JP2021121675A - Liquid composition, and method for producing film and layered body using the liquid composition - Google Patents

Liquid composition, and method for producing film and layered body using the liquid composition Download PDF

Info

Publication number
JP2021121675A
JP2021121675A JP2021083930A JP2021083930A JP2021121675A JP 2021121675 A JP2021121675 A JP 2021121675A JP 2021083930 A JP2021083930 A JP 2021083930A JP 2021083930 A JP2021083930 A JP 2021083930A JP 2021121675 A JP2021121675 A JP 2021121675A
Authority
JP
Japan
Prior art keywords
resin
liquid composition
film
group
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021083930A
Other languages
Japanese (ja)
Other versions
JP7115589B2 (en
Inventor
朋也 細田
Tomoya Hosoda
朋也 細田
達也 寺田
Tatsuya Terada
達也 寺田
茂樹 小林
Shigeki Kobayashi
茂樹 小林
敦美 山邊
Atsumi Yamabe
敦美 山邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Publication of JP2021121675A publication Critical patent/JP2021121675A/en
Priority to JP2022114307A priority Critical patent/JP7396403B2/en
Application granted granted Critical
Publication of JP7115589B2 publication Critical patent/JP7115589B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/22Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09D127/18Homopolymers or copolymers of tetrafluoroethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/24Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/082Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/18Monomers containing fluorine
    • C08F14/26Tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F16/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F16/12Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
    • C08F16/14Monomers containing only one unsaturated aliphatic radical
    • C08F16/24Monomers containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F18/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid
    • C08F18/02Esters of monocarboxylic acids
    • C08F18/04Vinyl esters
    • C08F18/08Vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/04Acids, Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/12Esters of monohydric alcohols or phenols
    • C08F20/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F20/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F20/32Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/262Tetrafluoroethene with fluorinated vinyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F22/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides or nitriles thereof
    • C08F22/04Anhydrides, e.g. cyclic anhydrides
    • C08F22/06Maleic anhydride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F234/00Copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain and having one or more carbon-to-carbon double bonds in a heterocyclic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/002Priming paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J127/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Adhesives based on derivatives of such polymers
    • C09J127/02Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J127/12Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Adhesives based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09J127/18Homopolymers or copolymers of tetrafluoroethene
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/281Applying non-metallic protective coatings by means of a preformed insulating foil
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/285Permanent coating compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/265Tetrafluoroethene with non-fluorinated comonomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/10Copolymer characterised by the proportions of the comonomers expressed as molar percentages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/015Fluoropolymer, e.g. polytetrafluoroethylene [PTFE]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0756Uses of liquids, e.g. rinsing, coating, dissolving
    • H05K2203/0759Forming a polymer layer by liquid coating, e.g. a non-metallic protective coating or an organic bonding layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Reinforced Plastic Materials (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)

Abstract

To provide a liquid composition whereby a resin powder can be uniformly dispersed in a resin or the like without being scattered and a method for producing the same, and a method for producing a film, a laminate or the like by using the liquid composition.SOLUTION: A liquid composition comprises a liquid medium and a resin powder dispersed in the liquid medium. The resin powder has a volume-based cumulative 90% diameter of 8 μm or less. The resin powder is a resin containing a specific polymer (X), including powder of polytetrafluoroethylene or inorganic filler. There is also provided a method for producing the liquid composition. There is further provided a method for producing a film, a laminate or the like by using the liquid composition.SELECTED DRAWING: None

Description

本発明は、液状組成物、並びに液状組成物を使用した、フィルムおよび積層体の製造方法に関する。 The present invention relates to a liquid composition and a method for producing a film and a laminate using the liquid composition.

近年、エレクトロニクス製品の軽量化、小型化、高密度化に伴い、各種プリント基板の需要が伸びている。プリント基板としては、例えば、ポリイミド等の絶縁材料からなる基板上に金属箔を積層し、該金属箔をパターニングして回路を形成したものが用いられている。プリント基板には、高周帯域の周波数に対応する優れた電気的特性(低誘電率等)や、はんだリフローに耐え得る優れた耐熱性等が求められている。 In recent years, the demand for various printed circuit boards has been increasing along with the weight reduction, miniaturization, and high density of electronic products. As the printed circuit board, for example, a printed circuit board in which a metal foil is laminated on a substrate made of an insulating material such as polyimide and the metal foil is patterned to form a circuit is used. Printed circuit boards are required to have excellent electrical characteristics (low dielectric constant, etc.) corresponding to frequencies in a high frequency band, and excellent heat resistance that can withstand solder reflow.

誘電率が低く、プリント基板に有用な材料として、ポリテトラフルオロエチレンからなる、平均粒径が0.02〜5μmのフルオロポリマー微細粉末をポリイミドに充填した樹脂組成物を含有するフィルムが提案されている(特許文献1)。該フィルムの製造では、フルオロポリマー微細粉末をポリアミック酸溶液に混合して液状組成物とし、該液状組成物を平らな表面上に塗布し、乾燥した後、加熱によりポリアミック酸をイミド化させる。 As a material having a low dielectric constant and useful for a printed circuit board, a film containing a resin composition composed of polytetrafluoroethylene and having a fluoropolymer fine powder having an average particle size of 0.02 to 5 μm filled in polyimide has been proposed. (Patent Document 1). In the production of the film, a fluoropolymer fine powder is mixed with a polyamic acid solution to form a liquid composition, the liquid composition is applied onto a flat surface, dried, and then the polyamic acid is imidized by heating.

また、プリント基板に有用な材料として、カルボニル基含有基等の官能基を有する含フッ素共重合体を含む、平均粒径が0.02〜50μmの樹脂パウダーと、熱硬化性樹脂の硬化物とを含む層が金属箔上に形成された積層体も提案されている(特許文献2)。該積層体の製造では、熱硬化性樹脂を含む溶液に樹脂パウダーを分散させて液状組成物とし、該液状組成物を金属箔等の表面に塗布し、乾燥した後に硬化させる。 Further, as useful materials for the printed substrate, a resin powder having an average particle size of 0.02 to 50 μm containing a fluorine-containing copolymer having a functional group such as a carbonyl group-containing group, and a cured product of a thermosetting resin are used. A laminate in which a layer containing the above is formed on a metal foil has also been proposed (Patent Document 2). In the production of the laminate, the resin powder is dispersed in a solution containing a thermosetting resin to obtain a liquid composition, the liquid composition is applied to the surface of a metal foil or the like, dried, and then cured.

特開2005−142572号公報Japanese Unexamined Patent Publication No. 2005-142572 国際公開第2016/017801号International Publication No. 2016/017801

特許文献1、2の製造方法ではいずれも、ポリアミック酸溶液への混合前のフルオロポリマー微細粉末や、熱硬化性樹脂を含む溶液への混合前の樹脂パウダーが粉体として取り扱われる。しかし、これらを粉体として取り扱うと、混合容器や反応容器に投入した際に粉体が飛散して容器の壁面に付着しやすく、また他の液と混合する際にダマになりやすく均一に分散させにくい。量産プロセスにおいては、これら粉体をあらかじめ分散液の状態にして、配管ラインを通じて混合容器または反応容器に投入できることが重要である。 In each of the production methods of Patent Documents 1 and 2, a fluoropolymer fine powder before being mixed with a polyamic acid solution and a resin powder before being mixed with a solution containing a thermosetting resin are treated as powder. However, when these are treated as powders, the powders are likely to scatter and adhere to the wall surface of the container when they are put into a mixing container or reaction container, and they are likely to become lumps when mixed with other liquids and are uniformly dispersed. It is difficult to make it. In the mass production process, it is important that these powders can be made into a dispersion liquid in advance and put into a mixing vessel or a reaction vessel through a piping line.

本発明は、樹脂パウダーを液状媒体に分散させた液状組成物を提供することを目的とする。また、該液状組成物を用いた、フィルムや積層体の製造方法を提供することを目的とする。 An object of the present invention is to provide a liquid composition in which a resin powder is dispersed in a liquid medium. Another object of the present invention is to provide a method for producing a film or a laminate using the liquid composition.

本発明は、以下の構成を有する。
[1]液状媒体と該液状媒体に分散した樹脂パウダーとを含み、樹脂パウダーの平均粒径が0.3〜6μm、体積基準累積90%径が8μm以下であり、樹脂パウダーが下記重合体(X)を含む樹脂であることを特徴とする液状組成物。
重合体(X):テトラフルオロエチレンに基づく単位を有する含フッ素重合体であって、カルボニル基含有基、ヒドロキシ基、エポキシ基およびイソシアネート基からなる群から選ばれる少なくとも1種の官能基を有する含フッ素重合体。
[2]前記重合体(X)が、テトラフルオロエチレンに基づく単位と前記官能基を有する単位とを有する含フッ素共重合体である、[1]の液状組成物。
[3]前記重合体(X)が、さらに、ペルフルオロ(アルキルビニルエーテル)に基づく単位を有する含フッ素共重合体である、[1]または[2]の液状組成物。
[4]前記液状組成物が、さらに、界面活性剤を含む、[1]〜[3]のいずれかの液状組成物。
[5]前記液状組成物が、さらに、重合体(X)以外の重合体からなる樹脂のパウダー、または、無機質フィラーを含む、[1]〜[3]のいずれかの液状組成物。
The present invention has the following configurations.
[1] A liquid medium and a resin powder dispersed in the liquid medium are contained, the average particle size of the resin powder is 0.3 to 6 μm, the volume-based cumulative 90% diameter is 8 μm or less, and the resin powder is the following polymer ( A liquid composition characterized by being a resin containing X).
Polymer (X): A fluoropolymer having a unit based on tetrafluoroethylene, which contains at least one functional group selected from the group consisting of a carbonyl group-containing group, a hydroxy group, an epoxy group and an isocyanate group. Fluoropolymer.
[2] The liquid composition of [1], wherein the polymer (X) is a fluorine-containing copolymer having a unit based on tetrafluoroethylene and a unit having the functional group.
[3] The liquid composition of [1] or [2], wherein the polymer (X) is a fluorine-containing copolymer further having a unit based on perfluoro (alkyl vinyl ether).
[4] The liquid composition according to any one of [1] to [3], wherein the liquid composition further contains a surfactant.
[5] The liquid composition according to any one of [1] to [3], wherein the liquid composition further contains a resin powder composed of a polymer other than the polymer (X) or an inorganic filler.

[6]下記含フッ素共重合体をフィルム全量に対して80質量%以上含み、熱膨張(収縮)変化比(x方向(大きい熱膨張(収縮)率)とy方向(小さい熱膨張(収縮)率)の比x/y)が1.0〜1.3であるフィルム。
含フッ素共重合体:テトラフルオロエチレンに基づく単位と、カルボニル基含有基、ヒドロキシ基、エポキシ基およびイソシアネート基からなる群から選ばれる少なくとも1種の官能基を有する単位とを有する含フッ素共重合体。
[7]10cm2の面積の中に20μm以上の光学的不均一物の数が20個以下である、[6]のフィルム。
[8]前記フィルムの表面の算術平均粗さRaが2.0μm以上である、[6]または[7]のフィルム。
[6] The following fluorine-containing copolymer is contained in an amount of 80% by mass or more based on the total amount of the film, and the thermal expansion (shrinkage) change ratio (x direction (large thermal expansion (shrinkage) rate) and y direction (small thermal expansion (shrinkage)). A film having a ratio of rate) x / y) of 1.0 to 1.3.
Fluorine-containing copolymer: A fluorine-containing copolymer having a unit based on tetrafluoroethylene and a unit having at least one functional group selected from the group consisting of a carbonyl group-containing group, a hydroxy group, an epoxy group and an isocyanate group. ..
[7] The film of [6], wherein the number of optically non-uniform objects of 20 μm or more is 20 or less in an area of 10 cm 2.
[8] The film of [6] or [7], wherein the arithmetic average roughness Ra of the surface of the film is 2.0 μm or more.

[9]基材と、該基材の片面または両面に[6]〜[8]のいずれかのフィルムからなる層とを有することを特徴とする積層体。
[10]前記基材が金属基材であり、前記フィルム層の厚みが15μm以下である、[9]の積層体。
[11]反り率が25%以下である、[9]または[10]の積層体。
[12]前記[6]のフィルムからなる層を有する層間絶縁膜、ソルダーレジストまたはカバーレイフィルム。
[9] A laminate characterized by having a base material and a layer made of any of the films [6] to [8] on one side or both sides of the base material.
[10] The laminate of [9], wherein the base material is a metal base material and the thickness of the film layer is 15 μm or less.
[11] The laminate of [9] or [10] having a warpage rate of 25% or less.
[12] An interlayer insulating film, a solder resist or a coverlay film having a layer made of the film of the above [6].

