained by measuring the particle size of such particles by a laser diffraction/scattering method (hereinafter also referred to as "D50" ). That is, the particle size distribution of particles is measured by a laser diffraction/scattering method, and a cumulative curve is obtained with the total volume of the group of particles being 100%.
The "specific surface area of particles" is a value measured by gas adsorption (constant volume method) BET multipoint method.
“Viscosity” is a value measured for a dispersion using a Brookfield viscometer at room temperature (25° C.) and a rotation speed of 30 rpm. The measurement is repeated 3 times, and the average value of the 3 measurements is taken.
The “thixotropic ratio” is calculated by dividing the viscosity η 1 obtained by measuring the liquid composition at a rotation speed of 30 rpm by the viscosity η 2 obtained by measuring the rotation speed at 60 rpm. is the value (η 12 ).
A "unit based on a monomer" means an atomic group based on one molecule of the monomer formed by polymerization of the monomer. The units may be units directly formed by a polymerization reaction, or may be units in which some of said units have been converted to another structure by treatment of the polymer. Hereinafter, units based on monomer a are also simply referred to as "monomer a units".
 本発明の液状組成物(以下、「本組成物」とも記す。)は、テトラフルオロエチレン系ポリマー(以下、「Fポリマー」とも記す。)の粒子(以下、「F粒子」とも記す。)と、メジアン径d(μm)が0.6μm超20μm以下かつ前記メジアン径dと比表面積A(m/g)の積d×Aが2.7~5.0μm・m/gの球状シリカ(以下、「本球状シリカ」とも記す。)と、液状分散媒とを含む。
 本組成物は、均一性及び分散安定性に優れかつ低粘性である。また、本組成物からは、基材との接着性、熱伝導性、耐熱性及び低誘電正接等の電気特性に優れた、厚いポリマー層が得られる。かかるポリマー層を有する積層体は、接着性、熱伝導性及び電気特性を具備したプリント配線基板等の材料として有用である。
 本組成物の特性が発現する理由は必ずしも明確ではないが、例えば以下のように推定している。
The liquid composition of the present invention (hereinafter also referred to as "this composition") comprises particles (hereinafter also referred to as "F particles") of a tetrafluoroethylene polymer (hereinafter also referred to as "F polymer"). , a spherical silica having a median diameter d (μm) of more than 0.6 μm and 20 μm or less and a product d×A of the median diameter d and the specific surface area A (m 2 /g) of 2.7 to 5.0 μm·m 2 /g (hereinafter also referred to as "the present spherical silica") and a liquid dispersion medium.
The composition has excellent uniformity and dispersion stability and low viscosity. In addition, the present composition provides a thick polymer layer having excellent electrical properties such as adhesion to substrates, thermal conductivity, heat resistance, and low dielectric loss tangent. A laminate having such a polymer layer is useful as a material for printed wiring boards, etc., having adhesiveness, thermal conductivity and electrical properties.
Although the reason why the properties of the present composition are exhibited is not necessarily clear, it is presumed, for example, as follows.
 Fポリマーは表面エネルギーが低く、その粒子同士は凝集しやすい。また、Fポリマーはシリカ等の無機粒子との親和性が低く、Fポリマーと無機粒子とを含むポリマー層中では、無機粒子が凝集物を形成しやすい。かかる傾向は、無機粒子の含有量が多い場合に顕著になりやすい。
 本組成物では、前記特定範囲のメジアン径dであり、かつ前記メジアン径dと比表面積Aの積d×Aが特定範囲である球状シリカ(本球状シリカ)を用いる。これにより、本組成物中でのシリカ同士の凝集が抑制されるだけでなく、シリカと液状分散媒との濡れ性も調整され、球状シリカとFポリマーの親和性が相対的に高まっていると考えられる。それが、F粒子と本球状シリカとの高度な相互作用を促すため、本組成物は分散安定性、低粘性等の物性に優れていると考えられる。
 また、両粒子が高度に相互作用した状態にある本組成物においては、F粒子と本球状シリカのセルフコアギュレーションが促されやすい、換言すれば、F粒子と球状シリカとの疑似的な合着粒子の形成が促されやすいとも推測される。それが、本組成物の均一性を高めるため、本組成物は分散安定性、低粘性等の物性に優れているとも考えられる。
The F polymer has a low surface energy and its particles tend to agglomerate. In addition, the F polymer has a low affinity with inorganic particles such as silica, and the inorganic particles tend to form aggregates in the polymer layer containing the F polymer and the inorganic particles. Such a tendency tends to become remarkable when the content of inorganic particles is high.
In the present composition, spherical silica (present spherical silica) having a median diameter d within the specific range and a product d×A of the median diameter d and the specific surface area A within the specific range is used. This not only suppresses the aggregation of silica particles in the present composition, but also adjusts the wettability between the silica and the liquid dispersion medium, and relatively increases the affinity between the spherical silica and the F polymer. Conceivable. Since this promotes a high degree of interaction between the F particles and the present spherical silica, the present composition is considered to be excellent in physical properties such as dispersion stability and low viscosity.
In addition, in the present composition in which both particles are highly interacted, self-coagulation of the F particles and the present spherical silica is likely to be promoted, in other words, a pseudo coalescence of the F particles and the spherical silica. It is also presumed that the formation of adhering particles is likely to be facilitated. It is considered that this enhances the uniformity of the present composition, and thus the present composition is excellent in physical properties such as dispersion stability and low viscosity.
 そして、両粒子が高度に相互作用した、分散安定性、低粘性等の物性に優れた本組成物であれば、成形物へ加工する際や、加工後の成形物の状態においても球状シリカが粉落ちし難く、成形物中でも本球状シリカが高度に分散しやすくなる。その結果、元来、シリカ及びFポリマーのそれぞれが有する物性を高度に備えた、基材との接着性、熱伝導性、耐熱性、及び低誘電正接等の電気特性に優れる成形物が、本組成物から容易に形成できたと考えられる。 In addition, if the present composition has excellent physical properties such as dispersion stability and low viscosity, in which both particles are highly interacted, spherical silica will be present even when it is processed into a molded product or in the state of the molded product after processing. It is difficult to powder off, and the spherical silica can be highly dispersed even in the molded product. As a result, a molded product with excellent electrical properties such as adhesiveness to substrates, thermal conductivity, heat resistance, and low dielectric loss tangent, which originally possessed the physical properties of silica and F-polymer, was developed. It is believed that it could have been easily formed from the composition.
 本組成物におけるFポリマーは、テトラフルオロエチレン(TFE)に基づく単位(TFE単位)を含むポリマーである。Fポリマーは熱溶融性であっても非熱溶融性であってもよい。本組成物においては、熱溶融性のFポリマーを用いるのが好ましい。
 なお、熱溶融性のポリマーとは、荷重49Nの条件下、ポリマーの溶融温度よりも20℃以上高い温度において、溶融流れ速度が1~1000g/10分となる温度が存在する溶融流動性のポリマーを意味する。
 Fポリマーは2種類以上を用いてもよい。
The F polymer in the present composition is a polymer containing units based on tetrafluoroethylene (TFE) (TFE units). The F polymer may be hot melt or non-hot melt. In the composition, it is preferred to use a hot-melt F polymer.
The hot-melt polymer is a melt-fluid polymer that has a melt flow rate of 1 to 1000 g/10 minutes at a temperature that is 20°C or more higher than the melting temperature of the polymer under a load of 49 N. means
Two or more types of F polymers may be used.
 熱溶融性のFポリマーの溶融温度は、200℃以上が好ましく、260℃以上がさらに好ましい。Fポリマーの溶融温度は、325℃以下が好ましく、320℃以下がより好ましい。かかる場合、本組成物から形成される成形物が耐熱性に優れやすい。
 Fポリマーにおけるフッ素含有量は、70質量%以上が好ましく、72~76質量%であるのがより好ましい。本法によると、上述した作用機構により、フッ素含有量が高く無機粒子との親和性が低いFポリマーを用いる場合にも、本球状シリカの分散性に優れたポリマー層を得やすい。
 Fポリマーのガラス転移点は50℃以上が好ましく、75℃以上がより好ましい。Fポリマーのガラス転移点は150℃以下が好ましく、125℃以下がより好ましい。
The melting temperature of the hot-melt F polymer is preferably 200° C. or higher, more preferably 260° C. or higher. The melting temperature of the F polymer is preferably 325° C. or lower, more preferably 320° C. or lower. In such a case, a molded article formed from the present composition tends to have excellent heat resistance.
The fluorine content in the F polymer is preferably 70% by mass or more, more preferably 72 to 76% by mass. According to this method, due to the mechanism of action described above, it is easy to obtain a polymer layer in which the present spherical silica is excellent in dispersibility even when using the F polymer, which has a high fluorine content and a low affinity for inorganic particles.
The glass transition point of F polymer is preferably 50° C. or higher, more preferably 75° C. or higher. The glass transition point of the F polymer is preferably 150° C. or lower, more preferably 125° C. or lower.
 Fポリマーとしては、ポリテトラフルオロエチレン(PTFE)、TFE単位及びエチレン単位を含むポリマー、TFE単位とプロピレン単位を含むポリマー、TFE単位及びペルフルオロ(アルキルビニルエーテル)(PAVE)に基づく単位(PAVE単位)を含むポリマー(PFA)、TFE単位及びヘキサフルオロプロペン単位を含むポリマー(FEP)、TFE単位とフルオロアルキルエチレンに基づく単位とを含むポリマー、TFE単位とクロロトリフルオロエチレン単位とを含むポリマーが挙げられる。PTFEは、非熱溶融性PTFEであってもよく、熱溶融性PTFEであってもよい。
 Fポリマーとしては、PFA及びFEPが好ましく、PFAがより好ましい。これらのポリマーは、さらに他のコモノマーに基づく単位を含んでいてもよい。
 PAVEとしては、CF=CFOCF、CF=CFOCFCF及びCF=CFOCFCFCF(以下、PPVEとも記す。)が好ましく、PPVEがより好ましい。
Examples of F polymers include polytetrafluoroethylene (PTFE), polymers containing TFE units and ethylene units, polymers containing TFE units and propylene units, and units based on TFE units and perfluoro(alkyl vinyl ether) (PAVE) (PAVE units). polymers containing TFE units (PFA), polymers containing TFE units and hexafluoropropene units (FEP), polymers containing TFE units and units based on fluoroalkylethylene, and polymers containing TFE units and chlorotrifluoroethylene units. PTFE may be non-heat-fusible PTFE or heat-fusible PTFE.
As the F polymer, PFA and FEP are preferred, and PFA is more preferred. These polymers may also contain units based on other comonomers.
PAVE is preferably CF 2 =CFOCF 3 , CF 2 =CFOCF 2 CF 3 and CF 2 =CFOCF 2 CF 2 CF 3 (hereinafter also referred to as PPVE), more preferably PPVE.
 Fポリマーは、酸素含有極性基を有するのが好ましい。Fポリマーが酸素含有極性基を有する場合、F粒子と本球状シリカの親和性が高まりやすく、本球状シリカがポリマー層中で良好に分散しやすい。また、本組成物を加熱した際にFポリマーの架橋が形成されやすく、力学的特性に優れたポリマー層を得やすいと考えられる。特に、かかるFポリマーを使用すれば、上述した作用機構、特に、セルフコアギュレーションによる効果を高度に発現させやすい。
 酸素含有極性基は、Fポリマー中のモノマーに基づく単位に含まれていてもよく、Fポリマーの主鎖の末端基に含まれていてもよい。後者の態様としては、重合開始剤、連鎖移動剤等に由来する末端基として酸素含有極性基を有するFポリマー、Fポリマーをプラズマ処理や電離線処理して得られる、酸素含有極性基を有するFポリマーが挙げられる。
The F polymer preferably has oxygen-containing polar groups. When the F polymer has an oxygen-containing polar group, the affinity between the F particles and the present spherical silica tends to increase, and the present spherical silica tends to disperse well in the polymer layer. In addition, when the composition is heated, cross-linking of the F polymer is likely to be formed, and it is believed that a polymer layer having excellent mechanical properties is likely to be obtained. In particular, the use of such an F-polymer tends to highly exhibit the above-described mechanism of action, particularly the effect of self-coagulation.
The oxygen-containing polar group may be contained in a unit based on a monomer in the F polymer, or may be contained in a terminal group of the main chain of the F polymer. As the latter mode, F polymer having an oxygen-containing polar group as a terminal group derived from a polymerization initiator, chain transfer agent, etc., F polymer having an oxygen-containing polar group obtained by plasma treatment or ionizing radiation treatment of F polymer polymers.
 Fポリマーが酸素含有極性基を有する場合、Fポリマーにおける酸素含有極性基の数は、主鎖の炭素数1×10個あたり、100~10000個であるのが好ましく、500~5000個がより好ましい。
 酸素含有極性基としては、水酸基含有基、カルボニル基含有基及びホスホノ基含有基が好ましく、ポリマー層における本球状シリカの分散性の観点から、水酸基含有基及びカルボニル基含有基がより好ましく、カルボニル基含有基がさらに好ましい。
When the F polymer has an oxygen-containing polar group, the number of oxygen-containing polar groups in the F polymer is preferably 100 to 10,000, more preferably 500 to 5,000 per 1×10 6 carbon atoms in the main chain. preferable.
As the oxygen-containing polar group, a hydroxyl group-containing group, a carbonyl group-containing group and a phosphono group-containing group are preferable, and from the viewpoint of dispersibility of the present spherical silica in the polymer layer, a hydroxyl group-containing group and a carbonyl group-containing group are more preferable, and a carbonyl group. Containing groups are more preferred.
 水酸基含有基としては、アルコール性水酸基を含有する基が好ましく、-CFCHOH、-C(CFOH及び1,2-グリコール基(-CH(OH)CHOH)がより好ましい。
 カルボニル基含有基はカルボニル基(>C(O))を含む基であり、カルボニル基含有基としては、カルボキシル基、アルコキシカルボニル基、アミド基、イソシアネート基、カルバメート基(-OC(O)NH)、酸無水物残基(-C(O)OC(O)-)、イミド残基(-C(O)NHC(O)-等)及びカーボネート基(-OC(O)O-)が好ましく、酸無水物残基がより好ましい。
 前記カルボニル基含有基は、Fポリマー中のモノマー単位に含まれていてもよく、ポリマーの主鎖の末端基に含まれていてもよい。後者の態様としては、重合開始剤、連鎖移動剤等に由来する末端基として前記カルボニル基含有基を有するFポリマーが挙げられる。
 Fポリマーがカルボニル基含有基を有する場合、Fポリマーにおけるカルボニル基含有基の数は、主鎖の炭素数1×10個あたり、100~10000個が好ましく、500~5000個がより好ましく、800~1500個がさらに好ましい。この場合、Fポリマーと本球状シリカとの親和性が向上しやすい。
 なお、Fポリマーにおけるカルボニル基含有基の数は、ポリマーの組成又は国際公開第2020/145133号に記載の方法によって定量できる。
The hydroxyl group-containing group is preferably a group containing an alcoholic hydroxyl group, more preferably -CF 2 CH 2 OH, -C(CF 3 ) 2 OH and 1,2-glycol group (-CH(OH)CH 2 OH). preferable.
