WO2023163025A1 - Composition - Google Patents

Composition Download PDF

Info

Publication number
WO2023163025A1
WO2023163025A1 PCT/JP2023/006416 JP2023006416W WO2023163025A1 WO 2023163025 A1 WO2023163025 A1 WO 2023163025A1 JP 2023006416 W JP2023006416 W JP 2023006416W WO 2023163025 A1 WO2023163025 A1 WO 2023163025A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
boron nitride
nitride particles
spherical
polymer
Prior art date
Application number
PCT/JP2023/006416
Other languages
French (fr)
Japanese (ja)
Inventor
敦美 光永
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2023163025A1 publication Critical patent/WO2023163025A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene

Definitions

  • the present invention relates to a predetermined composition containing particles of a tetrafluoroethylene-based polymer, spherical boron nitride particles, and non-spherical boron nitride particles.
  • Patent Document 1 proposes a powder composition of tetrafluoroethylene-based polymer particles and two types of boron nitride particles having different particle sizes.
  • a tetrafluoroethylene-based polymer has a low surface tension and low affinity with other components. Therefore, in a molded article formed from a composition in which other components are inorganic particles such as boron nitride particles, the physical properties of each component may not be sufficiently exhibited.
  • the present inventors have found that the composition of Patent Document 1 described above has a high melt viscosity during melt mixing and is difficult to improve the dispersibility of the boron nitride particles. It has been found that it is difficult to obtain a composition that is excellent in adhesiveness (peel strength) to a material and capable of forming a molded article such as a sheet.
  • the present inventors have found that a composition containing particles of a tetrafluoroethylene-based polymer and spherical and non-spherical boron nitride particles having a predetermined average particle size in a predetermined range has excellent dispersibility even if the average particle size is small.
  • the molded product has a low coefficient of linear expansion, low dielectric constant and dielectric loss tangent, and is excellent in thermal conductivity, bending resistance and adhesiveness.
  • the inventors have found that it is excellent in bendability such as bending resistance, and have arrived at the present invention. It is an object of the present invention to provide such compositions and methods for their production, methods for producing sheets and laminates obtained from such compositions, and such laminates.
  • the present invention has the following aspects.
  • [1] containing particles of a tetrafluoroethylene-based polymer, spherical boron nitride particles having an average particle diameter of 5 ⁇ m or more and 40 ⁇ m or less, and non-spherical boron nitride particles having an average particle diameter of less than 15 ⁇ m,
  • a composition wherein the mass proportion of said non-spherical boron nitride particles relative to the total mass of said boron nitride particles and said non-spherical boron nitride particles is less than 30%.
  • composition according to [1], wherein the tetrafluoroethylene-based polymer is a hot-melt tetrafluoroethylene-based polymer.
  • composition according to [1] or [2], wherein the tetrafluoroethylene-based polymer is a tetrafluoroethylene-based polymer having an oxygen-containing polar group.
  • the average particle size of the tetrafluoroethylene-based polymer particles is smaller than both the average particle size of the spherical boron nitride particles and the average particle size of the non-spherical boron nitride particles, [1] to [ 3].
  • the mass ratio of the tetrafluoroethylene-based polymer particles to the total mass of the tetrafluoroethylene-based polymer particles, the spherical boron nitride particles, and the non-spherical boron nitride particles is 20% or more and 80% or less.
  • the total content of the tetrafluoroethylene-based polymer particles, the spherical boron nitride particles, and the non-spherical boron nitride particles in the composition is 50% or more, [1] to [7] ]
  • a liquid dispersion medium Tetrafluoroethylene-based polymer particles, spherical boron nitride particles having an average particle size of 5 ⁇ m or more and 40 ⁇ m or less, non-spherical boron nitride particles having an average particle size of less than 15 ⁇ m, and a liquid dispersion medium
  • composition according to any one of [1] to [9] is extruded to form a sheet containing the tetrafluoroethylene-based polymer, the spherical boron nitride particles, and the non-spherical boron nitride particles.
  • a sheet manufacturing method is used.
  • composition according to any one of [1] to [9] is applied to the surface of a substrate and heated to obtain the tetrafluoroethylene-based polymer, the spherical boron nitride particles, and the non-spherical
  • a method for producing a laminate comprising forming a polymer layer containing boron nitride particles of and obtaining a laminate having a base material layer composed of the above base material and the above polymer layer.
  • a polymer layer containing particles [15] The laminate according to [14], wherein the polymer layer has a thickness of 20 ⁇ m or more and 100 ⁇ m or less.
  • a highly dispersible composition containing tetrafluoroethylene-based polymer particles and spherical and non-spherical boron nitride particles having a predetermined average particle size within a predetermined range. Molded articles and laminates having low linear expansion coefficients, low dielectric constants and low dielectric loss tangents, and excellent thermal conductivity, bending resistance and adhesion can be formed from such compositions. Molded articles obtained from the present composition are excellent in bendability such as flex resistance and bending resistance, even when they are thin molded articles such as sheets and films.
  • Average particle diameter (D50) is the volume-based cumulative 50% diameter of particles determined by a laser diffraction/scattering method. That is, the particle size distribution is measured by a laser diffraction/scattering method, and the cumulative curve is obtained with the total volume of the group of particles being 100%.
  • the D50 of the particles is obtained by dispersing the particles in water and analyzing them by a laser diffraction/scattering method using a laser diffraction/scattering particle size distribution analyzer (LA-920 measuring instrument manufactured by Horiba, Ltd.).
  • Melting temperature is the temperature corresponding to the maximum melting peak of the polymer as measured by differential scanning calorimetry (DSC).
  • Glass transition point (Tg) is a value determined by analyzing a polymer by dynamic viscoelasticity measurement (DMA).
  • Viscosity is determined by measuring a composition using a Brookfield viscometer at 25°C and a rotation speed of 30 rpm. The measurement is repeated 3 times, and the average value of the 3 measurements is taken.
  • the “thixotropic ratio” is a value calculated by dividing the viscosity ⁇ 1 of the composition measured at a rotation speed of 30 rpm by the viscosity ⁇ 2 measured at a rotation speed of 60 rpm. Each viscosity measurement is repeated three times, and the average value of the three measurements is taken.
  • a “unit” in a polymer means an atomic group based on the monomer formed by polymerization of the monomer.
  • the units may be units directly formed by a polymerization reaction, or may be units in which some of said units have been converted to another structure by treatment of the polymer.
  • units based on monomer a are also simply referred to as “monomer a units”.
  • the composition of the present invention (hereinafter also referred to as “this composition”) comprises particles (hereinafter also referred to as "F particles”) of a tetrafluoroethylene polymer (hereinafter also referred to as “F polymer”), Spherical boron nitride particles having an average particle size of 5 ⁇ m or more and 40 ⁇ m or less (hereinafter also referred to as “spherical BN particles”) and non-spherical boron nitride particles having an average particle size of less than 15 ⁇ m (hereinafter referred to as “non-spherical BN).
  • F particles a tetrafluoroethylene polymer
  • F polymer tetrafluoroethylene polymer
  • spherical BN particles Spherical boron nitride particles having an average particle size of 5 ⁇ m or more and 40 ⁇ m or less
  • non-spherical BN particles non-spherical boronitride particles
  • This composition has excellent dispersibility, and from this composition, the physical properties of F polymer and boron nitride particles are highly provided, the linear expansion coefficient, dielectric constant and dielectric loss tangent are low, thermal conductivity, bending resistance and Molded products with excellent adhesiveness can be formed. In particular, even a thin molded product such as a sheet or film can easily be formed to have excellent bendability such as bending resistance and bending resistance. Although the reason is not necessarily clear, it is considered as follows.
  • spherical boron nitride particles with a small average particle size are added alone to a resin for the purpose of improving physical properties such as thermal conductivity, the melt viscosity of the composition will increase and the moldability will decrease, and the thermal conductivity will be reversed. , and it tends to be difficult to fully exhibit the physical properties in the molded product.
  • non-spherical boron nitride particles such as plate-like or scale-like particles are blended alone, they are oriented in the flow direction during melt molding. direction tends to be worse.
  • improvement of these tendencies can be expected. Become.
  • the composition contains two types of boron nitride particles, spherical BN particles and non-spherical BN particles, each having an average particle size within a specific range. This makes it easier for the non-spherical BN particles to be sandwiched between two or more spherical BN particles inside the molded article made from the present composition. It is considered that the formation of a network between particles is promoted while the coating is performed, and this improves the thermal conductivity in the plane direction when the composition is formed into a sheet or film.
  • the composition contains non-spherical BN particles in a proportion less than a predetermined amount with respect to the total amount of spherical BN particles and non-spherical BN particles. It is believed that the non-spherical BN particles contained in such an excessively small amount are excellent in dispersibility and are difficult to agglomerate, promoting uniform dispersion of the F particles and the spherical BN particles. Furthermore, when the composition is processed and molded, a dense and stable packing of spherical BN particles in excess as boron nitride particles tends to form, which leads to a high degree of non-spherical BN particles in the molding.
  • the F polymer in the present invention is a polymer containing units (hereinafter also referred to as "TFE units”) based on tetrafluoroethylene (hereinafter also referred to as "TFE").
  • the F polymer may be hot-meltable or non-hot-meltable.
  • the hot-melt polymer means a polymer having a temperature at which the melt flow rate is 1 to 1000 g/10 minutes under a load of 49 N.
  • a non-thermally fusible polymer means a polymer that does not have a temperature at which the melt flow rate is 1 to 1000 g/10 minutes under a load of 49N.
  • the melting temperature of the heat-meltable F polymer is preferably 180° C. or higher, more preferably 200° C.
  • the melting temperature of the F polymer is preferably 325° C. or lower, more preferably 320° C. or lower.
  • the melting temperature of the F polymer is preferably 180 to 320°C. Within this range, the present composition tends to be excellent in processability, and a molded product formed from the present composition tends to be excellent in heat resistance.
  • the glass transition point of F polymer is preferably 50° C. or higher, more preferably 75° C. or higher.
  • the glass transition point of the F polymer is preferably 150° C. or lower, more preferably 125° C. or lower.
  • the fluorine content of the F polymer is preferably 70% by mass or more, more preferably 72 to 76% by mass.
  • Such F polymer having a high fluorine content has a low affinity with inorganic particles such as boron nitride particles, but due to the mechanism of action described above, according to the present invention, a composition (present composition) having excellent dispersibility can be obtained. be done.
  • the surface tension of the F polymer is preferably 16-26 mN/m.
  • the surface tension of the F polymer can be measured by placing a droplet of a liquid mixture for wet tension test (manufactured by Wako Pure Chemical Industries, Ltd.) specified in JIS K 6768 on a flat plate made of the F polymer. .
  • F polymers include polytetrafluoroethylene (PTFE), polymers containing TFE units and ethylene-based units, polymers containing TFE units and propylene-based units, based on TFE units and perfluoro(alkyl vinyl ether) (PAVE).
  • a polymer (PFA) containing units (PAVE units) and a polymer (FEP) containing TFE units and units based on hexafluoropropylene are preferred, PFA and FEP are more preferred, and PFA is even more preferred.
  • the F polymer preferably has oxygen-containing polar groups.
  • oxygen-containing polar group a hydroxyl group-containing group or a carbonyl group-containing group is preferable, and a carbonyl group-containing group is more preferable.
  • the F particles tend to interact with the spherical BN particles and the non-spherical BN particles, and the present composition tends to have excellent dispersibility.
  • the present composition it is easy to obtain a molded article having a low coefficient of linear expansion, a low dielectric constant and a low dielectric loss tangent, and having excellent thermal conductivity and adhesiveness.
  • the hydroxyl group-containing group is preferably a group containing an alcoholic hydroxyl group, more preferably -CF 2 CH 2 OH and -C(CF 3 ) 2 OH.
  • carbonyl group-containing groups include carboxyl group, alkoxycarbonyl group, amide group, isocyanate group, carbamate group (-OC(O)NH 2 ), acid anhydride residue (-C(O)OC(O)-), Imido residue (-C(O)NHC(O)-, etc.), formyl group, halogenoformyl group, urethane group (-NHC(O)O-), carbamoyl group (-C(O)-NH 2 ), ureido
  • the group (--NH--C(O)--NH 2 ), oxamoyl group (---NH-C(O)--C(O)--NH 2 ) and carbonate group (--OC(O)O--) are preferred, and acid an
  • the number of oxygen-containing polar groups in the F polymer is preferably 10 to 5,000, more preferably 100 to 3,000 per 1 ⁇ 10 6 carbon atoms in the main chain.
  • the number of oxygen-containing polar groups in the F polymer can be quantified by the composition of the polymer or the method described in WO2020/145133.
  • the oxygen-containing polar group may be contained in a unit based on a monomer in the F polymer, or may be contained in a terminal group of the main chain of the F polymer, the former being preferred.
  • Examples of the latter embodiment include an F polymer having an oxygen-containing polar group as a terminal group derived from a polymerization initiator, a chain transfer agent, etc., and an F polymer obtained by subjecting the F polymer to plasma treatment or ionizing radiation treatment.
  • the monomer having a carbonyl group-containing group is preferably itaconic anhydride, citraconic anhydride and 5-norbornene-2,3-dicarboxylic anhydride (hereinafter also referred to as "NAH”), more preferably NAH.
  • the F polymer is preferably a polymer having carbonyl-containing groups containing TFE units and PAVE units, comprising units based on monomers containing TFE units, PAVE units and carbonyl-containing groups, for all units: More preferably, the polymer contains 90 to 99 mol %, 0.99 to 9.97 mol %, and 0.01 to 3 mol % of these units in this order. Specific examples of such F polymers include the polymers described in WO2018/16644.
  • the F particles in the present invention are particles of the F polymer, preferably non-hollow particles.
  • D50 of F particles is preferably 0.01 ⁇ m or more, more preferably 0.3 ⁇ m or more, and even more preferably 1 ⁇ m or more.
  • D50 of the F particles is preferably less than 10 ⁇ m, more preferably less than 8 ⁇ m.
  • the present composition is excellent in dispersibility and workability.
  • it is easy to obtain a molded article having a low coefficient of linear expansion, a low dielectric constant and a low dielectric loss tangent, and having excellent thermal conductivity and adhesiveness (adhesion to a substrate).
  • the specific surface area of the F particles is preferably 1 to 25 m 2 /g.
  • the bulk density of the F particles is preferably 0.05 g/mL or more, more preferably 0.08 g/mL or more.
  • the bulk density of the F particles is preferably 0.5 g/mL or less, more preferably 0.4 g/mL or less.
  • the F particles are preferably at least particles of a heat-melting F polymer, more preferably particles of a heat-melting F polymer having a melting temperature of 180 to 320° C. and having an oxygen-containing polar group.
  • the interaction among the F particles, the spherical BN particles, and the non-spherical BN particles in the mechanism of action described above is enhanced, and aggregation of the respective particles is easily suppressed, and the dispersibility of the present composition is easily improved.
  • the F particles are preferably a mixture of heat-melting F polymer particles and non-heat-melting F polymer particles.
  • the effect of suppressing aggregation by the particles of the hot-melt F polymer and the retention effect of the fibrillation of the non-heat-meltable F polymer are balanced, and the dispersibility of the present composition is likely to be improved.
  • the molded article obtained therefrom exhibits the electrical properties of the non-thermally fusible F-polymer to a high degree, and a molded article having a particularly low dielectric loss tangent is easily obtained.
  • Particles of the heat-melting F polymer are preferably particles of the heat-melting F polymer having a melting temperature of 180 to 320° C., and a heat-melting F polymer having a melting temperature of 180 to 320° C. and having an oxygen-containing polar group. are more preferred.
  • Preferred embodiments of the heat-fusible F polymer having oxygen-containing polar groups in the heat-fusible F-polymer particles are the same as the above-described preferred embodiments of the F-polymer having oxygen-containing polar groups.
  • Particles of non-heat-melting PTFE are preferred as the particles of non-heat-melting F polymer.
  • the ratio of the particles of the hot-melt F polymer to the total mass of the two or more kinds of F particles is preferably 50% by mass or less, more preferably 40% by mass or less. Moreover, the above ratio is preferably 5% by mass or more, more preferably 10% by mass or more.
  • the D50 of the heat-fusible F-polymer particles is preferably 1-4 ⁇ m, and the D50 of the non-heat-fusible F-polymer particles is preferably 0.1-1 ⁇ m.
  • the F particles may contain a resin or an inorganic compound other than the F polymer, and may form a core-shell structure in which the F polymer is the core and the resin or inorganic compound other than the F polymer is the shell. may form a core-shell structure in which a resin or an inorganic compound other than the F polymer is used as a core.
  • resins other than F polymer include aromatic polyesters, polyamideimides, polyimides and maleimides
  • examples of inorganic compounds include silica and boron nitride.
  • the spherical BN particles contained in this composition are substantially spherical.
  • the term “substantially spherical” refers to the ratio of particles having a ratio of short diameter to long diameter (length/short diameter, aspect ratio) of 0.7 or more when observing particles with a scanning electron microscope (SEM). is 95% or more.
  • the aspect ratio of the spherical BN particles is preferably 1-5, more preferably 1-2.
  • One type of spherical BN particles may be used, or two or more types may be used. When two or more types of spherical BN particles are used, the present composition tends to be excellent in dispersibility and workability.
  • Spherical BN particles can be produced, for example, by the methods described in JP-A-2012-056818 and JP-A-5305656.
  • the average particle diameter (D50) of the spherical BN particles is 5 ⁇ m or more and 40 ⁇ m or less, preferably 10 ⁇ m or more, and more preferably 15 ⁇ m or more.
  • the spherical BN particles may be spherical aggregate particles of primary particles of boron nitride. In this case, it is preferably an aggregate of flat boron nitride primary particles such as scale-like or plate-like.
  • the non-spherical BN particles contained in the present composition are all boron nitride particles that are not contained in the above-described spherical BN particles, and their shape may be needle-like (fibrous), scale-like, plate-like, etc. Often scaly is more preferred. In this case, the present composition tends to be excellent in dispersibility and workability. In addition, it is easy to obtain a molded product having excellent electrical properties from the present composition.
  • the average particle size (D50) of the non-spherical BN particles is less than 15 ⁇ m, preferably 12 ⁇ m or less, more preferably 10 ⁇ m or less.
  • D50 of the non-spherical BN particles is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more.
  • the aspect ratio of the non-spherical BN particles is preferably greater than 5, more preferably 10 or greater.
  • the aspect ratio of the non-spherical BN particles is preferably 10,000 or less.
  • the non-spherical BN particles are preferably plate-like or scale-like. Such non-spherical BN particles are industrially produced. mentioned.
  • the composition contains F particles, spherical BN particles and non-spherical BN particles, and the mass ratio of the non-spherical BN particles to the total mass of the spherical BN elementary particles and the non-spherical BN particles is less than 30%.
  • the mass ratio of the non-spherical BN particles to the total mass of the spherical BN elementary particles and the non-spherical BN particles is preferably 25% or less, more preferably 20% or less. Such a ratio is preferably 1% or more, more preferably 5% or more.
  • the D50 of the F particles is preferably smaller than both the D50 of the spherical BN particles and the D50 of the non-spherical BN particles.
  • the D50 of the non-spherical BN particles is preferably smaller than the D50 of the spherical BN particles.
  • the ratio of D50 of spherical BN particles to D50 of non-spherical BN particles is preferably 2.5 or more, more preferably 4 or more. Also, the above ratio is preferably 8 or less.
  • the mass ratio of F particles to the total mass of F particles, spherical BN particles and non-spherical BN particles is preferably 20% or more and 80% or less.
  • the mass ratio of the F particles to the total mass of the F particles, spherical BN particles and non-spherical BN particles is more preferably 35% or more, more preferably 40% or more. Such a ratio is more preferably 70% or less, even more preferably 60% or less.
  • the total content of F particles, spherical BN particles and non-spherical BN particles in the present composition is preferably 50% by mass or more.
  • the present composition has excellent dispersibility due to the mechanism of action described above. Moreover, it is preferable from the viewpoint that a thin sheet having a low coefficient of linear expansion, a low dielectric constant and a low dielectric loss tangent, and excellent thermal conductivity, bending resistance and adhesiveness can be easily obtained from the composition.
  • the surfaces of spherical BN particles and non-spherical BN particles are preferably surface-treated with a silane coupling agent.
  • the silane coupling agent may be partially reacted and may form a polysiloxane skeleton.
  • silane coupling agents include, for example, "KBM-573”, “KBM-403", “KBM-903”, “KBE-903”, “KBM-1403”, “X-12-967C ”, “X-12-1214A”, “X-12-984S”, “X-12-1271A”, “KBP-90”, “KBM-6803”, “X-12-1287A”, “KBM-402 ”, “KBE-402”, “KBE-403”, “KR-516”, “KBM-303”, “KBM-4803”, “KBM-3063”, “KBM-13” (Shin-Etsu Chemical Co., Ltd. made).
  • a method of surface-treating the surfaces of spherical BN particles and non-spherical BN particles with a silane coupling agent includes, for example, a method of mixing a solution containing a silane coupling agent with spherical BN particles or non-spherical BN particles, followed by drying. is mentioned.
  • a mixture of the solution and the spherical BN particles or the non-spherical BN particles may be heated or hydrated to promote the reaction of the silane coupling agent.
  • the reaction catalyst may accelerate the reaction of the silane coupling agent.
  • the spherical BN particles or non-spherical BN particles surface-treated with a silane coupling agent may be pulverized or classified.
  • the spherical BN particles and non-spherical BN particles used in the present composition may be mixed in advance, and the surface treatment with the silane coupling agent described above may be performed at once.
  • the present composition may further contain other inorganic particles different from the above spherical BN particles and non-spherical BN particles within a range that does not impair the effects of the present invention.
  • the shape of the other inorganic particles may be spherical, acicular, fibrous or plate-like.
  • Inorganic compounds in other inorganic particles include, for example, carbon fiber, glass, aluminum nitride, beryllia, silica, wollastonite, talc, cerium oxide, aluminum oxide, magnesium oxide, zinc oxide, or titanium oxide.
  • the content thereof is preferably 1 to 20% by mass based on the total composition.
  • the composition may further comprise other resins different from the F polymer.
  • Such other resins may be contained as particles in the present composition, or may be dissolved or dispersed in the liquid dispersion medium when the present composition contains a liquid dispersion medium described later.
  • Other resins include polyester resins such as liquid crystalline aromatic polyesters, polyimide resins, polyamideimide resins, epoxy resins, maleimide resins, urethane resins, polyphenylene ether resins, polyphenylene oxide resins, and polyphenylene sulfide resins.
  • the other resin is preferably an aromatic polymer, more preferably at least one aromatic imide polymer selected from the group consisting of aromatic polyimides, aromatic polyamic acids, aromatic polyamideimides, and aromatic polyamideimide precursors. .
  • the aromatic polymer is preferably included in the composition as a varnish dissolved in a liquid carrier medium.
  • the present composition further contains other resins, the content thereof is preferably 0.1 to 5% by mass based on the total
  • the present composition may be in the form of a powder, a liquid containing a liquid dispersion medium (dispersion, slurry), or a paste.
  • the present composition in powder form may be further melted to form the present composition in pellet form.
  • the present composition is preferably in a liquid form (dispersion liquid form, slurry form) further containing a liquid dispersion medium.
  • the above-described action mechanism based on spherical BN particles and non-spherical BN particles is more easily expressed, thermal conductivity and It is easy to obtain a sheet with excellent bending resistance.
  • the liquid dispersion medium is preferably a compound that is liquid at 25°C under atmospheric pressure and has a boiling point of 50 to 240°C.
  • One type of liquid dispersion medium may be used, or two or more types may be used. When two liquid dispersion media are used, the two liquid dispersion media are preferably compatible with each other.
  • the liquid dispersion medium is preferably a compound selected from the group consisting of water, amides, ketones and esters.
  • Amides include, for example, N-methyl-2-pyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, N,N-dimethylpropanamide, 3-methoxy-N,N-dimethylpropanamide, 3- butoxy-N,N-dimethylpropanamide, N,N-diethylformamide, hexamethylphosphoric triamide, 1,3-dimethyl-2-imidazolidinone.
  • Ketones include, for example, acetone, methyl ethyl ketone, methyl isopropyl ketone, methyl isobutyl ketone, methyl n-pentyl ketone, methyl isopentyl ketone, 2-heptanone, cyclopentanone, cyclohexanone and cycloheptanone.
  • esters include methyl acetate, ethyl acetate, butyl acetate, methyl lactate, ethyl lactate, methyl pyruvate, ethyl pyruvate, methyl methoxypropionate, ethyl ethoxypropionate, ethyl 3-ethoxypropionate, ⁇ -butyrolactone, ⁇ -valerolactone may be mentioned.
  • the content of the liquid dispersion medium is preferably in the range of 10 to 70% by mass based on the entire composition.
  • the solid content concentration in the present composition is preferably 30% by mass or more, more preferably 40% by mass or more, and even more preferably 50% by mass or more.
  • the solid content concentration is preferably 90% by mass or less, more preferably 60% by mass or less.
  • the solid content means the total amount of substances forming the solid content in a molded product such as a sheet formed from the present composition.
  • the F particles, spherical BN particles and non-spherical BN particles are solids, and when the composition contains other resins or other inorganic particles, these other resins or other inorganic particles It is a solid content, and the total mass ratio of these components is the solid content concentration in the present composition.
  • the present composition when the present composition contains a liquid dispersion medium, the present composition preferably further contains a surfactant from the viewpoint of improving dispersion stability.
  • surfactants are preferably nonionic surfactants.
  • nonionic surfactants include "Futergent” series (manufactured by Neos), “Surflon” series (manufactured by AGC Seimi Chemical), “Megafac” series (manufactured by DIC), “Unidyne” series (manufactured by DIC).
  • the present composition contains a nonionic surfactant
  • the content of the nonionic surfactant in the present composition is preferably 0.1 to 10% by mass based on the entire present composition.
  • the composition may further contain a silane coupling agent, if necessary.
  • a silane coupling agent examples include the same silane coupling agents that may be used for surface treatment of spherical BN particles and non-spherical BN particles.
  • the content of the silane coupling agent in the present composition is preferably 0.1 to 10% by mass based on the entire present composition.
  • the present composition further contains a thixotropic agent, a viscosity modifier, an antifoaming agent, a dehydrating agent, a plasticizer, a weathering agent, an antioxidant, a heat stabilizer, a lubricant, an antistatic agent, a brightener, a colorant, Additives such as a conductive agent, a mold release agent, a surface treatment agent other than the silane coupling agent described above, and a flame retardant may be contained.
  • the viscosity thereof is preferably 10 mPa ⁇ s or more, more preferably 100 mPa ⁇ s or more.
  • the viscosity of the present composition is preferably 10000 mPa ⁇ s or less, more preferably 3000 mPa ⁇ s or less.
  • its thixotropic ratio is preferably 1.0 to 3.0.
  • the present composition contains water as a liquid dispersion medium, its pH is more preferably 8 to 10 from the viewpoint of improving long-term storage stability.
  • the pH of the present composition can be controlled by adding a pH adjuster (amine, ammonia, citric acid, etc.) or a pH buffer (tris(hydroxymethyl)aminomethane, ethylenediaminetetraacetic acid, ammonium hydrogencarbonate, ammonium carbonate, ammonium acetate, etc.).
  • a pH adjuster amine, ammonia, citric acid, etc.
  • a pH buffer tris(hydroxymethyl)aminomethane, ethylenediaminetetraacetic acid, ammonium hydrogencarbonate, ammonium carbonate, ammonium acetate, etc.
  • This composition is mixed with F particles, spherical BN particles and non-spherical BN particles, and if necessary, other resins, other inorganic particles, liquid dispersion medium, surfactants, silane coupling agents, additives, etc. obtained by
  • the present composition may be obtained by mixing F particles, spherical BN particles, and non-spherical BN particles all at once, or may be separately sequentially mixed, or a masterbatch of these may be prepared in advance, and the remaining may be mixed.
  • the order of mixing is not particularly limited, and the method of mixing may be batch mixing or mixing in multiple batches.
  • Mixing devices for obtaining the present composition include stirring devices equipped with blades such as Henschel mixers, pressure kneaders, Banbury mixers and planetary mixers, ball mills, attritors, basket mills, sand mills, sand grinders, dyno mills, Grinding equipment with media such as dispermat, SC mill, spike mill and agitator mill, microfluidizer, nanomizer, agitzer, ultrasonic homogenizer, desolver, disper, high speed impeller, thin film swirling high speed mixer, rotation and revolution stirrer and dispersing devices with other mechanisms such as V-type mixers.
  • a planetary mixer is a stirring device having two stirring blades that rotate and revolve with each other.
  • a thin-film swirling high-speed mixer is a stirring device that spreads F particles and a liquid dispersion medium in a thin film form on the inner wall surface of a cylindrical stirring tank, swirls them, and mixes them while exerting centrifugal force.
  • F particles, spherical BN particles, non-spherical BN particles and a liquid dispersion medium are preferably added all at once, and sheared to obtain the present composition.
  • the shearing treatment is preferably carried out by mixing in a tank equipped with a thin film swirl stirring mechanism or a rotation and revolution stirring mechanism, such as a thin film swirl high-speed mixer, planetary mixer, or rotation/revolution. It is preferable to carry out the shearing treatment with a stirrer.
  • liquid dispersion medium used for kneading and addition may be the same type of liquid dispersion medium or different types of liquid dispersion mediums.
  • Spherical BN particles, non-spherical BN particles, other resins, other inorganic particles, surfactants, silane coupling agents, and additives may be mixed during kneading or may be mixed during addition.
  • Mixing in kneading is preferably carried out using a planetary mixer or a rotation-revolution stirrer.
  • the kneaded product obtained by kneading may be in the form of a paste (such as a paste having a viscosity of 1,000 to 100,000 mPa s), or in the form of a wet powder (wet powder having a viscosity of 10,000 to 100,000 Pa s as measured by a capillograph. etc.).
  • the viscosity measured by a capillary graph is defined by using a capillary with a capillary length of 10 mm and a capillary radius of 1 mm, a furnace body diameter of 9.55 mm, a load cell capacity of 2 t, a temperature of 25 ° C., and a shear rate of 1 s ⁇ It is a value measured as 1 .
  • a molded product such as a sheet can be obtained by subjecting the composition to a molding method such as extrusion.
  • a molding method such as extrusion.
  • the composition is liquid containing a liquid dispersion medium, it is preferred to extrude the composition into a sheet.
  • the sheet obtained by extrusion may be further subjected to press molding, calender molding, or the like, and cast.
  • the sheet is preferably further heated to remove the liquid dispersion medium and calcine the F polymer.
  • the composition is in powder form, it is preferred to melt extrude the composition.
  • Extrusion can be carried out using a single-screw extruder, a multi-screw extruder, or the like.
  • the present composition may be injection molded to obtain a molded product.
  • the present composition When forming a molded article, the present composition may be directly melt-extruded or injection-molded.
  • the composition is melt-kneaded to form pellets, and the pellets are melt-extruded or injection-molded to form articles such as sheets. may be obtained.
  • the thickness of the sheet obtained from this composition is preferably 20 ⁇ m or more and 100 ⁇ m or less. Such a sheet is excellent in bendability such as bending resistance and folding resistance even though it is thin, due to the above-described mechanism of action of the present composition.
  • the coefficient of linear expansion of the sheet is preferably 100 ppm/°C or less, more preferably 80 ppm/°C or less.
  • the lower limit of the linear expansion coefficient of the sheet is 1 ppm/°C.
  • the coefficient of linear expansion means the value obtained by measuring the coefficient of linear expansion of the test piece in the range of 25° C. or more and 260° C. or less according to the measurement method specified in JIS C 6471:1995.
  • the thermal conductivity in the in-plane direction of the sheet is preferably 1.0 W/m ⁇ K or more, more preferably 3.0 W/m ⁇ K or more.
  • the upper limit of the sheet thermal conductivity is 100 W/m ⁇ K.
  • a laminate can be formed by laminating such a sheet on a substrate.
  • a co-extruder is used as the extruder, a method of extruding the present composition together with the raw material of the substrate, a method of extruding the present composition on the substrate, a method of extruding the sheet and the substrate
  • a method of thermocompression bonding the material and the like can be mentioned.
  • metal substrates copper, nickel, aluminum, titanium, metal foils of their alloys, etc.
  • heat-resistant resin films polyimide, polyamide, polyetheramide, polyphenylene sulfide, polyaryletherketone, polyamideimide, Liquid crystalline polyester, heat-resistant resin film such as tetrafluoroethylene polymer), prepreg substrate (precursor of fiber reinforced resin substrate), ceramic substrate (ceramic substrate such as silicon carbide, aluminum nitride, silicon nitride), glass substrate be done.
  • the shape of the base material examples include planar, curved, uneven, and the like.
  • the shape of the substrate may be any of foil, plate, film, and fiber.
  • the ten-point average roughness of the substrate surface is preferably 0.01 to 0.05 ⁇ m.
  • the surface of the substrate may be surface-treated with a silane coupling agent or plasma-treated.
  • silane coupling agents examples include 3-aminopropyltriethoxysilane, vinyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3 - Silane coupling agents with functional groups such as isocyanatopropyltriethoxysilane are preferred.
  • the peel strength between the sheet and the substrate is preferably 2 kN/m or more, more preferably 2.5 kN/m or more. The peel strength is preferably 10 kN/m or less.
  • the present composition is applied to the surface of a substrate and heated to form a polymer layer containing F polymer, spherical BN particles and non-spherical BN particles, the substrate layer composed of the substrate and the polymer A laminate having a layer is obtained.
  • the polymer layer is preferably formed by disposing the present composition containing a liquid dispersion medium on the surface of a substrate, removing the dispersion medium by heating, and baking the F polymer by further heating.
  • the base material include those similar to the base material that can be laminated with the sheet described above, and preferred embodiments thereof are also the same.
  • Examples of the method for disposing the present composition include a coating method, a droplet discharge method, and an immersion method, and roll coating, knife coating, bar coating, die coating, and spraying are preferred.
  • Heating for removing the liquid dispersion medium is preferably carried out at 100 to 200° C. for 0.1 to 30 minutes. In this heating, the liquid dispersion medium does not have to be completely removed, and may be removed to such an extent that the layer formed by the packing of F particles, spherical BN particles and non-spherical BN particles can maintain a self-supporting film. Also, during the heating, air may be blown to facilitate the removal of the liquid dispersion medium by air-drying.
  • Heating for sintering the F polymer is preferably performed at a temperature equal to or higher than the sintering temperature of the F polymer, and more preferably at 360 to 400° C. for 0.1 to 30 minutes.
  • a heating apparatus for each heating includes an oven and a ventilation drying oven.
  • the heat source in the apparatus may be a contact heat source (hot air, hot plate, etc.) or a non-contact heat source (infrared radiation, etc.). Further, each heating may be performed under normal pressure or under reduced pressure.
  • the atmosphere in each heating may be either an air atmosphere or an inert gas (helium gas, neon gas, argon gas, nitrogen gas, etc.) atmosphere.
  • the polymer layer is formed through the steps of disposing the present composition and heating. These steps may be performed once each, or may be repeated twice or more.
  • the present composition may be placed on the surface of a substrate and heated to form a polymer layer, and further the present composition may be placed on the surface of the polymer layer and heated to form a second polymer layer. .
  • the present composition may be further placed on the surface and heated to form a polymer layer.
  • the thickness of the polymer layer is preferably 20 ⁇ m or more and 100 ⁇ m or less.
  • the thickness of the polymer layer is more preferably 50 ⁇ m or less, and even more preferably less than 50 ⁇ m.
  • Such a polymer layer is excellent in bendability such as flex resistance and bending resistance even if it is thin.
  • the composition may be placed on only one surface of the substrate or may be placed on both sides of the substrate. In the former case, a laminate having a base layer and a polymer layer on one surface of the base layer is obtained, and in the latter case, a base layer and a polymer layer are obtained on both surfaces of the base layer. A laminate is obtained.
  • the laminate include a metal foil and a metal-clad laminate having a polymer layer on at least one surface of the metal foil, a polyimide film, and a multilayer film having a polymer layer on both surfaces of the polyimide film. is mentioned.
  • the preferred range of the linear expansion coefficient of the polymer layer, the thermal conductivity in the in-plane direction, and the peel strength between the polymer layer and the substrate layer is determined by the linear expansion coefficient of the sheet obtained from the present composition described above, and the thermal conductivity in the in-plane direction. It is the same as the preferred range of the peel strength between the rate and the sheet and the substrate.
  • the composition is useful as a material for imparting insulation, heat resistance, corrosion resistance, chemical resistance, water resistance, impact resistance, and thermal conductivity.
  • the present composition can be used for printed wiring boards, thermal interface materials, substrates for power modules, coils used in power devices such as motors, automotive engines, heat exchangers, vials, syringes, Ampoules, medical wires, secondary batteries such as lithium ion batteries, primary batteries such as lithium batteries, radical batteries, solar cells, fuel cells, lithium ion capacitors, hybrid capacitors, capacitors, capacitors (aluminum electrolytic capacitors, tantalum electrolytic capacitors, etc.) ), electrochromic elements, electrochemical switching elements, electrode binders, electrode separators, and electrodes (positive and negative electrodes).
  • the composition is also useful as an adhesive for bonding parts together.
  • the composition can be used for adhesion of ceramic parts, adhesion of metal parts, adhesion of electronic parts such as IC chips, resistors and capacitors on substrates of semiconductor elements and module parts, adhesion of circuit boards and heat sinks, LED It can be used for bonding chips to substrates.
  • the present composition can also be suitably used in applications requiring electrical conductivity, such as the field of printed electronics. Specifically, it can be used to manufacture energization elements in printed circuit boards, sensor electrodes, and the like.
  • Molded articles, sheets and laminates formed from the composition are useful as antenna parts, printed circuit boards, aircraft parts, automobile parts, sporting goods, food products, heat dissipation parts and the like.
  • electric wire coating materials wires for aircraft, etc.
  • enameled wire coating materials used for motors such as electric vehicles, electrical insulating tapes, insulating tapes for oil drilling, oil transportation hoses, hydrogen tanks, printed circuit boards materials, separation membranes (microfiltration membranes, ultrafiltration membranes, reverse osmosis membranes, ion exchange membranes, dialysis membranes, gas separation membranes, etc.), electrode binders (for lithium secondary batteries, fuel cells, etc.), copy rolls, Furniture, automobile dashboards, home appliance covers, sliding parts (load bearings, yaw bearings, slide shafts, valves, bearings, bushes, seals, thrust washers, wear rings, pistons, slide switches, gears, cams, belt conveyors , food conveyor belts, etc.), tension ropes, wear pads, wear strips, tube ramps
  • Molded articles, sheets and laminates formed from the present composition are particularly suitable for electronic applications such as flexible printed wiring boards for car electronics such as LED headlamps, power control units or electric control units, rigid printed wiring boards and the like. It is useful as a substrate material, a heat dissipation sheet, a heat dissipation substrate, and a heat dissipation substrate for automobiles.
  • the molded article, sheet or laminate formed from the present composition may be directly adhered to a target substrate, or may be coated with a silicone adhesive layer or the like. may be attached to the target substrate via the adhesive layer.
  • the present invention is not limited to the configurations of the above-described embodiments.
  • the present composition and laminate may be added with any other configuration in the configurations of the above-described embodiments, or may be replaced with any configuration that exhibits similar functions.
  • each of the present composition, sheet, or laminate manufacturing method may additionally have any other step in the configuration of the above embodiment, or may be replaced with any step that produces the same effect. you can
  • Example 5 F particles 1, boron nitride particles 1, and NMP are kneaded in a planetary mixer to obtain a wet powder-like dough 1, and NMP is added in multiple portions and stirred to obtain F particles 1 (30 parts by mass), boron nitride particles (30 parts by mass), and NMP (40 parts by mass) to obtain a liquid composition 5.
  • Laminate Composition 1 was applied to the surface of a long copper foil using a bar coater to form a wet film. Then, the copper foil on which the wet film was formed was passed through a drying furnace at 110° C. for 5 minutes to dry it, thereby forming a dry film. The copper foil with dry film was then heated in a nitrogen oven at 380° C. for 3 minutes. Thus, a laminate 1 having a copper foil and a polymer layer having a thickness of 100 ⁇ m containing the fused and sintered F particles 1, the boron nitride particles 1 and the boron nitride particles 3 was produced. Laminates 2-5 were produced from Compositions 2-5 in the same manner as Laminate 1.
  • the copper foil of the laminate was removed by etching with an aqueous ferric chloride solution to prepare a sheet as a single polymer layer. Cut out a 5 mm square square test piece from the prepared sheet, bend it 180 ° under the condition of a curvature radius (300 ⁇ m), apply a load (50 mN, 1 minute) from above, then bend it back, and check the appearance of the test piece according to the following criteria. evaluated with [Evaluation criteria] ⁇ : No abnormality in appearance is observed in the crease portion. ⁇ : Whitening was observed at the crease. x: Broken at the crease.
  • the present composition has excellent dispersion stability, and the laminate formed from the present composition exhibits the physical properties of the F polymer and boron nitride particles to a high degree, and exhibits peel strength (adhesiveness ), excellent thermal conductivity, and excellent bending resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention provides a composition that contains, in prescribed ranges, tetrafluoroethylene-based polymer particles and spheroidal and non-spheroidal boron nitride particles having a prescribed average particle diameter, that has excellent dispersibility, and that makes it possible to form a molded article which has low linear expansion coefficient, low dielectric constant, and low dielectric loss tangent, and which has excellent thermal conductivity, excellent bending tolerance, and excellent adhesiveness. Provided is a composition comprising: tetrafluoroethylene-based polymer particles; spheroidal boron nitride particles that have an average particle diameter of 5-40 μm; and non-spheroidal boron nitride particles that have an average particle diameter of less than 15 μm, wherein the mass ratio of the non-spheroidal boron nitride particles with respect to the total mass of the spheroidal boron nitride particles and the non-spheroidal boron nitride particles is less than 30%.

