WO2022149551A1 - Method for producing tetrafluoroethylene-based polymer composition, composition, metal-clad laminate, and stretched sheet - Google Patents

Method for producing tetrafluoroethylene-based polymer composition, composition, metal-clad laminate, and stretched sheet Download PDF

Info

Publication number
WO2022149551A1
WO2022149551A1 PCT/JP2021/048874 JP2021048874W WO2022149551A1 WO 2022149551 A1 WO2022149551 A1 WO 2022149551A1 JP 2021048874 W JP2021048874 W JP 2021048874W WO 2022149551 A1 WO2022149551 A1 WO 2022149551A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
particles
tetrafluoroethylene
mass
composition
Prior art date
Application number
PCT/JP2021/048874
Other languages
French (fr)
Japanese (ja)
Inventor
蔵 藤岡
渉 笠井
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to CN202180087419.3A priority Critical patent/CN116670222A/en
Priority to KR1020237012159A priority patent/KR20230129373A/en
Priority to JP2022574043A priority patent/JPWO2022149551A1/ja
Publication of WO2022149551A1 publication Critical patent/WO2022149551A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/082Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure

Definitions

  • the present invention relates to a method for producing a composition containing tetrafluoroethylene polymer particles and inorganic oxide particles, the composition, a metal-clad laminate, and a stretched sheet.
  • Patent Document 1 describes a high-frequency printed circuit board in which a molded product formed from a composition containing a plurality of types of tetrafluoroethylene polymers and inorganic particles has high thermal conductivity, low dielectric loss tangent, and a wide range of dielectric constants. Have been described.
  • the interaction between the components is not sufficient, and the dispersion stability is not sufficient. Therefore, the molded product formed from the molded product has a problem that not only the physical properties of the molded product are not sufficiently exhibited due to the aggregation of the inorganic particles, but also the inorganic particles are easily peeled off. Further, further improvement of the adhesiveness between the molded product and other resins or metals and further reduction of the linear expansion property of the molded product are required for the printed circuit board material, particularly the rigid printed circuit board material for high frequency. ing.
  • the present inventors have prepared a composition containing a tetrafluoroethylene polymer and inorganic oxide particles, which have excellent dispersion stability, excellent adhesiveness to other resins and metals, and can form a molded product having a low linear expansion rate.
  • a method for producing the same and a metal-clad laminate having the composition is to provide such a composition, a method for producing the same, and a metal-clad laminate and a stretched sheet which are particularly useful as a rigid printed circuit board material.
  • the present invention has the following aspects.
  • Particles of the tetrafluoroethylene-based polymer (1) having at least one of a carbonyl group-containing group and a hydroxyl group-containing group and inorganic oxide particles are mixed to form a mixture, and further, the tetrafluoroethylene-based polymer (1) is prepared.
  • the inorganic oxide particles contain the oxide particles, and the average particle size of the inorganic oxide particles is in the range of 1 to 1000% with respect to the average particle size of the particles of the tetrafluoroethylene polymer (1).
  • the composition has a content of 5 to 75% by mass with respect to the total mass of the particles of the tetrafluoroethylene-based polymer (1), the particles of the tetrafluoroethylene-based polymer (2), and the inorganic oxide particles. .. [7]
  • the inorganic oxide is silicon oxide.
  • the mass of the tetrafluoroethylene polymer (2) is 25% by mass or more with respect to the total mass of the tetrafluoroethylene polymer (1) and the tetrafluoroethylene polymer (2), [6] to The composition according to any one of [10].
  • a metal-clad laminate having a metal foil and a polymer layer formed on the surface of at least one of the metal foils, wherein the polymer layer is at least one of a carbonyl group-containing group and a hydroxyl group-containing group. It contains a tetrafluoroethylene-based polymer (1) having one of them, polytetrafluoroethylene and inorganic oxide particles, and the content of the inorganic oxide particles is the tetrafluoroethylene-based polymer (1) and the polytetrafluoroethylene.
  • a metal-clad laminate that is 5 to 75% by mass with respect to the total mass of the inorganic oxide particles.
  • a tetrafluoroethylene-based polymer (1) having at least one of a carbonyl group-containing group and a hydroxyl group-containing group, polytetrafluoroethylene, and inorganic oxide particles are contained, and the content of the inorganic oxide particles is the above.
  • a composition containing tetrafluoroethylene polymer particles and inorganic oxide particles and having excellent dispersion stability and a method for producing the same.
  • Such a composition has the physical characteristics of each of a tetrafluoroethylene polymer and an inorganic oxide, is excellent in adhesiveness and low linear expansion property, and can form a molded product in which exfoliation of components is suppressed.
  • INDUSTRIAL APPLICABILITY According to the present invention, a metal-clad laminate and a stretched sheet useful as a printed circuit board material, particularly a rigid printed circuit board material, are provided.
  • the "tetrafluoroethylene-based polymer” is a polymer containing a unit based on tetrafluoroethylene (hereinafter, also referred to as "TFE”).
  • TFE tetrafluoroethylene
  • the “polymer melting temperature (melting point)” is the temperature corresponding to the maximum value of the melting peak measured by the differential scanning calorimetry (DSC) method.
  • the “glass transition point (Tg) of the polymer” is a value measured by analyzing the polymer by the dynamic viscoelasticity measurement (DMA) method.
  • DMA dynamic viscoelasticity measurement
  • D50 of particles is the average particle size of the object, and is the volume-based cumulative 50% diameter of the particles obtained by the laser diffraction / scattering method.
  • the particle size distribution of the particles is measured by the laser diffraction / scattering method, the cumulative curve is obtained with the total volume of the particle population as 100%, and the particle size is the point where the cumulative volume is 50% on the cumulative curve.
  • “D90 of particles” is the volume-based cumulative 90% diameter of particles obtained in the same manner as “D50”.
  • the "viscosity of a liquid substance” is a value measured for an object at room temperature (25 ° C.) and at a rotation speed of 30 rpm using a B-type viscometer. The measurement is repeated 3 times, and the average value of the measured values for 3 times is used.
  • a "monomer-based unit" in a polymer is an atomic group formed directly from one molecule of a monomer by polymerization, and an atomic group obtained by processing a polymer produced to convert a part of the atomic group into another structure. Means.
  • the unit based on the monomer a is also simply referred to as “monomer a unit”.
  • the production method of the present invention (hereinafter, also referred to as this method) is also referred to as a tetrafluoroethylene-based polymer (1) having at least one of a carbonyl group-containing group and a hydroxyl group-containing group (hereinafter, also referred to as “F polymer (1)”). ) Particles (hereinafter, also referred to as “main particles (1)”) and inorganic oxide particles (hereinafter, also referred to as “main inorganic particles”) are mixed to form a mixture, and the tetrafluoroethylene polymer is further prepared.
  • F polymer (2) a tetrafluoroethylene polymer (2)
  • main particles (2) main particles
  • a tetrafluoroethylene polymer Since a tetrafluoroethylene polymer has high rigidity and extremely low affinity with other components, it is recommended to improve the dispersibility by shearing when preparing a composition such as a dispersion liquid. It is common. However, the tetrafluoroethylene polymer tends to deteriorate the dispersion stability of the composition due to alteration such as fibrillation and aggregation due to shearing. In particular, when the F polymer (2) is polytetrafluoroethylene, or when the composition is a liquid composition (dispersion liquid), particularly a dispersion liquid using water as a dispersion medium, which is highly polar, such a tendency is remarkable. Will be.
  • the present particles (1) and the present inorganic particles are mixed in advance, and then the present particles (2) are further mixed to produce a composition.
  • the F polymer (1) has a predetermined functional group, tends to form microspherulites at the molecular aggregate level, and tends to have a fine concavo-convex structure on its surface. Therefore, when the particles (1) and the inorganic particles are mixed, the characteristics of the particles (1) are not impaired, and the mixture forms a pseudo coalescence of the particles (1) and the inorganic particles. It is also considered that it is.
  • the hard coalescence containing the present inorganic particles has a high affinity with the F polymer (2) while cushioning the shearing force at the time of mixing the present particles (2) and suppressing the alteration of the F polymer (2). Therefore, it is considered that a composition containing the F polymer (1), the F polymer (2) and the present inorganic particles having excellent dispersion stability was obtained.
  • the F polymer (1) in this method has at least one of a carbonyl group-containing group and a hydroxyl group-containing group.
  • a carbonyl group-containing group is a group containing a carbonyl group (> C (O)).
  • Examples of the carbonyl group-containing group include a carboxyl group, an alkoxycarbonyl group, an amide group, an isocyanate group, a carbamate group (-OC (O) NH 2 ), an acid anhydride residue (-C (O) OC (O)-), and the like.
  • An imide residue (-C (O) NHC (O)-etc.) and a carbonate group (-OC (O) O-) are preferable, and an acid anhydride residue is more preferable.
  • As the hydroxyl group-containing group a group containing an alcoholic hydroxyl group is preferable, and —CF 2 CH 2 OH and —C (CF 3 ) 2 OH are more preferable.
  • the number of carbonyl group-containing groups in the F polymer is preferably 10 to 5000, more preferably 50 to 4000 per 1 ⁇ 10 6 main chain carbon atoms. , 100-2000 pieces are more preferable.
  • the F polymer (1) easily interacts with the present inorganic particles or the F polymer (2), and the composition tends to be excellent in processability and stability.
  • the number of carbonyl group-containing groups in the F polymer can be quantified by the composition of the polymer or the method described in International Publication No. 2020/145133.
  • the carbonyl group-containing group may be contained in the unit contained in the polymer, or may be contained in the terminal group of the polymer backbone.
  • the latter polymer include a polymer having a carbonyl group-containing group as a terminal group derived from a polymerization initiator, a chain transfer agent, etc., and a polymer having a carbonyl group-containing group prepared by plasma treatment, ionization line treatment, or radiation treatment. Can be mentioned.
  • the fluorine content of the F polymer (1) is preferably 70 to 76% by mass.
  • the F polymer (1) having a high fluorine content is excellent in physical properties such as electrical properties of the F polymer (1), but has a low polarity, so that it tends to aggregate. Therefore, for example, when a dispersion is prepared, its dispersibility tends to decrease. According to this method, even in such a dispersion liquid, the physical characteristics of the entire F polymer (1) are not impaired, and a composition having excellent dispersibility can be obtained. Further, the exfoliation of the present inorganic particles from the molded product formed from the composition is also suppressed, and a molded product having excellent low linear expansion property can be obtained.
  • the melting temperature of the F polymer (1) is preferably 200 ° C. or higher, more preferably 260 ° C. or higher.
  • the melting temperature of the F polymer (1) is preferably 325 ° C or lower, more preferably 320 ° C or lower.
  • the melting temperature of the F polymer (1) is particularly preferably 260 ° C. or higher and 325 ° C. or lower.
  • the glass transition point of the F polymer (1) is preferably 50 ° C. or higher, more preferably 75 ° C. or higher.
  • the glass transition point of the F polymer (1) is preferably 150 ° C. or lower, more preferably 125 ° C.
  • the F polymer (1) includes a polymer containing TFE units and ethylene units, and a polymer containing TFE units and units based on perfluoro (alkyl vinyl ether) (hereinafter, also referred to as PAVE) (hereinafter, also referred to as PAVE units) (hereinafter, PFA). Also referred to as), and a polymer containing TFE and hexafluoropropylene units (hereinafter, also referred to as FEP) are preferable, PFA and FEP are more preferable, and PFA is further preferable. These polymers may further contain units based on other comonomeres.
  • CF 2 CFOCF 3
  • CF 2 CFOCF 2 CF 3
  • CF 2 CFOCF 2 CF 2 CF 3
  • PPVE CFOCF 2 CF 2 CF 3
  • the F polymer (1) is preferably a polymer having a carbonyl group-containing group containing a TFE unit and a PAVE unit, and is a polymer containing a unit based on a monomer having a TFE unit, a PAVE unit and a carbonyl group-containing group. It is more preferable that the polymer contains 90 to 99 mol%, 0.5 to 9.97 mol%, 0.01 to 3 mol% of these units in this order with respect to all the units. When such a polymer is contained, the adhesiveness with the present inorganic particles is likely to be excellent. In addition, the molded product formed from the composition becomes dense and tends to have excellent low-line expandability.
  • the monomer having a carbonyl group-containing group itaconic anhydride, citraconic anhydride and 5-norbornen-2,3-dicarboxylic acid anhydride (hereinafter, also referred to as “NAH”) are preferable.
  • NASH 5-norbornen-2,3-dicarboxylic acid anhydride
  • Specific examples of such an F polymer (1) include the polymers described in International Publication No. 2018/16644.
  • the particles (1) are particles containing the F polymer (1), and the amount of the F polymer (1) in the particles is preferably 80% by mass or more, more preferably 100% by mass. ..
  • the D50 of the particles (1) is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less, and even more preferably 5 ⁇ m or less.
  • the D50 of the particles (1) is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more.
  • the D90 of the present particle (1) is more preferably 50 ⁇ m or less. If D50 and D90 of the main particle (1) are in such a range, the surface area thereof becomes large, and the dispersibility of the main particle (1) is likely to be further improved.
  • the particles (1) may contain a polymer different from the F polymer.
  • the polymer different from the F polymer include heat-resistant resins such as aromatic polyester, aromatic polyimide, aromatic polymaleimide, polyamideimide, polyphenylene ether, polyphenylene oxide, and polymaleimide.
  • the present inorganic particles are particles of an inorganic oxide used for improving the physical properties of a molded product obtained from the composition, and the type thereof is appropriately selected according to the purpose of the molded product.
  • the inorganic particles may be fired ceramic particles.
  • inorganic oxide particles having a high dielectric constant are used for the purpose of improving the dielectric constant of a molded product.
  • the dielectric constant of the high dielectric constant inorganic oxide particles at 25 ° C. is 10 or more, preferably 25 or more, and more preferably 50 or more.
  • perovskite-type ferroelectric particles and bismuth layered perovskite-type ferroelectric particles are preferable.
  • perovskite-type ferroelectric substance examples include barium titanate, lead zirconate titanate, lead titanate, zirconium oxide, and titanium oxide.
  • examples of the bismuth layered perovskite type ferroelectric substance include bismuth strontium tantalate, bismuth strontium niobate, and bismuth titanate.
  • inorganic oxide particles having low dielectric constant and low dielectric loss tangent or low linear expansion factor are used.
  • inorganic oxide particles beryllium oxide particles (berilia particles), silicon oxide particles (silica particles), wollastonite particles, and magnesium metasilicate particles (steatite particles) are preferable.
  • metal oxide particles are used for the purpose of improving the thermal conductivity or scratch resistance of the molded product.
  • metal oxide aluminum oxide, lead oxide, iron oxide, tin oxide, magnesium oxide, titanium oxide, zinc oxide, antimony pentoxide, zirconium oxide, lanthanum oxide, neodium oxide, cerium oxide and niobium oxide are preferable, and aluminum oxide is preferable. Is more preferable.
  • metal oxides, particularly alumnium oxide are preferable because of their high thermal conductivity.
  • silica particles and magnesium metasilicate particles are preferable, and silica particles are more preferable.
  • the content of silica or magnesium metasilicate is preferably 80% by mass or more, more preferably 95% by mass.
  • the content of silica or magnesium metasilicate is preferably 100% by mass or less, more preferably 90% by mass or less.
  • the shape of the inorganic particles is appropriately selected according to the purpose, and is spherical, scale-like, layered, flat plate-like, leaf-like, apricot kernel-like, columnar, chicken crown-like, equiaxed, leaf-like, mica-like, block-like, flat plate. It may be scaly, wedge-shaped, rosette-shaped, mesh-shaped, or prismatic, and is preferably scaly or spherical, and more preferably spherical.
  • the composition tends to be excellent in dispersibility and stability, and the molded product formed from the composition tends to be excellent in low linear expansion.
  • the D50 of the inorganic particles is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less, still more preferably 5 ⁇ m or less.
  • the D50 of the particles is preferably 0.01 ⁇ m or more, more preferably 0.1 ⁇ m or more, still more preferably 0.3 ⁇ m or more.
  • the inorganic particles When the inorganic particles are spherical, it is preferably substantially spherical.
  • the ratio of the minor axis to the major axis is preferably 0.5 or more, more preferably 0.8 or more. The above ratio is preferably less than 1.
  • the particles (1) and the inorganic particles are likely to form composite particles, and the composition obtained by this method is likely to be excellent in dispersibility and stability. Further, it is considered that during heating when forming a molded product from the composition, the surface treatment agent is thermally decomposed to generate gas to promote the flow of the inorganic particles, and the uniformity of the molded product is likely to be improved.
  • Examples of the surface treatment agent used for surface treatment include polyhydric alcohols such as trimethylolethane, pentaeristol, and propylene glycol, saturated fatty acids such as stearic acid and lauric acid, and esters thereof, and amines such as alkanolamine, trimethylamine, and triethylamine.
  • Paraffin wax, silane coupling agent, silicone, polysiloxane, and silane coupling agent is preferable.
  • silane coupling agent a silane coupling agent having a functional group is preferable, 3-aminopropyltriethoxysilane, vinyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-Methyloxypropyltriethoxysilane, phenylaminosilane and 3-isocyandiapropyltriethoxysilane are more preferred.
  • one kind of inorganic oxide particles may be used alone, or two or more kinds of inorganic oxide particles may be used in combination.
  • suitable specific examples of the inorganic particles include silica particles (“Admafine (registered trademark)” series manufactured by Admatex Co., Ltd.) and zinc oxide particles surface-treated with an ester such as propylene glycol dicaprate (Sakai Chemical Industry Co., Ltd.).
  • the F polymer (2) is a tetrafluoroethylene-based polymer different from the F polymer (1), and a tetrafluoroethylene-based polymer that does not contain the carbonyl group-containing group and the hydroxyl group-containing group is preferable.
  • non-heat-meltable polytetrafluoroethylene (hereinafter, also referred to as “non-heat-meltable PTFE”) is more preferable.
  • the non-heat-meltable PTFE is polytetrafluoroethylene (PTFE), and in addition to the homopolymer of TFE, also includes a so-called modified PTFE which is a copolymer of TFE and a comonomer such as PAVE, HFP, FAE, etc. in a trace amount. Will be done.
  • the ratio of TFE units in the non-hot melt PTFE is preferably 99.5 mol% or more, more preferably 99.9 mol% or more, out of all the units.
  • the non-heat-meltable PTFE is preferably fibrilable.
  • the particles (2) are particles containing the F polymer (2), and the amount of the F polymer (2) in the particles (2) is preferably 80% by mass or more, preferably 100% by mass. Is more preferable.
  • the D50 of the particles (2) is preferably 20 ⁇ m or less, more preferably 5 ⁇ m or less, and even more preferably 1 ⁇ m or less.
  • the D50 of the particles (2) is preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more.
  • the D90 of the present particle (2) is more preferably 20 ⁇ m or less. If D50 and D90 of the particles (2) are in such a range, the surface area thereof becomes large, and the dispersibility of the particles is likely to be further improved.
  • the particles (2) may contain a polymer or an inorganic substance different from the F polymer as in the particles (1).
  • Specific examples of polymers and inorganic substances different from the F polymer include the same compounds as described above.
  • the particles (1) and the inorganic particles are mixed.
  • the mixture of both is usually a powder which is an aggregate of the present particles (1) (hereinafter, also referred to as “powder (1)”) and a powder which is an aggregate of the present inorganic particles (hereinafter, “the present inorganic”). It is also described as “powder”).
  • the mixing method using the powder is not particularly limited as long as the powder (1) and the present inorganic powder are uniformly mixed.
  • the powder (1) and the present inorganic powder may be mixed at once, one of them may be added in a plurality of times and mixed, or the powder (1) and the present inorganic powder may be continuously added and mixed.
  • the mixer used for mixing include a mixer with a stirring blade, a Henshell mixer, a ribbon blender, a swing type mixer, and a vibration type mixer.
  • the particles (1) are used as the core, and the inorganic particles are attached to the surface of the core, or the inorganic particles are used as the core of the core. It is preferable to mix the particles (1) so that the particles (1) are attached to the surface. In order to achieve such an embodiment, it is preferable to mix the particles (1) and the inorganic particles so as to collide, aggregate, or the like so that the particles coalesce.
  • the mixing of the particles (1) and the inorganic particles in this method can also be performed in the presence of a liquid medium.
  • the particles (1) and the inorganic particles can be mixed by using a dispersion liquid such as a dispersion liquid in which the particles (1) are dispersed in a liquid medium.
  • the obtained mixture is a mixture containing a liquid medium.
  • Specific examples of mixing in the presence of a liquid medium include simultaneous mixing of the powder (1) with the present inorganic powder and the liquid medium, and mixing the liquid medium with the mixture of the powder (1) and the present inorganic powder.
  • Examples thereof include mixing, mixing of the dispersion liquid in which the particles (1) are dispersed in the liquid medium, and the present inorganic powder.
  • Water is preferable as the liquid medium. Since water has high polarity and poor affinity with F polymer, it was considered that the dispersibility of the particles (1) in such a mixture was low, but the above-mentioned mechanism of action gave a mixture with excellent dispersion stability. Be done.
  • the particles (1), the inorganic particles, and the mixture containing water When water is used, it is preferable to knead the particles (1), the inorganic particles, and the mixture containing water. After mixing the powder (1) and the inorganic powder, water is further added and kneaded. Is more preferable. For example, it is preferable to mix the powder (1) and the present inorganic powder in advance using various mixers such as a tumbler or a Henschel mixer, and then add water to the mixture to further knead.
  • various mixers such as a tumbler or a Henschel mixer
  • kneading it is preferable to knead in a closed system.
  • a kneader equipped with a stirring tank and uniaxial or multiaxial stirring blades.
  • the number of stirring blades is preferably two or more in order to obtain a high kneading action.
  • the kneading method may be either a batch method or a continuous method.
  • a Henschel mixer As the kneader used for the batch type kneading, a Henschel mixer, a pressurized kneader, a Banbury mixer and a planetary mixer are preferable, and a planetary mixer is more preferable.
  • the continuous kneader examples include a twin-screw extrusion kneader and a stone mill type kneader.
  • a slurry-like or sol-like mixture containing the main particles (1) and the main inorganic particles in a liquid state can be obtained.
  • the amount of water in the mixture is preferably 10-70% by weight, more preferably 20-50% by weight.
  • the slurry-like or sol-like mixture thus obtained is highly viscous and is usually semi-solid. Its viscosity is usually 10,000 mPa ⁇ s or more, and in some cases 25,000 mPa ⁇ s or more.
  • the viscosity is preferably 100,000 mPa ⁇ s or less, more preferably 80,000 mPa ⁇ s.
  • the mixture containing the particles (1) and the inorganic particles is then mixed with the particles (2) to obtain a composition.
  • the method of mixing the mixture and the present particles (2) and the mixer used are the same as when mixing the present particles (1) and the present inorganic particles.
  • the particles (2) may be mixed with the mixture as a powder, or may be mixed with the mixture as a dispersion liquid previously dispersed in a liquid medium. Water is preferable as the liquid medium.
  • the aqueous dispersion of the main particles (2) it is preferable to use the aqueous dispersion of the main particles (2).
  • the mixture may contain water.
  • the aqueous dispersion of the particles (2) When the aqueous dispersion of the particles (2) is mixed, it is preferable to knead the mixture and the dispersion.
  • the kneading method and the kneading machine include the same method and the kneading machine as described above. Since water has high polarity and poor affinity with F polymer, it was considered that the dispersibility of the particles (2) would decrease in such mixing, but the composition having excellent dispersion stability due to the above-mentioned mechanism of action. Is obtained.
  • the amount of water in the dispersion liquid is preferably 20 to 80% by mass, more preferably 40 to 70% by mass.
  • At least one of the mixture or the particles (2) contains water, an ultrasonic homogenized baint shaker, a ball mill, an attritor, a basket mill, etc., from the viewpoint of dispersibility and dispersion stability of the obtained composition.
  • Dispersers that use media such as sand mills, sand grinders, dyno mills, disperser mats, SC mills, spike mills, and agitator mills, and dispersers that do not use media such as ultrasonic homogenizers, nanomizers, resolvers, dispersers, and high-speed impeller dispersers. It is preferable to use it for kneading, and it is more preferable to use a disperser using media for kneading.
  • a third component other than the present particles (1), the present particles (2) and the present inorganic particles may be used.
  • the third component may be mixed with a liquid medium such as water in advance and used.
  • the third component can be used when mixing the present particles (1) and the present inorganic particles to prepare a mixture containing the third component, and the mixture containing the present particles (1) and the present inorganic particles and the present particles.
  • a composition containing the third component can be produced by using it when mixing (2).
  • the third component include an ultraviolet absorber, a polymer different from the F polymer (hereinafter, also referred to as “other polymer”), a surfactant, a pH adjuster, a nonionic water-soluble polymer, and the like. ..
  • an ultraviolet absorber having a phenolic hydroxyl group and a nitrogen-containing heterocyclic structure is preferable, an ultraviolet absorber having a hydroxybenzophenone structure, and an ultraviolet absorber having a phenolic hydroxyl group and a triazine structure or a benzotriazole structure. Is more preferable.
  • the latter UV absorber preferably has a hydroxyphenyltriazine structure or a structure in which various substituents are substituted in the hydroxyphenyl structure.
  • the (meth) acrylic polymer is a general term for polymers containing units based on acrylic acid, methacrylic acid, acrylate or methacrylate.
  • the glass transition point of the (meth) acrylic polymer is preferably 30 to 120 ° C, more preferably 40 to 110 ° C, and even more preferably 60 to 100 ° C.
  • the (meth) acrylic polymer preferably has a hydroxy group. In this case, the interaction with the F polymer (1) or the F polymer (2) is also likely to be improved.
  • the (meth) acrylic polymer includes a (meth) acrylate-based polymer containing a unit based on a monomer having a hydroxy group, a chain transfer agent (alcanthiol, etc.) and an alcohol such as methanol, ethanol, propanol, etc.
  • a (meth) acrylate-based polymer having a hydroxy group at the end of a polymer chain obtained by polymerizing a meta) acrylate is preferable.
  • Examples of the (meth) acrylate having a hydroxy group include hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 4-hydroxybutyl ( Examples thereof include (meth) acrylate obtained by adding (meth) acrylate, monoglycidyl ether or glycidol and (meth) acrylic acid.
  • the (meth) acrylic polymers include methyl (meth) acrylate, ethyl (meth) acrylate, iso-butyl (meth) acrylate, tert-butyl (meth) acrylate, isobornyl (meth) acrylate, cyclopentyl (meth) acrylate, and cyclohexyl (meth). It preferably contains at least one (meth) acrylate-based unit selected from the group consisting of meta) acrylates and benzyl (meth) acrylates.
  • aromatic polymer an aromatic imide-based polymer is preferable, and an aromatic polyimide, a polyamic acid or a salt thereof, an aromatic polyimide precursor, an aromatic polyamideimide, an aromatic polyamideimide precursor, an aromatic polyetherimide and an aroma are preferable.
  • aromatic polyimide precursors are preferred, aromatic polyimide precursors and aromatic polyamideimides are more preferred.
  • aromatic polymers may be modified aromatic polymers into which acidic groups such as carboxylic acid groups and phenolic hydroxyl groups are further introduced.
  • the aromatic polymer is preferably water soluble.
  • the water-soluble aromatic polymer can be prepared by adjusting the acid value thereof and the basicity of the composition obtained by this method.
  • the aromatic polymer is an aromatic polyamic acid
  • a water-soluble aromatic polymer can be prepared by reacting the aromatic polyamic acid with an aqueous ammonia or an organic amine to form a polyamic acid salt.
  • the water-soluble aromatic polymer preferably has an acid value of 20 to 100 mg / KOH, and more preferably 35 to 70 mgKOH / g.
  • the pH of the composition is preferably 5 to 10, and more preferably 7 to 9.
  • the acid value of the aromatic polymer and the pH of the obtained composition are within such a range, not only the dispersion stability of the obtained composition is improved, but also the aromatic polymer is formed from the dispersion liquid when the molded product is formed. Is highly dispersed, and it is easy to improve the physical properties of the polymer such as ultraviolet absorption, flexibility, and adhesion.
  • Specific examples of the aromatic polymer include "Ultem 1000F3SP" (manufactured by SABIC), "HPC-1000", and “HPC-2100D” (all manufactured by Showa Denko Materials Co., Ltd.).
  • a surfactant may be used as the third component from the viewpoint of improving the dispersion stability and handleability of the obtained liquid composition.
  • the surfactant is preferably nonionic.
  • the hydrophilic moiety of the surfactant preferably has a polyoxyalkylene chain or an alcoholic hydroxyl group.
  • the polyoxyalkylene chain may be composed of two or more kinds of oxyalkylene groups. In the latter case, different types of oxyalkylene groups may be randomly arranged or may be arranged in blocks. As the oxyalkylene group, an oxyethylene group is preferable.
  • the hydrophobic moiety of the surfactant preferably has an acetylene group, a polysiloxane group, a perfluoroalkyl group or a perfluoroalkenyl group.
  • a polyoxyalkylene alkyl ether-based surfactant, an acetylene-based surfactant, a silicone-based surfactant and a fluorine-based surfactant are preferable, and a silicone-based surfactant is more preferable.
  • the silicone-based surfactant an organopolysiloxane having a polyoxyalkylene chain as a hydrophilic group and a polydimethylsiloxane structure as a hydrophobic group is preferable.
  • a silicone-based surfactant a polyoxyalkylene alkyl ether-based surfactant may be used in combination from the viewpoint of improving the long-term storage stability of the liquid composition.
  • surfactants include the "Futergent” series (Futtergent manufactured by Neos Co., Ltd. is a registered trademark), the “Surflon” series (Surflon manufactured by AGC Seimi Chemical Co., Ltd. is a registered trademark), and the “Megafuck” series (DIC). Megafuck Co., Ltd. is a registered trademark), "Unidyne” series (Unidyne manufactured by Daikin Industries, Ltd.
  • the polyoxyalkylene alkyl ether is available as a commercial product, and specifically, "Tergitol TMN-100X” (manufactured by Dow Chemical Co., Ltd.), "Lutensol TO8", “Lutensol XL70", “Lutensol XL80”, “Lutensol XL90”, “Lutensol XP80", “Lutensol M5" (above, manufactured by BASF), “Newcall 1305", “Newcol 1308FA”, “Newcol 1310” (above, manufactured by Nippon Emulsifier), "Leocol TDN-90-80” , “Leocol SC-90” (above, manufactured by Lion Specialty Chemicals Co., Ltd.).
  • the content in the liquid composition is preferably 1 to 15% by mass. In this case, the affinity between the components is increased, and the dispersion stability of the composition obtained by this method is likely to be further improved.
  • a basic compound is used as a pH adjuster so that the pH of the liquid composition is 5 to 10 from the viewpoint of stability after long-term storage of the obtained liquid composition. May be.
  • the basic compound include ammonia, dimethylamine, diethylamine, diisopropylamine, diethanolamine, triethanolamine, tripropanolamine, triethylamine, triamylamine, pyridine and N-methylmorpholine.
  • a pH buffer may be further added to stabilize the pH of the liquid composition.
  • the pH buffer include tris (hydroxymethyl) aminomethane, ethylenediaminetetraacetic acid, ammonium hydrogencarbonate, ammonium carbonate and ammonium acetate.
  • the resulting liquid composition may further contain a nonionic water-soluble polymer.
  • the dispersion stability and rheological characteristics of the obtained liquid composition tend to be further improved, and the film-forming property tends to be improved.
  • the water-soluble polymer has a nonionic hydroxyl group, not only this tendency becomes remarkable, but also the obtained molded product is likely to be improved.
  • the water-soluble polymer has a nonionic hydroxyl group, not only this tendency becomes remarkable, but also the obtained molded product is likely to be improved.
  • the nonionic water-soluble polymer a polyvinyl alcohol-based polymer, a polyvinylpyrrolidone-based polymer, and a polysaccharide are preferable.
  • the polyvinyl alcohol-based polymer may be a partially acetylated or partially acetalized polyvinyl alcohol.
  • the polysaccharide include glycogens, amicropectins, dextrins, glucans, fructans, chitins, amyloses, agaroses, amicropectins, and celluloses.
  • examples of celluloses include methyl cellulose, ethyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose and hydroxypropyl cellulose.
  • nonionic water-soluble polymer nonionic polysaccharides are more preferable, and nonionic celluloses are particularly preferable.
  • nonionic celluloses hydroxymethyl cellulose, hydroxyethyl cellulose and hydroxypropyl cellulose are preferable.