A carbonyl group-containing group is a group containing a carbonyl group (>C(O)), and examples of the carbonyl group-containing group include a carboxyl group, an alkoxycarbonyl group, an amide group, an isocyanate group, and a carbamate group (--OC(O)NH 2 ), acid anhydride residues (-C(O)OC(O)-), imide residues (-C(O)NHC(O)-, etc.) and carbonate groups (-OC(O)O-) are preferred. , acid anhydride residues are more preferred.
The carbonyl group-containing group may be contained in a monomer unit in the F polymer, or may be contained in a terminal group of the main chain of the polymer. The latter embodiment includes an F polymer having a carbonyl group-containing group as a terminal group derived from a polymerization initiator, a chain transfer agent, or the like.
When the F polymer has a carbonyl group-containing group, the number of carbonyl group-containing groups in the F polymer is preferably 100 to 10000, more preferably 500 to 5000, more preferably 800 per 1 × 10 6 carbon atoms in the main chain. ~1500 is more preferred. In this case, the affinity between the F polymer and the present spherical silica is likely to be improved.
The number of carbonyl group-containing groups in the F polymer can be quantified by the composition of the polymer or the method described in WO2020/145133.
 Fポリマーとしては、TFE単位及びPAVE単位を含み、酸素含有極性基を有するポリマーが好ましく、TFE単位及びPAVE単位を含み、カルボニル基含有基又は水酸基含有基を有するポリマーがより好ましく、TFE単位、PAVE単位及びカルボニル基含有基を有するモノマーに基づく単位を含むポリマーであるのがさらに好ましい。Fポリマーは、全単位に対して、TFE単位を90~99モル%、PAVE単位を0.5~9.97モル%、及び前記カルボニル基含有基を有するモノマーに基づく単位を0.01~3モル%、それぞれ含むのが特に好ましい。
 カルボニル基含有基を有するモノマーとしては、無水イタコン酸、無水シトラコン酸及び5-ノルボルネン-2,3-ジカルボン酸無水物(以下、「NAH」とも記す。)が好ましい。
 かかるポリマーの具体例としては、国際公開第2018/16644号に記載されるポリマーが挙げられる。
 これらのFポリマーは、その粒子が分散安定性に優れるだけでなく、本組成物から得られる成形物(ポリマー層等)中において、より緻密かつ均質に分布しやすい。さらに、成形物中において微小球晶を形成しやすく、本球状シリカをはじめとする他の成分との密着性が高まりやすい。その結果、電気特性等の各種物性に優れた成形物を、より得られやすい。
As the F polymer, a polymer containing TFE units and PAVE units and having an oxygen-containing polar group is preferable, and a polymer containing TFE units and PAVE units and having a carbonyl group-containing group or a hydroxyl group-containing group is more preferable. Further preferred are polymers comprising units and units based on monomers having carbonyl group-containing groups. The F polymer contains 90 to 99 mol% of TFE units, 0.5 to 9.97 mol% of PAVE units, and 0.01 to 3 units based on the monomer having the carbonyl group-containing group, based on the total units. mol %, respectively, is particularly preferred.
As the monomer having a carbonyl group-containing group, itaconic anhydride, citraconic anhydride and 5-norbornene-2,3-dicarboxylic anhydride (hereinafter also referred to as "NAH") are preferable.
Specific examples of such polymers include those described in WO2018/16644.
The particles of these F polymers not only have excellent dispersion stability, but also tend to be densely and homogeneously distributed in a molded article (polymer layer, etc.) obtained from the present composition. Furthermore, it is easy to form microspherulites in the molding, and the adhesiveness with other components including the present spherical silica is easy to increase. As a result, it is easier to obtain a molding excellent in various physical properties such as electrical properties.
 本組成物において、F粒子のD50は25μm以下が好ましく、10μm以下がより好ましく、8μm以下がより好ましい。F粒子のD50は0.1μm以上が好ましく、0.3μm超がより好ましく、1μm以上がさらに好ましい。この場合、粒子の凝集抑制と、F粒子と本球状シリカの相互作用とが高度にバランスして、本組成物の分散安定性が向上しやすい。また、ポリマー層中で本球状シリカが高度に分散しやすい。 In the present composition, the D50 of the F particles is preferably 25 µm or less, more preferably 10 µm or less, and more preferably 8 µm or less. D50 of the F particles is preferably 0.1 μm or more, more preferably more than 0.3 μm, and even more preferably 1 μm or more. In this case, the suppression of particle aggregation and the interaction between the F particles and the present spherical silica are highly balanced, and the dispersion stability of the present composition tends to be improved. In addition, the present spherical silica tends to be highly dispersed in the polymer layer.
 F粒子の嵩密度は0.15g/m以上が好ましい。F粒子の嵩密度は0.50g/m以下が好ましい。
 また、F粒子の比表面積は25m/g以下が好ましく、8m/g以下がより好ましく、5m/g以下がさらに好ましい。F粒子の比表面積は1m/g以上が好ましい。この場合、粒子の凝集が高度に抑制され、F粒子と本球状シリカの相互作用が向上しやすい。
The bulk density of F particles is preferably 0.15 g/m 2 or more. The bulk density of the F particles is preferably 0.50 g/m 2 or less.
Further, the specific surface area of the F particles is preferably 25 m 2 /g or less, more preferably 8 m 2 /g or less, and even more preferably 5 m 2 /g or less. The specific surface area of the F particles is preferably 1 m 2 /g or more. In this case, aggregation of particles is highly suppressed, and the interaction between the F particles and the present spherical silica is likely to be improved.
 F粒子は、2種以上を用いてもよい。2種のF粒子を用いる場合、F粒子は、熱溶融性Fポリマーの粒子と非熱溶融性Fポリマーの粒子とを含むのが好ましく、溶融温度が200~320℃であるFポリマー(好適には上述したTFE単位及びPAVE単位を含み、酸素含有極性基を有するポリマー)の粒子と非熱溶融性PTFEの粒子とを含むのがより好ましい。そして、後者の粒子の含有量が前者の粒子の含有量よりも多い態様がさらに好ましい。
 この場合、Fポリマーが物性を保ちつつ適度にフィブリル化し、本組成物から形成される成形物中でF粒子が担持されやすくなり、成形物の強度がさらに向上しやすい。
 また、前者の粒子と後者の粒子との合計に占める前者の粒子の割合は、50質量%以下が好ましく、25質量%以下がより好ましい。また、この場合の割合は、0.1質量%以上が好ましく、1質量%以上がより好ましい。
 かかる本組成物は、分散安定性、均一性及び取り扱い性に優れやすいだけでなく、非熱溶融性PTFEに基づく物性に優れた、接着性の成形物を形成しやすい。
 また、この場合、溶融温度が200~320℃であるFポリマーの粒子のD50が0.1~1μmであり、非熱溶融性PTFEの粒子のD50が0.1~1μmである態様、溶融温度が200~320℃であるFポリマーの粒子のD50が1~4μmであり、非熱溶融性PTFEの粒子のD50が0.1~1μmである態様が好ましい。
 なお、非熱溶融性のポリマーとは、荷重49Nの条件下、溶融流れ速度が1g以上1000g以下/10分となる温度が存在しないポリマーを意味する。
Two or more kinds of F particles may be used. When two types of F particles are used, the F particles preferably contain heat-melting F polymer particles and non-heat-melting F polymer particles, and the F polymer having a melting temperature of 200 to 320° C. (preferably contains the TFE units and PAVE units described above, and more preferably contains particles of a polymer having an oxygen-containing polar group) and particles of non-thermally fusible PTFE. Further, it is more preferable that the content of the latter particles is higher than the content of the former particles.
In this case, the F polymer is moderately fibrillated while maintaining physical properties, and the F particles are easily carried in the molded product formed from the present composition, and the strength of the molded product is likely to be further improved.
The ratio of the former particles to the total of the former particles and the latter particles is preferably 50% by mass or less, more preferably 25% by mass or less. Moreover, the ratio in this case is preferably 0.1% by mass or more, more preferably 1% by mass or more.
The composition of the present invention not only tends to be excellent in dispersion stability, uniformity and handleability, but also facilitates the formation of an adhesive molding having excellent physical properties based on non-heat-melting PTFE.
In this case, the D50 of the F polymer particles having a melting temperature of 200 to 320° C. is 0.1 to 1 μm, and the D50 of the non-thermally fusible PTFE particles is 0.1 to 1 μm. is 200 to 320° C., the D50 of the particles of the F polymer is 1 to 4 μm, and the D50 of the non-heat-fusible PTFE particles is 0.1 to 1 μm.
The non-thermally fusible polymer means a polymer that does not have a temperature at which the melt flow rate is 1 g or more and 1000 g or less/10 minutes under the condition of a load of 49 N.
 F粒子は、Fポリマー以外の樹脂又は無機物を含んでいてもよいが、Fポリマーを主成分とするのが好ましい。F粒子におけるFポリマーの含有量は80質量%以上が好ましく、100質量%がより好ましい。 The F particles may contain resins or inorganic substances other than the F polymer, but preferably contain the F polymer as the main component. The content of the F polymer in the F particles is preferably 80% by mass or more, more preferably 100% by mass.
 本組成物における本球状シリカは、中実シリカであって、メジアン径d(μm)が0.6μm超20μm以下かつ前記メジアン径dと比表面積A(m/g)の積d×Aが2.7~5.0μm・m/g(2.7≦A×d50(μm・m/g)≦5.0)の範囲にある。
 メジアン径dが0.6μm超であると誘電正接を有意に低減できる。一方、メジアン径dが大きくなると粒ゲージの値が大きくなる(JIS K5400 粒ゲージ法で測定)。本組成物を例えばポリマー層に成形する際の、かかるポリマー層の最小厚みを制御する観点から、メジアン径dは、好ましくは0.6μm超10μm以下、さらに好ましくは1~5μmである。
 なお、本球状シリカのメジアン径dは、レーザー回析式の粒度分布測定装置(例えば、マイクロトラック・ベル株式会社製「MT3300EXII」)により求められる。具体的には、装置内で超音波を60秒間3回照射することで球状シリカ粉末を分散させてから、測定を60秒間、2回行い、その平均値を求める。
The spherical silica in the present composition is solid silica having a median diameter d (μm) of more than 0.6 μm and not more than 20 μm and a product d×A of the median diameter d and the specific surface area A (m 2 /g) of It is in the range of 2.7 to 5.0 μm·m 2 /g (2.7≦A×d50 (μm·m 2 /g)≦5.0).
A dielectric loss tangent can be significantly reduced when the median diameter d exceeds 0.6 μm. On the other hand, as the median diameter d increases, the grain gauge value increases (measured by JIS K5400 grain gauge method). From the viewpoint of controlling the minimum thickness of the polymer layer when the present composition is molded into, for example, a polymer layer, the median diameter d is preferably more than 0.6 μm and 10 μm or less, more preferably 1 to 5 μm.
The median diameter d of the present spherical silica can be determined by a laser diffraction particle size distribution analyzer (for example, "MT3300EXII" manufactured by Microtrack Bell Co., Ltd.). Specifically, after the spherical silica powder is dispersed by irradiating ultrasonic waves three times for 60 seconds in the apparatus, measurement is performed twice for 60 seconds, and the average value is obtained.
 本球状シリカのメジアン径dと比表面積Aとの積d×Aは2.7~5.0μm・m/gであり、好ましくは2.7~4.5μm・m/gであり、より好ましくは2.7~4.0μm・m/gである。d×Aは理論値が2.7(比表面積=6/(シリカの真密度2.2×メジアン径d)より導出)であり、これ以下の値は現実的に達成不可である。d×Aの値が大きいほど、粒径当たりの比表面積が大きくなり、誘電正接が大きくなってしまうので、誘電正接を周波数1GHzにおいて0.0020以下程度に低減させるために、d×Aは5.0μm・m/g以下とする。 The product d×A of the median diameter d and the specific surface area A of the present spherical silica is 2.7 to 5.0 μm·m 2 /g, preferably 2.7 to 4.5 μm·m 2 /g, More preferably, it is 2.7 to 4.0 μm·m 2 /g. The theoretical value of dxA is 2.7 (derived from specific surface area = 6/(true density of silica 2.2 x median diameter d)), and values below this are practically unattainable. The larger the value of d×A, the larger the specific surface area per particle size and the larger the dielectric loss tangent. 0 μm·m 2 /g or less.
 本球状シリカの比表面積Aは、0.2~2.0m/gの範囲であるのが好ましい。比表面積が0.2m/g以上であると、本球状シリカを本組成物に含有させた際に、Fポリマーとの接点が十分にあるので、Fポリマーとのなじみがよくなり、2.0m/g以下であると誘電正接を小さくできるので、本組成物から得られる成形物において優れた低誘電正接を発揮でき、成形物中での分散性が向上する。また、本球状シリカにおいては、メジアン径が小さい粒子や表面の荒れの存在が少ないことが、本組成物の増粘の抑制に寄与していると考えられる。
 比表面積Aは、1.5m/g以下であるのがより好ましく、1.0m/g以下がさらに好ましく、0.8m/g以下が特に好ましい。なお、比表面積Aが0.2m/g未満のものは、実質的に得ることが困難である。
 なお、本球状シリカの比表面積は、比表面積・細孔分布測定装置(例えば、マイクロトラック・ベル社製「BELSORP-miniII」、マイクロメリティック社製「トライスターII」等)を用いた窒素吸着法に基づくBET法により求める。
The specific surface area A of the present spherical silica is preferably in the range of 0.2 to 2.0 m 2 /g. When the specific surface area is 0.2 m 2 /g or more, when the present spherical silica is contained in the present composition, there are sufficient contact points with the F polymer, so that compatibility with the F polymer is improved. When it is 0 m 2 /g or less, the dielectric loss tangent can be reduced, so that the molded article obtained from the present composition can exhibit excellent low dielectric loss tangent, and the dispersibility in the molded article is improved. In addition, in the spherical silica of the present invention, the fact that there are few particles with a small median diameter and few surface roughnesses is considered to contribute to suppression of thickening of the present composition.
