WO2021112164A1 - Dispersion liquid, method for producing dispersion liquid, and molded article - Google Patents

Dispersion liquid, method for producing dispersion liquid, and molded article Download PDF

Info

Publication number
WO2021112164A1
WO2021112164A1 PCT/JP2020/044992 JP2020044992W WO2021112164A1 WO 2021112164 A1 WO2021112164 A1 WO 2021112164A1 JP 2020044992 W JP2020044992 W JP 2020044992W WO 2021112164 A1 WO2021112164 A1 WO 2021112164A1
Authority
WO
WIPO (PCT)
Prior art keywords
filler
anisotropic filler
dispersion
molded product
polymer
Prior art date
Application number
PCT/JP2020/044992
Other languages
French (fr)
Japanese (ja)
Inventor
渉 笠井
穂波 財前
敦美 山邊
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to CN202080078871.9A priority Critical patent/CN114729171B/en
Priority to JP2021562707A priority patent/JPWO2021112164A1/ja
Priority to KR1020227013463A priority patent/KR20220113354A/en
Publication of WO2021112164A1 publication Critical patent/WO2021112164A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/262Tetrafluoroethene with fluorinated vinyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/28Hexyfluoropropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • C08J3/11Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids from solid polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure

Definitions

  • the present invention relates to a dispersion liquid containing a predetermined anisotropic filler, a method for producing the same, and a molded product.
  • Heat-meltable fluoropolymers such as tetrafluoroethylene-based polymers (PFA) containing units based on perfluoro (alkyl vinyl ether) and tetrafluoroethylene-based polymers (FEP) containing units based on hexafluoropropylene are releasable and electrically charged. It has excellent physical properties such as insulation, water and oil repellency, chemical resistance, weather resistance, and heat resistance, and is used after being processed into various molded products.
  • Patent Document 1 describes an electric wire tube having excellent electrical insulation, which is obtained by melt-kneading a dry blend of PFA powder and a boron nitride filler and extrusion molding.
  • the melt viscosity of such a fluoropolymer is generally high, and a strong stress is required when the fluoropolymer and the filler are melt-kneaded.
  • the original properties of the filler particularly, physical properties such as shape and surface condition
  • the physical properties of the filler tend to deteriorate in the molded product.
  • the present inventors have found that such a tendency becomes remarkable in the case of a brittle filler having a low hardness, particularly in the case of a filler having a low hardness and an anisotropic property.
  • the present inventors have diligently studied to obtain a material suitable for molding such a molded product without using melt kneading.
  • the dispersion liquid containing the predetermined fluoropolymer powder and the predetermined anisotropic filler is excellent in dispersion stability and also excellent in handleability such as coatability. Furthermore, it was also found that the molded product formed from the molded product is not easily impaired by the inherent properties of the anisotropic filler and has a high degree of physical properties of both.
  • An object of the present invention is to provide such a dispersion and a molded product.
  • the present invention has the following aspects.
  • a tetrafluoroethylene polymer powder containing a unit based on perfluoro (alkyl vinyl ether) or a unit based on hexafluoropropylene, an anisotropic filler having a Mohs hardness of 4 or less, and a liquid dispersion medium are included.
  • the dispersion liquid of [1] wherein the content of the tetrafluoroethylene polymer and the content of the anisotropic filler are 5% by mass or more, respectively.
  • the tetrafluoroethylene-based polymer contains 2.0 to 5.0 mol% of the polymer having a polar functional group or the unit based on the perfluoro (alkyl vinyl ether) with respect to all the units, and has no polar functional group.
  • a molded product which is a polymer and in which the ratio of the anisotropic filler to the molded product is 10% by mass or more.
  • a dispersion liquid containing a predetermined fluoropolymer powder and a predetermined anisotropic filler and having excellent dispersibility and handleability can be obtained.
  • a molded product having both physical characteristics and having particularly excellent electrical characteristics can be obtained.
  • the "average particle size (D50)" is a volume-based cumulative 50% diameter of the object (powder or filler) determined by the laser diffraction / scattering method. That is, the particle size distribution of the object is measured by the laser diffraction / scattering method, the cumulative curve is obtained with the total volume of the group of particles of the object as 100%, and the particles at the point where the cumulative volume is 50% on the cumulative curve.
  • the diameter. “D90” is the volume-based cumulative 90% diameter of the object, measured in the same manner.
  • the "particle size distribution” is a distribution shown by a curve plotting the amount of particles (%) in each particle size interval obtained in the same manner.
  • the “melting temperature” is the temperature corresponding to the maximum value of the melting peak of the polymer measured by the differential scanning calorimetry (DSC) method.
  • the “glass transition point” is a value measured by analyzing a polymer by a dynamic viscoelasticity measurement (DMA) method.
  • the "unit” in the polymer may be an atomic group formed directly from the monomer by the polymerization reaction, and the polymer obtained by the polymerization reaction is treated by a predetermined method to convert a part of the structure. May be.
  • the unit based on monomer A contained in the polymer is also simply referred to as "monomer A unit".
  • the dispersion liquid of the present invention includes a unit (PAVE unit) based on perfluoro (alkyl vinyl ether) (PAVE) or a unit (HFP unit) based on hexafluoropropylene (HFP). It contains a powder of a tetrafluoroethylene polymer (hereinafter, also referred to as “F polymer”) (hereinafter, also referred to as “F powder”), an anisotropic filler having a moth hardness of 4 or less, and a liquid dispersion medium. .. Further, the average particle size of the F powder is smaller than the average particle size of the anisotropic filler.
  • the F powder and the anisotropic filler are dispersed.
  • This dispersion is excellent in dispersion stability and handleability, and it is easy to form a molded product having highly physical properties of the F polymer and the anisotropic filler. The reason is not always clear, but it can be considered as follows.
  • the anisotropic filler in the present invention is a fragile filler having an indefinite shape and various properties (crystal habit, etc.). In this dispersion, the anisotropic filler is unstable in its state and tends to aggregate or settle. Further, the anisotropic filler is in a state in which its shape or properties are easily broken by physical stress (shear stress or the like).
  • the F polymer is a polymer having plasticity typified by hot melt processability, and its powder (F powder) is not easily affected by physical stress and is excellent in its dispersibility.
  • This dispersion contains the F powder in a state smaller than the average particle size of the anisotropic filler, in other words, densely, and the affinity between the anisotropic filler and the F powder is relatively increased. It is in an easy state. That is, in this dispersion, since the F powder is contained more finely and densely, it is considered that pseudo secondary particles are likely to be formed between the F powder and the anisotropic filler. As a result, the dispersed state of the anisotropic filler is stabilized, and thus this dispersion is considered to be excellent in dispersion stability and handleability.
  • the F powder is melt-fired while removing the liquid dispersion medium from the present dispersion, it is easy to mold the molded product while suppressing the deformation of the anisotropic filler. Further, in the process of removing the liquid dispersion medium, it is easy to obtain a highly packed molded product while the anisotropic filler is oriented. As a result, it is considered that a molded product having the physical characteristics of the F polymer and the physical characteristics of the anisotropic filler was obtained from the present dispersion.
  • the anisotropic filler when a molded product is formed from this dispersion containing a scaly or plate-shaped anisotropic filler, the anisotropic filler is oriented parallel to the surface (plane direction) of the molded product and is anisotropic in the molded product.
  • the physical properties of the sex filler are highly likely to be expressed. Therefore, if this dispersion is used, the physical characteristics of the F polymer and the physical characteristics of the anisotropic filler can be highly expressed even in a thin-layered molded product.
  • the anisotropic filler forms a card house structure, which not only improves the liquid physical characteristics (viscosity, dispersion stability, etc.) of the dispersion liquid, but also improves the liquid properties (viscosity, dispersion stability, etc.).
  • Anisotropic fillers are more likely to disperse in the moldings formed from it. As a result, the molded product tends to have excellent electrical characteristics. Further, when the molded product receives stress, the stress is easily dispersed by the anisotropic filler, and the mechanical strength (bending property, etc.) is easily improved. Further, since the anisotropic filler path is formed in the molded product, the thermal conductivity of the molded product is likely to be improved.
  • the F powder in this dispersion is preferably composed of an F polymer.
  • the content of the F polymer in the powder is preferably 80% by mass or more, more preferably 100% by mass.
  • Other components that can be contained in the F powder include resins or inorganic substances different from the F polymer. Different resins include aromatic polyesters, polyamide-imides, thermoplastic polyimides, polyphenylene ethers, polyphenylene oxides.
  • the inorganic substance include silicon oxide (silica), metal oxides (beryllium oxide, cerium oxide, alumina, soda alumina, magnesium oxide, zinc oxide, titanium oxide, etc.), boron nitride, and magnesium metasilicate (steatite).
  • the F powder containing a resin or an inorganic substance different from the F polymer has a core-shell structure having the F polymer as a core and the resin or the inorganic substance in the shell, or a core-shell structure having the resin or the inorganic substance as the core and the F polymer in the shell. It is preferable to have.
  • Such F powder is obtained by, for example, coalescing (collision, agglomeration, etc.) of the powder of the F polymer and the powder of the resin or the inorganic substance.
  • the D50 of the F powder is preferably 10 ⁇ m or less, more preferably 6 ⁇ m or less, and even more preferably 4 ⁇ m or less.
  • the D50 of the F powder is preferably 0.01 ⁇ m or more, more preferably 0.1 ⁇ m or more, and even more preferably 1 ⁇ m or more.
  • the D90 of the F powder is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less.
  • the content of F powder in this dispersion is preferably 5% by mass or more, more preferably 10% by mass or more, and even more preferably 25% by mass or more.
  • the content of the F powder is preferably 50% by mass or less, more preferably 40% by mass or less, and further preferably 30% by mass or less.
  • the densely contained F powder enhances the affinity between the F powder and the anisotropic filler, and the dispersion stability of the present dispersion is more likely to be improved.
  • the physical characteristics of the F polymer in the molded product are likely to be remarkably expressed.
  • the F polymer in this dispersion is a polymer containing a unit (TFE unit) based on tetrafluoroethylene (TFE).
  • the F polymer may contain both PAVE units and HFP units, or may contain only one of them.
  • CF 2 CFOCF 2 CF 3
  • CF 2 CFOCF 2 CF 3
  • PPVE CFOCF 2 CF 2 CF 3
  • the melting temperature of the F polymer is preferably 280 to 325 ° C, more preferably 285 to 320 ° C.
  • the glass transition point of the F polymer is preferably 75 to 125 ° C, more preferably 80 to 100 ° C.
  • the F polymer may have a polar functional group (oxygen-containing polar group).
  • the polar functional group may be contained in a unit in the F polymer, or may be contained in the terminal group of the main chain of the polymer. Examples of the latter aspect include an F polymer having a polar functional group as a terminal group derived from a polymerization initiator, a chain transfer agent, etc., and an F polymer having a polar functional group obtained by plasma-treating or ionizing the F polymer. Be done.
  • the polar functional group is preferably a hydroxyl group-containing group or a carbonyl group-containing group, and more preferably a carbonyl group-containing group from the viewpoint of dispersion stability of the dispersion.
  • the hydroxyl group-containing group is preferably an alcoholic hydroxyl group-containing group, more preferably -CF 2 CH 2 OH or -C (CF 3 ) 2 OH.
  • the carbonyl group-containing group is a group containing a carbonyl group (> C (O)), and is a carboxyl group, an alkoxycarbonyl group, an amide group, an isocyanate group, a carbamate group (-OC (O) NH 2 ), and an acid anhydride residue.
  • a group (-C (O) OC (O)-), an imide residue (-C (O) NHC (O)-etc.) or a carbonate group (-OC (O) O-) is preferred.
  • the number of carbonyl group-containing groups in the F polymer is preferably 10 to 5000, more preferably 100 to 3000, and even more preferably 800 to 1500, per 1 ⁇ 10 6 carbon atoms in the main chain.
  • the number of carbonyl group-containing groups in the F polymer can be quantified by the composition of the polymer or the method described in International Publication No. 2020/145133.
  • a tetrafluoroethylene-based polymer containing PAVE units and containing 1.5 to 5.0 mol% of PAVE units with respect to all units is preferable, and includes PAVE units and units based on a monomer having a polar functional group.
  • a polymer having a polar functional group (1), or a polymer having no polar functional group (2) containing PAVE units and containing 2.0 to 5.0 mol% of PAVE units with respect to all units is more preferable. ..
  • these F polymers are more likely to be more densely and uniformly distributed in a molded product (polymer layer or the like) formed from the present dispersion. Further, microspherulites are likely to be formed in the molded product, and the adhesion with other components is likely to be enhanced. As a result, it is easier to obtain a molded product having a high degree of physical properties of each of the three components.
  • the polymer (1) has 90 to 98 mol% of TFE units, 1.5 to 9.97 mol% of PAVE units, and 0.01 to 3 mol of units based on a monomer having a polar functional group, based on all the units. %, It is preferable to contain each. Further, as the monomer having a polar functional group, itaconic anhydride, citraconic anhydride or 5-norbornene-2,3-dicarboxylic acid anhydride (also known as hymic anhydride; hereinafter, also referred to as “NAH”) is preferable. Specific examples of the polymer (1) include the polymers described in International Publication No. 2018/16644.
  • the polymer (2) is composed of only TFE units and PAVE units, and contains 95.0 to 98.0 mol% of TFE units and 2.0 to 5.0 mol% of PAVE units with respect to all the units. preferable.
  • the content of PAVE units in the polymer (2) is preferably 2.1 mol% or more, more preferably 2.2 mol% or more, based on all the units.
  • the fact that the polymer (2) does not have polar functional groups means that the number of polar functional groups contained in the polymer is less than 500 with respect to 1 ⁇ 10 6 carbon atoms constituting the polymer main chain. Means that The number of the polar functional groups is preferably 100 or less, more preferably less than 50. The lower limit of the number of polar functional groups is usually 0.
  • the polymer (2) may be produced by using a polymerization initiator, a chain transfer agent or the like that does not generate a polar functional group as the terminal group of the polymer chain, and is an F polymer having a polar functional group (derived from the polymerization initiator).
  • An F polymer or the like having a polar functional group at the terminal group of the main chain of the polymer may be fluorinated to produce the polymer.
  • the fluorination treatment method include a method using fluorine gas (see JP-A-2019-194314, etc.).
  • the Mohs hardness of the anisotropic filler in the present invention is 4 or less, preferably 3 or less.
  • the Mohs hardness of the anisotropic filler is preferably 1 or more, and more preferably 2 or more. Even if the anisotropic filler is brittle and has a Mohs hardness, the dispersion is excellent in dispersion stability due to the affinity between the anisotropic filler and the F powder, and the physical characteristics of the filler in the molded product are likely to be enhanced.
  • One type of anisotropic filler may be used, or two or more types having different average particle diameters or types may be used.
  • the shape of the anisotropic filler in the present invention may be granular, needle-like (fibrous), or plate-like.
  • Specific shapes of the anisotropic filler include spherical, scaly, layered, leafy, apricot kernel, columnar, chicken crown, equiaxed, leafy, mica, block, flat, wedge, and rosette. , Reticulated, prismatic.
  • the shape of the anisotropic filler is preferably scaly or plate-shaped. If a scaly or plate-shaped anisotropic filler is used, it not only easily forms a card house structure and improves the liquid characteristics (viscosity, dispersion stability, etc.) of the dispersion liquid, but also in the molded product. It is easy to improve the orientation of the filler, and it is easy to improve its function (mechanical strength, thermal conductivity, electrical characteristics, etc.).
  • anisotropic filler examples include carbon filler, nitride filler, mica filler, clay filler, and talc filler. Boron nitride or talc-containing filler is preferable, and boron nitride-containing filler is more preferable.
  • the crystal form of boron nitride may be any of hexagonal crystal, rhombohedral crystal, cubic crystal, and wurtzite.
  • the present dispersion containing such an anisotropic filler is excellent in dispersion stability and handleability.
  • the electrical interference that the filler gives to the F polymer in the molded product tends to increase, and as a result, the electrical characteristics (particularly, dielectric loss tangent property) of the molded product tend to be improved. Further, the thermal conductivity of the molded product tends to be good.
  • the content of boron nitride in the filler containing boron nitride is preferably 95% by mass or more, more preferably 99% by mass or more, still more preferably 99.5% by mass or more.
  • the upper limit of the content is 100% by mass.
  • the molded product tends to be excellent in low line expandability and electrical characteristics.
  • the anisotropic filler is added to water, the pH of the water may be acidic, neutral or alkaline, and is preferably alkaline.
  • the specific surface area of the anisotropic filler is preferably 1 ⁇ 20m 2 / g, 3 ⁇ 8m 2 / g is more preferable.
  • the anisotropic filler is likely to get wet in the present dispersion, and the affinity with the F powder is likely to be enhanced. Further, in the molded product, the anisotropic filler and the F polymer are more uniformly dispersed (distributed), and the physical properties of both are easily expressed in a well-balanced manner.
  • the surface of the anisotropic filler may be surface-treated.
  • Surface treatment agents include polyhydric alcohols (trimethylolethane, pentaeristol, propylene glycol, etc.), saturated fatty acids (stearic acid, lauric acid, etc.), their esters, alkanolamines, amines (trimethylamine, triethylamine, etc.), paraffin wax. , Silane coupling agents, silicones, polysiloxanes, inorganic substances (oxides such as aluminum, silicon, zirconium, tin, titanium, antimony, oxides, hydroxides, hydrated oxides or phosphates). As the surface treatment agent, a silane coupling agent is preferable.
  • the silane coupling agent preferably has an amino group, a thiol group, a vinyl group, an acroyloxy group or a methacryloyloxy group.
  • the anisotropic filler may be an anisotropic filler having a hydrophobic portion and a hydrophilic portion.
  • examples of such an anisotropic filler include an anisotropic filler having a hydrophobic layer on the surface and a hydrophilic layer inside. Specific examples thereof include a plate-shaped multilayer filler having a hydrophobic layer, a hydrophilic layer (moisture-containing layer), and a hydrophobic layer in this order.
  • the water content of the hydrophilic layer is preferably 0.3% by mass or more.
  • the anisotropic filler D50 is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more, and even more preferably 5 ⁇ m or more.
  • the D50 of the anisotropic filler is preferably 25 ⁇ m or less, more preferably 20 ⁇ m or less.
  • the anisotropic filler D90 is preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more.
  • the D90 of the anisotropic filler is preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less.
  • the aspect ratio of the anisotropic filler is preferably 2 or more, more preferably 3 or more, further preferably 5 or more, and particularly preferably 10 or more.
  • the aspect ratio of the anisotropic filler is preferably 10,000 or less. In this case, it is easy to improve the orientation of the filler in the molded product, and it is easy to enhance its function. Specifically, not only the dispersed state of the anisotropic filler in the dispersion is easy to stabilize, but also the orientation of the anisotropic filler when molding the molded product from the dispersion is further enhanced, which is different from the physical properties of the F polymer. It is easy to obtain a molded product that has the physical characteristics of an anisotropic filler.
  • the aspect ratio of the anisotropic filler is a value obtained by dividing the average particle size (D50) of the anisotropic filler by the average minor axis (average value of the length in the lateral direction) of the anisotropic filler. is there.
  • Specific embodiments of the anisotropic filler include fillers having an average minor axis of 1 ⁇ m or less or an average major axis (average value of lengths in the longitudinal direction) of 1 ⁇ m or more.
  • Specific examples of such an anisotropic filler include a flat plate-shaped talc filler.
  • the anisotropic filler may have a single-layer structure or a multi-layer structure. Examples of such an anisotropic filler include a talc filler having a three-layer structure.
  • anisotropic fillers include boron nitride fillers (Showa Denko's "UHP” series, Denka's “HGP” series, “GP” series, etc.) and talc fillers (Nippon Talc's "UHP” series, etc.). SG “series, etc.).
  • the D50 of the F powder is smaller than the D50 of the anisotropic filler. That is, in the present dispersion liquid, the affinity between the F powder and the anisotropic filler is enhanced by densely containing the finely granular F powder, and the dispersion stability of the present dispersion liquid is improved. Further, in the molded product, the anisotropic filler is more uniformly dispersed, and its physical properties are likely to be remarkably exhibited. Specifically, it is preferable that the D50 of the F powder is 0.1 ⁇ m or more and less than 5 ⁇ m, and the D50 of the anisotropic filler is 1 ⁇ m or more and 25 ⁇ m or less.
  • a preferred embodiment of the filler contained in the dispersion liquid is an inorganic filler containing an anisotropic filler (hereinafter, also referred to as “anisotropic filler 1”) and having an average particle size smaller than that of the anisotropic filler 1. (Hereinafter, also referred to as “different filler”).
  • anisotropic filler 1 an anisotropic filler
  • different filler the improvement of the dispersion stability of the present dispersion due to the interaction between the fillers and the ability to form a dense molded product with different fillers are balanced, and various physical properties (water resistance, water resistance, etc.) of the obtained molded product are obtained. Low line expandability, electrical characteristics, etc.) are more likely to be improved.