Description

組成物Composition
 本発明は、テトラフルオロエチレン系ポリマーの粒子と、球状の窒化ホウ素粒子と、非球状の窒化ホウ素粒子とを含む、所定の組成物に関する。 The present invention relates to a predetermined composition containing particles of a tetrafluoroethylene-based polymer, spherical boron nitride particles, and non-spherical boron nitride particles.
 近年、携帯電話等の移動体通信機器における高速化、高周波化に対応するため、通信機器のプリント基板の材料には高熱伝導、低線膨張係数、低誘電率かつ低誘電正接である材料が求められ、低誘電率かつ低誘電正接であるテトラフルオロエチレン系ポリマーが注目されている。
 より物性に優れた材料を得るべく、テトラフルオロエチレン系ポリマーと他の成分との組成物が検討されている。特許文献1には、テトラフルオロエチレン系ポリマーの粒子と2種の粒径の異なる窒化ホウ素の粒子との粉体組成物が提案されている。
In recent years, in order to respond to the high speed and high frequency of mobile communication devices such as mobile phones, materials with high thermal conductivity, low coefficient of linear expansion, low dielectric constant and low dielectric loss tangent are required for printed circuit boards of communication devices. A tetrafluoroethylene-based polymer, which has a low dielectric constant and a low dielectric loss tangent, has attracted attention.
Compositions of tetrafluoroethylene-based polymers and other components have been studied in order to obtain materials with better physical properties. Patent Document 1 proposes a powder composition of tetrafluoroethylene-based polymer particles and two types of boron nitride particles having different particle sizes.
特開2016-098301号公報JP 2016-098301 A
 テトラフルオロエチレン系ポリマーは表面張力が低く、他の成分との親和性が低い。そのため、他の成分が窒化ホウ素粒子のような無機粒子である組成物から形成される成形物においては、各成分の物性が充分に発現しない場合がある。
 本発明者らは、上記した特許文献1の組成物では、溶融混合の際に溶融粘度が高く窒化ホウ素粒子の分散性を高めにくいため、電気特性及び熱伝導性を備え、折曲耐性及び基材との接着性(剥離強度)に優れる、シート等の成形物を形成できる組成物が得られ難いことを知見した。
 本発明者らは、テトラフルオロエチレン系ポリマーの粒子と、所定の平均粒子径を有する球状及び非球状の窒化ホウ素粒子とを所定範囲で含む組成物はその平均粒子径が小さくとも分散性に優れており、その成形物は線膨張係数、誘電率及び誘電正接が低く、熱伝導性、折曲耐性及び接着性に優れ、特にシートやフィルム等の薄い成形物であっても耐屈曲性、折曲耐性等の折曲性に優れることを見出し、本発明に至った。
 本発明の目的は、かかる組成物及びその製造方法、かかる組成物から得られるシート及び積層体の製造方法、並びにかかる積層体の提供である。
A tetrafluoroethylene-based polymer has a low surface tension and low affinity with other components. Therefore, in a molded article formed from a composition in which other components are inorganic particles such as boron nitride particles, the physical properties of each component may not be sufficiently exhibited.
The present inventors have found that the composition of Patent Document 1 described above has a high melt viscosity during melt mixing and is difficult to improve the dispersibility of the boron nitride particles. It has been found that it is difficult to obtain a composition that is excellent in adhesiveness (peel strength) to a material and capable of forming a molded article such as a sheet.
The present inventors have found that a composition containing particles of a tetrafluoroethylene-based polymer and spherical and non-spherical boron nitride particles having a predetermined average particle size in a predetermined range has excellent dispersibility even if the average particle size is small. The molded product has a low coefficient of linear expansion, low dielectric constant and dielectric loss tangent, and is excellent in thermal conductivity, bending resistance and adhesiveness. The inventors have found that it is excellent in bendability such as bending resistance, and have arrived at the present invention.
It is an object of the present invention to provide such compositions and methods for their production, methods for producing sheets and laminates obtained from such compositions, and such laminates.
 本発明は、下記の態様を有する。
 [1]テトラフルオロエチレン系ポリマーの粒子と、平均粒子径が5μm以上40μm以下である球状の窒化ホウ素粒子と、平均粒子径が15μm未満である非球状の窒化ホウ素粒子とを含み、上記球状の窒化ホウ素粒子及び上記非球状の窒化ホウ素粒子の総質量に対する上記非球状の窒化ホウ素粒子の質量割合が30%未満である、組成物。
 [2]上記テトラフルオロエチレン系ポリマーが、熱溶融性のテトラフルオロエチレン系ポリマーである、[1]に記載の組成物。
 [3]上記テトラフルオロエチレン系ポリマーが、酸素含有極性基を有するテトラフルオロエチレン系ポリマーである、[1]又は[2]に記載の組成物。
 [4]上記テトラフルオロエチレン系ポリマーの粒子の平均粒子径が、上記球状の窒化ホウ素粒子の平均粒子径及び上記非球状の窒化ホウ素粒子の平均粒子径のいずれよりも小さい、[1]~[3]のいずれかに記載の組成物。
 [5]上記非球状の窒化ホウ素粒子の平均粒子径が、上記球状の窒化ホウ素粒子の平均粒子径よりも小さい、[1]~[4]のいずれかに記載の組成物。
 [6]上記非球状の窒化ホウ素粒子の平均粒子径に対する、上記球状の窒化ホウ素の平均粒子径の比が、2.5以上である、[1]~[5]のいずれかに記載の組成物。
 [7]上記テトラフルオロエチレン系ポリマーの粒子と上記球状の窒化ホウ素粒子と上記非球状の窒化ホウ素粒子の合計質量に対する、上記テトラフルオロエチレン系ポリマーの粒子の質量割合が20%以上80%以下である、[1]~[6]のいずれかに記載の組成物。
 [8]上記組成物中の、上記テトラフルオロエチレン系ポリマーの粒子と上記球状の窒化ホウ素粒子と上記非球状の窒化ホウ素粒子との合計含有量が50%以上である、[1]~[7]のいずれかに記載の組成物。
 [9]さらに液状分散媒を含む、[1]~[8]のいずれかに記載の組成物。
 [10]テトラフルオロエチレン系ポリマーの粒子と、平均粒子径が5μm以上40μm以下である球状の窒化ホウ素粒子と、平均粒子径が15μm未満である非球状の窒化ホウ素粒子と、液状分散媒とを剪断処理する、[9]に記載の組成物の製造方法。
 [11]上記剪断処理を、薄膜旋回による撹拌機構か、又は、自転及び公転による撹拌機構を備えた槽内にて混合して行う、[10]に記載の組成物の製造方法。
 [12][1]~[9]のいずれかに記載の組成物を押出して、上記テトラフルオロエチレン系ポリマーと、上記球状の窒化ホウ素粒子と、上記非球状の窒化ホウ素粒子とを含むシートを得る、シートの製造方法。
 [13][1]~[9]のいずれかに記載の組成物を基材の表面に付与し、加熱して、上記テトラフルオロエチレン系ポリマーと、上記球状の窒化ホウ素粒子と、上記非球状の窒化ホウ素粒子とを含むポリマー層を形成して、上記基材で構成される基材層と上記ポリマー層とを有する積層体を得る、積層体の製造方法。
 [14]基材層と、[1]~[9]のいずれかに記載の組成物から形成される、上記テトラフルオロエチレン系ポリマーと、上記球状の窒化ホウ素粒子と、上記非球状の窒化ホウ素粒子とを含むポリマー層とを有する積層体。
 [15]上記ポリマー層の厚さが20μm以上100μm以下である、[14]に記載の積層体。
The present invention has the following aspects.
[1] containing particles of a tetrafluoroethylene-based polymer, spherical boron nitride particles having an average particle diameter of 5 μm or more and 40 μm or less, and non-spherical boron nitride particles having an average particle diameter of less than 15 μm, A composition, wherein the mass proportion of said non-spherical boron nitride particles relative to the total mass of said boron nitride particles and said non-spherical boron nitride particles is less than 30%.
[2] The composition according to [1], wherein the tetrafluoroethylene-based polymer is a hot-melt tetrafluoroethylene-based polymer.
[3] The composition according to [1] or [2], wherein the tetrafluoroethylene-based polymer is a tetrafluoroethylene-based polymer having an oxygen-containing polar group.
[4] The average particle size of the tetrafluoroethylene-based polymer particles is smaller than both the average particle size of the spherical boron nitride particles and the average particle size of the non-spherical boron nitride particles, [1] to [ 3].
[5] The composition according to any one of [1] to [4], wherein the average particle size of the non-spherical boron nitride particles is smaller than the average particle size of the spherical boron nitride particles.
[6] The composition according to any one of [1] to [5], wherein the ratio of the average particle size of the spherical boron nitride to the average particle size of the non-spherical boron nitride particles is 2.5 or more. thing.
[7] The mass ratio of the tetrafluoroethylene-based polymer particles to the total mass of the tetrafluoroethylene-based polymer particles, the spherical boron nitride particles, and the non-spherical boron nitride particles is 20% or more and 80% or less. The composition according to any one of [1] to [6].
[8] The total content of the tetrafluoroethylene-based polymer particles, the spherical boron nitride particles, and the non-spherical boron nitride particles in the composition is 50% or more, [1] to [7] ] The composition according to any one of the above.
[9] The composition according to any one of [1] to [8], further comprising a liquid dispersion medium.
[10] Tetrafluoroethylene-based polymer particles, spherical boron nitride particles having an average particle size of 5 μm or more and 40 μm or less, non-spherical boron nitride particles having an average particle size of less than 15 μm, and a liquid dispersion medium The method for producing the composition according to [9], wherein the composition is sheared.
[11] The method for producing a composition according to [10], wherein the shearing treatment is performed by mixing in a tank equipped with a thin film swirl stirring mechanism or a rotation and revolution stirring mechanism.
[12] The composition according to any one of [1] to [9] is extruded to form a sheet containing the tetrafluoroethylene-based polymer, the spherical boron nitride particles, and the non-spherical boron nitride particles. A sheet manufacturing method.
[13] The composition according to any one of [1] to [9] is applied to the surface of a substrate and heated to obtain the tetrafluoroethylene-based polymer, the spherical boron nitride particles, and the non-spherical A method for producing a laminate, comprising forming a polymer layer containing boron nitride particles of and obtaining a laminate having a base material layer composed of the above base material and the above polymer layer.
[14] A substrate layer, the tetrafluoroethylene-based polymer, the spherical boron nitride particles, and the non-spherical boron nitride formed from the composition according to any one of [1] to [9] and a polymer layer containing particles.
[15] The laminate according to [14], wherein the polymer layer has a thickness of 20 μm or more and 100 μm or less.
 本発明によれば、テトラフルオロエチレン系ポリマーの粒子と、所定の平均粒子径を有する球状及び非球状の窒化ホウ素粒子とを所定範囲で含み、分散性に優れた組成物が提供される。かかる組成物からは、線膨張係数、誘電率及び誘電正接が低く、熱伝導性、折曲耐性及び接着性に優れた成形物、及び積層体を形成できる。本組成物から得られる成形物は、特にシートやフィルム等の薄い成形物であっても、耐屈曲性、折曲耐性等の折曲性に優れる。 According to the present invention, there is provided a highly dispersible composition containing tetrafluoroethylene-based polymer particles and spherical and non-spherical boron nitride particles having a predetermined average particle size within a predetermined range. Molded articles and laminates having low linear expansion coefficients, low dielectric constants and low dielectric loss tangents, and excellent thermal conductivity, bending resistance and adhesion can be formed from such compositions. Molded articles obtained from the present composition are excellent in bendability such as flex resistance and bending resistance, even when they are thin molded articles such as sheets and films.
 以下の用語は、以下の意味を有する。
 「平均粒子径(D50)」は、レーザー回折・散乱法によって求められる、粒子の体積基準累積50%径である。すなわち、レーザー回折・散乱法によって粒度分布を測定し、粒子の集団の全体積を100%として累積カーブを求め、その累積カーブ上で累積体積が50%となる点の粒子径である。
 粒子のD50は、粒子を水中に分散させ、レーザー回折・散乱式の粒度分布測定装置(堀場製作所社製、LA-920測定器)を用いたレーザー回折・散乱法により分析して求められる。
 「溶融温度」は、示差走査熱量測定(DSC)法で測定したポリマーの融解ピークの最大値に対応する温度である。
 「ガラス転移点(Tg)」は、動的粘弾性測定(DMA)法でポリマーを分析して測定される値である。
 「粘度」は、B型粘度計を用いて、25℃で回転数が30rpmの条件下で組成物を測定して求められる。測定を3回繰り返し、3回分の測定値の平均値とする。
 「チキソ比」とは、組成物の、回転数が30rpmの条件で測定される粘度ηを、回転数が60rpmの条件で測定される粘度ηで除して算出される値である。それぞれの粘度の測定は、3回繰り返し、3回分の測定値の平均値とする。
 ポリマーにおける「単位」とは、モノマーの重合により形成された前記モノマーに基づく原子団を意味する。単位は、重合反応によって直接形成された単位であってもよく、ポリマーを処理することによって前記単位の一部が別の構造に変換された単位であってもよい。以下、モノマーaに基づく単位を、単に「モノマーa単位」とも記す。
The following terms have the following meanings.
"Average particle diameter (D50)" is the volume-based cumulative 50% diameter of particles determined by a laser diffraction/scattering method. That is, the particle size distribution is measured by a laser diffraction/scattering method, and the cumulative curve is obtained with the total volume of the group of particles being 100%.
The D50 of the particles is obtained by dispersing the particles in water and analyzing them by a laser diffraction/scattering method using a laser diffraction/scattering particle size distribution analyzer (LA-920 measuring instrument manufactured by Horiba, Ltd.).
"Melting temperature" is the temperature corresponding to the maximum melting peak of the polymer as measured by differential scanning calorimetry (DSC).
"Glass transition point (Tg)" is a value determined by analyzing a polymer by dynamic viscoelasticity measurement (DMA).
"Viscosity" is determined by measuring a composition using a Brookfield viscometer at 25°C and a rotation speed of 30 rpm. The measurement is repeated 3 times, and the average value of the 3 measurements is taken.
The “thixotropic ratio” is a value calculated by dividing the viscosity η 1 of the composition measured at a rotation speed of 30 rpm by the viscosity η 2 measured at a rotation speed of 60 rpm. Each viscosity measurement is repeated three times, and the average value of the three measurements is taken.
A "unit" in a polymer means an atomic group based on the monomer formed by polymerization of the monomer. The units may be units directly formed by a polymerization reaction, or may be units in which some of said units have been converted to another structure by treatment of the polymer. Hereinafter, units based on monomer a are also simply referred to as "monomer a units".
 本発明の組成物(以下、「本組成物」とも記す。)は、テトラフルオロエチレン系ポリマー(以下、「Fポリマー」とも記す。)の粒子(以下、「F粒子」とも記す。)と、平均粒子径が5μm以上40μm以下である球状の窒化ホウ素粒子(以下、「球状BN粒子」とも記す。)と、平均粒子径が15μm未満である非球状の窒化ホウ素粒子(以下、「非球状BN粒子」とも記す。)と、を含み、前記球状の窒化ホウ素粒子及び前記非球状の窒化ホウ素粒子の総質量に対する前記非球状の窒化ホウ素粒子の質量割合が30%未満である。 The composition of the present invention (hereinafter also referred to as "this composition") comprises particles (hereinafter also referred to as "F particles") of a tetrafluoroethylene polymer (hereinafter also referred to as "F polymer"), Spherical boron nitride particles having an average particle size of 5 μm or more and 40 μm or less (hereinafter also referred to as “spherical BN particles”) and non-spherical boron nitride particles having an average particle size of less than 15 μm (hereinafter referred to as “non-spherical BN The mass ratio of the non-spherical boron nitride particles to the total mass of the spherical boron nitride particles and the non-spherical boron nitride particles is less than 30%.
 本組成物は分散性に優れ、本組成物からは、Fポリマーと窒化ホウ素粒子との物性を高度に具備し、線膨張係数、誘電率及び誘電正接が低く、熱伝導性、折曲耐性及び接着性に優れた成形物を形成できる。特にシートやフィルム等の薄い成形物であっても、耐屈曲性、折曲耐性等の折曲性に優れる成形物を形成しやすい。その理由は必ずしも明確ではないが、以下の様に考えられる。 This composition has excellent dispersibility, and from this composition, the physical properties of F polymer and boron nitride particles are highly provided, the linear expansion coefficient, dielectric constant and dielectric loss tangent are low, thermal conductivity, bending resistance and Molded products with excellent adhesiveness can be formed. In particular, even a thin molded product such as a sheet or film can easily be formed to have excellent bendability such as bending resistance and bending resistance. Although the reason is not necessarily clear, it is considered as follows.
 熱伝導性等の物性改良を目的として、平均粒子径が小さい球状の窒化ホウ素粒子を単独で樹脂に配合すると、組成物の溶融粘度が上昇して成形性が低下したり、熱伝導率が逆に低下し、成形物においてその物性を充分に発現し難くなる傾向がある。また、平板状や鱗片状などの非球状である窒化ホウ素粒子を単独で配合した場合、溶融成形時の流動方向に配向するため、得られるシート等の成形物の面方向の熱伝導率は長手方向に比べて悪くなる傾向がある。球状の窒化ホウ素粒子と非球状である窒化ホウ素粒子の2種を併用して樹脂で配合した場合には、これらの傾向の改善が期待される反面、組成物の形態や成形条件が制約されやすくなる。 If spherical boron nitride particles with a small average particle size are added alone to a resin for the purpose of improving physical properties such as thermal conductivity, the melt viscosity of the composition will increase and the moldability will decrease, and the thermal conductivity will be reversed. , and it tends to be difficult to fully exhibit the physical properties in the molded product. In addition, when non-spherical boron nitride particles such as plate-like or scale-like particles are blended alone, they are oriented in the flow direction during melt molding. direction tends to be worse. When two kinds of particles, spherical boron nitride particles and non-spherical boron nitride particles, are mixed in a resin, improvement of these tendencies can be expected. Become.
 本組成物では、球状BN粒子と非球状BN粒子の2種の窒化ホウ素粒子を含み、それぞれが特定範囲の平均粒子径を有する。これにより、本組成物から作成された成形品の内部で、2個以上の球状BN粒子の間に非球状BN粒子が挟まれ易くなる、換言すれば、球状BN粒子の表面を非球状BN粒子が被覆しつつ、粒子間のネットワークの形成が促され、これが組成物をシート化又はフィルム化した際の面方向の熱伝導性を向上させていると考えられる。 The composition contains two types of boron nitride particles, spherical BN particles and non-spherical BN particles, each having an average particle size within a specific range. This makes it easier for the non-spherical BN particles to be sandwiched between two or more spherical BN particles inside the molded article made from the present composition. It is considered that the formation of a network between particles is promoted while the coating is performed, and this improves the thermal conductivity in the plane direction when the composition is formed into a sheet or film.
 特に、本組成物は、非球状BN粒子を、球状BN粒子及び非球状BN粒子の総量に対して、所定未満の割合で含んでいる。かかる過小に含まれる非球状BN粒子は、分散性に優れ凝集し難く、F粒子及び球状BN粒子の均一分散を促していると考えられる。さらに、本組成物を加工して成形する際に、窒化ホウ素粒子として過剰に含まれる球状BN粒子の緻密で安定な充填が形成されやすくなり、これが成形物中での非球状BN粒子の高度な配向配置を促している、換言すれば、成形物中で非球状BN粒子による熱伝導パスの形成を促しており、また成形物の折曲耐性の向上に寄与しているとも考えられる。