The specific surface area A is more preferably 1.5 m 2 /g or less, still more preferably 1.0 m 2 /g or less, and particularly preferably 0.8 m 2 /g or less. In addition, it is substantially difficult to obtain one having a specific surface area A of less than 0.2 m 2 /g.
In addition, the specific surface area of the present spherical silica is determined by nitrogen adsorption using a specific surface area/pore distribution measuring device (e.g., "BELSORP-miniII" manufactured by Microtrac Bell, "Tristar II" manufactured by Micromeritic, etc.). Calculated by the BET method based on the law.
 本球状シリカの真球度は、0.75~1.0であるのが好ましい。真球度が低くなると比表面積が大きくなるので、誘電正接が上昇しやすくなるため、真球度は0.75以上であるのが好ましい。真球度は、0.90以上であるのがより好ましく、0.93以上がさらに好ましく、1.0に近いほど好ましい。
 なお、真球度は、走査型電子顕微鏡(SEM)により写真撮影して得られる写真投影図における任意の100個の粒子について、それぞれの最大径(DL)と、これと直交する短径(DS)とを測定し、最大径(DL)に対する最小径(DS)の比(DS/DL)を算出した平均値で表すことができる。
The spherical silica preferably has a sphericity of 0.75 to 1.0. Since the specific surface area increases as the sphericity decreases, the dielectric loss tangent tends to increase, so the sphericity is preferably 0.75 or more. The sphericity is more preferably 0.90 or more, even more preferably 0.93 or more, and the closer to 1.0, the more preferable.
The sphericity is determined by measuring the maximum diameter (DL) and the short diameter (DS ) are measured, and the ratio (DS/DL) of the minimum diameter (DS) to the maximum diameter (DL) is calculated and can be represented by the average value.
 本球状シリカは、誘電正接が、周波数1GHzにおいて0.0020以下であるのが好ましく、0.0010以下がより好ましく、0.0008以下がさらに好ましい。前記誘電正接が0.0020以下であると、優れた誘電損失抑制効果が得られるので、高周波特性が向上した基板やシートが得られる。前記誘電正接が小さいほど、回路の伝送損失が抑えられるため、下限値は特に限定されない。
 なお、誘電正接は、専用の装置(例えば、キーコム株式会社製「ベクトルネットワークアナライザ E5063A」)を用い、摂動方式共振器法にて測定できる(測定条件:試験周波数1GHz、試験温度約24℃、湿度約45%、測定回数3回)。
The spherical silica preferably has a dielectric loss tangent of 0.0020 or less, more preferably 0.0010 or less, and even more preferably 0.0008 or less at a frequency of 1 GHz. When the dielectric loss tangent is 0.0020 or less, an excellent dielectric loss suppressing effect can be obtained, so that a substrate or sheet with improved high frequency characteristics can be obtained. The smaller the dielectric loss tangent, the more suppressed the transmission loss of the circuit, so the lower limit is not particularly limited.
The dielectric loss tangent can be measured by a perturbation resonator method using a dedicated device (for example, "Vector Network Analyzer E5063A" manufactured by Keycom Co., Ltd. (measurement conditions: test frequency 1 GHz, test temperature about 24 ° C., humidity about 45%, 3 measurements).
 本球状シリカは、下記測定方法により測定した球状シリカを含む混練物の粘度が5000mPa・s以下となる球状シリカであるのが好ましい。
 測定方法:JIS K 5421:2000で規定された煮アマニ油6質量部と球状シリカ8質量部を混合し、2000rpmで3分間混練して得た混練物を、回転式レオメータを用いてせん断速度1s-1で30秒測定し、30秒時点での粘度を求める。
The spherical silica is preferably spherical silica having a viscosity of 5000 mPa·s or less in a kneaded product containing spherical silica measured by the following measuring method.
Measurement method: 6 parts by mass of boiled linseed oil specified in JIS K 5421:2000 and 8 parts by mass of spherical silica were mixed and kneaded at 2000 rpm for 3 minutes. -1 for 30 seconds and determine the viscosity at 30 seconds.
 本球状シリカの表面の孤立シラノール基に由来する3746cm-1付近のIRピーク強度は、0.1以下であるのが好ましく、0.08以下がより好ましく、0.06以下がさらに好ましい。孤立シラノール基とは、シリカ粒子に吸着された水等と結合していないシラノール(Si-OH)基である。シリカ粒子表面の孤立シラノール(Si-OH)量はIR測定によって得られる。具体的には、IRスペクトルを800cm-1で規格化し、3800cm-1でベースラインを合わせたあと、3746cm-1付近のSi-OHピーク強度の相対値を求める。本球状シリカ表面の孤立シラノール基に由来する3746cm-1付近のIRピーク強度が0.1以下であると、誘電損失を低減できる。 The IR peak intensity near 3746 cm −1 derived from isolated silanol groups on the surface of the present spherical silica is preferably 0.1 or less, more preferably 0.08 or less, and even more preferably 0.06 or less. An isolated silanol group is a silanol (Si—OH) group that is not bound to water or the like adsorbed to silica particles. The amount of isolated silanol (Si—OH) on the silica particle surface is obtained by IR measurement. Specifically, after normalizing the IR spectrum at 800 cm −1 and adjusting the baseline at 3800 cm −1 , the relative value of the Si—OH peak intensity near 3746 cm −1 is obtained. Dielectric loss can be reduced when the IR peak intensity near 3746 cm −1 derived from isolated silanol groups on the surface of the present spherical silica is 0.1 or less.
 また、本球状シリカの表面の結合シラノール基に由来する3300~3700cm-1にある最大IRピーク強度は、0.2以下であるのが好ましく、0.17以下がより好ましく、0.15以下がさらに好ましい。結合シラノール基とは、シリカ粒子に吸着された水や、シリカ表面のシラノール等と結合しているシラノール(Si-OH)基である。シリカ粒子表面の結合シラノール(Si-OH)量はIR測定によって得られる。具体的には、IRスペクトルを800cm-1で規格化し、3800cm-1でベースラインを合わせたあと、3300~3700cm-1にあるうちの最大ピークから、結合Si-OHピーク強度の相対値を求める。本球状シリカ表面の結合シラノール基に由来する、3300~3700cm-1にある最大IRピーク強度が0.2以下であると、誘電損失を低減できる。
 なお、赤外分光(IR)スペクトルの測定は、例えばIR Prestige-21(島津製作所社製)を用い、ダイヤモンド中へ球状シリカ粉末を分散させて拡散反射法で行える(測定条件例:測定範囲400~4000cm-1、分解能4cm-1、積算回数128回)。
 ダイヤモンド粉末への希釈は、[質量希釈率]=([サンプル質量])/([ダイヤモンド質量]+[サンプル質量])と定義し、[質量希釈率]=85-2.5×[BET比表面積]とする。
In addition, the maximum IR peak intensity at 3300 to 3700 cm −1 derived from the bonded silanol groups on the surface of the present spherical silica is preferably 0.2 or less, more preferably 0.17 or less, and 0.15 or less. More preferred. The bonded silanol group is a silanol (Si—OH) group bonded to water adsorbed to silica particles, silanol on the silica surface, or the like. The amount of bound silanol (Si—OH) on the silica particle surface is obtained by IR measurement. Specifically, after normalizing the IR spectrum at 800 cm −1 and matching the baseline at 3800 cm −1 , the relative value of the bonded Si—OH peak intensity is determined from the maximum peak among those at 3300 to 3700 cm −1 . . If the maximum IR peak intensity at 3300 to 3700 cm −1 derived from the bonded silanol groups on the surface of the spherical silica is 0.2 or less, the dielectric loss can be reduced.
Infrared spectroscopy (IR) spectrum can be measured by, for example, IR Prestige-21 (manufactured by Shimadzu Corporation) by a diffuse reflection method by dispersing spherical silica powder in diamond (measurement condition example: measurement range 400 ~4000 cm -1 , resolution 4 cm -1 , 128 times of integration).
Dilution to diamond powder is defined as [mass dilution rate] = ([sample mass]) / ([diamond mass] + [sample mass]), [mass dilution rate] = 85-2.5 x [BET ratio surface area].
 本球状シリカは、誘電正接等の電気物性、本組成物の粘度等の物性の観点から、無孔質粒子であることが好ましい。具体的には、本球状シリカは、吸油量が100ml/100g以下であることが好ましく、70ml/100g以下がより好ましく、50ml/100g以下が最も好ましい。 The spherical silica is preferably nonporous particles from the viewpoint of electrical properties such as dielectric loss tangent and physical properties such as the viscosity of the composition. Specifically, the present spherical silica preferably has an oil absorption of 100 ml/100 g or less, more preferably 70 ml/100 g or less, and most preferably 50 ml/100 g or less.
 本球状シリカは、チタン(Ti)を30~1500ppmの範囲で含むのが好ましく、100~1000ppmの範囲で含むのがより好ましく、100~500ppmの範囲で含むのがさらに好ましい。 The present spherical silica preferably contains titanium (Ti) in the range of 30 to 1500 ppm, more preferably 100 to 1000 ppm, even more preferably 100 to 500 ppm.
 本球状シリカは、さらに他の元素を含んでいてもよい。他の元素としては、例えばNa、K、Mg、Ca、Al、Feが挙げられる。他の元素のうちアルカリ金属とアルカリ土類金属の含有量は、総和が2000ppm以下であるのが好ましく、1000ppm以下がより好ましく、200ppm以下がさらに好ましい。 The present spherical silica may further contain other elements. Other elements include, for example, Na, K, Mg, Ca, Al, and Fe. Among other elements, the total content of alkali metals and alkaline earth metals is preferably 2000 ppm or less, more preferably 1000 ppm or less, and even more preferably 200 ppm or less.
 本球状シリカはシランカップリング剤によって処理されていてもよい。本球状シリカの表面がシランカップリング剤によって処理されていることで、表面のシラノール基の残存量が少なくなり、表面が疎水化され、水分吸着を抑えて誘電損失を向上できるとともに、Fポリマーとの親和性が向上し、分散性や、本組成物から得られるポリマー層等の成形物の強度が向上する。
 シランカップリング剤としては、アミノシラン系カップリング剤、エポキシシラン系カップリング剤、メルカプトシラン系カップリング剤、オルガノシラザン化合物等が挙げられる。これらは2種類以上を併用してもよい。
 シランカップリング剤の付着量は、本球状シリカの表面に存在するシラノール基が全て反応できる程度の量にすることが好ましい。具体的には、本球状シリカ100質量部に対して0.01質量部以上であることが好ましく、0.05質量部以上がさらに好ましく、また、2質量部以下がより好ましく、1質量部以下がさらに好ましい。
The spherical silica may be treated with a silane coupling agent. By treating the surface of this spherical silica with a silane coupling agent, the amount of residual silanol groups on the surface is reduced, the surface is made hydrophobic, water adsorption can be suppressed, and dielectric loss can be improved. , the dispersibility and the strength of a molded article such as a polymer layer obtained from the present composition are improved.
Silane coupling agents include aminosilane-based coupling agents, epoxysilane-based coupling agents, mercaptosilane-based coupling agents, organosilazane compounds, and the like. Two or more of these may be used in combination.
It is preferable that the amount of the silane coupling agent attached is such that all the silanol groups present on the surface of the present spherical silica can react. Specifically, it is preferably 0.01 parts by mass or more, more preferably 0.05 parts by mass or more, more preferably 2 parts by mass or less, and 1 part by mass or less with respect to 100 parts by mass of the present spherical silica. is more preferred.
 本球状シリカは、湿式法によって形成された球状のシリカ前駆体を熱処理することにより得られた球状シリカであるのが好ましい。
 湿式法とは、シリカ源として液体のものを用い、これをゲル化させることで球状シリカ粉末の原料を得る工程を含む方式を指す。
 湿式法としては、例えば、噴霧法、エマルション・ゲル化法等が挙げられる。
The spherical silica is preferably spherical silica obtained by heat-treating a spherical silica precursor formed by a wet method.
The wet method refers to a method including a step of using a liquid silica source and gelling it to obtain a raw material for spherical silica powder.
The wet method includes, for example, a spraying method, an emulsion/gelation method, and the like.
 湿式法で得られた球状のシリカ前駆体の細孔容積は、0.3~2.2ml/gであるのが望ましい。
 ここで、細孔容積は、比表面積・細孔分布測定装置(例えば、マイクロトラック・ベル社製「BELSORP-miniII」、マイクロメリティック社製「トライスターII」等)を用いた窒素吸着法に基づくBJH法により求める。
 湿式法で得られたシリカ前駆体の強熱減量は、5.0~15.0質量%であるのが望ましい。
 ここで、強熱減量は、JIS K0067に準拠して、シリカ前駆体1gを、850℃で0.5時間加熱乾燥したときの質量減量として求める。
The pore volume of the spherical silica precursor obtained by the wet method is desirably 0.3 to 2.2 ml/g.
Here, the pore volume is determined by a nitrogen adsorption method using a specific surface area/pore distribution measuring device (e.g., "BELSORP-miniII" manufactured by Microtrac Bell, "Tristar II" manufactured by Micromeritic, etc.). It is obtained by the BJH method based on
The ignition loss of the silica precursor obtained by the wet method is desirably 5.0 to 15.0% by mass.
Here, the ignition loss is obtained as the mass loss when 1 g of the silica precursor is dried by heating at 850° C. for 0.5 hours in accordance with JIS K0067.
 熱処理では、球状シリカ粉末を焼しめ、シェルの緻密化を行うとともに、表面のシラノール基量を減らし、誘電正接を低下させる。熱処理の温度は、700~1600℃が好ましい。
 前記熱処理の方式は、例えば、静置方式による熱処理、ロータリーキルン方式による熱処理、噴霧燃焼による熱処理等の方式が挙げられる。
In the heat treatment, the spherical silica powder is sintered to densify the shell, reduce the amount of silanol groups on the surface, and lower the dielectric loss tangent. The heat treatment temperature is preferably 700 to 1600°C.
The method of the heat treatment includes, for example, heat treatment by a stationary method, heat treatment by a rotary kiln method, heat treatment by spray combustion, and the like.