  • the different fillers may be inorganic fillers having an average particle size smaller than the anisotropic filler 1, and the material thereof may be the same as or different from that of the anisotropic filler 1.
  • the average particle size of the anisotropic filler 1 is more than 6 ⁇ m and 15 ⁇ m or less, and the average particle size of different fillers is 1 ⁇ m or more and 6 ⁇ m or less.
  • the anisotropic filler 1 is a filler containing boron nitride
  • the different filler is a filler containing boron nitride or a magnesium metasilicate filler (steatite filler).
  • the aspect ratio of the anisotropic filler 1 is 10 or more, and the aspect ratio of the different fillers is preferably 40 or less, and more preferably less than 10.
  • the random orientation of the anisotropic filler 1 is promoted by different fillers, and the physical characteristics of the filler and the physical characteristics of the molded product (adhesiveness, rigidity, etc.) are easily balanced.
  • the average particle size of the anisotropic filler 1 is more than 1 ⁇ m and 15 ⁇ m or less, and the average particle size of different fillers is 0.01 ⁇ m or more and less than 1 ⁇ m.
  • the anisotropic filler 1 is a filler containing boron nitride
  • the different filler is a filler containing silicon oxide.
  • the filler containing silicon oxide is preferably a silica filler or a magnesium metasilicate filler (steatite filler). Further, it is preferable that the surface of the filler containing silicon oxide is surface-treated with a silane coupling agent.
  • the filler containing silicon oxide is preferably substantially spherical. In this case, it is easy to form a dense molded product.
  • the substantially spherical shape means that the ratio of spherical particles having a ratio of the minor axis to the major axis of 0.7 or more is 95% or more when observed with a scanning electron microscope (SEM). ..
  • Specific examples of the filler containing silicon oxide include substantially spherical silica filler (“Admafine” series manufactured by Admatex Co., Ltd.), spherical fused silica (“SFP” series manufactured by Denka Co., Ltd., etc.), and hollow silica filler.
  • the different fillers promote the random orientation of the anisotropic filler 1 in the molded product, and the physical properties of the filler in the molded product and the physical characteristics of the molded product (adhesiveness, surface smoothness, rigidity, etc.) are balanced. It's easy to do. That is, the orientation of the anisotropic filler 1 is partially disturbed in the molded product, and the electrical characteristics due to the high filler orientation and the rigidity, adhesiveness and surface smoothness due to the low linear expansion and the disorder of the filler orientation are caused. The property is highly likely to be provided in the molded product.
  • the filler in this preferred embodiment may be contained in a state having a multimodal particle size distribution.
  • the peak caused by the present filler 1 is the highest among the peaks in the particle size distribution.
  • the filler is preferably contained in a state having a bimodal particle size distribution having peaks in a region of 6 ⁇ m or less and a region of more than 6 ⁇ m, respectively.
  • the filler in this preferred embodiment may contain at least a part thereof attached to the surface of the F powder, or may contain at least a part of the F powder attached to the surface thereof.
  • the present dispersion liquid contains a composite body of F powder and the anisotropic filler 1, and its dispersion stability is further improved, and various physical properties (water resistance, low line) of the molded product formed from the composite body are further improved. Expandability, electrical characteristics, etc.) are more likely to be improved.
  • the mass ratio of the contents of the different fillers to the content of the anisotropic filler 1 is preferably 0.1 or more, more preferably 0.2 or more.
  • the mass ratio is preferably 2 or less, and more preferably 1 or less. In this case, the dispersion stability of the dispersion liquid and the physical properties of the molded product are easily balanced.
  • the content of the anisotropic filler in this dispersion is preferably 5% by mass or more, more preferably 10% by mass or more, and further preferably 25% by mass or more.
  • the content of the F powder is preferably 50% by mass or less, more preferably 40% by mass or less, and further preferably 30% by mass or less.
  • the content of the F polymer and the content of the anisotropic filler in this dispersion are preferably 5% by mass or more, respectively.
  • the sum of the contents of both is preferably 60% by mass or less. Even if each of the F polymer and the anisotropic filler is contained in such a high ratio (content), this dispersion has excellent dispersion stability and has a high degree of physical characteristics of both, as described above by the mechanism of action. It is easy to form a molded product.
  • the dispersion liquid preferably further contains a surfactant.
  • the surfactant is preferably nonionic.
  • the hydrophilic moiety of the surfactant preferably has an oxyalkylene group or an alcoholic hydroxyl group.
  • the oxyalkylene group may be composed of one kind or two or more kinds. In the latter case, different types of oxyalkylene groups may be arranged in a random manner or in a block shape.
  • the oxyalkylene group is preferably an oxyethylene group.
  • the hydrophobic moiety of the surfactant preferably has an acetylene group, a polysiloxane group, a perfluoroalkyl group or a perfluoroalkenyl group.
  • the surfactant is preferably an acetylene-based surfactant, a silicone-based surfactant or a fluorine-based surfactant, and more preferably a silicone-based surfactant.
  • a fluorine-based surfactant a fluorine-based surfactant having a hydroxyl group (particularly an alcoholic hydroxyl group) or an oxyalkylene group and a perfluoroalkyl group or a perfluoroalkenyl group is more preferable.
  • surfactants include “Futergent” series (manufactured by Neos), “Surflon” series (manufactured by AGC Seimi Chemical Co., Ltd.), “Megafuck” series (manufactured by DIC), and “Unidyne” series (manufactured by Daikin Industries).
  • the content of the surfactant in this dispersion is preferably 1 to 15% by mass. In this case, the affinity between the components is enhanced, and the dispersion stability of the present dispersion is likely to be further improved.
  • the liquid dispersion medium in the present invention is a liquid compound that is inert at 25 ° C. and functions as a dispersion medium for F powder and anisotropic filler.
  • the liquid dispersion medium may be water or a non-aqueous dispersion medium.
  • the liquid dispersion medium may be one kind or two or more kinds. In this case, dissimilar liquid compounds are preferably compatible.
  • the boiling point of the liquid dispersion medium is preferably 125 to 250 ° C. In this case, when the molded product is formed from the present dispersion, the anisotropic filler is likely to be oriented and the physical properties of the molded product are likely to be improved.
  • liquid dispersion medium one or more liquid compounds selected from the group consisting of amides, ketones and esters are preferable from the viewpoint of dispersion stability of the dispersion, and N-methyl-2-pyrrolidone, ⁇ -butyrolactone and cyclohexanone are preferable. Alternatively, cyclopentanone is more preferable.
  • the content of the liquid dispersion medium in this dispersion is preferably 50% by mass or more, more preferably 60% by mass or more.
  • the content of the liquid dispersion medium is preferably 90% by mass or less, more preferably 80% by mass or less.
  • the viscosity of this dispersion is preferably 50 mPa ⁇ s or more, more preferably 100 mPa ⁇ s or more.
  • the viscosity of this dispersion is preferably 10,000 mPa ⁇ s or less, more preferably 1000 mPa ⁇ s or less, and even more preferably 800 mPa ⁇ s or less.
  • the thixotropy ratio of this dispersion is preferably 1.0 or more.
  • the thixotropy of the dispersion is preferably 3.0 or less, more preferably 2.0 or less.
  • the component dispersion layer ratio of the dispersion liquid is preferably 60% or more, more preferably 70% or more, and further preferably 80% or more.
  • the component dispersion layer ratio is the main dispersion in the screw tube before and after the main dispersion liquid (18 mL) is placed in a screw tube (internal volume: 30 mL) and allowed to stand at 25 ° C. for 14 days. It is a value calculated by the following formula from the total height of the liquid and the height of the component dispersion layer.
  • Component dispersion layer ratio (%) (height of component dispersion layer) / (overall height of this dispersion) ⁇ 100 If the component dispersion layer is not confirmed after standing and the state does not change, the component dispersion layer ratio is set to 100%, assuming that the overall height of the dispersion liquid does not change. This dispersion is easy to adjust to the viscosity, thixotropic property or component dispersion layer ratio within such a range by the above-mentioned mechanism of action, and is excellent in handleability.
  • the dispersion may further contain another resin (polymer) different from the F polymer.
  • the other resin may be a thermosetting resin or a thermoplastic resin.
  • other resins include epoxy resins, maleimide resins, urethane resins, elastomers, polyimides, polyamic acids, polyamideimides, polyphenylene ethers, polyphenylene oxides, liquid crystal polyesters, and fluoropolymers other than F polymers.
  • a preferred embodiment of the other resin is an aromatic polymer varnish.
  • aromatic polymer aromatic polyimide or aromatic polyamic acid is preferable, and thermoplastic aromatic polyimide is more preferable.
  • the physical characteristics of the F polymer and the anisotropic filler are likely to be remarkably exhibited in the molded product. Further, when the molded product is formed from the present dispersion liquid, the powder falling of the F powder is suppressed, and the adhesiveness thereof is likely to be improved.
  • the content of the aromatic polymer in this dispersion is preferably 1 to 30% by mass, more preferably 5 to 25% by mass.
  • the ratio of the content of the aromatic polymer to the content of the F polymer by mass is preferably 1.0 or less, more preferably 0.1 to 0.7.
  • Preferable embodiments of other resins include powders of polytetrafluoroethylene (PTFE). In this case, the physical characteristics based on PTFE (electrical characteristics such as low dielectric loss tangent property) are likely to be remarkably exhibited in the molded product.
  • PTFE serves as a nucleating agent, and the F polymer in the molded product tends to form microcrystals, the adhesion on the surface of the molded product is improved, and the adhesiveness thereof is likely to be enhanced.
  • the orientation of the filler in the molded product is likely to be improved, and its function is likely to be enhanced.
  • PTFE low molecular weight PTFE
  • Mn number average molecular weight
  • ⁇ Hc indicates the calorie crystallization (cal / g) of PTFE measured by the differential scanning calorimetry.
  • the Mn of low molecular weight PTFE is preferably 100,000 or less, more preferably 50,000 or less.
  • the Mn of low molecular weight PTFE is preferably 10,000 or more.
  • the content of PTFE in this dispersion is preferably 1 to 30% by mass, more preferably 5 to 20% by mass.
  • the ratio of the content of PTFE to the content of F polymer by mass is preferably 1.0 or less, more preferably 0.1 to 0.4.
  • the present dispersion liquid may be produced by mixing the present dispersion liquid and the powder of the other resin, or the present dispersion liquid and the varnish containing the other resin are mixed and produced. You may.
  • this dispersion contains a texo-imparting agent, a defoaming agent, a silane coupling agent, a dehydrating agent, a plasticizer, a weathering agent, an antioxidant, a heat stabilizer, a lubricant, an antistatic agent, and an increase. It may contain additives such as whitening agents, colorants, conductive agents, mold release agents, surface treatment agents, viscosity modifiers, flame retardants, and isotropic fillers.
  • This dispersion can be produced by mixing F powder, an anisotropic filler, and a liquid dispersion medium.
  • a liquid composition containing F powder and a liquid composition containing an anisotropic filler are prepared, and both are prepared. It is preferably produced by mixing.
  • Specific examples of the production method of the dispersion liquid include a production method in which the F powder, the anisotropic filler 1, a different filler, and a liquid dispersion medium are mixed. In this mixing, the F powder and the liquid dispersion medium may be mixed in advance to form a liquid composition, or the anisotropic filler 1 and the above-mentioned different filler may be mixed in advance.
  • Examples of the mixer used for mixing include a mixer with a stirring blade, a Henschel mixer, a ribbon blender, a swing type mixer, a vibration type mixer, a rotary type mixer, and the like, and specifically, a homodisper, a homogenizer, and a ball mill. Can be mentioned.
  • the mixing method may be either a batch method or a continuous method.
  • the mixer used for batch mixing is preferably a Henschel mixer, a pressurized kneader, a Banbury mixer or a planetary mixer.
  • the mixing is preferably performed by stirring, and more preferably by rotary stirring with a stirring blade.
  • the stirring speed is preferably 800 rpm or more, more preferably 2000 rpm or more.
  • the stirring speed is preferably 10000 rpm or less, more preferably 8000 rpm or less.
  • the anisotropic filler is scaly or plate-shaped, the layered aggregates (secondary particles) of the anisotropic filler that are usually formed are efficiently crushed to form a cardhouse structure. , This dispersion having excellent dispersibility is easily formed.
  • the molded product of the present invention differs from a tetrafluoroethylene-based polymer containing PAVE units (hereinafter, also referred to as “PFA-based polymer”) in that it has a Mohs hardness of 4 or less. Includes with directional filler.
  • the PFA-based polymer is a polymer having a polar functional group, or a polymer containing 2.0 to 5.0 mol% of PAVE units with respect to all units and having no polar functional group.
  • the proportion (content) of the anisotropic filler occupying is 10% by mass or more.
  • Examples of the shape of the molded product include a layered shape, a plate shape, and a lump shape, and a layered shape is preferable.
  • the thickness of the layered molded product is preferably 150 ⁇ m or less.
  • Such a layered molded product is useful for producing impregnated products such as films and prepregs and laminated plates.
  • the definition and scope of the anisotropic filler in the molded product are the same as those of the anisotropic filler in the dispersion, including preferred embodiments.
  • the type and range of polar functional groups of the PFA-based polymer in this molded product are the same as those of the F polymer, including preferred embodiments.
  • the PFA-based polymer is preferably polymer (1) or polymer (2).
  • the content of the anisotropic filler in the molded product is preferably 15% by mass or more, more preferably 25% by mass or more.
  • the content of the anisotropic filler is preferably 50% by mass or less, more preferably 40% by mass or less.
  • the content of the PFA polymer in the molded product is preferably 40% by mass or more, more preferably 50% by mass or more, still more preferably 60% by mass or more.
  • the content of the PFA polymer is preferably 95% by mass or less, more preferably 80% by mass or less, and further preferably 70% by mass or less.
  • the molded product preferably further contains an aromatic polymer (particularly aromatic polyimide) or PTFE.
  • aromatic polymer particularly aromatic polyimide
  • PTFE poly(ethylene glycol)
  • the respective definitions and ranges of the aromatic polymer and PTFE in the molded product and the ratio of each content to the content of the F polymer by mass are the same as those in the present dispersion.
  • the molded product is preferably formed from the dispersion liquid. Specifically, if the present dispersion is applied to the surface of the base material and the liquid dispersion medium is removed, the molded product contains a layer containing a PFA polymer and an anisotropic filler (hereinafter, "main layer"). Also referred to as) can be easily formed on the surface of the base material.
  • the substrate is heated to remove the liquid dispersion medium, and the PFA-based polymer is melt-fired by further heating, the substrate and the surface of the substrate are subjected to.
  • a laminate having the formed main layer is obtained.
  • the temperature in the former heating is preferably 120 ° C. to 200 ° C.
  • the temperature in the latter heating is preferably 250 ° C. to 400 ° C., more preferably 300 to 380 ° C.
  • the substrate includes a metal substrate (copper, nickel, aluminum, titanium, metal foil such as an alloy thereof, etc.), a resin film (polyethylene, polyarylate, polysulfone, polyallylsulfone, polyamide, polyesteramide, polyphenylene sulfide, polyallyl).
  • a resin film polyethylene, polyarylate, polysulfone, polyallylsulfone, polyamide, polyesteramide, polyphenylene sulfide, polyallyl.
  • examples thereof include ether ketones, polyamideimides, films such as liquid crystal polyesters and liquid crystal polyesteramides), and prepregs (precursors of fiber-reinforced resin substrates). It is preferable that the dispersion liquid is applied by coating.
  • the coating methods include spray method, roll coating method, spin coating method, gravure coating method, micro gravure coating method, gravure offset method, knife coating method, kiss coating method, bar coating method, die coating method, fountain Mayer bar method, and slot die coating.
  • the law can be mentioned.
  • Examples of each heating method include a method using an oven, a method using a ventilation drying furnace, and a method of irradiating heat rays such as infrared rays.
  • the thickness of this layer is preferably 0.1 to 150 ⁇ m. Specifically, if the substrate is a metal foil, the thickness of this layer is preferably 1 to 30 ⁇ m. When the substrate is a resin film, the thickness of this layer is preferably 1 to 150 ⁇ m, more preferably 10 to 50 ⁇ m.
  • the present dispersion may be applied only to one surface of the substrate, or may be applied to both sides of the substrate. In the former, a substrate and a laminate having the main layer on one surface of the substrate are obtained, and in the latter, a laminate having the main layer on both the surface of the substrate and the substrate is obtained. Since the latter laminate is less likely to warp, it is excellent in handleability during its processing.
  • Such a laminate include a metal foil, a metal-clad laminate having a main layer on at least one surface of the metal foil, a polyimide film, and a multilayer film having a main layer on both surfaces of the polyimide film. Can be mentioned. These laminates are excellent in various physical properties such as electrical characteristics, and are suitable as a printed circuit board material or the like. Specifically, such a laminate can be used for manufacturing a flexible printed circuit board or a rigid printed circuit board.
  • Powder 1 Contains 97.9 mol%, 0.1 mol%, and 2.0 mol% of TFE units, NAH units, and PPVE units in this order, and contains 1000 carbonyl groups per 1 ⁇ 10 6 carbon atoms in the main chain.
  • Powder 2 PFA-based polymer 2 containing 97.5 mol% and 2.5 mol% of TFE units and PPVE units in this order and having 40 carbonyl groups per 1 ⁇ 10 6 carbon atoms in the main chain (melting temperature 305).
  • Powder 3 Powder composed of PFA polymer 2 (D50: 5.3 ⁇ m)
  • Powder 4 Powder consisting of PTFE with a number average molecular weight of 20,000 (D50: 3.2 ⁇ m)
  • [Anisotropy filler] Filler 1: A scaly filler made of boron nitride (D50: 7.0 ⁇ m)
  • Filler 2 A scaly filler made of boron nitride (D50: 3.7 ⁇ m)
  • Filler 3 A scaly filler made of boron nitride (D50: 7.3 ⁇ m)
  • Filler 4 A plate-shaped talc filler having a three-layer structure having a hydrophobic layer, a hydrophilic layer, and a hydrophobic layer in this order (D50: 4.5 ⁇ m, average major axis: 5.1 ⁇ m, average minor axis: 0.2 ⁇ m, aspect ratio: 25, "SG-95" manufactured by Japan Talc)
  • the Mohs hardness of the fillers 1 to 3 is 2
  • the Mohs hardness of the filler 4 is 1.
  • Fillers 1, 2 and 4 are surface-treated with a silane coupling agent. [
  • Example 2 Production example of dispersion liquid (Example 1) First, powder 1, varnish 1, surfactant 1 and NMP were put into the pot, and zirconia balls were put into the pot. Then, the pot was rolled at 150 rpm for 1 hour to prepare a composition. In another pot, filler 1, surfactant 1 and NMP were charged, and zirconia balls were charged. Then, the pot was rolled at 150 rpm for 1 hour to prepare a composition. In still another pot, both compositions were charged and zirconia balls were charged.
  • Example 1 Dispersions 2 to 9 were obtained in the same manner as in Example 1 except that the types and amounts of the powder, filler, varnish, surfactant and liquid dispersion medium were changed as shown in Table 1 below.
  • Example 10 A dispersion liquid 10 was obtained in the same manner as in Example 1 except that 3 parts by mass of filler 1 and 8 parts by mass of filler 2 were used instead of 11 parts by mass of filler 1.
  • a wet film was formed by applying the dispersion liquid 1 to the surface of a long copper foil (thickness 18 ⁇ m) using a bar coater. Next, the metal foil on which the wet film was formed was passed through a drying furnace at 120 ° C. for 5 minutes and dried by heating to obtain a dry film. Then, the dry membrane was heated at 380 ° C. for 3 minutes in a nitrogen oven. As a result, a laminate 1 having a metal foil and a polymer layer (thickness 5 ⁇ m) as a molded product containing a melt-fired product of powder 1 and a filler 1 on the surface thereof was produced. Laminates 2 to 10 were produced in the same manner as the laminate 1 except that the dispersion 1 was changed to each of the dispersions 2 to 10.
  • the dielectric loss tangent laminates 1 to 4, 9 and 10 were removed by etching with an aqueous ferric chloride solution to prepare a single polymer layer, which was then subjected to the SPDR (split post dielectric resonance) method. Then, the dielectric loss tangent (measurement frequency: 10 GHz) of the polymer layer was measured. [Evaluation criteria] ⁇ : The dielectric loss tangent is less than 0.0010. ⁇ : The dielectric loss tangent is 0.0010 or more and 0.0025 or less. X: The dielectric loss tangent is more than 0.0025. The evaluation results are summarized in Table 2 below.
  • Example 12 A dispersion liquid 12 was obtained in the same manner as in Example 11 except that an ultrasonic homogenizer without stirring by a stirring blade was used instead of the homodisper (viscosity: 300 mPa ⁇ s, component dispersion layer ratio: 50%). ..
  • the laminated body 12 was manufactured in the same manner as the laminated body 11 except that the dispersion liquid 12 was used instead of the dispersion liquid 11. As a result of observing the cross section of each laminated body by SEM, the distribution state of the filler 1 was denser in the polymer layer of the laminated body 11 than in the polymer layer of the laminated body 12. Further, the polymer layer of the laminated body 11 had a lower dielectric loss tangent than the polymer layer of the laminated body 12. The laminated body 11 was superior to the laminated body 12 in thermal conductivity and bendability.
  • the dispersion liquid of the present invention has excellent dispersion stability, and has physical properties based on an F polymer (PFA-based polymer) and properties based on an anisotropic filler (impregnated products such as films and prepregs, laminated plates, and coatings). Can be used for manufacturing materials, etc.).
  • the molded product of the present invention is useful as an antenna part, a printed substrate, an aircraft part, an automobile part, a sports tool, a food industry product, a paint, a cosmetic, and the like.
  • Electrode binders for lithium secondary batteries, fuel cells, etc.
  • copy rolls furniture, automobile dashboards, covers for home appliances, sliding members (load bearings, sliding shafts, valves, bearings, gears, cams, belt conveyors) , Food transport belts, etc.), tools (shovels, shavings, cuttings, saws, etc.), boilers, hoppers, pipes, ovens, baking molds, chutes, dies, toilet bowls, container covering materials, heat exchangers (fins, etc.) , Heat transfer tube, etc.) is useful as an outer surface coating material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