[13]前記[1]〜[5]のいずれかの液状組成物を製膜化するとともに液状媒体を除去することを特徴とするフィルムの製造方法。
[14]強化繊維基材に含浸させて製膜化する、[13]の製造方法。
[15]前記フィルムの比誘電率が2.0〜3.5である、[13]または[14]の製造方法。
[13] A method for producing a film, which comprises forming a film of the liquid composition according to any one of the above [1] to [5] and removing the liquid medium.
[14] The production method of [13], wherein the reinforcing fiber base material is impregnated to form a film.
[15] The production method according to [13] or [14], wherein the film has a relative permittivity of 2.0 to 3.5.

[16]前記[1]〜[5]のいずれかの液状組成物を基材上で製膜化するとともに液状媒体を除去して前記基材に積層された樹脂層を形成することを特徴とする積層体の製造方法。
[17]前記樹脂層の露出面の算術平均粗さRaが2.0μm以上である、[16]の製造方法。
[18]前記液状媒体を除去した後、遠赤外線を放射する加熱プレートから一面に向かって放射される熱幅射と不活性ガスを噴射しつつ加熱する、[16]または[17]の製造方法。
[19]前記樹脂層を形成した後該樹脂層表面をプラズマ処理する、[16]〜[18]のいずれかの製造方法。
[20]前記樹脂層の比誘電率が2.0〜3.5である、[16]〜[19]のいずれかの製造方法。
[21]前記基材が金属基材である、[16]〜[20]のいずれかの製造方法。
[16] The liquid composition according to any one of [1] to [5] is formed into a film on a base material, and the liquid medium is removed to form a resin layer laminated on the base material. A method for manufacturing a laminated body.
[17] The production method according to [16], wherein the arithmetic average roughness Ra of the exposed surface of the resin layer is 2.0 μm or more.
[18] The method for producing [16] or [17], wherein after removing the liquid medium, heating is performed while injecting thermal radiation and an inert gas radiated from a heating plate that emits far infrared rays toward one surface. ..
[19] The production method according to any one of [16] to [18], wherein the resin layer is formed and then the surface of the resin layer is plasma-treated.
[20] The production method according to any one of [16] to [19], wherein the resin layer has a relative permittivity of 2.0 to 3.5.
[21] The production method according to any one of [16] to [20], wherein the base material is a metal base material.

[22]前記[16]〜[21]のいずれかの製造方法で少なくとも片面に樹脂層を有する積層体を製造し、次いで得られた積層体を樹脂層表面を積層面として第2の基材と積層することを特徴とする積層体の製造方法。
[23]前記第2の基材がプリプレグであり、該プリプレグのマトリックス樹脂が融点が280℃以下の熱可塑性樹脂または熱硬化温度が280℃以下の熱硬化性樹脂であり、120〜300℃で熱プレスして積層する、[22]の製造方法。
[24]前記[16]〜[23]のいずれかの製造方法で製造された少なくとも片面に金属層を有する積層体の該金属層を、エッチングしてパターンを形成することを特徴とするプリント基板の製造方法。
[22] A laminate having a resin layer on at least one side is produced by the production method according to any one of [16] to [21], and then the obtained laminate is used as a second base material with the surface of the resin layer as the laminate surface. A method for manufacturing a laminated body, which comprises laminating with.
[23] The second base material is a prepreg, and the matrix resin of the prepreg is a thermoplastic resin having a melting point of 280 ° C. or lower or a thermosetting resin having a thermosetting temperature of 280 ° C. or lower, at 120 to 300 ° C. The manufacturing method of [22], which is heat-pressed and laminated.
[24] A printed circuit board characterized by etching the metal layer of a laminate having a metal layer on at least one side produced by the production method according to any one of [16] to [23] to form a pattern. Manufacturing method.

本発明の液状組成物を使用することにより、樹脂パウダーを飛散させることなく、樹脂パウダーを樹脂やその原料等に均一に分散させることができる。また、上記液状組成物を用いた本発明の製造方法によれば、樹脂パウダーの分散の不均一化による不具合が抑制された、フィルムや積層体が得られる。 By using the liquid composition of the present invention, the resin powder can be uniformly dispersed in the resin, its raw material, or the like without scattering the resin powder. Further, according to the production method of the present invention using the above liquid composition, a film or a laminate in which defects due to non-uniform dispersion of the resin powder are suppressed can be obtained.

本明細書における下記の用語の意味は以下の通りである。
「比誘電率」は、SPDR(スピリットポスト誘電体共振器)法により、23℃±2℃、50±5%RHの範囲内の環境下にて、周波数2.5GHzで測定される値である。
重合体における「単位」は、単量体が重合することによって形成された、該単量体1分子に由来する原子団を意味する。単位は、重合反応によって直接形成された原子団であってもよく、重合反応によって得られた重合体を処理することによって該原子団の一部が別の構造に変換された原子団であってもよい。
「(メタ)アクリレート」とは、アクリレートとメタクリレートの総称である。
「算術平均粗さ(Ra)」は、JIS B0601:2013(ISO4287:1997,Amd.1:2009)に基づき測定される算術平均粗さである。Raを求める際の、粗さ曲線用の基準長さlr(カットオフ値λc)は0.8mmとした。
The meanings of the following terms in the present specification are as follows.
The "relative permittivity" is a value measured by the SPDR (Spirit Post Dielectric Resonator) method at a frequency of 2.5 GHz under an environment within the range of 23 ° C ± 2 ° C and 50 ± 5% RH. ..
The "unit" in a polymer means an atomic group derived from one molecule of the monomer formed by polymerizing the monomer. The unit may be an atomic group directly formed by a polymerization reaction, or an atomic group in which a part of the atomic group is converted into another structure by treating the polymer obtained by the polymerization reaction. May be good.
"(Meta) acrylate" is a general term for acrylate and methacrylate.
"Arithmetic Mean Roughness (Ra)" is an arithmetic mean roughness measured based on JIS B0601: 2013 (ISO4287: 1997, Amd.1: 2009). The reference length rl (cutoff value λc) for the roughness curve when calculating Ra was set to 0.8 mm.

[液状組成物]
本発明の液状組成物は、液状媒体と該液状媒体に分散した樹脂パウダーとを含む液状組成物であり、樹脂パウダーは後述の重合体(X)を含む。加えて、樹該脂パウダーの平均粒径は0.3〜6μmであり、体積基準累積90%径(D90)は8μm以下である。
分散媒である液状媒体は、常温で液状の不活性な成分であり、水等の無機質溶媒や有機溶媒等からなる。液状媒体は、液状組成物に含まれる他の成分よりも低沸点であり、加熱等により揮発し除去できるものであることが好ましい。
樹脂パウダーは重合体(X)以外の重合体を含んでいてもよい。
さらに、液状組成物は、液状媒体および上記樹脂パウダー以外の成分を有していてもよい。例えば、界面活性剤等の分散安定性を向上させる成分、無機質粒子や非溶融性有機質粒子等からなるフィラー、上記樹脂パウダーにおける樹脂とは異なる樹脂のパウダー、液状媒体に溶解した硬化性または非硬化性の樹脂等が挙げられる。
本発明の液状組成物が含有する他の成分としては、特に、界面活性剤やフィラーが好ましい。
[Liquid composition]
The liquid composition of the present invention is a liquid composition containing a liquid medium and a resin powder dispersed in the liquid medium, and the resin powder contains a polymer (X) described later. In addition, the average particle size of the fat powder of the tree is 0.3 to 6 μm, and the volume-based cumulative 90% diameter (D90) is 8 μm or less.
The liquid medium, which is a dispersion medium, is an inert component that is liquid at room temperature, and is composed of an inorganic solvent such as water, an organic solvent, or the like. The liquid medium preferably has a lower boiling point than other components contained in the liquid composition and can be volatilized and removed by heating or the like.
The resin powder may contain a polymer other than the polymer (X).
Further, the liquid composition may have components other than the liquid medium and the resin powder. For example, a component that improves dispersion stability such as a surfactant, a filler composed of inorganic particles, non-meltable organic particles, or the like, a resin powder different from the resin in the above resin powder, or a curable or non-curable solution dissolved in a liquid medium. Examples include sex resins.
As other components contained in the liquid composition of the present invention, surfactants and fillers are particularly preferable.

重合体(X)は、テトラフルオロエチレン(以下、「TFE」という。)に基づく単位(以下、「TFE単位」という。)を含有する含フッ素重合体であって、カルボニル基含有基、ヒドロキシ基、エポキシ基およびイソシアネート基からなる群から選ばれる少なくとも1種の官能基(以下、「官能基(i)」ともいう。)を有する含フッ素重合体である。
官能基(i)は、重合体(X)中の単位に含まれていてもよく、その場合、官能基(i)を有する単位はフッ素原子を有する単位であってもよく、フッ素原子を有しない単位であってもよい。以下、官能基(i)を有する単位を「単位(1)」ともいう。単位(1)はフッ素原子を有しない単位が好ましい。
また、官能基(i)は重合体(X)の主鎖の末端基に含まれていてもよく、その場合、重合体(X)は単位(1)を有していてもよく、有していなくてもよい。官能基(i)を有する末端基は、重合開始剤、連鎖移動剤等に由来する末端基であり、官能基(i)を有する、または重合体形成の反応の際に官能基(i)を生じる、重合開始剤や連鎖移動剤を使用することにより官能基(i)を有する末端基が形成される。また、重合体形成後にその末端基に官能基(i)を導入することもできる。末端基に含まれる官能基(i)としては、アルコキシカルボニル基、カーボネート基、カルボキシ基、フルオロホルミル基、酸無水物残基、ヒドロキシ基が好ましい。
The polymer (X) is a fluorine-containing polymer containing a unit (hereinafter referred to as “TFE unit”) based on tetrafluoroethylene (hereinafter referred to as “TFE”), and is a carbonyl group-containing group or a hydroxy group. , A fluoropolymer having at least one functional group (hereinafter, also referred to as “functional group (i)”) selected from the group consisting of an epoxy group and an isocyanate group.
The functional group (i) may be contained in the unit in the polymer (X), in which case the unit having the functional group (i) may be a unit having a fluorine atom and having a fluorine atom. It may be a unit that does not. Hereinafter, the unit having the functional group (i) is also referred to as "unit (1)". The unit (1) is preferably a unit having no fluorine atom.
Further, the functional group (i) may be contained in the terminal group of the main chain of the polymer (X), in which case the polymer (X) may have a unit (1) and has. It does not have to be. The terminal group having a functional group (i) is a terminal group derived from a polymerization initiator, a chain transfer agent, etc., and has a functional group (i), or the functional group (i) is used in the reaction of polymer formation. By using the resulting polymerization initiator or chain transfer agent, a terminal group having a functional group (i) is formed. Further, the functional group (i) can be introduced into the terminal group after the polymer is formed. As the functional group (i) contained in the terminal group, an alkoxycarbonyl group, a carbonate group, a carboxy group, a fluoroformyl group, an acid anhydride residue, and a hydroxy group are preferable.

重合体(X)としては、単位(1)とTFE単位とを有する共重合体が好ましい。また、その場合、重合体(X)は、必要に応じて、単位(1)およびTFE単位以外の単位をさらに有してもよい。単位(1)およびTFE単位以外の単位としては、後述のPAVE単位やHFP単位等のペルフルオロの単位が好ましい。
以下、単位(1)とTFE単位とを有する共重合体である重合体(X)を例にして本発明を説明する。
As the polymer (X), a copolymer having a unit (1) and a TFE unit is preferable. Further, in that case, the polymer (X) may further have a unit other than the unit (1) and the TFE unit, if necessary. As the unit other than the unit (1) and the TFE unit, a perfluoro unit such as a PAVE unit or an HFP unit described later is preferable.
Hereinafter, the present invention will be described by taking a polymer (X), which is a copolymer having a unit (1) and a TFE unit, as an example.