  • Specific examples of such nonionic polysaccharides include "Sunrose (registered trademark)” series (manufactured by Nippon Paper Industries), “Metroise (registered trademark)” series (manufactured by Shin-Etsu Chemical Co., Ltd.), and “HEC CF grade” (manufactured by Shin-Etsu Chemical Co., Ltd.). Sumitomo Seika Co., Ltd.).
  • the amount thereof is preferably 0.01% by mass or more, preferably 0.1% by mass or more, based on the total mass of the liquid composition. Is more preferable.
  • the amount is preferably 5% by mass or less.
  • the ratio of the mass of the water-soluble polymer to the total mass of the particles (1) and the particles (2) in the liquid composition is preferably 0.01 or more. Further, the previous ratio is preferably 0.1 or less.
  • the particles (1), the particles (2), the inorganic particles, and components other than the third component may be used.
  • Other components include organic particles, organic pigments, metal soaps, lubricants, organic monomers, organic substances such as organic oligomers having a degree of polymerization of 50 or less, thioxogenic agents, viscosity modifiers, defoaming agents, silane coupling agents, and the like. Examples thereof include dehydrating agents, plasticizing agents, weather resistant agents, antioxidants, heat stabilizers, lubricants, antistatic agents, whitening agents, colorants, conductive agents, mold release agents, surface treatment agents, flame retardant agents and the like.
  • the composition of the present invention (hereinafter, also referred to as “the present composition”) contains the present particles (1), the present particles (2) and the present inorganic particles, and the average particle size of the present inorganic particles is the present particles (1). ) Is in the range of 1 to 1000% of the average particle size, and the content of the inorganic particles is 5 to 75% by mass with respect to the total mass of the particles (1), the particles (2) and the inorganic particles. Is a composition.
  • the present composition is preferably the composition produced by the present method.
  • the types and average particle diameters of the particles (1), the particles (2) and the inorganic particles are as described above.
  • the average particle size of the present inorganic particles is in the range of 1 to 1000%, preferably 5 to 300%, and more preferably 10 to 100% of the average particle size of the present particles (1). It is in the range of%.
  • the D50 of the particles (1) is 0.1 to 20 ⁇ m
  • the D50 of the inorganic particles is 0.01 to 20 ⁇ m
  • the average particle size of the inorganic particles is 0.01 to 20 ⁇ m. Examples thereof include an embodiment in which the average particle size of the particles (1) is in the range of 20 to 100%.
  • the content of the particles (1) in the composition is preferably 5% by mass or more, preferably 10% by mass or more, based on the total mass of the particles (1), the particles (2) and the inorganic particles. More preferred.
  • the content of the particles (1) is preferably 60% by mass or less, more preferably 30% by mass or less.
  • the content of the particles (2) in the composition is preferably 5% by mass or more, preferably 10% by mass or more, based on the total mass of the particles (1), the particles (2) and the inorganic particles. More preferred.
  • the content of the particles (2) is preferably 60% by mass or less, more preferably 30% by mass or less.
  • the content of the F polymer (2) in the present composition is preferably 25% by mass or more, more preferably 50% by mass or more, based on the total mass of the F polymer (1) and the F polymer (2).
  • the content of the F polymer (2) in the present composition is preferably 90% by mass or less, more preferably 80% by mass or less, based on the total mass of the F polymer (1) and the F polymer (2).
  • the content of the inorganic particles in the composition is preferably 40% by mass or more, and preferably 70% by mass or less, based on the total mass of the particles (1), the particles (2), and the inorganic particles.
  • the present composition contains a liquid medium such as water, the components other than the liquid medium (hereinafter, referred to as “solid content”) in the liquid present composition (hereinafter, also referred to as “the present liquid composition”) ,
  • the present particles (1), the present particles (2) and the present inorganic particles are contained.
  • the solid content in the liquid composition also includes the particles (1), the particles (2), and other components in the liquid composition other than the inorganic particles.
  • the solid content concentration in the present liquid composition is preferably 20% by mass or more, more preferably 40% by mass. Further, from the viewpoint of dispersibility of the liquid composition, the solid content concentration is preferably 80% by mass or less, more preferably 60% by mass or less.
  • the solid content may contain components other than the main particles (1), the main particles (2) and the main inorganic particles, and the total of the main particles (1), the main particles (2) and the main inorganic particles in the solid content.
  • the amount is preferably 80% by mass or more, more preferably 90% by mass or more, based on the total mass of the solid content.
  • Specific examples of other components in the present liquid composition include the above-mentioned third component, and more preferable specific examples include aromatic polyimides for the above-mentioned reasons, and in particular, aromatic polyimide precursors. Body and aromatic polyamide-imide precursors are preferred.
  • the viscosity of the liquid composition is preferably 50 mPa ⁇ s or more, more preferably 75 mPa ⁇ s or more, and even more preferably 100 mPa ⁇ s or more.
  • the viscosity of the liquid composition is preferably less than 10,000 mPa ⁇ s, more preferably 5000 mPa ⁇ s or less, and even more preferably 1000 mPa ⁇ s or less.
  • the present liquid composition having such a viscosity is excellent in coatability and homogeneity.
  • the thixotropy of the present liquid composition is preferably 1.0 to 2.2. This liquid composition having such a thixotropic ratio is excellent in coatability and homogeneity.
  • the thixotropic ratio is calculated by dividing the viscosity of the present liquid composition measured under the condition of a rotation speed of 30 rpm by the viscosity of the present liquid composition measured under the condition of a rotation speed of 60 rpm.
  • the foam volume ratio in the present liquid composition is preferably less than 10%, more preferably less than 5%.
  • the foam volume ratio is preferably 0% or more.
  • the foam volume ratio was measured by measuring the volume ( VN ) of the present liquid composition at standard atmospheric pressure and 20 ° C. and the combined volume ( VV ) of the foam when the pressure was reduced to 0.003 MPa. It is a value obtained by the following formula.
  • Foam volume ratio [%] 100 ⁇ ( VV ⁇ VN) / VN .
  • the present liquid composition preferably has excellent long-term storage stability, and preferably has a dispersion ratio of 60% or more after long-term storage.
  • the present composition and the present liquid composition can be obtained by the above-mentioned method.
  • the present composition and the present liquid composition can be obtained by using the present particles (1), the present particles (2) and the present inorganic particles, and, if necessary, a predetermined amount of a liquid medium such as water. can. Further, by appropriately using the third component or the other component in this method, the present composition and the present liquid composition containing these components can be obtained.
  • the composition When the composition does not contain a liquid medium such as water, the composition is in the form of powder.
  • This powdery composition can be used for forming a coating film as a powder coating material or the like. Further, the powdery present composition can be melt-kneaded together with the third component and the other components, if necessary, and the obtained melt-kneaded product can be used as a molding material. Further, the powdery present composition can be made into a pellet-shaped or granular molding material by melt extrusion molding. By melt-molding the powdery present composition and the molding material obtained from the same, a molded product such as a film containing the F polymer (1), the F polymer (2) and the present inorganic particles can be obtained. Examples of the melt molding include extrusion molding and injection molding, and extrusion molding is preferable. Extrusion molding can be performed using a single-screw screw extruder, a multi-screw screw extruder, or the like.
  • a laminate having a polymer layer containing the F polymer (1), the F polymer (2) and the present inorganic particles and a base material can be formed.
  • the composition does not contain a liquid medium such as water
  • a coextruder is used as the extruder, and the composition and the molding material obtained from the composition together with the raw material of the base material are used.
  • An example is a method of heat-bonding to a material.
  • the base material include the same base material as the base material in the laminate formed from the present liquid composition described later.
  • the F layer described later can be mentioned.
  • the present liquid composition if the present liquid composition is applied to the surface of the base material and heated to form a polymer layer containing the F polymer (1), the F polymer (2) and the present inorganic particles, the present liquid composition may be formed.
  • a laminate having a base material and a polymer layer can be produced.
  • Preferable embodiments of the laminate include a metal-clad laminate having a metal foil and a polymer layer formed on at least one surface thereof, and a multilayer film having a resin film and a polymer layer formed on at least one surface thereof. Can be mentioned.
  • the polymer layer is preferably the F layer, which will be described later.
  • the metal foil in the metal-clad laminate is preferably a copper foil.
  • a metal-clad laminate is particularly useful as a printed circuit board material.
  • the metal foil may be a low-roughened metal foil, and may be, for example, a metal foil having a surface average roughness of 0.01 to 0.1 ⁇ m.
  • the resin film in the multilayer film is preferably a polyimide film. Such a multilayer film is useful as an electric wire coating material and a printed circuit board material.
  • the polymer layer may be formed on at least one side of the surface of the base material, the polymer layer may be formed on only one side of the base material, and the polymer layers are formed on both sides of the base material. You may.
  • the surface of the base material may be surface-treated with a silane coupling agent or the like.
  • the coating method of the method and the slot die coating method can be used.
  • the polymer layer is preferably a layer formed by further heating the polymer after removing water by heating (hereinafter, also referred to as "F layer"). It is preferable to blow air in the process of removing water.
  • the F layer preferably contains a fired product of at least one of the F polymer (1) and the F polymer (2).
  • the F layer is formed through the steps of coating, drying, and firing of the present liquid composition as described above. These steps may be performed once or twice or more.
  • the above liquid composition is applied and water is removed by heating to form a coating film.
  • the liquid composition may be further applied onto the formed coating film to remove a liquid medium such as water by heating, and the polymer may be further fired by heating to form the coating film. From the viewpoint of easily obtaining a thick film having excellent smoothness, the steps of applying, drying and firing the present liquid composition may be performed a plurality of times.
  • the thickness of the F layer is preferably 0.1 ⁇ m or more, and more preferably 1 ⁇ m or more.
  • the upper limit of the thickness is 200 ⁇ m. In this range, the F layer having excellent crack resistance can be easily formed.
  • the peel strength between the F layer and the base material layer is preferably 10 N / cm or more, more preferably 15 N / cm or more. The peel strength is preferably 100 N / cm or less. By using this liquid composition, such a laminate can be easily formed without impairing the physical characteristics of the F polymer in the F layer.
  • the porosity of the F layer is preferably 5% or less, more preferably 4% or less. The porosity is preferably 0.01% or more, more preferably 0.1% or more.
  • the void ratio is determined by image processing to determine the void portion of the F layer from the SEM photograph of the cross section of the molded product observed using a scanning electron microscope (SEM), and the area occupied by the void portion is the area occupied by the F layer. It is the ratio (%) divided by the area.
  • the area occupied by the void portion is obtained by approximating the void portion to a circle.
  • the material of the base material is copper, nickel, aluminum, titanium, metals such as alloys thereof, polyimide, polyarylate, polysulfone, polyallyl sulfone, polyamide, polyetheramide, polyphenylene sulfide, polyallyl ether ketone, polyamideimide. , Heat-resistant resin such as liquid crystal polyester and liquid crystal polyester amide, and glass.
  • Examples of the shape of the base material include a planar shape, a curved surface shape, and an uneven shape, and may be any of a foil shape, a plate shape, a film shape, and a fibrous shape.
  • the base material examples include a metal substrate such as a metal foil, a heat-resistant resin film, a heat-resistant resin sheet, a fiber-reinforced resin substrate, a prepreg sheet which is a precursor of the fiber-reinforced resin substrate, a glass film, and a glass sheet.
  • the laminate include a metal foil, a metal-clad laminate having an F layer on at least one surface of the metal foil, a polyimide film, and a multilayer film having an F layer on both surfaces of the polyimide film. Be done. These laminates are excellent in various physical properties such as electrical characteristics, and are suitable as a printed circuit board material or the like. Specifically, such a laminate can be used for manufacturing a flexible printed circuit board or a rigid printed circuit board.
  • the laminated body is a laminated body of prepreg / F layer / metal foil.
  • a prepreg having a polymer layer on the surface of the glass cloth, which is obtained by impregnating the glass cloth with the heat-resistant resin or the tetrafluoroethylene-based polymer is preferable.
  • the polymer layer may be formed from a plurality of polymer layers, and in such cases, it is preferable that each polymer layer is formed from different polymers. It is preferable to have an F layer between the prepreg and the metal foil because the prepreg and the metal foil are not easily peeled off.
  • Such a laminate is used for impregnating an insulating layer of a printed wiring board, a thermal interface material, a substrate for a power module, a coil used in a power device such as a motor, and drying to form a thermally conductive heat-resistant coating layer. It can also be used for bonding ceramic parts and metal parts to each other in an in-vehicle engine, for imparting corrosion resistance to the fins or tubes constituting the heat exchanger, and for coating the inside and outside of a glass container. It is particularly suitable for coating to impart impact resistance.
  • the laminate of the F layer and the base material is useful as antenna parts, printed circuit boards, aircraft parts, automobile parts, sports equipment, food industry supplies, heat dissipation parts, paints, cosmetics and the like. In the printed circuit board, in order to prevent the temperature of the printed circuit board on which electronic components are mounted at high density, it can be used as a new printed circuit board material in place of the conventional glass epoxy board.
  • wire coating materials for aircraft electric wires enamel wire coating materials used for motors for electric vehicles, etc.
  • electrical insulating tapes insulating tapes for oil drilling, materials for printed substrates, precision filtration membranes, limitations External filtration membranes, back-penetration membranes, ion exchange membranes, separation membranes such as dialysis membranes and gas separation membranes, electrode binders for lithium secondary batteries, fuel cells, copy rolls, furniture, automobile dashboards, home appliances, etc.
  • Sliding members such as covers, load bearings, sliding shafts, valves, bearings, bushes, seals, thrust washers, wear rings, pistons, slide switches, gears, cams, belt conveyors and food transport belts, wear pads, wear strips, etc.
  • Tools such as tube lamps, test sockets, wafer guides, worn parts of centrifugal pumps, hydrocarbons / chemicals and water supply pumps, shovels, shavings, cuttings, saws, boilers, hoppers, pipes, ovens, baking molds, chutes, dies, It is useful as a toilet bowl, container coating material, power device, transistor, thyristor, rectifier, transformer, power MOS FET, CPU, heat dissipation fin, and metal heat dissipation plate. More specifically, sealing materials for processing machines, vacuum ovens, plasma processing equipment, etc. that heat-treat under low oxygen, such as housings for personal computers and displays, electronic device materials, interior and exterior of automobiles, spattering and various dry etching. It is useful as a heat dissipation component in a processing unit such as a device.
  • an impregnated woven fabric in which the F polymer and the inorganic particles are impregnated in the woven fabric can be obtained.
  • the impregnated woven fabric can also be said to be a coated woven fabric in which the woven fabric is covered with an F layer.
  • the woven fabric is preferably a glass fiber woven fabric, a carbon fiber woven fabric, an aramid fiber woven fabric or a metal fiber woven fabric, and more preferably a glass fiber woven fabric or a carbon fiber woven fabric.
  • the woven fabric may be treated with a silane coupling agent from the viewpoint of enhancing the adhesiveness with the F layer.
  • the total content of the F polymer in the main woven fabric is preferably 30 to 80% by mass.
  • Examples of the method of impregnating the woven fabric with the present liquid composition include a method of immersing the woven fabric in the present liquid composition and a method of applying the present liquid composition to the woven fabric.
  • the F polymer When the woven fabric is dried, the F polymer may be fired.
  • the method of firing the F polymer include a method of passing the woven fabric through a ventilation drying oven in an atmosphere of 300 to 400 ° C. The drying of the woven fabric and the firing of the F polymer may be carried out in one step.
  • This woven fabric has excellent characteristics such as high adhesion (adhesiveness) between the F layer and the woven fabric, high surface smoothness, and low distortion.
  • thermocompression bonding the main woven fabric and the metal foil By thermocompression bonding the main woven fabric and the metal foil, a metal-clad laminate having high peel strength and resistance to warping can be obtained, which can be suitably used as a printed circuit board material.
  • the woven fabric impregnated with the present liquid composition is applied to the surface of the base material, heated and dried, whereby the impregnated woven fabric containing the F polymer, the present inorganic particles and the woven fabric is contained.
  • a fabric layer may be formed to produce a laminated body in which the base material and the impregnated woven fabric layer are laminated in this order.
  • the embodiment is also not particularly limited, and if a woven fabric impregnated with the present liquid composition is applied to a part or all of the inner wall surface of a member such as a tank, a pipe, or a container, and the member is heated while rotating.
  • An impregnated woven fabric layer can be formed on a part or all of the inner wall surface of the member. This manufacturing method is also useful as a method for lining the inner wall surface of members such as tanks, pipes, and containers.
  • This liquid composition has excellent dispersion stability and can be efficiently impregnated into a porous or fibrous material.
  • porous or fibrous materials include materials other than the above-mentioned woven fabrics, specifically, plate-shaped, columnar or fibrous materials. These materials may be pretreated with a curable resin, a silane coupling agent, or the like, or may be further filled with inorganic oxide particles or the like. In addition, these materials may be twisted together to form a thread, a cable, or a wire. At the time of twisting, an intervening layer made of another polymer such as polyethylene may be arranged. As an embodiment of impregnating such a material with the present liquid composition to produce a molded product, there is an embodiment of impregnating the fibrous material on which the curable resin or the cured product thereof is carried with the present liquid composition.
  • the fibrous material examples include high-strength and low-elongation fibers such as carbon fiber, aramid fiber, and silicon carbide fiber.
  • a thermosetting resin such as an epoxy resin, an unsaturated polyester resin, or a thermosetting polyurethane resin is preferable.
  • Specific examples of such an embodiment include a composite cable formed by impregnating a cable made by twisting carbon fibers carrying a thermosetting resin with the present liquid composition and further heating the cable to bake the F polymer. ..
  • Such a composite cable is useful as a cable for large structures, ground anchors, oil drilling, cranes, cableways, elevators, agriculture, forestry and fisheries, and slinging cables.
  • a preferred embodiment of the laminate is a metal-clad laminate having a metal foil and the polymer layer formed on the surface of at least one of the metal foils, wherein the polymer layer is an F polymer ( 1), contains polytetrafluoroethylene and the present inorganic particles, and the content of the present inorganic particles is the total mass of the F polymer (1), polytetrafluoroethylene and the present inorganic particles (hereinafter, referred to as “total mass”. ), which is 5 to 75% by mass, may be a metal-clad laminate (hereinafter, also referred to as “main laminate”).
  • the inclusion of the F polymer (1) not only enhances the adhesion between the polymer layer and the metal foil, but also tends to increase the uniformity between the polytetrafluoroethylene and the present inorganic particles in the polymer layer. It is useful as a printed circuit board material because it has electrical characteristics and mechanical properties such as warpage resistance and flexibility.
  • the content of the F polymer (1) in the polymer layer is more preferably 10% by mass or more with respect to the total mass.
  • the content of the F polymer (1) is more preferably 30% by mass or less, and particularly preferably 20% by mass or less.
  • the content of polytetrafluoroethylene in the polymer layer is preferably 5% by mass or more, more preferably 10% by mass or more, based on the total mass.
  • the content of polytetrafluoroethylene is preferably 60% by mass or less, more preferably 30% by mass or less.
  • the content of the present inorganic particles in the polymer layer is preferably 5% by mass or more, more preferably 40% by mass or more, based on the total mass.
  • the content of the inorganic particles is preferably 80% by mass or less, more preferably 70% by mass or less.
  • the mass of polytetrafluoroethylene in the polymer layer is preferably 50% by mass or more, more preferably more than 50% by mass, with respect to the total mass of F polymer (1) and polytetrafluoroethylene in the polymer layer.
  • the mass of polytetrafluoroethylene in the polymer layer is preferably 90% by mass or less, more preferably 80% by mass or less, based on the total mass of the F polymer (1) and polytetrafluoroethylene in the polymer layer.
  • the thickness of the polymer layer in the present laminate is preferably 50 ⁇ m or more, more preferably 100 ⁇ m or more.
  • the upper limit of the thickness is 1000 ⁇ m. Due to the above-mentioned tendency, the metal-clad laminate having such a thick polymer layer is particularly useful as a rigid printed circuit board material because it is less likely to warp due to the inclusion of the present inorganic particles.
  • the polymer layer in the present laminate preferably further contains an aromatic polymer, and more preferably contains an aromatic polyamide or an aromatic polyimide amide.
  • the binder effect of the aromatic polymer enhances the denseness between the components and the adhesion between the metal foil and the polymer layer, and the powder falling of the components from the polymer layer and the warpage of the present laminate are more likely to be suppressed.
  • the UV absorption ability of the aromatic polymer improves the UV absorbability of the polymer layer, and the UV laser processability of the present laminate is likely to be improved. Therefore, this laminate is particularly useful as a rigid printed circuit board having a thick polymer layer.
  • the composition may be extruded as described above and then stretched to form a stretched sheet, or the polymer layer obtained by removing the metal leaf of the laminated body may be subjected to the stretching treatment.
  • a stretched sheet may be formed.
  • Such a stretched sheet may be formed by molding the present composition in the case where the F polymer (2) is polytetrafluoroethylene into a sheet shape and further stretching treatment.
  • Such a stretched sheet is a sheet having physical properties such as porosity and mechanical strength of stretched polytetrafluoroethylene on which the present inorganic particles are firmly supported by the action of the F polymer (1).
  • Such a stretched sheet is also useful as a printed circuit board material having high adhesiveness and a low coefficient of linear expansion and excellent electrical characteristics.
  • the F polymer (1), polytetrafluoroethylene and the present inorganic particles are contained, and the content of the present inorganic particles is the F polymer (1), the lithotetrafluoroethylene and the present inorganic particles.
  • examples thereof include a stretched sheet (hereinafter, also referred to as “main stretched sheet”) which has been stretched and is 5 to 75% by mass with respect to the total mass of the above.
  • main stretched sheet a stretched sheet which has been stretched and is 5 to 75% by mass with respect to the total mass of the above.
  • the relationship between the contents of the F polymer (1), the polytetrafluoroethylene and the inorganic particles in the stretched sheet is the same as the relationship between the contents in the laminated body.
  • a biaxial stretching device can be mentioned, and as a stretching condition, a condition that the stretching ratio is 200% or more at a speed of 5 to 1000% / sec can be mentioned.
  • a method for producing a composition containing F polymer particles and the present inorganic particles and having excellent stability and dispersibility and the composition are provided. Further provided are the present laminate and the present stretched sheet having the present composition useful as a printed circuit board material, which have electrical characteristics and mechanical properties such as warpage resistance and flexibility.
  • the present invention is not limited to the configuration of the above-described embodiment.
  • this method may additionally have any other step in the configuration of the above embodiment, or may be replaced with any step that produces the same action.
  • the present composition, the present laminated body and the present stretched sheet may be added with any other configuration or may be replaced with any configuration exhibiting the same function in the configuration of the above embodiment.
  • Powder A Contains 97.9 mol%, 0.1 mol%, and 2.0 mol% of TFE units, NAH units, and PPVE units in this order, and contains carbonyl group-containing groups per 1 ⁇ 10 6 main chain carbon atoms.
  • a powder dispersion B consisting of 1000 particles having a melting temperature of 300 ° C. and having a D50 of 2.1 ⁇ m: a non-thermally meltable PTFE F polymer (2) D50.
  • An aqueous dispersion in which 0.3 ⁇ m PTFE particles are dispersed in water, and an aqueous dispersion containing 60% by mass of PTFE particles (AGC, “Product No. AD-911E”).
  • Powder C Consists of an F polymer containing 98.5 mol% and 1.5 mol% of TFE units and PPVE units in this order, having no carbonyl group-containing group, and having a melting temperature of 300 ° C., and D50 is 2.
  • Powder consisting of 4 ⁇ m particles [Inorganic oxide]
  • Powder G Powder of spherical silica with D50 of 0.5 ⁇ m, which is surface-treated with phenylaminosilane [varnish of imide-based resin]
  • Varnish A Water varnish containing a precursor of aromatic polyamide-imide (PAI, acid value: 50 mgKOH / g) [surfactant]
  • Surfactant A Polyoxyalkylene-modified polydimethylsiloxane having a dimethylsiloxane unit in the main chain and an oxyethylene group in the side chain [water-soluble polymer]
  • Water-soluble polymer A Hydroxyethyl cellulose, which is a nonionic polysaccharide
  • Water-soluble polymer B Carboxymethyl cellulose, which is an anionic polysaccharide
  • Example 1 Powder A and powder G were dry-blended to obtain a mixture. The mixture, water, and surfactant A are added to a planetary mixer and kneaded to form powder A particles (18.5 parts by mass), powder G particles (60 parts by mass), and a surfactant. A mixture containing A (1 part by mass) and water (40 parts by mass) and having a viscosity of 28,000 mPa ⁇ s was obtained. The above mixture was put into a pot, and then the mixture of dispersion B and varnish A and water were added in a plurality of times and stirred, and the particles (18.5 parts by mass) of the F polymer (1) as a whole were added.
  • PTFE particles (20 parts by mass), spherical silica particles (60 parts by mass), PAI (1.5 parts by mass), surfactant (1 part by mass), water (100 parts by mass) with a viscosity of 400 mPa ⁇ s.
  • a liquid composition P was obtained.
  • the dispersion ratio of the obtained liquid composition P after long-term storage was 60% or more, and the redispersibility after the dispersion ratio measurement was also good.
  • Example 1-2 A mixture was obtained in the same manner as in Example 1-1 except that the powder A, the powder G, the water and the surfactant A were individually added to the planetary mixer, and then the liquid composition Q was prepared.
  • the viscosity of the liquid composition Q was 600 mPa ⁇ s, and the dispersion rate of the liquid composition Q after long-term storage was 60% or more, but the redispersibility after the dispersion rate measurement was deteriorated.
  • Example 1-3 A liquid composition R was obtained in the same manner as in Example 1-1 except that the powder A was changed to the powder C.
  • the dispersion ratio of the liquid composition R after long-term storage was less than 60%. In addition, it was difficult to redisperse the liquid composition R after measuring the dispersion rate.
  • Example 1-4 Powder A, dispersion B, varnish A, surfactant A and water are mixed to form F polymer (1) particles (18.5 parts by mass), PTFE particles (20 parts by mass), PAI (1.5 parts by mass). A liquid mixture containing (parts by mass), a surfactant (1 part by mass) and water (100 parts by mass). An attempt was made to prepare a liquid composition by adding powder G (60 parts by mass) to this mixture, but at that time, the composition thickened as the powder G was added, and its dispersion stability decreased. , A liquid composition having a viscosity of 1000 mPa ⁇ s or less, which contains water (100 parts by mass) as a whole, could not be directly formed.
  • Example of Production of Laminate A wet film was formed by applying the liquid composition P produced in Example 1-1 to the surface of a long copper foil (thickness: 18 ⁇ m) using a bar coater. Next, the copper foil on which the wet film was formed was passed through a drying oven at 110 ° C. for 5 minutes and dried by heating to obtain a dry film. Then, the dry membrane was heated at 380 ° C. for 3 minutes in an oven in a nitrogen gas atmosphere. As a result, a laminate 1 having a copper foil and a polymer layer having a thickness of 100 ⁇ m as a molded product containing F polymer (1), PTFE, spherical silica particles and PAI on the surface thereof was produced.
  • the copper foil of the laminate 1 was removed by etching with an aqueous solution of ferric chloride to prepare a single polymer layer, and the dielectric tangent measured by the SPDR (split post dielectric resonance, measurement frequency: 10 GHz; the same applies hereinafter) method. was 0.0010 or less.
  • the copper foil of the laminate 1 was removed by etching with an aqueous solution of ferric chloride to prepare a single polymer layer, and a 180 mm square test piece was cut out. The cut out test piece was measured in the range of 25 ° C. or higher and 260 ° C. or lower according to the measuring method specified in JIS C 6471: 1995.
  • the coefficient of linear expansion of the test piece was 30 ppm / ° C. or less.
  • a rectangular test piece having a length of 100 mm and a width of 10 mm was cut out from the laminated body 1.
  • the position 50 mm from one end in the length direction of the test piece was fixed, and the copper foil and the polymer layer were peeled off from one end in the length direction at a tensile speed of 50 mm / min at 90 ° to the test piece.
  • the maximum load at the time of peeling was defined as the peel strength (N / cm).
  • the peel strength was 10 N / cm or more.
  • the inorganic oxide particles 1 were firmly supported in the polymer layer 1 and did not fall off.
  • Part 2 (Example 2-1) Powder A and powder G were dry-blended to obtain a mixture. The mixture, water, water-soluble polymer A, and surfactant A are added to a planetary mixer and kneaded to form powder A particles (18.5 parts by mass) and powder G particles (60 mass by mass). Part), a water-soluble polymer A (1 part by mass), a surfactant A (1 part by mass), and water (40 parts by mass) to obtain a mixture. The above mixture is put into a pot, and then the mixture of dispersion B and varnish A and water are added in a plurality of times and stirred, and the particles (18.5 parts by mass) of the F polymer (1) as a whole are added.
  • PTFE particles (20 parts by mass), spherical silica particles (60 parts by mass), PAI (1.5 parts by mass), water-soluble polymer (1 part by mass), surfactant (1 part by mass), water (100 parts by mass) Part
  • a liquid composition S having a viscosity of 500 mPa ⁇ s.
  • the dispersion ratio of the liquid composition S after long-term storage was 60% or more, and the redispersibility after the dispersion ratio measurement was also good.
  • Example 2-2 A mixture was obtained in the same manner as in Example 1-1 except that the water-soluble polymer A was changed to the water-soluble polymer B, and the liquid composition T was prepared from the mixture. 5. Evaluation Example of Laminated Body In the above "3. Production Example of Laminated Body", the laminated body 2 is changed to the liquid composition P and the liquid composition P is changed to the liquid composition T in the same manner except that the liquid composition P is changed to the liquid composition S. The laminated bodies 3 were obtained in the same manner except for the above.
  • the dielectric loss tangent of the single polymer layer prepared by removing the copper foil of the laminate 2 by etching with an aqueous solution of ferric chloride is 0.0010 or less, and the dielectric loss tangent of the single polymer layer prepared from the laminate 3 is 0. It was over 0010.
  • the coating amount of the liquid composition in the above "3. Production example of laminated body" is prepared, and the thickness of the polymer layer that can be formed by the polymer layer forming process per one time is adjusted to the liquid composition P, the liquid composition S and the liquid composition S.
  • the thickness of the polymer layer increased in the order of the liquid composition S, the liquid composition T, and the liquid composition P.
  • the liquid composition prepared by this method has excellent dispersibility and stability, and the polymer layer obtained by applying it to the substrate has excellent electrical properties and low linear expansion. Was there. Further, the polymer layer and the base material had excellent adhesion, and the inorganic oxide particles were firmly supported in the F layer. Therefore, it is considered that the laminate using the composition obtained by this method is excellent in the uniformity of the component distribution and highly expresses the properties of the inorganic oxide particles. Further, it is considered that no voids are generated at the interface of the layer and the decrease in water resistance is suppressed. Such a laminate has electrical characteristics and mechanical properties such as warpage resistance and flexibility, and is considered to be useful as a printed circuit board material.