[Problem] To provide a dispersion liquid containing a prescribed tetrafluoroethylene-based polymer and a prescribed anisotropic filler, a method for producing the dispersion liquid, and a molded article highly endowed with the physical properties of the two materials. [Solution] This dispersion liquid contains a powder of a tetrafluoroethylene-based polymer including units based on a perfluoro(alkylvinylether) and units based on hexafluoropropylene, an anisotropic filler having a Mohs hardness of 4 or lower, and a liquid dispersion medium. The average particle size of the powder is smaller than the average particle size of the anisotropic filler. This molded article contains a prescribed tetrafluoroethylene-based polymer including units based on a perfluoro(alkylvinylether), and the anisotropic filler. The proportion of the anisotropic filler in the molded article is 10 mass% or greater.

Description

分散液、分散液の製造方法及び成形物Dispersion liquid, manufacturing method of dispersion liquid and molded product
 本発明は、所定の異方性フィラーを含む分散液及びその製造方法と、成形物とに関する。 The present invention relates to a dispersion liquid containing a predetermined anisotropic filler, a method for producing the same, and a molded product.
 ペルフルオロ(アルキルビニルエーテル)に基づく単位を含むテトラフルオロエチレン系ポリマー(PFA)、ヘキサフルオロプロピレンに基づく単位を含むテトラフルオロエチレン系ポリマー(FEP)等の熱溶融性のフルオロポリマーは、離型性、電気絶縁性、撥水撥油性、耐薬品性、耐候性、耐熱性等の物性に優れており、種々の成形物に加工されて利用されている。
 特許文献1には、PFAのパウダーと窒化ホウ素フィラーとのドライブレンド物を溶融混練し、押出成形して得られる、電気絶縁性に優れた電線チューブが記載されている。
Heat-meltable fluoropolymers such as tetrafluoroethylene-based polymers (PFA) containing units based on perfluoro (alkyl vinyl ether) and tetrafluoroethylene-based polymers (FEP) containing units based on hexafluoropropylene are releasable and electrically charged. It has excellent physical properties such as insulation, water and oil repellency, chemical resistance, weather resistance, and heat resistance, and is used after being processed into various molded products.
Patent Document 1 describes an electric wire tube having excellent electrical insulation, which is obtained by melt-kneading a dry blend of PFA powder and a boron nitride filler and extrusion molding.
特開2014-224228号公報Japanese Unexamined Patent Publication No. 2014-224228
 しかし、かかるフルオロポリマーの溶融粘度は概して高く、フルオロポリマーとフィラーとを溶融混練する際には、強い応力が必要となる。その際、フィラーが元来有する性質(特に、形状、表面状態等の物理的な性質)が損なわれ、成形物においてフィラーの物性が低下しやすい。本発明者らは、かかる傾向が、低硬度の脆いフィラーの場合に顕著になる点、特に、低硬度かつ異方性のフィラーの場合に顕著になる点を知見した。
 本発明者らは、溶融混練によらない、かかる成形物の成形に適した材料を得るべく、鋭意検討した。その結果、所定のフルオロポリマーのパウダーと所定の異方性フィラーを含む分散液は、分散安定性に優れ、塗工性等のハンドリング性にも優れている点を知見した。さらに、それから形成される成形物は、異方性フィラーが元来有する性質が損なわれにくく、両者の物性を高度に具備する点も知見した。
 本発明の目的は、かかる分散液及び成形物の提供である。
However, the melt viscosity of such a fluoropolymer is generally high, and a strong stress is required when the fluoropolymer and the filler are melt-kneaded. At that time, the original properties of the filler (particularly, physical properties such as shape and surface condition) are impaired, and the physical properties of the filler tend to deteriorate in the molded product. The present inventors have found that such a tendency becomes remarkable in the case of a brittle filler having a low hardness, particularly in the case of a filler having a low hardness and an anisotropic property.
The present inventors have diligently studied to obtain a material suitable for molding such a molded product without using melt kneading. As a result, it was found that the dispersion liquid containing the predetermined fluoropolymer powder and the predetermined anisotropic filler is excellent in dispersion stability and also excellent in handleability such as coatability. Furthermore, it was also found that the molded product formed from the molded product is not easily impaired by the inherent properties of the anisotropic filler and has a high degree of physical properties of both.
An object of the present invention is to provide such a dispersion and a molded product.
 本発明は、下記の態様を有する。
 [1] ペルフルオロ(アルキルビニルエーテル)に基づく単位又はヘキサフルオロプロピレンに基づく単位を含むテトラフルオロエチレン系ポリマーのパウダーと、モース硬度が4以下である異方性フィラーと、液状分散媒とを含み、前記パウダーの平均粒子径が前記異方性フィラーの平均粒子径より小さい、分散液。
 [2] 前記テトラフルオロエチレン系ポリマーの含有量及び前記異方性フィラーの含有量が、それぞれ5質量%以上である、[1]の分散液。
 [3] 前記異方性フィラーの形状が、鱗片状又は板状である、[1]又は[2]の分散液。
 [4] 前記異方性フィラーのアスペクト比が、2以上である、[1]~[3]のいずれかの分散液。
 [5] 前記異方性フィラーが、窒化ホウ素又はタルクを含む異方性フィラーである、[1]~[4]のいずれかの分散液。
 [6] さらに、ポリテトラフルオロエチレンのパウダー又は芳香族ポリマーを含む、[1]~[5]のいずれかの分散液。
 [7] 成分分散層率が、60%以上である、[1]~[6]のいずれかの分散液。
 [8] [1]~[7]のいずれかの分散液を製造する方法であって、前記パウダーと、前記異方性フィラーと、前記異方性フィラーより平均粒子径が小さい無機フィラーと、液状分散媒とを混合する、分散液の製造方法。
 [9] 混合を、撹拌によって行う、[8]の製造方法。
 [10] ペルフルオロ(アルキルビニルエーテル)に基づく単位を含むテトラフルオロエチレン系ポリマーと、モース硬度が4以下である異方性フィラーとを含む成形物であって、
 前記テトラフルオロエチレン系ポリマーが、極性官能基を有するポリマー、又は、全単位に対して前記ペルフルオロ(アルキルビニルエーテル)に基づく単位を2.0~5.0モル%含み、極性官能基を有さないポリマーであり、前記成形物に占める前記異方性フィラーの割合が10質量%以上である、成形物。
 [11] 前記異方性フィラーのアスペクト比が、2以上である、[10]の成形物。
 [12] 前記異方性フィラーが、窒化ホウ素を含む鱗片状の異方性フィラー又はタルクを含む板状の異方性フィラーである、[11]の成形物。
 [13] 前記異方性フィラーの平均粒子径が、1μm以上である、[10]~[12]のいずれかの成形物。
 [14] さらに、ポリテトラフルオロエチレン又は芳香族ポリマーを含む、[10]~[13]のいずれかの成形物。
 [15] 前記成形物が、厚さ150μm以下の層状成形物である、[10]~[14]のいずれかの成形物。
The present invention has the following aspects.
[1] A tetrafluoroethylene polymer powder containing a unit based on perfluoro (alkyl vinyl ether) or a unit based on hexafluoropropylene, an anisotropic filler having a Mohs hardness of 4 or less, and a liquid dispersion medium are included. A dispersion liquid in which the average particle size of the powder is smaller than the average particle size of the anisotropic filler.
[2] The dispersion liquid of [1], wherein the content of the tetrafluoroethylene polymer and the content of the anisotropic filler are 5% by mass or more, respectively.
[3] The dispersion liquid of [1] or [2], wherein the anisotropic filler has a scaly or plate shape.
[4] The dispersion liquid according to any one of [1] to [3], wherein the anisotropic filler has an aspect ratio of 2 or more.
[5] The dispersion liquid according to any one of [1] to [4], wherein the anisotropic filler is an anisotropic filler containing boron nitride or talc.
[6] The dispersion liquid according to any one of [1] to [5], further containing a powder of polytetrafluoroethylene or an aromatic polymer.
[7] The dispersion liquid according to any one of [1] to [6], wherein the component dispersion layer ratio is 60% or more.
[8] A method for producing the dispersion liquid according to any one of [1] to [7], wherein the powder, the anisotropic filler, and an inorganic filler having an average particle size smaller than that of the anisotropic filler are used. A method for producing a dispersion liquid, which is mixed with a liquid dispersion medium.
[9] The production method of [8], wherein the mixing is carried out by stirring.
[10] A molded product containing a tetrafluoroethylene polymer containing a unit based on perfluoro (alkyl vinyl ether) and an anisotropic filler having a Mohs hardness of 4 or less.
The tetrafluoroethylene-based polymer contains 2.0 to 5.0 mol% of the polymer having a polar functional group or the unit based on the perfluoro (alkyl vinyl ether) with respect to all the units, and has no polar functional group. A molded product which is a polymer and in which the ratio of the anisotropic filler to the molded product is 10% by mass or more.
[11] The molded product of [10], wherein the anisotropic filler has an aspect ratio of 2 or more.
[12] The molded product of [11], wherein the anisotropic filler is a scaly anisotropic filler containing boron nitride or a plate-shaped anisotropic filler containing talc.
[13] The molded product according to any one of [10] to [12], wherein the anisotropic filler has an average particle size of 1 μm or more.
[14] The molded product according to any one of [10] to [13], further comprising polytetrafluoroethylene or an aromatic polymer.
[15] The molded product according to any one of [10] to [14], wherein the molded product is a layered molded product having a thickness of 150 μm or less.
 本発明によれば、所定のフルオロポリマーのパウダーと所定の異方性フィラーとを含み、分散性とハンドリング性に優れる分散液が得られる。また、両者の物性を高度に具備し、電気特性に特に優れた成形物が得られる。 According to the present invention, a dispersion liquid containing a predetermined fluoropolymer powder and a predetermined anisotropic filler and having excellent dispersibility and handleability can be obtained. In addition, a molded product having both physical characteristics and having particularly excellent electrical characteristics can be obtained.
 以下の用語は、以下の意味を有する。
 「平均粒子径(D50)」は、レーザー回折・散乱法によって求められる対象物(パウダー又はフィラー)の体積基準累積50%径である。すなわち、レーザー回折・散乱法によって対象物の粒度分布を測定し、対象物の粒子の集団の全体積を100%として累積カーブを求め、その累積カーブ上で累積体積が50%となる点の粒子径である。
 「D90」は、同様にして測定される、対象物の体積基準累積90%径である。
 「粒度分布」は、同様にして求められる各粒子径区間における粒子量(%)をプロットした曲線により示される分布である。
 「溶融温度」は、示差走査熱量測定(DSC)法で測定したポリマーの融解ピークの最大値に対応する温度である。
 「ガラス転移点」は、動的粘弾性測定(DMA)法でポリマーを分析して測定される値である。
 ポリマーにおける「単位」は、重合反応によってモノマーから直接形成された原子団であってもよく、重合反応によって得られたポリマーを所定の方法で処理して、構造の一部が変換された原子団であってもよい。ポリマーに含まれる、モノマーAに基づく単位を、単に「モノマーA単位」とも記す。
The following terms have the following meanings.
The "average particle size (D50)" is a volume-based cumulative 50% diameter of the object (powder or filler) determined by the laser diffraction / scattering method. That is, the particle size distribution of the object is measured by the laser diffraction / scattering method, the cumulative curve is obtained with the total volume of the group of particles of the object as 100%, and the particles at the point where the cumulative volume is 50% on the cumulative curve. The diameter.
“D90” is the volume-based cumulative 90% diameter of the object, measured in the same manner.
The "particle size distribution" is a distribution shown by a curve plotting the amount of particles (%) in each particle size interval obtained in the same manner.
The "melting temperature" is the temperature corresponding to the maximum value of the melting peak of the polymer measured by the differential scanning calorimetry (DSC) method.
The "glass transition point" is a value measured by analyzing a polymer by a dynamic viscoelasticity measurement (DMA) method.
The "unit" in the polymer may be an atomic group formed directly from the monomer by the polymerization reaction, and the polymer obtained by the polymerization reaction is treated by a predetermined method to convert a part of the structure. May be. The unit based on monomer A contained in the polymer is also simply referred to as "monomer A unit".
 本発明の分散液(以下、「本分散液」とも記す。)は、ペルフルオロ(アルキルビニルエーテル)(PAVE)に基づく単位(PAVE単位)又はヘキサフルオロプロピレン(HFP)に基づく単位(HFP単位)を含むテトラフルオロエチレン系ポリマー(以下、「Fポリマー」とも記す。)のパウダー(以下、「Fパウダー」とも記す。)と、モース硬度が4以下である異方性フィラーと、液状分散媒とを含む。
 また、Fパウダーの平均粒子径は、異方性フィラーの平均粒子径より小さい。本分散液において、Fパウダー及び異方性フィラーは分散している。
 本分散液は、分散安定性とハンドリング性とに優れており、Fポリマーと異方性フィラーとの物性を高度に具備した成形品を形成しやすい。その理由は必ずしも明確ではないが、以下の様に考えられる。
The dispersion liquid of the present invention (hereinafter, also referred to as “the present dispersion liquid”) includes a unit (PAVE unit) based on perfluoro (alkyl vinyl ether) (PAVE) or a unit (HFP unit) based on hexafluoropropylene (HFP). It contains a powder of a tetrafluoroethylene polymer (hereinafter, also referred to as “F polymer”) (hereinafter, also referred to as “F powder”), an anisotropic filler having a moth hardness of 4 or less, and a liquid dispersion medium. ..
Further, the average particle size of the F powder is smaller than the average particle size of the anisotropic filler. In this dispersion, the F powder and the anisotropic filler are dispersed.
This dispersion is excellent in dispersion stability and handleability, and it is easy to form a molded product having highly physical properties of the F polymer and the anisotropic filler. The reason is not always clear, but it can be considered as follows.
 本発明における異方性フィラーは、不定形状かつ種々の性状(晶癖等)を有する、脆弱なフィラーであるとも言える。本分散液において、異方性フィラーは、その状態が不安定であり、凝集又は沈降しやすい。また、異方性フィラーは、その形状又は性状が物理的な応力(剪断応力等)で破壊されやすい状態にある。
 一方、Fポリマーは、熱溶融加工性に代表される可塑性を有するポリマーであり、そのパウダー(Fパウダー)は、物理的な応力の影響を受けにくく、その分散性に優れる。
 本分散液は、かかるFパウダーを、異方性フィラーの平均粒子径より小さい状態にて、換言すれば、緻密に含んでおり、異方性フィラーとFパウダーとの親和性は相対的に高まりやすい状態にある。つまり、本分散液では、Fパウダーがより微粒状に緻密に含まれるため、Fパウダーと異方性フィラーとの間には疑似的な2次粒子が形成されやすい状態にあると考えられる。その結果、異方性フィラーの分散状態が安定化するため、本分散液は分散安定性とハンドリング性とに優れていると考えられる。
It can be said that the anisotropic filler in the present invention is a fragile filler having an indefinite shape and various properties (crystal habit, etc.). In this dispersion, the anisotropic filler is unstable in its state and tends to aggregate or settle. Further, the anisotropic filler is in a state in which its shape or properties are easily broken by physical stress (shear stress or the like).
On the other hand, the F polymer is a polymer having plasticity typified by hot melt processability, and its powder (F powder) is not easily affected by physical stress and is excellent in its dispersibility.
This dispersion contains the F powder in a state smaller than the average particle size of the anisotropic filler, in other words, densely, and the affinity between the anisotropic filler and the F powder is relatively increased. It is in an easy state. That is, in this dispersion, since the F powder is contained more finely and densely, it is considered that pseudo secondary particles are likely to be formed between the F powder and the anisotropic filler. As a result, the dispersed state of the anisotropic filler is stabilized, and thus this dispersion is considered to be excellent in dispersion stability and handleability.
 また、かかる本分散液から、液状分散媒を除去しつつFパウダーを溶融焼成すれば、異方性フィラーの変形を抑制しつつ、成形物を成形しやすい。また、液状分散媒の除去過程で、異方性フィラーが配向しつつ、高度に充填された成形物が得られやすい。その結果、本分散液から、Fポリマーの物性と異方性フィラーの物性とを高度に具備した成形品が得られたと考えられる。
 例えば、鱗片状又は板状の異方性フィラーを含む本分散液から成形物を形成すると、異方性フィラーが成形物の表面(面方向)に対して平行に配向し、成形物における異方性フィラーの物性が高度に発現しやすい。そのため、本分散液を用いれば、薄層状の成形物においても、Fポリマーの物性と異方性フィラーの物性とを高度に発現しやすい。
Further, if the F powder is melt-fired while removing the liquid dispersion medium from the present dispersion, it is easy to mold the molded product while suppressing the deformation of the anisotropic filler. Further, in the process of removing the liquid dispersion medium, it is easy to obtain a highly packed molded product while the anisotropic filler is oriented. As a result, it is considered that a molded product having the physical characteristics of the F polymer and the physical characteristics of the anisotropic filler was obtained from the present dispersion.
For example, when a molded product is formed from this dispersion containing a scaly or plate-shaped anisotropic filler, the anisotropic filler is oriented parallel to the surface (plane direction) of the molded product and is anisotropic in the molded product. The physical properties of the sex filler are highly likely to be expressed. Therefore, if this dispersion is used, the physical characteristics of the F polymer and the physical characteristics of the anisotropic filler can be highly expressed even in a thin-layered molded product.
 さらに、異方性フィラーが鱗片状又は板状であれば、異方性フィラーがカードハウス構造を形成して、本分散液の液物性(粘度,分散安定性等)が向上するだけでなく、それから形成される成形物において異方性フィラーがより高度に分散しやすい。その結果、成形物が電気特性に優れやすい。また、成形物が応力を受けた際、異方性フィラーによって応力が分散されやすく、機械的強度(折り曲げ性等)が向上しやすい。さらに、成形物において、異方性フィラーのパスが形成されるため、成形物の熱伝導性が向上しやすい。 Further, if the anisotropic filler is scaly or plate-shaped, the anisotropic filler forms a card house structure, which not only improves the liquid physical characteristics (viscosity, dispersion stability, etc.) of the dispersion liquid, but also improves the liquid properties (viscosity, dispersion stability, etc.). Anisotropic fillers are more likely to disperse in the moldings formed from it. As a result, the molded product tends to have excellent electrical characteristics. Further, when the molded product receives stress, the stress is easily dispersed by the anisotropic filler, and the mechanical strength (bending property, etc.) is easily improved. Further, since the anisotropic filler path is formed in the molded product, the thermal conductivity of the molded product is likely to be improved.
 本分散液におけるFパウダーは、Fポリマーからなるのが好ましい。パウダーにおけるFポリマーの含有量は、80質量%以上が好ましく、100質量%がより好ましい。
 Fパウダーに含まれ得る他の成分としては、Fポリマーとは異なる樹脂又は無機物が挙げられる。異なる樹脂としては、芳香族ポリエステル、ポリアミドイミド、熱可塑性ポリイミド、ポリフェニレンエーテル、ポリフェニレンオキシドが挙げられる。
 無機物としては、酸化ケイ素(シリカ)、金属酸化物(酸化ベリリウム、酸化セリウム、アルミナ、ソーダアルミナ、酸化マグネシウム、酸化亜鉛、酸化チタン等)、窒化ホウ素、メタ珪酸マグネシウム(ステアタイト)が挙げられる。
The F powder in this dispersion is preferably composed of an F polymer. The content of the F polymer in the powder is preferably 80% by mass or more, more preferably 100% by mass.
Other components that can be contained in the F powder include resins or inorganic substances different from the F polymer. Different resins include aromatic polyesters, polyamide-imides, thermoplastic polyimides, polyphenylene ethers, polyphenylene oxides.
Examples of the inorganic substance include silicon oxide (silica), metal oxides (beryllium oxide, cerium oxide, alumina, soda alumina, magnesium oxide, zinc oxide, titanium oxide, etc.), boron nitride, and magnesium metasilicate (steatite).
 Fポリマーとは異なる樹脂又は無機物を含むFパウダーは、Fポリマーをコアとし、上記樹脂又は無機物をシェルに有するコアシェル構造を有するか、上記樹脂又は無機物をコアとし、Fポリマーをシェルに有するコアシェル構造を有するのが好ましい。かかるFパウダーは、例えば、Fポリマーのパウダーと、前記樹脂又は無機物のパウダーとを合着(衝突、凝集等)させて得られる。 The F powder containing a resin or an inorganic substance different from the F polymer has a core-shell structure having the F polymer as a core and the resin or the inorganic substance in the shell, or a core-shell structure having the resin or the inorganic substance as the core and the F polymer in the shell. It is preferable to have. Such F powder is obtained by, for example, coalescing (collision, agglomeration, etc.) of the powder of the F polymer and the powder of the resin or the inorganic substance.
 FパウダーのD50は、10μm以下が好ましく、6μm以下がより好ましく、4μm以下がさらに好ましい。FパウダーのD50は、0.01μm以上が好ましく、0.1μm以上がより好ましく、1μm以上がさらに好ましい。また、FパウダーのD90は、20μm以下が好ましく、10μm以下がより好ましい。FパウダーのD50及びD90が、かかる範囲にあれば、異方性フィラーとの親和性がより向上して、本分散液の分散安定性と、その成形物の物性とがより向上しやすい。 The D50 of the F powder is preferably 10 μm or less, more preferably 6 μm or less, and even more preferably 4 μm or less. The D50 of the F powder is preferably 0.01 μm or more, more preferably 0.1 μm or more, and even more preferably 1 μm or more. The D90 of the F powder is preferably 20 μm or less, more preferably 10 μm or less. When D50 and D90 of the F powder are within such a range, the affinity with the anisotropic filler is further improved, and the dispersion stability of the present dispersion and the physical properties of the molded product are more likely to be improved.
 本分散液におけるFパウダーの含有量は、5質量%以上が好ましく、10質量%以上がより好ましく、25質量%以上がさらに好ましい。Fパウダーの含有量は、50質量%以下が好ましく、40質量%以下がより好ましく、30質量%以下がさらに好ましい。Fパウダーの含有量が、かかる範囲にあれば、緻密に含まれるFパウダーにより、Fパウダーと異方性フィラーとの親和性が高まり、本分散液の分散安定性がより向上しやすい。また、成形物におけるFポリマーの物性が顕著に発現しやすい。 The content of F powder in this dispersion is preferably 5% by mass or more, more preferably 10% by mass or more, and even more preferably 25% by mass or more. The content of the F powder is preferably 50% by mass or less, more preferably 40% by mass or less, and further preferably 30% by mass or less. When the content of the F powder is within such a range, the densely contained F powder enhances the affinity between the F powder and the anisotropic filler, and the dispersion stability of the present dispersion is more likely to be improved. In addition, the physical characteristics of the F polymer in the molded product are likely to be remarkably expressed.
 本分散液におけるFポリマーは、テトラフルオロエチレン(TFE)に基づく単位(TFE単位)を含むポリマーである。Fポリマーは、PAVE単位及びHFP単位の両方を含んでいてもよく、いずれか一方のみを含んでいてもよい。
 PAVEは、CF=CFOCF、CF=CFOCFCF又はCF=CFOCFCFCF(PPVE)が好ましく、PPVEがより好ましい。
 Fポリマーの溶融温度は、280~325℃が好ましく、285~320℃がより好ましい。
 Fポリマーのガラス転移点は、75~125℃が好ましく、80~100℃がより好ましい。
The F polymer in this dispersion is a polymer containing a unit (TFE unit) based on tetrafluoroethylene (TFE). The F polymer may contain both PAVE units and HFP units, or may contain only one of them.
As the PAVE, CF 2 = CFOCF 3 , CF 2 = CFOCF 2 CF 3 or CF 2 = CFOCF 2 CF 2 CF 3 (PPVE) is preferable, and PPVE is more preferable.
The melting temperature of the F polymer is preferably 280 to 325 ° C, more preferably 285 to 320 ° C.
The glass transition point of the F polymer is preferably 75 to 125 ° C, more preferably 80 to 100 ° C.
 Fポリマーは、極性官能基(酸素含有極性基)を有していてもよい。極性官能基は、Fポリマー中の単位に含まれていてもよく、ポリマーの主鎖の末端基に含まれていてもよい。後者の態様としては、重合開始剤、連鎖移動剤等に由来する末端基として極性官能基を有するFポリマー、Fポリマーをプラズマ処理や電離線処理して得られる極性官能基を有するFポリマーが挙げられる。