官能基(i)におけるカルボニル基含有基としては、構造中にカルボニル基を含む基であれば特に制限はなく、例えば、炭化水素基の炭素原子間にカルボニル基を有してなる基、カーボネート基、カルボキシ基、ハロホルミル基、アルコキシカルボニル基、酸無水物残基、ポリフルオロアルコキシカルボニル基、脂肪酸残基等が挙げられる。なかでも、機械粉砕性向上、金属との融着性向上の点から、炭化水素基の炭素原子間にカルボニル基を有してなる基、カーボネート基、カルボキシ基、ハロホルミル基、アルコキシカルボニル基および酸無水物残基が好ましく、カルボキシ基および酸無水物残基がより好ましい。 The carbonyl group-containing group in the functional group (i) is not particularly limited as long as it is a group containing a carbonyl group in the structure. For example, a group having a carbonyl group between carbon atoms of a hydrocarbon group and a carbonate group. , Carboxy group, haloformyl group, alkoxycarbonyl group, acid anhydride residue, polyfluoroalkoxycarbonyl group, fatty acid residue and the like. Among them, a group having a carbonyl group between carbon atoms of a hydrocarbon group, a carbonate group, a carboxy group, a haloformyl group, an alkoxycarbonyl group and an acid from the viewpoint of improving mechanical grindability and fusion with metal. Anhydrous residues are preferred, and carboxy groups and acid anhydride residues are more preferred.

炭化水素基の炭素原子間にカルボニル基を有してなる基における炭化水素基としては、例えば、炭素原子数2〜8のアルキレン基等が挙げられる。なお、該アルキレン基の炭素原子数は、該アルキレン基におけるカルボニル基以外の部分の炭素原子の数である。該アルキレン基は直鎖状でも分岐状でもよい。
ハロホルミル基は、−C(=O)−X(ただし、Xはハロゲン原子である。)で表される基である。ハロホルミル基におけるハロゲン原子としては、フッ素原子、塩素原子等が挙げられ、フッ素原子が好ましい。すなわち、ハロホルミル基としてはフルオロホルミル基(カルボニルフルオリド基ともいう。)が好ましい。
アルコキシカルボニル基におけるアルコキシ基は、直鎖状でも分岐状でもよい。該アルコキシ基としては、炭素原子数1〜8のアルコキシ基が好ましく、メトキシ基またはエトキシ基が特に好ましい。
Examples of the hydrocarbon group in the group having a carbonyl group between the carbon atoms of the hydrocarbon group include an alkylene group having 2 to 8 carbon atoms. The number of carbon atoms of the alkylene group is the number of carbon atoms in the portion of the alkylene group other than the carbonyl group. The alkylene group may be linear or branched.
The haloformyl group is a group represented by -C (= O) -X (where X is a halogen atom). Examples of the halogen atom in the haloformyl group include a fluorine atom and a chlorine atom, and a fluorine atom is preferable. That is, as the haloformyl group, a fluoroformyl group (also referred to as a carbonylfluoride group) is preferable.
The alkoxy group in the alkoxycarbonyl group may be linear or branched. As the alkoxy group, an alkoxy group having 1 to 8 carbon atoms is preferable, and a methoxy group or an ethoxy group is particularly preferable.

単位(1)としては、官能基(i)を有する単量体(以下、「単量体(m1)」ともいう。)に基づく単位が好ましい。単量体(m1)が有する官能基(i)は1個でも2個以上でもよい。単量体(m1)が2個以上の官能基(i)を有する場合、それら官能基(i)は、それぞれ同じでもよく、異なってもよい。
単量体(m1)としては、官能基(i)を1つ有し、重合性二重結合を1つ有する化合物が好ましい。
単量体(m1)は、1種を単独で用いてもよく、2種以上を併用してもよい。
As the unit (1), a unit based on a monomer having a functional group (i) (hereinafter, also referred to as “monomer (m1)”) is preferable. The monomer (m1) may have one or more functional groups (i). When the monomer (m1) has two or more functional groups (i), the functional groups (i) may be the same or different.
As the monomer (m1), a compound having one functional group (i) and one polymerizable double bond is preferable.
As the monomer (m1), one type may be used alone, or two or more types may be used in combination.

単量体(m1)のうち、カルボニル基含有基を有する単量体としては、例えば、酸無水物残基と重合性不飽和結合とを有する環状炭化水素化合物(以下、「単量体(m11)」ともいう。)、カルボキシ基を有する単量体(以下「単量体(m12)」ともいう。)、ビニルエステル、(メタ)アクリレート、CF=CFORf1COOX(ただし、Rf1は、エーテル性酸素原子を含んでもよい炭素原子数1〜10のペルフルオロアルキレン基であり、Xは、水素原子または炭素原子数1〜3のアルキル基である。)等が挙げられる。 Among the monomers (m1), examples of the monomer having a carbonyl group-containing group include a cyclic hydrocarbon compound having an acid anhydride residue and a polymerizable unsaturated bond (hereinafter, “monomer (m11)”. ) ”, Monomer having a carboxy group (hereinafter, also referred to as“ monomer (m12) ”), vinyl ester, (meth) acrylate, CF 2 = CFOR f1 COOX 1 (where R f1 is , A perfluoroalkylene group having 1 to 10 carbon atoms which may contain an etheric oxygen atom, and X 1 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.)

単量体(m11)としては、例えば、不飽和ジカルボン酸の酸無水物等が挙げられる。不飽和ジカルボン酸の酸無水物としては、例えば、無水イタコン酸(以下、「IAH」ともいう。)、無水シトラコン酸(以下、「CAH」ともいう。)、5−ノルボルネン−2,3−ジカルボン酸無水物(別称:無水ハイミック酸。以下、「NAH」ともいう。)、無水マレイン酸等が挙げられる。
単量体(m12)としては、例えば、イタコン酸、シトラコン酸、5−ノルボルネン−2,3−ジカルボン酸、マレイン酸等の不飽和ジカルボン酸、アクリル酸、メタクリル酸等の不飽和モノカルボン酸等が挙げられる。
ビニルエステルとしては、例えば、酢酸ビニル、クロロ酢酸ビニル、ブタン酸ビニル、ピバル酸ビニル、安息香酸ビニル等が挙げられる。
(メタ)アクリレートとしては、例えば、(ポリフルオロアルキル)アクリレート、(ポリフルオロアルキル)メタクリレート等が挙げられる。
Examples of the monomer (m11) include acid anhydrides of unsaturated dicarboxylic acids. Examples of the acid anhydride of the unsaturated dicarboxylic acid include itaconic anhydride (hereinafter, also referred to as “IAH”), citraconic anhydride (hereinafter, also referred to as “CAH”), and 5-norbornene-2,3-dicarboxylic acid. Examples thereof include acid anhydride (also known as hymic anhydride; hereinafter also referred to as “NAH”) and maleic anhydride.
Examples of the monomer (m12) include unsaturated dicarboxylic acids such as itaconic acid, citraconic acid, 5-norbornene-2,3-dicarboxylic acid and maleic acid, and unsaturated monocarboxylic acids such as acrylic acid and methacrylic acid. Can be mentioned.
Examples of the vinyl ester include vinyl acetate, chloroacetic acid vinyl, vinyl butanoate, vinyl pivalate, vinyl benzoate and the like.
Examples of the (meth) acrylate include (polyfluoroalkyl) acrylate and (polyfluoroalkyl) methacrylate.

ヒドロキシ基を含む単量体としては、例えば、ビニルエステル類、ビニルエーテル類、アリルエーテル類、不飽和カルボン酸エステル類((メタ)アクリレート、クロトン酸エステル等)であって末端または側鎖に1個以上のヒドロキシ基を有する化合物、および不飽和アルコール類が挙げられる。具体的には、例えば、2−ヒドロキシエチル(メタ)アクリレート、クロトン酸2−ヒドロキシエチル等、アリルアルコール等が挙げられる。
エポキシ基を含む単量体としては、例えば、不飽和グリシジルエーテル類(例えば、アリルグリシジルエーテル、2−メチルアリルグリシジルエーテル、ビニルグリシジルエーテル等。)、不飽和グリシジルエステル類(例えば、アクリル酸グリシジル、メタクリル酸グリシジル等。)等が挙げられる。
イソシアネート基を含む単量体としては、例えば、2−(メタ)アクリロイルオキシエチルイソシアネート、2−(2−(メタ)アクリロイルオキシエトキシ)エチルイソシアネート、1,1−ビス((メタ)アクリロイルオキシメチル)エチルイソシアネート等が挙げられる。
Examples of the monomer containing a hydroxy group include vinyl esters, vinyl ethers, allyl ethers, unsaturated carboxylic acid esters ((meth) acrylate, crotonic acid ester, etc.), one at the end or side chain. Examples thereof include compounds having the above hydroxy groups and unsaturated alcohols. Specific examples thereof include 2-hydroxyethyl (meth) acrylate, 2-hydroxyethyl crotonic acid, allyl alcohol and the like.
Examples of the monomer containing an epoxy group include unsaturated glycidyl ethers (for example, allyl glycidyl ether, 2-methylallyl glycidyl ether, vinyl glycidyl ether, etc.), unsaturated glycidyl esters (for example, glycidyl acrylate, etc.). Glycidyl methacrylate, etc.) and the like.
Examples of the monomer containing an isocyanate group include 2- (meth) acryloyloxyethyl isocyanate, 2- (2- (meth) acryloyloxyethoxy) ethyl isocyanate, and 1,1-bis ((meth) acryloyloxymethyl). Ethyl isocyanate and the like can be mentioned.

単位(1)は、機械粉砕性向上、金属との融着性向上の点から、官能基(i)として少なくともカルボニル基含有基を有することが好ましい。単量体(m1)としては、カルボニル基含有基を有する単量体が好ましい。
カルボニル基含有基を有する単量体としては、熱安定性、金属との融着性向上の点から、単量体(m11)が好ましい。なかでも、IAH、CAHおよびNAHが特に好ましい。IAH、CAHおよびNAHからなる群から選ばれる少なくとも1種を用いると、無水マレイン酸を用いた場合に必要となる特殊な重合方法(特開平11−193312号公報参照。)を用いることなく、酸無水物残基を含有する含フッ素共重合体を容易に製造できる。IAH、CAHおよびNAHのなかでは、密着性がより優れる点から、NAHが好ましい。
The unit (1) preferably has at least a carbonyl group-containing group as the functional group (i) from the viewpoint of improving the mechanical greasability and the fusion property with the metal. As the monomer (m1), a monomer having a carbonyl group-containing group is preferable.
As the monomer having a carbonyl group-containing group, a monomer (m11) is preferable from the viewpoint of improving thermal stability and fusion with a metal. Of these, IAH, CAH and NAH are particularly preferred. When at least one selected from the group consisting of IAH, CAH and NAH is used, an acid is used without using a special polymerization method (see JP-A-11-193312) required when maleic anhydride is used. A fluorine-containing copolymer containing an anhydride residue can be easily produced. Among IAH, CAH and NAH, NAH is preferable because it has better adhesion.

重合体(X)は、単位(1)およびTFE単位以外の単位として、ペルフルオロ(アルキルビニルエーテル)(以下、「PAVE」ともいう。)に基づく単位(以下、「PAVE単位」という。)を有してもよい。 The polymer (X) has a unit (hereinafter, referred to as "PAVE unit") based on perfluoro (alkyl vinyl ether) (hereinafter, also referred to as "PAVE") as a unit other than the unit (1) and the TFE unit. You may.

PAVEとしては、例えば、CF=CFORf2(ただし、Rf2は、エーテル性酸素原子を含んでもよい炭素原子数1〜10のペルフルオロアルキル基である。)が挙げられる。Rf2におけるペルフルオロアルキル基は、直鎖状でもよく分岐状でもよい。Rf2の炭素原子数は1〜3が好ましい。
CF=CFORf2としては、CF=CFOCF、CF=CFOCFCF、CF=CFOCFCFCF(以下、「PPVE」ともいう。)、CF=CFOCFCFCFCF、CF=CFO(CFF等が挙げられ、PPVEが好ましい。
PAVEは、1種を単独で用いてもよく、2種以上を併用してもよい。
Examples of the PAVE include CF 2 = CFOR f2 (where R f2 is a perfluoroalkyl group having 1 to 10 carbon atoms which may contain an ethereal oxygen atom). The perfluoroalkyl group in R f2 may be linear or branched. The number of carbon atoms of R f2 is preferably 1 to 3.
The CF 2 = CFOR f2, CF 2 = CFOCF 3, CF 2 = CFOCF 2 CF 3, CF 2 = CFOCF 2 CF 2 CF 3 ( hereinafter also referred to as "PPVE".), CF 2 = CFOCF 2 CF 2 CF 2 CF 3 , CF 2 = CFO (CF 2 ) 8 F and the like can be mentioned, and PPVE is preferable.
One type of PAVE may be used alone, or two or more types may be used in combination.