 その結果、Fポリマーと窒化ホウ素粒子との物性を高度に具備し、具体的には、線膨張係数、誘電率及び誘電正接が低く、熱伝導性、折曲耐性及び接着性に優れた、特にシートやフィルム等の薄い成形物が本組成物から得られたと考えられる。
 なお、本明細書では、以後、「シート」を、シート及びフィルムの両者を総称する用語として用いる。
In particular, the composition contains non-spherical BN particles in a proportion less than a predetermined amount with respect to the total amount of spherical BN particles and non-spherical BN particles. It is believed that the non-spherical BN particles contained in such an excessively small amount are excellent in dispersibility and are difficult to agglomerate, promoting uniform dispersion of the F particles and the spherical BN particles. Furthermore, when the composition is processed and molded, a dense and stable packing of spherical BN particles in excess as boron nitride particles tends to form, which leads to a high degree of non-spherical BN particles in the molding. In other words, it promotes the formation of heat conduction paths by the non-spherical BN particles in the molded product, and also contributes to the improvement of the bending resistance of the molded product.
As a result, the physical properties of the F polymer and the boron nitride particles are highly provided, specifically, the coefficient of linear expansion, the dielectric constant and the dielectric loss tangent are low, and the thermal conductivity, bending resistance and adhesiveness are excellent. It is believed that thin moldings such as sheets and films were obtained from this composition.
In this specification, hereinafter, the term "sheet" is used as a generic term for both sheets and films.
 本発明におけるFポリマーは、テトラフルオロエチレン(以下、「TFE」とも記す。)に基づく単位(以下、「TFE単位」とも記す。)を含むポリマーである。
 Fポリマーは熱溶融性であってもよく、非熱溶融性であってもよい。ここで、熱溶融性のポリマーとは、荷重49Nの条件下、溶融流れ速度が1~1000g/10分となる温度が存在するポリマーを意味する。また非熱溶融性のポリマーとは、荷重49Nの条件下、溶融流れ速度が1~1000g/10分となる温度が存在しないポリマーを意味する。
 熱溶融性であるFポリマーの溶融温度は、180℃以上が好ましく、200℃以上がより好ましく、260℃以上がさらに好ましい。前記Fポリマーの溶融温度は、325℃以下が好ましく、320℃以下がより好ましい。前記Fポリマーの溶融温度は、180~320℃が好ましい。この範囲内であれば、本組成物が加工性に優れやすく、また、本組成物から形成される成形物が耐熱性に優れやすい。
The F polymer in the present invention is a polymer containing units (hereinafter also referred to as "TFE units") based on tetrafluoroethylene (hereinafter also referred to as "TFE").
The F polymer may be hot-meltable or non-hot-meltable. Here, the hot-melt polymer means a polymer having a temperature at which the melt flow rate is 1 to 1000 g/10 minutes under a load of 49 N. A non-thermally fusible polymer means a polymer that does not have a temperature at which the melt flow rate is 1 to 1000 g/10 minutes under a load of 49N.
The melting temperature of the heat-meltable F polymer is preferably 180° C. or higher, more preferably 200° C. or higher, and even more preferably 260° C. or higher. The melting temperature of the F polymer is preferably 325° C. or lower, more preferably 320° C. or lower. The melting temperature of the F polymer is preferably 180 to 320°C. Within this range, the present composition tends to be excellent in processability, and a molded product formed from the present composition tends to be excellent in heat resistance.
 Fポリマーのガラス転移点は、50℃以上が好ましく、75℃以上がより好ましい。Fポリマーのガラス転移点は、150℃以下が好ましく、125℃以下がより好ましい。
 Fポリマーのフッ素含有量は、70質量%以上が好ましく、72~76質量%がより好ましい。かかるフッ素含有量の高いFポリマーは、窒化ホウ素粒子をはじめ無機粒子との親和性が低いが、上述した作用機構により、本発明によれば分散性に優れた組成物(本組成物)が得られる。
 Fポリマーの表面張力は、16~26mN/mが好ましい。なお、Fポリマーの表面張力は、Fポリマーで作製された平板上に、JIS K 6768に規定されているぬれ張力試験用混合液(和光純薬社製)の液滴を載置して測定できる。
The glass transition point of F polymer is preferably 50° C. or higher, more preferably 75° C. or higher. The glass transition point of the F polymer is preferably 150° C. or lower, more preferably 125° C. or lower.
The fluorine content of the F polymer is preferably 70% by mass or more, more preferably 72 to 76% by mass. Such F polymer having a high fluorine content has a low affinity with inorganic particles such as boron nitride particles, but due to the mechanism of action described above, according to the present invention, a composition (present composition) having excellent dispersibility can be obtained. be done.
The surface tension of the F polymer is preferably 16-26 mN/m. The surface tension of the F polymer can be measured by placing a droplet of a liquid mixture for wet tension test (manufactured by Wako Pure Chemical Industries, Ltd.) specified in JIS K 6768 on a flat plate made of the F polymer. .
 Fポリマーとしては、ポリテトラフルオロエチレン(PTFE)、TFE単位とエチレンに基づく単位とを含むポリマー、TFE単位とプロピレンに基づく単位とを含むポリマー、TFE単位とペルフルオロ(アルキルビニルエーテル)(PAVE)に基づく単位(PAVE単位)とを含むポリマー(PFA)、TFE単位とヘキサフルオロプロピレンに基づく単位とを含むポリマー(FEP)が好ましく、PFA及びFEPがより好ましく、PFAがさらに好ましい。これらのポリマーは、さらに他のコモノマーに基づく単位を含んでいてもよい。
 PAVEとしては、CF=CFOCF、CF=CFOCFCF及びCF=CFOCFCFCF(以下、「PPVE」とも記す。)が好ましく、PPVEがより好ましい。
F polymers include polytetrafluoroethylene (PTFE), polymers containing TFE units and ethylene-based units, polymers containing TFE units and propylene-based units, based on TFE units and perfluoro(alkyl vinyl ether) (PAVE). A polymer (PFA) containing units (PAVE units) and a polymer (FEP) containing TFE units and units based on hexafluoropropylene are preferred, PFA and FEP are more preferred, and PFA is even more preferred. These polymers may also contain units based on other comonomers.
PAVE is preferably CF 2 =CFOCF 3 , CF 2 =CFOCF 2 CF 3 and CF 2 =CFOCF 2 CF 2 CF 3 (hereinafter also referred to as “PPVE”), more preferably PPVE.
 Fポリマーは、酸素含有極性基を有するのが好ましい。酸素含有極性基としては、水酸基含有基又はカルボニル基含有基が好ましく、カルボニル基含有基がより好ましい。
 この場合、F粒子が球状BN粒子及び非球状BN粒子と相互作用しやすく、本組成物が分散性に優れやすい。また、本組成物から、線膨張係数、誘電率及び誘電正接が低く、熱伝導性及び接着性に優れた成形物を得やすい。
 水酸基含有基は、アルコール性水酸基を含有する基が好ましく、-CFCHOH及び-C(CFOHがより好ましい。
 カルボニル基含有基としては、カルボキシル基、アルコキシカルボニル基、アミド基、イソシアネート基、カルバメート基(-OC(O)NH)、酸無水物残基(-C(O)OC(O)-)、イミド残基(-C(O)NHC(O)-等)、ホルミル基、ハロゲノホルミル基、ウレタン基(-NHC(O)O-)、カルバモイル基(-C(O)-NH)、ウレイド基(-NH-C(O)-NH)、オキサモイル基(-NH-C(O)-C(O)-NH)及びカーボネート基(-OC(O)O-)が好ましく、酸無水物残基がより好ましい。
 Fポリマーが酸素含有極性基を有する場合、Fポリマーにおける酸素含有極性基の数は、主鎖の炭素数1×10個あたり、10~5000個が好ましく、100~3000個がより好ましい。なお、Fポリマーにおける酸素含有極性基の数は、ポリマーの組成又は国際公開第2020/145133号に記載の方法によって定量できる。
The F polymer preferably has oxygen-containing polar groups. As the oxygen-containing polar group, a hydroxyl group-containing group or a carbonyl group-containing group is preferable, and a carbonyl group-containing group is more preferable.
In this case, the F particles tend to interact with the spherical BN particles and the non-spherical BN particles, and the present composition tends to have excellent dispersibility. In addition, from the present composition, it is easy to obtain a molded article having a low coefficient of linear expansion, a low dielectric constant and a low dielectric loss tangent, and having excellent thermal conductivity and adhesiveness.
The hydroxyl group-containing group is preferably a group containing an alcoholic hydroxyl group, more preferably -CF 2 CH 2 OH and -C(CF 3 ) 2 OH.
Examples of carbonyl group-containing groups include carboxyl group, alkoxycarbonyl group, amide group, isocyanate group, carbamate group (-OC(O)NH 2 ), acid anhydride residue (-C(O)OC(O)-), Imido residue (-C(O)NHC(O)-, etc.), formyl group, halogenoformyl group, urethane group (-NHC(O)O-), carbamoyl group (-C(O)-NH 2 ), ureido The group (--NH--C(O)--NH 2 ), oxamoyl group (--NH--C(O)--C(O)--NH 2 ) and carbonate group (--OC(O)O--) are preferred, and acid anhydride is more preferred.
When the F polymer has oxygen-containing polar groups, the number of oxygen-containing polar groups in the F polymer is preferably 10 to 5,000, more preferably 100 to 3,000 per 1×10 6 carbon atoms in the main chain. The number of oxygen-containing polar groups in the F polymer can be quantified by the composition of the polymer or the method described in WO2020/145133.
 酸素含有極性基は、Fポリマー中のモノマーに基づく単位に含まれていてもよく、Fポリマーの主鎖の末端基に含まれていてもよく、前者が好ましい。後者の態様としては、重合開始剤、連鎖移動剤等に由来する末端基として酸素含有極性基を有するFポリマー、Fポリマーをプラズマ処理や電離線処理して得られるFポリマーが挙げられる。
 カルボニル基含有基を有するモノマーは、無水イタコン酸、無水シトラコン酸及び5-ノルボルネン-2,3-ジカルボン酸無水物(以下、「NAH」とも記す。)が好ましく、NAHがより好ましい。
The oxygen-containing polar group may be contained in a unit based on a monomer in the F polymer, or may be contained in a terminal group of the main chain of the F polymer, the former being preferred. Examples of the latter embodiment include an F polymer having an oxygen-containing polar group as a terminal group derived from a polymerization initiator, a chain transfer agent, etc., and an F polymer obtained by subjecting the F polymer to plasma treatment or ionizing radiation treatment.
The monomer having a carbonyl group-containing group is preferably itaconic anhydride, citraconic anhydride and 5-norbornene-2,3-dicarboxylic anhydride (hereinafter also referred to as "NAH"), more preferably NAH.
 Fポリマーは、TFE単位及びPAVE単位を含む、カルボニル基含有基を有するポリマーであるのが好ましく、TFE単位、PAVE単位及びカルボニル基含有基を有するモノマーに基づく単位を含み、全単位に対して、これらの単位をこの順に、90~99モル%、0.99~9.97モル%、0.01~3モル%含むポリマーであるのがさらに好ましい。かかるFポリマーの具体例としては、国際公開第2018/16644号に記載されるポリマーが挙げられる。 The F polymer is preferably a polymer having carbonyl-containing groups containing TFE units and PAVE units, comprising units based on monomers containing TFE units, PAVE units and carbonyl-containing groups, for all units: More preferably, the polymer contains 90 to 99 mol %, 0.99 to 9.97 mol %, and 0.01 to 3 mol % of these units in this order. Specific examples of such F polymers include the polymers described in WO2018/16644.
 本発明におけるF粒子は、Fポリマーの粒子であり、非中空状の粒子であるのが好ましい。F粒子のD50は、0.01μm以上が好ましく、0.3μm以上がより好ましく、1μm以上がさらに好ましい。F粒子のD50は、10μm未満が好ましく、8μm未満がより好ましい。この場合、本組成物が分散性と加工性に優れる。また、本組成物から、線膨張係数、誘電率及び誘電正接が低く、熱伝導性及び接着性(基材との密着性)に優れた成形物を得やすい。
 F粒子の比表面積は、1~25m/gが好ましい。
 本組成物の分散安定性の観点から、F粒子の嵩密度は0.05g/mL以上が好ましく、0.08g/mL以上がより好ましい。F粒子の嵩密度は0.5g/mL以下が好ましく、0.4g/mL以下がより好ましい。
The F particles in the present invention are particles of the F polymer, preferably non-hollow particles. D50 of F particles is preferably 0.01 μm or more, more preferably 0.3 μm or more, and even more preferably 1 μm or more. D50 of the F particles is preferably less than 10 μm, more preferably less than 8 μm. In this case, the present composition is excellent in dispersibility and workability. In addition, from the present composition, it is easy to obtain a molded article having a low coefficient of linear expansion, a low dielectric constant and a low dielectric loss tangent, and having excellent thermal conductivity and adhesiveness (adhesion to a substrate).
The specific surface area of the F particles is preferably 1 to 25 m 2 /g.
From the viewpoint of dispersion stability of the present composition, the bulk density of the F particles is preferably 0.05 g/mL or more, more preferably 0.08 g/mL or more. The bulk density of the F particles is preferably 0.5 g/mL or less, more preferably 0.4 g/mL or less.
 F粒子は、1種を用いてもよく、2種以上を用いてもよい。F粒子は、少なくとも、熱溶融性Fポリマーの粒子であるのが好ましく、溶融温度が180~320℃であり、酸素含有極性基を有する熱溶融性Fポリマーの粒子であるのがより好ましい。この場合、上述した作用機構におけるF粒子と球状BN粒子と非球状BN粒子間の相互作用が高まり、それぞれの粒子の凝集も抑制されやすくなり、本組成物の分散性が向上しやすい。 One type of F particles may be used, or two or more types may be used. The F particles are preferably at least particles of a heat-melting F polymer, more preferably particles of a heat-melting F polymer having a melting temperature of 180 to 320° C. and having an oxygen-containing polar group. In this case, the interaction among the F particles, the spherical BN particles, and the non-spherical BN particles in the mechanism of action described above is enhanced, and aggregation of the respective particles is easily suppressed, and the dispersibility of the present composition is easily improved.
 2種以上のF粒子を用いる場合、F粒子は、熱溶融性Fポリマーの粒子と非熱溶融性Fポリマーの粒子の混合物であるのが好ましい。この場合、熱溶融性Fポリマーの粒子による凝集抑制作用と、非熱溶融性Fポリマーのフィブリル化による保持作用とがバランスし、本組成物の分散性が向上しやすい。また、それから得られる成形物において、非熱溶融性Fポリマーの電気特性が高度に発現し、特に誘電正接の低い成形物が得られ易い。
 熱溶融性Fポリマーの粒子としては、溶融温度が180~320℃である熱溶融性Fポリマーの粒子が好ましく、溶融温度が180~320℃であり、酸素含有極性基を有する熱溶融性Fポリマーの粒子がより好ましい。熱溶融性Fポリマーの粒子における、酸素含有極性基を有する熱溶融性Fポリマーの好適態様は、上述の酸素含有極性基を有するFポリマーにおける好適態様と同様である。
 非熱溶融性Fポリマーの粒子としては、非熱溶融性PTFEの粒子が好ましい。
 また、2種以上のF粒子の総質量における熱溶融性Fポリマーの粒子の割合は50質量%以下が好ましく、40質量積%以下がより好ましい。また、上記割合は5質量%以上が好ましく、10質量%以上がより好ましい。
 また、熱溶融性Fポリマーの粒子のD50は1~4μmであり、かつ、非熱溶融性Fポリマーの粒子のD50は0.1~1μmであるのが好ましい。
When two or more types of F particles are used, the F particles are preferably a mixture of heat-melting F polymer particles and non-heat-melting F polymer particles. In this case, the effect of suppressing aggregation by the particles of the hot-melt F polymer and the retention effect of the fibrillation of the non-heat-meltable F polymer are balanced, and the dispersibility of the present composition is likely to be improved. In addition, the molded article obtained therefrom exhibits the electrical properties of the non-thermally fusible F-polymer to a high degree, and a molded article having a particularly low dielectric loss tangent is easily obtained.
Particles of the heat-melting F polymer are preferably particles of the heat-melting F polymer having a melting temperature of 180 to 320° C., and a heat-melting F polymer having a melting temperature of 180 to 320° C. and having an oxygen-containing polar group. are more preferred. Preferred embodiments of the heat-fusible F polymer having oxygen-containing polar groups in the heat-fusible F-polymer particles are the same as the above-described preferred embodiments of the F-polymer having oxygen-containing polar groups.
Particles of non-heat-melting PTFE are preferred as the particles of non-heat-melting F polymer.
In addition, the ratio of the particles of the hot-melt F polymer to the total mass of the two or more kinds of F particles is preferably 50% by mass or less, more preferably 40% by mass or less. Moreover, the above ratio is preferably 5% by mass or more, more preferably 10% by mass or more.
The D50 of the heat-fusible F-polymer particles is preferably 1-4 μm, and the D50 of the non-heat-fusible F-polymer particles is preferably 0.1-1 μm.
 F粒子は、Fポリマー以外の樹脂や無機化合物を含んでいてもよく、FポリマーをコアとしFポリマー以外の樹脂又は無機化合物をシェルとするコア-シェル構造を形成していてもよく、FポリマーをシェルとしFポリマー以外の樹脂又は無機化合物をコアとするコア-シェル構造を形成していてもよい。
 ここで、Fポリマー以外の樹脂としては、芳香族ポリエステル、ポリアミドイミド、ポリイミド、マレイミドが挙げられ、無機化合物としては、シリカ、窒化ホウ素が挙げられる。
The F particles may contain a resin or an inorganic compound other than the F polymer, and may form a core-shell structure in which the F polymer is the core and the resin or inorganic compound other than the F polymer is the shell. may form a core-shell structure in which a resin or an inorganic compound other than the F polymer is used as a core.
Here, examples of resins other than F polymer include aromatic polyesters, polyamideimides, polyimides and maleimides, and examples of inorganic compounds include silica and boron nitride.
 本組成物が含む球状BN粒子は略真球状である。ここで略真球状とは、走査型電子顕微鏡(SEM)によって粒子を観察した際に、長径に対する短径の比(長形/短径、アスペクト比)が0.7以上である粒子の占める割合が95%以上であることを意味する。球状BN粒子のアスペクト比は1~5であるのが好ましく、1~2であるのがより好ましい。
 球状BN粒子は1種を用いてもよく、2種以上を用いてもよいが、球状BN粒子が2種以上である場合、本組成物が分散性と加工性に優れやすい。また、本組成物から熱伝導性や電気特性に優れた成形物を得やすい。
 球状BN粒子は、例えば特開2012-056818号公報、特許第5305656号公報に記載の方法により製造できる。
 球状BN粒子の平均粒子径(D50)は5μm以上40μm以下であり、10μm以上が好ましく、15μm以上がより好ましい。
 球状BN粒子は窒化ホウ素の一次粒子の球状凝集体粒子であってもよい。この場合、鱗片状又は板状等の平板状の窒化ホウ素一次粒子の凝集体であることが好ましい。
The spherical BN particles contained in this composition are substantially spherical. Here, the term “substantially spherical” refers to the ratio of particles having a ratio of short diameter to long diameter (length/short diameter, aspect ratio) of 0.7 or more when observing particles with a scanning electron microscope (SEM). is 95% or more. The aspect ratio of the spherical BN particles is preferably 1-5, more preferably 1-2.
One type of spherical BN particles may be used, or two or more types may be used. When two or more types of spherical BN particles are used, the present composition tends to be excellent in dispersibility and workability. In addition, it is easy to obtain a molded article having excellent thermal conductivity and electrical properties from the present composition.
Spherical BN particles can be produced, for example, by the methods described in JP-A-2012-056818 and JP-A-5305656.