Abstract

Provided are a composition comprising particles of a tetrafluoroethylene-based polymer and inorganic-oxide particles and having excellent dispersion stability and a method for producing the composition. The composition production method comprises mixing inorganic-oxide particles with particles of a tetrafluoroethylene-based polymer (1) having a carbonylated group and/or a hydroxylated group to give a mixture and mixing the mixture with particles of a tetrafluoroethylene-based polymer (2), which is different from the tetrafluoroethylene-based polymer (1).

Description

テトラフルオロエチレン系ポリマー組成物の製造方法、組成物、金属張積層体および延伸シートMethods for Producing Tetrafluoroethylene Polymer Compositions, Compositions, Metallic Laminates and Stretched Sheets
 本発明は、テトラフルオロエチレン系ポリマーの粒子および無機酸化物粒子を含む組成物の製造方法、該組成物および金属張積層体および延伸シートに関する。 The present invention relates to a method for producing a composition containing tetrafluoroethylene polymer particles and inorganic oxide particles, the composition, a metal-clad laminate, and a stretched sheet.
 テトラフルオロエチレン系ポリマーは、低誘電率および低誘電正接といった電気特性に優れていることから、近年ではプリント基板の材料として注目されている。特許文献1には複数種のテトラフルオロエチレン系ポリマーと無機粒子を含む組成物から形成される成形物が、高熱伝導率かつ低誘電正接であり、広範囲の誘電率を有する、高周波のプリント基板として記載されている。 Tetrafluoroethylene polymers have been attracting attention as materials for printed circuit boards in recent years because they have excellent electrical properties such as low dielectric constant and low dielectric loss tangent. Patent Document 1 describes a high-frequency printed circuit board in which a molded product formed from a composition containing a plurality of types of tetrafluoroethylene polymers and inorganic particles has high thermal conductivity, low dielectric loss tangent, and a wide range of dielectric constants. Have been described.
特開2020-050860号公報Japanese Unexamined Patent Publication No. 2020-050860
 しかしながら特許文献1に記載の組成物は、成分間の相互作用が充分ではなく、分散安定性が充分ではない。そのため、それから形成された成形物は、無機粒子の凝集により、その物性が充分に発現し難いだけでなく、無機粒子が剥落し易いという課題がある。
 また前記成形物と他の樹脂や金属との接着性の更なる向上と、前記成形物の線膨張性の更なる低減とが、プリント基板材料、特に、高周波用のリジットプリント基板材料に求められている。
However, in the composition described in Patent Document 1, the interaction between the components is not sufficient, and the dispersion stability is not sufficient. Therefore, the molded product formed from the molded product has a problem that not only the physical properties of the molded product are not sufficiently exhibited due to the aggregation of the inorganic particles, but also the inorganic particles are easily peeled off.
Further, further improvement of the adhesiveness between the molded product and other resins or metals and further reduction of the linear expansion property of the molded product are required for the printed circuit board material, particularly the rigid printed circuit board material for high frequency. ing.
 本発明者らは、分散安定性に優れ、さらに他の樹脂や金属との接着性に優れ線膨張率の低い成形物を形成できる、テトラフルオロエチレン系ポリマーと無機酸化物粒子を含む組成物、その製造方法および該組成物を有する金属張積層体を見い出した。本発明は、かかる組成物、その製造方法および特にリジットプリント基板材料として有用な金属張積層体および延伸シートの提供を目的とする。 The present inventors have prepared a composition containing a tetrafluoroethylene polymer and inorganic oxide particles, which have excellent dispersion stability, excellent adhesiveness to other resins and metals, and can form a molded product having a low linear expansion rate. We have found a method for producing the same and a metal-clad laminate having the composition. An object of the present invention is to provide such a composition, a method for producing the same, and a metal-clad laminate and a stretched sheet which are particularly useful as a rigid printed circuit board material.
 本発明は、下記の態様を有する。
[1] カルボニル基含有基および水酸基含有基の少なくともいずれか一方を有するテトラフルオロエチレン系ポリマー(1)の粒子と無機酸化物粒子とを混合して混合物とし、さらに前記テトラフルオロエチレン系ポリマー(1)とは異なるテトラフルオロエチレン系ポリマー(2)の粒子と前記混合物とを混合する、組成物の製造方法。
[2] 前記テトラフルオロエチレン系ポリマー(2)の粒子が水に分散した分散液を前記混合物と混合する、[1]に記載の製造方法。
[3] 前記テトラフルオロエチレン系ポリマー(1)が、主鎖炭素数1×10個あたり、10~5000個のカルボニル基含有基を有するポリマーである、[1]または[2]に記載の製造方法。
[4] 前記テトラフルオロエチレン系ポリマー(2)がポリテトラフルオロエチレンである、[1]~[3]のいずれかに記載の製造方法。
[5] 前記無機酸化物が酸化ケイ素である、[1]~[4]のいずれかに記載の製造方法。
The present invention has the following aspects.
[1] Particles of the tetrafluoroethylene-based polymer (1) having at least one of a carbonyl group-containing group and a hydroxyl group-containing group and inorganic oxide particles are mixed to form a mixture, and further, the tetrafluoroethylene-based polymer (1) is prepared. A method for producing a composition, wherein the particles of the tetrafluoroethylene polymer (2) different from the above) and the mixture are mixed.
[2] The production method according to [1], wherein the dispersion liquid in which the particles of the tetrafluoroethylene polymer (2) are dispersed in water is mixed with the mixture.
[3] The above-mentioned [1] or [2], wherein the tetrafluoroethylene polymer (1) is a polymer having 10 to 5000 carbonyl group-containing groups per 1 × 10 6 main chain carbon atoms. Production method.
[4] The production method according to any one of [1] to [3], wherein the tetrafluoroethylene polymer (2) is polytetrafluoroethylene.
[5] The production method according to any one of [1] to [4], wherein the inorganic oxide is silicon oxide.
[6] カルボニル基含有基および水酸基含有基の少なくともいずれか一方を有するテトラフルオロエチレン系ポリマー(1)の粒子、前記テトラフルオロエチレン系ポリマーとは異なるテトラフルオロエチレン系ポリマー(2)の粒子および無機酸化物粒子を含有し、前記無機酸化物粒子の平均粒径が前記テトラフルオロエチレン系ポリマー(1)の粒子の平均粒径に対して1~1000%の範囲にあり、前記無機酸化物粒子の含有量が、前記テトラフルオロエチレン系ポリマー(1)の粒子と前記テトラフルオロエチレン系ポリマー(2)の粒子と前記無機酸化物粒子との合計質量に対して5~75質量%である、組成物。
[7] さらに芳香族ポリマーを含む、[6]に記載の組成物。
[8] さらに水を含む、[6]または[7]に記載の組成物。
[9] 前記テトラフルオロエチレン系ポリマー(2)がポリテトラフルオロエチレンである、[6]~[8]のいずれかに記載の組成物。
[10] 前記無機酸化物が酸化ケイ素である、[6]~[9]のいずれかに記載の組成物。
[11] 前記テトラフルオロエチレン系ポリマー(1)と前記テトラフルオロエチレン系ポリマー(2)との合計質量に対する前記テトラフルオロエチレン系ポリマー(2)の質量が25質量%以上である、[6]~[10]のいずれかに記載の組成物。
[6] Particles of a tetrafluoroethylene-based polymer (1) having at least one of a carbonyl group-containing group and a hydroxyl group-containing group, particles of a tetrafluoroethylene-based polymer (2) different from the tetrafluoroethylene-based polymer, and inorganic particles. The inorganic oxide particles contain the oxide particles, and the average particle size of the inorganic oxide particles is in the range of 1 to 1000% with respect to the average particle size of the particles of the tetrafluoroethylene polymer (1). The composition has a content of 5 to 75% by mass with respect to the total mass of the particles of the tetrafluoroethylene-based polymer (1), the particles of the tetrafluoroethylene-based polymer (2), and the inorganic oxide particles. ..
[7] The composition according to [6], further comprising an aromatic polymer.
[8] The composition according to [6] or [7], further comprising water.
[9] The composition according to any one of [6] to [8], wherein the tetrafluoroethylene polymer (2) is polytetrafluoroethylene.
[10] The composition according to any one of [6] to [9], wherein the inorganic oxide is silicon oxide.
[11] The mass of the tetrafluoroethylene polymer (2) is 25% by mass or more with respect to the total mass of the tetrafluoroethylene polymer (1) and the tetrafluoroethylene polymer (2), [6] to The composition according to any one of [10].
[12] 金属箔と、前記金属箔の少なくともいずれか一方の表面に形成されたポリマー層とを有する金属張積層体であって、前記ポリマー層が、カルボニル基含有基および水酸基含有基の少なくともいずれか一方を有するテトラフルオロエチレン系ポリマー(1)、ポリテトラフルオロエチレンおよび無機酸化物粒子を含有し、前記無機酸化物粒子の含有量が前記テトラフルオロエチレン系ポリマー(1)と前記ポリテトラフルオロエチレンと前記無機酸化物粒子との合計質量に対して5~75質量%である、金属張積層体。
[13] 前記ポリマー層がさらに芳香族ポリマーを含有する、[12]に記載の金属張積層体。
[14] 前記ポリマー層の厚さが50μm以上である、[12]または[13]に記載の金属張積層体。
[15] カルボニル基含有基および水酸基含有基の少なくともいずれか一方を有するテトラフルオロエチレン系ポリマー(1)、ポリテトラフルオロエチレンおよび無機酸化物粒子を含有し、前記無機酸化物粒子の含有量が前記テトラフルオロエチレン系ポリマー(1)と前記ポリテトラフルオロエチレンと前記無機酸化物粒子との合計質量に対して前記無機酸化物粒子を5~75質量%である、延伸処理された延伸シート。
[12] A metal-clad laminate having a metal foil and a polymer layer formed on the surface of at least one of the metal foils, wherein the polymer layer is at least one of a carbonyl group-containing group and a hydroxyl group-containing group. It contains a tetrafluoroethylene-based polymer (1) having one of them, polytetrafluoroethylene and inorganic oxide particles, and the content of the inorganic oxide particles is the tetrafluoroethylene-based polymer (1) and the polytetrafluoroethylene. A metal-clad laminate that is 5 to 75% by mass with respect to the total mass of the inorganic oxide particles.
[13] The metal-clad laminate according to [12], wherein the polymer layer further contains an aromatic polymer.
[14] The metal-clad laminate according to [12] or [13], wherein the polymer layer has a thickness of 50 μm or more.
[15] A tetrafluoroethylene-based polymer (1) having at least one of a carbonyl group-containing group and a hydroxyl group-containing group, polytetrafluoroethylene, and inorganic oxide particles are contained, and the content of the inorganic oxide particles is the above. A stretched sheet obtained by stretching the inorganic oxide particles in an amount of 5 to 75% by mass based on the total mass of the tetrafluoroethylene polymer (1), the polytetrafluoroethylene and the inorganic oxide particles.
 本発明によれば、テトラフルオロエチレン系ポリマーの粒子および無機酸化物粒子を含有し、分散安定性に優れた組成物およびその製造方法が提供される。かかる組成物は、テトラフルオロエチレン系ポリマーおよび無機酸化物のそれぞれの物性を具備し、接着性と低線膨張性に優れ、成分の剥落が抑制された成形物が形成できる。本発明によれば、プリント基板材料、特に、リジットプリント基板材料として有用な、金属張積層体および延伸シートが提供される。 According to the present invention, there is provided a composition containing tetrafluoroethylene polymer particles and inorganic oxide particles and having excellent dispersion stability, and a method for producing the same. Such a composition has the physical characteristics of each of a tetrafluoroethylene polymer and an inorganic oxide, is excellent in adhesiveness and low linear expansion property, and can form a molded product in which exfoliation of components is suppressed. INDUSTRIAL APPLICABILITY According to the present invention, a metal-clad laminate and a stretched sheet useful as a printed circuit board material, particularly a rigid printed circuit board material, are provided.
 以下の用語は、以下の意味を有する。
 「テトラフルオロエチレン系ポリマー」とは、テトラフルオロエチレン(以下、「TFE」とも記す。)に基づく単位を含有するポリマーである。
 「ポリマーの溶融温度(融点)」は、示差走査熱量測定(DSC)法で測定した融解ピークの最大値に対応する温度である。
 「ポリマーのガラス転移点(Tg)」は、動的粘弾性測定(DMA)法でポリマーを分析して測定される値である。
 「粒子のD50」は、対象物の平均粒径であり、レーザー回折・散乱法によって求められる粒子の体積基準累積50%径である。すなわち、レーザー回折・散乱法によって粒子の粒度分布を測定し、粒子の集団の全体積を100%として累積カーブを求め、その累積カーブ上で累積体積が50%となる点の粒径である。
 「粒子のD90」は、「D50」と同様にして求められる粒子の体積基準累積90%径である。
 「液状物の粘度」は、B型粘度計を用いて、室温下(25℃)で回転数が30rpmの条件下で対象物について測定される値である。測定を3回繰り返し、3回分の測定値の平均値とする。
 ポリマーにおける「モノマーに基づく単位」とは、重合によりモノマー1分子から直接形成された原子団、および生成したポリマーを処理することによって前記原子団の一部が別の構造に変換されてなる原子団を意味する。以下、モノマーaに基づく単位を、単に「モノマーa単位」とも記す。
The following terms have the following meanings.
The "tetrafluoroethylene-based polymer" is a polymer containing a unit based on tetrafluoroethylene (hereinafter, also referred to as "TFE").
The “polymer melting temperature (melting point)” is the temperature corresponding to the maximum value of the melting peak measured by the differential scanning calorimetry (DSC) method.
The "glass transition point (Tg) of the polymer" is a value measured by analyzing the polymer by the dynamic viscoelasticity measurement (DMA) method.
"D50 of particles" is the average particle size of the object, and is the volume-based cumulative 50% diameter of the particles obtained by the laser diffraction / scattering method. That is, the particle size distribution of the particles is measured by the laser diffraction / scattering method, the cumulative curve is obtained with the total volume of the particle population as 100%, and the particle size is the point where the cumulative volume is 50% on the cumulative curve.
“D90 of particles” is the volume-based cumulative 90% diameter of particles obtained in the same manner as “D50”.
The "viscosity of a liquid substance" is a value measured for an object at room temperature (25 ° C.) and at a rotation speed of 30 rpm using a B-type viscometer. The measurement is repeated 3 times, and the average value of the measured values for 3 times is used.
A "monomer-based unit" in a polymer is an atomic group formed directly from one molecule of a monomer by polymerization, and an atomic group obtained by processing a polymer produced to convert a part of the atomic group into another structure. Means. Hereinafter, the unit based on the monomer a is also simply referred to as “monomer a unit”.
 本発明の製造方法(以下、本法とも記す)は、カルボニル基含有基および水酸基含有基の少なくともいずれか一方を有するテトラフルオロエチレン系ポリマー(1)(以下、「Fポリマー(1)」とも記す。)の粒子(以下、「本粒子(1)」とも記す。)と無機酸化物粒子(以下、「本無機粒子」とも記す。)とを混合して混合物とし、さらに前記テトラフルオロエチレン系ポリマー(1)とは異なるテトラフルオロエチレン系ポリマー(2)(以下、「Fポリマー(2)」とも記す。)の粒子(以下、「本粒子(2)」とも記す。)と前記混合物とを混合する、組成物の製造方法である。以下、Fポリマー(1)とFポリマー(2)をまとめて「Fポリマー」とも記す。
 本法によると、分散安定性に優れた組成物が得られる。その理由は必ずしも明確ではないが、その作用機構は以下と推定される。
The production method of the present invention (hereinafter, also referred to as this method) is also referred to as a tetrafluoroethylene-based polymer (1) having at least one of a carbonyl group-containing group and a hydroxyl group-containing group (hereinafter, also referred to as “F polymer (1)”). ) Particles (hereinafter, also referred to as “main particles (1)”) and inorganic oxide particles (hereinafter, also referred to as “main inorganic particles”) are mixed to form a mixture, and the tetrafluoroethylene polymer is further prepared. A mixture of particles of a tetrafluoroethylene polymer (2) (hereinafter, also referred to as “F polymer (2)”) different from (1) (hereinafter, also referred to as “main particles (2)”) and the above mixture. Is a method for producing a composition. Hereinafter, the F polymer (1) and the F polymer (2) are collectively referred to as "F polymer".
According to this method, a composition having excellent dispersion stability can be obtained. The reason is not always clear, but its mechanism of action is presumed to be as follows.
 テトラフルオロエチレン系ポリマーは剛直性に富み、他の成分との親和性が極めて低いポリマーであるため、分散液等の組成物を調製する際には、剪断により、その分散性を改良するのが一般的である。しかしながら、テトラフルオロエチレン系ポリマーは、剪断により、フィブリル化等の変質が起こり凝集して、組成物の分散安定性を低下させやすい。特にFポリマー(2)がポリテトラフルオロエチレンである場合や、組成物が液状組成物(分散液)、特に高極性である水を分散媒とする分散液である場合においては、かかる傾向が顕著となる。
 そこで、本法においては、本粒子(1)と本無機粒子とを予め混合した後に、さらに本粒子(2)を混合して組成物を製造する。Fポリマー(1)は、所定の官能基を有し、分子集合体レベルで微小球晶をしやすく、その表面には微小な凹凸構造を有しやすい。このため、本粒子(1)と本無機粒子の混合に際して本粒子(1)の形質は損われず、その混合物は本粒子(1)と本無機粒子との疑似的な合着体を形成しているとも考えられる。かかる本無機粒子を含む硬い合着体が、本粒子(2)の混合に際する剪断力を緩衝し、Fポリマー(2)の変質を抑制させつつ、Fポリマー(2)と高度に親和するため、分散安定性に優れた、Fポリマー(1)、Fポリマー(2)および本無機粒子を含む組成物が得られたと考えられる。
Since a tetrafluoroethylene polymer has high rigidity and extremely low affinity with other components, it is recommended to improve the dispersibility by shearing when preparing a composition such as a dispersion liquid. It is common. However, the tetrafluoroethylene polymer tends to deteriorate the dispersion stability of the composition due to alteration such as fibrillation and aggregation due to shearing. In particular, when the F polymer (2) is polytetrafluoroethylene, or when the composition is a liquid composition (dispersion liquid), particularly a dispersion liquid using water as a dispersion medium, which is highly polar, such a tendency is remarkable. Will be.
Therefore, in this method, the present particles (1) and the present inorganic particles are mixed in advance, and then the present particles (2) are further mixed to produce a composition. The F polymer (1) has a predetermined functional group, tends to form microspherulites at the molecular aggregate level, and tends to have a fine concavo-convex structure on its surface. Therefore, when the particles (1) and the inorganic particles are mixed, the characteristics of the particles (1) are not impaired, and the mixture forms a pseudo coalescence of the particles (1) and the inorganic particles. It is also considered that it is. The hard coalescence containing the present inorganic particles has a high affinity with the F polymer (2) while cushioning the shearing force at the time of mixing the present particles (2) and suppressing the alteration of the F polymer (2). Therefore, it is considered that a composition containing the F polymer (1), the F polymer (2) and the present inorganic particles having excellent dispersion stability was obtained.
 本法におけるFポリマー(1)は、カルボニル基含有基および水酸基含有基の少なくともいずれか一方を有する。
 カルボニル基含有基は、カルボニル基(>C(O))を含む基である。カルボニル基含有基としては、カルボキシル基、アルコキシカルボニル基、アミド基、イソシアネート基、カルバメート基(-OC(O)NH)、酸無水物残基(-C(O)OC(O)-)、イミド残基(-C(O)NHC(O)-等)およびカーボネート基(-OC(O)O-)が好ましく、酸無水物残基がより好ましい。
 水酸基含有基としては、アルコール性水酸基を含有する基が好ましく、-CFCHOHおよび-C(CFOHがより好ましい。
The F polymer (1) in this method has at least one of a carbonyl group-containing group and a hydroxyl group-containing group.
A carbonyl group-containing group is a group containing a carbonyl group (> C (O)). Examples of the carbonyl group-containing group include a carboxyl group, an alkoxycarbonyl group, an amide group, an isocyanate group, a carbamate group (-OC (O) NH 2 ), an acid anhydride residue (-C (O) OC (O)-), and the like. An imide residue (-C (O) NHC (O)-etc.) and a carbonate group (-OC (O) O-) are preferable, and an acid anhydride residue is more preferable.
As the hydroxyl group-containing group, a group containing an alcoholic hydroxyl group is preferable, and —CF 2 CH 2 OH and —C (CF 3 ) 2 OH are more preferable.
 Fポリマー(1)がカルボニル基含有基を有する場合、Fポリマーにおけるカルボニル基含有基の数は、主鎖炭素数1×10個あたり、10~5000個が好ましく、50~4000個がより好ましく、100~2000個がさらに好ましい。この場合、Fポリマー(1)が本無機粒子またはFポリマー(2)と相互作用しやすく、組成物が加工性や安定性に優れやすい。なお、Fポリマーにおけるカルボニル基含有基の数は、ポリマーの組成または国際公開第2020/145133号に記載の方法によって定量できる。 When the F polymer (1) has a carbonyl group-containing group, the number of carbonyl group-containing groups in the F polymer is preferably 10 to 5000, more preferably 50 to 4000 per 1 × 10 6 main chain carbon atoms. , 100-2000 pieces are more preferable. In this case, the F polymer (1) easily interacts with the present inorganic particles or the F polymer (2), and the composition tends to be excellent in processability and stability. The number of carbonyl group-containing groups in the F polymer can be quantified by the composition of the polymer or the method described in International Publication No. 2020/145133.
 Fポリマー(1)がカルボニル基含有基を有する場合、カルボニル基含有基はポリマーが含有する単位に含まれていてもよく、ポリマー主鎖の末端基に含まれていてもよい。後者のポリマーとしては、重合開始剤、連鎖移動剤等に由来する末端基としてカルボニル基含有基を有するポリマーや、プラズマ処理、電離線処理や放射線処理によって調製された、カルボニル基含有基を有するポリマーが挙げられる。 When the F polymer (1) has a carbonyl group-containing group, the carbonyl group-containing group may be contained in the unit contained in the polymer, or may be contained in the terminal group of the polymer backbone. Examples of the latter polymer include a polymer having a carbonyl group-containing group as a terminal group derived from a polymerization initiator, a chain transfer agent, etc., and a polymer having a carbonyl group-containing group prepared by plasma treatment, ionization line treatment, or radiation treatment. Can be mentioned.
 Fポリマー(1)のフッ素含有量は、70~76質量%であるのが好ましい。かかるフッ素含有量が高いFポリマー(1)は、Fポリマー(1)の電気物性等の物性に優れる反面、極性が低いため、凝集しやすい。そのため例えば分散液を調製した際に、その分散性が低下しやすい。本法によれば、かかる分散液においても、全体のFポリマー(1)の物性が損なわれず、分散性に優れた組成物が得られる。また、組成物から形成される成形物からの本無機粒子の剥落も抑制され、低線膨張性に優れた成形物が得られる。 The fluorine content of the F polymer (1) is preferably 70 to 76% by mass. The F polymer (1) having a high fluorine content is excellent in physical properties such as electrical properties of the F polymer (1), but has a low polarity, so that it tends to aggregate. Therefore, for example, when a dispersion is prepared, its dispersibility tends to decrease. According to this method, even in such a dispersion liquid, the physical characteristics of the entire F polymer (1) are not impaired, and a composition having excellent dispersibility can be obtained. Further, the exfoliation of the present inorganic particles from the molded product formed from the composition is also suppressed, and a molded product having excellent low linear expansion property can be obtained.
 Fポリマー(1)の溶融温度は200℃以上が好ましく、260℃以上がより好ましい。Fポリマー(1)の溶融温度は、325℃以下が好ましく、320℃以下がより好ましい。Fポリマー(1)の溶融温度は、260℃以上325℃以下が特に好ましい。
 Fポリマー(1)のガラス転移点は、50℃以上が好ましく、75℃以上がより好ましい。Fポリマー(1)のガラス転移点は、150℃以下が好ましく、125℃がより好ましい。
The melting temperature of the F polymer (1) is preferably 200 ° C. or higher, more preferably 260 ° C. or higher. The melting temperature of the F polymer (1) is preferably 325 ° C or lower, more preferably 320 ° C or lower. The melting temperature of the F polymer (1) is particularly preferably 260 ° C. or higher and 325 ° C. or lower.
The glass transition point of the F polymer (1) is preferably 50 ° C. or higher, more preferably 75 ° C. or higher. The glass transition point of the F polymer (1) is preferably 150 ° C. or lower, more preferably 125 ° C.
 Fポリマー(1)としては、TFE単位およびエチレン単位を含むポリマー、TFE単位とペルフルオロ(アルキルビニルエーテル)(以下、PAVEとも記す)に基づく単位(以下、PAVE単位とも記す)を含むポリマー(以下、PFAとも記す)、および、TFEとヘキサフルオロプロピレン単位を含むコポリマー(以下、FEPとも記す)が好ましく、PFAおよびFEPがより好ましく、PFAがさらに好ましい。これらのポリマーには、さらに他のコモノマーに基づく単位が含まれていてもよい。
 PAVEとしては、CF=CFOCF、CF=CFOCFCFおよびCF=CFOCFCFCF(以下、PPVEとも記す)が好ましく、PPVEがより好ましい。
The F polymer (1) includes a polymer containing TFE units and ethylene units, and a polymer containing TFE units and units based on perfluoro (alkyl vinyl ether) (hereinafter, also referred to as PAVE) (hereinafter, also referred to as PAVE units) (hereinafter, PFA). Also referred to as), and a polymer containing TFE and hexafluoropropylene units (hereinafter, also referred to as FEP) are preferable, PFA and FEP are more preferable, and PFA is further preferable. These polymers may further contain units based on other comonomeres.
As the PAVE, CF 2 = CFOCF 3 , CF 2 = CFOCF 2 CF 3 and CF 2 = CFOCF 2 CF 2 CF 3 (hereinafter, also referred to as PPVE) are preferable, and PPVE is more preferable.
 Fポリマー(1)は、TFE単位およびPAVE単位を含む、カルボニル基含有基を有するポリマーであるのが好ましく、TFE単位、PAVE単位およびカルボニル基含有基を有するモノマーに基づく単位を含むポリマーであるのがより好ましく、全単位に対して、これらの単位をこの順に、90~99モル%、0.5~9.97モル%、0.01~3モル%、含むポリマーであるのがさらに好ましい。かかるポリマーを含有した場合、本無機粒子との接着性に優れやすい。また、組成物から形成される成形物が緻密になり低線膨張性に優れやすい。
 カルボニル基含有基を有するモノマーとしては、無水イタコン酸、無水シトラコン酸および5-ノルボルネン-2,3-ジカルボン酸無水物(以下、「NAH」とも記す。)が好ましい。
 かかるFポリマー(1)の具体例としては、国際公開第2018/16644号に記載されるポリマーが挙げられる。
The F polymer (1) is preferably a polymer having a carbonyl group-containing group containing a TFE unit and a PAVE unit, and is a polymer containing a unit based on a monomer having a TFE unit, a PAVE unit and a carbonyl group-containing group. It is more preferable that the polymer contains 90 to 99 mol%, 0.5 to 9.97 mol%, 0.01 to 3 mol% of these units in this order with respect to all the units. When such a polymer is contained, the adhesiveness with the present inorganic particles is likely to be excellent. In addition, the molded product formed from the composition becomes dense and tends to have excellent low-line expandability.
As the monomer having a carbonyl group-containing group, itaconic anhydride, citraconic anhydride and 5-norbornen-2,3-dicarboxylic acid anhydride (hereinafter, also referred to as “NAH”) are preferable.
Specific examples of such an F polymer (1) include the polymers described in International Publication No. 2018/16644.
 本粒子(1)は、Fポリマー(1)を含有する粒子であり、粒子中のFポリマー(1)の量は、80質量%以上であるのが好ましく、100質量%であるのがより好ましい。
 本粒子(1)のD50は、20μm以下が好ましく、10μm以下がより好ましく、5μm以下がさらに好ましい。本粒子(1)のD50は、0.1μm以上が好ましく、0.5μm以上がより好ましい。また、本粒子(1)のD90は、50μm以下であるのがより好ましい。本粒子(1)のD50およびD90が、かかる範囲にあれば、その表面積が大きくなり、本粒子(1)の分散性が一層改良されやすい。
The particles (1) are particles containing the F polymer (1), and the amount of the F polymer (1) in the particles is preferably 80% by mass or more, more preferably 100% by mass. ..
The D50 of the particles (1) is preferably 20 μm or less, more preferably 10 μm or less, and even more preferably 5 μm or less. The D50 of the particles (1) is preferably 0.1 μm or more, more preferably 0.5 μm or more. Further, the D90 of the present particle (1) is more preferably 50 μm or less. If D50 and D90 of the main particle (1) are in such a range, the surface area thereof becomes large, and the dispersibility of the main particle (1) is likely to be further improved.
 本粒子(1)は、Fポリマーと異なるポリマーを含有してもよい。
 Fポリマーと異なるポリマーの具体例としては、芳香族ポリエステル、芳香族ポリイミド、芳香族ポリマレイミド、ポリアミドイミド、ポリフェニレンエーテル、ポリフェニレンオキシド、ポリマレイミド等の耐熱性樹脂が挙げられる。
The particles (1) may contain a polymer different from the F polymer.
Specific examples of the polymer different from the F polymer include heat-resistant resins such as aromatic polyester, aromatic polyimide, aromatic polymaleimide, polyamideimide, polyphenylene ether, polyphenylene oxide, and polymaleimide.
 本無機粒子は、組成物から得られる成形物の物性を向上させるために使用される無機酸化物の粒子であり、その種類は、成形物の目的に応じて適宜選択される。本無機粒子は、焼成されたセラミックス粒子であってもよい。
 例えば、成形物の誘電率を向上させる目的の場合には、高誘電率の無機酸化物粒子が用いられる。高誘電率の無機酸化物粒子の25℃における誘電率は、10以上、好ましくは25以上、より好ましくは50以上である。
 かかる無機酸化物粒子としては、ペロブスカイト型強誘電体粒子およびビスマス層状ペロブスカイト型強誘電体粒子が好ましい。
 ペロブスカイト型強誘電体としては、チタン酸バリウム、ジルコン酸チタン酸鉛、チタン酸鉛、酸化ジルコニウム、酸化チタンが挙げられる。一方、ビスマス層状ペロブスカイト型強誘電体としては、タンタル酸ビスマスストロンチウム、ニオブ酸ビスマスストロンチウム、チタン酸ビスマスが挙げられる。
The present inorganic particles are particles of an inorganic oxide used for improving the physical properties of a molded product obtained from the composition, and the type thereof is appropriately selected according to the purpose of the molded product. The inorganic particles may be fired ceramic particles.
For example, for the purpose of improving the dielectric constant of a molded product, inorganic oxide particles having a high dielectric constant are used. The dielectric constant of the high dielectric constant inorganic oxide particles at 25 ° C. is 10 or more, preferably 25 or more, and more preferably 50 or more.
As such inorganic oxide particles, perovskite-type ferroelectric particles and bismuth layered perovskite-type ferroelectric particles are preferable.
Examples of the perovskite-type ferroelectric substance include barium titanate, lead zirconate titanate, lead titanate, zirconium oxide, and titanium oxide. On the other hand, examples of the bismuth layered perovskite type ferroelectric substance include bismuth strontium tantalate, bismuth strontium niobate, and bismuth titanate.
 例えば、成形物の誘電率および誘電正接、または線膨張率を低下させる目的の場合には、低誘電率および低誘電正接、または低線膨張率の無機酸化物粒子が用いられる。
 かかる無機酸化物粒子としては、酸化ベリリウム粒子(べリリア粒子)、酸化ケイ素粒子(シリカ粒子)、ウォラストナイト粒子およびメタ珪酸マグネシウム粒子(ステアタイト粒子)が好ましい。
For example, for the purpose of reducing the dielectric constant and dielectric loss tangent or linear expansion factor of a molded product, inorganic oxide particles having low dielectric constant and low dielectric loss tangent or low linear expansion factor are used.
As such inorganic oxide particles, beryllium oxide particles (berilia particles), silicon oxide particles (silica particles), wollastonite particles, and magnesium metasilicate particles (steatite particles) are preferable.
 例えば、成形物の熱伝導性または耐擦傷性を向上させる目的の場合には、金属酸化物の粒子が用いられる。
 金属酸化物としては、酸化アルミニウム、酸化鉛、酸化鉄、酸化錫、酸化マグネシウム、酸化チタン、酸化亜鉛、五酸化アンチモン、酸化ジルコニウム、酸化ランタン、酸化ネオジウム、酸化セリウムおよび酸化ニオブが好ましく、酸化アルミニウムがより好ましい。これらの金属酸化物、特に、酸化アルムニウムは、熱伝導率が高い点で好ましい。
For example, metal oxide particles are used for the purpose of improving the thermal conductivity or scratch resistance of the molded product.
As the metal oxide, aluminum oxide, lead oxide, iron oxide, tin oxide, magnesium oxide, titanium oxide, zinc oxide, antimony pentoxide, zirconium oxide, lanthanum oxide, neodium oxide, cerium oxide and niobium oxide are preferable, and aluminum oxide is preferable. Is more preferable. These metal oxides, particularly alumnium oxide, are preferable because of their high thermal conductivity.
 本無機粒子としては、シリカ粒子およびメタ珪酸マグネシウム粒子が好ましく、シリカ粒子がより好ましい。
 本無機粒子がシリカ粒子またはメタ珪酸マグネシウム粒子である場合、シリカまたはメタ珪酸マグネシウムの含有量は、80質量%以上が好ましく、95質量%がより好ましい。シリカまたはメタ珪酸マグネシウムの含有量は、100質量%以下が好ましく、90質量%以下がより好ましい。
As the present inorganic particles, silica particles and magnesium metasilicate particles are preferable, and silica particles are more preferable.
When the inorganic particles are silica particles or magnesium metasilicate particles, the content of silica or magnesium metasilicate is preferably 80% by mass or more, more preferably 95% by mass. The content of silica or magnesium metasilicate is preferably 100% by mass or less, more preferably 90% by mass or less.
 本無機粒子の形状は、目的に応じて適宜選定され、球状、鱗片状、層状、平板状、葉片状、杏仁状、柱状、鶏冠状、等軸状、葉状、雲母状、ブロック状、平板状、楔状、ロゼット状、網目状、角柱状が挙げられ、鱗片状または球状であるのが好ましく、球状であるのがより好ましい。球状の本無機粒子を使用すれば、組成物が分散性と安定性に優れやすく、組成物から形成される成形物が低線膨張性に優れやすい。
 本無機粒子のD50は20μm以下が好ましく、10μm以下がより好ましく、5μm以下がさらに好ましい。本粒子のD50は0.01μm以上が好ましく、0.1μm以上がより好ましく、0.3μm以上が更に好ましい。
The shape of the inorganic particles is appropriately selected according to the purpose, and is spherical, scale-like, layered, flat plate-like, leaf-like, apricot kernel-like, columnar, chicken crown-like, equiaxed, leaf-like, mica-like, block-like, flat plate. It may be scaly, wedge-shaped, rosette-shaped, mesh-shaped, or prismatic, and is preferably scaly or spherical, and more preferably spherical. When the spherical present inorganic particles are used, the composition tends to be excellent in dispersibility and stability, and the molded product formed from the composition tends to be excellent in low linear expansion.