重合体(X)は、単位(1)およびTFE単位以外の単位として、ヘキサフルオロプロピレン(以下、「HFP」ともいう。)に基づく単位(以下、「HFP単位」という。)を有してもよい。 The polymer (X) may have a unit based on hexafluoropropylene (hereinafter, also referred to as “HFP”) (hereinafter, referred to as “HFP unit”) as a unit other than the unit (1) and the TFE unit. good.

重合体(X)は、単位(1)およびTFE単位以外の単位として、PAVE単位およびHFP単位以外の単位(以下、「他の単位」という。)を有してもよい。 The polymer (X) may have a unit other than the PAVE unit and the HFP unit (hereinafter, referred to as “another unit”) as a unit other than the unit (1) and the TFE unit.

他の単位としては、含フッ素単量体(ただし、単量体(m1)、TFE、PAVEおよびHFPを除く。)に基づく単位、非含フッ素単量体(ただし、単量体(m1)を除く。)に基づく単位が挙げられる。 As other units, a unit based on a fluorine-containing monomer (however, the monomer (m1), TFE, PAVE and HFP are excluded), and a non-fluorine-containing monomer (however, the monomer (m1)) are used. Excludes).

前記含フッ素単量体としては、重合性二重結合を1つ有する含フッ素化合物が好ましく、例えば、フッ化ビニル、フッ化ビニリデン、トリフルオロエチレン、クロロトリフルオロエチレン等のフルオロオレフィン(ただし、TFEおよびHFPを除く。)、CF=CFORf3SO(ただし、Rf3は、炭素原子数1〜10のペルフルオロアルキレン基、またはエーテル性酸素原子を含む炭素原子数2〜10のペルフルオロアルキレン基であり、Xはハロゲン原子またはヒドロキシ基である。)、CF=CF(CFOCF=CF(ただし、pは1または2である。)、CH=CX(CF(ただし、Xは水素原子またはフッ素原子であり、qは2〜10の整数であり、Xは水素原子またはフッ素原子である。)、ペルフルオロ(2−メチレン−4−メチル−1、3−ジオキソラン)等が挙げられる。これらは、1種を単独で用いても、2種以上用いてもよい。
前記含フッ素単量体としては、フッ化ビニリデン、クロロトリフルオロエチレンおよびCH=CX(CFが好ましい。
CH=CX(CFとしては、CH=CH(CFF、CH=CH(CFF、CH=CH(CFF、CH=CF(CFH、CH=CF(CFH等が挙げられ、CH=CH(CFF、またはCH=CH(CFFが好ましい。
As the fluorine-containing monomer, a fluorine-containing compound having one polymerizable double bond is preferable, and for example, fluoroolefins such as vinyl fluoride, vinylidene fluoride, trifluoroethylene, and chlorotrifluoroethylene (however, TFE). And HFP are excluded.), CF 2 = CFOR f3 SO 2 X 3 (However, R f3 is a perfluoroalkylene group having 1 to 10 carbon atoms or a perfluoroalkylene having 2 to 10 carbon atoms including an ether oxygen atom. Group, X 3 is a halogen atom or a hydroxy group), CF 2 = CF (CF 2 ) p OCF = CF 2 (where p is 1 or 2), CH 2 = CX 4 (CF) 2 ) q X 5 (where X 4 is a hydrogen atom or a fluorine atom, q is an integer of 2 to 10 and X 5 is a hydrogen atom or a fluorine atom), perfluoro (2-methylene-4-). Methyl-1,3-dioxolane) and the like. These may be used alone or in combination of two or more.
As the fluorine-containing monomer, vinylidene fluoride, chlorotrifluoroethylene and CH 2 = CX 4 (CF 2 ) q X 5 are preferable.
CH 2 = CX 4 (CF 2 ) q X 5 includes CH 2 = CH (CF 2 ) 2 F, CH 2 = CH (CF 2 ) 3 F, CH 2 = CH (CF 2 ) 4 F, CH 2 = CF (CF 2 ) 3 H, CH 2 = CF (CF 2 ) 4 H and the like, and CH 2 = CH (CF 2 ) 4 F or CH 2 = CH (CF 2 ) 2 F is preferable.

前記非含フッ素単量体としては、重合性二重結合を1つ有する非含フッ素化合物が好ましく、例えば、エチレン、プロピレン等の炭素原子数3以下のオレフィン等が挙げられる。これらは、1種を単独で用いても、2種以上用いてもよい。
単量体(m42)としては、エチレンまたはプロピレンが好ましく、エチレンが特に好ましい。
As the non-fluorine-containing monomer, a non-fluorine-containing compound having one polymerizable double bond is preferable, and examples thereof include olefins having 3 or less carbon atoms such as ethylene and propylene. These may be used alone or in combination of two or more.
As the monomer (m42), ethylene or propylene is preferable, and ethylene is particularly preferable.

前記含フッ素単量体と前記非含フッ素単量体とは、それぞれ1種を単独で用いてもよく、2種以上を併用してもよい。また、前記含フッ素単量体と前記非含フッ素単量体とを併用してもよい。 The fluorine-containing monomer and the non-fluorine-containing monomer may be used alone or in combination of two or more. Further, the fluorine-containing monomer and the non-fluorine-containing monomer may be used in combination.

重合体(X)としては、後述の重合体(X−1)および重合体(X−2)が好ましく、重合体(X−1)が特に好ましい。 As the polymer (X), the polymer (X-1) and the polymer (X-2) described later are preferable, and the polymer (X-1) is particularly preferable.

重合体(X−1)は、単位(1)とTFE単位とPAVE単位とを有し、全単位の合計に対する単位(1)の割合が0.01〜3モル%であり、TFE単位の割合が90〜99.89モル%であり、PAVE単位の割合が0.1〜9.99モル%である共重合体である。 The polymer (X-1) has a unit (1), a TFE unit, and a PAVE unit, and the ratio of the unit (1) to the total of all the units is 0.01 to 3 mol%, and the ratio of the TFE unit. Is 90 to 99.89 mol%, and the ratio of PAVE units is 0.1 to 9.99 mol%.

重合体(X−1)は、必要に応じて、HFP単位および他の単位の少なくとも一方をさらに有してもよい。重合体(X−1)は、単位(1)とTFE単位とPAVE単位とからなるものでもよく、単位(1)とTFE単位とPAVE単位とHFP単位とからなるものでもよく、単位(1)とTFE単位とPAVE単位と他の単位とからなるものでもよく、単位(1)とTFE単位とPAVE単位とHFP単位と他の単位とからなるものでもよい。 The polymer (X-1) may further have at least one of the HFP unit and the other unit, if desired. The polymer (X-1) may be composed of a unit (1), a TFE unit and a PAVE unit, or may be composed of a unit (1), a TFE unit, a PAVE unit and an HFP unit, and the unit (1). It may be composed of a TFE unit, a PAVE unit and another unit, or may be composed of a unit (1), a TFE unit, a PAVE unit, an HFP unit and another unit.

重合体(X−1)としては、カルボニル基含有基を含む単量体に基づく単位とTFE単位とPAVE単位とを有する共重合体が好ましく、単量体(m11)に基づく単位とTFE単位とPAVE単位とを有する共重合体が特に好ましい。好ましい重合体(X−1)の具体例としては、TFE/PPVE/NAH共重合体、TFE/PPVE/IAH共重合体、TFE/PPVE/CAH共重合体等が挙げられる。 As the polymer (X-1), a copolymer having a unit based on a monomer containing a carbonyl group-containing group, a TFE unit and a PAVE unit is preferable, and a unit based on the monomer (m11) and a TFE unit are used. Copolymers with PAVE units are particularly preferred. Specific examples of the preferred polymer (X-1) include TFE / PPVE / NAH copolymers, TFE / PPVE / IAH copolymers, TFE / PPVE / CAH copolymers and the like.

重合体(X−1)は、末端基として官能基(i)を有していてもよい。官能基(i)は、重合体(X−1)の製造時に用いられる、ラジカル重合開始剤、連鎖移動剤等を適宜選定することにより導入できる。 The polymer (X-1) may have a functional group (i) as a terminal group. The functional group (i) can be introduced by appropriately selecting a radical polymerization initiator, a chain transfer agent, or the like used in the production of the polymer (X-1).

重合体(X−1)を構成する全単位の合計に対する単位(1)の割合は、0.01〜3モル%であり、0.03〜2モル%が好ましく、0.05〜1モル%が特に好ましい。単位(1)の含有量が前記範囲の下限値以上であれば、嵩密度が大きな樹脂パウダーが得られやすい。また、液状組成物により形成したフィルム等と他材料(金属等)との層間密着性が優れる。単位(1)の含有量が前記範囲の上限値以下であれば、重合体(X−1)の耐熱性や色目等が良好である。 The ratio of the unit (1) to the total of all the units constituting the polymer (X-1) is 0.01 to 3 mol%, preferably 0.03 to 2 mol%, and 0.05 to 1 mol%. Is particularly preferable. When the content of the unit (1) is at least the lower limit of the above range, a resin powder having a large bulk density can be easily obtained. In addition, the interlayer adhesion between the film or the like formed by the liquid composition and another material (metal or the like) is excellent. When the content of the unit (1) is not more than the upper limit of the above range, the heat resistance and color of the polymer (X-1) are good.

重合体(X−1)を構成する全単位の合計に対するTFE単位の割合は、90〜99.89モル%であり、95〜99.47モル%が好ましく、96〜98.95モル%が特に好ましい。TFE単位の含有量が前記範囲の下限値以上であれば、重合体(X−1)が電気特性(低誘電率等)、耐熱性、耐薬品性等に優れる。TFE単位の含有量が前記範囲の上限値以下であれば、重合体(X−1)が溶融成形性、耐ストレスクラック性等に優れる。 The ratio of TFE units to the total of all the units constituting the polymer (X-1) is 90 to 99.89 mol%, preferably 95 to 99.47 mol%, and particularly 96 to 98.95 mol%. preferable. When the content of TFE units is equal to or higher than the lower limit of the above range, the polymer (X-1) is excellent in electrical characteristics (low dielectric constant, etc.), heat resistance, chemical resistance, and the like. When the content of TFE units is not more than the upper limit of the above range, the polymer (X-1) is excellent in melt moldability, stress crack resistance and the like.

重合体(X−1)を構成する全単位の合計に対するPAVE単位の割合は、0.1〜9.99モル%であり、0.5〜9.97モル%が好ましく、1〜9.95モル%が特に好ましい。PAVE単位の含有量が前記範囲の範囲内であれば、重合体(X−1)が成形性に優れる。 The ratio of PAVE units to the total of all the units constituting the polymer (X-1) is 0.1 to 9.99 mol%, preferably 0.5 to 9.97 mol%, and 1 to 9.95. Mol% is particularly preferred. When the content of PAVE units is within the above range, the polymer (X-1) is excellent in moldability.

重合体(X−1)中の全単位の合計に対する、単位(1)、TFE単位およびPAVE単位の合計の割合は、90モル%以上が好ましく、95モル%以上がより好ましく、98モル%以上がさらに好ましい。該割合の上限は特に限定されず、100モル%であってもよい。 The ratio of the total of units (1), TFE units and PAVE units to the total of all units in the polymer (X-1) is preferably 90 mol% or more, more preferably 95 mol% or more, and 98 mol% or more. Is even more preferable. The upper limit of the ratio is not particularly limited and may be 100 mol%.

重合体(X−1)中の各単位の含有量は、溶融核磁気共鳴(NMR)分析等のNMR分析、フッ素含有量分析、赤外吸収スペクトル分析等により測定できる。例えば、特開2007−314720号公報に記載のように、赤外吸収スペクトル分析等の方法を用いて、重合体(X−1)を構成する全単位中の単位(1)の割合(モル%)を求めることができる。 The content of each unit in the polymer (X-1) can be measured by NMR analysis such as molten nuclear magnetic resonance (NMR) analysis, fluorine content analysis, infrared absorption spectrum analysis and the like. For example, as described in JP-A-2007-314720, the ratio (mol%) of the unit (1) to all the units constituting the polymer (X-1) by using a method such as infrared absorption spectrum analysis. ) Can be obtained.