The average particle diameter (D50) of the spherical BN particles is 5 μm or more and 40 μm or less, preferably 10 μm or more, and more preferably 15 μm or more.
The spherical BN particles may be spherical aggregate particles of primary particles of boron nitride. In this case, it is preferably an aggregate of flat boron nitride primary particles such as scale-like or plate-like.
 本組成物が含む非球状BN粒子とは、前記した球状BN粒子に含まれない窒化ホウ素粒子全般であり、その形状は針状(繊維状)、鱗片状、板状等のいずれであってもよく、鱗片状であるのがより好ましい。この場合、本組成物が分散性と加工性に優れやすい。また、本組成物から電気特性に優れた成形物を得やすい。
 非球状BN粒子の平均粒子径(D50)は15μm未満であり、12μm以下であるのが好ましく、10μm以下であるのがより好ましい。非球状BN粒子のD50は、1μm以上が好ましく、3μm以上がより好ましい。
 非球状BN粒子のアスペクト比は5超であるのが好ましく、10以上がより好ましい。非球状BN粒子のアスペクト比は、10000以下であるのが好ましい。
 非球状BN粒子は板状又は鱗片状であるのが好ましい。このような非球状BN粒子は工業的に製造されており、例えば「UHP」シリーズ(昭和電工社製)、「デンカボロンナイトライド」シリーズの「GP」、「HGP」グレード(デンカ社製)が挙げられる。
The non-spherical BN particles contained in the present composition are all boron nitride particles that are not contained in the above-described spherical BN particles, and their shape may be needle-like (fibrous), scale-like, plate-like, etc. Often scaly is more preferred. In this case, the present composition tends to be excellent in dispersibility and workability. In addition, it is easy to obtain a molded product having excellent electrical properties from the present composition.
The average particle size (D50) of the non-spherical BN particles is less than 15 μm, preferably 12 μm or less, more preferably 10 μm or less. D50 of the non-spherical BN particles is preferably 1 μm or more, more preferably 3 μm or more.
The aspect ratio of the non-spherical BN particles is preferably greater than 5, more preferably 10 or greater. The aspect ratio of the non-spherical BN particles is preferably 10,000 or less.
The non-spherical BN particles are preferably plate-like or scale-like. Such non-spherical BN particles are industrially produced. mentioned.
 本組成物はF粒子、球状BN粒子及び非球状BN粒子を含み、球状BN素粒子及び非球状BN粒子の総質量に対する非球状BN粒子の質量割合が30%未満である。球状BN素粒子及び非球状BN粒子の総質量に対する非球状BN粒子の質量割合は、25%以下であるのが好ましく、20%以下であるのがより好ましい。かかる割合は、1%以上であるのが好ましく、5%以上であるのがより好ましい。
 本組成物において、F粒子のD50が、球状BN粒子のD50及び非球状BN粒子のD50のいずれよりも小さいことが好ましい。
 また、本組成物において、非球状BN粒子のD50が、球状BN粒子のD50よりも小さいことが好ましい。
 非球状BN粒子のD50に対する、球状BN粒子のD50の比は、2.5以上であることが好ましく、4以上であることがより好ましい。また、上記比は、8以下が好ましい。
The composition contains F particles, spherical BN particles and non-spherical BN particles, and the mass ratio of the non-spherical BN particles to the total mass of the spherical BN elementary particles and the non-spherical BN particles is less than 30%. The mass ratio of the non-spherical BN particles to the total mass of the spherical BN elementary particles and the non-spherical BN particles is preferably 25% or less, more preferably 20% or less. Such a ratio is preferably 1% or more, more preferably 5% or more.
In the present composition, the D50 of the F particles is preferably smaller than both the D50 of the spherical BN particles and the D50 of the non-spherical BN particles.
Moreover, in the present composition, the D50 of the non-spherical BN particles is preferably smaller than the D50 of the spherical BN particles.
The ratio of D50 of spherical BN particles to D50 of non-spherical BN particles is preferably 2.5 or more, more preferably 4 or more. Also, the above ratio is preferably 8 or less.
 本組成物において、F粒子と球状BN粒子と非球状BN粒子の合計質量に対する、F粒子の質量割合が20%以上80%以下であるのが好ましい。F粒子と球状BN粒子と非球状BN粒子の合計質量に対する、F粒子の質量割合は35%以上であるのがより好ましく、40%以上がさらに好ましい。かかる割合は70%以下であるのがより好ましく、60%以下がさらに好ましい。
 本組成物中の、F粒子と球状BN粒子と非球状BN粒子との合計含有量は50質量%以上であるのが好ましい。
 F粒子、球状BN粒子及び非球状BN粒子の含有量、含有量比や、それぞれの粒子のD50の関係がかかる範囲である場合、上述の作用機構により本組成物が分散性に優れる。また、本組成物から線膨張係数、誘電率及び誘電正接が低く、熱伝導性、折曲耐性及び接着性に優れた、薄いシートを得やすい観点から好ましい。
In the present composition, the mass ratio of F particles to the total mass of F particles, spherical BN particles and non-spherical BN particles is preferably 20% or more and 80% or less. The mass ratio of the F particles to the total mass of the F particles, spherical BN particles and non-spherical BN particles is more preferably 35% or more, more preferably 40% or more. Such a ratio is more preferably 70% or less, even more preferably 60% or less.
The total content of F particles, spherical BN particles and non-spherical BN particles in the present composition is preferably 50% by mass or more.
When the content and content ratio of the F particles, the spherical BN particles and the non-spherical BN particles, and the D50 relationship of the respective particles are within such ranges, the present composition has excellent dispersibility due to the mechanism of action described above. Moreover, it is preferable from the viewpoint that a thin sheet having a low coefficient of linear expansion, a low dielectric constant and a low dielectric loss tangent, and excellent thermal conductivity, bending resistance and adhesiveness can be easily obtained from the composition.
 本組成物において、球状BN粒子及び非球状BN粒子の表面は、シランカップリング剤で表面処理されているのが好ましい。
 シランカップリング剤は、部分的に反応していてもよく、ポリシロキサン骨格を形成していてもよい。
 シランカップリング剤の具体的な製品としては、例えば、「KBM-573」、「KBM-403」、「KBM-903」、「KBE-903」、「KBM-1403」、「X-12-967C」、「X-12-1214A」、「X-12-984S」、「X-12-1271A」、「KBP-90」、「KBM-6803」、「X-12-1287A」、「KBM-402」、「KBE-402」、「KBE-403」、「KR-516」「KBM-303」、「KBM-4803」、「KBM-3063」、「KBM-13」(以上、信越化学工業株式会社製)が挙げられる。
In the present composition, the surfaces of spherical BN particles and non-spherical BN particles are preferably surface-treated with a silane coupling agent.
The silane coupling agent may be partially reacted and may form a polysiloxane skeleton.
Specific products of silane coupling agents include, for example, "KBM-573", "KBM-403", "KBM-903", "KBE-903", "KBM-1403", "X-12-967C ”, “X-12-1214A”, “X-12-984S”, “X-12-1271A”, “KBP-90”, “KBM-6803”, “X-12-1287A”, “KBM-402 ”, “KBE-402”, “KBE-403”, “KR-516”, “KBM-303”, “KBM-4803”, “KBM-3063”, “KBM-13” (Shin-Etsu Chemical Co., Ltd. made).
 球状BN粒子及び非球状BN粒子の表面をシランカップリング剤で表面処理する方法としては、例えば、シランカップリング剤を含む溶液と、球状BN粒子又は非球状BN粒子を混合処理し、乾燥する方法が挙げられる。混合処理においては、前記溶液と前記球状BN粒子又は非球状BN粒子の混合物を加熱又は加水して、シランカップリング剤の反応を促してもよい。また、反応触媒によって、シランカップリング剤の反応を加速させてもよい。さらに、乾燥後、シランカップリング剤で表面処理された球状BN粒子又は非球状BN粒子を解砕してもよく、分級してもよい。
 なお、本組成物に用いる球状BN粒子及び非球状BN粒子を予め混合して、上記したシランカップリング剤での表面処理を一度に行ってもよい。
A method of surface-treating the surfaces of spherical BN particles and non-spherical BN particles with a silane coupling agent includes, for example, a method of mixing a solution containing a silane coupling agent with spherical BN particles or non-spherical BN particles, followed by drying. is mentioned. In the mixing treatment, a mixture of the solution and the spherical BN particles or the non-spherical BN particles may be heated or hydrated to promote the reaction of the silane coupling agent. Also, the reaction catalyst may accelerate the reaction of the silane coupling agent. Furthermore, after drying, the spherical BN particles or non-spherical BN particles surface-treated with a silane coupling agent may be pulverized or classified.
The spherical BN particles and non-spherical BN particles used in the present composition may be mixed in advance, and the surface treatment with the silane coupling agent described above may be performed at once.
 本組成物は、本発明の効果を損なわない範囲で、前記した球状BN粒子及び非球状BN粒子とは異なる他の無機粒子をさらに含んでいてもよい。他の無機粒子の形状は、球状、針状、繊維状又は板状のいずれでもよい。他の無機粒子における無機化合物としては、例えば、炭素繊維、ガラス、窒化アルミニウム、ベリリア、シリカ、ウォラストナイト、タルク、酸化セリウム、酸化アルミニウム、酸化マグネシウム、酸化亜鉛又は酸化チタンが挙げられる。
 本組成物が他の無機粒子をさらに含む場合、その含有量は組成物全体に対して1~20質量%が好ましい。
The present composition may further contain other inorganic particles different from the above spherical BN particles and non-spherical BN particles within a range that does not impair the effects of the present invention. The shape of the other inorganic particles may be spherical, acicular, fibrous or plate-like. Inorganic compounds in other inorganic particles include, for example, carbon fiber, glass, aluminum nitride, beryllia, silica, wollastonite, talc, cerium oxide, aluminum oxide, magnesium oxide, zinc oxide, or titanium oxide.
When the composition further contains other inorganic particles, the content thereof is preferably 1 to 20% by mass based on the total composition.
 本組成物は、Fポリマーとは異なる他の樹脂をさらに含んでもよい。かかる他の樹脂は、本組成物に粒子として含まれていてもよく、本組成物が後述する液状分散媒を含む場合、液状分散媒に溶解又は分散して含まれていてもよい。
 他の樹脂としては、液晶性の芳香族ポリエステル等のポリエステル樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、エポキシ樹脂、マレイミド樹脂、ウレタン樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンオキシド樹脂、ポリフェニレンサルファイド樹脂が挙げられる。
 他の樹脂としては、芳香族ポリマーが好ましく、芳香族ポリイミド、芳香族ポリアミック酸、芳香族ポリアミドイミド及び芳香族ポリアミドイミドの前駆体からなる群から選ばれる少なくとも1種の芳香族イミドポリマーがより好ましい。芳香族ポリマーは本組成物中で、液状分散媒に溶解したワニスとして含まれるのが好ましい。
 本組成物が他の樹脂をさらに含む場合、その含有量は組成物全体に対して0.1~5質量%が好ましい。
The composition may further comprise other resins different from the F polymer. Such other resins may be contained as particles in the present composition, or may be dissolved or dispersed in the liquid dispersion medium when the present composition contains a liquid dispersion medium described later.
Other resins include polyester resins such as liquid crystalline aromatic polyesters, polyimide resins, polyamideimide resins, epoxy resins, maleimide resins, urethane resins, polyphenylene ether resins, polyphenylene oxide resins, and polyphenylene sulfide resins.
The other resin is preferably an aromatic polymer, more preferably at least one aromatic imide polymer selected from the group consisting of aromatic polyimides, aromatic polyamic acids, aromatic polyamideimides, and aromatic polyamideimide precursors. . The aromatic polymer is preferably included in the composition as a varnish dissolved in a liquid carrier medium.
When the present composition further contains other resins, the content thereof is preferably 0.1 to 5% by mass based on the total composition.
 本組成物は粉体状であってもよく、液状分散媒をさらに含む液状(分散液状、スラリー状)、又は練粉状であってもよい。また、粉体状の本組成物をさらに溶融して、ペレット状の本組成物としてもよい。
 本組成物は液状分散媒をさらに含む液状(分散液状、スラリー状)であるのが好ましい。本組成物が液状であるとF粒子、球状BN粒子及び非球状BN粒子の分散性に優れるほか、球状BN粒子及び非球状BN粒子に基づく上述した作用機構がより発現しやすく、熱伝導率及び折曲耐性に優れるシートを得られやすい。
 液状分散媒としては、大気圧下、25℃にて液体である化合物であり、沸点が50~240℃である化合物が好ましい。液状分散媒は1種類を用いてもよく、2種以上を用いてもよい。2種の液状分散媒を用いる場合、2種の液状分散媒は、互いに相溶するのが好ましい。
The present composition may be in the form of a powder, a liquid containing a liquid dispersion medium (dispersion, slurry), or a paste. Alternatively, the present composition in powder form may be further melted to form the present composition in pellet form.
The present composition is preferably in a liquid form (dispersion liquid form, slurry form) further containing a liquid dispersion medium. In addition to excellent dispersibility of F particles, spherical BN particles and non-spherical BN particles when the present composition is liquid, the above-described action mechanism based on spherical BN particles and non-spherical BN particles is more easily expressed, thermal conductivity and It is easy to obtain a sheet with excellent bending resistance.
The liquid dispersion medium is preferably a compound that is liquid at 25°C under atmospheric pressure and has a boiling point of 50 to 240°C. One type of liquid dispersion medium may be used, or two or more types may be used. When two liquid dispersion media are used, the two liquid dispersion media are preferably compatible with each other.
 液状分散媒は、水、アミド、ケトン及びエステルからなる群から選ばれる化合物が好ましい。
 アミドとしては、例えば、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルプロパンアミド、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、N,N-ジエチルホルムアミド、ヘキサメチルホスホリックトリアミド、1,3-ジメチル-2-イミダゾリジノンが挙げられる。
 ケトンとしては、例えば、アセトン、メチルエチルケトン、メチルイソプロピルケトン、メチルイソブチルケトン、メチルn-ペンチルケトン、メチルイソペンチルケトン、2-へプタノン、シクロペンタノン、シクロヘキサノン、シクロヘプタノンが挙げられる。
 エステルとしては、例えば、酢酸メチル、酢酸エチル、酢酸ブチル、乳酸メチル、乳酸エチル、ピルビン酸メチル、ピルビン酸エチル、メトキシプロピオン酸メチル、エトキシプロピオン酸エチル、3-エトキシプロピオン酸エチル、γ-ブチロラクトン、γ-バレロラクトンが挙げられる。
The liquid dispersion medium is preferably a compound selected from the group consisting of water, amides, ketones and esters.
Amides include, for example, N-methyl-2-pyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, N,N-dimethylpropanamide, 3-methoxy-N,N-dimethylpropanamide, 3- butoxy-N,N-dimethylpropanamide, N,N-diethylformamide, hexamethylphosphoric triamide, 1,3-dimethyl-2-imidazolidinone.
Ketones include, for example, acetone, methyl ethyl ketone, methyl isopropyl ketone, methyl isobutyl ketone, methyl n-pentyl ketone, methyl isopentyl ketone, 2-heptanone, cyclopentanone, cyclohexanone and cycloheptanone.
Examples of esters include methyl acetate, ethyl acetate, butyl acetate, methyl lactate, ethyl lactate, methyl pyruvate, ethyl pyruvate, methyl methoxypropionate, ethyl ethoxypropionate, ethyl 3-ethoxypropionate, γ-butyrolactone, γ-valerolactone may be mentioned.
 本組成物が液状分散媒を含む場合、液状分散媒の含有量は本組成物全体に対して10~70質量%の範囲が好ましい。
 本組成物が液状分散媒を含む場合、本組成物における固形分濃度は30質量%以上が好ましく、40質量%以上がより好ましく、50質量%以上がさらに好ましい。固形分濃度は90質量%以下が好ましく、60質量%以下がより好ましい。
 なお、固形分とは本組成物から形成されるシート等の成形物において固形分を形成する物質の総量を意味する。具体的には、F粒子、球状BN粒子及び非球状BN粒子は固形分であり、本組成物が他の樹脂又は他の無機粒子を含む場合には、これら他の樹脂又は他の無機粒子も固形分であり、これらの成分の総質量割合が本組成物における固形分濃度となる。
When the present composition contains a liquid dispersion medium, the content of the liquid dispersion medium is preferably in the range of 10 to 70% by mass based on the entire composition.
When the present composition contains a liquid dispersion medium, the solid content concentration in the present composition is preferably 30% by mass or more, more preferably 40% by mass or more, and even more preferably 50% by mass or more. The solid content concentration is preferably 90% by mass or less, more preferably 60% by mass or less.
The solid content means the total amount of substances forming the solid content in a molded product such as a sheet formed from the present composition. Specifically, the F particles, spherical BN particles and non-spherical BN particles are solids, and when the composition contains other resins or other inorganic particles, these other resins or other inorganic particles It is a solid content, and the total mass ratio of these components is the solid content concentration in the present composition.
 本組成物が液状分散媒を含む場合、本組成物は、分散安定性を向上する観点からさらに界面活性剤を含むのが好ましい。かかる界面活性剤はノニオン性界面活性剤であるのが好ましい。
 ノニオン性界面活性剤の具体例としては、「フタージェント」シリーズ(ネオス社製)、「サーフロン」シリーズ(AGCセイミケミカル社製)、「メガファック」シリーズ(DIC社製)、「ユニダイン」シリーズ(ダイキン工業社製)、「BYK-347」、「BYK-349」、「BYK-378」、「BYK-3450」、「BYK-3451」、「BYK-3455」、「BYK-3456」(ビックケミー・ジャパン社製)、「KF-6011」、「KF-6043」(信越化学工業社製)、「Tergitol」シリーズ(ダウケミカル社製、「Tergitol TMN-100X」等。)が挙げられる。
 本組成物がノニオン性界面活性剤を含有する場合、本組成物中のノニオン性界面活性剤の含有量は、本組成物全体に対して0.1~10質量%が好ましい。
When the present composition contains a liquid dispersion medium, the present composition preferably further contains a surfactant from the viewpoint of improving dispersion stability. Such surfactants are preferably nonionic surfactants.
Specific examples of nonionic surfactants include "Futergent" series (manufactured by Neos), "Surflon" series (manufactured by AGC Seimi Chemical), "Megafac" series (manufactured by DIC), "Unidyne" series (manufactured by DIC). Daikin Industries, Ltd.), “BYK-347”, “BYK-349”, “BYK-378”, “BYK-3450”, “BYK-3451”, “BYK-3455”, “BYK-3456” (BYK-Chemie Japan), “KF-6011”, “KF-6043” (manufactured by Shin-Etsu Chemical Co., Ltd.), “Tergitol” series (manufactured by Dow Chemical Co., Ltd., “Tergitol TMN-100X”, etc.).
When the present composition contains a nonionic surfactant, the content of the nonionic surfactant in the present composition is preferably 0.1 to 10% by mass based on the entire present composition.
 本組成物は、必要に応じ、さらにシランカップリング剤を含んでいてもよい。シランカップリング剤としては、球状BN粒子及び非球状BN粒子の表面処理に用いてもよいシランカップリング剤と同様のものが挙げられる。本組成物がシランカップリング剤を含む場合、本組成物中のシランカップリング剤の含有量は、本組成物全体に対して0.1~10質量%が好ましい。 The composition may further contain a silane coupling agent, if necessary. Examples of the silane coupling agent include the same silane coupling agents that may be used for surface treatment of spherical BN particles and non-spherical BN particles. When the present composition contains a silane coupling agent, the content of the silane coupling agent in the present composition is preferably 0.1 to 10% by mass based on the entire present composition.