The D50 of the inorganic particles is preferably 20 μm or less, more preferably 10 μm or less, still more preferably 5 μm or less. The D50 of the particles is preferably 0.01 μm or more, more preferably 0.1 μm or more, still more preferably 0.3 μm or more.
 前記無機粒子が球状である場合、略真球状であるのが好ましい。この場合、長径に対する短径の比は、0.5以上が好ましく、0.8以上がより好ましい。上記比は、1未満が好ましい。かかる高度な略真球状の本無機粒子を用いれば、組成物が安定性と分散性に優れやすい。また、組成物から形成される成形物が接着性と低線膨張性に優れやすい。 When the inorganic particles are spherical, it is preferably substantially spherical. In this case, the ratio of the minor axis to the major axis is preferably 0.5 or more, more preferably 0.8 or more. The above ratio is preferably less than 1. By using such highly spherical present inorganic particles, the composition tends to be excellent in stability and dispersibility. In addition, the molded product formed from the composition tends to have excellent adhesiveness and low line expansion property.
 本無機粒子は、その表面の少なくとも一部が表面処理されているのが好ましい。この場合、本粒子(1)と本無機粒子が複合粒子を形成しやすく、本法から得られる組成物が分散性と安定性に優れやすい。また、組成物から成形物を形成する際の加熱において、表面処理剤が熱分解してガスが発生して本無機粒子の流動が促され、成形物の均一性が向上しやすいと考えられる。
 表面処理に用いられる表面処理剤としては、トリメチロールエタン、ペンタエリストール、プロピレングリコール等の多価アルコール、ステアリン酸、ラウリン酸等の飽和脂肪酸およびそれらのエステル、アルカノールアミン、トリメチルアミン、トリエチルアミン等のアミン、パラフィンワックス、シランカップリング剤、シリコーン、ポリシロキサンが挙げられ、シランカップリング剤が好ましい。
It is preferable that at least a part of the surface of the inorganic particles is surface-treated. In this case, the particles (1) and the inorganic particles are likely to form composite particles, and the composition obtained by this method is likely to be excellent in dispersibility and stability. Further, it is considered that during heating when forming a molded product from the composition, the surface treatment agent is thermally decomposed to generate gas to promote the flow of the inorganic particles, and the uniformity of the molded product is likely to be improved.
Examples of the surface treatment agent used for surface treatment include polyhydric alcohols such as trimethylolethane, pentaeristol, and propylene glycol, saturated fatty acids such as stearic acid and lauric acid, and esters thereof, and amines such as alkanolamine, trimethylamine, and triethylamine. , Paraffin wax, silane coupling agent, silicone, polysiloxane, and silane coupling agent is preferable.
 シランカップリング剤としては、官能基を有するシランカップリング剤が好ましく、3-アミノプロピルトリエトキシシラン、ビニルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、フェニルアミノシランおよび3-イソシアネートプロピルトリエトキシシランがより好ましい。 As the silane coupling agent, a silane coupling agent having a functional group is preferable, 3-aminopropyltriethoxysilane, vinyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-Methyloxypropyltriethoxysilane, phenylaminosilane and 3-isocyandiapropyltriethoxysilane are more preferred.
 本無機粒子は、1種類の無機酸化物粒子を単独で用いてもよく、2種以上の無機酸化物粒子を併用してもよい。
 本無機粒子の好適な具体例としては、シリカ粒子(アドマテックス社製の「アドマファイン(登録商標)」シリーズ等)、ジカプリン酸プロピレングリコール等のエステルで表面処理された酸化亜鉛粒子(堺化学工業株式会社製の「FINEX(登録商標)」シリーズ等)、球状溶融シリカ粒子(デンカ社製の「SFP(登録商標)」シリーズ等)、多価アルコールおよび無機物で被覆処理された酸化チタン粒子(石原産業社製の「タイペーク(登録商標)」シリーズ等)、アルキルシランで表面処理されたルチル型酸化チタン粒子(テイカ社製の「JMT(登録商標)」シリーズ等)、中空状シリカ粒子(太平洋セメント社製の「E-SPHERES」シリーズ、日鉄鉱業社製の「シリナックス」シリーズ、エマーソン・アンド・カミング社製「エココスフイヤー」シリーズ等)、タルク粒子(日本タルク社製の「SG」シリーズ等)、ステアタイト粒子(日本タルク社製の「BST」シリーズ等)が挙げられる。
As the present inorganic particles, one kind of inorganic oxide particles may be used alone, or two or more kinds of inorganic oxide particles may be used in combination.
Suitable specific examples of the inorganic particles include silica particles (“Admafine (registered trademark)” series manufactured by Admatex Co., Ltd.) and zinc oxide particles surface-treated with an ester such as propylene glycol dicaprate (Sakai Chemical Industry Co., Ltd.). "FINEX (registered trademark)" series manufactured by Denka Co., Ltd.), spherical molten silica particles ("SFP (registered trademark)" series manufactured by Denka Co., Ltd.), titanium oxide particles coated with polyhydric alcohol and inorganic substances (Ishihara) "Typake (registered trademark)" series manufactured by Sangyo Co., Ltd.), rutile-type titanium oxide particles surface-treated with alkylsilane ("JMT (registered trademark)" series manufactured by Teika Co., Ltd.), hollow silica particles (Pacific cement) "E-SPHERES" series manufactured by Nittetsu Mining Co., Ltd., "Sirinax" series manufactured by Nittetsu Mining Co., Ltd., "Ecocos Fire" series manufactured by Emerson & Cumming Co., Ltd., talc particles ("SG" series manufactured by Nippon Tarku Co., Ltd., etc.) , Steatite particles (“BST” series manufactured by Nippon Tarku Co., Ltd., etc.).
 Fポリマー(2)は前記Fポリマー(1)とは異なるテトラフルオロエチレン系ポリマーであり、前記カルボニル基含有基および水酸基含有基を含まないテトラフルオロエチレン系ポリマーが好ましい。 The F polymer (2) is a tetrafluoroethylene-based polymer different from the F polymer (1), and a tetrafluoroethylene-based polymer that does not contain the carbonyl group-containing group and the hydroxyl group-containing group is preferable.
 Fポリマー(2)としては、非熱溶融性のポリテトラフルオロエチレン(以下、「非熱溶融性PTFE」とも記す。)がより好ましい。
 非熱溶融性PTFEは、ポリテトラフルオロエチレン(PTFE)であり、TFEのホモポリマーに加えて、極微量のPAVE、HFP、FAE等のコモノマーとTFEとのコポリマーである、所謂、変性PTFEも包含される。非熱溶融性PTFEにおけるTFE単位の割合は、全単位のうち、99.5モル%以上が好ましく、99.9モル%以上がより好ましい。
As the F polymer (2), non-heat-meltable polytetrafluoroethylene (hereinafter, also referred to as “non-heat-meltable PTFE”) is more preferable.
The non-heat-meltable PTFE is polytetrafluoroethylene (PTFE), and in addition to the homopolymer of TFE, also includes a so-called modified PTFE which is a copolymer of TFE and a comonomer such as PAVE, HFP, FAE, etc. in a trace amount. Will be done. The ratio of TFE units in the non-hot melt PTFE is preferably 99.5 mol% or more, more preferably 99.9 mol% or more, out of all the units.
 前記非熱溶融性PTFEは、フィブリル性を有するのが好ましい。フィブリル性を有する非熱溶融性PTFEとは、未焼成のポリマー粉末をペースト押出できるPTFEを意味し、下式(1)に基づいて算出される数平均分子量、Mn、が20万以上であるポリテトラフルオロエチレンが好ましい。
 Mn = 2.1×1010×ΔHc-5.16 ・・・ (1)
 式(1)中、Mnは、PTFEの数平均分子量を、ΔHcは、示差走査熱量分析法により測定されるPTFEの結晶化熱量(cal/g)を示す。
 本粒子(2)は、Fポリマー(2)を含有する粒子であり、本粒子(2)中のFポリマー(2)の量は、80質量%以上であるのが好ましく、100質量%であるのがより好ましい。
 本粒子(2)のD50は、20μm以下であるのが好ましく、5μm以下であるのがより好ましく、1μm以下であるのがさらに好ましい。本粒子(2)のD50は、0.1μm以上が好ましく、0.2μm以上がより好ましい。また、本粒子(2)のD90は、20μm以下であるのがより好ましい。本粒子(2)のD50およびD90が、かかる範囲にあれば、その表面積が大きくなり、本粒子の分散性が一層改良されやすい。
The non-heat-meltable PTFE is preferably fibrilable. The non-heat-meltable PTFE having a fibril property means a PTFE that can paste-extrude unfired polymer powder, and is a poly having a number average molecular weight, Mn, calculated based on the following formula (1) of 200,000 or more. Tetrafluoroethylene is preferred.
Mn = 2.1 × 10 10 × ΔHc- 5.16 ... (1)
In the formula (1), Mn indicates the number average molecular weight of PTFE, and ΔHc indicates the calorie of crystallization of PTFE measured by the differential scanning calorimetry method (cal / g).
The particles (2) are particles containing the F polymer (2), and the amount of the F polymer (2) in the particles (2) is preferably 80% by mass or more, preferably 100% by mass. Is more preferable.
The D50 of the particles (2) is preferably 20 μm or less, more preferably 5 μm or less, and even more preferably 1 μm or less. The D50 of the particles (2) is preferably 0.1 μm or more, more preferably 0.2 μm or more. Further, the D90 of the present particle (2) is more preferably 20 μm or less. If D50 and D90 of the particles (2) are in such a range, the surface area thereof becomes large, and the dispersibility of the particles is likely to be further improved.
 本粒子(2)は、本粒子(1)と同様にFポリマーと異なるポリマーまたは無機物を含有してもよい。
 Fポリマーと異なるポリマーおよび無機物の具体例としては、前記と同様の化合物が挙げられる。
The particles (2) may contain a polymer or an inorganic substance different from the F polymer as in the particles (1).
Specific examples of polymers and inorganic substances different from the F polymer include the same compounds as described above.
 本法では、まず、本粒子(1)と本無機粒子を混合する。両者の混合は、通常、本粒子(1)の集合体である粉体(以下、「粉体(1)」とも記す。)と本無機粒子の集合体である粉体(以下、「本無機粉体」とも記す。)とを混合することにより行われる。
 粉体を用いる混合の方法としては、粉体(1)と本無機粉体が均一に混合される方法であれば特に制限はない。粉体(1)と本無機粉体を一括で混合してもよいし、何れか一方を複数回に分けて添加しながら混合してもよいし、連続で添加しながら混合してもよい。混合に用いる混合機は攪拌翼によるミキサー、ヘンシェルミキサー、リボンブレンダー、揺動型混合機、振動型混合機等が挙げられる。
In this method, first, the particles (1) and the inorganic particles are mixed. The mixture of both is usually a powder which is an aggregate of the present particles (1) (hereinafter, also referred to as “powder (1)”) and a powder which is an aggregate of the present inorganic particles (hereinafter, “the present inorganic”). It is also described as "powder").
The mixing method using the powder is not particularly limited as long as the powder (1) and the present inorganic powder are uniformly mixed. The powder (1) and the present inorganic powder may be mixed at once, one of them may be added in a plurality of times and mixed, or the powder (1) and the present inorganic powder may be continuously added and mixed. Examples of the mixer used for mixing include a mixer with a stirring blade, a Henshell mixer, a ribbon blender, a swing type mixer, and a vibration type mixer.
 粉体(1)と本無機粉体を混合した際に本粒子(1)をコアとし、このコアの表面に本無機粒子が付着している態様、または本無機粒子をコアとし、このコアの表面に本粒子(1)が付着している態様となるように混合するのが好ましい。
 このような態様とするために本粒子(1)と本無機粒子とを衝突、凝集等するように混合して、両者が合着するようにするのが好ましい。
When the powder (1) and the inorganic powder are mixed, the particles (1) are used as the core, and the inorganic particles are attached to the surface of the core, or the inorganic particles are used as the core of the core. It is preferable to mix the particles (1) so that the particles (1) are attached to the surface.
In order to achieve such an embodiment, it is preferable to mix the particles (1) and the inorganic particles so as to collide, aggregate, or the like so that the particles coalesce.
 本法における本粒子(1)と本無機粒子の混合は、また、液状媒体存在下で行うこともできる。また、本粒子(1)が液状媒体に分散している分散液等の分散液を用いて本粒子(1)と本無機粒子とを混合物行うこともできる。この場合、得られた混合物は液状媒体を含む混合物となる。この場合もまた、前記と同様に、本粒子(1)と本無機粒子とを衝突、凝集等するように混合して、両者が合着するようにするのが好ましい。
 液状媒体存在下における混合の具体例としては、例えば、粉体(1)と本無機粉体と液状媒体との同時混合、粉体(1)と本無機粉体の混合物に液状媒体を混入する混合、本粒子(1)が液状媒体中に分散している分散液と本無機粉体との混合、等が挙げられる。
 液状媒体としては水が好ましい。水は極性が高く、Fポリマーとの親和性に乏しいため、かかる混合物における本粒子(1)の分散性は低いと考えられたが、上述した作用機構により、分散安定性に優れた混合物が得られる。
The mixing of the particles (1) and the inorganic particles in this method can also be performed in the presence of a liquid medium. Further, the particles (1) and the inorganic particles can be mixed by using a dispersion liquid such as a dispersion liquid in which the particles (1) are dispersed in a liquid medium. In this case, the obtained mixture is a mixture containing a liquid medium. Also in this case, similarly to the above, it is preferable to mix the particles (1) and the inorganic particles so as to collide, aggregate, or the like so that the particles coalesce.
Specific examples of mixing in the presence of a liquid medium include simultaneous mixing of the powder (1) with the present inorganic powder and the liquid medium, and mixing the liquid medium with the mixture of the powder (1) and the present inorganic powder. Examples thereof include mixing, mixing of the dispersion liquid in which the particles (1) are dispersed in the liquid medium, and the present inorganic powder.
Water is preferable as the liquid medium. Since water has high polarity and poor affinity with F polymer, it was considered that the dispersibility of the particles (1) in such a mixture was low, but the above-mentioned mechanism of action gave a mixture with excellent dispersion stability. Be done.
 水を使用する場合、本粒子(1)と本無機粒子と水を含む混合物を混練するのが好ましく、粉体(1)と本無機粉体を混合後、さらに水を添加して混練するのがより好ましい。例えば、粉体(1)と本無機粉体とをタンブラーやヘンシェルミキサー等の各種混合機を用いてあらかじめ混合した後、その混合物に水を添加してさらに混練するのが好ましい。 When water is used, it is preferable to knead the particles (1), the inorganic particles, and the mixture containing water. After mixing the powder (1) and the inorganic powder, water is further added and kneaded. Is more preferable. For example, it is preferable to mix the powder (1) and the present inorganic powder in advance using various mixers such as a tumbler or a Henschel mixer, and then add water to the mixture to further knead.
 混練に際しては閉鎖系で混練するのが好ましい。
 混練に際しては、撹拌槽と、一軸あるいは多軸の撹拌羽根を備えた混練機を使用するのが好ましい。撹拌羽根の数は、高い混練作用を得るためには二つ以上の撹拌羽根のものが好ましい。混練の方法はバッチ式、連続式いずれでもよい。
When kneading, it is preferable to knead in a closed system.
For kneading, it is preferable to use a kneader equipped with a stirring tank and uniaxial or multiaxial stirring blades. The number of stirring blades is preferably two or more in order to obtain a high kneading action. The kneading method may be either a batch method or a continuous method.
 バッチ式混練に用いられる混練機としては、ヘンシェルミキサー、加圧ニーダー、バンバリーミキサーおよびプラネタリーミキサーが好ましく、プラネタリーミキサーがより好ましい。
 連続式混練機としては、二軸型押出混練機や石臼型混練機が挙げられる。
As the kneader used for the batch type kneading, a Henschel mixer, a pressurized kneader, a Banbury mixer and a planetary mixer are preferable, and a planetary mixer is more preferable.
Examples of the continuous kneader include a twin-screw extrusion kneader and a stone mill type kneader.
 水存在下に前記混練を行った場合、本粒子(1)および本無機粒子を含有した液状状態にあるスラリー状またはゾル状の混合物が得られる。水が存在する場合、混合物中の水の量は、10~70質量%が好ましく、20~50質量%がより好ましい。
 このようにして得られたスラリー状またはゾル状の混合物は粘性が高く、通常、半固体状である。その粘度は、通常、10000mPa・s以上、場合により25000mPa・s以上となる。また粘度は、100000mPa・s以下が好ましく、80000mPa・sがより好ましい。
When the kneading is performed in the presence of water, a slurry-like or sol-like mixture containing the main particles (1) and the main inorganic particles in a liquid state can be obtained. In the presence of water, the amount of water in the mixture is preferably 10-70% by weight, more preferably 20-50% by weight.
The slurry-like or sol-like mixture thus obtained is highly viscous and is usually semi-solid. Its viscosity is usually 10,000 mPa · s or more, and in some cases 25,000 mPa · s or more. The viscosity is preferably 100,000 mPa · s or less, more preferably 80,000 mPa · s.
 本法では、次いで、本粒子(1)と本無機粒子を含む前記混合物と本粒子(2)とを混合して組成物を得る。前記混合物と本粒子(2)との混合の方法および用いる混合機は本粒子(1)と本無機粒子を混合する際と同様である。本粒子(2)は、粉体として前記混合物と混合してもよく、あらかじめ液状媒体に分散させてなる分散液として前記混合物と混合してもよい。液状媒体としては、水が好ましい。
 前記混合物と本粒子(2)とを混合する際、本粒子(2)の水分散液を用いて混合することが好ましい。本粒子(2)の水分散液を混合する場合、前記混合物は水を含有していてもよい。また本粒子(2)の水分散液を混合する場合、前記混合物と分散液とを混練するのが好ましい。混練の方法および混練機は前記と同様な方法と混練機が挙げられる。
 水は極性が高く、Fポリマーとの親和性に乏しいため、かかる混合においては本粒子(2)の分散性が低下すると考えられたが、上述した作用機構により、分散安定性に優れた組成物が得られる。
 本粒子(2)を水に分散させた分散液を用いる場合、分散液中の水の量は、20~80質量%が好ましく、40~70質量%がより好ましい。
In this method, the mixture containing the particles (1) and the inorganic particles is then mixed with the particles (2) to obtain a composition. The method of mixing the mixture and the present particles (2) and the mixer used are the same as when mixing the present particles (1) and the present inorganic particles. The particles (2) may be mixed with the mixture as a powder, or may be mixed with the mixture as a dispersion liquid previously dispersed in a liquid medium. Water is preferable as the liquid medium.
When mixing the mixture and the main particles (2), it is preferable to use the aqueous dispersion of the main particles (2). When the aqueous dispersion of the particles (2) is mixed, the mixture may contain water. When the aqueous dispersion of the particles (2) is mixed, it is preferable to knead the mixture and the dispersion. Examples of the kneading method and the kneading machine include the same method and the kneading machine as described above.
Since water has high polarity and poor affinity with F polymer, it was considered that the dispersibility of the particles (2) would decrease in such mixing, but the composition having excellent dispersion stability due to the above-mentioned mechanism of action. Is obtained.
When a dispersion liquid in which the particles (2) are dispersed in water is used, the amount of water in the dispersion liquid is preferably 20 to 80% by mass, more preferably 40 to 70% by mass.
 また前記混合物または本粒子(2)の少なくともいずれかが水を含む場合は、得られる組成物の分散性と分散安定性の観点から、超音波ホモジナイザードベイントシェーカー、ボールミル、アトライター、バスケットミル、サンドミル、サンドグラインダー、ダイノーミル、ディスパーマット、SCミル、スパイクミル、アジテーターミル等のメディアを使用する分散機、超音波ホモジナイザー、ナノマイザー、デゾルバー、ディスパー、高速インペラー分散機等のメディアを使用しない分散機を混練に用いるのが好ましく、メディアを使用した分散機を混練に用いるのがより好ましい。 When at least one of the mixture or the particles (2) contains water, an ultrasonic homogenized baint shaker, a ball mill, an attritor, a basket mill, etc., from the viewpoint of dispersibility and dispersion stability of the obtained composition. Dispersers that use media such as sand mills, sand grinders, dyno mills, disperser mats, SC mills, spike mills, and agitator mills, and dispersers that do not use media such as ultrasonic homogenizers, nanomizers, resolvers, dispersers, and high-speed impeller dispersers. It is preferable to use it for kneading, and it is more preferable to use a disperser using media for kneading.
 本法において、本粒子(1)、本粒子(2)および本無機粒子以外の第三成分を使用してもよい。第三成分はあらかじめ水等の液状媒体と混合して使用してもよい。第三成分は、本粒子(1)と本無機粒子を混合する際に使用して第三成分を含む混合物とすることができ、また本粒子(1)と本無機粒子を含む混合物と本粒子(2)を混合する際に使用して第三成分を含む組成物を製造することができる。
 第三成分の例としては、紫外線吸収剤、Fポリマーとは異なるポリマー(以下、「他のポリマー」とも記す。)、界面活性剤、pH調整剤、ノニオン性の水溶性高分子等が挙げられる。
In this method, a third component other than the present particles (1), the present particles (2) and the present inorganic particles may be used. The third component may be mixed with a liquid medium such as water in advance and used. The third component can be used when mixing the present particles (1) and the present inorganic particles to prepare a mixture containing the third component, and the mixture containing the present particles (1) and the present inorganic particles and the present particles. A composition containing the third component can be produced by using it when mixing (2).
Examples of the third component include an ultraviolet absorber, a polymer different from the F polymer (hereinafter, also referred to as “other polymer”), a surfactant, a pH adjuster, a nonionic water-soluble polymer, and the like. ..
 紫外線吸収剤としては、フェノール性水酸基と含窒素複素環構造を有する紫外線吸収剤が好ましく、ヒドロキシベンゾフェノン構造を有する紫外線吸収剤、および、フェノール性水酸基とトリアジン構造またはベンゾトリアゾール構造とを有する紫外線吸収剤がより好ましい。後者の紫外線吸収剤は、ヒドロキシフェニルトリアジン構造またはヒドロキシフェニル構造に種々の置換基が置換した構造を有するのが好ましい。 As the ultraviolet absorber, an ultraviolet absorber having a phenolic hydroxyl group and a nitrogen-containing heterocyclic structure is preferable, an ultraviolet absorber having a hydroxybenzophenone structure, and an ultraviolet absorber having a phenolic hydroxyl group and a triazine structure or a benzotriazole structure. Is more preferable. The latter UV absorber preferably has a hydroxyphenyltriazine structure or a structure in which various substituents are substituted in the hydroxyphenyl structure.
 他のポリマーとしては、(メタ)アクリル系ポリマーおよび芳香族ポリマーが挙げられる。(メタ)アクリル系ポリマーとは、アクリル酸、メタクリル酸、アクリレートまたはメタクリレートに基づく単位を含むポリマーの総称である。
 (メタ)アクリル系ポリマーのガラス転移点は30~120℃が好ましく、40~110℃がより好ましく、60~100℃がさらに好ましい。(メタ)アクリル系ポリマーは、ヒドロキシ基を有するのが好ましい。この場合、Fポリマー(1)またはFポリマー(2)との相互作用も向上しやすい。
Other polymers include (meth) acrylic polymers and aromatic polymers. The (meth) acrylic polymer is a general term for polymers containing units based on acrylic acid, methacrylic acid, acrylate or methacrylate.
The glass transition point of the (meth) acrylic polymer is preferably 30 to 120 ° C, more preferably 40 to 110 ° C, and even more preferably 60 to 100 ° C. The (meth) acrylic polymer preferably has a hydroxy group. In this case, the interaction with the F polymer (1) or the F polymer (2) is also likely to be improved.
 (メタ)アクリル系ポリマーとしては、ヒドロキシ基を有するモノマーに基づく単位を含む(メタ)アクリレート系ポリマー、および、連鎖移動剤(アルカンチオール等)とメタノール、エタノール、プロパノール等のアルコールの存在下に(メタ)アクリレートを重合させて得られるポリマー鎖の末端にヒドロキシ基を有する(メタ)アクリレート系ポリマーが好ましい。 The (meth) acrylic polymer includes a (meth) acrylate-based polymer containing a unit based on a monomer having a hydroxy group, a chain transfer agent (alcanthiol, etc.) and an alcohol such as methanol, ethanol, propanol, etc. ( A (meth) acrylate-based polymer having a hydroxy group at the end of a polymer chain obtained by polymerizing a meta) acrylate is preferable.
 ヒドロキシ基を有する(メタ)アクリレートとしては、ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、モノグリシジルエーテルまたはグリシドールと(メタ)アクリル酸とを付加させて得られる(メタ)アクリレートが挙げられる。 Examples of the (meth) acrylate having a hydroxy group include hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 4-hydroxybutyl ( Examples thereof include (meth) acrylate obtained by adding (meth) acrylate, monoglycidyl ether or glycidol and (meth) acrylic acid.
 (メタ)アクリル系ポリマーは、メチル(メタ)アクリレート、エチル(メタ)アクリレート、iso-ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、シクロペンチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレートおよびベンジル(メタ)アクリレートからなる群から選ばれる少なくとも1種の(メタ)アクリレートに基づく単位を含むのが好ましい。 The (meth) acrylic polymers include methyl (meth) acrylate, ethyl (meth) acrylate, iso-butyl (meth) acrylate, tert-butyl (meth) acrylate, isobornyl (meth) acrylate, cyclopentyl (meth) acrylate, and cyclohexyl (meth). It preferably contains at least one (meth) acrylate-based unit selected from the group consisting of meta) acrylates and benzyl (meth) acrylates.
 芳香族ポリマーとしては、芳香族イミド系ポリマーが好ましく、芳香族ポリイミド、ポリアミック酸またはその塩である芳香族ポリイミド前駆体、芳香族ポリアミドイミド、芳香族ポリアミドイミド前駆体、芳香族ポリエーテルイミドおよび芳香族ポリエーテルイミド前駆体が好ましく、芳香族ポリイミド前駆体および芳香族ポリアミドイミドがより好ましい。これらの芳香族ポリマーは、カルボン酸基、フェノール性水酸基等の酸性基がさらに導入された変性芳香族ポリマーであってもよい。 As the aromatic polymer, an aromatic imide-based polymer is preferable, and an aromatic polyimide, a polyamic acid or a salt thereof, an aromatic polyimide precursor, an aromatic polyamideimide, an aromatic polyamideimide precursor, an aromatic polyetherimide and an aroma are preferable. Group polyetherimide precursors are preferred, aromatic polyimide precursors and aromatic polyamideimides are more preferred. These aromatic polymers may be modified aromatic polymers into which acidic groups such as carboxylic acid groups and phenolic hydroxyl groups are further introduced.
 本法において水を使用する場合、芳香族ポリマーは、水溶性であるのが好ましい。水溶性の芳香族ポリマーは、その酸価や本法により得られる組成物の塩基性度を調節することにより調製できる。例えば、芳香族ポリマーが芳香族ポリアミック酸であれば、芳香族ポリアミック酸と、アンモニア水または有機アミンを反応させたポリアミック酸塩とすることにより水溶性の芳香族ポリマーを調製できる。
 具体的には、水溶性の芳香族ポリマーは、酸価が20~100mg/KOHであるのが好ましく、35~70mgKOH/gであるのがより好ましい。また、水溶性の芳香族ポリマーを用いた組成物の場合、組成物のpHは5~10であるのが好ましく、7~9であるのがより好ましい。芳香族ポリマーの酸価と得られる組成物のpHとが、かかる範囲にあれば、得られる組成物の分散安定性が向上するだけでなく、分散液から成形物を形成する際、芳香族ポリマーが高度に分散し、紫外線吸収性、柔軟性、密着性等の成形物の物性を向上させやすい。
 芳香族ポリマーの具体例としては、「Ultem 1000F3SP」(SABIC社製)、「HPC-1000」、「HPC-2100D」(いずれも昭和電工マテリアルズ社製)が挙げられる。
When water is used in this method, the aromatic polymer is preferably water soluble. The water-soluble aromatic polymer can be prepared by adjusting the acid value thereof and the basicity of the composition obtained by this method. For example, if the aromatic polymer is an aromatic polyamic acid, a water-soluble aromatic polymer can be prepared by reacting the aromatic polyamic acid with an aqueous ammonia or an organic amine to form a polyamic acid salt.
Specifically, the water-soluble aromatic polymer preferably has an acid value of 20 to 100 mg / KOH, and more preferably 35 to 70 mgKOH / g. Further, in the case of a composition using a water-soluble aromatic polymer, the pH of the composition is preferably 5 to 10, and more preferably 7 to 9. If the acid value of the aromatic polymer and the pH of the obtained composition are within such a range, not only the dispersion stability of the obtained composition is improved, but also the aromatic polymer is formed from the dispersion liquid when the molded product is formed. Is highly dispersed, and it is easy to improve the physical properties of the polymer such as ultraviolet absorption, flexibility, and adhesion.
Specific examples of the aromatic polymer include "Ultem 1000F3SP" (manufactured by SABIC), "HPC-1000", and "HPC-2100D" (all manufactured by Showa Denko Materials Co., Ltd.).
 本法において水を使用する場合、得られる液状組成物の分散安定性とハンドリング性とを向上させる観点から第三成分として界面活性剤を用いてもよい。
 界面活性剤は、ノニオン性が好ましい。
 界面活性剤の親水部位は、ポリオキシアルキレン鎖またはアルコール性水酸基を有するのが好ましい。
 ポリオキシアルキレン鎖は、2種以上のオキシアルキレン基から構成されていてもよい。後者の場合、種類の違うオキシアルキレン基は、ランダム状に配置されていてもよく、ブロック状に配置されていてもよい。
 オキシアルキレン基としては、オキシエチレン基が好ましい。
When water is used in this method, a surfactant may be used as the third component from the viewpoint of improving the dispersion stability and handleability of the obtained liquid composition.
The surfactant is preferably nonionic.
The hydrophilic moiety of the surfactant preferably has a polyoxyalkylene chain or an alcoholic hydroxyl group.
The polyoxyalkylene chain may be composed of two or more kinds of oxyalkylene groups. In the latter case, different types of oxyalkylene groups may be randomly arranged or may be arranged in blocks.
As the oxyalkylene group, an oxyethylene group is preferable.
 界面活性剤の疎水部位は、アセチレン基、ポリシロキサン基、ペルフルオロアルキル基またはペルフルオロアルケニル基を有するのが好ましい。換言すれば、界面活性剤としては、ポリオキシアルキレンアルキルエーテル系界面活性剤、アセチレン系界面活性剤、シリコーン系界面活性剤およびフッ素系界面活性剤が好ましく、シリコーン系界面活性剤がより好ましい。
 シリコーン系界面活性剤としては、親水基としてポリオキシアルキレン鎖を、疎水基としてポリジメチルシロキサン構造を有する、オルガノポリシロキサンが好ましい。シリコーン系界面活性剤を使用する場合、液状組成物の長期保管安定性を向上する観点から、ポリオキシアルキレンアルキルエーテル系界面活性剤を併用してもよい。
The hydrophobic moiety of the surfactant preferably has an acetylene group, a polysiloxane group, a perfluoroalkyl group or a perfluoroalkenyl group. In other words, as the surfactant, a polyoxyalkylene alkyl ether-based surfactant, an acetylene-based surfactant, a silicone-based surfactant and a fluorine-based surfactant are preferable, and a silicone-based surfactant is more preferable.
As the silicone-based surfactant, an organopolysiloxane having a polyoxyalkylene chain as a hydrophilic group and a polydimethylsiloxane structure as a hydrophobic group is preferable. When a silicone-based surfactant is used, a polyoxyalkylene alkyl ether-based surfactant may be used in combination from the viewpoint of improving the long-term storage stability of the liquid composition.
 界面活性剤の具体例としては、「フタージェント」シリーズ(株式会社ネオス社製 フタージェントは登録商標)、「サーフロン」シリーズ(AGCセイミケミカル社製 サーフロンは登録商標)、「メガファック」シリーズ(DIC株式会社製 メガファックは登録商標)、「ユニダイン」シリーズ(ダイキン工業株式会社製 ユニダインは登録商標)、「BYK-347」、「BYK-349」、「BYK-378」、「BYK-3450」、「BYK-3451」、「BYK-3455」、「BYK-3456」(ビックケミー・ジャパン社製)、「KF-6011」、「KF-6043」(信越化学工業株式会社製)が挙げられる。
 ポリオキシアルキレンアルキルエーテルは市販品として入手でき、具体的には、「Tergitol TMN-100X」(ダウケミカル社製)、「Lutensol TO8」、「Lutensol XL70」、「Lutensol XL80」、「Lutensol XL90」、「Lutensol XP80」、「Lutensol M5」(以上、BASF社製)、「ニューコール 1305」、「ニューコール 1308FA」、「ニューコール 1310」(以上、日本乳化剤社製)、「レオコール TDN-90-80」、「レオコール SC-90」(以上、ライオン・スペシャリティ・ケミカルズ社製)が挙げられる。
 界面活性剤を含有する場合、その液状組成物中の含有量は、1から15質量%が好ましい。この場合、成分間の親和性が増し、本法により得られる組成物の分散安定性がより向上しやすい。
Specific examples of surfactants include the "Futergent" series (Futtergent manufactured by Neos Co., Ltd. is a registered trademark), the "Surflon" series (Surflon manufactured by AGC Seimi Chemical Co., Ltd. is a registered trademark), and the "Megafuck" series (DIC). Megafuck Co., Ltd. is a registered trademark), "Unidyne" series (Unidyne manufactured by Daikin Industries, Ltd. is a registered trademark), "BYK-347", "BYK-349", "BYK-378", "BYK-3450", Examples thereof include "BYK-3451", "BYK-3455", "BYK-3456" (manufactured by BIC Chemie Japan Co., Ltd.), "KF-6011", and "KF-6043" (manufactured by Shin-Etsu Chemical Industry Co., Ltd.).
The polyoxyalkylene alkyl ether is available as a commercial product, and specifically, "Tergitol TMN-100X" (manufactured by Dow Chemical Co., Ltd.), "Lutensol TO8", "Lutensol XL70", "Lutensol XL80", "Lutensol XL90", "Lutensol XP80", "Lutensol M5" (above, manufactured by BASF), "Newcall 1305", "Newcol 1308FA", "Newcol 1310" (above, manufactured by Nippon Emulsifier), "Leocol TDN-90-80" , "Leocol SC-90" (above, manufactured by Lion Specialty Chemicals Co., Ltd.).
When a surfactant is contained, the content in the liquid composition is preferably 1 to 15% by mass. In this case, the affinity between the components is increased, and the dispersion stability of the composition obtained by this method is likely to be further improved.
 また本法において水を使用する場合、得られる液状の組成物の長期保管後の安定性の観点から、液状の組成物のpHが5~10となるようにpH調整剤として塩基性化合物を用いてもよい。
 塩基性化合物としては、アンモニア、ジメチルアミン、ジエチルアミン、ジイソプロピルアミン、ジエタノールアミン、トリエタノールアミン、トリプロパノールアミン、トリエチルアミン、トリアミルアミン、ピリジン、N-メチルモルホリンが挙げられる。
 この場合、さらにpH緩衝剤を添加して、液状の組成物のpHを安定させてもよい。pH緩衝剤としては、トリス(ヒドロキシメチル)アミノメタン、エチレンジアミン四酢酸、炭酸水素アンモニウム、炭酸アンモニウム、酢酸アンモニウムが挙げられる。
When water is used in this method, a basic compound is used as a pH adjuster so that the pH of the liquid composition is 5 to 10 from the viewpoint of stability after long-term storage of the obtained liquid composition. May be.
Examples of the basic compound include ammonia, dimethylamine, diethylamine, diisopropylamine, diethanolamine, triethanolamine, tripropanolamine, triethylamine, triamylamine, pyridine and N-methylmorpholine.
In this case, a pH buffer may be further added to stabilize the pH of the liquid composition. Examples of the pH buffer include tris (hydroxymethyl) aminomethane, ethylenediaminetetraacetic acid, ammonium hydrogencarbonate, ammonium carbonate and ammonium acetate.