 極性官能基は、水酸基含有基又はカルボニル基含有基が好ましく、本分散液の分散安定性の観点から、カルボニル基含有基がより好ましい。
 水酸基含有基は、アルコール性水酸基を含有する基が好ましく、-CFCHOH又は-C(CFOHがより好ましい。
 カルボニル基含有基は、カルボニル基(>C(O))を含む基であり、カルボキシル基、アルコキシカルボニル基、アミド基、イソシアネート基、カルバメート基(-OC(O)NH)、酸無水物残基(-C(O)OC(O)-)、イミド残基(-C(O)NHC(O)-等)又はカーボネート基(-OC(O)O-)が好ましい。
 Fポリマーにおけるカルボニル基含有基の数は、主鎖の炭素数1×10個あたり、10~5000個が好ましく、100~3000個がより好ましく、800~1500個がさらに好ましい。なお、Fポリマーにおけるカルボニル基含有基の数は、ポリマーの組成又は国際公開2020/145133号に記載の方法によって定量できる。
The F polymer may have a polar functional group (oxygen-containing polar group). The polar functional group may be contained in a unit in the F polymer, or may be contained in the terminal group of the main chain of the polymer. Examples of the latter aspect include an F polymer having a polar functional group as a terminal group derived from a polymerization initiator, a chain transfer agent, etc., and an F polymer having a polar functional group obtained by plasma-treating or ionizing the F polymer. Be done.
The polar functional group is preferably a hydroxyl group-containing group or a carbonyl group-containing group, and more preferably a carbonyl group-containing group from the viewpoint of dispersion stability of the dispersion.
The hydroxyl group-containing group is preferably an alcoholic hydroxyl group-containing group, more preferably -CF 2 CH 2 OH or -C (CF 3 ) 2 OH.
The carbonyl group-containing group is a group containing a carbonyl group (> C (O)), and is a carboxyl group, an alkoxycarbonyl group, an amide group, an isocyanate group, a carbamate group (-OC (O) NH 2 ), and an acid anhydride residue. A group (-C (O) OC (O)-), an imide residue (-C (O) NHC (O)-etc.) or a carbonate group (-OC (O) O-) is preferred.
The number of carbonyl group-containing groups in the F polymer is preferably 10 to 5000, more preferably 100 to 3000, and even more preferably 800 to 1500, per 1 × 10 6 carbon atoms in the main chain. The number of carbonyl group-containing groups in the F polymer can be quantified by the composition of the polymer or the method described in International Publication No. 2020/145133.
 Fポリマーとしては、PAVE単位を含み、全単位に対してPAVE単位を1.5~5.0モル%含むテトラフルオロエチレン系ポリマーが好ましく、PAVE単位及び極性官能基を有するモノマーに基づく単位を含み、極性官能基を有するポリマー(1)、又はPAVE単位を含み、全単位に対してPAVE単位を2.0~5.0モル%含む、極性官能基を有さないポリマー(2)がより好ましい。
 これらのFポリマーは、そのパウダーが分散安定性に優れるだけでなく、本分散液から形成される成形物(ポリマー層等)中において、より緻密かつ均質に分布しやすい。さらに、成形物中において微小球晶を形成しやすく、他の成分との密着性が高まりやすい。その結果、3成分それぞれの物性を高度に具備した成形物が、より得られやすい。
As the F polymer, a tetrafluoroethylene-based polymer containing PAVE units and containing 1.5 to 5.0 mol% of PAVE units with respect to all units is preferable, and includes PAVE units and units based on a monomer having a polar functional group. , A polymer having a polar functional group (1), or a polymer having no polar functional group (2) containing PAVE units and containing 2.0 to 5.0 mol% of PAVE units with respect to all units is more preferable. ..
Not only is the powder excellent in dispersion stability, these F polymers are more likely to be more densely and uniformly distributed in a molded product (polymer layer or the like) formed from the present dispersion. Further, microspherulites are likely to be formed in the molded product, and the adhesion with other components is likely to be enhanced. As a result, it is easier to obtain a molded product having a high degree of physical properties of each of the three components.
 ポリマー(1)は、全単位に対して、TFE単位を90~98モル%、PAVE単位を1.5~9.97モル%及び極性官能基を有するモノマーに基づく単位を0.01~3モル%、それぞれ含有するのが好ましい。
 また、極性官能基を有するモノマーは、無水イタコン酸、無水シトラコン酸又は5-ノルボルネン-2,3-ジカルボン酸無水物(別称:無水ハイミック酸;以下、「NAH」とも記す。)が好ましい。
 ポリマー(1)の具体例としては、国際公開第2018/16644号に記載されるポリマーが挙げられる。
The polymer (1) has 90 to 98 mol% of TFE units, 1.5 to 9.97 mol% of PAVE units, and 0.01 to 3 mol of units based on a monomer having a polar functional group, based on all the units. %, It is preferable to contain each.
Further, as the monomer having a polar functional group, itaconic anhydride, citraconic anhydride or 5-norbornene-2,3-dicarboxylic acid anhydride (also known as hymic anhydride; hereinafter, also referred to as “NAH”) is preferable.
Specific examples of the polymer (1) include the polymers described in International Publication No. 2018/16644.
 ポリマー(2)は、TFE単位及びPAVE単位のみからなり、全単位に対して、TFE単位を95.0~98.0モル%、PAVE単位を2.0~5.0モル%含有するのが好ましい。
 ポリマー(2)におけるPAVE単位の含有量は、全単位に対して、2.1モル%以上が好ましく、2.2モル%以上がより好ましい。
 なお、ポリマー(2)が極性官能基を有さないとは、ポリマー主鎖を構成する炭素原子数の1×10個あたりに対して、ポリマーが有する極性官能基の数が、500個未満であることを意味する。上記極性官能基の数は、100個以下が好ましく、50個未満がより好ましい。上記極性官能基の数の下限は、通常、0個である。
 ポリマー(2)は、ポリマー鎖の末端基として極性官能基を生じない、重合開始剤や連鎖移動剤等を使用して製造してもよく、極性官能基を有するFポリマー(重合開始剤に由来する極性官能基をポリマーの主鎖の末端基に有するFポリマー等)をフッ素化処理して製造してもよい。フッ素化処理の方法としては、フッ素ガスを使用する方法(特開2019-194314号公報等を参照)が挙げられる。
The polymer (2) is composed of only TFE units and PAVE units, and contains 95.0 to 98.0 mol% of TFE units and 2.0 to 5.0 mol% of PAVE units with respect to all the units. preferable.
The content of PAVE units in the polymer (2) is preferably 2.1 mol% or more, more preferably 2.2 mol% or more, based on all the units.
The fact that the polymer (2) does not have polar functional groups means that the number of polar functional groups contained in the polymer is less than 500 with respect to 1 × 10 6 carbon atoms constituting the polymer main chain. Means that The number of the polar functional groups is preferably 100 or less, more preferably less than 50. The lower limit of the number of polar functional groups is usually 0.
The polymer (2) may be produced by using a polymerization initiator, a chain transfer agent or the like that does not generate a polar functional group as the terminal group of the polymer chain, and is an F polymer having a polar functional group (derived from the polymerization initiator). An F polymer or the like having a polar functional group at the terminal group of the main chain of the polymer) may be fluorinated to produce the polymer. Examples of the fluorination treatment method include a method using fluorine gas (see JP-A-2019-194314, etc.).
 本発明における異方性フィラーのモース硬度は、4以下であり、3以下が好ましい。異方性フィラーのモース硬度は、1以上が好ましく、2以上がより好ましい。モース硬度がかかる範囲にある脆い異方性フィラーであっても、異方性フィラーとFパウダーとの親和性により本分散液は分散安定性に優れ、その成形物におけるフィラーの物性が高まりやすい。
 異方性フィラーは、1種を用いてもよく、平均粒子径又は種類の異なる2種以上を用いてもよい。
The Mohs hardness of the anisotropic filler in the present invention is 4 or less, preferably 3 or less. The Mohs hardness of the anisotropic filler is preferably 1 or more, and more preferably 2 or more. Even if the anisotropic filler is brittle and has a Mohs hardness, the dispersion is excellent in dispersion stability due to the affinity between the anisotropic filler and the F powder, and the physical characteristics of the filler in the molded product are likely to be enhanced.
One type of anisotropic filler may be used, or two or more types having different average particle diameters or types may be used.
 本発明における異方性フィラーの形状は、粒状、針状(繊維状)、板状のいずれであってもよい。異方性フィラーの具体的な形状としては、球状、鱗片状、層状、葉片状、杏仁状、柱状、鶏冠状、等軸状、葉状、雲母状、ブロック状、平板状、楔状、ロゼット状、網目状、角柱状が挙げられる。
 異方性フィラーの形状は、鱗片状又は板状が好ましい。鱗片状又は板状の異方性フィラーを用いれば、それがカードハウス構造を形成して、分散液の液物性(粘度、分散安定性等)を向上させやすいだけでなく、成形物中でのフィラーの配向性も向上させやすく、その機能(機械的強度、熱伝導性、電気特性等)を高めやすい。
The shape of the anisotropic filler in the present invention may be granular, needle-like (fibrous), or plate-like. Specific shapes of the anisotropic filler include spherical, scaly, layered, leafy, apricot kernel, columnar, chicken crown, equiaxed, leafy, mica, block, flat, wedge, and rosette. , Reticulated, prismatic.
The shape of the anisotropic filler is preferably scaly or plate-shaped. If a scaly or plate-shaped anisotropic filler is used, it not only easily forms a card house structure and improves the liquid characteristics (viscosity, dispersion stability, etc.) of the dispersion liquid, but also in the molded product. It is easy to improve the orientation of the filler, and it is easy to improve its function (mechanical strength, thermal conductivity, electrical characteristics, etc.).
 異方性フィラーとしては、カーボンフィラー、窒化物フィラー、雲母フィラー、クレーフィラー、タルクフィラーが挙げられ、窒化ホウ素又はタルクを含むフィラーが好ましく、窒化ホウ素を含むフィラーがより好ましい。窒化ホウ素の結晶形は、六方晶、菱面体晶、立方晶、ウルツ鉱のいずれかであってもよい。かかる異方性フィラーを含む本分散液は、分散安定性とハンドリング性とに優れる。また、成形物中でフィラーがFポリマーに与える電気的な干渉が増大しやすく、その結果、成形物の電気特性(特に、誘電正接性)が良好になりやすい。さらに、成形物の熱伝導性が良好になりやすい。 Examples of the anisotropic filler include carbon filler, nitride filler, mica filler, clay filler, and talc filler. Boron nitride or talc-containing filler is preferable, and boron nitride-containing filler is more preferable. The crystal form of boron nitride may be any of hexagonal crystal, rhombohedral crystal, cubic crystal, and wurtzite. The present dispersion containing such an anisotropic filler is excellent in dispersion stability and handleability. Further, the electrical interference that the filler gives to the F polymer in the molded product tends to increase, and as a result, the electrical characteristics (particularly, dielectric loss tangent property) of the molded product tend to be improved. Further, the thermal conductivity of the molded product tends to be good.
 窒化ホウ素を含むフィラーにおける窒化ホウ素の含有量は、95質量%以上が好ましく、99質量%以上がより好ましく、99.5質量%以上がさらに好ましい。含有量の上限は、100質量%である。この場合、成形物が低線膨張性と電気特性に優れやすい。
 異方性フィラーを水に添加したとき、その水のpHは、酸性、中性、アルカリ性のいずれを示してもよく、アルカリ性を示すのが好ましい。
 異方性フィラーの比表面積は、1~20m/gが好ましく、3~8m/gがより好ましい。この場合、本分散液中で異方性フィラーが濡れやすくなり、Fパウダーとの親和性が亢進しやすい。また、成形物において、異方性フィラーとFポリマーとがより均一に分散(分布)して、両者の物性がバランスよく発現しやすい。
The content of boron nitride in the filler containing boron nitride is preferably 95% by mass or more, more preferably 99% by mass or more, still more preferably 99.5% by mass or more. The upper limit of the content is 100% by mass. In this case, the molded product tends to be excellent in low line expandability and electrical characteristics.
When the anisotropic filler is added to water, the pH of the water may be acidic, neutral or alkaline, and is preferably alkaline.
The specific surface area of the anisotropic filler is preferably 1 ~ 20m 2 / g, 3 ~ 8m 2 / g is more preferable. In this case, the anisotropic filler is likely to get wet in the present dispersion, and the affinity with the F powder is likely to be enhanced. Further, in the molded product, the anisotropic filler and the F polymer are more uniformly dispersed (distributed), and the physical properties of both are easily expressed in a well-balanced manner.
 異方性フィラーの表面は、表面処理されていてもよい。
 表面処理剤としては、多価アルコール(トリメチロールエタン、ペンタエリストール、プロピレングリコール等)、飽和脂肪酸(ステアリン酸、ラウリン酸等)、そのエステル、アルカノールアミン、アミン(トリメチルアミン、トリエチルアミン等)、パラフィンワックス、シランカップリング剤、シリコーン、ポリシロキサン、無機物(アルミニウム、ケイ素、ジルコニウム、スズ、チタニウム、アンチモン等の、酸化物、水酸化物、水和酸化物又はリン酸塩)が挙げられる。
 表面処理剤としては、シランカップリング剤が好ましい。かかる場合、異方性フィラーと、Fポリマーのパウダーとが、より親和して、本分散液の分散安定性が向上しやすい。シランカップリング剤は、アミノ基、チオール基、ビニル基、アクロイルオキシ基又はメタクリロイルオキシ基を有するのが好ましい。
The surface of the anisotropic filler may be surface-treated.
Surface treatment agents include polyhydric alcohols (trimethylolethane, pentaeristol, propylene glycol, etc.), saturated fatty acids (stearic acid, lauric acid, etc.), their esters, alkanolamines, amines (trimethylamine, triethylamine, etc.), paraffin wax. , Silane coupling agents, silicones, polysiloxanes, inorganic substances (oxides such as aluminum, silicon, zirconium, tin, titanium, antimony, oxides, hydroxides, hydrated oxides or phosphates).
As the surface treatment agent, a silane coupling agent is preferable. In such a case, the anisotropic filler and the F polymer powder are more compatible with each other, and the dispersion stability of the present dispersion is likely to be improved. The silane coupling agent preferably has an amino group, a thiol group, a vinyl group, an acroyloxy group or a methacryloyloxy group.
 異方性フィラーは、疎水部と親水部を有する異方性フィラーであってもよい。かかる異方性フィラーとしては、表面に疎水層を有し、内部に親水層を有する異方性フィラーが挙げられる。その具体例としては、疎水層、親水層(含水層)、疎水層をこの順に備えた板状の多層フィラーが挙げられる。親水層の含水率は、0.3質量%以上が好ましい。この場合、分散液における異方性フィラーの分散状態が安定しやすいだけでなく、分散液から成形物を成形する際の異方性フィラーの配向性も一層高まり、Fポリマーの物性と異方性フィラーの物性とを高度に具備した成形品が得られやすい。 The anisotropic filler may be an anisotropic filler having a hydrophobic portion and a hydrophilic portion. Examples of such an anisotropic filler include an anisotropic filler having a hydrophobic layer on the surface and a hydrophilic layer inside. Specific examples thereof include a plate-shaped multilayer filler having a hydrophobic layer, a hydrophilic layer (moisture-containing layer), and a hydrophobic layer in this order. The water content of the hydrophilic layer is preferably 0.3% by mass or more. In this case, not only the dispersed state of the anisotropic filler in the dispersion is easy to stabilize, but also the orientation of the anisotropic filler when molding the molded product from the dispersion is further enhanced, and the physical properties and anisotropy of the F polymer are further enhanced. It is easy to obtain a molded product that has a high degree of physical properties of the filler.
 異方性フィラーのD50は、1μm以上が好ましく、3μm以上がより好ましく、5μm以上がさらに好ましい。異方性フィラーのD50は、25μm以下が好ましく、20μm以下がより好ましい。異方性フィラーのD90は、10μm以上が好ましく、15μm以上がより好ましい。異方性フィラーのD90は、30μm以下が好ましく、20μm以下がより好ましい。異方性フィラーのD50及びD90が、かかる範囲にあれば、Fパウダーとの親和性がより向上して、本分散液の分散安定性と、その成形物の物性とがより向上しやすい。かかる異方性フィラーの具体例としては、鱗片状の窒化ホウ素フィラー及び板状のタルクフィラーが挙げられる。 The anisotropic filler D50 is preferably 1 μm or more, more preferably 3 μm or more, and even more preferably 5 μm or more. The D50 of the anisotropic filler is preferably 25 μm or less, more preferably 20 μm or less. The anisotropic filler D90 is preferably 10 μm or more, more preferably 15 μm or more. The D90 of the anisotropic filler is preferably 30 μm or less, more preferably 20 μm or less. When the anisotropic fillers D50 and D90 are in such a range, the affinity with the F powder is further improved, and the dispersion stability of the present dispersion and the physical properties of the molded product are more likely to be improved. Specific examples of such anisotropic fillers include scaly boron nitride fillers and plate-shaped talc fillers.
 異方性フィラーのアスペクト比は、2以上が好ましく、3以上がより好ましく、5以上がさらに好ましく、10以上が特に好ましい。異方性フィラーのアスペクト比は、10000以下が好ましい。この場合、成形物中でのフィラーの配向性をより向上させやすく、その機能を高めやすい。具体的には、分散液における異方性フィラーの分散状態が安定しやすいだけでなく、分散液から成形物を成形する際の異方性フィラーの配向性も一層高まり、Fポリマーの物性と異方性フィラーの物性とを高度に具備した成形品が得られやすい。 The aspect ratio of the anisotropic filler is preferably 2 or more, more preferably 3 or more, further preferably 5 or more, and particularly preferably 10 or more. The aspect ratio of the anisotropic filler is preferably 10,000 or less. In this case, it is easy to improve the orientation of the filler in the molded product, and it is easy to enhance its function. Specifically, not only the dispersed state of the anisotropic filler in the dispersion is easy to stabilize, but also the orientation of the anisotropic filler when molding the molded product from the dispersion is further enhanced, which is different from the physical properties of the F polymer. It is easy to obtain a molded product that has the physical characteristics of an anisotropic filler.
 なお、異方性フィラーのアスペクト比は、異方性フィラーの平均粒子径(D50)を異方性フィラーの平均短径(短手方向の長さの平均値)で除して求められる値である。
 かかる異方性フィラーの具体的な態様としては、平均短径が1μm以下、又は、平均長径(長手方向の長さの平均値)が1μm以上のフィラーが挙げられる。かかる異方性フィラーの具体例としては、平板状のタルクフィラーが挙げられる。
 異方性フィラーは、単層構造であってもよく、複層構造であってもよい。かかる異方性フィラーとしては、3層構造のタルクフィラーが挙げられる。
The aspect ratio of the anisotropic filler is a value obtained by dividing the average particle size (D50) of the anisotropic filler by the average minor axis (average value of the length in the lateral direction) of the anisotropic filler. is there.
Specific embodiments of the anisotropic filler include fillers having an average minor axis of 1 μm or less or an average major axis (average value of lengths in the longitudinal direction) of 1 μm or more. Specific examples of such an anisotropic filler include a flat plate-shaped talc filler.
The anisotropic filler may have a single-layer structure or a multi-layer structure. Examples of such an anisotropic filler include a talc filler having a three-layer structure.
 異方性フィラーの好適な具体例としては、窒化ホウ素フィラー(昭和電工社製の「UHP」シリーズ、デンカ製の「HGP」シリーズ、「GP」シリーズ等)、タルクフィラー(日本タルク社製の「SG」シリーズ等)が挙げられる。 Suitable specific examples of anisotropic fillers include boron nitride fillers (Showa Denko's "UHP" series, Denka's "HGP" series, "GP" series, etc.) and talc fillers (Nippon Talc's "UHP" series, etc.). SG "series, etc.).
 本分散液において、FパウダーのD50は、異方性フィラーのD50より小さい。つまり、本分散液では、微粒状のFパウダーを緻密に含むことにより、Fパウダーと異方性フィラーとの親和性を高め、本分散液の分散安定性を向上させている。さらに、成形物において、異方性フィラーがより均一に分散して、その物性が顕著に発現しやすい。
 具体的には、FパウダーのD50が0.1μm以上かつ5μm未満であり、異方性フィラーのD50が1μm以上かつ25μm以下であるのが好ましい。
In this dispersion, the D50 of the F powder is smaller than the D50 of the anisotropic filler. That is, in the present dispersion liquid, the affinity between the F powder and the anisotropic filler is enhanced by densely containing the finely granular F powder, and the dispersion stability of the present dispersion liquid is improved. Further, in the molded product, the anisotropic filler is more uniformly dispersed, and its physical properties are likely to be remarkably exhibited.
Specifically, it is preferable that the D50 of the F powder is 0.1 μm or more and less than 5 μm, and the D50 of the anisotropic filler is 1 μm or more and 25 μm or less.
 本分散液に含まれるフィラーの好適な態様としては、異方性フィラー(以下、「異方性フィラー1」とも記す。)を含み、さらに、異方性フィラー1より平均粒子径が小さい無機フィラー(以下、「異なるフィラー」とも記す。)を含む態様が挙げられる。この場合、フィラー同士の間での相互作用による本分散液の分散安定性の向上と、異なるフィラーによる緻密な成形物の形成能とがバランスして、得られる成形物の諸物性(耐水性、低線膨張性、電気特性等)が一層向上しやすい。なお、異なるフィラーは平均粒子径が異方性フィラー1より小さい無機フィラーであればよく、その材質は異方性フィラー1と同じであってもよく異なっていてもよい。 A preferred embodiment of the filler contained in the dispersion liquid is an inorganic filler containing an anisotropic filler (hereinafter, also referred to as “anisotropic filler 1”) and having an average particle size smaller than that of the anisotropic filler 1. (Hereinafter, also referred to as “different filler”). In this case, the improvement of the dispersion stability of the present dispersion due to the interaction between the fillers and the ability to form a dense molded product with different fillers are balanced, and various physical properties (water resistance, water resistance, etc.) of the obtained molded product are obtained. Low line expandability, electrical characteristics, etc.) are more likely to be improved. The different fillers may be inorganic fillers having an average particle size smaller than the anisotropic filler 1, and the material thereof may be the same as or different from that of the anisotropic filler 1.
 この好適な態様において、異方性フィラー1の平均粒子径が6μm超15μm以下であり、かつ、異なるフィラーの平均粒子径が1μm以上6μm以下であるのが好ましい。この際、異方性フィラー1は窒化ホウ素を含むフィラーであり、かつ、異なるフィラーは窒化ホウ素を含むフィラー又はメタ珪酸マグネシウムフィラー(ステアタイトフィラー)であるのが好ましい。また、異方性フィラー1のアスペクト比は10以上であり、かつ、異なるフィラーのアスペクト比は、40以下であるのが好ましく、10未満であるのがより好ましい。
 この場合、得られる成形物において、異なるフィラーにより異方性フィラー1のランダム配向性が促され、フィラー物性と成形物物性(接着性、剛性等)とがバランスしやすい。
In this preferred embodiment, it is preferable that the average particle size of the anisotropic filler 1 is more than 6 μm and 15 μm or less, and the average particle size of different fillers is 1 μm or more and 6 μm or less. At this time, it is preferable that the anisotropic filler 1 is a filler containing boron nitride, and the different filler is a filler containing boron nitride or a magnesium metasilicate filler (steatite filler). The aspect ratio of the anisotropic filler 1 is 10 or more, and the aspect ratio of the different fillers is preferably 40 or less, and more preferably less than 10.
In this case, in the obtained molded product, the random orientation of the anisotropic filler 1 is promoted by different fillers, and the physical characteristics of the filler and the physical characteristics of the molded product (adhesiveness, rigidity, etc.) are easily balanced.
 この好適な態様において、異方性フィラー1の平均粒子径が1μm超15μm以下であり、かつ、異なるフィラーの平均粒子径が0.01μm以上1μm未満であるのも好ましい。この際、異方性フィラー1は窒化ホウ素を含むフィラーであり、かつ、異なるフィラーは酸化ケイ素を含むフィラーであるのが好ましい。
 この酸化ケイ素を含むフィラーは、シリカフィラー又はメタ珪酸マグネシウムフィラー(ステアタイトフィラー)であるのが好ましい。また、酸化ケイ素を含むフィラーの表面はシランカップリング剤で表面処理されているのが好ましい。
In this preferred embodiment, it is also preferable that the average particle size of the anisotropic filler 1 is more than 1 μm and 15 μm or less, and the average particle size of different fillers is 0.01 μm or more and less than 1 μm. At this time, it is preferable that the anisotropic filler 1 is a filler containing boron nitride, and the different filler is a filler containing silicon oxide.