 かかる方法により得られた本球状シリカをシランカップリング剤で表面処理し、本球状シリカの表面に存在するシラノール基とシランカップリング剤とを反応せしめてもよい。
 シランカップリング剤としては前記した化合物が挙げられ、2種以上を組み合わせて使用してもよい。シランカップリング剤の処理量としては、本球状シリカ100質量部に対して0.01~5質量部が好ましい。
 シランカップリング剤で表面処理する方法としては、例えば、本球状シリカにシランカップリング剤をスプレーする乾式法や、本球状シリカを溶剤に分散させてからシランカップリング剤を加えて反応させる湿式法が挙げられる。
The present spherical silica obtained by such a method may be surface-treated with a silane coupling agent to allow the silanol groups present on the surface of the present spherical silica to react with the silane coupling agent.
Examples of the silane coupling agent include the above-described compounds, and two or more of them may be used in combination. The treatment amount of the silane coupling agent is preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the spherical silica.
Examples of the method of surface treatment with a silane coupling agent include a dry method in which the silane coupling agent is sprayed onto the spherical silica, and a wet method in which the spherical silica is dispersed in a solvent and then the silane coupling agent is added for reaction. is mentioned.
 本組成物が含む液状分散媒は、F粒子又は本球状シリカを溶解、分散、又はゲル化する機能を有する液体であり、本組成物は、通常、スラリー状又はゲル状である。なお、液体とは25℃で粘度が10mPa・s以下であることを意味する。
 液状分散媒は、後述する積層体を構成するポリマー層中の本球状シリカの分布を均一とし、また、空隙を抑制する観点から、脱気されているのが好ましい。
The liquid dispersion medium contained in the present composition is a liquid having a function of dissolving, dispersing, or gelling the F particles or the present spherical silica, and the present composition is usually slurry or gel. The term "liquid" means that the viscosity is 10 mPa·s or less at 25°C.
The liquid dispersion medium is preferably degassed from the viewpoint of making the distribution of the present spherical silica uniform in the polymer layers constituting the layered product described below and suppressing voids.
 液状分散媒は、水であってもよく、非水系分散媒であってもよい。また、液状分散媒は非プロトン性分散媒であってもよく、プロトン性分散媒であってもよい。
 液状分散媒としては、大気圧下、25℃にて液体である化合物、例えば水、アルコール、アミド、ケトン及びエステルが挙げられる。
 アルコールとしては、メタノール、エタノール、イソプロパノール、グリコール(エチレングリコール、プロピレングリコール、トリメチレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール等)が挙げられる。
 アミドとしては、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルプロパンアミド、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、N,N-ジエチルホルムアミド、ヘキサメチルホスホリックトリアミド、1,3-ジメチル-2-イミダゾリジノン等が挙げられる。
 ケトンとしては、アセトン、メチルエチルケトン、メチルイソプロピルケトン、メチルイソブチルケトン、メチルn-ペンチルケトン、メチルイソペンチルケトン、2-へプタノン、シクロペンタノン、シクロヘキサノン、シクロヘプタノンが挙げられる。
 エステルとしては、酢酸メチル、酢酸エチル、酢酸ブチル、乳酸メチル、乳酸エチル、ピルビン酸メチル、ピルビン酸エチル、メトキシプロピオン酸メチル、エトキシプロピオン酸エチル、3-エトキシプロピオン酸エチル、γ-ブチロラクトン、γ-バレロラクトンが挙げられる。
The liquid dispersion medium may be water or a non-aqueous dispersion medium. Further, the liquid dispersion medium may be an aprotic dispersion medium or a protic dispersion medium.
Liquid dispersion media include compounds that are liquid at 25° C. under atmospheric pressure, such as water, alcohols, amides, ketones and esters.
Alcohols include methanol, ethanol, isopropanol, glycols (ethylene glycol, propylene glycol, trimethylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol, tripropylene glycol, etc.).
Amides include N-methyl-2-pyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, N,N-dimethylpropanamide, 3-methoxy-N,N-dimethylpropanamide, 3-butoxy- N,N-dimethylpropanamide, N,N-diethylformamide, hexamethylphosphoric triamide, 1,3-dimethyl-2-imidazolidinone and the like.
Ketones include acetone, methyl ethyl ketone, methyl isopropyl ketone, methyl isobutyl ketone, methyl n-pentyl ketone, methyl isopentyl ketone, 2-heptanone, cyclopentanone, cyclohexanone, cycloheptanone.
Esters include methyl acetate, ethyl acetate, butyl acetate, methyl lactate, ethyl lactate, methyl pyruvate, ethyl pyruvate, methyl methoxypropionate, ethyl ethoxypropionate, ethyl 3-ethoxypropionate, γ-butyrolactone, γ- Valerolactone can be mentioned.
 液状分散媒は、2種以上を併用してもよい。2種以上を併用する場合、異種の液状分散媒は相溶するのが好ましい。
 液状分散媒の沸点は50~240℃の範囲が好ましい。
 本組成物における液状分散媒の含有量は、本組成物の全体質量に対して5質量%以上が好ましく、20質量%以上がより好ましく、40質量%以上がさらに好ましい。液状分散媒の含有量は、80質量%以下が好ましく、70質量%以下がより好ましい。かかる範囲において、本組成物は好適には分散液状である液状、又はペースト状として取り扱うことができ、その分散安定性と塗工性がより向上しやすい。
Two or more liquid dispersion media may be used in combination. When two or more types are used in combination, it is preferable that the liquid dispersion media of different types are compatible with each other.
The boiling point of the liquid dispersion medium is preferably in the range of 50 to 240°C.
The content of the liquid dispersion medium in the composition is preferably 5% by mass or more, more preferably 20% by mass or more, and even more preferably 40% by mass or more, relative to the total mass of the composition. The content of the liquid dispersion medium is preferably 80% by mass or less, more preferably 70% by mass or less. Within this range, the present composition can be preferably handled as a liquid dispersion or a paste, and its dispersion stability and coatability are likely to be improved.
 本組成物におけるF粒子の含有量は、本組成物の全体質量に対して10質量%以上が好ましく、20質量%以上がより好ましい。F粒子の含有量は、本組成物の分散安定性の観点から、本組成物の全体質量に対して40質量%以下が好ましく、30質量%以下がより好ましい。
 本組成物における本球状シリカの含有量は、本組成物の全体質量に対して10質量%以上が好ましく、20質量%以上がより好ましい。本球状シリカの含有量は、本組成物の分散安定性の観点から、本組成物の全体質量に対して60質量%以下が好ましく、50質量%以下がより好ましい。
The content of the F particles in the composition is preferably 10% by mass or more, more preferably 20% by mass or more, relative to the total mass of the composition. From the viewpoint of dispersion stability of the composition, the content of the F particles is preferably 40% by mass or less, more preferably 30% by mass or less, relative to the total mass of the composition.
The content of the spherical silica in the present composition is preferably 10% by mass or more, more preferably 20% by mass or more, relative to the total mass of the composition. From the viewpoint of dispersion stability of the composition, the content of the spherical silica is preferably 60% by mass or less, more preferably 50% by mass or less, relative to the total mass of the composition.
 また、本組成物の全体質量に対して、本球状シリカの含有量が10~60質量%であり、20~50質量%の範囲であるのが好ましく、かつF粒子の含有量が10~40質量%であり、10~30質量%の範囲であるのが好ましい。さらに、本組成物中における本球状シリカの含有量は、F粒子の含有量より多いのが好ましい。かかる範囲であると、粘度増加を抑制しつつ分散安定性に優れた本組成物を得やすく、また、本組成物から任意の厚さのポリマー層、特に厚いポリマー層を形成しやすい。 Further, the content of the spherical silica is 10 to 60% by mass, preferably in the range of 20 to 50% by mass, and the content of the F particles is 10 to 40% by mass, based on the total mass of the composition. % by weight, preferably in the range of 10 to 30% by weight. Furthermore, the content of the present spherical silica in the present composition is preferably higher than the content of the F particles. Within this range, it is easy to obtain the present composition having excellent dispersion stability while suppressing an increase in viscosity, and it is easy to form a polymer layer having an arbitrary thickness, particularly a thick polymer layer, from the present composition.
 本組成物におけるF粒子と本球状シリカの合計含有量は、本組成物の全体質量に対して20質量%以上であるのが好ましく、50質量%以上であるのがより好ましい。F粒子と本球状シリカの合計含有量は、本組成物の全体質量に対して95質量%以下が好ましく、75質量%以下がより好ましい。 The total content of the F particles and the spherical silica in the composition is preferably 20% by mass or more, more preferably 50% by mass or more, relative to the total mass of the composition. The total content of the F particles and the present spherical silica is preferably 95% by mass or less, more preferably 75% by mass or less, relative to the total mass of the composition.
 本組成物は、必要に応じて、本球状シリカとは異なる無機フィラーをさらに含有してもよい。前記無機フィラーは、本球状シリカとは異なるフィラーであり、例えば、窒化ホウ素フィラー、窒化アルミニウムフィラー、酸化ベリリウムフィラー、ケイ酸塩フィラー(シリカフィラー、ウォラストナイトフィラー、タルクフィラー)、金属酸化物(酸化セリウム、酸化アルミニウム、酸化マグネシウム、酸化亜鉛、酸化チタン等)フィラー及びメタ珪酸マグネシウム(ステアタイト)フィラーが挙げられる。これらのフィラーは、焼成されたセラミックスフィラーであってもよい。
 前記無機フィラーは、その表面の少なくとも一部がシランカップリング剤で表面処理されていてもよい。かかる表面処理された無機フィラーはF粒子との親和性に優れ、本組成物の分散性を向上させやすい。
The present composition may further contain an inorganic filler different from the present spherical silica, if necessary. The inorganic filler is a filler different from the present spherical silica, for example, boron nitride filler, aluminum nitride filler, beryllium oxide filler, silicate filler (silica filler, wollastonite filler, talc filler), metal oxide ( cerium oxide, aluminum oxide, magnesium oxide, zinc oxide, titanium oxide, etc.) fillers and magnesium metasilicate (steatite) fillers. These fillers may be fired ceramic fillers.
At least part of the surface of the inorganic filler may be surface-treated with a silane coupling agent. Such a surface-treated inorganic filler has excellent affinity with the F particles and tends to improve the dispersibility of the present composition.
 本組成物は分散安定性とハンドリング性とをより向上する観点から、さらに界面活性剤を含有していてもよい。界面活性剤はノニオン性であるのが好ましい。
 界面活性剤の親水部位は、オキシアルキレン基又はアルコール性水酸基を有するのが好ましい。
 界面活性剤の疎水部位は、アセチレン基、ポリシロキサン基、ペルフルオロアルキル基又はペルフルオロアルケニル基を有するのが好ましい。換言すれば、界面活性剤は、アセチレン系界面活性剤、シリコーン系界面活性剤又はフッ素系界面活性剤が好ましく、シリコーン系界面活性剤がより好ましい。
From the viewpoint of further improving dispersion stability and handling properties, the composition may further contain a surfactant. Preferably, the surfactant is nonionic.
The hydrophilic portion of the surfactant preferably has an oxyalkylene group or an alcoholic hydroxyl group.
The hydrophobic portion of the surfactant preferably has an acetylene group, polysiloxane group, perfluoroalkyl group or perfluoroalkenyl group. In other words, the surfactant is preferably an acetylene-based surfactant, a silicone-based surfactant or a fluorine-based surfactant, and more preferably a silicone-based surfactant.
 かかる界面活性剤の具体例としては、「フタージェント(登録商標)」シリーズ(株式会社ネオス社製)、「サーフロン(登録商標)」シリーズ(AGCセイミケミカル社製)、「メガファック(登録商標)」シリーズ(DIC株式会社製)、「ユニダイン(登録商標)」シリーズ(ダイキン工業株式会社製)、「BYK-347」、「BYK-349」、「BYK-378」、「BYK-3450」、「BYK-3451」、「BYK-3455」、「BYK-3456」(ビックケミー・ジャパン株式会社製)、「KF-6011」、「KF-6043」(信越化学工業株式会社製)、「Tergitol」シリーズ(ダウケミカル社製、「Tergitol TMN-100X」等。)が挙げられる。
 本組成物が界面活性剤を含有する場合、その量は本組成物中の1~15質量%の範囲が好ましい。この場合、成分間の親和性が増し、本組成物の分散安定性とハンドリング性がより向上しやすい。
Specific examples of such surfactants include “Futhergent (registered trademark)” series (manufactured by Neos Co., Ltd.), “Surflon (registered trademark)” series (manufactured by AGC Seimi Chemical Co., Ltd.), “Megafac (registered trademark) ” series (manufactured by DIC Corporation), “Unidyne (registered trademark)” series (manufactured by Daikin Industries, Ltd.), “BYK-347”, “BYK-349”, “BYK-378”, “BYK-3450”, “ BYK-3451", "BYK-3455", "BYK-3456" (manufactured by BYK-Chemie Japan Co., Ltd.), "KF-6011", "KF-6043" (manufactured by Shin-Etsu Chemical Co., Ltd.), "Tergitol" series ( manufactured by Dow Chemical Company, "Tergitol TMN-100X", etc.).
When the present composition contains a surfactant, its amount is preferably in the range of 1 to 15% by weight in the present composition. In this case, the affinity between the components increases, and the dispersion stability and handleability of the present composition are likely to be improved.
 本組成物は、さらに芳香族ポリマーを含んでいてもよい。芳香族ポリマーは、熱可塑性であってもよく、熱硬化性であってもよい。芳香族ポリマーは、その前駆体として本組成物に含まれていてもよい。芳香族ポリマーは、本組成物中に粒子として含まれてもよく、液状分散媒中に溶解していてもよい。本組成物が水を含む場合、芳香族ポリマーは、水溶性であるのが好ましい。 The composition may further contain an aromatic polymer. Aromatic polymers may be thermoplastic or thermoset. Aromatic polymers may be included in the composition as precursors thereof. The aromatic polymer may be included in the composition as particles or dissolved in a liquid dispersion medium. If the composition contains water, the aromatic polymer is preferably water soluble.