重合体(X−2)は、単位(1)とTFE単位とHFP単位とを有し、全単位の合計に対する単位(1)の割合が0.01〜3モル%であり、TFE単位の割合が90〜99.89モル%であり、HFP単位の割合が0.1〜9.99モル%である共重合体(ただし、重合体(X−1)は除く。)である。 The polymer (X-2) has a unit (1), a TFE unit, and an HFP unit, and the ratio of the unit (1) to the total of all units is 0.01 to 3 mol%, and the ratio of the TFE unit. Is 90 to 99.89 mol%, and the proportion of HFP units is 0.1 to 9.99 mol% (excluding the polymer (X-1)).

重合体(X−2)は、必要に応じて、PAVE単位や他の単位をさらに有してもよい。重合体(X−2)は、単位(1)と単位(2)とHFP単位とからなるものでもよく、単位(1)とTFE単位とHFP単位とPAVE単位とからなるもの(ただし、重合体(X−1)は除く。)でもよく、単位(1)とTFE単位とHFP単位と他の単位とからなるものでもよく、単位(1)とTFE単位とHFP単位とPAVE単位と他の単位とからなるもの(ただし、重合体(X−1)は除く。)でもよい。 The polymer (X-2) may further have PAVE units and other units, if desired. The polymer (X-2) may consist of a unit (1), a unit (2), and an HFP unit, or may consist of a unit (1), a TFE unit, an HFP unit, and a PAVE unit (however, the polymer). (X-1) may be excluded.), It may be composed of a unit (1), a TFE unit, an HFP unit and another unit, and the unit (1), a TFE unit, an HFP unit, a PAVE unit and another unit may be used. (However, the polymer (X-1) is excluded).

重合体(X−2)としては、カルボニル基含有基を含む単量体に基づく単位とTFE単位とHFP単位とを有する共重合体が好ましく、単量体(m11)に基づく単位とTFE単位とHFP単位とを有する共重合体が特に好ましい。好ましい重合体(X−2)の具体例としては、TFE/HFP/NAH共重合体、TFE/HFP/IAH共重合体、TFE/HFP/CAH共重合体等が挙げられる。
なお、重合体(X−2)は、重合体(X−1)と同様に、官能基(i)を有する末端基を有していてもよい。
As the polymer (X-2), a copolymer having a unit based on a monomer containing a carbonyl group-containing group, a TFE unit and an HFP unit is preferable, and a unit based on the monomer (m11) and a TFE unit are used. Copolymers with HFP units are particularly preferred. Specific examples of the preferred polymer (X-2) include TFE / HFP / NAH copolymers, TFE / HFP / IAH copolymers, TFE / HFP / CAH copolymers, and the like.
The polymer (X-2) may have a terminal group having a functional group (i), similarly to the polymer (X-1).

重合体(X−2)を構成する全単位の合計に対する単位(1)の割合は、0.01〜3モル%であり、0.02〜2モル%が好ましく、0.05〜1.5モル%が特に好ましい。単位(1)の含有量が前記範囲の下限値以上であれば、嵩密度が大きな樹脂パウダーが得られやすい。また、液状組成物により形成したフィルム等と他材料(金属等)との層間密着性が優れる。単位(1)の含有量が前記範囲の上限値以下であれば、重合体(X−2)の耐熱性や色目等が良好である。 The ratio of the unit (1) to the total of all the units constituting the polymer (X-2) is 0.01 to 3 mol%, preferably 0.02 to 2 mol%, and 0.05 to 1.5. Mol% is particularly preferred. When the content of the unit (1) is at least the lower limit of the above range, a resin powder having a large bulk density can be easily obtained. In addition, the interlayer adhesion between the film or the like formed by the liquid composition and another material (metal or the like) is excellent. When the content of the unit (1) is not more than the upper limit of the above range, the heat resistance and color of the polymer (X-2) are good.

重合体(X−2)を構成する全単位の合計に対するTFE単位の割合は、90〜99.89モル%であり、91〜98モル%が好ましく、92〜96モル%が特に好ましい。TFE単位の含有量が前記範囲の下限値以上であれば、重合体(X−2)が電気特性(低誘電率等)、耐熱性、耐薬品性等に優れる。TFE単位の含有量が前記範囲の上限値以下であれば、重合体(X−2)が溶融成形性、耐ストレスクラック性等に優れる。 The ratio of TFE units to the total of all the units constituting the polymer (X-2) is 90 to 99.89 mol%, preferably 91 to 98 mol%, and particularly preferably 92 to 96 mol%. When the content of TFE units is equal to or higher than the lower limit of the above range, the polymer (X-2) is excellent in electrical characteristics (low dielectric constant, etc.), heat resistance, chemical resistance, and the like. When the content of TFE units is not more than the upper limit of the above range, the polymer (X-2) is excellent in melt moldability, stress crack resistance and the like.

重合体(X−2)を構成する全単位の合計に対するHFP単位の割合は、0.1〜9.99モル%であり、1〜9モル%が好ましく、2〜8モル%が特に好ましい。HFP単位の含有量が前記範囲の範囲内であれば、重合体(X−2)が成形性に優れる。 The ratio of HFP units to the total of all the units constituting the polymer (X-2) is 0.1 to 9.99 mol%, preferably 1 to 9 mol%, and particularly preferably 2 to 8 mol%. When the content of HFP units is within the above range, the polymer (X-2) is excellent in moldability.

重合体(X−2)中の全単位の合計に対する単位(1)、TFE単位、およびHFP単位の合計の割合は、90モル%以上が好ましく、95モル%以上がより好ましく、98モル%以上がさらに好ましい。該割合の上限は特に限定されず、100モル%であってもよい。 The ratio of the total of units (1), TFE units, and HFP units to the total of all units in the polymer (X-2) is preferably 90 mol% or more, more preferably 95 mol% or more, and 98 mol% or more. Is even more preferable. The upper limit of the ratio is not particularly limited and may be 100 mol%.

重合体(X)の融点は、260〜380℃が好ましい。重合体(X)の融点が260℃以上であれば、耐熱性に優れる。重合体(X)の融点が380℃以下であれば、成形性に優れる。特に成形後の粒子による表面凹凸などの問題が発生しづらい。
また、重合体(X)は、溶融成形可能であることが好ましい。なお、「溶融成形可能」であるとは、溶融流動性を示すことを意味する。「溶融流動性を示す」とは、荷重49Nの条件下、樹脂の融点よりも20℃以上高い温度において、溶融流れ速度が0.1〜1000g/10分となる温度が存在することを意味する。「溶融流れ速度」とは、JIS K 7210:1999(ISO 1133:1997)に規定されるメルトマスフローレート(MFR)を意味する。溶融成形可能な重合体(X)の融点は、260〜320℃がより好ましく、280〜320℃がさらに好ましく、295〜315℃が特に好ましく、295〜310℃が最も好ましい。重合体(X)の融点が上記範囲の下限値以上であれば、耐熱性に優れる。重合体(X)の融点が上記範囲の上限値以下であれば、溶融成形性に優れる。
なお、重合体(X)の融点は、当該重合体(X)を構成する単位の種類や含有割合、分子量等によって調整できる。例えば、TFE単位の割合が多くなるほど、融点が高くなる傾向がある。
The melting point of the polymer (X) is preferably 260 to 380 ° C. When the melting point of the polymer (X) is 260 ° C. or higher, the heat resistance is excellent. When the melting point of the polymer (X) is 380 ° C. or lower, the moldability is excellent. In particular, problems such as surface unevenness due to particles after molding are unlikely to occur.
Further, it is preferable that the polymer (X) can be melt-molded. In addition, "melt moldable" means to show melt fluidity. "Exhibiting melt fluidity" means that there is a temperature at which the melt flow rate is 0.1 to 1000 g / 10 minutes at a temperature 20 ° C. or higher higher than the melting point of the resin under the condition of a load of 49 N. .. "Melting flow rate" means the melt mass flow rate (MFR) defined in JIS K 7210: 1999 (ISO 1133: 1997). The melting point of the melt-moldable polymer (X) is more preferably 260 to 320 ° C., further preferably 280 to 320 ° C., particularly preferably 295 to 315 ° C., and most preferably 295 to 310 ° C. When the melting point of the polymer (X) is at least the lower limit of the above range, the heat resistance is excellent. When the melting point of the polymer (X) is not more than the upper limit of the above range, the melt moldability is excellent.
The melting point of the polymer (X) can be adjusted by the type and content ratio of the units constituting the polymer (X), the molecular weight, and the like. For example, the higher the proportion of TFE units, the higher the melting point tends to be.

重合体(X)のMFRは、0.1〜1000g/10分が好ましく、0.5〜100g/10分がより好ましく、1〜30g/10分がさらに好ましく、5〜20g/10分が特に好ましい。MFRが上記範囲の下限値以上であれば、重合体(X)が成形加工性に優れ、液状組成物を用いて形成したフィルム等の表面平滑性、外観に優れる。MFRが上記範囲の上限値以下であれば、重合体(X)が機械強度に優れ、また液状組成物を用いて形成したフィルム等が機械強度に優れる。 The MFR of the polymer (X) is preferably 0.1 to 1000 g / 10 minutes, more preferably 0.5 to 100 g / 10 minutes, further preferably 1 to 30 g / 10 minutes, and particularly preferably 5 to 20 g / 10 minutes. preferable. When the MFR is not more than the lower limit of the above range, the polymer (X) is excellent in molding processability, and the surface smoothness and appearance of a film or the like formed by using the liquid composition are excellent. When the MFR is not more than the upper limit of the above range, the polymer (X) is excellent in mechanical strength, and the film or the like formed by using the liquid composition is excellent in mechanical strength.

MFRは、重合体(X)の分子量の目安であり、MFRが大きいと分子量が小さく、MFRが小さいと分子量が大きいことを示す。重合体(X)の分子量、ひいてはMFRは、重合体(X)の製造条件によって調整できる。例えば、単量体の重合時に重合時間を短縮すると、MFRが大きくなる傾向がある。 The MFR is a measure of the molecular weight of the polymer (X), and a large MFR indicates a small molecular weight, and a small MFR indicates a large molecular weight. The molecular weight of the polymer (X), and thus the MFR, can be adjusted according to the production conditions of the polymer (X). For example, if the polymerization time is shortened during the polymerization of the monomer, the MFR tends to increase.

重合体(X)の比誘電率は、2.5以下が好ましく、2.4以下がより好ましく、2.0〜2.4が特に好ましい。重合体(X)の比誘電率が低いほど、液状組成物を用いて形成したフィルム等の電気特性がより優れ、例えば該フィルムをプリント基板の基板として用いた場合に優れた伝送効率が得られる。
共重合体(X)の比誘電率は、TFE単位の含有量により調整できる。
The relative permittivity of the polymer (X) is preferably 2.5 or less, more preferably 2.4 or less, and particularly preferably 2.0 to 2.4. The lower the relative permittivity of the polymer (X), the better the electrical characteristics of the film formed by using the liquid composition. For example, when the film is used as a substrate of a printed circuit board, excellent transmission efficiency can be obtained. ..
The relative permittivity of the copolymer (X) can be adjusted by the content of TFE units.

重合体(X)は、常法により製造できる。重合体(X)の製造方法としては、例えば、国際公開第2016/017801号の[0053]〜[0060]に記載の方法が挙げられる。 The polymer (X) can be produced by a conventional method. Examples of the method for producing the polymer (X) include the methods described in [0053] to [0060] of International Publication No. 2016/017801.