The filler containing silicon oxide is preferably a silica filler or a magnesium metasilicate filler (steatite filler). Further, it is preferable that the surface of the filler containing silicon oxide is surface-treated with a silane coupling agent.
 この酸化ケイ素を含むフィラーは、略真球状であるのが好ましい。この場合、緻密な成形物を形成しやすい。なお、略真球状とは、走査型電子顕微鏡(SEM)によって観察した際に、長径に対する短径の比が0.7以上である球形の粒子の占める割合が95%以上であることを意味する。
 かかる酸化ケイ素を含むフィラーの具体例としては、略真球状シリカフィラー(アドマテックス社製の「アドマファイン」シリーズ等)、球状溶融シリカ(デンカ社製の「SFP」シリーズ等)、中空状シリカフィラー(太平洋セメント社製の「E-SPHERES」シリーズ、日鉄鉱業社製の「シリナックス」シリーズ、エマーソン・アンド・カミング社製「エココスフイヤー」シリーズ等)、ステアタイトフィラー(日本タルク社製の「BST」シリーズ等)が挙げられる。
The filler containing silicon oxide is preferably substantially spherical. In this case, it is easy to form a dense molded product. The substantially spherical shape means that the ratio of spherical particles having a ratio of the minor axis to the major axis of 0.7 or more is 95% or more when observed with a scanning electron microscope (SEM). ..
Specific examples of the filler containing silicon oxide include substantially spherical silica filler (“Admafine” series manufactured by Admatex Co., Ltd.), spherical fused silica (“SFP” series manufactured by Denka Co., Ltd., etc.), and hollow silica filler. ("E-SPHERES" series manufactured by Pacific Cement, "Silicas" series manufactured by Nittetsu Mining Co., Ltd., "Ecocosfire" series manufactured by Emerson & Cumming, etc.), Steatite filler ("BST" manufactured by Japan Talc Co., Ltd.) "Series, etc.).
 この好適な態様においては、異なるフィラーにより、成形物における異方性フィラー1のランダム配向性が促され、成形物におけるフィラー物性と成形物物性(接着性、表面平滑性、剛性等)とがバランスしやすい。つまり、成形物において異方性フィラー1の配向性が部分的に乱れ、フィラー配向性の高さに起因する電気特性及び低線膨張性とフィラー配向の乱れに起因する剛性、接着性及び表面平滑性とが、成形物に高度に具備されやすい。 In this preferred embodiment, the different fillers promote the random orientation of the anisotropic filler 1 in the molded product, and the physical properties of the filler in the molded product and the physical characteristics of the molded product (adhesiveness, surface smoothness, rigidity, etc.) are balanced. It's easy to do. That is, the orientation of the anisotropic filler 1 is partially disturbed in the molded product, and the electrical characteristics due to the high filler orientation and the rigidity, adhesiveness and surface smoothness due to the low linear expansion and the disorder of the filler orientation are caused. The property is highly likely to be provided in the molded product.
 また、この好適な態様におけるフィラーは、多峰性の粒度分布を有する状態で含まれていてもよい。この場合、緻密な成形物を形成しやすい観点から、粒度分布における峰のうち、本フィラー1に起因する峰が最も高いのが好ましい。具体的には、フィラーは、6μm以下の領域と6μm超の領域とに峰をそれぞれ有する二峰性の粒度分布を有する状態で含まれているのが好ましい。 Further, the filler in this preferred embodiment may be contained in a state having a multimodal particle size distribution. In this case, from the viewpoint of easily forming a dense molded product, it is preferable that the peak caused by the present filler 1 is the highest among the peaks in the particle size distribution. Specifically, the filler is preferably contained in a state having a bimodal particle size distribution having peaks in a region of 6 μm or less and a region of more than 6 μm, respectively.
 また、この好適な態様におけるフィラーは、その少なくとも一部がFパウダーの表面に付着して含まれていてもよく、その表面に少なくとも一部のFパウダーが付着して含まれていてもよい。この場合、本分散液は、Fパウダーと異方性フィラー1とのコンポジット体を含むとも言え、その分散安定性が一層向上して、それから形成される成形物の諸物性(耐水性、低線膨張性、電気特性等)がさらに向上しやすい。 Further, the filler in this preferred embodiment may contain at least a part thereof attached to the surface of the F powder, or may contain at least a part of the F powder attached to the surface thereof. In this case, it can be said that the present dispersion liquid contains a composite body of F powder and the anisotropic filler 1, and its dispersion stability is further improved, and various physical properties (water resistance, low line) of the molded product formed from the composite body are further improved. Expandability, electrical characteristics, etc.) are more likely to be improved.
 さらに、この好適な態様における、異方性フィラー1の含有量に対する、異なるフィラーの含有量の質量比は、0.1以上が好ましく、0.2以上がより好ましい。また、上記質量比は、2以下が好ましく、1以下がより好ましい。この場合、分散液の分散安定性と成形物の物性とがバランスしやすい。 Further, in this preferred embodiment, the mass ratio of the contents of the different fillers to the content of the anisotropic filler 1 is preferably 0.1 or more, more preferably 0.2 or more. The mass ratio is preferably 2 or less, and more preferably 1 or less. In this case, the dispersion stability of the dispersion liquid and the physical properties of the molded product are easily balanced.
 本分散液における異方性フィラーの含有量は、5質量%以上が好ましく、10質量%以上がより好ましく、25質量%以上がさらに好ましい。Fパウダーの含有量は、50質量%以下が好ましく、40質量%以下がより好ましく、30質量%以下がさらに好ましい。
 本分散液における、Fポリマーの含有量及び異方性フィラーの含有量は、それぞれ5質量%以上であるのが好ましい。両者の含有量の和は、60質量%以下が好ましい。かかる高い割合(含有量)で、Fポリマーと異方性フィラーのそれぞれを含有しても、上述した作用機構の通り、本分散液は分散安定性に優れており、両者の物性を高度に具備した成形物を形成しやすい。
The content of the anisotropic filler in this dispersion is preferably 5% by mass or more, more preferably 10% by mass or more, and further preferably 25% by mass or more. The content of the F powder is preferably 50% by mass or less, more preferably 40% by mass or less, and further preferably 30% by mass or less.
The content of the F polymer and the content of the anisotropic filler in this dispersion are preferably 5% by mass or more, respectively. The sum of the contents of both is preferably 60% by mass or less. Even if each of the F polymer and the anisotropic filler is contained in such a high ratio (content), this dispersion has excellent dispersion stability and has a high degree of physical characteristics of both, as described above by the mechanism of action. It is easy to form a molded product.
 本分散液は、分散安定性とハンドリング性とを向上させる観点から、さらに、界面活性剤を含むのが好ましい。
 界面活性剤は、ノニオン性であるのが好ましい。
 界面活性剤の親水部位は、オキシアルキレン基又はアルコール性水酸基を有するのが好ましい。
 オキシアルキレン基は、1種から構成されていてもよく、2種以上から構成されていてもよい。後者の場合、種類の違うオキシアルキレン基は、ランダム状に配置されていてもよく、ブロック状に配置されていてもよい。
 オキシアルキレン基は、オキシエチレン基が好ましい。
From the viewpoint of improving dispersion stability and handleability, the dispersion liquid preferably further contains a surfactant.
The surfactant is preferably nonionic.
The hydrophilic moiety of the surfactant preferably has an oxyalkylene group or an alcoholic hydroxyl group.
The oxyalkylene group may be composed of one kind or two or more kinds. In the latter case, different types of oxyalkylene groups may be arranged in a random manner or in a block shape.
The oxyalkylene group is preferably an oxyethylene group.
 界面活性剤の疎水部位は、アセチレン基、ポリシロキサン基、ペルフルオロアルキル基又はペルフルオロアルケニル基を有するのが好ましい。換言すれば、界面活性剤は、アセチレン系界面活性剤、シリコーン系界面活性剤又はフッ素系界面活性剤が好ましく、シリコーン系界面活性剤がより好ましい。
 フッ素系界面活性剤としては、水酸基(特に、アルコール性水酸基)又はオキシアルキレン基と、ペルフルオロアルキル基又はペルフルオロアルケニル基とを有するフッ素系界面活性剤がさらに好ましい。
 界面活性剤の具体例としては、「フタージェント」シリーズ(ネオス社製)、「サーフロン」シリーズ(AGCセイミケミカル社製)、「メガファック」シリーズ(DIC社製)、「ユニダイン」シリーズ(ダイキン工業社製)、「BYK-347」、「BYK-349」、「BYK-378」、「BYK-3450」、「BYK-3451」、「BYK-3455」、「BYK-3456」(ビックケミー・ジャパン株式会社社製)、「KF-6011」、「KF-6043」(信越化学工業株式会社製)が挙げられる。
 本分散液における界面活性剤の含有量は、1~15質量%が好ましい。この場合、成分間の親和性が亢進して、本分散液の分散安定性がより向上しやすい。
The hydrophobic moiety of the surfactant preferably has an acetylene group, a polysiloxane group, a perfluoroalkyl group or a perfluoroalkenyl group. In other words, the surfactant is preferably an acetylene-based surfactant, a silicone-based surfactant or a fluorine-based surfactant, and more preferably a silicone-based surfactant.
As the fluorine-based surfactant, a fluorine-based surfactant having a hydroxyl group (particularly an alcoholic hydroxyl group) or an oxyalkylene group and a perfluoroalkyl group or a perfluoroalkenyl group is more preferable.
Specific examples of surfactants include "Futergent" series (manufactured by Neos), "Surflon" series (manufactured by AGC Seimi Chemical Co., Ltd.), "Megafuck" series (manufactured by DIC), and "Unidyne" series (manufactured by Daikin Industries). (Made by), "BYK-347", "BYK-349", "BYK-378", "BYK-3450", "BYK-3451", "BYK-3455", "BYK-3456" (Big Chemie Japan shares) (Manufactured by a company), "KF-6011", "KF-6043" (manufactured by Shin-Etsu Chemical Co., Ltd.).
The content of the surfactant in this dispersion is preferably 1 to 15% by mass. In this case, the affinity between the components is enhanced, and the dispersion stability of the present dispersion is likely to be further improved.
 本発明における液状分散媒は、Fパウダー及び異方性フィラーの分散媒として機能する、25℃で不活性な液体化合物である。液状分散媒は、水であってもよく、非水系分散媒であってもよい。液状分散媒は、1種であってもよく、2種以上であってもよい。この場合、異種の液体化合物は相溶するのが好ましい。
 液状分散媒の沸点は、125~250℃が好ましい。この場合、本分散液から成形物を形成する際に、異方性フィラーが配向しやすく、成形物の物性が向上しやすい。
 液状分散媒としては、本分散液の分散安定性の観点から、アミド、ケトン及びエステルからなる群から選ばれる1種以上の液体化合物が好ましく、N-メチル-2-ピロリドン、γ-ブチロラクトン、シクロヘキサノン又はシクロペンタノンがより好ましい。
 本分散液における液状分散媒の含有量は、50質量%以上が好ましく、60質量%以上がより好ましい。液状分散媒の含有量は、90質量%以下が好ましく、80質量%以下がより好ましい。
The liquid dispersion medium in the present invention is a liquid compound that is inert at 25 ° C. and functions as a dispersion medium for F powder and anisotropic filler. The liquid dispersion medium may be water or a non-aqueous dispersion medium. The liquid dispersion medium may be one kind or two or more kinds. In this case, dissimilar liquid compounds are preferably compatible.
The boiling point of the liquid dispersion medium is preferably 125 to 250 ° C. In this case, when the molded product is formed from the present dispersion, the anisotropic filler is likely to be oriented and the physical properties of the molded product are likely to be improved.
As the liquid dispersion medium, one or more liquid compounds selected from the group consisting of amides, ketones and esters are preferable from the viewpoint of dispersion stability of the dispersion, and N-methyl-2-pyrrolidone, γ-butyrolactone and cyclohexanone are preferable. Alternatively, cyclopentanone is more preferable.
The content of the liquid dispersion medium in this dispersion is preferably 50% by mass or more, more preferably 60% by mass or more. The content of the liquid dispersion medium is preferably 90% by mass or less, more preferably 80% by mass or less.
 本分散液の粘度は、50mPa・s以上が好ましく、100mPa・s以上がより好ましい。本分散液の粘度は、10000mPa・s以下が好ましく、1000mPa・s以下がより好ましく、800mPa・s以下がさらに好ましい。
 本分散液のチキソ比は、1.0以上が好ましい。本分散液のチキソ比は、3.0以下が好ましく、2.0以下がより好ましい。
 本分散液の成分分散層率は、60%以上であるのが好ましく、70%以上であるのがより好ましく、80%以上であるのがさらに好ましい。ここで、成分分散層率とは、本分散液(18mL)をスクリュー管(内容積:30mL)に入れ、25℃にて14日静置した際、静置前後の、スクリュー管中の本分散液の全体の高さと成分分散層の高さとから、以下の式により算出される値である。
 成分分散層率(%)=(成分分散層の高さ)/(本分散液の全体の高さ)×100
 なお、静置後に成分分散層が確認されず、状態に変化がない場合には、本分散液の全体の高さに変化がないとして、成分分散層率は100%とする。
 本分散液は、上述した作用機構により、かかる範囲の、粘度、チキソ性又は成分分散層率に調整しやすくハンドリング性に優れている。
The viscosity of this dispersion is preferably 50 mPa · s or more, more preferably 100 mPa · s or more. The viscosity of this dispersion is preferably 10,000 mPa · s or less, more preferably 1000 mPa · s or less, and even more preferably 800 mPa · s or less.
The thixotropy ratio of this dispersion is preferably 1.0 or more. The thixotropy of the dispersion is preferably 3.0 or less, more preferably 2.0 or less.
The component dispersion layer ratio of the dispersion liquid is preferably 60% or more, more preferably 70% or more, and further preferably 80% or more. Here, the component dispersion layer ratio is the main dispersion in the screw tube before and after the main dispersion liquid (18 mL) is placed in a screw tube (internal volume: 30 mL) and allowed to stand at 25 ° C. for 14 days. It is a value calculated by the following formula from the total height of the liquid and the height of the component dispersion layer.
Component dispersion layer ratio (%) = (height of component dispersion layer) / (overall height of this dispersion) × 100
If the component dispersion layer is not confirmed after standing and the state does not change, the component dispersion layer ratio is set to 100%, assuming that the overall height of the dispersion liquid does not change.
This dispersion is easy to adjust to the viscosity, thixotropic property or component dispersion layer ratio within such a range by the above-mentioned mechanism of action, and is excellent in handleability.
 本分散液は、さらに、Fポリマーと異なる他の樹脂(ポリマー)を含んでもよい。他の樹脂は、熱硬化性樹脂であってもよく、熱可塑性樹脂であってもよい。
 他の樹脂としては、エポキシ樹脂、マレイミド樹脂、ウレタン樹脂、エラストマー、ポリイミド、ポリアミック酸、ポリアミドイミド、ポリフェニレンエーテル、ポリフェニレンオキシド、液晶ポリエステル、Fポリマー以外のフルオロポリマーが挙げられる。
 他の樹脂の好適な態様としては、芳香族ポリマーのワニスが挙げられる。芳香族ポリマーは、芳香族ポリイミド又は芳香族ポリアミック酸が好ましく、熱可塑性芳香族ポリイミドがより好ましい。この場合、その成形物において、Fポリマーと異方性フィラーとの物性が顕著に発現しやすい。また、本分散液から成形物を形成する際に、Fパウダーの粉落ちも抑制され、その接着性もより向上しやすい。
The dispersion may further contain another resin (polymer) different from the F polymer. The other resin may be a thermosetting resin or a thermoplastic resin.
Examples of other resins include epoxy resins, maleimide resins, urethane resins, elastomers, polyimides, polyamic acids, polyamideimides, polyphenylene ethers, polyphenylene oxides, liquid crystal polyesters, and fluoropolymers other than F polymers.
A preferred embodiment of the other resin is an aromatic polymer varnish. As the aromatic polymer, aromatic polyimide or aromatic polyamic acid is preferable, and thermoplastic aromatic polyimide is more preferable. In this case, the physical characteristics of the F polymer and the anisotropic filler are likely to be remarkably exhibited in the molded product. Further, when the molded product is formed from the present dispersion liquid, the powder falling of the F powder is suppressed, and the adhesiveness thereof is likely to be improved.
 本分散液における芳香族ポリマーの含有量は、1~30質量%が好ましく、5~25質量%がより好ましい。Fポリマーの含有量に対する芳香族ポリマーの含有量の質量での比は、1.0以下が好ましく、0.1~0.7がより好ましい。
 他の樹脂の好適な態様としては、ポリテトラフルオロエチレン(PTFE)のパウダーが挙げられる。この場合、その成形物において、PTFEに基づく物性(低誘電正接性等の電気特性)が顕著に発現しやすい。また、PTFEが造核剤となり、成形物中のFポリマーが微小結晶を形成しやすくなり、成形物の表面における密着性が向上して、その接着性が高まりやすい。また、成形物中でのフィラーの配向性を向上させやすく、その機能が高まりやすい。
The content of the aromatic polymer in this dispersion is preferably 1 to 30% by mass, more preferably 5 to 25% by mass. The ratio of the content of the aromatic polymer to the content of the F polymer by mass is preferably 1.0 or less, more preferably 0.1 to 0.7.
Preferable embodiments of other resins include powders of polytetrafluoroethylene (PTFE). In this case, the physical characteristics based on PTFE (electrical characteristics such as low dielectric loss tangent property) are likely to be remarkably exhibited in the molded product. Further, PTFE serves as a nucleating agent, and the F polymer in the molded product tends to form microcrystals, the adhesion on the surface of the molded product is improved, and the adhesiveness thereof is likely to be enhanced. In addition, the orientation of the filler in the molded product is likely to be improved, and its function is likely to be enhanced.
 PTFEは、下式(1)に基づいて算出される数平均分子量(Mn)が20万以下であるPTFE(低分子量PTFE)が好ましい。
 Mn = 2.1×1010×ΔHc-5.16 ・・・ (1)
 式(1)中、ΔHcは、示差走査熱量分析法により測定されるPTFEの結晶化熱量(cal/g)を示す。
 低分子量PTFEのMnは、10万以下が好ましく、5万以下がより好ましい。低分子量PTFEのMnは、1万以上が好ましい。
As the PTFE, PTFE (low molecular weight PTFE) having a number average molecular weight (Mn) of 200,000 or less calculated based on the following formula (1) is preferable.
Mn = 2.1 × 10 10 × ΔHc- 5.16 ... (1)
In the formula (1), ΔHc indicates the calorie crystallization (cal / g) of PTFE measured by the differential scanning calorimetry.
The Mn of low molecular weight PTFE is preferably 100,000 or less, more preferably 50,000 or less. The Mn of low molecular weight PTFE is preferably 10,000 or more.
 本分散液におけるPTFEの含有量は、1~30質量%が好ましく、5~20質量%がより好ましい。Fポリマーの含有量に対するPTFEの含有量の質量での比は、1.0以下が好ましく、0.1~0.4がより好ましい。
 他の樹脂を含む場合の本分散液は、本分散液と他の樹脂のパウダーとを混合して製造してもよく、本分散液と、他の樹脂を含むワニスとを混合して製造してもよい。
The content of PTFE in this dispersion is preferably 1 to 30% by mass, more preferably 5 to 20% by mass. The ratio of the content of PTFE to the content of F polymer by mass is preferably 1.0 or less, more preferably 0.1 to 0.4.
When the present dispersion liquid contains another resin, the present dispersion liquid may be produced by mixing the present dispersion liquid and the powder of the other resin, or the present dispersion liquid and the varnish containing the other resin are mixed and produced. You may.
 本分散液は、上述した成分以外にも、チキソ性付与剤、消泡剤、シランカップリング剤、脱水剤、可塑剤、耐候剤、酸化防止剤、熱安定剤、滑剤、帯電防止剤、増白剤、着色剤、導電剤、離型剤、表面処理剤、粘度調節剤、難燃剤、等方性フィラー等の添加剤を含んでいてもよい。 In addition to the above-mentioned components, this dispersion contains a texo-imparting agent, a defoaming agent, a silane coupling agent, a dehydrating agent, a plasticizer, a weathering agent, an antioxidant, a heat stabilizer, a lubricant, an antistatic agent, and an increase. It may contain additives such as whitening agents, colorants, conductive agents, mold release agents, surface treatment agents, viscosity modifiers, flame retardants, and isotropic fillers.
 本分散液は、Fパウダーと異方性フィラーと液状分散媒とを混合して製造でき、Fパウダーを含む液状組成物と異方性フィラーを含む液状組成物とを、それぞれ調製し、両者を混合して製造するのが好ましい。
 本分散液の具体的な製造方法としては、Fパウダーと、異方性フィラー1と、異なるフィラーと、液状分散媒とを混合する、製造方法が挙げられる。この混合に際しては、予めFパウダーと液状分散媒を混合して液状組成物を形成してもよく、予め異方性フィラー1と上記異なるフィラーとを混合してもよい。
This dispersion can be produced by mixing F powder, an anisotropic filler, and a liquid dispersion medium. A liquid composition containing F powder and a liquid composition containing an anisotropic filler are prepared, and both are prepared. It is preferably produced by mixing.
Specific examples of the production method of the dispersion liquid include a production method in which the F powder, the anisotropic filler 1, a different filler, and a liquid dispersion medium are mixed. In this mixing, the F powder and the liquid dispersion medium may be mixed in advance to form a liquid composition, or the anisotropic filler 1 and the above-mentioned different filler may be mixed in advance.
 混合に用いる混合機としては、撹拌翼によるミキサー、ヘンシェルミキサー、リボンブレンダー、揺動型混合機、振動型混合機、回転型混合機等が挙げられ、具体的には、ホモディスパー、ホモジナイザー、ボールミルが挙げられる。
 混合の方法はバッチ式、連続式いずれでもよい。バッチ式混合に用いられる混合機は、ヘンシェルミキサー、加圧ニーダー、バンバリーミキサーまたはプラネタリーミキサーが好ましい。
Examples of the mixer used for mixing include a mixer with a stirring blade, a Henschel mixer, a ribbon blender, a swing type mixer, a vibration type mixer, a rotary type mixer, and the like, and specifically, a homodisper, a homogenizer, and a ball mill. Can be mentioned.
The mixing method may be either a batch method or a continuous method. The mixer used for batch mixing is preferably a Henschel mixer, a pressurized kneader, a Banbury mixer or a planetary mixer.
 混合は、撹拌によって行うのが好ましく、撹拌翼による回転撹拌によって行うのがより好ましい。
 撹拌の速度は、800rpm以上が好ましく、2000rpm以上がより好ましい。撹拌の速度は、10000rpm以下が好ましく、8000rpm以下がより好ましい。この場合、Fパウダーと異方性フィラーとにせん断がかかり凝集物が解砕されやすく、分散性に優れた本分散液を得やすい。
 さらに、異方性フィラーが鱗片状又は板状であれば、通常、形成されている異方性フィラーの層状凝集物(二次粒子)が効率よく解砕されつつ、カードハウス構造を形成するため、分散性に優れた本分散液が形成されやすい。
The mixing is preferably performed by stirring, and more preferably by rotary stirring with a stirring blade.
The stirring speed is preferably 800 rpm or more, more preferably 2000 rpm or more. The stirring speed is preferably 10000 rpm or less, more preferably 8000 rpm or less. In this case, the F powder and the anisotropic filler are sheared and the agglomerates are easily crushed, so that the present dispersion having excellent dispersibility can be easily obtained.
Furthermore, if the anisotropic filler is scaly or plate-shaped, the layered aggregates (secondary particles) of the anisotropic filler that are usually formed are efficiently crushed to form a cardhouse structure. , This dispersion having excellent dispersibility is easily formed.
 本発明の成形物(以下、「本成形物」とも記す。)は、PAVE単位を含むテトラフルオロエチレン系ポリマー(以下、「PFA系ポリマー」とも記す。)と、モース硬度が4以下である異方性フィラーとを含む。そして、PFA系ポリマーが、極性官能基を有するポリマー、又は、全単位に対してPAVE単位を2.0~5.0モル%含み、極性官能基を有さないポリマーであり、本成形物に占める異方性フィラーの割合(含有量)が10質量%以上である。
 本成形物の形状としては、層状、板状、塊状が挙げられ、層状であるのが好ましい。層状成形物の厚さは、150μm以下が好ましい。かかる層状成形物は、フィルム、プリプレグ等の含浸物や積層板等の製造のために有用である。
The molded product of the present invention (hereinafter, also referred to as “this molded product”) differs from a tetrafluoroethylene-based polymer containing PAVE units (hereinafter, also referred to as “PFA-based polymer”) in that it has a Mohs hardness of 4 or less. Includes with directional filler. The PFA-based polymer is a polymer having a polar functional group, or a polymer containing 2.0 to 5.0 mol% of PAVE units with respect to all units and having no polar functional group. The proportion (content) of the anisotropic filler occupying is 10% by mass or more.
Examples of the shape of the molded product include a layered shape, a plate shape, and a lump shape, and a layered shape is preferable. The thickness of the layered molded product is preferably 150 μm or less. Such a layered molded product is useful for producing impregnated products such as films and prepregs and laminated plates.