 芳香族ポリマーとしては、芳香族ポリイミド、芳香族ポリイミド前駆体(ポリアミック酸又はその塩)、芳香族ポリアミドイミド、芳香族ポリアミドイミド前駆体、芳香族ポリエーテルイミド、芳香族ポリエーテルイミド前駆体、芳香族スルフィド系樹脂、芳香族スルホン系樹脂、フェノール樹脂、芳香族エポキシ樹脂、芳香族ポリエステル樹脂(液晶性芳香族ポリエステル等)、芳香族ポリエステルアミド(液晶性芳香族ポリエステルアミド等)、芳香族マレイミド、ポリフェニレンエーテルが挙げられ、芳香族ポリイミド前駆体、芳香族ポリアミドイミド及び芳香族ポリアミドイミド前駆体が好ましい。
 この場合、芳香族ポリマーがFポリマーと相互作用しやすく、さらに本組成物から形成される成形物が、金属箔等の基材との接着性やUV吸収性に優れやすい。
 本組成物が水を含む場合、水溶性の芳香族ポリアミドイミドの前駆体及び水溶性の芳香族ポリイミドの前駆体が好ましい。
Examples of aromatic polymers include aromatic polyimides, aromatic polyimide precursors (polyamic acids or salts thereof), aromatic polyamideimides, aromatic polyamideimide precursors, aromatic polyetherimides, aromatic polyetherimide precursors, aromatic group sulfide resins, aromatic sulfone resins, phenolic resins, aromatic epoxy resins, aromatic polyester resins (liquid crystalline aromatic polyesters, etc.), aromatic polyester amides (liquid crystalline aromatic polyester amides, etc.), aromatic maleimides, Polyphenylene ethers may be mentioned, with aromatic polyimide precursors, aromatic polyamideimides and aromatic polyamideimide precursors being preferred.
In this case, the aromatic polymer is likely to interact with the F polymer, and the molded article formed from the present composition tends to be excellent in adhesion to substrates such as metal foils and in UV absorption.
When the composition contains water, water-soluble aromatic polyamideimide precursors and water-soluble aromatic polyimide precursors are preferred.
 芳香族ポリイミド前駆体としては、テトラカルボン酸二無水物とジアミンを溶媒中で重合させたポリアミック酸や、該ポリアミック酸と、アンモニア水又は有機アミンを反応させたポリアミック酸塩が挙げられる。芳香族ポリイミド又はその前駆体の具体例としては、「ネオプリム(登録商標)」シリーズ(三菱ガス化学社製)、「スピクセリア(登録商標)」シリーズ(ソマール社製)、「Q-PILON(登録商標)」シリーズ(ピーアイ技術研究所製)、「WINGO」シリーズ(ウィンゴーテクノロジー社製)、「トーマイド(登録商標)」シリーズ(T&K TOKA社製)、「KPI-MX」シリーズ(河村産業社製)、「ユピア(登録商標)-AT」シリーズ(宇部興産社製)が挙げられる。 Examples of aromatic polyimide precursors include polyamic acid obtained by polymerizing tetracarboxylic dianhydride and diamine in a solvent, and polyamic acid salt obtained by reacting the polyamic acid with aqueous ammonia or organic amine. Specific examples of aromatic polyimides or their precursors include "Neoplim (registered trademark)" series (manufactured by Mitsubishi Gas Chemical Company), "Spixeria (registered trademark)" series (manufactured by Somar), and "Q-PILON (registered trademark)." )" series (manufactured by PI Technical Research Institute), "WINGO" series (manufactured by Wingo Technology), "Tomide (registered trademark)" series (manufactured by T&K TOKA), "KPI-MX" series (manufactured by Kawamura Sangyo) , and “Upia (registered trademark)-AT” series (manufactured by Ube Industries, Ltd.).
 芳香族ポリアミドイミド又はその前駆体としては、ジイソシアネート及び/又はジアミンと、酸成分としての三塩基酸無水物(又は三塩基酸クロリド)とを反応させて得られるポリアミドイミド樹脂又はその前駆体が挙げられる。
 芳香族ポリアミドイミド又はその前駆体の具体例としては、「HPC-1000」、「HPC-2100D」(以上、昭和電工マテリアルズ社製)が挙げられる。
The aromatic polyamideimide or its precursor includes a polyamideimide resin or a precursor thereof obtained by reacting a diisocyanate and/or a diamine with a tribasic acid anhydride (or tribasic acid chloride) as an acid component. be done.
Specific examples of the aromatic polyamideimide or its precursor include "HPC-1000" and "HPC-2100D" (manufactured by Showa Denko Materials).
 本組成物が芳香族ポリマーをさらに含む場合、その含有量は、本組成物の全体質量に対して0.01質量%以上が好ましく、1質量%以上がより好ましい。芳香族ポリマーの含有量は、5質量%以下が好ましく、3質量%以下がより好ましい。
 本組成物中の芳香族ポリマーの含有量は、本組成物中のFポリマーの含有量に対して10質量%未満であるのが好ましく、5質量%以下がより好ましい。芳香族ポリマーの含有量は、Fポリマーの含有量に対して0.1質量%以上であるのが好ましい。
 本組成物が芳香族ポリマーを含む場合、芳香族ポリマーが本球状シリカとFポリマーの分散剤や結着剤として機能し、緻密なポリマー層となりやすく、また、本球状シリカがポリマー層中に高度に分散しやすい。
 芳香族ポリマーの含有量が、かかる低い範囲にあれば、ポリマー層が電気特性に優れやすい。
When the composition further contains an aromatic polymer, the content thereof is preferably 0.01% by mass or more, more preferably 1% by mass or more, relative to the total mass of the composition. The content of the aromatic polymer is preferably 5% by mass or less, more preferably 3% by mass or less.
The content of the aromatic polymer in the composition is preferably less than 10% by mass, more preferably 5% by mass or less, relative to the content of the F polymer in the composition. The content of the aromatic polymer is preferably 0.1% by mass or more relative to the content of the F polymer.
When the present composition contains an aromatic polymer, the aromatic polymer functions as a dispersant or a binder for the present spherical silica and the F polymer, and tends to form a dense polymer layer. easy to disperse.
If the content of the aromatic polymer is within such a low range, the polymer layer tends to have excellent electrical properties.
 本組成物は、無機フィラー、界面活性剤、芳香族ポリマー以外にも、チキソ性付与剤、粘度調節剤、消泡剤、シランカップリング剤、脱水剤、可塑剤、耐候剤、酸化防止剤、熱安定剤、滑剤、帯電防止剤、増白剤、着色剤、導電剤、離型剤、表面処理剤、難燃剤等の添加剤をさらに含有してもよい。 In addition to an inorganic filler, a surfactant, and an aromatic polymer, the present composition contains a thixotropic agent, a viscosity modifier, an antifoaming agent, a silane coupling agent, a dehydrating agent, a plasticizer, a weathering agent, an antioxidant, Additives such as heat stabilizers, lubricants, antistatic agents, brighteners, colorants, conductive agents, mold release agents, surface treatment agents and flame retardants may be further contained.
 本組成物の粘度は10mPa・s以上が好ましく、50mPa・s以上がより好ましい。本組成物の粘度は10000mPa・s以下が好ましく、1000mPa・s以下がより好ましく、500mPa・s以下がさらに好ましい。
 本組成物の粘度は、50~1000mPa・sの範囲であるのが好ましい。この場合、本組成物は塗工性に優れるため、本組成物から任意の厚みを有するポリマー層等の成形物を形成しやすい。
 本組成物のチキソ比は1以上が好ましい。本組成物のチキソ比は3以下が好ましく、2以下がより好ましい。この場合、本組成物は塗工性に優れるだけでなく、その均質性にも優れるため、より緻密なポリマー層等の成形物を形成しやすい。
The viscosity of the present composition is preferably 10 mPa·s or more, more preferably 50 mPa·s or more. The viscosity of the present composition is preferably 10000 mPa·s or less, more preferably 1000 mPa·s or less, and even more preferably 500 mPa·s or less.
The viscosity of the composition is preferably in the range of 50-1000 mPa·s. In this case, since the present composition has excellent coatability, it is easy to form a molded product such as a polymer layer having an arbitrary thickness from the present composition.
The thixotropic ratio of the present composition is preferably 1 or more. The thixotropic ratio of the present composition is preferably 3 or less, more preferably 2 or less. In this case, the present composition is not only excellent in coatability but also excellent in homogeneity, so that it is easy to form a molded product such as a denser polymer layer.
 本組成物は、F粒子と、本球状シリカと、液状分散媒とを混合して製造できる。
 混合方法は、F粒子、本球状シリカ、液状分散媒及び必要に応じて他の成分が均一に混合される方法であれば特に制限はなく、(a)各成分を一括添加又は順次添加して混合する方法、(b)F粒子と液状分散媒、本球状シリカと液状分散媒をそれぞれ予め混合し、得られた二種の混合物をさらに混合する方法、(c)F粒子と本球状シリカとを予め混合して粉体混合物とし、得られた粉体混合物と液状分散媒とを混合する方法、等が挙げられる。得られる本組成物が均質なものとなりやすい観点から、上記(b)又は(c)の方法が好ましい。
 なお、無機フィラー、界面活性剤、芳香族ポリマー、任意に添加してもよい他の成分等を、本組成物にさらに含有させる場合は、液状分散媒とF粒子と本球状シリカとを混合する前に、液状分散媒に予め添加しておくのが好ましい。本組成物が芳香族ポリマーを含む場合、芳香族ポリマーのワニスとしてF粒子と混合してもよい。ワニスを構成する溶剤としては、N-メチル-2-ピロリドン、シクロヘキサノン、トルエンが挙げられる。
The present composition can be produced by mixing the F particles, the present spherical silica, and a liquid dispersion medium.
The mixing method is not particularly limited as long as the F particles, the present spherical silica, the liquid dispersion medium and, if necessary, other components are uniformly mixed. (b) a method of pre-mixing the F particles and the liquid dispersion medium and the present spherical silica and the liquid dispersion medium, respectively, and then further mixing the resulting two mixtures; (c) the F particles and the present spherical silica; are mixed in advance to form a powder mixture, and the resulting powder mixture and a liquid dispersion medium are mixed. The above method (b) or (c) is preferable from the viewpoint that the resulting composition tends to be homogeneous.
When the present composition further contains an inorganic filler, a surfactant, an aromatic polymer, other components that may be optionally added, etc., the liquid dispersion medium, the F particles, and the present spherical silica are mixed. It is preferable to add it to the liquid dispersion medium in advance. When the composition contains an aromatic polymer, it may be mixed with the F particles as a varnish of the aromatic polymer. Solvents constituting the varnish include N-methyl-2-pyrrolidone, cyclohexanone and toluene.
 本組成物を得るために用いる混合装置としては、ブレードを備えた撹拌装置(ヘンシェルミキサー、加圧ニーダー、バンバリーミキサー、プラネタリーミキサー等。)、メディアを備えた粉砕装置(ボールミル、アトライター、バスケットミル、サンドミル、サンドグラインダー、ダイノーミル、ディスパーマット、SCミル、スパイクミル又はアジテーターミル等。)、他の機構を備えた分散装置(マイクロフルイダイザー、ナノマイザー、アルティマイザー、超音波ホモジナイザー、デゾルバー、ディスパー、高速インペラー、自転公転撹拌機、コロイドミル、薄膜旋回型高速ミキサー等)が挙げられる。 Mixing devices used to obtain the present composition include stirring devices equipped with blades (Henschel mixer, pressure kneader, Banbury mixer, planetary mixer, etc.), grinding devices equipped with media (ball mills, attritors, baskets, etc.). mill, sand mill, sand grinder, dyno mill, dispermat, SC mill, spike mill or agitator mill, etc.), dispersing equipment with other mechanisms (microfluidizer, nanomizer, ultimizer, ultrasonic homogenizer, desolver, disper, high-speed impeller, rotation/revolution stirrer, colloid mill, thin-film swirling high-speed mixer, etc.).
 また、本組成物の好適な製造方法としては、F粒子と、本球状シリカと、液状分散媒の一部とを予め混練して混練物を得て、さらに前記混練物に残余の液状分散媒を添加し混合して本組成物を得る製造方法が挙げられる。混練と添加に際して使用する液状分散媒は、同種の液状分散媒であってもよく、異種の液状分散媒であってもよい。本組成物が、さらに無機フィラー、界面活性剤、芳香族ポリマー等の他の成分を含む場合、他の成分は、混練に際して混合してもよく、混練物に残余の液状分散媒を添加する際に混合してもよい。
 F粒子と、本球状シリカと、液状分散媒の一部とを予め混練する際の各成分の混合方法としては、例えば上記した(a)、(b)又は(c)の方法が挙げられる。得られる本組成物が均質なものとなりやすい観点から、上記(b)又は(c)の方法が好ましい。
 混練における混合は、プラネタリーミキサーにて行うのが好ましい。プラネタリーミキサーは、互いに自転と公転を行う2軸の撹拌羽根を有する撹拌装置である。添加における混合は、薄膜旋回型高速ミキサーにて行うのが好ましい。薄膜旋回型高速ミキサーは、円筒形の撹拌槽の内壁面に、F粒子と液状分散媒とを薄膜状に展開し旋回させて、遠心力を作用させながら混合する撹拌装置である。
Further, as a suitable method for producing the present composition, the F particles, the present spherical silica, and part of the liquid dispersion medium are kneaded in advance to obtain a kneaded product, and the remaining liquid dispersion medium is added to the kneaded product. are added and mixed to obtain the present composition. The liquid dispersion medium used for kneading and addition may be the same type of liquid dispersion medium or different types of liquid dispersion mediums. When the present composition further contains other components such as inorganic fillers, surfactants, and aromatic polymers, the other components may be mixed during kneading, and when the remaining liquid dispersion medium is added to the kneaded product, may be mixed into
Examples of the method for mixing each component when pre-kneading the F particles, the present spherical silica, and part of the liquid dispersion medium include the methods (a), (b), and (c) described above. The above method (b) or (c) is preferable from the viewpoint that the resulting composition tends to be homogeneous.
Mixing in kneading is preferably carried out using a planetary mixer. A planetary mixer is a stirring device having two stirring blades that rotate and revolve with each other. Mixing in the addition is preferably carried out using a thin-film rotating high-speed mixer. A thin-film swirling high-speed mixer is a stirring device that spreads F particles and a liquid dispersion medium in a thin film form on the inner wall surface of a cylindrical stirring tank, swirls them, and mixes them while exerting centrifugal force.
 混練による得られる混練物は、ペースト状(粘度が1000~100000mPa・sであるペースト等。)であってもよく、ウェットパウダー状(キャピログラフにより測定される粘度が10000~100000Pa・sであるウェットパウダー(練粉)等。)であってもよい。
 なお、キャピログラフにより測定される粘度とは、キャピラリー長が10mm、キャピラリー半径が1mmのキャピラリーを用いて、炉体径を9.55mm、ロードセル容量を2tとし、温度を25℃、剪断速度を1s-1として測定される値である。
The kneaded product obtained by kneading may be a paste (a paste having a viscosity of 1000 to 100000 mPa s, etc.), or a wet powder (a wet powder having a viscosity of 10000 to 100000 Pa s as measured by a capillograph). (dough), etc.).