樹脂パウダーは、重合体(X)以外の重合体を含有していてもよい。
樹脂パウダーに含有されていてもよい重合体(X)以外の重合体としては、電気的信頼性の特性を損なわない限り特に限定されず、例えば、重合体(X)以外の含フッ素重合体、芳香族ポリエステル、ポリアミドイミド、熱可塑性ポリイミド等が挙げられる。該重合体としては、電気的信頼性の観点から、重合体(X)以外の含フッ素重合体が好ましい。該重合体は、1種を単独で用いても、2種以上用いてもよい。
重合体(X)以外の含フッ素共重合体としては、例えば、ポリテトラフルオロエチレン(以下、「PTFE」ともいう。)、TFE/PAVE共重合体(ただし、重合体(X)を除く。)、TFE/HFP共重合体(ただし、重合体(X)を除く。)、エチレン/TFE共重合体等が挙げられる。重合体(X)以外の含フッ素重合体としては、耐熱性の点から、融点が280℃以上であるものが好ましい。
The resin powder may contain a polymer other than the polymer (X).
The polymer other than the polymer (X) that may be contained in the resin powder is not particularly limited as long as the characteristics of electrical reliability are not impaired. For example, a fluoropolymer other than the polymer (X), Examples include aromatic polyester, polyamide-imide, and thermoplastic polyimide. As the polymer, a fluorine-containing polymer other than the polymer (X) is preferable from the viewpoint of electrical reliability. The polymer may be used alone or in combination of two or more.
Examples of the fluorine-containing copolymer other than the polymer (X) include polytetrafluoroethylene (hereinafter, also referred to as “PTFE”) and a TFE / PAVE copolymer (however, the polymer (X) is excluded). , TFE / HFP copolymer (excluding polymer (X)), ethylene / TFE copolymer and the like. As the fluorine-containing polymer other than the polymer (X), those having a melting point of 280 ° C. or higher are preferable from the viewpoint of heat resistance.

樹脂パウダーは、重合体(X)を主成分とすることが好ましい。重合体(X)が主成分であれば、嵩密度の高い樹脂パウダーが得られやすい。樹脂パウダーの嵩密度が大きいほど、ハンドリング性が優れる。なお、樹脂パウダーが「重合体(X)を主成分とする」とは、樹脂パウダーの全量に対する重合体(X)の割合が、80質量%以上であることを意味する。パウダー材料の全量に対する重合体(X)の割合は、85質量%以上が好ましく、90質量%以上がより好ましく、100質量%が特に好ましい。 The resin powder preferably contains the polymer (X) as a main component. If the polymer (X) is the main component, a resin powder having a high bulk density can be easily obtained. The larger the bulk density of the resin powder, the better the handleability. The phrase "the resin powder contains the polymer (X) as a main component" means that the ratio of the polymer (X) to the total amount of the resin powder is 80% by mass or more. The ratio of the polymer (X) to the total amount of the powder material is preferably 85% by mass or more, more preferably 90% by mass or more, and particularly preferably 100% by mass.

樹脂パウダーの平均粒径は、0.3〜6μmであり、0.4〜5μmが好ましく、0.5〜4.5μmがより好ましく、0.7〜4μmがさらに好ましく、1〜3.5μmが特に好ましい。樹脂パウダーの平均粒径が前記範囲の下限値以上であれば、樹脂パウダーの流動性が充分で取り扱いが容易であり、かつ平均粒径が小さいことから、熱可塑性樹脂等への樹脂パウダーの充填率を高くすることができる。充填率が高いほど、液状組成物を用いて形成したフィルム等の電気特性(低誘電率等)が優れる。また、樹脂パウダーの平均粒径が小さいほど、液状組成物を用いて形成したフィルムの厚みを薄くでき、例えばフレキシブルプリント基板の用途に有用な薄さにすることも容易である。樹脂パウダーの平均粒径が前記範囲の上限値以下であれば、樹脂パウダーの液状媒体への分散性が優れる。 The average particle size of the resin powder is 0.3 to 6 μm, preferably 0.4 to 5 μm, more preferably 0.5 to 4.5 μm, further preferably 0.7 to 4 μm, and 1 to 3.5 μm. Especially preferable. When the average particle size of the resin powder is equal to or higher than the lower limit of the above range, the fluidity of the resin powder is sufficient, the handling is easy, and the average particle size is small. Therefore, the thermoplastic resin or the like is filled with the resin powder. The rate can be increased. The higher the filling rate, the better the electrical characteristics (low dielectric constant, etc.) of the film or the like formed by using the liquid composition. Further, the smaller the average particle size of the resin powder, the thinner the thickness of the film formed by using the liquid composition can be made, and it is easy to make the thickness useful for, for example, a flexible printed circuit board. When the average particle size of the resin powder is not more than the upper limit of the above range, the dispersibility of the resin powder in the liquid medium is excellent.

樹脂パウダーの平均粒径は、レーザー回折・散乱法により求められる体積基準累積50%径(D50)である。すなわち、レーザー回折・散乱法により粒度分布を測定し、粒子の集団の全体積を100%として累積カーブを求め、その累積カーブ上で累積体積が50%となる点の粒子径である。 The average particle size of the resin powder is a volume-based cumulative 50% diameter (D50) determined by the laser diffraction / scattering method. That is, the particle size distribution is measured by a laser diffraction / scattering method, the cumulative curve is obtained with the total volume of the particle population as 100%, and the particle size is the point at which the cumulative volume is 50% on the cumulative curve.

樹脂パウダーの体積基準累積90%径(D90)は、8μm以下であり、6μm以下が好ましく、1.5〜5μmが特に好ましい。D90が上限値以下であれば、樹脂パウダーの液状媒体への分散性が優れる。
樹脂パウダーのD90は、レーザー回折・散乱法により求められる。すなわち、レーザー回折・散乱法により粒度分布を測定し、粒子の集団の全体積を100%として累積カーブを求め、その累積カーブ上で累積体積が90%となる点の粒子径である。
The volume-based cumulative 90% diameter (D90) of the resin powder is 8 μm or less, preferably 6 μm or less, and particularly preferably 1.5 to 5 μm. When D90 is not more than the upper limit value, the dispersibility of the resin powder in the liquid medium is excellent.
The resin powder D90 is obtained by a laser diffraction / scattering method. That is, the particle size distribution is measured by a laser diffraction / scattering method, the cumulative curve is obtained with the total volume of the particle population as 100%, and the particle size is the point at which the cumulative volume is 90% on the cumulative curve.

樹脂パウダーの疎充填嵩密度は、0.05g/mL以上が好ましく、0.05〜0.5g/mLがより好ましく、0.08〜0.5g/mLが特に好ましい。
樹脂パウダーの密充填嵩密度は、0.05g/mL以上が好ましく、0.05〜0.8g/mLがより好ましく、0.1〜0.8g/mLが特に好ましい。
疎充填嵩密度または密充填嵩密度が大きいほど、樹脂パウダーのハンドリング性がより優れる。また、熱可塑性樹脂等への樹脂パウダーの充填率を高くすることができる。疎充填嵩密度または密充填嵩密度が前記範囲の上限値以下であれば、汎用的なプロセスで使用できる。
The sparse filling bulk density of the resin powder is preferably 0.05 g / mL or more, more preferably 0.05 to 0.5 g / mL, and particularly preferably 0.08 to 0.5 g / mL.
The densely packed bulk density of the resin powder is preferably 0.05 g / mL or more, more preferably 0.05 to 0.8 g / mL, and particularly preferably 0.1 to 0.8 g / mL.
The larger the sparsely filled bulk density or the densely packed bulk density, the better the handleability of the resin powder. In addition, the filling rate of the resin powder in the thermoplastic resin or the like can be increased. If the sparsely packed bulk density or the densely packed bulk density is equal to or less than the upper limit of the above range, it can be used in a general-purpose process.

樹脂パウダーの製造方法としては、重合で得た重合体(X)や、市販の重合体(X)を含むパウダー材料を、必要に応じて粉砕した後に分級(篩い分け等)し、平均粒径が0.3〜6μmでD90が8μm以下の樹脂パウダーを得る方法が挙げられる。溶液重合、懸濁重合または乳化重合により重合体(X)を製造した場合は、重合に用いた有機溶媒または水性媒体を除去して粒状の重合体(X)を回収した後に、粉砕や分級(篩い分け等)を行う。重合で得た重合体(X)の平均粒径が0.3〜6μmでD90が8μm以下である場合は、重合体(X)をそのまま樹脂パウダーとして使用できる。
樹脂パウダーが重合体(X)以外の重合体を含む場合は、該重合体と重合体(X)とを溶融混練した後に粉砕して分級することが好ましい。
As a method for producing a resin powder, a polymer (X) obtained by polymerization or a powder material containing a commercially available polymer (X) is pulverized as necessary and then classified (sieving, etc.) to have an average particle size. A method of obtaining a resin powder having a thickness of 0.3 to 6 μm and a D90 of 8 μm or less can be mentioned. When the polymer (X) is produced by solution polymerization, suspension polymerization or emulsion polymerization, the organic solvent or aqueous medium used for the polymerization is removed to recover the granular polymer (X), and then pulverization or classification ( Sieving, etc.). When the average particle size of the polymer (X) obtained by the polymerization is 0.3 to 6 μm and the D90 is 8 μm or less, the polymer (X) can be used as it is as a resin powder.
When the resin powder contains a polymer other than the polymer (X), it is preferable that the polymer and the polymer (X) are melt-kneaded and then pulverized for classification.

パウダー材料の粉砕方法および分級方法としては、国際公開第2016/017801号の[0065]〜[0069]に記載の方法を採用できる。
なお、樹脂パウダーとしては、所望の樹脂パウダーが市販されていればそれを用いてもよい。
As the method for pulverizing and classifying the powder material, the methods described in [0065] to [0069] of International Publication No. 2016/017801 can be adopted.
As the resin powder, if a desired resin powder is commercially available, it may be used.

本発明の液状組成物における液状媒体は、水等の無機質溶媒や有機溶媒等からなる。液状媒体は、相溶性の2種以上の液状媒体の混合物であってもよい。例えば、水溶性有機溶媒と水との混合物であってもよく、2種以上の有機溶媒の混合物であってもよい。
液状媒体の沸点は270℃以下が好ましく、70〜260℃の沸点を有する液状媒体が好ましい。
無機質溶媒としては水が好ましい。
有機溶媒としては、公知の液状媒体を使用でき、例えば、エタノール等のアルコール類、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン等の含窒素化合物、ジメチルスルホキシド等の含硫黄化合物、ジエチルエーテル、ジオキサン等のエーテル類、酢酸エチル等のエステル類、メチルエチルケトン等のケトン類、エチレングリコールモノイソプロピルエーテル等のグリコールエーテル類、メチルセロソルブ等のセロソルブ類等が挙げられる。
なお、液状媒体は、重合体(X)と反応しない化合物である。
The liquid medium in the liquid composition of the present invention comprises an inorganic solvent such as water, an organic solvent, or the like. The liquid medium may be a mixture of two or more compatible liquid media. For example, it may be a mixture of a water-soluble organic solvent and water, or a mixture of two or more kinds of organic solvents.
The boiling point of the liquid medium is preferably 270 ° C. or lower, and a liquid medium having a boiling point of 70 to 260 ° C. is preferable.
Water is preferable as the inorganic solvent.
As the organic solvent, a known liquid medium can be used, for example, alcohols such as ethanol, nitrogen-containing compounds such as N, N-dimethylacetamide and N-methyl-2-pyrrolidone, sulfur-containing compounds such as dimethyl sulfoxide, and diethyl. Examples thereof include ethers such as ether and dioxane, esters such as ethyl acetate, ketones such as methyl ethyl ketone, glycol ethers such as ethylene glycol monoisopropyl ether, and cellosolves such as methyl cellosolve.
The liquid medium is a compound that does not react with the polymer (X).

有機溶媒としては、具体的には、下記有機溶媒が挙げられる。
γ−ブチロラクトン、アセトン、メチルエチルケトン、ヘキサン、ヘプタン、オクタン、2−ヘプタノン、シクロヘプタノン、シクロヘキサノン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、メチル−n−ペンチルケトン、メチルイソブチルケトン、メチルイソペンチルケトン。
エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、エチレングリコールモノアセテート、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノアセテート、ジエチレングリコールジエチルエーテル、プロピレングリコールモノアセテート、ジプロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、シクロヘキシルアセテート、3−エトキシプロピオン酸エチル、ジオキサン、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸ブチル、ピルビン酸メチル、ピルビン酸エチル、メトキシプロピオン酸メチル、エトキシプロピオン酸エチル。
アニソール、エチルベンジルエーテル、クレジルメチルエーテル、ジフェニルエーテル、ジベンジルエーテル、フェネトール、ブチルフェニルエーテル、ベンゼン、エチルベンゼン、ジエチルベンゼン、ペンチルベンゼン、イソプロピルベンゼン、トルエン、キシレン、シメン、メシチレン。
メタノール、エタノール、イソプロパノール、ブタノール、メチルモノグリシジルエーテル、エチルモノグリシジルエーテル、ジメチルホルムアミド、ミネラルスピリット、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン。
パーフルオロカーボン、ハイドロフルオロエーテル、ハイドロクロロフルオロカーボン、ハイドロフルオロカーボン、パーフルオロポリエーテル、各種シリコーンオイル。
Specific examples of the organic solvent include the following organic solvents.
γ-Butyrolactone, acetone, methyl ethyl ketone, hexane, heptane, octane, 2-heptanone, cycloheptanone, cyclohexanone, cyclohexane, methylcyclohexane, ethylcyclohexane, methyl-n-pentyl ketone, methyl isobutyl ketone, methyl isopentyl ketone.
Ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, ethylene glycol monoacetate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monoacetate, diethylene glycol diethyl ether, propylene glycol monoacetate, dipropylene glycol monoacetate, propylene Glycoldiacetate, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, cyclohexyl acetate, ethyl 3-ethoxypropionate, dioxane, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, butyl acetate, pyruvate Methyl acid acid, ethyl pyruvate, methyl methoxypropionate, ethyl ethoxypropionate.
Anisole, ethylbenzyl ether, cresylmethyl ether, diphenyl ether, dibenzyl ether, phenetol, butylphenyl ether, benzene, ethylbenzene, diethylbenzene, pentylbenzene, isopropylbenzene, toluene, xylene, simen, mesityrene.
Methanol, ethanol, isopropanol, butanol, methylmonoglycidyl ether, ethylmonoglycidyl ether, dimethylformamide, mineral spirit, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone.
Perfluorocarbons, hydrofluoroethers, hydrochlorofluorocarbons, hydrofluorocarbons, perfluoropolyethers, various silicone oils.