 本成形物における、異方性フィラーの定義及び範囲は、好適な態様も含めて、本分散液における異方性フィラーのそれらと同様である。
 本成形物における、PFA系ポリマーが有する極性官能基の種類及び範囲は、好適な態様も含めて、Fポリマーにおけるそれらと同様である。なお、PFA系ポリマーは、ポリマー(1)又はポリマー(2)が好ましい。
The definition and scope of the anisotropic filler in the molded product are the same as those of the anisotropic filler in the dispersion, including preferred embodiments.
The type and range of polar functional groups of the PFA-based polymer in this molded product are the same as those of the F polymer, including preferred embodiments. The PFA-based polymer is preferably polymer (1) or polymer (2).
 本成形物における異方性フィラーの含有量は、15質量%以上が好ましく、25質量%以上がより好ましい。異方性フィラーの含有量は、50質量%以下が好ましく、40質量%以下がさらに好ましい。
 本成形物におけるPFA系ポリマーの含有量は、40質量%以上が好ましく、50質量%以上がより好ましく、60質量%以上がさらに好ましい。PFA系ポリマーの含有量は、95質量%以下が好ましく、80質量%以下がより好ましく、70質量%以下がさらに好ましい。PFA系ポリマーの含有量がかかる範囲にあれば、本成形物において、PFA系ポリマーの物性が顕著に発現しやすい。また、本成形物からの異方性フィラーの粉落ちが抑制される。
The content of the anisotropic filler in the molded product is preferably 15% by mass or more, more preferably 25% by mass or more. The content of the anisotropic filler is preferably 50% by mass or less, more preferably 40% by mass or less.
The content of the PFA polymer in the molded product is preferably 40% by mass or more, more preferably 50% by mass or more, still more preferably 60% by mass or more. The content of the PFA polymer is preferably 95% by mass or less, more preferably 80% by mass or less, and further preferably 70% by mass or less. When the content of the PFA-based polymer is within such a range, the physical properties of the PFA-based polymer are likely to be remarkably exhibited in this molded product. In addition, powder dropping of the anisotropic filler from the molded product is suppressed.
 本成形物は、さらに、芳香族ポリマー(特に、芳香族ポリイミド)又はPTFEを含むのが好ましい。本成形物における、芳香族ポリマー及びPTFEの、それぞれの定義及び範囲とFポリマーの含有量に対するそれぞれの含有量の質量での比とは、本分散液におけるそれらと同様である。
 本成形物は、本分散液から形成するのが好ましい。具体的には、本分散液を基材の表面に付与し、その液状分散媒を除去すれば、本成形物として、PFA系ポリマーと異方性フィラーとを含む層(以下、「本層」とも記す。)を、基材の表面に容易に形成できる。より具体的には、本分散液を基板の表面に付与し、基板を加熱して液状分散媒を除去し、さらに加熱してPFA系ポリマーを溶融焼成させれば、基板と、基板の表面に形成された本層を有する積層体が得られる。前者の加熱における温度は、120℃~200℃が好ましい。一方、後者の加熱における温度は250℃~400℃が好ましく、300~380℃がより好ましい。
The molded product preferably further contains an aromatic polymer (particularly aromatic polyimide) or PTFE. The respective definitions and ranges of the aromatic polymer and PTFE in the molded product and the ratio of each content to the content of the F polymer by mass are the same as those in the present dispersion.
The molded product is preferably formed from the dispersion liquid. Specifically, if the present dispersion is applied to the surface of the base material and the liquid dispersion medium is removed, the molded product contains a layer containing a PFA polymer and an anisotropic filler (hereinafter, "main layer"). Also referred to as) can be easily formed on the surface of the base material. More specifically, if the present dispersion is applied to the surface of the substrate, the substrate is heated to remove the liquid dispersion medium, and the PFA-based polymer is melt-fired by further heating, the substrate and the surface of the substrate are subjected to. A laminate having the formed main layer is obtained. The temperature in the former heating is preferably 120 ° C. to 200 ° C. On the other hand, the temperature in the latter heating is preferably 250 ° C. to 400 ° C., more preferably 300 to 380 ° C.
 基板としては、金属基板(銅、ニッケル、アルミニウム、チタン、それらの合金等の金属箔等)、樹脂フィルム(ポリイミド、ポリアリレート、ポリスルホン、ポリアリルスルホン、ポリアミド、ポリエーテルアミド、ポリフェニレンスルフィド、ポリアリルエーテルケトン、ポリアミドイミド、液晶性ポリエステル、液晶性ポリエステルアミド等のフィルム)、プリプレグ(繊維強化樹脂基板の前駆体)が挙げられる。
 本分散液の付与は、塗布により行うのが好ましい。塗布方法としては、スプレー法、ロールコート法、スピンコート法、グラビアコート法、マイクログラビアコート法、グラビアオフセット法、ナイフコート法、キスコート法、バーコート法、ダイコート法、ファウンテンメイヤーバー法、スロットダイコート法が挙げられる。
 それぞれの加熱の方法としては、オーブンを用いる方法、通風乾燥炉を用いる方法、赤外線等の熱線を照射する方法が挙げられる。
The substrate includes a metal substrate (copper, nickel, aluminum, titanium, metal foil such as an alloy thereof, etc.), a resin film (polyethylene, polyarylate, polysulfone, polyallylsulfone, polyamide, polyesteramide, polyphenylene sulfide, polyallyl). Examples thereof include ether ketones, polyamideimides, films such as liquid crystal polyesters and liquid crystal polyesteramides), and prepregs (precursors of fiber-reinforced resin substrates).
It is preferable that the dispersion liquid is applied by coating. The coating methods include spray method, roll coating method, spin coating method, gravure coating method, micro gravure coating method, gravure offset method, knife coating method, kiss coating method, bar coating method, die coating method, fountain Mayer bar method, and slot die coating. The law can be mentioned.
Examples of each heating method include a method using an oven, a method using a ventilation drying furnace, and a method of irradiating heat rays such as infrared rays.
 本層の厚さは、0.1~150μmが好ましい。具体的には、基板が金属箔であれば、本層の厚さは、1~30μmが好ましい。基板が樹脂フィルムであれば、本層の厚さは、1~150μmが好ましく、10~50μmがより好ましい。
 本分散液は、基板の一方の表面にのみ付与してもよく、基板の両面に付与してもよい。前者においては、基板と、基板の片方の表面に本層を有する積層体が得られ、後者においては、基板と、基板の両方の表面に本層を有する積層体が得られる。後者の積層体は、より反りが発生しにくいため、その加工に際するハンドリング性に優れる。
 かかる積層体の具体例としては、金属箔と、その金属箔の少なくとも一方の表面に本層を有する金属張積層体、ポリイミドフィルムと、そのポリイミドフィルムの両方の表面に本層を有する多層フィルムが挙げられる。
 これらの積層体は、電気特性等の諸物性に優れており、プリント基板材料等として好適である。具体的には、かかる積層体は、フレキシブルプリント基板やリジッドプリント基板の製造に使用できる。
The thickness of this layer is preferably 0.1 to 150 μm. Specifically, if the substrate is a metal foil, the thickness of this layer is preferably 1 to 30 μm. When the substrate is a resin film, the thickness of this layer is preferably 1 to 150 μm, more preferably 10 to 50 μm.
The present dispersion may be applied only to one surface of the substrate, or may be applied to both sides of the substrate. In the former, a substrate and a laminate having the main layer on one surface of the substrate are obtained, and in the latter, a laminate having the main layer on both the surface of the substrate and the substrate is obtained. Since the latter laminate is less likely to warp, it is excellent in handleability during its processing.
Specific examples of such a laminate include a metal foil, a metal-clad laminate having a main layer on at least one surface of the metal foil, a polyimide film, and a multilayer film having a main layer on both surfaces of the polyimide film. Can be mentioned.
These laminates are excellent in various physical properties such as electrical characteristics, and are suitable as a printed circuit board material or the like. Specifically, such a laminate can be used for manufacturing a flexible printed circuit board or a rigid printed circuit board.
 以下、実施例によって本発明を詳細に説明するが、本発明はこれらに限定されない。
 1.各成分の準備
 [パウダー]
 パウダー1:TFE単位、NAH単位及びPPVE単位を、この順に97.9モル%、0.1モル%、2.0モル%含み、カルボニル基を主鎖の炭素数1×10個あたり1000個有するPFA系ポリマー1(溶融温度:300℃)からなるパウダー(D50:2.1μm)
 パウダー2:TFE単位及びPPVE単位を、この順に97.5モル%、2.5モル%含み、カルボニル基を主鎖の炭素数1×10個あたり40個有するPFA系ポリマー2(溶融温度305℃)からなるパウダー(D50:1.8μm)
 パウダー3:PFA系ポリマー2からなるパウダー(D50:5.3μm)
 パウダー4:数平均分子量が2万のPTFEからなるパウダー(D50:3.2μm)
Hereinafter, the present invention will be described in detail by way of examples, but the present invention is not limited thereto.
1. 1. Preparation of each ingredient [Powder]
Powder 1: Contains 97.9 mol%, 0.1 mol%, and 2.0 mol% of TFE units, NAH units, and PPVE units in this order, and contains 1000 carbonyl groups per 1 × 10 6 carbon atoms in the main chain. Powder (D50: 2.1 μm) made of PFA-based polymer 1 (melting temperature: 300 ° C.)
Powder 2: PFA-based polymer 2 containing 97.5 mol% and 2.5 mol% of TFE units and PPVE units in this order and having 40 carbonyl groups per 1 × 10 6 carbon atoms in the main chain (melting temperature 305). ℃) powder (D50: 1.8 μm)
Powder 3: Powder composed of PFA polymer 2 (D50: 5.3 μm)
Powder 4: Powder consisting of PTFE with a number average molecular weight of 20,000 (D50: 3.2 μm)
 [異方性フィラー]
 フィラー1:窒化ホウ素からなる、鱗片状のフィラー(D50:7.0μm)
 フィラー2:窒化ホウ素からなる、鱗片状のフィラー(D50:3.7μm)
 フィラー3:窒化ホウ素からなる、鱗片状のフィラー(D50:7.3μm)
 フィラー4:疎水層、親水層、疎水層をこの順に有する3層構造の板状タルクフィラー(D50:4.5μm、平均長径:5.1μm、平均短径:0.2μm、アスペクト比:25、日本タルク社製「SG-95」)
 なお、フィラー1~3のモース硬度は2であり、フィラー4のモース硬度は1である。フィラー1、2及び4は、シランカップリング剤で表面処理されている。
 [液状分散媒]
 NMP:N-メチル-2-ピロリドン
[Anisotropy filler]
Filler 1: A scaly filler made of boron nitride (D50: 7.0 μm)
Filler 2: A scaly filler made of boron nitride (D50: 3.7 μm)
Filler 3: A scaly filler made of boron nitride (D50: 7.3 μm)
Filler 4: A plate-shaped talc filler having a three-layer structure having a hydrophobic layer, a hydrophilic layer, and a hydrophobic layer in this order (D50: 4.5 μm, average major axis: 5.1 μm, average minor axis: 0.2 μm, aspect ratio: 25, "SG-95" manufactured by Japan Talc)
The Mohs hardness of the fillers 1 to 3 is 2, and the Mohs hardness of the filler 4 is 1. Fillers 1, 2 and 4 are surface-treated with a silane coupling agent.
[Liquid dispersion medium]
NMP: N-methyl-2-pyrrolidone
 [界面活性剤]
 界面活性剤1:CH=C(CH)C(O)OCHCH(CFFとCH=C(CH)C(O)(OCHCH23OHとのコポリマーであり、フッ素含有量が、35質量%であるノニオン性ポリマー
 [芳香族ポリマーのワニス]
 ワニス1:熱可塑性の芳香族ポリイミド(PI1)がNMPに溶解したワニス(固形分濃度:18質量%)
[Surfactant]
Surfactant 1: CH 2 = C (CH 3 ) C (O) OCH 2 CH 2 (CF 2 ) 6 F and CH 2 = C (CH 3 ) C (O) (OCH 2 CH 2 ) 23 OH Nonionic polymer that is a copolymer and has a fluorine content of 35% by mass [Aromatic polymer varnish]
Varnish 1: Varnish in which thermoplastic aromatic polyimide (PI1) is dissolved in NMP (solid content concentration: 18% by mass)
 2.分散液の製造例
 (例1)
 まず、ポットに、パウダー1とワニス1と界面活性剤1とNMPとを投入し、ジルコニアボールを投入した。その後、150rpmにて1時間、ポットを転がし、組成物を調製した。別のポットに、フィラー1と界面活性剤1とNMPとを投入し、ジルコニアボールを投入した。その後、150rpmにて1時間、ポットを転がし、組成物を調製した。
 さらに別のポットに、両者の組成物を投入し、ジルコニアボールを投入した。その後、150rpmにて1時間、ポットを転がし、パウダー1(11質量部)、フィラー1(11質量部)、PI1(7質量部)、界面活性剤1(4質量部)及びNMP(67質量部)を含む分散液1(粘度:400mPa・s)を得た。
 (例2~9)
 パウダー、フィラー、ワニス、界面活性剤及び液状分散媒の、種類と量とを、下表1に示す通り変更した以外は、例1と同様にして、分散液2~9を得た。
 (例10)
 11質量部のフィラー1に代えて、3質量部のフィラー1と、8質量部のフィラー2を使用した以外は、例1と同様にして、分散液10を得た。
2. Production example of dispersion liquid (Example 1)
First, powder 1, varnish 1, surfactant 1 and NMP were put into the pot, and zirconia balls were put into the pot. Then, the pot was rolled at 150 rpm for 1 hour to prepare a composition. In another pot, filler 1, surfactant 1 and NMP were charged, and zirconia balls were charged. Then, the pot was rolled at 150 rpm for 1 hour to prepare a composition.
In still another pot, both compositions were charged and zirconia balls were charged. Then, the pot was rolled at 150 rpm for 1 hour, powder 1 (11 parts by mass), filler 1 (11 parts by mass), PI1 (7 parts by mass), surfactant 1 (4 parts by mass) and NMP (67 parts by mass). ) Was obtained as a dispersion 1 (viscosity: 400 mPa · s).
(Examples 2-9)
Dispersions 2 to 9 were obtained in the same manner as in Example 1 except that the types and amounts of the powder, filler, varnish, surfactant and liquid dispersion medium were changed as shown in Table 1 below.
(Example 10)
A dispersion liquid 10 was obtained in the same manner as in Example 1 except that 3 parts by mass of filler 1 and 8 parts by mass of filler 2 were used instead of 11 parts by mass of filler 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 3.成形物の製造例
 長尺の銅箔(厚さ18μm)の表面に、バーコーターを用いて分散液1を塗布して、ウェット膜を形成した。次いで、このウェット膜が形成された金属箔を、120℃にて5分間、乾燥炉に通し、加熱により乾燥させて、ドライ膜を得た。その後、窒素オーブン中で、ドライ膜を380℃にて3分間、加熱した。これにより、金属箔と、その表面にパウダー1の溶融焼成物及びフィラー1を含む、成形物としてのポリマー層(厚さ5μm)とを有する積層体1を製造した。
 分散液1を、分散液2~10のそれぞれに変更した以外は、積層体1と同様にして、積層体2~10をそれぞれ製造した。
3. 3. Production Example of Molded Product A wet film was formed by applying the dispersion liquid 1 to the surface of a long copper foil (thickness 18 μm) using a bar coater. Next, the metal foil on which the wet film was formed was passed through a drying furnace at 120 ° C. for 5 minutes and dried by heating to obtain a dry film. Then, the dry membrane was heated at 380 ° C. for 3 minutes in a nitrogen oven. As a result, a laminate 1 having a metal foil and a polymer layer (thickness 5 μm) as a molded product containing a melt-fired product of powder 1 and a filler 1 on the surface thereof was produced.
Laminates 2 to 10 were produced in the same manner as the laminate 1 except that the dispersion 1 was changed to each of the dispersions 2 to 10.
 4.評価
 4-1.分散液の分散安定性
 分散液1~10を容器中に25℃にて保管保存後、その分散性を目視にて確認し、下記の基準に従って分散安定性を評価した。
 [評価基準]
 ◎:凝集物が視認されない。
 〇:容器側壁に細かな凝集物の付着が視認される。軽く撹拌すると均一に再分散した。
 △:容器底部にも凝集物が沈殿しているのが視認される。せん断をかけて撹拌すると均一に再分散する。
 ×:容器底部にも凝集物が沈殿しているのが視認される。せん断をかけて撹拌しても再分散が困難である。
4. Evaluation 4-1. Dispersion Stability of Dispersion Liquid After storing the dispersion liquids 1 to 10 in a container at 25 ° C., the dispersibility was visually confirmed, and the dispersion stability was evaluated according to the following criteria.
[Evaluation criteria]
⊚: The agglomerate is not visible.
〇: Fine agglomerates are visually recognized on the side wall of the container. When lightly stirred, it was uniformly redispersed.
Δ: Agglomerates are also visible at the bottom of the container. When agitated with shearing, it redisperses uniformly.
X: It is visually recognized that the agglomerates are also precipitated at the bottom of the container. Redispersion is difficult even with shearing and stirring.
 4-2.積層体の物性
 4-2-1.表面平滑性
 積層体1~9のポリマー層について、その表面の平滑性を目視にて確認し、下記の基準に従って表面平滑性を評価した。
 [評価基準]
 〇:ポリマー層の表面全体が平滑である。
 △:ポリマー又はフィラーの欠落による凹凸が、ポリマー層の表面の縁部に視認される。
 ×:ポリマー又は無機フィラーの欠落による凹凸が、ポリマー層の表面の全体に視認される。
4-2. Physical characteristics of the laminate 4-2-1. Surface smoothness The surface smoothness of the polymer layers of the laminated bodies 1 to 9 was visually confirmed, and the surface smoothness was evaluated according to the following criteria.
[Evaluation criteria]
〇: The entire surface of the polymer layer is smooth.
Δ: Unevenness due to lack of polymer or filler is visible at the edge of the surface of the polymer layer.
X: Unevenness due to lack of polymer or inorganic filler is visible on the entire surface of the polymer layer.
 4-2-2.線膨張係数
 積層体1~4、9及び10のそれぞれについて、180mm角の四角い試験片を切り出し、JIS C 6471:1995に規定される測定方法にしたがって、25℃以上260℃以下の範囲における、試験片の線膨張係数を測定した。
 [評価基準]
 〇:30ppm/℃以下である。
 ×:30ppm/℃超である。
4-2-2. Linear expansion coefficient For each of the laminated bodies 1 to 4, 9 and 10, a 180 mm square test piece was cut out and tested in the range of 25 ° C. or higher and 260 ° C. or lower according to the measurement method specified in JIS C 6471: 1995. The coefficient of linear expansion of one piece was measured.
[Evaluation criteria]
〇: 30 ppm / ° C or less.
X: Over 30 ppm / ° C.
 4-2-3.誘電正接
 積層体1~4、9及び10のそれぞれについて、積層体の銅箔を塩化第二鉄水溶液でエッチングにより除去して単独のポリマー層を作製し、SPDR(スプリットポスト誘電体共振)法にて、上記ポリマー層の誘電正接(測定周波数:10GHz)を測定した。
 [評価基準]
 〇:その誘電正接が0.0010未満である。
 △:その誘電正接が0.0010以上0.0025以下である。
 ×:その誘電正接が0.0025超である。
 それぞれの評価結果を、下表2にまとめて示す。
4-2-3. For each of the dielectric loss tangent laminates 1 to 4, 9 and 10, the copper foil of the laminate was removed by etching with an aqueous ferric chloride solution to prepare a single polymer layer, which was then subjected to the SPDR (split post dielectric resonance) method. Then, the dielectric loss tangent (measurement frequency: 10 GHz) of the polymer layer was measured.
[Evaluation criteria]
〇: The dielectric loss tangent is less than 0.0010.
Δ: The dielectric loss tangent is 0.0010 or more and 0.0025 or less.
X: The dielectric loss tangent is more than 0.0025.
The evaluation results are summarized in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
5.分散液の製造例(その2)
 (例11)
 まず、ポットに、パウダー1と界面活性剤1とNMPとを加えて混合し、ホモディスパーにて2000rpmで1時間撹拌して、組成物を調整した。別のポットに、フィラー1と界面活性剤1とNMPとを投入し、ホモディスパーにて2000rpmで1時間撹拌して、組成物を調整した。さらに別のポットに、両者の組成物を投入し、ホモディスパーにて2000rpmで1時間撹拌して、パウダー1(11質量部)、フィラー1(11質量部)、界面活性剤1(4質量部)及びNMP(74質量部)を含む分散液11(粘度:300mPa・s、成分分散層率:80%)を得た。
 (例12)
 ホモディスパーに代えて、撹拌翼による撹拌を伴わない超音波ホモジナイザーを用いた以外は、例11と同様にして、分散液12を得た(粘度:300mPa・s、成分分散層率:50%)。
5. Production example of dispersion liquid (Part 2)
(Example 11)
First, powder 1, surfactant 1 and NMP were added to and mixed in a pot, and the mixture was stirred with a homodisper at 2000 rpm for 1 hour to prepare a composition. Filler 1, surfactant 1 and NMP were put into another pot and stirred with a homodisper at 2000 rpm for 1 hour to prepare a composition. The compositions of both were put into yet another pot, and stirred at 2000 rpm for 1 hour with a homodispar, powder 1 (11 parts by mass), filler 1 (11 parts by mass), and surfactant 1 (4 parts by mass). ) And NMP (74 parts by mass), a dispersion liquid 11 (viscosity: 300 mPa · s, component dispersion layer ratio: 80%) was obtained.
(Example 12)
A dispersion liquid 12 was obtained in the same manner as in Example 11 except that an ultrasonic homogenizer without stirring by a stirring blade was used instead of the homodisper (viscosity: 300 mPa · s, component dispersion layer ratio: 50%). ..
 6.積層体の製造例(その2)
 厚さ18μmのアルミニウム箔の表面に、分散液11をグラビアリバース法によりロールツーロールで塗工して、液状被膜を形成した。次いで、この液状被膜が形成されたアルミニウム箔を、120℃の乾燥炉に5分間で通し、加熱により乾燥させた。その後、窒素雰囲気下の遠赤外線オーブン中で、乾燥被膜を340℃にて3分間、加熱した。これにより、アルミニウム箔の表面にポリマー層(厚さ:10μm)が形成された積層体11を製造した。さらに、分散液11に代えて、分散液12を用いた以外は、積層体11と同様にして、積層体12を製造した。
 それぞれの積層体の断面をSEMにて観察した結果、積層体11のポリマー層の方が、積層体12のポリマー層より、フィラー1の分布状態が緻密であった。また、積層体11のポリマー層の方が、積層体12のポリマー層より誘電正接が低かった。積層体11の方が、積層体12より、熱伝導性と折曲性とに優れていた。
6. Manufacturing example of laminated body (2)
A liquid film was formed by applying the dispersion liquid 11 on the surface of an aluminum foil having a thickness of 18 μm by a roll-to-roll method by a gravure reverse method. Next, the aluminum foil on which the liquid film was formed was passed through a drying oven at 120 ° C. for 5 minutes and dried by heating. Then, the dry film was heated at 340 ° C. for 3 minutes in a far-infrared oven under a nitrogen atmosphere. As a result, the laminate 11 in which the polymer layer (thickness: 10 μm) was formed on the surface of the aluminum foil was manufactured. Further, the laminated body 12 was manufactured in the same manner as the laminated body 11 except that the dispersion liquid 12 was used instead of the dispersion liquid 11.
As a result of observing the cross section of each laminated body by SEM, the distribution state of the filler 1 was denser in the polymer layer of the laminated body 11 than in the polymer layer of the laminated body 12. Further, the polymer layer of the laminated body 11 had a lower dielectric loss tangent than the polymer layer of the laminated body 12. The laminated body 11 was superior to the laminated body 12 in thermal conductivity and bendability.
 本発明の分散液は、分散安定性に優れ、Fポリマー(PFA系ポリマー)に基づく物性と異方性フィラーに基づく特性とを具備した成形物(フィルム、プリプレグ等の含浸物、積層板、被覆材等)の製造に使用できる。本発明の成形物は、アンテナ部品、プリント基板、航空機用部品、自動車用部品、スポーツ用具、食品工業用品、塗料、化粧品等として有用であり、具体的には、放熱部材、電線被覆材(航空機用電線等)、電気絶縁性テープ、石油掘削用絶縁テープ、プリント基板用材料、分離膜(精密濾過膜、限外濾過膜、逆浸透膜、イオン交換膜、透析膜、気体分離膜等)、電極バインダー(リチウム二次電池用、燃料電池用等)、コピーロール、家具、自動車ダッシュボート、家電製品等のカバー、摺動部材(荷重軸受、すべり軸、バルブ、ベアリング、歯車、カム、ベルトコンベア、食品搬送用ベルト等)、工具(シャベル、やすり、きり、のこぎり等)、ボイラー、ホッパー、パイプ、オーブン、焼き型、シュート、ダイス、便器、コンテナ被覆材、冷熱機器等の熱交換器(フィン、伝熱管等)の外面被覆材として有用である。 The dispersion liquid of the present invention has excellent dispersion stability, and has physical properties based on an F polymer (PFA-based polymer) and properties based on an anisotropic filler (impregnated products such as films and prepregs, laminated plates, and coatings). Can be used for manufacturing materials, etc.). The molded product of the present invention is useful as an antenna part, a printed substrate, an aircraft part, an automobile part, a sports tool, a food industry product, a paint, a cosmetic, and the like. (Electric wires, etc.), electrical insulating tape, insulating tape for oil drilling, materials for printed substrates, separation membranes (precision filtration membranes, ultrafiltration membranes, reverse osmosis membranes, ion exchange membranes, dialysis membranes, gas separation membranes, etc.), Electrode binders (for lithium secondary batteries, fuel cells, etc.), copy rolls, furniture, automobile dashboards, covers for home appliances, sliding members (load bearings, sliding shafts, valves, bearings, gears, cams, belt conveyors) , Food transport belts, etc.), tools (shovels, shavings, cuttings, saws, etc.), boilers, hoppers, pipes, ovens, baking molds, chutes, dies, toilet bowls, container covering materials, heat exchangers (fins, etc.) , Heat transfer tube, etc.) is useful as an outer surface coating material.