 本組成物は、さらに、チキソ性付与剤、粘度調節剤、消泡剤、脱水剤、可塑剤、耐候剤、酸化防止剤、熱安定剤、滑剤、帯電防止剤、増白剤、着色剤、導電剤、離型剤、上記したシランカップリング剤以外の表面処理剤、難燃剤等の添加剤を含有してもよい。 The present composition further contains a thixotropic agent, a viscosity modifier, an antifoaming agent, a dehydrating agent, a plasticizer, a weathering agent, an antioxidant, a heat stabilizer, a lubricant, an antistatic agent, a brightener, a colorant, Additives such as a conductive agent, a mold release agent, a surface treatment agent other than the silane coupling agent described above, and a flame retardant may be contained.
 本組成物が液状分散媒を含み液状である場合、その粘度は、10mPa・s以上が好ましく、100mPa・s以上がより好ましい。本組成物の粘度は、10000mPa・s以下が好ましく、3000mPa・s以下がより好ましい。
 本組成物が液状分散媒を含み液状である場合、そのチキソ比は、1.0~3.0が好ましい。
 本組成物が液状分散媒として水を含む場合、そのpHは、長期保管性を向上する観点から、8~10がより好ましい。かかる本組成物のpHは、pH調整剤(アミン、アンモニア、クエン酸等。)又はpH緩衝剤(トリス(ヒドロキシメチル)アミノメタン、エチレンジアミン四酢酸、炭酸水素アンモニウム、炭酸アンモニウム、酢酸アンモニウム等。)によって調整できる。
When the present composition contains a liquid dispersion medium and is liquid, the viscosity thereof is preferably 10 mPa·s or more, more preferably 100 mPa·s or more. The viscosity of the present composition is preferably 10000 mPa·s or less, more preferably 3000 mPa·s or less.
When the present composition contains a liquid dispersion medium and is liquid, its thixotropic ratio is preferably 1.0 to 3.0.
When the present composition contains water as a liquid dispersion medium, its pH is more preferably 8 to 10 from the viewpoint of improving long-term storage stability. The pH of the present composition can be controlled by adding a pH adjuster (amine, ammonia, citric acid, etc.) or a pH buffer (tris(hydroxymethyl)aminomethane, ethylenediaminetetraacetic acid, ammonium hydrogencarbonate, ammonium carbonate, ammonium acetate, etc.). can be adjusted by
 本組成物は、F粒子、球状BN粒子及び非球状BN粒子と、必要に応じて他の樹脂、他の無機粒子、液状分散媒、界面活性剤、シランカップリング剤、添加剤等を混合することで得られる。
 本組成物は、F粒子と球状BN粒子と非球状BN粒子とを一括で混合して得てもよいし、別々に順次混合してもよいし、これらのマスターバッチを予め作成し、それと残りの成分を混合してもよい。混合の順は特に制限はなく、また混合の方法も一括混合でも複数回に分割して混合してもよい。
 本組成物を得るための混合の装置としては、ヘンシェルミキサー、加圧ニーダー、バンバリーミキサーおよびプラネタリーミキサー等のブレードを備えた撹拌装置、ボールミル、アトライター、バスケットミル、サンドミル、サンドグラインダー、ダイノーミル、ディスパーマット、SCミル、スパイクミルおよびアジテーターミル等のメディアを備えた粉砕装置、マイクロフルイダイザー、ナノマイザー、アルティマイザー、超音波ホモジナイザー、デゾルバー、ディスパー、高速インペラー、薄膜旋回型高速ミキサー、自転公転撹拌機およびV型ミキサー等の他の機構を備えた分散装置等が挙げられる。
 プラネタリーミキサーは、互いに自転と公転を行う2軸の撹拌羽根を有する撹拌装置である。薄膜旋回型高速ミキサーは、円筒形の撹拌槽の内壁面に、F粒子と液状分散媒とを薄膜状に展開し旋回させて、遠心力を作用させながら混合する撹拌装置である。
This composition is mixed with F particles, spherical BN particles and non-spherical BN particles, and if necessary, other resins, other inorganic particles, liquid dispersion medium, surfactants, silane coupling agents, additives, etc. obtained by
The present composition may be obtained by mixing F particles, spherical BN particles, and non-spherical BN particles all at once, or may be separately sequentially mixed, or a masterbatch of these may be prepared in advance, and the remaining may be mixed. The order of mixing is not particularly limited, and the method of mixing may be batch mixing or mixing in multiple batches.
Mixing devices for obtaining the present composition include stirring devices equipped with blades such as Henschel mixers, pressure kneaders, Banbury mixers and planetary mixers, ball mills, attritors, basket mills, sand mills, sand grinders, dyno mills, Grinding equipment with media such as dispermat, SC mill, spike mill and agitator mill, microfluidizer, nanomizer, ultimizer, ultrasonic homogenizer, desolver, disper, high speed impeller, thin film swirling high speed mixer, rotation and revolution stirrer and dispersing devices with other mechanisms such as V-type mixers.
A planetary mixer is a stirring device having two stirring blades that rotate and revolve with each other. A thin-film swirling high-speed mixer is a stirring device that spreads F particles and a liquid dispersion medium in a thin film form on the inner wall surface of a cylindrical stirring tank, swirls them, and mixes them while exerting centrifugal force.
 液状分散媒を含む本組成物の製造方法の一例としては、F粒子、球状BN粒子、非球状BN粒子及び液状分散媒を、好ましくは一括で添加して、剪断処理して本組成物を得る製造方法が挙げられる。この場合、前記剪断処理を、薄膜旋回による撹拌機構か、又は、自転及び公転による撹拌機構を備えた槽内にて混合して行うのが好ましく、薄膜旋回型高速ミキサー、プラネタリーミキサー又は自転公転撹拌機にて剪断処理を行うのが好ましい。
 また、液状分散媒を含む本組成物の製造方法の他の例として、F粒子と、球状BN粒子と、非球状BN粒子と、液状分散媒の一部とを予め混練して混練物を得て、さらに前記混練物を残余の液状分散媒に添加して本組成物を得る製造方法が挙げられる。混練と添加に際して使用する液状分散媒は、同種の液状分散媒であってもよく、異種の液状分散媒であってもよい。球状BN粒子、非球状BN粒子、他の樹脂、他の無機粒子、界面活性剤、シランカップリング剤、添加剤は、混練に際して混合してもよく、添加に際して混合してもよい。混練における混合は、プラネタリーミキサー又は自転公転撹拌機にて行うのが好ましい。
As an example of a method for producing the present composition containing a liquid dispersion medium, F particles, spherical BN particles, non-spherical BN particles and a liquid dispersion medium are preferably added all at once, and sheared to obtain the present composition. manufacturing methods. In this case, the shearing treatment is preferably carried out by mixing in a tank equipped with a thin film swirl stirring mechanism or a rotation and revolution stirring mechanism, such as a thin film swirl high-speed mixer, planetary mixer, or rotation/revolution. It is preferable to carry out the shearing treatment with a stirrer.
Further, as another example of the method for producing the present composition containing a liquid dispersion medium, F particles, spherical BN particles, non-spherical BN particles, and part of the liquid dispersion medium are kneaded in advance to obtain a kneaded product. and a production method in which the kneaded product is added to the remaining liquid dispersion medium to obtain the present composition. The liquid dispersion medium used for kneading and addition may be the same type of liquid dispersion medium or different types of liquid dispersion mediums. Spherical BN particles, non-spherical BN particles, other resins, other inorganic particles, surfactants, silane coupling agents, and additives may be mixed during kneading or may be mixed during addition. Mixing in kneading is preferably carried out using a planetary mixer or a rotation-revolution stirrer.
 混練により得られる混練物は、ペースト状(粘度が1000~100000mPa・sであるペースト等。)であってもよく、ウェットパウダー状(キャピログラフにより測定される粘度が10000~100000Pa・sであるウェットパウダー等。)であってもよい。
 なお、キャピログラフにより測定される粘度とは、キャピラリー長が10mm、キャピラリー半径が1mmのキャピラリーを用いて、炉体径を9.55mm、ロードセル容量を2tとし、温度を25℃、剪断速度を1s-1として測定される値である。
The kneaded product obtained by kneading may be in the form of a paste (such as a paste having a viscosity of 1,000 to 100,000 mPa s), or in the form of a wet powder (wet powder having a viscosity of 10,000 to 100,000 Pa s as measured by a capillograph. etc.).
The viscosity measured by a capillary graph is defined by using a capillary with a capillary length of 10 mm and a capillary radius of 1 mm, a furnace body diameter of 9.55 mm, a load cell capacity of 2 t, a temperature of 25 ° C., and a shear rate of 1 s It is a value measured as 1 .
 本組成物を押出等の成形方法に供すれば、シート等の成形物を得られる。
 本組成物が液状分散媒を含む液状である場合、本組成物をシート状に押出するのが好ましい。押出して得たシートは、さらにプレス成形、カレンダー成形等をして流延してもよい。シートは、さらに加熱して、液状分散媒を除去し、Fポリマーを焼成するのが好ましい。
 本組成物が粉状である場合、本組成物を溶融押出成形するのが好ましい。押出成形は単軸スクリュー押出機、多軸スクリュー押出機等を用いて行うことができる。
 また、本組成物を射出成形して成形物を得てもよい。
 成形物の形成に際しては、本組成物を直接、溶融押出成形又は射出成形してもよく、本組成物を溶融混練してペレットとし、ペレットを溶融押出成形又は射出成形してシート等の成形物を得てもよい。
A molded product such as a sheet can be obtained by subjecting the composition to a molding method such as extrusion.
When the composition is liquid containing a liquid dispersion medium, it is preferred to extrude the composition into a sheet. The sheet obtained by extrusion may be further subjected to press molding, calender molding, or the like, and cast. The sheet is preferably further heated to remove the liquid dispersion medium and calcine the F polymer.
If the composition is in powder form, it is preferred to melt extrude the composition. Extrusion can be carried out using a single-screw extruder, a multi-screw extruder, or the like.
In addition, the present composition may be injection molded to obtain a molded product.
When forming a molded article, the present composition may be directly melt-extruded or injection-molded. The composition is melt-kneaded to form pellets, and the pellets are melt-extruded or injection-molded to form articles such as sheets. may be obtained.
 本組成物から得られるシートの厚さは、20μm以上100μm以下であるのが好ましい。かかるシートは、本組成物の上述した作用機構により、薄くとも耐屈曲性、折曲耐性等の折曲性に優れる。
 シートの線膨張係数は、100ppm/℃以下が好ましく、80ppm/℃以下がより好ましい。シートの線膨張係数の下限は、1ppm/℃である。なお、線膨張係数は、JIS C 6471:1995に規定される測定方法に従って、25℃以上260℃以下の範囲における、試験片の線膨張係数を測定した値を意味する。
 シートの面内方向における熱伝導率は、1.0W/m・K以上が好ましく、3.0W/m・K以上がより好ましい。シート熱伝導率の上限は、100W/m・Kである。
The thickness of the sheet obtained from this composition is preferably 20 μm or more and 100 μm or less. Such a sheet is excellent in bendability such as bending resistance and folding resistance even though it is thin, due to the above-described mechanism of action of the present composition.
The coefficient of linear expansion of the sheet is preferably 100 ppm/°C or less, more preferably 80 ppm/°C or less. The lower limit of the linear expansion coefficient of the sheet is 1 ppm/°C. The coefficient of linear expansion means the value obtained by measuring the coefficient of linear expansion of the test piece in the range of 25° C. or more and 260° C. or less according to the measurement method specified in JIS C 6471:1995.
The thermal conductivity in the in-plane direction of the sheet is preferably 1.0 W/m·K or more, more preferably 3.0 W/m·K or more. The upper limit of the sheet thermal conductivity is 100 W/m·K.
 かかるシートを基材に積層すれば積層体を形成できる。積層体の製造方法としては、前記押出機として共押出機を用い、基材の原料とともに本組成物を押出成形する方法、前記基材上に本組成物を押出成形する方法、シートと前記基材とを熱圧着する方法等が挙げられる。
 基材としては、金属基板(銅、ニッケル、アルミニウム、チタン、それらの合金等の金属箔等)、耐熱性樹脂フィルム(ポリイミド、ポリアミド、ポリエーテルアミド、ポリフェニレンスルフィド、ポリアリルエーテルケトン、ポリアミドイミド、液晶性ポリエステル、テトラフルオロエチレン系ポリマー等の耐熱性樹脂フィルム)、プリプレグ基板(繊維強化樹脂基板の前駆体)、セラミックス基板(炭化ケイ素、窒化アルミニウム、窒化ケイ素等のセラミックス基板)、ガラス基板が挙げられる。
A laminate can be formed by laminating such a sheet on a substrate. As a method for producing a laminate, a co-extruder is used as the extruder, a method of extruding the present composition together with the raw material of the substrate, a method of extruding the present composition on the substrate, a method of extruding the sheet and the substrate A method of thermocompression bonding the material and the like can be mentioned.
As the base material, metal substrates (copper, nickel, aluminum, titanium, metal foils of their alloys, etc.), heat-resistant resin films (polyimide, polyamide, polyetheramide, polyphenylene sulfide, polyaryletherketone, polyamideimide, Liquid crystalline polyester, heat-resistant resin film such as tetrafluoroethylene polymer), prepreg substrate (precursor of fiber reinforced resin substrate), ceramic substrate (ceramic substrate such as silicon carbide, aluminum nitride, silicon nitride), glass substrate be done.
 基材の形状としては、平面状、曲面状、凹凸状等が挙げられる。また、基材の形状は、箔状、板状、膜状、繊維状のいずれであってもよい。
 基材の表面の十点平均粗さは、0.01~0.05μmが好ましい。
 基材の表面は、シランカップリング剤により表面処理されていてもよく、プラズマ処理されていてもよい。かかるシランカップリング剤としては、3-アミノプロピルトリエトキシシラン、ビニルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-イソシアネートプロピルトリエトキシシラン等の官能基を有するシランカップリング剤が好ましい。
 シートと基材との剥離強度は、2kN/m以上が好ましく、2.5kN/m以上がより好ましい。上記剥離強度は、10kN/m以下が好ましい。
Examples of the shape of the base material include planar, curved, uneven, and the like. Moreover, the shape of the substrate may be any of foil, plate, film, and fiber.
The ten-point average roughness of the substrate surface is preferably 0.01 to 0.05 μm.
The surface of the substrate may be surface-treated with a silane coupling agent or plasma-treated. Examples of such silane coupling agents include 3-aminopropyltriethoxysilane, vinyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3 - Silane coupling agents with functional groups such as isocyanatopropyltriethoxysilane are preferred.
The peel strength between the sheet and the substrate is preferably 2 kN/m or more, more preferably 2.5 kN/m or more. The peel strength is preferably 10 kN/m or less.
 また、本組成物を基材の表面に付与し、加熱して、Fポリマーと球状BN粒子と非球状BN粒子とを含むポリマー層を形成すれば、基材で構成される基材層とポリマー層とを有する積層体を得られる。
 ポリマー層は、液状分散媒を含む本組成物を基材の表面に配置し、加熱して分散媒を除去し、さらに加熱してFポリマーを焼成して形成するのが好ましい。
 基材としては、上述のシートと積層できる基材と同様のものが挙げられ、その好適態様も同様である。
Further, if the present composition is applied to the surface of a substrate and heated to form a polymer layer containing F polymer, spherical BN particles and non-spherical BN particles, the substrate layer composed of the substrate and the polymer A laminate having a layer is obtained.
The polymer layer is preferably formed by disposing the present composition containing a liquid dispersion medium on the surface of a substrate, removing the dispersion medium by heating, and baking the F polymer by further heating.
Examples of the base material include those similar to the base material that can be laminated with the sheet described above, and preferred embodiments thereof are also the same.
 本組成物の配置の方法としては、塗布法、液滴吐出法、浸漬法が挙げられ、ロールコート法、ナイフコート法、バーコート法、ダイコート法又はスプレー法が好ましい。
 液状分散媒の除去に際する加熱は、100~200℃にて、0.1~30分間で行うのが好ましい。この際の加熱において液状分散媒は、完全に除去する必要はなく、F粒子、球状BN粒子及び非球状BN粒子のパッキングにより形成される層が自立膜を維持できる程度まで除去すればよい。また、加熱に際しては、空気を吹き付け、風乾によって液状分散媒の除去を促してもよい。
 Fポリマーの焼成に際する加熱は、Fポリマーの焼成温度以上の温度にて行うのが好ましく、360~400℃にて、0.1~30分間行うのがより好ましい。
 それぞれの加熱における加熱装置としては、オーブン、通風乾燥炉が挙げられる。装置における熱源は、接触式の熱源(熱風、熱板等)であってもよく、非接触式の熱源(赤外線等)であってもよい。
 また、それぞれの加熱は、常圧下で行ってもよく、減圧下で行ってもよい。
 また、それぞれの加熱における雰囲気は、空気雰囲気、不活性ガス(ヘリウムガス、ネオンガス、アルゴンガス、窒素ガス等)雰囲気のいずれであってもよい。
Examples of the method for disposing the present composition include a coating method, a droplet discharge method, and an immersion method, and roll coating, knife coating, bar coating, die coating, and spraying are preferred.
Heating for removing the liquid dispersion medium is preferably carried out at 100 to 200° C. for 0.1 to 30 minutes. In this heating, the liquid dispersion medium does not have to be completely removed, and may be removed to such an extent that the layer formed by the packing of F particles, spherical BN particles and non-spherical BN particles can maintain a self-supporting film. Also, during the heating, air may be blown to facilitate the removal of the liquid dispersion medium by air-drying.
Heating for sintering the F polymer is preferably performed at a temperature equal to or higher than the sintering temperature of the F polymer, and more preferably at 360 to 400° C. for 0.1 to 30 minutes.
A heating apparatus for each heating includes an oven and a ventilation drying oven. The heat source in the apparatus may be a contact heat source (hot air, hot plate, etc.) or a non-contact heat source (infrared radiation, etc.).
Further, each heating may be performed under normal pressure or under reduced pressure.
Moreover, the atmosphere in each heating may be either an air atmosphere or an inert gas (helium gas, neon gas, argon gas, nitrogen gas, etc.) atmosphere.
 ポリマー層は、本組成物の配置、加熱の工程を経て形成される。これら工程は1回ずつ行ってもよく、2回以上繰り返してもよい。例えば、基材の表面に本組成物を配置し加熱してポリマー層を形成し、さらに前記ポリマー層の表面に本組成物を配置し加熱して2層目のポリマー層を形成してもよい。また、基材の表面に本組成物を配置し加熱して液状分散媒を除去した段階で、さらにその表面に本組成物を配置し加熱してポリマー層を形成してもよい。
 ポリマー層の厚さは、20μm以上100μm以下であるのが好ましい。ポリマー層の厚さは50μm以下がより好ましく、50μm未満であるのがさらに好ましい。
 かかるポリマー層は、本組成物の上述した作用機構により、薄くとも耐屈曲性、折曲耐性等の折曲性に優れる。
 本組成物は、基材の一方の表面にのみ配置してもよく、基材の両面に配置してもよい。前者の場合、基材層と、かかる基材層の片方の表面にポリマー層を有する積層体が得られ、後者の場合、基材層と、かかる基材層の両方の表面にポリマー層を有する積層体が得られる。
The polymer layer is formed through the steps of disposing the present composition and heating. These steps may be performed once each, or may be repeated twice or more. For example, the present composition may be placed on the surface of a substrate and heated to form a polymer layer, and further the present composition may be placed on the surface of the polymer layer and heated to form a second polymer layer. . In addition, at the stage where the present composition is placed on the surface of the substrate and heated to remove the liquid dispersion medium, the present composition may be further placed on the surface and heated to form a polymer layer.
The thickness of the polymer layer is preferably 20 μm or more and 100 μm or less. The thickness of the polymer layer is more preferably 50 μm or less, and even more preferably less than 50 μm.