本発明の液状組成物中の液状媒体の含有量は、樹脂パウダー100質量部に対して、1〜1000質量部が好ましく、10〜500質量部がより好ましく、30〜250質量部が特に好ましい。液状媒体の含有量が前記範囲内であれば、後述の製膜時の塗工性が良好となる。また、液状媒体の含有量が前記範囲の上限値以下であれば、液状媒体の使用量が少ないため、液状媒体の除去工程に由来する製膜品への外観不良が起こりにくい。 The content of the liquid medium in the liquid composition of the present invention is preferably 1 to 1000 parts by mass, more preferably 10 to 500 parts by mass, and particularly preferably 30 to 250 parts by mass with respect to 100 parts by mass of the resin powder. When the content of the liquid medium is within the above range, the coatability at the time of film formation, which will be described later, is good. Further, when the content of the liquid medium is not more than the upper limit of the above range, the amount of the liquid medium used is small, so that the appearance of the film-formed product due to the process of removing the liquid medium is unlikely to deteriorate.

本発明の液状組成物は、界面活性剤を含んでいてもよい。界面活性剤としては、特に限定されず、ノニオン性界面活性剤、アニオン性界面活性剤、カチオン性界面活性剤等が挙げられる。なかでも、界面活性剤としては、ノニオン性界面活性剤が好ましい。界面活性剤は、1種単独で用いてもよく、2種以上を併用してもよい。
本発明における界面活性剤は、少なくとも含フッ素基と親水性基を有するものであることが必要であり、少なくとも親油性基と親水性基を有するものであれば、特に限定されるものではなく、この他に親油性基が含有されているものであってもよい。少なくとも含フッ素基と親水性基を有するフッ素系添加剤を用いることにより、分散媒となる溶剤の表面張力を低下させ、フッ素樹脂表面に対する濡れ性を向上させてフッ素樹脂の分散性を向上させると共に、含フッ素基がフッ素樹脂表面に吸着し、親水性基が分散媒となる液状媒体中に伸長し、この親水性基の立体障害によりフッ素樹脂の凝集を防止して分散安定性を更に向上させるものとなる。含フッ素基としては、例えば、パーフルオロアルキル基、パーフルオロアルケニル基などが挙げられ、親水性基としては、例えば、エチレンオキサイドや、プロピレンキサイド、アミノ基、ケトン基、カルボキシル基、スルホン基などの1種又は2種以上が挙げられ、親油性基としては、例えば、アルキル基、フェニル基、シロキサン基などの1種又は2種以上が挙げられる。
具体的に用いることできるフッ素系添加剤としては、パーフルオロアルキル基含有のフタージェントMシリーズ、フタージェントFシリーズ、フタージェントGシリーズ、フタージェントP・Dシリーズ、フタージェント710FL、フタージェント710FM、フタージェント710FS、フタージェント730FL、フタージェント730LM、フタージェント610FM、フタージェント601AD、フタージェント601ADH2、フタージェント602A、フタージェント650AC、フタージェント681(ネオス社製)、サーフロンS−386などのサーフロンシリーズ(AGCセイミケミカル社製)、メガファックF−553、メガファックF−555、メガファックF−556、メガファックF−557、メガファックF−559、メガファックF−562、メガファックF−565などのメガファックシリーズ(DIC社製)、ユニダインDS−403Nなどのユニダインシリーズ(ダイキン工業社製)、などを用いることができる。これらの界面活性剤は、用いるフッ素樹脂と溶剤の種類によって、適宜最適なものが選択されるものであるが、1種類、または2種類以上を組み合わせて用いることも可能である。また界面活性剤を2種類以上を組み合わせて使用する場合、少なくとも1種類は含フッ素基と親水性基を有するものであることが必要であり、残りの種類は含フッ素基を含んでいなくてもよい。
The liquid composition of the present invention may contain a surfactant. The surfactant is not particularly limited, and examples thereof include a nonionic surfactant, an anionic surfactant, and a cationic surfactant. Among them, as the surfactant, a nonionic surfactant is preferable. The surfactant may be used alone or in combination of two or more.
The surfactant in the present invention needs to have at least a fluorine-containing group and a hydrophilic group, and is not particularly limited as long as it has at least a lipophilic group and a hydrophilic group. In addition to this, lipophilic groups may be contained. By using a fluorine-based additive having at least a fluorine-containing group and a hydrophilic group, the surface tension of the solvent as a dispersion medium is lowered, the wettability to the surface of the fluororesin is improved, and the dispersibility of the fluororesin is improved. , Fluororesin-containing groups are adsorbed on the surface of the fluororesin, and the hydrophilic groups extend into the liquid medium as the dispersion medium. It becomes a thing. Examples of the fluorine-containing group include a perfluoroalkyl group and a perfluoroalkenyl group, and examples of the hydrophilic group include ethylene oxide, propylenexide, amino group, ketone group, carboxyl group and sulfone group. 1 type or 2 or more of the above, and examples of the lipophilic group include 1 type or 2 or more of an alkyl group, a phenyl group, a siloxane group and the like.
Specific examples of the fluorine-based additives that can be used include the perfluoroalkyl group-containing Futagent M series, Futagent F series, Futagent G series, Futagent P / D series, Futagent 710FL, Futagent 710FM, and Futter. Surflon series such as GENT 710FS, Fluorent 730FL, Fluorent 730LM, Fluorent 610FM, Fluorent 601AD, Fluorent 601ADH2, Fluorent 602A, Fluorent 650AC, Fluorent 681 (manufactured by Neos), Surflon S-386, etc. AGC Seimi Chemical Co., Ltd.), Mega Fuck F-553, Mega Fuck F-555, Mega Fuck F-556, Mega Fuck F-557, Mega Fuck F-559, Mega Fuck F-562, Mega Fuck F-565, etc. The Megafuck series (manufactured by DIC), the Unidyne series (manufactured by Daikin Industries) such as Unidyne DS-403N, and the like can be used. The optimum surfactant is appropriately selected depending on the type of fluororesin and solvent used, but one type or a combination of two or more types can also be used. When two or more types of surfactants are used in combination, at least one type must have a fluorine-containing group and a hydrophilic group, and the remaining types do not contain a fluorine-containing group. May be good.

本発明の上記液状組成物には、さらに、シリコーン系消泡剤やフルオロシリコーン系消泡剤を含有させることができる。用いることができる消泡剤としては、シリコーン系やフルオロシリコーン系のエマルジョン型、自己乳化型、オイル型、オイルコンパウンド型、溶液型、粉末型、固形型などがあるが、用いる液状媒体との組合せで、適宜最適なものが選択されることになる。消泡剤の含有量は、樹脂パウダーの含有量(濃度)等により変動するものであるが、液状組成物全量に対して、好ましくは、有効成分として1質量%以下である。 The liquid composition of the present invention may further contain a silicone-based defoaming agent or a fluorosilicone-based defoaming agent. Examples of the defoaming agent that can be used include silicone-based and fluorosilicone-based emulsion types, self-emulsifying types, oil types, oil compound types, solution types, powder types, solid types, etc., but in combination with the liquid medium to be used. Then, the most suitable one will be selected as appropriate. The content of the defoaming agent varies depending on the content (concentration) of the resin powder and the like, but is preferably 1% by mass or less as the active ingredient with respect to the total amount of the liquid composition.

本発明の液状組成物が界面活性剤を含む場合、液状組成物中の界面活性剤の含有量は、樹脂パウダー100質量部に対して、0.1〜20質量部が好ましく、0.2〜10質量部がより好ましく、0.3〜7質量部が特に好ましい。界面活性剤の含有量が前記範囲の下限値以上であれば、優れた分散性が得られやすい。界面活性剤の含有量が前記範囲の上限値以下であれば、界面活性剤の特性に影響されることなく樹脂パウダーの特性を得ることができる。例えば本発明の液状組成物を用いて形成したフィルム等の誘電率や誘電正接を低くできる。 When the liquid composition of the present invention contains a surfactant, the content of the surfactant in the liquid composition is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the resin powder, and is 0.2 to 20 parts by mass. 10 parts by mass is more preferable, and 0.3 to 7 parts by mass is particularly preferable. When the content of the surfactant is at least the lower limit of the above range, excellent dispersibility can be easily obtained. When the content of the surfactant is not more than the upper limit of the above range, the characteristics of the resin powder can be obtained without being affected by the characteristics of the surfactant. For example, the dielectric constant and dielectric loss tangent of a film or the like formed by using the liquid composition of the present invention can be lowered.

本発明の液状組成物は、フィラーを含んでいてもよい。本発明の液状組成物がフィラーを含むことで、本発明の液状組成物を用いて形成したフィルム等の誘電率や誘電正接を低くできる。フィラーとしては、無機質フィラーが好ましく、国際公開第2016/017801号の[0089]に記載のものが挙げられる。無機質フィラーは1種を単独で用いてもよく、2種以上を併用してもよい。
また、後述の非熱溶融性樹脂(PTFEや熱硬化性樹脂の硬化物等)の微粒子からなるパウダーは有機質フィラーとみなすことができ、有機質フィラーとしては特にPTFEのパウダーが好ましい。
The liquid composition of the present invention may contain a filler. When the liquid composition of the present invention contains a filler, the dielectric constant and dielectric loss tangent of a film or the like formed by using the liquid composition of the present invention can be lowered. As the filler, an inorganic filler is preferable, and the filler described in [089] of International Publication No. 2016/017801 can be mentioned. One type of inorganic filler may be used alone, or two or more types may be used in combination.
Further, a powder composed of fine particles of a non-thermosetting resin (PTFE, a cured product of a thermosetting resin, etc.) described later can be regarded as an organic filler, and as the organic filler, PTFE powder is particularly preferable.

本発明の液状組成物がフィラーを含む場合、液状組成物中のフィラーの含有量は、樹脂パウダー100質量部に対して、0.1〜300質量部が好ましく、1〜200質量部がより好ましく、3〜150質量部がさらに好ましく、5〜100質量部が特に好ましく、10〜60質量部が最も好ましい。フィラーの含有量が多いほど、得られるフィルムの線膨張係数(CTE)が低くなり、フィルムの熱寸法性が優れる。さらには加熱プロセスにおいての寸法変化が小さく、成形安定性に優れる。 When the liquid composition of the present invention contains a filler, the content of the filler in the liquid composition is preferably 0.1 to 300 parts by mass, more preferably 1 to 200 parts by mass with respect to 100 parts by mass of the resin powder. 3, 150 parts by mass is more preferable, 5 to 100 parts by mass is particularly preferable, and 10 to 60 parts by mass is most preferable. The higher the filler content, the lower the coefficient of linear expansion (CTE) of the obtained film and the better the thermal dimensionality of the film. Furthermore, the dimensional change in the heating process is small, and the molding stability is excellent.