The viscosity measured by a capillary graph is defined by using a capillary with a capillary length of 10 mm and a capillary radius of 1 mm, a furnace body diameter of 9.55 mm, a load cell capacity of 2 t, a temperature of 25 ° C., and a shear rate of 1 s It is a value measured as 1 .
 本組成物は、絶縁性、耐熱性、対腐食性、耐薬品性、耐水性、耐衝撃性、熱伝導性を付与するためのコーティング材料として有用である。
 本組成物は、具体的には、プリント配線板、熱インターフェース材、パワーモジュール用基板、モーター等の動力装置で使用されるコイル、車載エンジン、熱交換器、バイアル瓶、注射筒(シリンジ)、アンプル、医療用ワイヤー、リチウムイオン電池等の二次電池、リチウム電池等の一次電池、ラジカル電池、太陽電池、燃料電池、リチウムイオンキャパシタ、ハイブリッドキャパシタ、キャパシタ、コンデンサ(アルミニウム電解コンデンサ、タンタル電解コンデンサ等)、エレクトロクロミック素子、電気化学スイッチング素子、電極のバインダー、電極のセパレーター、電極(正極、負極)に使用できる。
 また、本組成物は部品を接着する接着剤としても有用である。具体的には、本組成物は、セラミックス部品の接着、金属部品の接着、半導体素子やモジュール部品の基板におけるICチップや抵抗、コンデンサ等の電子部品の接着、回路基板と放熱板の接着、LEDチップの基板への接着に使用できる。
The composition is useful as a coating material for imparting insulation, heat resistance, corrosion resistance, chemical resistance, water resistance, impact resistance, and thermal conductivity.
Specifically, the present composition can be used for printed wiring boards, thermal interface materials, substrates for power modules, coils used in power devices such as motors, automotive engines, heat exchangers, vials, syringes, Ampoules, medical wires, secondary batteries such as lithium ion batteries, primary batteries such as lithium batteries, radical batteries, solar cells, fuel cells, lithium ion capacitors, hybrid capacitors, capacitors, capacitors (aluminum electrolytic capacitors, tantalum electrolytic capacitors, etc.) ), electrochromic elements, electrochemical switching elements, electrode binders, electrode separators, and electrodes (positive and negative electrodes).
The composition is also useful as an adhesive for bonding parts together. Specifically, the composition can be used for adhesion of ceramic parts, adhesion of metal parts, adhesion of electronic parts such as IC chips, resistors and capacitors on substrates of semiconductor elements and module parts, adhesion of circuit boards and heat sinks, LED It can be used for bonding chips to substrates.
 特に、本組成物は、プリント配線板、具体的には、銅箔の表面に本組成物から形成されたポリマー層を有するポリマー層付銅箔におけるポリマー層を形成するための材料として有用である。下表1に示すとおり、球状シリカ自体は、本来、電気特性(特に誘電正接性)と低線膨張性に優れるが、ポリマー層付銅箔におけるポリマー層中で、かかる物性を高度に発現させるのは困難であった。本組成物を用いれば、上述した作用機構により、かかる球状シリカ物性とFポリマー物性とを具備したポリマー層を有するポリマー層付銅箔が容易に得られる。 In particular, the present composition is useful as a material for forming a polymer layer in a printed wiring board, specifically a copper foil with a polymer layer having a polymer layer formed from the present composition on the surface of the copper foil. . As shown in Table 1 below, spherical silica itself is inherently excellent in electrical properties (especially dielectric loss tangent) and low linear expansion, but in the polymer layer of the polymer layer-coated copper foil, it is difficult to express such physical properties at a high level. was difficult. By using the present composition, a polymer layer-coated copper foil having a polymer layer having such spherical silica physical properties and F polymer physical properties can be easily obtained due to the mechanism of action described above.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本組成物は、基材の少なくとも一方の表面に付与して加熱することで、Fポリマー及び本球状シリカを含むポリマー層(以下、「F層」とも記す。)を形成させるための組成物として好適に用いられる。
 例えば、本組成物を基材の表面に付与して本組成物からなる液状被膜(ウェット膜)を形成し、次いで液状被膜から液状分散媒を加熱除去して、前記基材の表面上にFポリマー及び本球状シリカを含むポリマー層を形成することができる。
 さらに得られたポリマー層のFポリマーを焼成することが好ましい。加熱してFポリマーを焼成すれば、基材層と、基材層の表面に焼成されたFポリマー及び本球状シリカを含むポリマー層と、を有する積層体を製造できる。なお、液状媒体の除去のための加熱とFポリマーを焼成するための加熱は連続して行うことができる。
The present composition is applied to at least one surface of a substrate and heated to form a polymer layer containing the F polymer and the present spherical silica (hereinafter also referred to as "F layer"). It is preferably used.
For example, the present composition is applied to the surface of a substrate to form a liquid coating (wet film) composed of the present composition, and then the liquid dispersion medium is removed from the liquid coating by heating to form F on the surface of the substrate. A polymer layer can be formed that includes the polymer and the spherical silica.
Furthermore, it is preferable to bake the F polymer of the obtained polymer layer. By heating and sintering the F polymer, it is possible to produce a laminate having a substrate layer and a polymer layer containing the sintered F polymer and the present spherical silica on the surface of the substrate layer. The heating for removing the liquid medium and the heating for baking the F polymer can be performed continuously.
 基材としては、銅、ニッケル、アルミニウム、チタン及びそれらの合金等の金属箔等の金属基板、テトラフルオロエチレン系ポリマー、ポリイミド、ポリアリレート、ポリスルホン、ポリアリルスルホン、ポリアミド、ポリエーテルアミド、ポリフェニレンスルフィド、ポリアリルエーテルケトン、ポリアミドイミド、液晶性ポリエステル、液晶性ポリエステルアミド等の耐熱性樹脂で構成される耐熱性樹脂フィルム、繊維強化樹脂基板の前駆体であるプリプレグ、炭化ケイ素、窒化アルミニウム、窒化ケイ素等のセラミックス基板、ガラス基板が挙げられる。
 基材の形状としては、平面状、曲面状、凹凸状が挙げられる。また、基材の形状は、箔状、板状、膜状、繊維状のいずれであってもよい。
Substrates include metal substrates such as metal foils of copper, nickel, aluminum, titanium and alloys thereof, tetrafluoroethylene-based polymers, polyimides, polyarylates, polysulfones, polyallylsulfones, polyamides, polyetheramides, and polyphenylene sulfides. , polyallyl ether ketone, polyamideimide, liquid crystalline polyester, and liquid crystalline polyester amide. and glass substrates.
Examples of the shape of the substrate include planar, curved, and uneven shapes. Moreover, the shape of the substrate may be any of foil, plate, film, and fiber.
 基材の表面の十点平均粗さは、0.1μm未満が好ましく、0.05μm以下がより好ましい。前記十点平均粗さは、0.001μm以上が好ましい。かかる無粗化基材であっても、本法によると、均一性に優れたポリマー層が得られるため、剥離強度に優れた積層体が得られる。なお、基材の表面の十点平均粗さは、JIS B 0601:2013の附属書JAで規定される値である。
 基材の厚さは、2~100μmが好ましい。基材が金属箔である場合には、基材の厚さは1~35μmであるのが好ましい。また、基材は、剥離層を介してキャリア銅箔上に積層された極薄銅箔(厚さ2~5μm)であるキャリア付銅箔であってもよい。基材がポリイミドフィルムである場合には、基材の厚さは10~50μmであるのが好ましい。
The ten-point average roughness of the substrate surface is preferably less than 0.1 μm, more preferably 0.05 μm or less. The ten-point average roughness is preferably 0.001 μm or more. Even with such a non-roughened base material, according to this method, a polymer layer with excellent uniformity can be obtained, so a laminate with excellent peel strength can be obtained. The ten-point average roughness of the surface of the base material is a value specified in Annex JA of JIS B 0601:2013.
The thickness of the substrate is preferably 2-100 μm. When the substrate is a metal foil, the thickness of the substrate is preferably 1-35 μm. The substrate may also be a carrier-attached copper foil, which is an ultra-thin copper foil (thickness of 2 to 5 μm) laminated on a carrier copper foil via a release layer. When the substrate is a polyimide film, the thickness of the substrate is preferably 10-50 μm.
 基材の最表面は、積層体の低線膨張性や接着性を一層向上させるために、さらに表面処理されてもよい。
 表面処理の方法としては、アニール処理、コロナ処理、プラズマ処理、オゾン処理、エキシマ処理、シランカップリング処理が挙げられる。
 アニール処理における条件は、温度を120~180℃とし、圧力を0.005~0.015MPaとし、時間を30~120分とするのが好ましい。
 プラズマ処理に用いるガスとしては、酸素ガス、窒素ガス、希ガス(アルゴン等)、水素ガス、アンモニアガス、酢酸ビニルが挙げられる。これらのガスは、2種以上を併用してもよい。
The outermost surface of the substrate may be further surface-treated in order to further improve the low linear expansion property and adhesiveness of the laminate.
Examples of surface treatment methods include annealing treatment, corona treatment, plasma treatment, ozone treatment, excimer treatment, and silane coupling treatment.
The annealing conditions are preferably a temperature of 120 to 180° C., a pressure of 0.005 to 0.015 MPa, and a time of 30 to 120 minutes.
Gases used for plasma treatment include oxygen gas, nitrogen gas, rare gas (such as argon), hydrogen gas, ammonia gas, and vinyl acetate. These gases may be used in combination of two or more.
 本組成物を基材の表面に付与する方法としては、基材の表面に本組成物からなる安定した液状被膜(ウェット膜)が形成される方法であればよく、塗布法、液滴吐出法、浸漬法が挙げられ、塗布法が好ましい。塗布法を用いれば、簡単な設備で効率よく金属基板の表面に液状被膜を形成できる。
 塗布法としては、スプレー法、ロールコート法、スピンコート法、グラビアコート法、マイクログラビアコート法、グラビアオフセット法、ナイフコート法、キスコート法、バーコート法、ダイコート法、ファウンテンメイヤーバー法、スロットダイコート法が挙げられる。
The method of applying the present composition to the surface of the substrate may be any method as long as a stable liquid film (wet film) composed of the present composition is formed on the surface of the substrate. , immersion method, and coating method is preferred. By using the coating method, a liquid coating can be efficiently formed on the surface of the metal substrate with simple equipment.
Coating methods include spray method, roll coating method, spin coating method, gravure coating method, micro gravure coating method, gravure offset method, knife coating method, kiss coating method, bar coating method, die coating method, fountain-meyer bar method, and slot die coating. law.
 F層は、加熱により前記液状被膜(ウェット膜)から液状分散媒を除去した後に、さらに高温に加熱してポリマーを焼成して形成するのが好ましい。液状分散媒の除去の温度は、できるだけ低温が好ましく、液状分散媒の沸点より50~150℃低い温度が好ましい。例えば沸点が約200℃のN-メチル-2-ピロリドンを用いた場合、150℃以下、好ましくは100~120℃で加熱することが好ましい。液状分散媒を除去する工程で空気を吹き付け、風乾によって液状分散媒の除去を促してもよい。この際の加熱において液状分散媒は、必ずしも完全に除去する必要はなく、F粒子のパッキングにより形成される層が自立膜を維持できる程度まで除去すればよい。 The F layer is preferably formed by removing the liquid dispersion medium from the liquid film (wet film) by heating, and then heating to a higher temperature to bake the polymer. The temperature for removing the liquid dispersion medium is preferably as low as possible, preferably 50 to 150° C. lower than the boiling point of the liquid dispersion medium. For example, when N-methyl-2-pyrrolidone having a boiling point of about 200°C is used, it is preferable to heat at 150°C or lower, preferably 100 to 120°C. In the step of removing the liquid dispersion medium, air may be blown to promote the removal of the liquid dispersion medium by air drying. In this heating, the liquid dispersion medium does not necessarily have to be completely removed, and may be removed to such an extent that the layer formed by packing the F particles can maintain a self-supporting film.
 液状分散媒を除去後、基材上のポリマー層をFポリマーが焼成する温度領域に加熱してFポリマーの焼成物を含むF層を形成するのが好ましく、例えば300~400℃の範囲でFポリマーを焼成するのが好ましい。F層は、Fポリマーの焼成物を含むのが好ましい。
 それぞれの加熱における加熱装置としては、オーブン、通風乾燥炉が挙げられる。装置における熱源は、接触式の熱源(熱風、熱板等)であってもよく、非接触式の熱源(赤外線等)であってもよい。
 それぞれの加熱は、常圧下で行ってもよく、減圧下で行ってもよい。
 それぞれの加熱における雰囲気は、空気雰囲気、不活性ガス(ヘリウムガス、ネオンガス、アルゴンガス、窒素ガス等)雰囲気のいずれであってもよい。
 F層は、本組成物の基材表面への付与、加熱の工程を経て形成される。厚いF層を得る目的で、本組成物の付与と加熱を複数回繰り返してF層を形成してもよい。例えば、基材の表面に本組成物を付与し加熱してF層を形成し、さらに前記F層の表面に本組成物を付与し加熱して2層目のF層を形成してもよい。また、基材の表面に本組成物を付与し加熱して液状分散媒を除去した段階で、さらにその表面に本組成物を付与し加熱してF層を形成してもよい。
After removing the liquid dispersion medium, the polymer layer on the substrate is preferably heated to a temperature range where the F polymer is baked to form an F layer containing the baked product of the F polymer. It is preferred to calcine the polymer. The F layer preferably contains a sintered F polymer.
A heating apparatus for each heating includes an oven and a ventilation drying oven. The heat source in the apparatus may be a contact heat source (hot air, hot plate, etc.) or a non-contact heat source (infrared radiation, etc.).
Each heating may be performed under normal pressure or under reduced pressure.
The atmosphere in each heating may be either an air atmosphere or an inert gas (helium gas, neon gas, argon gas, nitrogen gas, etc.) atmosphere.