 本法において水を使用する場合、得られる液状の組成物は、さらにノニオン性の水溶性高分子を含んでいてもよい。この場合、得られる液状の組成物の分散安定性とレオロジー物性が一層向上しやすく、その造膜性が向上する傾向がある。その結果、本分散液から厚い成形物等をより形成しやすい。特に、水溶性高分子がノニオン性水酸基を有すれば、かかる傾向が顕著になるだけでなく、得られる成形物も向上しやすい。特に、水溶性高分子がノニオン性水酸基を有すれば、かかる傾向が顕著になるだけでなく、得られる成形物も向上しやすい。
 ノニオン性の水溶性高分子としては、ポリビニルアルコール系高分子、ポリビニルピロリドン系高分子および多糖類が好ましい。
When water is used in this method, the resulting liquid composition may further contain a nonionic water-soluble polymer. In this case, the dispersion stability and rheological characteristics of the obtained liquid composition tend to be further improved, and the film-forming property tends to be improved. As a result, it is easier to form a thick molded product or the like from the present dispersion. In particular, if the water-soluble polymer has a nonionic hydroxyl group, not only this tendency becomes remarkable, but also the obtained molded product is likely to be improved. In particular, if the water-soluble polymer has a nonionic hydroxyl group, not only this tendency becomes remarkable, but also the obtained molded product is likely to be improved.
As the nonionic water-soluble polymer, a polyvinyl alcohol-based polymer, a polyvinylpyrrolidone-based polymer, and a polysaccharide are preferable.
 ポリビニルアルコール系高分子は、部分的にアセチル化または部分的にアセタール化されたポリビニルアルコールであってもよい。
 多糖類としては、グリコーゲン類、アミクロペクチン類、デキストリン類、グルカン類、フルクタン類、キチン類、アミロース類、アガロース類、アミクロペクチン類、セルロース類が挙げられる。セルロース類としては、メチルセルロース、エチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロースが挙げられる。
The polyvinyl alcohol-based polymer may be a partially acetylated or partially acetalized polyvinyl alcohol.
Examples of the polysaccharide include glycogens, amicropectins, dextrins, glucans, fructans, chitins, amyloses, agaroses, amicropectins, and celluloses. Examples of celluloses include methyl cellulose, ethyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose and hydroxypropyl cellulose.
 ノニオン性の水溶性高分子としては、ノニオン性の多糖類がより好ましく、ノニオン性のセルロース類が特に好ましい。ノニオン性のセルロース類としては、ヒドロキシメチルセルロース、ヒドロキシエチルセルロースおよびヒドロキシプロピルセルロースが好ましい。
 かかるノニオン性の多糖類の具体例としては、「サンローズ(登録商標)」シリーズ(日本製紙社製)、「メトローズ(登録商標)」シリーズ(信越化学工業社製)、「HEC CFグレード」(住友精化社製)が挙げられる。
As the nonionic water-soluble polymer, nonionic polysaccharides are more preferable, and nonionic celluloses are particularly preferable. As the nonionic celluloses, hydroxymethyl cellulose, hydroxyethyl cellulose and hydroxypropyl cellulose are preferable.
Specific examples of such nonionic polysaccharides include "Sunrose (registered trademark)" series (manufactured by Nippon Paper Industries), "Metroise (registered trademark)" series (manufactured by Shin-Etsu Chemical Co., Ltd.), and "HEC CF grade" (manufactured by Shin-Etsu Chemical Co., Ltd.). Sumitomo Seika Co., Ltd.).
 本法により得られる液状の組成物がノニオン性の水溶性高分子を含む場合、その量は液状の組成物全体の質量に対して、0.01質量%以上が好ましく、0.1質量%以上がより好ましい。また、前記量は、5質量%以下が好ましい。液状の組成物における本粒子(1)と本粒子(2)の合計質量に対する、前記水溶性高分子の質量の比は、0.01以上が好ましい。また、前比は0.1以下が好ましい。 When the liquid composition obtained by this method contains a nonionic water-soluble polymer, the amount thereof is preferably 0.01% by mass or more, preferably 0.1% by mass or more, based on the total mass of the liquid composition. Is more preferable. The amount is preferably 5% by mass or less. The ratio of the mass of the water-soluble polymer to the total mass of the particles (1) and the particles (2) in the liquid composition is preferably 0.01 or more. Further, the previous ratio is preferably 0.1 or less.
 本法では本粒子(1)、本粒子(2)、本無機粒子および前記第三成分以外の成分を使用してもよい。他の成分としては、有機粒子、有機顔料、金属せっけん、潤滑剤、有機モノマー、重合度50以下の有機オリゴマー等の有機物、チキソ性付与剤、粘度調節剤、消泡剤、シランカップリング剤、脱水剤、可塑剤、耐候剤、酸化防止剤、熱安定剤、滑剤、帯電防止剤、増白剤、着色剤、導電剤、離型剤、表面処理剤、難燃剤等が挙げられる。 In this method, the particles (1), the particles (2), the inorganic particles, and components other than the third component may be used. Other components include organic particles, organic pigments, metal soaps, lubricants, organic monomers, organic substances such as organic oligomers having a degree of polymerization of 50 or less, thioxogenic agents, viscosity modifiers, defoaming agents, silane coupling agents, and the like. Examples thereof include dehydrating agents, plasticizing agents, weather resistant agents, antioxidants, heat stabilizers, lubricants, antistatic agents, whitening agents, colorants, conductive agents, mold release agents, surface treatment agents, flame retardant agents and the like.
 本発明の組成物(以下、「本組成物」とも記す。)は、本粒子(1)、本粒子(2)および本無機粒子を含有し、本無機粒子の平均粒径が本粒子(1)の平均粒径の1~1000%の範囲にあり、本無機粒子の含有量が、本粒子(1)と本粒子(2)と本無機粒子との合計質量に対して5~75質量%である、組成物である。本組成物は、前記本法で製造された組成物であることが好ましい。
 本粒子(1)、本粒子(2)および本無機粒子の種類、平均粒径については前記のとおりである。
 ただし本組成物において、本無機粒子の平均粒径は本粒子(1)の平均粒径の1~1000%の範囲であり、好ましくは5~300%の範囲にあり、より好ましくは10~100%の範囲にある。
 より好適な具体的な態様としては、本粒子(1)のD50が0.1~20μmであり、本無機粒子のD50が0.01~20μmであり、かつ、本無機粒子の平均粒径が本粒子(1)の平均粒径の20~100%の範囲である態様が挙げられる。
The composition of the present invention (hereinafter, also referred to as “the present composition”) contains the present particles (1), the present particles (2) and the present inorganic particles, and the average particle size of the present inorganic particles is the present particles (1). ) Is in the range of 1 to 1000% of the average particle size, and the content of the inorganic particles is 5 to 75% by mass with respect to the total mass of the particles (1), the particles (2) and the inorganic particles. Is a composition. The present composition is preferably the composition produced by the present method.
The types and average particle diameters of the particles (1), the particles (2) and the inorganic particles are as described above.
However, in the present composition, the average particle size of the present inorganic particles is in the range of 1 to 1000%, preferably 5 to 300%, and more preferably 10 to 100% of the average particle size of the present particles (1). It is in the range of%.
As a more preferable specific embodiment, the D50 of the particles (1) is 0.1 to 20 μm, the D50 of the inorganic particles is 0.01 to 20 μm, and the average particle size of the inorganic particles is 0.01 to 20 μm. Examples thereof include an embodiment in which the average particle size of the particles (1) is in the range of 20 to 100%.
 本組成物中の本粒子(1)の含有量は、本粒子(1)と本粒子(2)と本無機粒子との合計質量に対して、5質量%以上が好ましく、10質量%以上がより好ましい。本粒子(1)の含有量は、60質量%以下が好ましく、30質量%以下がより好ましい。
 本組成物中の本粒子(2)の含有量は、本粒子(1)と本粒子(2)と本無機粒子との合計質量に対して、5質量%以上が好ましく、10質量%以上がより好ましい。本粒子(2)の含有量は、60質量%以下が好ましく、30質量%以下がより好ましい。
The content of the particles (1) in the composition is preferably 5% by mass or more, preferably 10% by mass or more, based on the total mass of the particles (1), the particles (2) and the inorganic particles. More preferred. The content of the particles (1) is preferably 60% by mass or less, more preferably 30% by mass or less.
The content of the particles (2) in the composition is preferably 5% by mass or more, preferably 10% by mass or more, based on the total mass of the particles (1), the particles (2) and the inorganic particles. More preferred. The content of the particles (2) is preferably 60% by mass or less, more preferably 30% by mass or less.
 また、本組成物中のFポリマー(2)の含有量は、Fポリマー(1)とFポリマー(2)の合計質量に対して、25質量%以上が好ましく、50質量%以上がより好ましい。本組成物中のFポリマー(2)の含有量は、Fポリマー(1)とFポリマー(2)の合計質量に対して、90質量%以下が好ましく、80質量%以下がより好ましい。
 本組成物中の本無機粒子の含有量は、本粒子(1)と本粒子(2)と本無機粒子の合計質量に対して、40質量%以上が好ましく、また70質量%以下が好ましい。
The content of the F polymer (2) in the present composition is preferably 25% by mass or more, more preferably 50% by mass or more, based on the total mass of the F polymer (1) and the F polymer (2). The content of the F polymer (2) in the present composition is preferably 90% by mass or less, more preferably 80% by mass or less, based on the total mass of the F polymer (1) and the F polymer (2).
The content of the inorganic particles in the composition is preferably 40% by mass or more, and preferably 70% by mass or less, based on the total mass of the particles (1), the particles (2), and the inorganic particles.
 本組成物が水等の液状媒体を含む場合、液状の本組成物(以下、「本液状組成物」とも記す。)中の液状媒体以外の成分(以下、「固形分」と記す。)は、上記本粒子(1)、本粒子(2)と本無機粒子を含有する。なお、本液状組成物中の固形分には、上記本粒子(1)、本粒子(2)および本無機粒子以外の本液状組成物中の他の成分も含まれる。本液状組成物から厚い成形物が得られやすいとの観点から、本液状組成物における固形分濃度は20質量%以上が好ましく、40質量%がより好ましい。また本液状組成物の分散性の観点から、固形分濃度は80質量%以下が好ましく、60質量%以下がより好ましい。固形分には上記本粒子(1)、本粒子(2)と本無機粒子以外の成分を含んでもよく、固形分中の上記本粒子(1)、本粒子(2)と本無機粒子の合計量は、固形分の全質量に対して、80質量%以上が好ましく、90質量%以上がより好ましい。 When the present composition contains a liquid medium such as water, the components other than the liquid medium (hereinafter, referred to as "solid content") in the liquid present composition (hereinafter, also referred to as "the present liquid composition") , The present particles (1), the present particles (2) and the present inorganic particles are contained. The solid content in the liquid composition also includes the particles (1), the particles (2), and other components in the liquid composition other than the inorganic particles. From the viewpoint that a thick molded product can be easily obtained from the present liquid composition, the solid content concentration in the present liquid composition is preferably 20% by mass or more, more preferably 40% by mass. Further, from the viewpoint of dispersibility of the liquid composition, the solid content concentration is preferably 80% by mass or less, more preferably 60% by mass or less. The solid content may contain components other than the main particles (1), the main particles (2) and the main inorganic particles, and the total of the main particles (1), the main particles (2) and the main inorganic particles in the solid content. The amount is preferably 80% by mass or more, more preferably 90% by mass or more, based on the total mass of the solid content.
 本液状組成物中の他の成分の具体例としては、上述した第三成分が挙げられ、より好適な具体例としては、上述した理由により、芳香族ポリイミドが挙げられ、特に、芳香族ポリイミド前駆体および芳香族ポリアミドイミド前駆体が好ましい。 Specific examples of other components in the present liquid composition include the above-mentioned third component, and more preferable specific examples include aromatic polyimides for the above-mentioned reasons, and in particular, aromatic polyimide precursors. Body and aromatic polyamide-imide precursors are preferred.
 本液状組成物の粘度は、50mPa・s以上が好ましく、75mPa・s以上がより好ましく、100mPa・s以上がさらに好ましい。本液状組成物の粘度は、10000mPa・s未満が好ましく、5000mPa・s以下がより好ましく、1000mPa・s以下がさらに好ましい。かかる粘度を有する本液状組成物は塗工性と均質性に優れる。
 また、本液状組成物のチキソ比は、1.0から2.2が好ましい。かかるチキソ比を有する本液状組成物は塗工性と均質性に優れる。なお、チキソ比は、回転数が30rpmの条件で測定される本液状組成物の粘度を、回転数が60rpmの条件で測定される本液状組成物の粘度で除して算出される。
 本液状組成物から得られる成形物の成分分布の均一性の低下や空隙の抑制の観点から、本液状組成物中の泡沫体積比率は、10%未満が好ましく、5%未満がより好ましい。泡沫体積比率は、0%以上が好ましい。
 なお、泡沫体積比率は、標準大気圧かつ20℃における本液状組成物の体積(V)と、それを0.003MPaまで減圧した際の泡を合わせた体積(V)とを測定し、以下の算出式で求められる値である。
 泡沫体積比率[%]=100×(V-V)/Vである。
The viscosity of the liquid composition is preferably 50 mPa · s or more, more preferably 75 mPa · s or more, and even more preferably 100 mPa · s or more. The viscosity of the liquid composition is preferably less than 10,000 mPa · s, more preferably 5000 mPa · s or less, and even more preferably 1000 mPa · s or less. The present liquid composition having such a viscosity is excellent in coatability and homogeneity.
The thixotropy of the present liquid composition is preferably 1.0 to 2.2. This liquid composition having such a thixotropic ratio is excellent in coatability and homogeneity. The thixotropic ratio is calculated by dividing the viscosity of the present liquid composition measured under the condition of a rotation speed of 30 rpm by the viscosity of the present liquid composition measured under the condition of a rotation speed of 60 rpm.
From the viewpoint of reducing the uniformity of the component distribution of the molded product obtained from the present liquid composition and suppressing the voids, the foam volume ratio in the present liquid composition is preferably less than 10%, more preferably less than 5%. The foam volume ratio is preferably 0% or more.
The foam volume ratio was measured by measuring the volume ( VN ) of the present liquid composition at standard atmospheric pressure and 20 ° C. and the combined volume ( VV ) of the foam when the pressure was reduced to 0.003 MPa. It is a value obtained by the following formula.
Foam volume ratio [%] = 100 × ( VV VN) / VN .
 本液状組成物は長期の保管安定性に優れるのが好ましく、長期保管後の分散率が60%以上であるのが好ましい。
 「長期保管後の分散率」とは、20mLの本液状組成物を内容積30mLのバイアルに入れ、25℃にて30日間密閉保管した際、密閉保管後の、バイアル中の本液状組成物全体の高さと分散層の高さとから、以下の式により算出される値である。なお、密閉保管後に分散層が確認されず、状態に変化がない場合には、本液状組成物全体の高さに変化がないとして、分散率は100%とする。分散率が大きいほど分散安定性に優れる。
 分散率(%)=(分散層の高さ)/(本液状組成物全体の高さ)×100
The present liquid composition preferably has excellent long-term storage stability, and preferably has a dispersion ratio of 60% or more after long-term storage.
"Dispersion rate after long-term storage" means that when 20 mL of this liquid composition is placed in a vial with an internal volume of 30 mL and stored in a closed manner at 25 ° C for 30 days, the entire main liquid composition in the vial after sealed storage is used. It is a value calculated by the following formula from the height of the dispersion layer and the height of the dispersed layer. If the dispersed layer is not confirmed after the sealed storage and the state does not change, the height of the entire liquid composition does not change, and the dispersion rate is 100%. The larger the dispersion rate, the better the dispersion stability.
Dispersion rate (%) = (height of dispersion layer) / (height of the entire liquid composition) × 100
 本組成物および本液状組成物は前記本法で得ることができる。本法において本粒子(1)、本粒子(2)および本無機粒子、および必要に応じて水等の液状媒体を所定量使用することで、前記本組成物および本液状組成物を得ることができる。
 また前記第三成分または前記他の成分を本法で適宜使用することで、これら成分を含む本組成物および本液状組成物を得ることができる。
The present composition and the present liquid composition can be obtained by the above-mentioned method. In this method, the present composition and the present liquid composition can be obtained by using the present particles (1), the present particles (2) and the present inorganic particles, and, if necessary, a predetermined amount of a liquid medium such as water. can.
Further, by appropriately using the third component or the other component in this method, the present composition and the present liquid composition containing these components can be obtained.
 本組成物が水等の液状媒体を含まない場合、本組成物は、粉体状である。粉体状の本組成物は、粉体塗料等として塗膜形成に用いることができる。また、粉体状の本組成物を必要に応じて前記第三成分や前記他の成分とともに溶融混練して、得られる溶融混練物を成形材料として使用することもできる。さらに、粉体状の本組成物は、溶融押出成形により、ペレット状、粒状等の成形材料とすることもできる。
 粉体状の本組成物やそれから得られる上記成形材料を溶融成形すれば、前記Fポリマー(1)、Fポリマー(2)および本無機粒子を含む、フィルム等の成形物が得られる。溶融成形としては、押出成形または射出成形が挙げられ、押出成形が好ましい。押出成形は単軸スクリュー押出機、多軸スクリュー押出機等を用いて行うことができる。
When the composition does not contain a liquid medium such as water, the composition is in the form of powder. This powdery composition can be used for forming a coating film as a powder coating material or the like. Further, the powdery present composition can be melt-kneaded together with the third component and the other components, if necessary, and the obtained melt-kneaded product can be used as a molding material. Further, the powdery present composition can be made into a pellet-shaped or granular molding material by melt extrusion molding.
By melt-molding the powdery present composition and the molding material obtained from the same, a molded product such as a film containing the F polymer (1), the F polymer (2) and the present inorganic particles can be obtained. Examples of the melt molding include extrusion molding and injection molding, and extrusion molding is preferable. Extrusion molding can be performed using a single-screw screw extruder, a multi-screw screw extruder, or the like.
 本組成物からは、Fポリマー(1)、Fポリマー(2)および本無機粒子を含むポリマー層と、基材とを有する積層体を形成できる。本組成物が水等の液状媒体を含まない場合の積層体の製造方法としては、前記押出機として共押出機を用い、基材の原料とともに本組成物や本組成物から得られた成形材料を押出成形する方法、前記基材上に本組成物や本組成物から得られた成形材料を押出成形する方法、本組成物や本組成物から得られた成形材料の押出成形物と前記基材とを熱圧着する方法が挙げられる。基材としては、後述の本液状組成物から形成される積層体における基材と同様のものが挙げられる。また、上記ポリマー層の好適な態様として、後述するF層が挙げられる。 From the present composition, a laminate having a polymer layer containing the F polymer (1), the F polymer (2) and the present inorganic particles and a base material can be formed. When the composition does not contain a liquid medium such as water, a coextruder is used as the extruder, and the composition and the molding material obtained from the composition together with the raw material of the base material are used. A method of extruding the composition or a molding material obtained from the composition on the substrate, an extrusion molding of the composition or a molding material obtained from the composition, and the base thereof. An example is a method of heat-bonding to a material. Examples of the base material include the same base material as the base material in the laminate formed from the present liquid composition described later. Moreover, as a preferable embodiment of the said polymer layer, the F layer described later can be mentioned.
 本液状組成物の場合、本液状組成物を、基材の表面に塗布し、加熱して、Fポリマー(1)、Fポリマー(2)および本無機粒子とを含むポリマー層を形成すれば、基材とポリマー層とを有する積層体が製造できる。積層体の好適な態様としては、金属箔とその少なくとも一方の表面に形成されたポリマー層とを有する金属張積層体、樹脂フィルムとその少なくとも一方の表面に形成されたポリマー層とを有する多層フィルムが挙げられる。ポリマー層は後述するF層が好ましい。 In the case of the present liquid composition, if the present liquid composition is applied to the surface of the base material and heated to form a polymer layer containing the F polymer (1), the F polymer (2) and the present inorganic particles, the present liquid composition may be formed. A laminate having a base material and a polymer layer can be produced. Preferable embodiments of the laminate include a metal-clad laminate having a metal foil and a polymer layer formed on at least one surface thereof, and a multilayer film having a resin film and a polymer layer formed on at least one surface thereof. Can be mentioned. The polymer layer is preferably the F layer, which will be described later.
 金属張積層体における金属箔は、銅箔であるのが好ましい。かかる金属張積層体は、プリント基板材料として特に有用である。金属箔は、低粗化金属箔であってもよく、たとえば表面の十点平均粗さは0.01~0.1μmの金属箔であってもよい。
 多層フィルムにおける樹脂フィルムは、ポリイミドフィルムであるのが好ましい。かかる多層フィルムは、電線被覆材料、プリント基板材料として有用である。
The metal foil in the metal-clad laminate is preferably a copper foil. Such a metal-clad laminate is particularly useful as a printed circuit board material. The metal foil may be a low-roughened metal foil, and may be, for example, a metal foil having a surface average roughness of 0.01 to 0.1 μm.
The resin film in the multilayer film is preferably a polyimide film. Such a multilayer film is useful as an electric wire coating material and a printed circuit board material.
 上記積層体の製造においては、基材の表面の少なくとも片面にポリマー層が形成されればよく、基材の片面のみにポリマー層が形成されてもよく、基材の両面にポリマー層が形成されてもよい。基材の表面は、シランカップリング剤等により表面処理されていてもよい。本液状組成物の塗布に際しては、スプレー法、ロールコート法、スピンコート法、グラビアコート法、マイクログラビアコート法、グラビアオフセット法、ナイフコート法、キスコート法、バーコート法、ダイコート法、ファウンテンメイヤーバー法、スロットダイコート法の塗布方法を使用できる。 In the production of the above-mentioned laminate, the polymer layer may be formed on at least one side of the surface of the base material, the polymer layer may be formed on only one side of the base material, and the polymer layers are formed on both sides of the base material. You may. The surface of the base material may be surface-treated with a silane coupling agent or the like. When applying this liquid composition, spray method, roll coat method, spin coat method, gravure coat method, micro gravure coat method, gravure offset method, knife coat method, kiss coat method, bar coat method, die coat method, fountain Mayer bar. The coating method of the method and the slot die coating method can be used.
 ポリマー層は、加熱により水を除去した後に、さらに加熱によりポリマーを焼成して形成した層(以下、「F層」とも記す)が好ましい。水を除去する工程で空気を吹き付けるのが好ましい。 The polymer layer is preferably a layer formed by further heating the polymer after removing water by heating (hereinafter, also referred to as "F layer"). It is preferable to blow air in the process of removing water.
 水を除去後、基材をFポリマーが焼成する温度領域に加熱して形成するのが好ましく、例えば300~400℃の範囲でポリマーを焼成するのが好ましい。F層は、Fポリマー(1)またはFポリマー(2)の少なくともいずれかの焼成物を含むのが好ましい。
 F層は、上述のとおり本液状組成物の塗布、乾燥、焼成の工程を経て形成される。これら工程は1回でも2回以上でもよい。例えば、上記本液状組成物を塗布し、加熱により水を除去して塗膜を形成する。形成した塗膜の上にさらに上記本液状組成物を塗布して加熱により水等の液状媒体を除去し、さらに加熱によりポリマーを焼成して形成してもよい。平滑性に優れた厚い膜を得やすい観点から、本液状組成物の塗布、乾燥、焼成の工程を複数回行ってもよい。
After removing the water, it is preferable to heat the substrate to a temperature range in which the F polymer is fired, and it is preferable to fire the polymer in the range of, for example, 300 to 400 ° C. The F layer preferably contains a fired product of at least one of the F polymer (1) and the F polymer (2).
The F layer is formed through the steps of coating, drying, and firing of the present liquid composition as described above. These steps may be performed once or twice or more. For example, the above liquid composition is applied and water is removed by heating to form a coating film. The liquid composition may be further applied onto the formed coating film to remove a liquid medium such as water by heating, and the polymer may be further fired by heating to form the coating film. From the viewpoint of easily obtaining a thick film having excellent smoothness, the steps of applying, drying and firing the present liquid composition may be performed a plurality of times.
 F層の厚さは、0.1μm以上が好ましく、1μm以上がより好ましい。厚さの上限は、200μmである。この範囲において、耐クラック性に優れたF層を容易に形成できる。
 F層と基材層との剥離強度は、10N/cm以上が好ましく、15N/cm以上がより好ましい。上記剥離強度は、100N/cm以下が好ましい。本液状組成物を用いれば、F層におけるFポリマーの物性を損なわずに、かかる積層体を容易に形成できる。
 F層の空隙率は、5%以下が好ましく、4%以下がより好ましい。空隙率は、0.01%以上が好ましく、0.1%以上がより好ましい。なお、空隙率は、走査型電子顕微鏡(SEM)を用いて観察される成形物の断面におけるSEM写真から、画像処理にてF層の空隙部分を判定し、空隙部分が占める面積をF層の面積で除した割合(%)である。空隙部分が占める面積は空隙部分を円形と近似して求められる。
The thickness of the F layer is preferably 0.1 μm or more, and more preferably 1 μm or more. The upper limit of the thickness is 200 μm. In this range, the F layer having excellent crack resistance can be easily formed.
The peel strength between the F layer and the base material layer is preferably 10 N / cm or more, more preferably 15 N / cm or more. The peel strength is preferably 100 N / cm or less. By using this liquid composition, such a laminate can be easily formed without impairing the physical characteristics of the F polymer in the F layer.
The porosity of the F layer is preferably 5% or less, more preferably 4% or less. The porosity is preferably 0.01% or more, more preferably 0.1% or more. The void ratio is determined by image processing to determine the void portion of the F layer from the SEM photograph of the cross section of the molded product observed using a scanning electron microscope (SEM), and the area occupied by the void portion is the area occupied by the F layer. It is the ratio (%) divided by the area. The area occupied by the void portion is obtained by approximating the void portion to a circle.
 基材の材質としては、銅、ニッケル、アルミニウム、チタン、およびこれらの合金等の金属、ポリイミド、ポリアリレート、ポリスルホン、ポリアリルスルホン、ポリアミド、ポリエーテルアミド、ポリフェニレンスルフィド、ポリアリルエーテルケトン、ポリアミドイミド、液晶性ポリエステル、液晶性ポリエステルアミド等の耐熱性樹脂、ガラスが挙げられる。基材の形状としては、平面状、曲面状、凹凸状が挙げられ、さらに、箔状、板状、膜状、繊維状のいずれであってもよい。基材としては、金属箔等の金属基板、耐熱性樹脂フィルム、耐熱性樹脂シート、繊維強化樹脂基板、繊維強化樹脂基板の前駆体であるプリプレグシート、ガラスフィルム、ガラスシート等が挙げられる。
 積層体の具体例としては、金属箔と、その金属箔の少なくとも一方の表面にF層を有する金属張積層体、ポリイミドフィルムと、そのポリイミドフィルムの両方の表面にF層を有する多層フィルムが挙げられる。これらの積層体は、電気特性等の諸物性に優れており、プリント基板材料等として好適である。具体的には、かかる積層体は、フレキシブルプリント基板やリジッドプリント基板の製造に使用できる。
The material of the base material is copper, nickel, aluminum, titanium, metals such as alloys thereof, polyimide, polyarylate, polysulfone, polyallyl sulfone, polyamide, polyetheramide, polyphenylene sulfide, polyallyl ether ketone, polyamideimide. , Heat-resistant resin such as liquid crystal polyester and liquid crystal polyester amide, and glass. Examples of the shape of the base material include a planar shape, a curved surface shape, and an uneven shape, and may be any of a foil shape, a plate shape, a film shape, and a fibrous shape. Examples of the base material include a metal substrate such as a metal foil, a heat-resistant resin film, a heat-resistant resin sheet, a fiber-reinforced resin substrate, a prepreg sheet which is a precursor of the fiber-reinforced resin substrate, a glass film, and a glass sheet.
Specific examples of the laminate include a metal foil, a metal-clad laminate having an F layer on at least one surface of the metal foil, a polyimide film, and a multilayer film having an F layer on both surfaces of the polyimide film. Be done. These laminates are excellent in various physical properties such as electrical characteristics, and are suitable as a printed circuit board material or the like. Specifically, such a laminate can be used for manufacturing a flexible printed circuit board or a rigid printed circuit board.
 積層体の一態様としては、プリプレグ/F層/金属箔の積層体が挙げられる。基材としては、ガラスクロスに上記耐熱性樹脂またはテトラフルオロエチレン系ポリマーを含浸して得られる、ガラスクロスの表面にポリマー層を有するプリプレグが好ましい。ポリマー層は複数のポリマー層から形成されていてもよく、かかる場合、各ポリマー層は互いに異なるポリマーから形成されるのが好ましい。プリプレグと金属箔の間にF層を有すると、プリプレグと金属箔が剥離し難く好ましい。 One aspect of the laminated body is a laminated body of prepreg / F layer / metal foil. As the base material, a prepreg having a polymer layer on the surface of the glass cloth, which is obtained by impregnating the glass cloth with the heat-resistant resin or the tetrafluoroethylene-based polymer, is preferable. The polymer layer may be formed from a plurality of polymer layers, and in such cases, it is preferable that each polymer layer is formed from different polymers. It is preferable to have an F layer between the prepreg and the metal foil because the prepreg and the metal foil are not easily peeled off.
 かかる積層体は、プリント配線板の絶縁層、熱インターフェース材、パワーモジュール用基板、モーター等の動力装置で使用されるコイルに含浸し、乾燥して、熱伝導性耐熱被覆層を形成する用途や、車載エンジンにおける、セラミックス部品や金属部品同士を接着する用途、熱交換器や、それを構成するフィンまたは管に耐腐蝕性を付与する用途、ガラス容器内外をコーティングする用途にも使用できる。特に耐衝撃性を付与する為のコーティングに好適である。F層と基材との積層体は、アンテナ部品、プリント基板、航空機用部品、自動車用部品、スポーツ用具、食品工業用品、放熱部品、塗料、化粧品等として有用である。プリント基板においては、電子部品が高密度に実装されたプリント基板の温度上昇を防ぐため、従来のガラスエポキシ板に替わる新たなプリント基板材料としても使用できる。 Such a laminate is used for impregnating an insulating layer of a printed wiring board, a thermal interface material, a substrate for a power module, a coil used in a power device such as a motor, and drying to form a thermally conductive heat-resistant coating layer. It can also be used for bonding ceramic parts and metal parts to each other in an in-vehicle engine, for imparting corrosion resistance to the fins or tubes constituting the heat exchanger, and for coating the inside and outside of a glass container. It is particularly suitable for coating to impart impact resistance. The laminate of the F layer and the base material is useful as antenna parts, printed circuit boards, aircraft parts, automobile parts, sports equipment, food industry supplies, heat dissipation parts, paints, cosmetics and the like. In the printed circuit board, in order to prevent the temperature of the printed circuit board on which electronic components are mounted at high density, it can be used as a new printed circuit board material in place of the conventional glass epoxy board.
 具体的には、航空機用電線等の電線被覆材、電気自動車等のモーター等に使用されるエナメル線被覆材、電気絶縁性テープ、石油掘削用絶縁テープ、プリント基板用材料、精密濾過膜、限外濾過膜、逆浸透膜、イオン交換膜、透析膜および気体分離膜等の分離膜、リチウム二次電池用、燃料電池用等の電極バインダー、コピーロール、家具、自動車ダッシュボート、家電製品等のカバー、荷重軸受、すべり軸、バルブ、ベアリング、ブッシュ、シール、スラストワッシャ、ウェアリング、ピストン、スライドスイッチ、歯車、カム、ベルトコンベアおよび食品搬送用ベルト等の摺動部材、ウェアパッド、ウェアストリップ、チューブランプ、試験ソケット、ウェハーガイド、遠心ポンプの摩耗部品、炭化水素・薬品および水供給ポンプ、シャベル、やすり、きり、のこぎり等の工具、ボイラー、ホッパー、パイプ、オーブン、焼き型、シュート、ダイス、便器、コンテナ被覆材、パワーデバイス、トランジスタ、サイリスタ、整流器、トランス、パワーMOS FET、CPU、放熱フィン、金属放熱板として有用である。
 より具体的には、パソコンやディスプレーの筐体、電子デバイス材料、自動車の内外装等、低酸素下で加熱処理する加工機や真空オーブン、プラズマ処理装置などのシール材や、スパッタや各種ドライエッチング装置等の処理ユニット内の放熱部品として有用である。
Specifically, wire coating materials for aircraft electric wires, enamel wire coating materials used for motors for electric vehicles, etc., electrical insulating tapes, insulating tapes for oil drilling, materials for printed substrates, precision filtration membranes, limitations External filtration membranes, back-penetration membranes, ion exchange membranes, separation membranes such as dialysis membranes and gas separation membranes, electrode binders for lithium secondary batteries, fuel cells, copy rolls, furniture, automobile dashboards, home appliances, etc. Sliding members such as covers, load bearings, sliding shafts, valves, bearings, bushes, seals, thrust washers, wear rings, pistons, slide switches, gears, cams, belt conveyors and food transport belts, wear pads, wear strips, etc. Tools such as tube lamps, test sockets, wafer guides, worn parts of centrifugal pumps, hydrocarbons / chemicals and water supply pumps, shovels, shavings, cuttings, saws, boilers, hoppers, pipes, ovens, baking molds, chutes, dies, It is useful as a toilet bowl, container coating material, power device, transistor, thyristor, rectifier, transformer, power MOS FET, CPU, heat dissipation fin, and metal heat dissipation plate.
More specifically, sealing materials for processing machines, vacuum ovens, plasma processing equipment, etc. that heat-treat under low oxygen, such as housings for personal computers and displays, electronic device materials, interior and exterior of automobiles, spattering and various dry etching. It is useful as a heat dissipation component in a processing unit such as a device.