Due to the mechanism of action of the present composition described above, such a polymer layer is excellent in bendability such as flex resistance and bending resistance even if it is thin.
The composition may be placed on only one surface of the substrate or may be placed on both sides of the substrate. In the former case, a laminate having a base layer and a polymer layer on one surface of the base layer is obtained, and in the latter case, a base layer and a polymer layer are obtained on both surfaces of the base layer. A laminate is obtained.
 積層体の好適な具体例としては、金属箔と、その金属箔の少なくとも一方の表面にポリマー層を有する金属張積層体、ポリイミドフィルムと、そのポリイミドフィルムの両方の表面にポリマー層を有する多層フィルムが挙げられる。
 ポリマー層の線膨張係数、面内方向における熱伝導率、ポリマー層と基材層との剥離強度の好適範囲は、上述の本組成物から得られるシートにおける線膨張係数、面内方向における熱伝導率、シートと基材との剥離強度の好適範囲と同様である。
Preferred specific examples of the laminate include a metal foil and a metal-clad laminate having a polymer layer on at least one surface of the metal foil, a polyimide film, and a multilayer film having a polymer layer on both surfaces of the polyimide film. is mentioned.
The preferred range of the linear expansion coefficient of the polymer layer, the thermal conductivity in the in-plane direction, and the peel strength between the polymer layer and the substrate layer is determined by the linear expansion coefficient of the sheet obtained from the present composition described above, and the thermal conductivity in the in-plane direction. It is the same as the preferred range of the peel strength between the rate and the sheet and the substrate.
 本組成物は、絶縁性、耐熱性、対腐食性、耐薬品性、耐水性、耐衝撃性、熱伝導性を付与するための材料として有用である。
 本組成物は、具体的には、プリント配線板、熱インターフェース材、パワーモジュール用基板、モーター等の動力装置で使用されるコイル、車載エンジン、熱交換器、バイアル瓶、注射筒(シリンジ)、アンプル、医療用ワイヤー、リチウムイオン電池等の二次電池、リチウム電池等の一次電池、ラジカル電池、太陽電池、燃料電池、リチウムイオンキャパシタ、ハイブリッドキャパシタ、キャパシタ、コンデンサ(アルミニウム電解コンデンサ、タンタル電解コンデンサ等)、エレクトロクロミック素子、電気化学スイッチング素子、電極のバインダー、電極のセパレーター、電極(正極、負極)に使用できる。
 また、本組成物は部品を接着する接着剤としても有用である。具体的には、本組成物は、セラミックス部品の接着、金属部品の接着、半導体素子やモジュール部品の基板におけるICチップや抵抗、コンデンサ等の電子部品の接着、回路基板と放熱板の接着、LEDチップの基板への接着に使用できる。
 また、本組成物は、導電性が要求される用途、例えば、プリンテッド・エレクトロニクスの分野においても好適に使用できる。具体的には、プリント基板、センサー電極等における通電素子の製造に使用できる。
The composition is useful as a material for imparting insulation, heat resistance, corrosion resistance, chemical resistance, water resistance, impact resistance, and thermal conductivity.
Specifically, the present composition can be used for printed wiring boards, thermal interface materials, substrates for power modules, coils used in power devices such as motors, automotive engines, heat exchangers, vials, syringes, Ampoules, medical wires, secondary batteries such as lithium ion batteries, primary batteries such as lithium batteries, radical batteries, solar cells, fuel cells, lithium ion capacitors, hybrid capacitors, capacitors, capacitors (aluminum electrolytic capacitors, tantalum electrolytic capacitors, etc.) ), electrochromic elements, electrochemical switching elements, electrode binders, electrode separators, and electrodes (positive and negative electrodes).
The composition is also useful as an adhesive for bonding parts together. Specifically, the composition can be used for adhesion of ceramic parts, adhesion of metal parts, adhesion of electronic parts such as IC chips, resistors and capacitors on substrates of semiconductor elements and module parts, adhesion of circuit boards and heat sinks, LED It can be used for bonding chips to substrates.
In addition, the present composition can also be suitably used in applications requiring electrical conductivity, such as the field of printed electronics. Specifically, it can be used to manufacture energization elements in printed circuit boards, sensor electrodes, and the like.
 本組成物から形成される成形物、シート及び積層体は、アンテナ部品、プリント基板、航空機用部品、自動車用部品、スポーツ用具、食品工業用品、放熱部品等として有用である。
 具体的には、電線被覆材(航空機用電線等)、電気自動車等のモーター等に使用されるエナメル線被覆材、電気絶縁性テープ、石油掘削用絶縁テープ、石油輸送ホース、水素タンク、プリント基板用材料、分離膜(精密濾過膜、限外濾過膜、逆浸透膜、イオン交換膜、透析膜、気体分離膜等)、電極バインダー(リチウム二次電池用、燃料電池用等)、コピーロール、家具、自動車ダッシュボート、家電製品等のカバー、摺動部材(荷重軸受、ヨー軸受、すべり軸、バルブ、ベアリング、ブッシュ、シール、スラストワッシャ、ウェアリング、ピストン、スライドスイッチ、歯車、カム、ベルトコンベア、食品搬送用ベルト等)、テンションロープ、ウェアパッド、ウェアストリップ、チューブランプ、試験ソケット、ウェハーガイド、遠心ポンプの摩耗部品、薬品及び水供給ポンプ、工具(シャベル、やすり、きり、のこぎり等)、ボイラー、ホッパー、パイプ、オーブン、焼き型、シュート、ラケットのガット、ダイス、便器、コンテナ被覆材、パワーデバイス用実装放熱基板、無線通信デバイスの放熱部材、トランジスタ、サイリスタ、整流器、トランス、パワーMOS FET、CPU、放熱フィン、金属放熱板、風車や風力発電設備や航空機等のブレード、パソコンやディスプレイの筐体、電子デバイス材料、自動車の内外装、低酸素下で加熱処理する加工機や真空オーブン、プラズマ処理装置などのシール材、スパッタや各種ドライエッチング装置等の処理ユニット内の放熱部品、電磁波シールドとして有用である。
 本組成物から形成される成形物、シート及び積層体は、特に、LEDヘッドランプ、パワー・コントロール・ユニット又はエレクトリック・コントロール・ユニット等のカーエレクトロニクス用フレキシブルプリント配線基板、リジッドプリント配線基板等の電子基板材料、放熱シートや放熱基板、自動車向けの放熱基板として有用である。
 放熱部材として、本組成物から形成される成形物、シート及び積層体を使用するに際しては、成形物、シート又は積層体を対象とする基板に直接貼合してもよく、シリコーン系粘着層等の粘着層を介して対象とする基板に貼合してもよい。
Molded articles, sheets and laminates formed from the composition are useful as antenna parts, printed circuit boards, aircraft parts, automobile parts, sporting goods, food products, heat dissipation parts and the like.
Specifically, electric wire coating materials (wires for aircraft, etc.), enameled wire coating materials used for motors such as electric vehicles, electrical insulating tapes, insulating tapes for oil drilling, oil transportation hoses, hydrogen tanks, printed circuit boards materials, separation membranes (microfiltration membranes, ultrafiltration membranes, reverse osmosis membranes, ion exchange membranes, dialysis membranes, gas separation membranes, etc.), electrode binders (for lithium secondary batteries, fuel cells, etc.), copy rolls, Furniture, automobile dashboards, home appliance covers, sliding parts (load bearings, yaw bearings, slide shafts, valves, bearings, bushes, seals, thrust washers, wear rings, pistons, slide switches, gears, cams, belt conveyors , food conveyor belts, etc.), tension ropes, wear pads, wear strips, tube ramps, test sockets, wafer guides, wear parts for centrifugal pumps, chemical and water supply pumps, tools (shovels, files, awls, saws, etc.), Boilers, hoppers, pipes, ovens, baking molds, chutes, racket guts, dies, toilet bowls, container coverings, mounting heat dissipation substrates for power devices, heat dissipation materials for wireless communication devices, transistors, thyristors, rectifiers, transformers, power MOS FETs , CPUs, heat radiating fins, metal heat radiating plates, blades for wind turbines, wind power generation equipment, aircraft, etc., PC and display housings, electronic device materials, interior and exterior of automobiles, processing machines and vacuum ovens that heat under low oxygen conditions, It is useful as a sealing material for plasma processing equipment, heat radiation components in processing units such as sputtering and various dry etching equipment, and electromagnetic wave shields.
Molded articles, sheets and laminates formed from the present composition are particularly suitable for electronic applications such as flexible printed wiring boards for car electronics such as LED headlamps, power control units or electric control units, rigid printed wiring boards and the like. It is useful as a substrate material, a heat dissipation sheet, a heat dissipation substrate, and a heat dissipation substrate for automobiles.
When using the molded article, sheet or laminate formed from the present composition as a heat dissipating member, the molded article, sheet or laminate may be directly adhered to a target substrate, or may be coated with a silicone adhesive layer or the like. may be attached to the target substrate via the adhesive layer.
 以上、本組成物、本組成物の製造方法、シートの製造方法、積層体の製造方法及び積層体について説明したが、本発明は、上述した実施形態の構成に限定されない。
 例えば、本組成物及び積層体は、上記実施形態の構成において、他の任意の構成を追加してもよいし、同様の機能を発揮する任意の構成と置換されていてよい。また、本組成物、シート又は積層体の製造方法はそれぞれ、上記実施形態の構成において、他の任意の工程を追加で有してもよいし、同様の作用を生じる任意の工程と置換されていてよい。
Although the present composition, the method for producing the present composition, the method for producing a sheet, the method for producing a laminate, and the laminate have been described above, the present invention is not limited to the configurations of the above-described embodiments.
For example, the present composition and laminate may be added with any other configuration in the configurations of the above-described embodiments, or may be replaced with any configuration that exhibits similar functions. In addition, each of the present composition, sheet, or laminate manufacturing method may additionally have any other step in the configuration of the above embodiment, or may be replaced with any step that produces the same effect. you can
 以下、実施例によって本発明を詳細に説明するが、本発明はこれらに限定されない。
1.各成分の準備
[Fポリマー]
 F粒子1:TFE単位、NAH単位およびPPVE単位を、この順に97.9モル%、0.1モル%、2.0モル%含み、カルボニル基含有基を主鎖炭素数1×10個あたり1000個有するテトラフルオロエチレン系ポリマー(溶融温度:300℃)の粒子(D50:2.1μm)
[窒化ホウ素粒子]
 窒化ホウ素粒子1:球状の窒化ホウ素粒子(D50:12μm)
 窒化ホウ素粒子2:球状の窒化ホウ素粒子(D50:45μm)
 窒化ホウ素粒子3:非球状(鱗片状)の窒化ホウ素粒子(D50:4μm)
 窒化ホウ素粒子4:非球状(鱗片状)の窒化ホウ素粒子(D50:15μm)
[液状分散媒]
 NMP:N-メチル-2-ピロリドン
EXAMPLES The present invention will be described in detail below with reference to Examples, but the present invention is not limited to these.
1. Preparation of each component [F polymer]
F particle 1: 97.9 mol%, 0.1 mol% and 2.0 mol% of TFE units, NAH units and PPVE units in this order, and a carbonyl group-containing group per 1 × 10 6 main chain carbon atoms Particles (D50: 2.1 μm) of tetrafluoroethylene polymer (melting temperature: 300° C.) with 1000 particles
[Boron nitride particles]
Boron nitride particles 1: spherical boron nitride particles (D50: 12 μm)
Boron nitride particles 2: spherical boron nitride particles (D50: 45 μm)
Boron nitride particles 3: non-spherical (scaly) boron nitride particles (D50: 4 μm)
Boron nitride particles 4: Non-spherical (scaly) boron nitride particles (D50: 15 μm)
[Liquid dispersion medium]
NMP: N-methyl-2-pyrrolidone
2.組成物の製造例
[例1]
 F粒子1、窒化ホウ素粒子1、窒化ホウ素粒子3及びNMPをプラネタリーミキサー中にて混練してウェットパウダー状の練粉1を得、さらにNMPを複数回に分けて添加して撹拌し、F粒子1(30質量部)、窒化ホウ素粒子(30質量部。窒化ホウ素粒子1:窒化ホウ素粒子3=80:20(質量比))、及びNMP(40質量部)を含む液状の組成物1を得た。
[例2]
 窒化ホウ素粒子1と窒化ホウ素粒子3の質量比を変化させた以外は、例1と同様にして、F粒子1(30質量部)、窒化ホウ素粒子(30質量部。窒化ホウ素粒子1:窒化ホウ素粒子3=75:25(質量比))、及びNMP(40質量部)を含む液状の組成物2を得た。
2. Production example of composition [Example 1]
F particles 1, boron nitride particles 1, boron nitride particles 3, and NMP are kneaded in a planetary mixer to obtain a wet powder-like dough 1, and NMP is added in multiple portions and stirred, and F Liquid composition 1 containing particles 1 (30 parts by mass), boron nitride particles (30 parts by mass; boron nitride particles 1: boron nitride particles 3 = 80:20 (mass ratio)), and NMP (40 parts by mass) Obtained.
[Example 2]
F particles 1 (30 parts by mass) and boron nitride particles (30 parts by mass. Boron nitride particles 1: boron nitride A liquid composition 2 containing particles 3 (=75:25 (mass ratio)) and NMP (40 parts by mass) was obtained.
[例3]
 窒化ホウ素粒子1を窒化ホウ素粒子2に変更した以外は、例1と同様にして、F粒子1(30質量部)、窒化ホウ素粒子(30質量部。窒化ホウ素粒子2:窒化ホウ素粒子3=70:30(質量比))、及びNMP(40質量部)を含む液状の組成物3を得た。
[例4]
 窒化ホウ素粒子3を窒化ホウ素粒子4に変更した以外は、例1と同様にして、F粒子1(30質量部)、窒化ホウ素粒子(30質量部。窒化ホウ素粒子1:窒化ホウ素粒子4=70:30(質量比))、及びNMP(40質量部)を含む液状の組成物4を得た。
[例5]
 F粒子1、窒化ホウ素粒子1、及びNMPをプラネタリーミキサー中にて混練してウェットパウダー状の練粉1を得、さらにNMPを複数回に分けて添加して撹拌し、F粒子1(30質量部)、窒化ホウ素粒子(30質量部)、及びNMP(40質量部)を含む液状の組成物5を得た。
[Example 3]
F particles 1 (30 parts by mass), boron nitride particles (30 parts by mass), boron nitride particles 2: boron nitride particles 3 = 70 : 30 (mass ratio)) and NMP (40 parts by mass) to obtain a liquid composition 3.
[Example 4]
F particles 1 (30 parts by mass), boron nitride particles (30 parts by mass), boron nitride particles 1: boron nitride particles 4 = 70 : 30 (mass ratio)) and NMP (40 parts by mass) to obtain a liquid composition 4.
[Example 5]
F particles 1, boron nitride particles 1, and NMP are kneaded in a planetary mixer to obtain a wet powder-like dough 1, and NMP is added in multiple portions and stirred to obtain F particles 1 (30 parts by mass), boron nitride particles (30 parts by mass), and NMP (40 parts by mass) to obtain a liquid composition 5.
3.積層体の製造
 長尺の銅箔の表面に、バーコーターを用いて組成物1を塗布し、ウェット膜を形成した。次いで、このウェット膜が形成された銅箔を、110℃にて5分間、乾燥炉に通し乾燥させてドライ膜を形成した。その後、ドライ膜を有する銅箔を、窒素オーブン中で、380℃にて3分間、加熱した。これにより、銅箔と、その表面に、F粒子1の溶融焼成物、窒化ホウ素粒子1及び窒化ホウ素粒子3を含む、厚さが100μmのポリマー層とを有する積層体1を製造した。
 積層体1と同様にして、組成物2~5から、積層体2~5を製造した。
3. Production of Laminate Composition 1 was applied to the surface of a long copper foil using a bar coater to form a wet film. Then, the copper foil on which the wet film was formed was passed through a drying furnace at 110° C. for 5 minutes to dry it, thereby forming a dry film. The copper foil with dry film was then heated in a nitrogen oven at 380° C. for 3 minutes. Thus, a laminate 1 having a copper foil and a polymer layer having a thickness of 100 μm containing the fused and sintered F particles 1, the boron nitride particles 1 and the boron nitride particles 3 was produced.
Laminates 2-5 were produced from Compositions 2-5 in the same manner as Laminate 1.
4.積層体の評価
4-1.積層体の剥離強度
 それぞれの積層体から矩形状(長さ100mm、幅10mm)の試験片を切り出した。そして、試験片の長さ方向の一端から50mmの位置を固定し、引張り速度50mm/分、長さ方向の片端から試験片に対して90°で、銅箔とポリマー層とを剥離させた。
 そして、この際にかかる最大荷重を剥離強度(N/cm)として測定し、以下の基準に従って評価した。
 [評価基準]
 ○:2kN/m以上
 △:1kN/m以上2kN未満
 ×:1kN/m未満
4. Evaluation of laminate 4-1. Peel Strength of Laminate A rectangular test piece (length 100 mm, width 10 mm) was cut out from each laminate. Then, the copper foil and the polymer layer were separated from one longitudinal end of the test piece at a position 50 mm from one end in the longitudinal direction, and at a pulling speed of 50 mm/min at 90° to the test piece.
The maximum load applied at this time was measured as the peel strength (N/cm) and evaluated according to the following criteria.
[Evaluation criteria]
○: 2 kN/m or more △: 1 kN/m or more and less than 2 kN ×: less than 1 kN/m
4-2.折曲性
 それぞれの積層体について、積層体の銅箔を塩化第二鉄水溶液でエッチングにより除去して単独のポリマー層であるシートを作製した。作成したシートから5mm角の四角い試験片を切り出し、曲率半径(300μm)の条件で180°折り曲げ、上から荷重(50mN、1分間)をかけた後に折り曲げを戻し、試験片の外観を以下の基準で評価した。
 [評価基準]
 ○:折り目部分に外観異常は見られない。
 △:折り目部分に白化が見られた。
 ×:折り目で破断した。
4-2. Bendability For each laminate, the copper foil of the laminate was removed by etching with an aqueous ferric chloride solution to prepare a sheet as a single polymer layer. Cut out a 5 mm square square test piece from the prepared sheet, bend it 180 ° under the condition of a curvature radius (300 μm), apply a load (50 mN, 1 minute) from above, then bend it back, and check the appearance of the test piece according to the following criteria. evaluated with
[Evaluation criteria]
◯: No abnormality in appearance is observed in the crease portion.
Δ: Whitening was observed at the crease.
x: Broken at the crease.
4-3.熱伝導率
 4-2と同様にして得たそれぞれのシートの中心部から10mm×10mm角の試験片を切り出し、その面内方向における熱伝導率(W/m・K)を測定し、下記の基準に従って評価した。
 [評価基準]
 〇:2W/m・K超
 △:1W/m・K以上2W/m・K以下
 ×:1W/m・K未満
 以上の評価結果を表1にまとめて示す。
4-3. Thermal conductivity A 10 mm x 10 mm square test piece was cut from the center of each sheet obtained in the same manner as in 4-2, and the thermal conductivity (W / m K) in the in-plane direction was measured. Evaluated according to criteria.
[Evaluation criteria]
○: More than 2 W/m·K △: 1 W/m·K or more and 2 W/m·K or less ×: Less than 1 W/m·K Table 1 summarizes the above evaluation results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記結果から明らかなように、本組成物は分散安定性に優れ、また本組成物から形成した積層体は、Fポリマー及び窒化ホウ素粒子の物性を高度に発現しており、剥離強度(接着性)及び熱伝導性に優れ、さらに折曲耐性に優れていた。 As is clear from the above results, the present composition has excellent dispersion stability, and the laminate formed from the present composition exhibits the physical properties of the F polymer and boron nitride particles to a high degree, and exhibits peel strength (adhesiveness ), excellent thermal conductivity, and excellent bending resistance.
 なお、2022年2月28日に出願された日本特許出願2022-030107号の明細書、特許請求の範囲および要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 In addition, the entire contents of the specification, claims and abstract of Japanese Patent Application No. 2022-030107 filed on February 28, 2022 are cited here and incorporated as disclosure of the specification of the present invention. is.