Claims (15)

  1.  ペルフルオロ(アルキルビニルエーテル)に基づく単位又はヘキサフルオロプロピレンに基づく単位を含むテトラフルオロエチレン系ポリマーのパウダーと、モース硬度が4以下である異方性フィラーと、液状分散媒とを含み、前記パウダーの平均粒子径が前記異方性フィラーの平均粒子径より小さい、分散液。 A powder of a tetrafluoroethylene polymer containing a unit based on perfluoro (alkyl vinyl ether) or a unit based on hexafluoropropylene, an anisotropic filler having a Mohs hardness of 4 or less, and a liquid dispersion medium, and the average of the powders is contained. A dispersion having a particle size smaller than the average particle size of the anisotropic filler.
  2.  前記テトラフルオロエチレン系ポリマーの含有量及び前記異方性フィラーの含有量が、それぞれ5質量%以上である、請求項1に記載の分散液。 The dispersion liquid according to claim 1, wherein the content of the tetrafluoroethylene polymer and the content of the anisotropic filler are 5% by mass or more, respectively.
  3.  前記異方性フィラーの形状が、鱗片状又は板状である、請求項1又は2に記載の分散液。 The dispersion liquid according to claim 1 or 2, wherein the anisotropic filler has a scale-like or plate-like shape.
  4.  前記異方性フィラーのアスペクト比が、2以上である、請求項1~3のいずれか1項に記載の分散液。 The dispersion liquid according to any one of claims 1 to 3, wherein the anisotropic filler has an aspect ratio of 2 or more.
  5.  前記異方性フィラーが、窒化ホウ素又はタルクを含む異方性フィラーである、請求項1~4のいずれか1項に記載の分散液。 The dispersion liquid according to any one of claims 1 to 4, wherein the anisotropic filler is an anisotropic filler containing boron nitride or talc.
  6.  さらに、ポリテトラフルオロエチレンのパウダー又は芳香族ポリマーを含む、請求項1~5のいずれか1項に記載の分散液。 The dispersion liquid according to any one of claims 1 to 5, further comprising a polytetrafluoroethylene powder or an aromatic polymer.
  7.  成分分散層率が、60%以上である、請求項1~6のいずれか1項に記載の分散液。 The dispersion liquid according to any one of claims 1 to 6, wherein the component dispersion layer ratio is 60% or more.
  8.  請求項1~7のいずれか1項に記載の分散液を製造する方法であって、前記パウダーと、前記異方性フィラーと、前記異方性フィラーより平均粒子径が小さい無機フィラーと、液状分散媒とを混合する、分散液の製造方法。 The method for producing a dispersion according to any one of claims 1 to 7, wherein the powder, the anisotropic filler, an inorganic filler having an average particle size smaller than that of the anisotropic filler, and a liquid. A method for producing a dispersion liquid in which a dispersion medium is mixed.
  9.  前記混合を、撹拌によって行う、請求項8に記載の製造方法。 The production method according to claim 8, wherein the mixing is performed by stirring.
  10.  ペルフルオロ(アルキルビニルエーテル)に基づく単位を含むテトラフルオロエチレン系ポリマーと、モース硬度が4以下である異方性フィラーとを含む成形物であって、
     前記テトラフルオロエチレン系ポリマーが、極性官能基を有するポリマー、又は、全単位に対して前記ペルフルオロ(アルキルビニルエーテル)に基づく単位を2.0~5.0モル%含み、極性官能基を有さないポリマーであり、前記成形物に占める前記異方性フィラーの割合が10質量%以上である、成形物。
    A molded product containing a tetrafluoroethylene-based polymer containing a unit based on perfluoro (alkyl vinyl ether) and an anisotropic filler having a Mohs hardness of 4 or less.
    The tetrafluoroethylene-based polymer contains 2.0 to 5.0 mol% of the polymer having a polar functional group or the unit based on the perfluoro (alkyl vinyl ether) with respect to all the units, and has no polar functional group. A molded product which is a polymer and in which the ratio of the anisotropic filler to the molded product is 10% by mass or more.
  11.  前記異方性フィラーのアスペクト比が、2以上である、請求項10に記載の成形物。 The molded product according to claim 10, wherein the anisotropic filler has an aspect ratio of 2 or more.
  12.  前記異方性フィラーが、窒化ホウ素を含む鱗片状の異方性フィラー又はタルクを含む板状の異方性フィラーである、請求項11に記載の成形物。 The molded product according to claim 11, wherein the anisotropic filler is a scaly anisotropic filler containing boron nitride or a plate-shaped anisotropic filler containing talc.
  13.  前記異方性フィラーの平均粒子径が、1μm以上である、請求項9~12のいずれか1項に記載の成形物。 The molded product according to any one of claims 9 to 12, wherein the anisotropic filler has an average particle size of 1 μm or more.
  14.  さらに、ポリテトラフルオロエチレン又は芳香族ポリマーを含む、請求項9~13のいずれか1項に記載の成形物。 The molded product according to any one of claims 9 to 13, further comprising polytetrafluoroethylene or an aromatic polymer.
  15.  前記成形物が、厚さ150μm以下の層状成形物である、請求項9~14のいずれか1項に記載の成形物。 The molded product according to any one of claims 9 to 14, wherein the molded product is a layered molded product having a thickness of 150 μm or less.
PCT/JP2020/044992 2019-12-06 2020-12-03 Dispersion liquid, method for producing dispersion liquid, and molded article WO2021112164A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080078871.9A CN114729171B (en) 2019-12-06 2020-12-03 Dispersion, method for producing dispersion, and molded article
JP2021562707A JPWO2021112164A1 (en) 2019-12-06 2020-12-03
KR1020227013463A KR20220113354A (en) 2019-12-06 2020-12-03 Dispersions, methods for preparing dispersions and moldings