 本液状組成物を、織布に含浸させ、加熱により乾燥させれば、Fポリマーと本無機粒子が織布に含浸された含浸織布が得られる。含浸織布は、織布がF層で被覆された被覆織布とも言える。織布は、ガラス繊維織布、カーボン繊維織布、アラミド繊維織布または金属繊維織布が好ましく、ガラス繊維織布またはカーボン繊維織布がより好ましい。織布は、F層との密着接着性を高める観点から、シランカップリング剤で処理されていてもよい。本織布における、Fポリマーの総含有量は、30~80質量%が好ましい。本液状組成物を織布に含浸させる方法は、本液状組成物に織布を浸漬する方法、本液状組成物を織布に塗布する方法が挙げられる。 When the woven fabric is impregnated with the liquid composition and dried by heating, an impregnated woven fabric in which the F polymer and the inorganic particles are impregnated in the woven fabric can be obtained. The impregnated woven fabric can also be said to be a coated woven fabric in which the woven fabric is covered with an F layer. The woven fabric is preferably a glass fiber woven fabric, a carbon fiber woven fabric, an aramid fiber woven fabric or a metal fiber woven fabric, and more preferably a glass fiber woven fabric or a carbon fiber woven fabric. The woven fabric may be treated with a silane coupling agent from the viewpoint of enhancing the adhesiveness with the F layer. The total content of the F polymer in the main woven fabric is preferably 30 to 80% by mass. Examples of the method of impregnating the woven fabric with the present liquid composition include a method of immersing the woven fabric in the present liquid composition and a method of applying the present liquid composition to the woven fabric.
 織布の乾燥に際しては、Fポリマーを焼成させてもよい。Fポリマーを焼成させる方法は、織布を300~400℃の雰囲気にある通風乾燥炉に通す方法が挙げられる。なお、織布の乾燥とFポリマーの焼成とは、一段階で実施してもよい。本織布は、F層と織布との密着性(接着性)が高い、表面の平滑性が高い、歪がすくない等の特性に優れている。かかる本織布と金属箔とを熱圧着させれば、剥離強度が高く、反りにくい金属張積層体が得られ、プリント基板材料として好適に使用できる。 When the woven fabric is dried, the F polymer may be fired. Examples of the method of firing the F polymer include a method of passing the woven fabric through a ventilation drying oven in an atmosphere of 300 to 400 ° C. The drying of the woven fabric and the firing of the F polymer may be carried out in one step. This woven fabric has excellent characteristics such as high adhesion (adhesiveness) between the F layer and the woven fabric, high surface smoothness, and low distortion. By thermocompression bonding the main woven fabric and the metal foil, a metal-clad laminate having high peel strength and resistance to warping can be obtained, which can be suitably used as a printed circuit board material.
 また、本織布の製造において、本液状組成物を含浸させた織布を、基材の表面に塗布し、加熱させ乾燥させることにより、Fポリマーと本無機粒子と織布とを含む含浸織布層を形成して、基材と含浸織布層とが、この順に積層された積層体を製造してもよい。その態様も、特に限定されず、槽、配管、容器等の部材の内壁面の一部または全部に本液状組成物を含浸させた織布を塗布し、上記部材を回転させながら加熱すれば、部材の内壁面の一部または全部に含浸織布層を形成できる。この製造方法は、槽、配管、容器等の部材の内壁面のライニング方法としても有用である。 Further, in the production of the main woven fabric, the woven fabric impregnated with the present liquid composition is applied to the surface of the base material, heated and dried, whereby the impregnated woven fabric containing the F polymer, the present inorganic particles and the woven fabric is contained. A fabric layer may be formed to produce a laminated body in which the base material and the impregnated woven fabric layer are laminated in this order. The embodiment is also not particularly limited, and if a woven fabric impregnated with the present liquid composition is applied to a part or all of the inner wall surface of a member such as a tank, a pipe, or a container, and the member is heated while rotating. An impregnated woven fabric layer can be formed on a part or all of the inner wall surface of the member. This manufacturing method is also useful as a method for lining the inner wall surface of members such as tanks, pipes, and containers.
 本液状組成物は分散安定性に優れており、多孔質または繊維状の材料中に、効率的に含浸できる。かかる多孔質または繊維状の材料としては、上述した織布以外の材料、具体的には、板状、柱状または繊維状の材料も挙げられる。これらの材料は、硬化性樹脂、シランカップリング剤等で予め前処理されていてもよく、無機酸化物粒子等がさらに充填されていてもよい。また、これらの材料は、撚り合わせて、糸、ケーブル、ワイヤーを形成していてもよい。撚り合わせに際しては、ポリエチレン等の他のポリマーからなる介在層を配置してもよい。かかる材料に本液状組成物を含浸させて成形物を製造する態様としては、硬化性樹脂またはその硬化物が担持された繊維状の材料に本液状組成物を含浸させる態様が挙げられ This liquid composition has excellent dispersion stability and can be efficiently impregnated into a porous or fibrous material. Examples of such porous or fibrous materials include materials other than the above-mentioned woven fabrics, specifically, plate-shaped, columnar or fibrous materials. These materials may be pretreated with a curable resin, a silane coupling agent, or the like, or may be further filled with inorganic oxide particles or the like. In addition, these materials may be twisted together to form a thread, a cable, or a wire. At the time of twisting, an intervening layer made of another polymer such as polyethylene may be arranged. As an embodiment of impregnating such a material with the present liquid composition to produce a molded product, there is an embodiment of impregnating the fibrous material on which the curable resin or the cured product thereof is carried with the present liquid composition.
 繊維状の材料としては、炭素繊維、アラミド繊維、炭化珪素繊維等の高強度かつ低伸度の繊維が挙げられる。硬化性樹脂としては、エポキシ樹脂、不飽和ポリエステル樹脂、熱硬化性ポリウレタン樹脂等の熱硬化性樹脂が好ましい。かかる態様の具体例としては、熱硬化性樹脂が担持された炭素繊維を撚り合わせたケーブルに本液状組成物を含浸させ、さらに加熱してFポリマーを焼成させて形成される複合ケーブルが挙げられる。かかる複合ケーブルは、大型構造物用、グラウンドアンカー用、石油掘削用、クレーン用、索道用、エレベーター用、農林水産用、玉掛索用のケーブルとして有用である。 Examples of the fibrous material include high-strength and low-elongation fibers such as carbon fiber, aramid fiber, and silicon carbide fiber. As the curable resin, a thermosetting resin such as an epoxy resin, an unsaturated polyester resin, or a thermosetting polyurethane resin is preferable. Specific examples of such an embodiment include a composite cable formed by impregnating a cable made by twisting carbon fibers carrying a thermosetting resin with the present liquid composition and further heating the cable to bake the F polymer. .. Such a composite cable is useful as a cable for large structures, ground anchors, oil drilling, cranes, cableways, elevators, agriculture, forestry and fisheries, and slinging cables.
 前記積層体の好ましい一態様としては、金属箔と、前記金属箔の少なくともいずれか一方の表面に形成された前記ポリマー層とを有する金属張積層体であって、前記ポリマー層が、Fポリマー(1)、ポリテトラフルオロエチレンおよび本無機粒子を含有し、本無機粒子の含有量がFポリマー(1)とポリテトラフルオロエチレンと本無機粒子との合計質量(以下、「総質量」と記す。)に対して5~75質量%である、金属張積層体(以下、「本積層体」とも記す。)が挙げられる。
 かかる本積層体は、Fポリマー(1)の含有により、ポリマー層と金属箔との密着性が高くなるばかりでなく、ポリマー層中のポリテトラフルオロエチレンと本無機粒子の均一性が高くなる傾向にあり、電気特性と反りにくさや柔軟性等機の械的物性を具備しており、プリント基板材料として有用である。
A preferred embodiment of the laminate is a metal-clad laminate having a metal foil and the polymer layer formed on the surface of at least one of the metal foils, wherein the polymer layer is an F polymer ( 1), contains polytetrafluoroethylene and the present inorganic particles, and the content of the present inorganic particles is the total mass of the F polymer (1), polytetrafluoroethylene and the present inorganic particles (hereinafter, referred to as “total mass”. ), Which is 5 to 75% by mass, may be a metal-clad laminate (hereinafter, also referred to as “main laminate”).
In such a laminated body, the inclusion of the F polymer (1) not only enhances the adhesion between the polymer layer and the metal foil, but also tends to increase the uniformity between the polytetrafluoroethylene and the present inorganic particles in the polymer layer. It is useful as a printed circuit board material because it has electrical characteristics and mechanical properties such as warpage resistance and flexibility.
 この傾向は、Fポリマー(1)、ポリテトラフルオロエチレンおよび本無機粒子それぞれの含有量の関係が下記に示す範囲にある場合に、より向上しやすい。
 すなわち前記ポリマー層中のFポリマー(1)の含有量は、総質量に対して、10質量%以上がより好ましい。Fポリマー(1)の含有量は、30質量%以下がより好ましく、20質量%以下が特に好ましい。
This tendency is more likely to be improved when the relationship between the contents of the F polymer (1), the polytetrafluoroethylene and the inorganic particles is in the range shown below.
That is, the content of the F polymer (1) in the polymer layer is more preferably 10% by mass or more with respect to the total mass. The content of the F polymer (1) is more preferably 30% by mass or less, and particularly preferably 20% by mass or less.
 ポリマー層中のポリテトラフルオロエチレンの含有量は、上記総質量に対して、5質量%以上が好ましく、10質量%以上がより好ましい。ポリテトラフルオロエチレンの含有量は、60質量%以下が好ましく、30質量%以下がより好ましい。
 ポリマー層中の本無機粒子の含有量は、上記総質量に対して、5質量%以上が好ましく、40質量%以上がより好ましい。本無機粒子の含有量は、80質量%以下が好ましく、70質量%以下がより好ましい。
The content of polytetrafluoroethylene in the polymer layer is preferably 5% by mass or more, more preferably 10% by mass or more, based on the total mass. The content of polytetrafluoroethylene is preferably 60% by mass or less, more preferably 30% by mass or less.
The content of the present inorganic particles in the polymer layer is preferably 5% by mass or more, more preferably 40% by mass or more, based on the total mass. The content of the inorganic particles is preferably 80% by mass or less, more preferably 70% by mass or less.
 またポリマー層中のFポリマー(1)とポリテトラフルオロエチレンの合計質量に対して、ポリマー層中のポリテトラフルオロエチレンの質量は50質量%以上が好ましく、50質量%超がより好ましい。ポリマー層中のFポリマー(1)とポリテトラフルオロエチレンの合計質量に対して、ポリマー層中のポリテトラフルオロエチレンの質量は90質量%以下が好ましく、80質量%以下がより好ましい。 Further, the mass of polytetrafluoroethylene in the polymer layer is preferably 50% by mass or more, more preferably more than 50% by mass, with respect to the total mass of F polymer (1) and polytetrafluoroethylene in the polymer layer. The mass of polytetrafluoroethylene in the polymer layer is preferably 90% by mass or less, more preferably 80% by mass or less, based on the total mass of the F polymer (1) and polytetrafluoroethylene in the polymer layer.
 本積層体中のポリマー層の厚さは50μm以上が好ましく、100μm以上がより好ましい。上記厚さの上限は1000μmである。上述した傾向により、かかる厚いポリマー層を有する金属張積層体は、本無機粒子の含有により反りにくいため、特にリジットプリント基板材料として有用である。 The thickness of the polymer layer in the present laminate is preferably 50 μm or more, more preferably 100 μm or more. The upper limit of the thickness is 1000 μm. Due to the above-mentioned tendency, the metal-clad laminate having such a thick polymer layer is particularly useful as a rigid printed circuit board material because it is less likely to warp due to the inclusion of the present inorganic particles.
 本積層体中のポリマー層は、さらに芳香族ポリマーを含有するのが好ましく、芳香族ポリアミドまたは芳香族ポリイミドアミドを含有するのがより好ましい。この場合、芳香族ポリマーによるバインダー効果によって、成分間の緻密性と、金属箔とポリマー層の密着性とが高まり、ポリマー層からの成分の粉落ちと本積層体の反りが一層抑制されやすい。さらに、芳香族ポリマーによる紫外線吸収能によってポリマー層のUV吸収性が向上し、本積層体のUVレーザー加工性が高まりやすい。そのため、かかる本積層体は、厚いポリマー層を有するリジットプリント基板として、特に有用である。 The polymer layer in the present laminate preferably further contains an aromatic polymer, and more preferably contains an aromatic polyamide or an aromatic polyimide amide. In this case, the binder effect of the aromatic polymer enhances the denseness between the components and the adhesion between the metal foil and the polymer layer, and the powder falling of the components from the polymer layer and the warpage of the present laminate are more likely to be suppressed. Further, the UV absorption ability of the aromatic polymer improves the UV absorbability of the polymer layer, and the UV laser processability of the present laminate is likely to be improved. Therefore, this laminate is particularly useful as a rigid printed circuit board having a thick polymer layer.
 また、本組成物を用いて前記のとおり押出成形後、延伸処理して延伸シートを形成してもよいし、前記本積層体の金属箔を除去して得られるポリマー層を延伸処理に供して延伸シートを形成してもよい。かかる延伸シートは、Fポリマー(2)がポリテトラフルオロエチレンである場合の本組成物をシート状に成形し、さらに延伸処理して形成してもよい。かかる延伸シートは、Fポリマー(1)の作用により、本無機粒子が強固に担持された、延伸ポリテトラフルオロエチレンの多孔質性、機械的強度等の物性を備えたシートである。かかる延伸シートも接着性が高く線膨張率が低い、電気特性に優れたプリント基板材料として有用である。 Further, the composition may be extruded as described above and then stretched to form a stretched sheet, or the polymer layer obtained by removing the metal leaf of the laminated body may be subjected to the stretching treatment. A stretched sheet may be formed. Such a stretched sheet may be formed by molding the present composition in the case where the F polymer (2) is polytetrafluoroethylene into a sheet shape and further stretching treatment. Such a stretched sheet is a sheet having physical properties such as porosity and mechanical strength of stretched polytetrafluoroethylene on which the present inorganic particles are firmly supported by the action of the F polymer (1). Such a stretched sheet is also useful as a printed circuit board material having high adhesiveness and a low coefficient of linear expansion and excellent electrical characteristics.
 かかる延伸シートの好ましい一態様としては、Fポリマー(1)、ポリテトラフルオロエチレンおよび本無機粒子を含有し、本無機粒子の含有量がFポリマー(1)とリテトラフルオロエチレンと本無機粒子との合計質量に対して5~75質量%である、延伸処理された延伸シート(以下、「本延伸シート」とも記す。)が挙げられる。
 本延伸シートにおけるFポリマー(1)、ポリテトラフルオロエチレンおよび本無機粒子それぞれの含有量の関係は、本積層体におけるそれぞれの含有量の関係と同様である。
 また、延伸における装置としては二軸延伸装置が挙げられ、延伸条件としては5~1000%/秒の速度にて延伸倍率を200%以上とする条件が挙げられる。
In a preferred embodiment of the stretched sheet, the F polymer (1), polytetrafluoroethylene and the present inorganic particles are contained, and the content of the present inorganic particles is the F polymer (1), the lithotetrafluoroethylene and the present inorganic particles. Examples thereof include a stretched sheet (hereinafter, also referred to as “main stretched sheet”) which has been stretched and is 5 to 75% by mass with respect to the total mass of the above.
The relationship between the contents of the F polymer (1), the polytetrafluoroethylene and the inorganic particles in the stretched sheet is the same as the relationship between the contents in the laminated body.
Further, as a device for stretching, a biaxial stretching device can be mentioned, and as a stretching condition, a condition that the stretching ratio is 200% or more at a speed of 5 to 1000% / sec can be mentioned.
 上述のとおり本法によればFポリマーの粒子および本無機粒子を含有し、安定性および分散性に優れた組成物の製造方法および該組成物が提供される。また電気特性と反りにくさや柔軟性等機の械的物性を具備した、プリント基板材料として有用である本組成物を有する本積層体および本延伸シートが提供される。 As described above, according to this method, a method for producing a composition containing F polymer particles and the present inorganic particles and having excellent stability and dispersibility and the composition are provided. Further provided are the present laminate and the present stretched sheet having the present composition useful as a printed circuit board material, which have electrical characteristics and mechanical properties such as warpage resistance and flexibility.
 以上、本法、本組成物、本積層体および本延伸シートについて説明したが、本発明は、上述した実施形態の構成に限定されない。
 例えば、本法は、上記実施形態の構成において、他の任意の工程を追加で有してもよいし、同様の作用を生じる任意の工程と置換されていてよい。また本組成物、本積層体および本延伸シートは上記実施形態の構成において、他の任意の構成を追加してもよいし、同様の機能を発揮する任意の構成と置換されていてよい。
Although the present method, the present composition, the present laminated body and the present stretched sheet have been described above, the present invention is not limited to the configuration of the above-described embodiment.
For example, this method may additionally have any other step in the configuration of the above embodiment, or may be replaced with any step that produces the same action. Further, the present composition, the present laminated body and the present stretched sheet may be added with any other configuration or may be replaced with any configuration exhibiting the same function in the configuration of the above embodiment.
 以下、実施例によって本発明を詳細に説明するが、本発明はこれらに限定されない。
1.各成分および各部材の準備
 [Fポリマー]
 粉体A:TFE単位、NAH単位およびPPVE単位を、この順に97.9モル%、0.1モル%、2.0モル%含み、カルボニル基含有基を主鎖炭素数1×10個あたり1000個有し、溶融温度が300℃のFポリマー(1)からなり、D50が2.1μmの粒子からなる粉体
 分散液B:非熱溶融性のPTFEのFポリマー(2)からなるD50が0.3μmのPTFE粒子が水に分散している水分散液であって、PTFE粒子を60質量%含む水分散液(AGC社製、「品番AD-911E」)
 粉体C:TFE単位およびPPVE単位を、この順に98.5モル%、1.5モル%含む、カルボニル基含有基を有さない、溶融温度が300℃のFポリマーからなり、D50が2.4μmの粒子からなる粉体
 [無機酸化物]
 粉体G:フェニルアミノシランで表面処理されている、D50が0.5μmの球状シリカからなる粉体
 [イミド系樹脂のワニス]
 ワニスA:芳香族ポリアミドイミドの前駆体(PAI。酸価:50mgKOH/g)を含む水ワニス
 [界面活性剤]
 界面活性剤A:主鎖にジメチルシロキサン単位を側鎖にオキシエチレン基を有するポリオキシアルキレン変性ポリジメチルシロキサン
 [水溶性高分子]
 水溶性高分子A:ノニオン性の多糖類であるヒドロキシエチルセルロース
 水溶性高分子B:アニオン性の多糖類であるカルボキシメチルセルロース
Hereinafter, the present invention will be described in detail by way of examples, but the present invention is not limited thereto.
1. 1. Preparation of each component and each member [F polymer]
Powder A: Contains 97.9 mol%, 0.1 mol%, and 2.0 mol% of TFE units, NAH units, and PPVE units in this order, and contains carbonyl group-containing groups per 1 × 10 6 main chain carbon atoms. A powder dispersion B consisting of 1000 particles having a melting temperature of 300 ° C. and having a D50 of 2.1 μm: a non-thermally meltable PTFE F polymer (2) D50. An aqueous dispersion in which 0.3 μm PTFE particles are dispersed in water, and an aqueous dispersion containing 60% by mass of PTFE particles (AGC, “Product No. AD-911E”).
Powder C: Consists of an F polymer containing 98.5 mol% and 1.5 mol% of TFE units and PPVE units in this order, having no carbonyl group-containing group, and having a melting temperature of 300 ° C., and D50 is 2. Powder consisting of 4 μm particles [Inorganic oxide]
Powder G: Powder of spherical silica with D50 of 0.5 μm, which is surface-treated with phenylaminosilane [varnish of imide-based resin]
Varnish A: Water varnish containing a precursor of aromatic polyamide-imide (PAI, acid value: 50 mgKOH / g) [surfactant]
Surfactant A: Polyoxyalkylene-modified polydimethylsiloxane having a dimethylsiloxane unit in the main chain and an oxyethylene group in the side chain [water-soluble polymer]
Water-soluble polymer A: Hydroxyethyl cellulose, which is a nonionic polysaccharide Water-soluble polymer B: Carboxymethyl cellulose, which is an anionic polysaccharide
2.液状組成物の製造例(その1)
(例1-1)
 粉体Aと粉体Gとをドライブレンドして混合物を得た。プラネタリーミキサーに、前記混合物と水と界面活性剤Aとを投入し、混練して、粉体Aの粒子(18.5質量部)、粉体Gの粒子(60質量部)、界面活性剤A(1質量部)、水(40質量部)を含む粘度が28000mPa・sの混合物を得た。
 ポットに、上記混合物を投入し、続いて分散液BおよびワニスAの混合物と水とを複数回に分けて添加して撹拌し、全体としてFポリマー(1)の粒子(18.5質量部)、PTFE粒子(20質量部)、球状シリカ粒子(60質量部)、PAI(1.5質量部)、界面活性剤(1質量部)、水(100質量部)を含む粘度が400mPa・sの液状組成物Pを得た。得られた液状組成物Pの長期保管後の分散率は60%以上であり、分散率測定後の再分散性も良好であった。
2. 2. Production Example of Liquid Composition (Part 1)
(Example 1-1)
Powder A and powder G were dry-blended to obtain a mixture. The mixture, water, and surfactant A are added to a planetary mixer and kneaded to form powder A particles (18.5 parts by mass), powder G particles (60 parts by mass), and a surfactant. A mixture containing A (1 part by mass) and water (40 parts by mass) and having a viscosity of 28,000 mPa · s was obtained.
The above mixture was put into a pot, and then the mixture of dispersion B and varnish A and water were added in a plurality of times and stirred, and the particles (18.5 parts by mass) of the F polymer (1) as a whole were added. , PTFE particles (20 parts by mass), spherical silica particles (60 parts by mass), PAI (1.5 parts by mass), surfactant (1 part by mass), water (100 parts by mass) with a viscosity of 400 mPa · s. A liquid composition P was obtained. The dispersion ratio of the obtained liquid composition P after long-term storage was 60% or more, and the redispersibility after the dispersion ratio measurement was also good.
(例1-2)
 粉体Aと粉体Gと水と界面活性剤Aとを個別にプラネタリーミキサーに投入する以外は、例1-1と同様にして、混合物を得て、それから液状組成物Qを調製した。液状組成物Qの粘度は600mPa・sであり、液状組成物Qの長期保管後の分散率は60%以上であったが、分散率測定後の再分散性が低下していた。
(Example 1-2)
A mixture was obtained in the same manner as in Example 1-1 except that the powder A, the powder G, the water and the surfactant A were individually added to the planetary mixer, and then the liquid composition Q was prepared. The viscosity of the liquid composition Q was 600 mPa · s, and the dispersion rate of the liquid composition Q after long-term storage was 60% or more, but the redispersibility after the dispersion rate measurement was deteriorated.
(例1-3)
 粉体Aを粉体Cに変更する以外は例1-1と同様にして液状組成物Rを得た。液状組成物Rの長期保管後の分散率は60%未満であった。また、分散率測定後に、液状組成物Rを再分散させるのは困難であった。
(Example 1-3)
A liquid composition R was obtained in the same manner as in Example 1-1 except that the powder A was changed to the powder C. The dispersion ratio of the liquid composition R after long-term storage was less than 60%. In addition, it was difficult to redisperse the liquid composition R after measuring the dispersion rate.
(例1-4)
 粉体A、分散液B、ワニスA、界面活性剤Aおよび水を混合して、Fポリマー(1)の粒子(18.5質量部)、PTFE粒子(20質量部)、PAI(1.5質量部)、界面活性剤(1質量部)および水(100質量部)を含む液状の混合物とした。この混合物に、粉体G(60質量部)を添加して液状組成物の調製を試みたが、その際、粉体Gの添加につれて組成物が増粘し、その分散安定性が低下して、全体として水(100質量部)を含む、粘度が1000mPa・s以下の液状組成物を直接形成できなかった。
(Example 1-4)
Powder A, dispersion B, varnish A, surfactant A and water are mixed to form F polymer (1) particles (18.5 parts by mass), PTFE particles (20 parts by mass), PAI (1.5 parts by mass). A liquid mixture containing (parts by mass), a surfactant (1 part by mass) and water (100 parts by mass). An attempt was made to prepare a liquid composition by adding powder G (60 parts by mass) to this mixture, but at that time, the composition thickened as the powder G was added, and its dispersion stability decreased. , A liquid composition having a viscosity of 1000 mPa · s or less, which contains water (100 parts by mass) as a whole, could not be directly formed.
3.積層体の製造例
 長尺の銅箔(厚さ:18μm)の表面に、バーコーターを用いて、前記例1-1で製造した液状組成物Pを塗布し、ウェット膜を形成した。次いで、このウェット膜が形成された銅箔を、110℃にて5分間、乾燥炉に通し、加熱により乾燥させて、ドライ膜を得た。その後、窒素ガス雰囲気のオーブン中で、ドライ膜を380℃にて3分間、加熱した。これにより、銅箔と、その表面にFポリマー(1)、PTFE、球状シリカ粒子およびPAIを含む、成形物としての厚さが100μmであるポリマー層を有する積層体1を製造した。
3. 3. Example of Production of Laminate A wet film was formed by applying the liquid composition P produced in Example 1-1 to the surface of a long copper foil (thickness: 18 μm) using a bar coater. Next, the copper foil on which the wet film was formed was passed through a drying oven at 110 ° C. for 5 minutes and dried by heating to obtain a dry film. Then, the dry membrane was heated at 380 ° C. for 3 minutes in an oven in a nitrogen gas atmosphere. As a result, a laminate 1 having a copper foil and a polymer layer having a thickness of 100 μm as a molded product containing F polymer (1), PTFE, spherical silica particles and PAI on the surface thereof was produced.
 積層体1の銅箔を塩化第二鉄水溶液でエッチングにより除去して単独のポリマー層を作製し、SPDR(スプリットポスト誘電体共振、測定周波数:10GHz。以下同様。)法にて測定した誘電正接は、0.0010以下であった。
 積層体1の銅箔を塩化第二鉄水溶液でエッチングにより除去して単独のポリマー層を作製し、180mm角の四角い試験片を切り出した。切り出した試験片をJIS C 6471:1995に規定される測定方法にしたがって、25℃以上260℃以下の範囲において測定した。試験片の線膨張係数は、30ppm/℃以下であった。
The copper foil of the laminate 1 was removed by etching with an aqueous solution of ferric chloride to prepare a single polymer layer, and the dielectric tangent measured by the SPDR (split post dielectric resonance, measurement frequency: 10 GHz; the same applies hereinafter) method. Was 0.0010 or less.
The copper foil of the laminate 1 was removed by etching with an aqueous solution of ferric chloride to prepare a single polymer layer, and a 180 mm square test piece was cut out. The cut out test piece was measured in the range of 25 ° C. or higher and 260 ° C. or lower according to the measuring method specified in JIS C 6471: 1995. The coefficient of linear expansion of the test piece was 30 ppm / ° C. or less.
 積層体1から長さが100mm、幅が10mmの矩形状の試験片を切り出した。試験片の長さ方向の一端から50mmの位置を固定し、引張り速度50mm/分、長さ方向の片端から試験片に対して90°で、銅箔とポリマー層とを剥離させた。剥離させた時の最大荷重を剥離強度(N/cm)とした。剥離強度は、10N/cm以上であった。また、無機酸化物粒子1はポリマー層1中で強固に担持されており、粉落ちしなかった。 A rectangular test piece having a length of 100 mm and a width of 10 mm was cut out from the laminated body 1. The position 50 mm from one end in the length direction of the test piece was fixed, and the copper foil and the polymer layer were peeled off from one end in the length direction at a tensile speed of 50 mm / min at 90 ° to the test piece. The maximum load at the time of peeling was defined as the peel strength (N / cm). The peel strength was 10 N / cm or more. Further, the inorganic oxide particles 1 were firmly supported in the polymer layer 1 and did not fall off.
 なお、液状組成物Pを液状組成物Rに変更して、成形物としての厚さが100μmであるポリマー層を有する積層体を製造した場合には、ポリマー層からの粉落ちが激しく、平滑なポリマー層を有する積層体が得られなかった。 When the liquid composition P is changed to the liquid composition R to produce a laminate having a polymer layer having a thickness of 100 μm as a molded product, powder is severely removed from the polymer layer and is smooth. No laminate with a polymer layer was obtained.
4.液状組成物の製造例(その2)
(例2-1)
 粉体Aと粉体Gとをドライブレンドして混合物を得た。プラネタリーミキサーに、前記混合物と水と水溶性高分子Aと界面活性剤Aとを投入し、混練して、粉体Aの粒子(18.5質量部)、粉体Gの粒子(60質量部)、水溶性高分子A(1質量部)、界面活性剤A(1質量部)、水(40質量部)を含む混合物を得た。
 ポットに、上記混合物を投入し、続いて分散液BおよびワニスAの混合物と水とを複数回に分けて添加して撹拌し、全体としてFポリマー(1)の粒子(18.5質量部)、PTFE粒子(20質量部)、球状シリカ粒子(60質量部)、PAI(1.5質量部)、水溶性高分子(1質量部)、界面活性剤(1質量部)、水(100質量部)を含む粘度が500mPa・sの液状組成物Sを得た。液状組成物Sの長期保管後の分散率は60%以上であり、分散率測定後の再分散性も良好であった。
4. Production example of liquid composition (Part 2)
(Example 2-1)
Powder A and powder G were dry-blended to obtain a mixture. The mixture, water, water-soluble polymer A, and surfactant A are added to a planetary mixer and kneaded to form powder A particles (18.5 parts by mass) and powder G particles (60 mass by mass). Part), a water-soluble polymer A (1 part by mass), a surfactant A (1 part by mass), and water (40 parts by mass) to obtain a mixture.
The above mixture is put into a pot, and then the mixture of dispersion B and varnish A and water are added in a plurality of times and stirred, and the particles (18.5 parts by mass) of the F polymer (1) as a whole are added. , PTFE particles (20 parts by mass), spherical silica particles (60 parts by mass), PAI (1.5 parts by mass), water-soluble polymer (1 part by mass), surfactant (1 part by mass), water (100 parts by mass) Part) was obtained as a liquid composition S having a viscosity of 500 mPa · s. The dispersion ratio of the liquid composition S after long-term storage was 60% or more, and the redispersibility after the dispersion ratio measurement was also good.
(例2-2)
 水溶性高分子Aを水溶性高分子Bに変更する以外は、例1-1と同様にして、混合物を得て、それから液状組成物Tを調製した。
5.積層体の評価例
 上記「3.積層体の製造例」において、液状組成物Pを液状組成物Sに変更する以外は同様にして積層体2を、液状組成物Pを液状組成物Tに変更する以外は同様にして積層体3をそれぞれ得た。積層体2の銅箔を塩化第二鉄水溶液でエッチングにより除去して作成した単独のポリマー層の誘電正接は0.0010以下であり、積層体3から作成した単独のポリマー層の誘電正接は0.0010超であった。
(Example 2-2)
A mixture was obtained in the same manner as in Example 1-1 except that the water-soluble polymer A was changed to the water-soluble polymer B, and the liquid composition T was prepared from the mixture.
5. Evaluation Example of Laminated Body In the above "3. Production Example of Laminated Body", the laminated body 2 is changed to the liquid composition P and the liquid composition P is changed to the liquid composition T in the same manner except that the liquid composition P is changed to the liquid composition S. The laminated bodies 3 were obtained in the same manner except for the above. The dielectric loss tangent of the single polymer layer prepared by removing the copper foil of the laminate 2 by etching with an aqueous solution of ferric chloride is 0.0010 or less, and the dielectric loss tangent of the single polymer layer prepared from the laminate 3 is 0. It was over 0010.
 さらに上記「3.積層体の製造例」における液状組成物の塗布量を調製し、1回あたりのポリマー層形成プロセスで形成できるポリマー層の厚さを、液状組成物P、液状組成物Sおよび液状組成物Tについて評価した結果、液状組成物S、液状組成物T、液状組成物Pの順にポリマー層の厚さが大きくなった。 Further, the coating amount of the liquid composition in the above "3. Production example of laminated body" is prepared, and the thickness of the polymer layer that can be formed by the polymer layer forming process per one time is adjusted to the liquid composition P, the liquid composition S and the liquid composition S. As a result of evaluating the liquid composition T, the thickness of the polymer layer increased in the order of the liquid composition S, the liquid composition T, and the liquid composition P.
 上記結果から明らかなように、本法で作成した液状組成物は分散性と安定性に優れており、基材に塗布して得られたポリマー層は、電気的特性と低線膨張性に優れていた。またポリマー層と基材とが密着性に優れ、無機酸化物粒子はF層中に強固に担持されていた。したがって本法により得られた組成物を用いた積層体は成分分布の均一性に優れ、無機酸化物粒子の性質を高度に発現すると考えられる。また、層の界面で空隙が生じることがなく、耐水性の低下が抑制されると考えられる。かかる積層体は電気特性と反りにくさや柔軟性等機の械的物性を具備し、プリント基板材料として有用であると考えられる。
 なお、2021年01月06日に出願された日本特許出願2021-001123号および2021年05月18日に出願された日本特許出願2021-083690号の明細書、特許請求の範囲および要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
As is clear from the above results, the liquid composition prepared by this method has excellent dispersibility and stability, and the polymer layer obtained by applying it to the substrate has excellent electrical properties and low linear expansion. Was there. Further, the polymer layer and the base material had excellent adhesion, and the inorganic oxide particles were firmly supported in the F layer. Therefore, it is considered that the laminate using the composition obtained by this method is excellent in the uniformity of the component distribution and highly expresses the properties of the inorganic oxide particles. Further, it is considered that no voids are generated at the interface of the layer and the decrease in water resistance is suppressed. Such a laminate has electrical characteristics and mechanical properties such as warpage resistance and flexibility, and is considered to be useful as a printed circuit board material.
The entire specification, claims and abstracts of Japanese Patent Application No. 2021-001123 filed on January 06, 2021 and Japanese Patent Application No. 2021-038690 filed on May 18, 2021. The contents are cited here and incorporated as disclosure of the specification of the present invention.