Claims (15)

  1.  テトラフルオロエチレン系ポリマーの粒子と、平均粒子径が5μm以上40μm以下である球状の窒化ホウ素粒子と、平均粒子径が15μm未満である非球状の窒化ホウ素粒子とを含み、前記球状の窒化ホウ素粒子及び前記非球状の窒化ホウ素粒子の総質量に対する前記非球状の窒化ホウ素粒子の質量割合が30%未満である、組成物。 tetrafluoroethylene-based polymer particles, spherical boron nitride particles having an average particle diameter of 5 μm or more and 40 μm or less, and non-spherical boron nitride particles having an average particle diameter of less than 15 μm, wherein the spherical boron nitride particles and wherein the mass proportion of said non-spherical boron nitride particles relative to the total mass of said non-spherical boron nitride particles is less than 30%.
  2.  前記テトラフルオロエチレン系ポリマーが、熱溶融性のテトラフルオロエチレン系ポリマーである、請求項1に記載の組成物。 The composition according to claim 1, wherein the tetrafluoroethylene-based polymer is a hot-melt tetrafluoroethylene-based polymer.
  3.  前記テトラフルオロエチレン系ポリマーが、酸素含有極性基を有するテトラフルオロエチレン系ポリマーである、請求項1又は2に記載の組成物。 The composition according to claim 1 or 2, wherein the tetrafluoroethylene-based polymer is a tetrafluoroethylene-based polymer having an oxygen-containing polar group.
  4.  前記テトラフルオロエチレン系ポリマーの粒子の平均粒子径が、前記球状の窒化ホウ素粒子の平均粒子径及び前記非球状の窒化ホウ素粒子の平均粒子径のいずれよりも小さい、請求項1又は2に記載の組成物。 3. The tetrafluoroethylene-based polymer according to claim 1, wherein the average particle size of the particles of the tetrafluoroethylene polymer is smaller than both the average particle size of the spherical boron nitride particles and the average particle size of the non-spherical boron nitride particles. Composition.
  5.  前記非球状の窒化ホウ素粒子の平均粒子径が、前記球状の窒化ホウ素粒子の平均粒子径よりも小さい、請求項1又は2に記載の組成物。 The composition according to claim 1 or 2, wherein the average particle size of the non-spherical boron nitride particles is smaller than the average particle size of the spherical boron nitride particles.
  6.  前記非球状の窒化ホウ素粒子の平均粒子径に対する、前記球状の窒化ホウ素の平均粒子径の比が、2.5以上である、請求項1又は2に記載の組成物。 The composition according to claim 1 or 2, wherein the ratio of the average particle size of said spherical boron nitride to the average particle size of said non-spherical boron nitride particles is 2.5 or more.
  7.  前記テトラフルオロエチレン系ポリマーの粒子と前記球状の窒化ホウ素粒子と前記非球状の窒化ホウ素粒子の合計質量に対する、前記テトラフルオロエチレン系ポリマーの粒子の質量割合が20%以上80%以下である、請求項1又は2に記載の組成物。 The mass ratio of the tetrafluoroethylene-based polymer particles to the total mass of the tetrafluoroethylene-based polymer particles, the spherical boron nitride particles, and the non-spherical boron nitride particles is 20% or more and 80% or less. 3. The composition according to Item 1 or 2.
  8.  前記組成物中の、前記テトラフルオロエチレン系ポリマーの粒子と前記球状の窒化ホウ素粒子と前記非球状の窒化ホウ素粒子との合計含有量が50%以上である、請求項1又は2に記載の組成物。 3. The composition according to claim 1, wherein the total content of the tetrafluoroethylene-based polymer particles, the spherical boron nitride particles, and the non-spherical boron nitride particles in the composition is 50% or more. thing.
  9.  さらに液状分散媒を含む、請求項1又は2に記載の組成物。 The composition according to claim 1 or 2, further comprising a liquid dispersion medium.
  10.  テトラフルオロエチレン系ポリマーの粒子と、平均粒子径が5μm以上40μm以下である球状の窒化ホウ素粒子と、平均粒子径が15μm未満である非球状の窒化ホウ素粒子と、液状分散媒とを剪断処理する、請求項9に記載の組成物の製造方法。 Tetrafluoroethylene-based polymer particles, spherical boron nitride particles having an average particle size of 5 μm or more and 40 μm or less, non-spherical boron nitride particles having an average particle size of less than 15 μm, and a liquid dispersion medium are sheared. 10. A method for producing a composition according to claim 9.
  11.  前記剪断処理を、薄膜旋回による撹拌機構か、又は、自転及び公転による撹拌機構を備えた槽内にて混合して行う、請求項10に記載の組成物の製造方法。 The method for producing the composition according to claim 10, wherein the shearing treatment is performed by mixing in a tank equipped with a thin film swirl stirring mechanism or a rotation and revolution stirring mechanism.
  12.  請求項1又は2に記載の組成物を押出して、前記テトラフルオロエチレン系ポリマーと、前記球状の窒化ホウ素粒子と、前記非球状の窒化ホウ素粒子とを含むシートを得る、シートの製造方法。 A method for producing a sheet, comprising extruding the composition according to claim 1 or 2 to obtain a sheet containing the tetrafluoroethylene-based polymer, the spherical boron nitride particles, and the non-spherical boron nitride particles.
  13.  請求項1又は2に記載の組成物を基材の表面に付与し、加熱して、前記テトラフルオロエチレン系ポリマーと、前記球状の窒化ホウ素粒子と、前記非球状の窒化ホウ素粒子とを含むポリマー層を形成して、前記基材で構成される基材層と前記ポリマー層とを有する積層体を得る、積層体の製造方法。 The composition according to claim 1 or 2 is applied to the surface of a substrate and heated to obtain a polymer containing the tetrafluoroethylene-based polymer, the spherical boron nitride particles, and the non-spherical boron nitride particles. A method for producing a laminate, comprising forming layers to obtain a laminate having a substrate layer composed of the substrate and the polymer layer.
  14.  基材層と、請求項1又は2に記載の組成物から形成される、前記テトラフルオロエチレン系ポリマーと、前記球状の窒化ホウ素粒子と、前記非球状の窒化ホウ素粒子とを含むポリマー層とを有する積層体。 a substrate layer; and a polymer layer comprising the tetrafluoroethylene-based polymer, the spherical boron nitride particles, and the non-spherical boron nitride particles, which are formed from the composition according to claim 1 or 2. Laminate with
  15.  前記ポリマー層の厚さが20μm以上100μm以下である、請求項14に記載の積層体。 The laminate according to claim 14, wherein the polymer layer has a thickness of 20 µm or more and 100 µm or less.
PCT/JP2023/006416 2022-02-28 2023-02-22 Composition WO2023163025A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022030107 2022-02-28
JP2022-030107 2022-02-28