The F layer is formed through the steps of applying the present composition to the substrate surface and heating. For the purpose of obtaining a thick F layer, the application and heating of the present composition may be repeated multiple times to form the F layer. For example, the composition may be applied to the surface of a substrate and heated to form an F layer, and the composition may be applied to the surface of the F layer and heated to form a second F layer. . In addition, at the stage where the present composition is applied to the surface of the substrate and heated to remove the liquid dispersion medium, the present composition may be further applied to the surface and heated to form the F layer.
 F層の厚さは50μm以上であるのが好ましく、100μm以上であるのがより好ましい。F層の厚さは1000μm以下が好ましい。F層が厚い場合にも、上述した作用機構により、本球状シリカの分散性に優れたポリマー層を得られる。 The thickness of the F layer is preferably 50 µm or more, more preferably 100 µm or more. The thickness of the F layer is preferably 1000 μm or less. Even when the F layer is thick, it is possible to obtain a polymer layer in which the present spherical silica has excellent dispersibility due to the mechanism of action described above.
 F層と基材層との剥離強度は、10N/cm以上が好ましく、15N/cm以上がより好ましい。上記剥離強度は、100N/cm以下が好ましい。
 また、F層の引張強度は、5MPa以上が好ましく、10MPa以上がより好ましい。上記引張強度は100MPa以下が好ましい。
 本組成物を用いれば、F層におけるFポリマーの物性を損なわずに、このようにF層と基材層との剥離強度、及びF層の引張強度に優れる積層体を容易に形成できる。
The peel strength between the F layer and the substrate layer is preferably 10 N/cm or more, more preferably 15 N/cm or more. The peel strength is preferably 100 N/cm or less.
Moreover, the tensile strength of the F layer is preferably 5 MPa or more, more preferably 10 MPa or more. The tensile strength is preferably 100 MPa or less.
By using this composition, it is possible to easily form a laminate having excellent peel strength between the F layer and the substrate layer and excellent tensile strength of the F layer without impairing the physical properties of the F polymer in the F layer.
 本組成物は、基材の一方の表面にのみ付与してもよく、基材の両面に付与してもよい。前者の場合、基材層と、かかる基材層の片方の表面にF層を有する積層体が得られ、後者の場合、基材層と、かかる基材層の両方の表面にF層を有する積層体が得られる。
 積層体の好適な具体例としては、金属箔と、その金属箔の少なくとも一方の表面にF層を有する金属張積層体、ポリイミドフィルムと、そのポリイミドフィルムの両方の表面にF層を有する多層フィルムが挙げられる。これらの積層体は、電気特性等の諸物性に優れるのでプリント基板材料等として好適であり、フレキシブルプリント基板やリジッドプリント基板の製造に使用できる。
The composition may be applied to only one surface of the substrate or may be applied to both surfaces of the substrate. In the former case, a laminate having a substrate layer and an F layer on one surface of the substrate layer is obtained, and in the latter case, the substrate layer and the F layer are provided on both surfaces of the substrate layer. A laminate is obtained.
Preferred specific examples of the laminate include a metal foil and a metal-clad laminate having an F layer on at least one surface of the metal foil, a polyimide film, and a multilayer film having an F layer on both surfaces of the polyimide film. is mentioned. These laminates are excellent in various physical properties such as electrical properties, and thus are suitable as printed circuit board materials and the like, and can be used for manufacturing flexible printed circuit boards and rigid printed circuit boards.
 積層体の最表面には、さらに他の基板を積層してもよい。
 他の基板としては、金属基板、耐熱性樹脂フィルム、繊維強化樹脂板の前駆体であるプリプレグ、耐熱性樹脂フィルム層を有する積層体、プリプレグ層を有する積層体が挙げられる。金属基板としては、上記した金属基板が挙げられる。耐熱性樹脂フィルムは、1種以上の耐熱性樹脂を含むフィルムであり、耐熱性樹脂としては、上記した樹脂が挙げられる。
 さらに、積層体から基材を除去してもよい。この場合、単独のF層からなるフィルムが得られる。
Another substrate may be further laminated on the outermost surface of the laminate.
Other substrates include a metal substrate, a heat-resistant resin film, a prepreg that is a precursor of a fiber-reinforced resin plate, a laminate having a heat-resistant resin film layer, and a laminate having a prepreg layer. Examples of the metal substrate include the metal substrates described above. A heat-resistant resin film is a film containing one or more heat-resistant resins, and examples of heat-resistant resins include the resins described above.
Furthermore, the substrate may be removed from the laminate. In this case, a film consisting of a single F layer is obtained.
 積層体、積層体と他の基材との積層物、F層からなるフィルムは、アンテナ部品、プリント基板、航空機用部品、自動車用部品、スポーツ用具、食品工業用品、塗料、化粧品等として有用である。
 具体的には、電線被覆材(航空機用電線等)、電気自動車等のモーター等に使用されるエナメル線被覆材、電気絶縁性テープ、石油掘削用絶縁テープ、プリント基板用材料、分離膜(精密濾過膜、限外濾過膜、逆浸透膜、イオン交換膜、透析膜、気体分離膜等)、電極バインダー(リチウム二次電池用、燃料電池用等)、コピーロール、家具、自動車ダッシュボート、家電製品等のカバー、摺動部材(荷重軸受、すべり軸、バルブ、ベアリング、ブッシュ、シール、スラストワッシャ、ウェアリング、ピストン、スライドスイッチ、歯車、カム、ベルトコンベア、食品搬送用ベルト等)、ウェアパッド、ウェアストリップ、チューブランプ、試験ソケット、ウェハーガイド、遠心ポンプの摩耗部品、炭化水素・薬品及び水供給ポンプ、工具(シャベル、やすり、きり、のこぎり等)、ボイラー、ホッパー、パイプ、オーブン、焼き型、シュート、ダイス、便器、コンテナ被覆材、パワーデバイス、トランジスタ、サイリスタ、整流器、トランス、パワーMOS FET、CPU、放熱フィン、金属放熱板、風車や風力発電設備や航空機等のブレード、自動車向けの放熱基板、無線通信デバイス(例えば、国際公開第2020/008691号や国際公開第2020/031419号に記載の無線通信デバイス)の放熱部材としても好適に使用できる。
Laminates, laminates of laminates with other substrates, and films composed of F layers are useful as antenna parts, printed circuit boards, aircraft parts, automobile parts, sporting goods, food industry supplies, paints, cosmetics, and the like. be.
Specifically, electric wire coating materials (wires for aircraft, etc.), enameled wire coating materials used for motors of electric vehicles, etc., electrical insulating tapes, insulating tapes for oil drilling, materials for printed circuit boards, separation membranes (precision filtration membranes, ultrafiltration membranes, reverse osmosis membranes, ion exchange membranes, dialysis membranes, gas separation membranes, etc.), electrode binders (for lithium secondary batteries, fuel cells, etc.), copy rolls, furniture, automobile dashboards, home appliances Product covers, sliding parts (load bearings, slide shafts, valves, bearings, bushes, seals, thrust washers, wear rings, pistons, slide switches, gears, cams, belt conveyors, food conveyor belts, etc.), wear pads , wear strips, tube lamps, test sockets, wafer guides, wear parts for centrifugal pumps, hydrocarbon, chemical and water supply pumps, tools (shovels, files, awls, saws, etc.), boilers, hoppers, pipes, ovens, baking molds , chutes, dies, toilet bowls, container covering materials, power devices, transistors, thyristors, rectifiers, transformers, power MOSFETs, CPUs, heat dissipation fins, metal heat dissipation plates, blades for wind turbines, wind power generation facilities, aircraft, etc., heat dissipation for automobiles It can also be suitably used as a substrate and a heat dissipation member for wireless communication devices (for example, the wireless communication devices described in WO2020/008691 and WO2020/031419).
 以上、本組成物、本組成物の製造方法、本組成物から形成されるポリマー層を有する積層体の製造方法、及び該積層体について説明したが、本発明は、上述した実施形態の構成に限定されない。
 例えば、本組成物及び前記積層体は上記実施形態の構成において、他の任意の構成を追加してもよいし、同様の機能を発揮する任意の構成と置換されていてよい。また本組成物の製造方法、及び前記積層体の製造方法は、上記実施形態の構成において、他の任意の工程を追加で有してもよいし、同様の作用を生じる任意の工程と置換されていてよい。
The composition, the method for producing the composition, the method for producing a laminate having a polymer layer formed from the composition, and the laminate have been described above. Not limited.
For example, the present composition and the laminate may be added with any other configuration in the configurations of the above-described embodiments, or may be replaced with any configuration that exhibits similar functions. In addition, the method for producing the present composition and the method for producing the laminate may additionally have any other step in the configuration of the above embodiment, or may be replaced with any step that produces the same effect. It's okay.
 以下、実施例によって本発明を詳細に説明するが、本発明はこれらに限定されない。
1.各成分の準備
[F粒子]
 F粒子1:TFE単位、NAH単位及びPPVE単位を、この順に97.9モル%、0.1モル%、2.0モル%含み、フッ素含有量が76質量%、カルボニル基含有基を主鎖炭素数1×10個あたり1000個有するFポリマー1からなる粒子(D50:2.1μm)
 F粒子2:TFE単位及びPPVE単位を、この順に97.5モル%、2.5モル%含み、フッ素含有量が76質量%、カルボニル基含有基を主鎖炭素数1×10個あたり25個未満であるFポリマー2からなる粒子(D50:2.5μm)
[球状シリカ]
 球状シリカ1:湿式法で製造されたシリカ粉末(AGCエスアイテック社製「H-31」、メジアン径d=3.5μm、Ti含有量300ppm)を1300℃で1時間加熱処理した球状シリカ粉末(メジアン径d=3μm、比表面積1.3m/g)
 球状シリカ2:VMC法で製造された原料シリカから製造された球状シリカ(アドマテックス社製「SC-04」、メジアン径d=1.5μm、比表面積4.5m/g、Ti含有量28ppm)
 球状シリカ3:メジアン径d=0.6μm、比表面積6.2m/gの球状シリカ
[液状分散媒]
 NMP:N-メチルピロリドン
[界面活性剤]
 界面活性剤1:ノニオン性界面活性剤(フタージェント710FL)
EXAMPLES The present invention will be described in detail below with reference to Examples, but the present invention is not limited to these.
1. Preparation of each component [F particles]
F particle 1: containing 97.9 mol%, 0.1 mol% and 2.0 mol% of TFE units, NAH units and PPVE units in this order, a fluorine content of 76% by mass, and a carbonyl group-containing group in the main chain Particles composed of F polymer 1 having 1000 carbon atoms per 1×10 6 carbon atoms (D50: 2.1 μm)
F particle 2: containing 97.5 mol% and 2.5 mol% of TFE units and PPVE units in this order, a fluorine content of 76% by mass, and 25 carbonyl group-containing groups per 1×10 6 main chain carbon atoms Particles made of F polymer 2 (D50: 2.5 μm)
[Spherical silica]
Spherical silica 1: Spherical silica powder ("H-31" manufactured by AGC Si Tech Co., Ltd., median diameter d = 3.5 µm, Ti content 300 ppm) produced by a wet method was heat-treated at 1300 ° C. for 1 hour ( Median diameter d=3 μm, specific surface area 1.3 m 2 /g)
Spherical silica 2: Spherical silica produced from raw material silica produced by the VMC method ("SC-04" manufactured by Admatechs, median diameter d = 1.5 µm, specific surface area 4.5 m 2 /g, Ti content 28 ppm )
Spherical silica 3: Spherical silica having a median diameter d of 0.6 μm and a specific surface area of 6.2 m 2 /g [liquid dispersion medium]
NMP: N-methylpyrrolidone [surfactant]
Surfactant 1: nonionic surfactant (Ftergent 710FL)
2.液状組成物の製造例
[例1]
 25質量部のF粒子1、50質量部の球状シリカ1、5質量部の界面活性剤1、及び20質量部のNMPを自転公転ミキサー(泡取り練太郎 シンキー社製)で混練してペースト状の混練物を得、この混練物にさらに55質量部のNMPを添加して2000rpmで5分撹拌し、液状組成物1を得た。得られた液状組成物1の粘度は100mPa・s未満であった。
[例2]
 50質量部の球状シリカ1に代えて50質量部の球状シリカ2を用いた以外は例1と同様にして、液状組成物2を得た。得られた液状組成物2の粘度は100mPa・s超であった。
[例3]
 50質量部の球状シリカ1に代えて50質量部の球状シリカ3を用いた以外は例1と同様にして、液状組成物3を得た。得られた液状組成物3の粘度は100mPa・s超であった。
[例4]
 25質量部のF粒子1に代えて25質量部のF粒子2を用いた以外は例1と同様にして、液状組成物4を得た。得られた液状組成物4の粘度は100mPa・s未満であった。
2. Production example of liquid composition [Example 1]
25 parts by mass of F particles 1, 50 parts by mass of spherical silica 1, 5 parts by mass of surfactant 1, and 20 parts by mass of NMP are kneaded in a rotation or revolution mixer (Awatori Mixer, manufactured by Thinky) to form a paste. 55 parts by mass of NMP was further added to this kneaded product and stirred at 2000 rpm for 5 minutes to obtain a liquid composition 1. The resulting liquid composition 1 had a viscosity of less than 100 mPa·s.
[Example 2]
Liquid composition 2 was obtained in the same manner as in Example 1, except that 50 parts by mass of spherical silica 2 was used instead of 50 parts by mass of spherical silica 1. The obtained liquid composition 2 had a viscosity of more than 100 mPa·s.
[Example 3]
Liquid composition 3 was obtained in the same manner as in Example 1, except that 50 parts by mass of spherical silica 3 was used instead of 50 parts by mass of spherical silica 1. The resulting liquid composition 3 had a viscosity of more than 100 mPa·s.
[Example 4]
A liquid composition 4 was obtained in the same manner as in Example 1 except that 25 parts by mass of F particles 2 were used instead of 25 parts by mass of F particles 1 . The resulting liquid composition 4 had a viscosity of less than 100 mPa·s.