Claims (15)

  1.  カルボニル基含有基および水酸基含有基の少なくともいずれか一方を有するテトラフルオロエチレン系ポリマー(1)の粒子と無機酸化物粒子とを混合して混合物とし、さらに前記テトラフルオロエチレン系ポリマー(1)とは異なるテトラフルオロエチレン系ポリマー(2)の粒子と前記混合物とを混合する、組成物の製造方法。 Particles of a tetrafluoroethylene-based polymer (1) having at least one of a carbonyl group-containing group and a hydroxyl group-containing group and inorganic oxide particles are mixed to form a mixture, and the tetrafluoroethylene-based polymer (1) is further referred to as a mixture. A method for producing a composition, which comprises mixing particles of a different tetrafluoroethylene polymer (2) with the mixture.
  2.  前記テトラフルオロエチレン系ポリマー(2)の粒子が水に分散した分散液を前記混合物と混合する、請求項1に記載の製造方法。 The production method according to claim 1, wherein the dispersion liquid in which the particles of the tetrafluoroethylene polymer (2) are dispersed in water is mixed with the mixture.
  3.  前記テトラフルオロエチレン系ポリマー(1)が、主鎖炭素数1×10個あたり、10~5000個のカルボニル基含有基を有するポリマーである、請求項1または2に記載の製造方法。 The production method according to claim 1 or 2, wherein the tetrafluoroethylene polymer (1) is a polymer having 10 to 5000 carbonyl group-containing groups per 1 × 10 6 main chain carbon atoms.
  4.  前記テトラフルオロエチレン系ポリマー(2)がポリテトラフルオロエチレンである、請求項1~3のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 3, wherein the tetrafluoroethylene polymer (2) is polytetrafluoroethylene.
  5.  前記無機酸化物が酸化ケイ素である、請求項1~4のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 4, wherein the inorganic oxide is silicon oxide.
  6.  カルボニル基含有基および水酸基含有基の少なくともいずれか一方を有するテトラフルオロエチレン系ポリマー(1)の粒子、前記テトラフルオロエチレン系ポリマーとは異なるテトラフルオロエチレン系ポリマー(2)の粒子および無機酸化物粒子を含有し、前記無機酸化物粒子の平均粒径が前記テトラフルオロエチレン系ポリマー(1)の粒子の平均粒径に対して1~1000%の範囲にあり、前記無機酸化物粒子の含有量が、前記テトラフルオロエチレン系ポリマー(1)の粒子と前記テトラフルオロエチレン系ポリマー(2)の粒子と前記無機酸化物粒子との合計質量に対して5~75質量%である、組成物。 Particles of a tetrafluoroethylene-based polymer (1) having at least one of a carbonyl group-containing group and a hydroxyl group-containing group, particles of a tetrafluoroethylene-based polymer (2) different from the tetrafluoroethylene-based polymer, and inorganic oxide particles. The average particle size of the inorganic oxide particles is in the range of 1 to 1000% with respect to the average particle size of the particles of the tetrafluoroethylene polymer (1), and the content of the inorganic oxide particles is , 5 to 75% by mass based on the total mass of the particles of the tetrafluoroethylene-based polymer (1), the particles of the tetrafluoroethylene-based polymer (2), and the inorganic oxide particles.
  7.  さらに芳香族ポリマーを含む、請求項6に記載の組成物。 The composition according to claim 6, further comprising an aromatic polymer.
  8.  さらに水を含む、請求項6または7に記載の組成物。 The composition according to claim 6 or 7, further comprising water.
  9.  前記テトラフルオロエチレン系ポリマー(2)がポリテトラフルオロエチレンである、請求項6~8のいずれか1項に記載の組成物。 The composition according to any one of claims 6 to 8, wherein the tetrafluoroethylene polymer (2) is polytetrafluoroethylene.
  10.  前記無機酸化物が酸化ケイ素である、請求項6~9のいずれか1項に記載の組成物。 The composition according to any one of claims 6 to 9, wherein the inorganic oxide is silicon oxide.
  11.  前記テトラフルオロエチレン系ポリマー(1)と前記テトラフルオロエチレン系ポリマー(2)との合計質量に対する前記テトラフルオロエチレン系ポリマー(2)の質量が25質量%以上である、請求項6~10のいずれか1項に記載の組成物。 Any of claims 6 to 10, wherein the mass of the tetrafluoroethylene polymer (2) is 25% by mass or more with respect to the total mass of the tetrafluoroethylene polymer (1) and the tetrafluoroethylene polymer (2). The composition according to item 1.
  12.  金属箔と、前記金属箔の少なくともいずれか一方の表面に形成されたポリマー層とを有する金属張積層体であって、前記ポリマー層が、カルボニル基含有基および水酸基含有基の少なくともいずれか一方を有するテトラフルオロエチレン系ポリマー(1)、ポリテトラフルオロエチレンおよび無機酸化物粒子を含有し、前記無機酸化物粒子の含有量が前記テトラフルオロエチレン系ポリマー(1)と前記ポリテトラフルオロエチレンと前記無機酸化物粒子との合計質量に対して5~75質量%である、金属張積層体。 A metal-clad laminate having a metal foil and a polymer layer formed on the surface of at least one of the metal foils, wherein the polymer layer has at least one of a carbonyl group-containing group and a hydroxyl group-containing group. It contains a tetrafluoroethylene-based polymer (1), polytetrafluoroethylene, and inorganic oxide particles, and the content of the inorganic oxide particles is the tetrafluoroethylene-based polymer (1), the polytetrafluoroethylene, and the inorganic. A metal-clad laminate that is 5 to 75% by mass with respect to the total mass of the oxide particles.
  13.  前記ポリマー層がさらに芳香族ポリマーを含有する、請求項12に記載の金属張積層体。 The metal-clad laminate according to claim 12, wherein the polymer layer further contains an aromatic polymer.
  14.  前記ポリマー層の厚さが50μm以上である、請求項12または13に記載の金属張積層体。 The metal-clad laminate according to claim 12 or 13, wherein the polymer layer has a thickness of 50 μm or more.
  15.  カルボニル基含有基および水酸基含有基の少なくともいずれか一方を有するテトラフルオロエチレン系ポリマー(1)、ポリテトラフルオロエチレンおよび無機酸化物粒子を含有し、前記無機酸化物粒子の含有量が前記テトラフルオロエチレン系ポリマー(1)と前記ポリテトラフルオロエチレンと前記無機酸化物粒子との合計質量に対して前記無機酸化物粒子を5~75質量%である、延伸処理された延伸シート。 It contains a tetrafluoroethylene-based polymer (1) having at least one of a carbonyl group-containing group and a hydroxyl group-containing group, polytetrafluoroethylene, and inorganic oxide particles, and the content of the inorganic oxide particles is the tetrafluoroethylene. A stretched sheet obtained by stretching the inorganic oxide particles in an amount of 5 to 75% by mass based on the total mass of the polymer (1), the polytetrafluoroethylene and the inorganic oxide particles.
PCT/JP2021/048874 2021-01-06 2021-12-28 Method for producing tetrafluoroethylene-based polymer composition, composition, metal-clad laminate, and stretched sheet WO2022149551A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180087419.3A CN116670222A (en) 2021-01-06 2021-12-28 Method for producing tetrafluoroethylene polymer composition, metal-clad laminate, and stretched sheet
KR1020237012159A KR20230129373A (en) 2021-01-06 2021-12-28 Method for producing tetrafluoroethylene-based polymer composition, composition, metal-clad laminate, and stretched sheet
JP2022574043A JPWO2022149551A1 (en) 2021-01-06 2021-12-28