Publications (1)

Publication Number Publication Date
WO2023163025A1 true WO2023163025A1 (en) 2023-08-31

Family

ID=87765995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/006416 WO2023163025A1 (en) 2022-02-28 2023-02-22 Composition

Country Status (2)

Country Link
TW (1) TW202344599A (en)
WO (1) WO2023163025A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020045260A1 (en) * 2018-08-28 2020-03-05 ダイキン工業株式会社 Resin composition and molded article
WO2021010320A1 (en) * 2019-07-16 2021-01-21 ダイキン工業株式会社 Resin composition for circuit board, molded body for circuit board, layered body for circuit board, and circuit board
WO2021112164A1 (en) * 2019-12-06 2021-06-10 Agc株式会社 Dispersion liquid, method for producing dispersion liquid, and molded article
JP2021181382A (en) * 2020-05-18 2021-11-25 株式会社Adeka Inorganic powder composition, resin composition containing the same and heat radiation material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020045260A1 (en) * 2018-08-28 2020-03-05 ダイキン工業株式会社 Resin composition and molded article
WO2021010320A1 (en) * 2019-07-16 2021-01-21 ダイキン工業株式会社 Resin composition for circuit board, molded body for circuit board, layered body for circuit board, and circuit board
WO2021112164A1 (en) * 2019-12-06 2021-06-10 Agc株式会社 Dispersion liquid, method for producing dispersion liquid, and molded article
JP2021181382A (en) * 2020-05-18 2021-11-25 株式会社Adeka Inorganic powder composition, resin composition containing the same and heat radiation material

Also Published As

Publication number Publication date
TW202344599A (en) 2023-11-16

Similar Documents

Publication Publication Date Title
TW202130732A (en) Dispersion liquid, method for producing dispersion liquid, and molded article
KR20230126703A (en) Aqueous dispersion and its preparation method
WO2023163025A1 (en) Composition
JP2022061412A (en) Production method of liquid composition and production method of laminate
WO2023276946A1 (en) Composition
CN115803390A (en) Powder composition and composite particle
JP2023114333A (en) Composition
JP2023114334A (en) Composition
JP2023028091A (en) Composition and method for producing laminate
WO2023238797A1 (en) Composition
JP2023127849A (en) Method of producing polymer-layered substrate containing tetrafluoroethylene polymer
WO2023238798A1 (en) Composition
WO2023017811A1 (en) Aqueous dispersion and method for producing laminate
JP2023053792A (en) Production method of laminate
JP2023075825A (en) Method for producing modified powder
JP2023127137A (en) Method for manufacturing laminate having layer containing tetrafluoroethylene polymer
WO2023013569A1 (en) Sheet manufacturing method, laminate sheet manufacturing method and sheet
WO2023054649A1 (en) Composition, method for producing composition, and method for producing sheet
WO2022259992A1 (en) Sheet
WO2024053554A1 (en) Liquid composition and method for producing laminate using liquid composition
WO2023224050A1 (en) Method for producing aqueous dispersion, and aqueous dispersion
JP2022072333A (en) Composition including tetrafluoroethylene polymer, liquid composition comprising the composition, laminate and film
WO2023100739A1 (en) Liquid composition, laminate, and production methods therefor
WO2023238505A1 (en) Dispersion liquid
CN117881736A (en) Composition, method for producing composition, and method for producing sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23760024

Country of ref document: EP

Kind code of ref document: A1