3.積層体の製造例
[例4]
 銅箔(厚さ:18μm)の表面に、液状組成物1を塗布して、ウェット膜を形成した。次いで、このウェット膜が形成された金属箔を、120℃にて5分間、乾燥炉に通し、加熱により乾燥させて、ドライ膜を得た。その後、窒素オーブン中で、ドライ膜を380℃にて3分間、加熱した。これにより、銅箔と、その表面にFポリマー及び球状シリカ1を含む、成形物としてのポリマー層(厚さ:50μm)とを有するポリマー層付銅箔である積層体1を製造した。
[例5~7]
 使用する液状組成物を変更する以外は例4と同様にして、液状組成物2から積層体2(例5)を、液状組成物3から積層体3(例6)を、液状組成物4から積層体4(例7)を、それぞれ得た。
3. Production Example of Laminate [Example 4]
Liquid composition 1 was applied to the surface of a copper foil (thickness: 18 μm) to form a wet film. Next, the metal foil on which the wet film was formed was passed through a drying furnace at 120° C. for 5 minutes and dried by heating to obtain a dry film. The dry film was then heated at 380° C. for 3 minutes in a nitrogen oven. As a result, a laminate 1, which is a polymer layer-attached copper foil, was produced, which has a copper foil and a polymer layer (thickness: 50 μm) as a molding containing F polymer and spherical silica 1 on its surface.
[Examples 5-7]
In the same manner as in Example 4, except for changing the liquid composition to be used, a laminate 2 (Example 5) was produced from the liquid composition 2, a laminate 3 (Example 6) was produced from the liquid composition 3, and a laminate 3 (Example 6) was produced from the liquid composition 4. Laminate 4 (Example 7) was obtained respectively.
4.評価
4-1.液状組成物の分散安定性
 各液状組成物を25℃で30日静置した後、分散状態を目視で観察し、長期分散安定性を下記の基準にしたがって評価した。結果を表2に示す。
 <評価基準>
  〇:増粘せず成分沈降が確認されない
  △:層分離が確認されるが、容易に再分散後可能であり、再分散後の増粘も確認されない
  ×:増粘又は成分沈降が確認される
4. Evaluation 4-1. Dispersion Stability of Liquid Composition Each liquid composition was allowed to stand at 25° C. for 30 days, then the state of dispersion was visually observed, and the long-term dispersion stability was evaluated according to the following criteria. Table 2 shows the results.
<Evaluation Criteria>
〇: No viscosity increase and component sedimentation not confirmed △: Layer separation is confirmed, but it can be easily redispersed, and no thickening after redispersion is confirmed ×: Thickness increase or component sedimentation is confirmed
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
4-2.積層体の評価例
 それぞれの積層体におけるポリマー層の表面を目視で確認した結果、その平滑性は積層体1、積層体4、積層体3、積層体2の順に高かった。
 また、それぞれの積層体について、その銅箔を塩化第二鉄水溶液でエッチングして除去して単独のポリマー層を得て、180mm角の四角い試験片に切り出し、JIS C 6471:1995に規定される線膨張係数の測定方法にしたがって線膨張係数を測定した結果、線膨張係数は、積層体1のポリマー層、積層体4のポリマー層、積層体3のポリマー層、積層体2のポリマー層の順に低かった。
 さらに、それぞれのポリマー層の誘電正接を、SPDR(スプリットポスト誘電体共振法、測定周波数:10GHz)にて測定した結果、積層体1のポリマー層の誘電正接が最も低かった。
4-2. Evaluation Example of Laminate As a result of visually confirming the surface of the polymer layer in each laminate, the smoothness of laminate 1, laminate 4, laminate 3, and laminate 2 was higher in this order.
In addition, for each laminate, the copper foil was removed by etching with an aqueous ferric chloride solution to obtain a single polymer layer, cut into a 180 mm square square test piece, and JIS C 6471: It is specified in 1995. As a result of measuring the coefficient of linear expansion according to the method for measuring the coefficient of linear expansion, the coefficient of linear expansion is in the order of the polymer layer of the laminate 1, the polymer layer of the laminate 4, the polymer layer of the laminate 3, and the polymer layer of the laminate 2. was low.
Further, the dielectric loss tangent of each polymer layer was measured by SPDR (split post dielectric resonance method, measurement frequency: 10 GHz), and the dielectric loss tangent of the polymer layer of laminate 1 was the lowest.
4.フィルムの製造例
[例8]
 成形物としてのポリマー層の厚さを150μmとする以外は、例4と同様にして、それぞれの液状組成物からポリマー層付銅箔を製造し、さらに銅箔をエッチングして除去して、単独のフィルムを製造した。得られたフィルムの表面平滑性は液状組成物1から形成したフィルムが最も高かった。
4. Film production example [Example 8]
A copper foil with a polymer layer was produced from each liquid composition in the same manner as in Example 4, except that the thickness of the polymer layer as the molded product was 150 μm, and the copper foil was removed by etching. of films were produced. The film formed from liquid composition 1 had the highest surface smoothness of the resulting film.
 本発明によれば、均一性及び分散安定性に優れかつ低粘性である液状組成物が得られる。該液状組成物から得られる積層体は低誘電正接等の電気特性に優れており、例えばプリント配線基板の材料として好適に用いることができる。
 なお、2021年11月30日に出願された日本特許出願2021-193907号の明細書、特許請求の範囲及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
According to the present invention, a liquid composition having excellent uniformity and dispersion stability and low viscosity can be obtained. A laminate obtained from the liquid composition is excellent in electrical properties such as a low dielectric loss tangent, and can be suitably used as a material for printed wiring boards, for example.
In addition, the entire contents of the specification, claims and abstract of Japanese Patent Application No. 2021-193907 filed on November 30, 2021 are cited here and incorporated as disclosure of the specification of the present invention. is.

Claims (15)

  1.  テトラフルオロエチレン系ポリマーの粒子と、メジアン径d(μm)が0.6μm超20μm以下かつ前記メジアン径dと比表面積A(m/g)の積d×Aが2.7~5.0μm・m/gの球状シリカと、液状分散媒とを含む、液状組成物。 Particles of a tetrafluoroethylene-based polymer, a median diameter d (μm) of more than 0.6 μm and 20 μm or less, and a product d×A of the median diameter d and the specific surface area A (m 2 /g) of 2.7 to 5.0 μm. - A liquid composition comprising m 2 /g of spherical silica and a liquid dispersion medium.
  2.  前記テトラフルオロエチレン系ポリマーが、熱溶融性のテトラフルオロエチレン系ポリマーである、請求項1に記載の液状組成物。 The liquid composition according to claim 1, wherein the tetrafluoroethylene-based polymer is a hot-melt tetrafluoroethylene-based polymer.
  3.  前記テトラフルオロエチレン系ポリマーが、ペルフルオロ(アルキルビニルエーテル)に基づく単位を含み、酸素含有極性基を有するテトラフルオロエチレン系ポリマーである、請求項1又は2に記載の液状組成物。 The liquid composition according to claim 1 or 2, wherein the tetrafluoroethylene-based polymer contains units based on perfluoro(alkyl vinyl ether) and has an oxygen-containing polar group.
  4.  前記球状シリカの比表面積が、0.2~2.0m/gである、請求項1~3のいずれか1項に記載の液状組成物。 The liquid composition according to any one of claims 1 to 3, wherein the spherical silica has a specific surface area of 0.2 to 2.0 m 2 /g.
  5.  前記球状シリカの表面の、結合シラノール基に由来する3300~3700cm-1にある最大IRピーク強度が0.2以下である、請求項1~4のいずれか1項に記載の液状組成物。 5. The liquid composition according to any one of claims 1 to 4, wherein the maximum IR peak intensity at 3300 to 3700 cm -1 derived from bound silanol groups on the surface of said spherical silica is 0.2 or less.
  6.  前記液状組成物の全体質量に対して、前記球状シリカの含有量が10~60質量%であり、前記テトラフルオロエチレン系ポリマーの粒子の含有量が10~40質量%であり、かつ前記液状分散媒の含有量が5質量%以上である、請求項1~5のいずれか1項に記載の液状組成物。 The content of the spherical silica is 10 to 60% by mass, the content of the particles of the tetrafluoroethylene polymer is 10 to 40% by mass, and the liquid dispersion is based on the total mass of the liquid composition. The liquid composition according to any one of claims 1 to 5, wherein the content of the medium is 5% by mass or more.
  7.  前記球状シリカの含有量が前記テトラフルオロエチレン系ポリマーの粒子の含有量より多い、請求項1~6のいずれか1項に記載の液状組成物。 The liquid composition according to any one of claims 1 to 6, wherein the content of said spherical silica is greater than the content of said tetrafluoroethylene-based polymer particles.
  8.  さらに、界面活性剤を含む、請求項1~7のいずれか1項に記載の液状組成物。 The liquid composition according to any one of claims 1 to 7, further comprising a surfactant.
  9.  さらに、芳香族ポリマーを含む、請求項1~8のいずれか1項に記載の液状組成物。 The liquid composition according to any one of claims 1 to 8, further comprising an aromatic polymer.
  10.  さらに、前記球状シリカとは異なる無機フィラーを含む、請求項1~9のいずれか1項に記載の液状組成物。 The liquid composition according to any one of claims 1 to 9, further comprising an inorganic filler different from the spherical silica.
  11.  粘度が、50~1000mPa・sである、請求項1~10のいずれか1項に記載の液状組成物。 The liquid composition according to any one of claims 1 to 10, which has a viscosity of 50 to 1000 mPa·s.
  12.  前記テトラフルオロエチレン系ポリマーの粒子と、前記球状シリカと、前記液状分散媒を混合して液状組成物を得る、請求項1~11のいずれか1項に記載の液状組成物の製造方法。 The method for producing a liquid composition according to any one of claims 1 to 11, wherein the tetrafluoroethylene-based polymer particles, the spherical silica, and the liquid dispersion medium are mixed to obtain the liquid composition.
  13.  請求項1~11のいずれか1項に記載の液状組成物を製造する方法であって、
     前記テトラフルオロエチレン系ポリマーの粒子と、前記球状シリカと、前記液状分散媒の一部を含有する組成物を混練して混練物を得て、さらに前記混練物に残余の前記液状分散媒を添加し混合して前記液状組成物を得る、液状組成物の製造方法。
    A method for producing the liquid composition according to any one of claims 1 to 11,
    A composition containing the particles of the tetrafluoroethylene-based polymer, the spherical silica, and a part of the liquid dispersion medium is kneaded to obtain a kneaded material, and the remaining liquid dispersion medium is added to the kneaded material. and mixing to obtain the liquid composition.
  14.  請求項1~11のいずれか1項に記載の液状組成物を基材の表面に付与して前記液状組成物からなる液状被膜を形成し、次いで前記液状被膜から前記液状分散媒を加熱除去して、前記基材の表面上に前記テトラフルオロエチレン系ポリマー及び前記球状シリカを含むポリマー層を形成する、積層体の製造方法。 The liquid composition according to any one of claims 1 to 11 is applied to the surface of a substrate to form a liquid coating composed of the liquid composition, and then the liquid dispersion medium is removed from the liquid coating by heating. and forming a polymer layer containing the tetrafluoroethylene-based polymer and the spherical silica on the surface of the substrate.
  15.  基材と、前記基材の表面に設けられ、請求項1~11のいずれか1項に記載の液状組成物から形成されたテトラフルオロエチレン系ポリマー及び前記球状シリカを含むポリマー層とを有する、積層体。 a substrate, and a polymer layer provided on the surface of the substrate and containing a tetrafluoroethylene-based polymer formed from the liquid composition according to any one of claims 1 to 11 and the spherical silica; laminate.
PCT/JP2022/043343 2021-11-30 2022-11-24 Liquid composition, laminate, and production methods therefor WO2023100739A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-193907 2021-11-30
JP2021193907 2021-11-30

Publications (1)

Publication Number Publication Date
WO2023100739A1 true WO2023100739A1 (en) 2023-06-08

Family

ID=86612092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/043343 WO2023100739A1 (en) 2021-11-30 2022-11-24 Liquid composition, laminate, and production methods therefor

Country Status (2)

Country Link
TW (1) TW202323429A (en)
WO (1) WO2023100739A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019183005A (en) * 2018-04-11 2019-10-24 Agc株式会社 Fluorine resin sheet, laminate, and manufacturing method therefor
WO2020235532A1 (en) * 2019-05-21 2020-11-26 Agc株式会社 Dispersion solution and molded product
JP2021167368A (en) * 2020-04-09 2021-10-21 Agc株式会社 Liquid composition, and production method of laminate
WO2021221038A1 (en) * 2020-04-30 2021-11-04 Agc株式会社 Method for producing dispersion, paste, and kneaded powder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019183005A (en) * 2018-04-11 2019-10-24 Agc株式会社 Fluorine resin sheet, laminate, and manufacturing method therefor
WO2020235532A1 (en) * 2019-05-21 2020-11-26 Agc株式会社 Dispersion solution and molded product
JP2021167368A (en) * 2020-04-09 2021-10-21 Agc株式会社 Liquid composition, and production method of laminate
WO2021221038A1 (en) * 2020-04-30 2021-11-04 Agc株式会社 Method for producing dispersion, paste, and kneaded powder

Also Published As

Publication number Publication date
TW202323429A (en) 2023-06-16

Similar Documents

Publication Publication Date Title
JP5959983B2 (en) Insulating thermal conductive filler dispersion composition
WO2022145333A1 (en) Aqueous dispersion and method for producing same
WO2023100739A1 (en) Liquid composition, laminate, and production methods therefor
JP2022061412A (en) Production method of liquid composition and production method of laminate
JP2022163538A (en) Dispersion liquid and laminate
WO2023017811A1 (en) Aqueous dispersion and method for producing laminate
JP2023053792A (en) Production method of laminate
WO2023224050A1 (en) Method for producing aqueous dispersion, and aqueous dispersion
JP2024039214A (en) aqueous dispersion
WO2024075609A1 (en) Aqueous dispersion
WO2023238505A1 (en) Dispersion liquid
WO2024075610A1 (en) Water-based composition, and method for producing laminate using water-based composition
JP2023127849A (en) Method of producing polymer-layered substrate containing tetrafluoroethylene polymer
WO2024053554A1 (en) Liquid composition and method for producing laminate using liquid composition
JP2023172879A (en) Method for manufacturing laminate
JP2023075825A (en) Method for producing modified powder
WO2023276946A1 (en) Composition
WO2024053553A1 (en) Aqueous dispersion and method for producing layered product using aqueous dispersion
TW202406998A (en) Method for producing aqueous dispersion and aqueous dispersion
WO2023163025A1 (en) Composition
JP2022163625A (en) Method for producing modified dispersion liquid and dispersion liquid
CN116635161A (en) Aqueous dispersion and method for producing same
JP2022163537A (en) Aqueous dispersion liquid and method for producing laminate
WO2022259992A1 (en) Sheet
JP2023019614A (en) Composition and production method of laminate having layer formed from composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22901172

Country of ref document: EP

Kind code of ref document: A1