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-001123 2021-01-06
JP2021001123 2021-01-06
JP2021083690 2021-05-18
JP2021-083690 2021-05-18

Publications (1)

Publication Number Publication Date
WO2022149551A1 true WO2022149551A1 (en) 2022-07-14

Family

ID=82357983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/048874 WO2022149551A1 (en) 2021-01-06 2021-12-28 Method for producing tetrafluoroethylene-based polymer composition, composition, metal-clad laminate, and stretched sheet

Country Status (4)

Country Link
JP (1) JPWO2022149551A1 (en)
KR (1) KR20230129373A (en)
TW (1) TW202235498A (en)
WO (1) WO2022149551A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023013569A1 (en) * 2021-08-04 2023-02-09 Agc株式会社 Sheet manufacturing method, laminate sheet manufacturing method and sheet
WO2023182154A1 (en) * 2022-03-22 2023-09-28 Agc株式会社 Resin composition and molded body

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016065217A (en) * 2014-09-16 2016-04-28 旭硝子株式会社 Fluorine-containing resin composition, molded article, wire and manufacturing method of fluorine-containing resin composition
WO2020090607A1 (en) * 2018-10-30 2020-05-07 Agc株式会社 Dispersion
WO2020116461A1 (en) * 2018-12-05 2020-06-11 Agc株式会社 Method for manufacturing modified particles, modified particles, fluid dispersion, composition, and layered body
WO2020145133A1 (en) * 2019-01-11 2020-07-16 ダイキン工業株式会社 Fluororesin composition, fluororesin sheet, multilayer body and substrate for circuits
JP2020180245A (en) * 2019-04-26 2020-11-05 Agc株式会社 Powder dispersion liquid, manufacturing method of laminate, laminate and manufacturing method of printed circuit board
JP2021121675A (en) * 2016-07-22 2021-08-26 Agc株式会社 Liquid composition, and method for producing film and layered body using the liquid composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI680871B (en) 2018-09-27 2020-01-01 南亞塑膠工業股份有限公司 Fluorine resin composition, prepreg and copper foil substrate using the composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016065217A (en) * 2014-09-16 2016-04-28 旭硝子株式会社 Fluorine-containing resin composition, molded article, wire and manufacturing method of fluorine-containing resin composition
JP2021121675A (en) * 2016-07-22 2021-08-26 Agc株式会社 Liquid composition, and method for producing film and layered body using the liquid composition
WO2020090607A1 (en) * 2018-10-30 2020-05-07 Agc株式会社 Dispersion
WO2020116461A1 (en) * 2018-12-05 2020-06-11 Agc株式会社 Method for manufacturing modified particles, modified particles, fluid dispersion, composition, and layered body
WO2020145133A1 (en) * 2019-01-11 2020-07-16 ダイキン工業株式会社 Fluororesin composition, fluororesin sheet, multilayer body and substrate for circuits
JP2020180245A (en) * 2019-04-26 2020-11-05 Agc株式会社 Powder dispersion liquid, manufacturing method of laminate, laminate and manufacturing method of printed circuit board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023013569A1 (en) * 2021-08-04 2023-02-09 Agc株式会社 Sheet manufacturing method, laminate sheet manufacturing method and sheet
WO2023182154A1 (en) * 2022-03-22 2023-09-28 Agc株式会社 Resin composition and molded body

Also Published As

Publication number Publication date
TW202235498A (en) 2022-09-16
KR20230129373A (en) 2023-09-08
JPWO2022149551A1 (en) 2022-07-14

Similar Documents

Publication Publication Date Title
WO2022149551A1 (en) Method for producing tetrafluoroethylene-based polymer composition, composition, metal-clad laminate, and stretched sheet
JP2006274073A (en) Resin composition, resin molded product of the same and manufacturing method
WO2022145333A1 (en) Aqueous dispersion and method for producing same
CN114729171B (en) Dispersion, method for producing dispersion, and molded article
WO2021221038A1 (en) Method for producing dispersion, paste, and kneaded powder
WO2022113926A1 (en) Composition, laminate , and film of tetrafluoroethylene-based polymer
WO2021241547A1 (en) Method for producing dispersion
WO2022092036A1 (en) Composition including powder particles of tetrafluoroethylene polymer, method for producing same, method for producing dispersion from said composition
JP2022098733A (en) Composition of tetrafluoroethylene polymer, liquid composition containing the same, and sheet
WO2021132055A1 (en) Dispersion liquid
CN116670222A (en) Method for producing tetrafluoroethylene polymer composition, metal-clad laminate, and stretched sheet
JP2022061412A (en) Production method of liquid composition and production method of laminate
WO2020241607A1 (en) Liquid composition
JP2021167367A (en) Liquid composition, impregnated substrate, method for producing polymer carrying substrate, and method for producing laminate
WO2022138483A1 (en) Aqueous dispersion
WO2022009918A1 (en) Sizing agent, sized fibers, prepreg, and dispersion
WO2022050253A1 (en) Powder dispersion and production method for composite
TW202311422A (en) Sheet
WO2023163025A1 (en) Composition
JP2022163625A (en) Method for producing modified dispersion liquid and dispersion liquid
JP2023019614A (en) Composition and production method of laminate having layer formed from composition
JP2022061774A (en) Manufacturing method of dispersion liquid and manufacturing method of laminated body
JP2022072333A (en) Composition including tetrafluoroethylene polymer, liquid composition comprising the composition, laminate and film
WO2023276946A1 (en) Composition
JP2023172879A (en) Method for manufacturing laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917771

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022574043

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180087419.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21917771

Country of ref document: EP

Kind code of ref document: A1