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2019221564 2019-12-06
JP2019-221564 2019-12-06
JP2020016436 2020-02-03
JP2020-016436 2020-02-03
JP2020-077294 2020-04-24
JP2020077294 2020-04-24
JP2020154348 2020-09-15
JP2020-154348 2020-09-15

Publications (1)

Publication Number Publication Date
WO2021112164A1 true WO2021112164A1 (en) 2021-06-10

Family

ID=76222423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/044992 WO2021112164A1 (en) 2019-12-06 2020-12-03 Dispersion liquid, method for producing dispersion liquid, and molded article

Country Status (5)

Country Link
JP (1) JPWO2021112164A1 (en)
KR (1) KR20220113354A (en)
CN (1) CN114729171B (en)
TW (1) TW202130732A (en)
WO (1) WO2021112164A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022019223A1 (en) * 2020-07-21 2022-01-27 Agc株式会社 Dispersion, composite particles, and method for producing composite particles
WO2023163025A1 (en) * 2022-02-28 2023-08-31 Agc株式会社 Composition
WO2023195377A1 (en) * 2022-04-07 2023-10-12 ダイキン工業株式会社 Solid composition, circuit board, and method for producing solid composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH061902A (en) * 1990-02-02 1994-01-11 E I Du Pont De Nemours & Co Fluoropolymer filled with conductor
JP2002540275A (en) * 1999-03-31 2002-11-26 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Atomizable powder of non-fibrillated fluoropolymer
WO2018016644A1 (en) * 2016-07-22 2018-01-25 旭硝子株式会社 Liquid composition, and method for manufacturing film and layered body using same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104937026B (en) 2013-01-24 2018-06-26 大金工业株式会社 The manufacturing method of composition and expanded moldings and electric wire

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH061902A (en) * 1990-02-02 1994-01-11 E I Du Pont De Nemours & Co Fluoropolymer filled with conductor
JP2002540275A (en) * 1999-03-31 2002-11-26 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Atomizable powder of non-fibrillated fluoropolymer
WO2018016644A1 (en) * 2016-07-22 2018-01-25 旭硝子株式会社 Liquid composition, and method for manufacturing film and layered body using same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022019223A1 (en) * 2020-07-21 2022-01-27 Agc株式会社 Dispersion, composite particles, and method for producing composite particles
WO2023163025A1 (en) * 2022-02-28 2023-08-31 Agc株式会社 Composition
WO2023195377A1 (en) * 2022-04-07 2023-10-12 ダイキン工業株式会社 Solid composition, circuit board, and method for producing solid composition

Also Published As

Publication number Publication date
CN114729171A (en) 2022-07-08
KR20220113354A (en) 2022-08-12
JPWO2021112164A1 (en) 2021-06-10
TW202130732A (en) 2021-08-16
CN114729171B (en) 2024-04-05

Similar Documents

Publication Publication Date Title
WO2021112164A1 (en) Dispersion liquid, method for producing dispersion liquid, and molded article
JP2007197714A (en) Liquid crystalline resin alloy composition and film
JP2022011017A (en) Powder dispersion and laminate manufacturing method
WO2021095662A1 (en) Nonaqueous dispersions, method for producing layered product, and molded object
WO2022149551A1 (en) Method for producing tetrafluoroethylene-based polymer composition, composition, metal-clad laminate, and stretched sheet
WO2021241547A1 (en) Method for producing dispersion
WO2021132055A1 (en) Dispersion liquid
JP2022061412A (en) Production method of liquid composition and production method of laminate
JP2022098733A (en) Composition of tetrafluoroethylene polymer, liquid composition containing the same, and sheet
WO2021157507A1 (en) Method for producing multilayer body and liquid composition
WO2022019252A1 (en) Powder composition and composite particles
WO2020241607A1 (en) Liquid composition
JP2021167367A (en) Liquid composition, impregnated substrate, method for producing polymer carrying substrate, and method for producing laminate
JP2022072333A (en) Composition including tetrafluoroethylene polymer, liquid composition comprising the composition, laminate and film
WO2021193505A1 (en) Composite particle, composite particle production method, liquid composition, laminate manufacturing method, and film manufacturing method
WO2023163025A1 (en) Composition
JP2022069962A (en) Dispersion and method for producing laminate
WO2023276946A1 (en) Composition
JP2023114334A (en) Composition
JP2022145394A (en) Method for producing laminate. method for producing sheet, and sheet
KR20240041317A (en) Manufacturing method of sheets, manufacturing method of laminated sheets and sheets
WO2022019223A1 (en) Dispersion, composite particles, and method for producing composite particles
JP2022163625A (en) Method for producing modified dispersion liquid and dispersion liquid
JP2022061774A (en) Manufacturing method of dispersion liquid and manufacturing method of laminated body
WO2023017811A1 (en) Aqueous dispersion and method for producing laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20895499

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021562707

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20895499

Country of ref document: EP

Kind code of ref document: A1