本発明の液状組成物は、重合体(X)以外の樹脂のパウダー、または液状媒体に溶解した硬化性または非硬化性の樹脂を含有してもよい。重合体(X)以外の樹脂であって、液状媒体に非溶解の樹脂は微粒子として(すなわち、樹脂パウダーとして)液状組成物に含有される。かかる液状媒体に非溶解の樹脂および液状媒体に溶解した硬化性または非硬化性の樹脂を、以下、「第2の樹脂」と総称する。
液状媒体に非溶解性の第2の樹脂は、非硬化性の樹脂であってもよく、硬化性の樹脂であってもよい。
非硬化性の樹脂は熱溶融性の樹脂や非溶融性の樹脂が挙げられる。非硬化性の樹脂は、重合体(X)の官能基(i)と反応しうる反応性基を有していてもよい。熱溶融性の樹脂としては、例えば、重合体(X)以外の含フッ素重合体からなるフッ素樹脂、熱可塑性ポリイミド等が挙げられる。非溶融性の樹脂としては、PTFEや硬化性樹脂の硬化物等が挙げられ、これらの微粒子はフィラーとみなすこともできる。
硬化性樹脂としては、反応性基を有する重合体、反応性基を有するオリゴマー(低重合体)、低分子化合物、反応性基を有する低分子化合物等が挙げられる。硬化性樹脂は、それ自身の反応性基間の反応、重合体(X)の官能基(i)と反応、硬化剤との反応等により、硬化する樹脂である。硬化性樹脂としては熱硬化性樹脂が好ましい。硬化性樹脂は、本発明の液状組成物から液状媒体が除去されたのち、硬化されることが好ましい。
反応性基としては、カルボニル基含有基、ヒドロキシ基、アミノ基、エポキシ基等が挙げられる。
The liquid composition of the present invention may contain a powder of a resin other than the polymer (X), or a curable or non-curable resin dissolved in a liquid medium. A resin other than the polymer (X), which is insoluble in a liquid medium, is contained in the liquid composition as fine particles (that is, as a resin powder). The resin that is insoluble in such a liquid medium and the curable or non-curable resin that is dissolved in the liquid medium are hereinafter collectively referred to as "second resin".
The second resin that is insoluble in the liquid medium may be a non-curable resin or a curable resin.
Examples of the non-curable resin include heat-meltable resins and non-meltable resins. The non-curable resin may have a reactive group capable of reacting with the functional group (i) of the polymer (X). Examples of the heat-meltable resin include a fluororesin made of a fluorine-containing polymer other than the polymer (X), a thermoplastic polyimide, and the like. Examples of the non-meltable resin include PTFE, a cured product of a curable resin, and the like, and these fine particles can also be regarded as a filler.
Examples of the curable resin include a polymer having a reactive group, an oligomer having a reactive group (low polymer), a small molecule compound, and a small molecule compound having a reactive group. The curable resin is a resin that is cured by a reaction between its own reactive groups, a reaction with the functional group (i) of the polymer (X), a reaction with a curing agent, and the like. As the curable resin, a thermosetting resin is preferable. The curable resin is preferably cured after the liquid medium is removed from the liquid composition of the present invention.
Examples of the reactive group include a carbonyl group-containing group, a hydroxy group, an amino group, an epoxy group and the like.

第2の樹脂としては、例えば、熱可塑性ポリイミドや、熱硬化性ポリイミド、それらの前駆体であるポリアミック酸が挙げられる。ポリアミック酸は、通常、重合体(X)の官能基(i)と反応しうる反応性基を有している。熱可塑性ポリイミド等は、官能基(i)と反応しうる反応性基を有していなくてもよい。
ポリアミック酸を形成するジアミンや多価カルボン酸二無水物としては、例えば、特許第5766125号公報の[0020]、特許第5766125号公報の[0019]、特開2012−145676号公報の[0055]、[0057]等に記載のものが挙げられる。なかでも、4,4’−ジアミノジフェニルエーテル、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン等の芳香族ジアミンと、ピロメリット酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物等の芳香族多価カルボン酸二無水物との組合せが好ましい。ジアミンおよび多価カルボン酸二無水物またはその誘導体は、それぞれ、1種を単独で用いてもよく、2種以上を併用してもよい。
Examples of the second resin include thermoplastic polyimides, thermosetting polyimides, and polyamic acids which are precursors thereof. The polyamic acid usually has a reactive group capable of reacting with the functional group (i) of the polymer (X). The thermoplastic polyimide or the like does not have to have a reactive group capable of reacting with the functional group (i).
Examples of the diamine and polyvalent carboxylic acid dianhydride forming the polyamic acid include [0020] of Japanese Patent No. 5766125, [0019] of Japanese Patent No. 5766125, and [0055] of Japanese Patent Application Laid-Open No. 2012-145676. , [0057] and the like. Among them, aromatic amines such as 4,4'-diaminodiphenyl ether and 2,2-bis [4- (4-aminophenoxy) phenyl] propane, and pyromellitic dianhydride, 3,3', 4,4. A combination with an aromatic polyvalent carboxylic dianhydride such as'-biphenyltetracarboxylic dianhydride, 3,3', 4,4'-benzophenonetetracarboxylic dianhydride is preferable. As the diamine and the polyvalent carboxylic acid dianhydride or a derivative thereof, one type may be used alone, or two or more types may be used in combination.

熱溶融性の第2の樹脂や硬化して熱溶融性の樹脂となる第2の樹脂の場合、その熱溶融性樹脂としては、融点が280℃以上であるものが好ましい。これにより、液状組成物により形成したフィルム等において、はんだリフローに相当する雰囲気に曝されたときの熱による膨れ(発泡)が抑制されやすい。 In the case of a heat-meltable second resin or a second resin that is cured to become a heat-meltable resin, the heat-meltable resin preferably has a melting point of 280 ° C. or higher. As a result, in a film or the like formed of a liquid composition, swelling (foaming) due to heat when exposed to an atmosphere corresponding to solder reflow is likely to be suppressed.

第2の樹脂は、また、熱溶融性ではない重合体からなる樹脂であってもよい。PTFEなど非溶融性樹脂や熱硬化性樹脂の硬化物からなる樹脂等の熱溶融性ではない樹脂は、液状媒体に非溶融性の樹脂であり、前記無機質フィラーと同様に、液状媒体中に微粒子状に分散される。 The second resin may also be a resin made of a polymer that is not heat-meltable. Non-heat-meltable resins such as non-meltable resins such as PTFE and resins composed of cured products of thermosetting resins are non-meltable resins in a liquid medium, and like the inorganic filler, fine particles are contained in the liquid medium. It is dispersed in a shape.

熱硬化性樹脂としては、エポキシ樹脂、アクリル樹脂、フェノール樹脂、ポリエステル樹脂、ポリオレフィン樹脂、変性ポリフェニレンエーテル樹脂、多官能シアン酸エステル樹脂、多官能マレイミド−シアン酸エステル樹脂、多官能性マレイミド樹脂、ビニルエステル樹脂、尿素樹脂、ジアリルフタレート樹脂、メラニン樹脂、グアナミン樹脂、メラミン−尿素共縮合樹脂、反応性基を有するフッ素樹脂(ただし、重合体(X)を除く。)が挙げられる。なかでも、プリント基板用途に有用な点から、熱硬化性樹脂としては、エポキシ樹脂、アクリル樹脂、ビスマレイミド樹脂、変性ポリフェニレンエーテル樹脂が好ましく、エポキシ樹脂、変性ポリフェニレンエーテル樹脂が特に好ましい。熱硬化性樹脂は、1種を単独で用いてもよく、2種以上を併用してもよい。 Examples of the thermosetting resin include epoxy resin, acrylic resin, phenol resin, polyester resin, polyolefin resin, modified polyphenylene ether resin, polyfunctional cyanate ester resin, polyfunctional maleimide-cyanic acid ester resin, polyfunctional maleimide resin, and vinyl. Examples thereof include ester resin, urea resin, diallyl phthalate resin, melanin resin, guanamine resin, melamine-urea cocondensate resin, and fluororesin having a reactive group (however, polymer (X) is excluded). Among them, epoxy resin, acrylic resin, bismaleimide resin, and modified polyphenylene ether resin are preferable, and epoxy resin and modified polyphenylene ether resin are particularly preferable, as the thermosetting resin from the viewpoint of being useful for printed substrate applications. One type of thermosetting resin may be used alone, or two or more types may be used in combination.

エポキシ樹脂としては、プリント基板用の各種基板材料を形成するために用いられるエポキシ樹脂であれば、特に限定されない。具体的には、ナフタレン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族鎖状エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、アルキルフェノールノボラック型エポキシ樹脂、アラルキル型エポキシ樹脂、ビフェノール型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリスヒドロキシフェニルメタン型エポキシ化合物、フェノール類とフェノール性水酸基を有する芳香族アルデヒドとの縮合物のエポキシ化物、ビスフェノールのジグリシジルエーテル化物、ナフタレンジオールのジグリシジルエーテル化物、フェノール類のグリシジルエーテル化物、アルコール類のジグリシジルエーテル化物、トリグリシジルイソシアヌレート等が挙げられる。また、上記列挙した以外にも、各種のグリシジルエーテル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、酸化型エポキシ樹脂を使用してもよいし、その他、リン変性エポキシ樹脂なども使用可能である。エポキシ樹脂は、1種単独で使用してもよいし、2種以上を併用してもよい。特に、硬化性に優れるという点では、1分子中に2以上のエポキシ基を有するエポキシ樹脂を使用することが好ましい。 The epoxy resin is not particularly limited as long as it is an epoxy resin used for forming various substrate materials for printed circuit boards. Specifically, naphthalene type epoxy resin, cresol novolac type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, alicyclic epoxy resin, aliphatic chain epoxy resin, cresol novolac type Epoxy resin, phenol novolac type epoxy resin, alkylphenol novolac type epoxy resin, aralkyl type epoxy resin, biphenol type epoxy resin, dicyclopentadiene type epoxy resin, trishydroxyphenylmethane type epoxy compound, phenols and aromatics having phenolic hydroxyl groups Examples thereof include an epoxidized product of a condensate with an aldehyde, a diglycidyl etherified product of bisphenol, a diglycidyl etherified product of naphthalenediol, a glycidyl etherified product of phenols, a diglycidyl etherified product of alcohols, and triglycidyl isocyanurate. In addition to those listed above, various glycidyl ether type epoxy resins, glycidyl amine type epoxy resins, glycidyl ester type epoxy resins, and oxidized epoxy resins may be used, and phosphorus-modified epoxy resins and the like may also be used. It is possible. The epoxy resin may be used alone or in combination of two or more. In particular, from the viewpoint of excellent curability, it is preferable to use an epoxy resin having two or more epoxy groups in one molecule.

エポキシ樹脂の重量平均分子量は、100〜1000000が好ましく、1000〜100000がより好ましい。エポキシ樹脂の重量平均分子量が前記範囲内であれば、液状組成物により形成したフィルム等と他材料(金属等)との層間密着性が優れる。
エポキシ樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により測定される。
The weight average molecular weight of the epoxy resin is preferably 100 to 1000000, more preferably 1000 to 100,000. When the weight average molecular weight of the epoxy resin is within the above range, the interlayer adhesion between the film or the like formed by the liquid composition and another material (metal or the like) is excellent.
The weight average molecular weight of the epoxy resin is measured by gel permeation chromatography (GPC).

ビスマレイミド樹脂としては、特開平7−70315号公報に記載されるような、ビスフェノールA型シアン酸エステル樹脂とビスマレイミド化合物とを併用した樹脂組成物(BTレジン)や、国際公開第2013/008667号に記載の発明やその背景技術に記載のものが挙げられる。 Examples of the bismaleimide resin include a resin composition (BT resin) in which a bisphenol A type cyanate ester resin and a bismaleimide compound are used in combination, as described in Japanese Patent Application Laid-Open No. 7-70315, and International Publication No. 2013/0083667. Examples thereof include those described in the invention described in the item and the background technology thereof.

第2の樹脂として、熱硬化性樹脂を用いる場合、本発明の液状組成物は硬化剤を含んでもよい。硬化剤としては、熱硬化剤(メラミン樹脂、ウレタン樹脂等)、エポキシ硬化剤(ノボラック型フェノール樹脂、イソフタル酸ジヒドラジド、アジピン酸ジヒドラジド等)等が挙げられる。 When a thermosetting resin is used as the second resin, the liquid composition of the present invention may contain a curing agent. Examples of the curing agent include thermosetting agents (melamine resin, urethane resin, etc.), epoxy curing agents (novolac type phenol resin, isophthalic acid dihydrazide, adipic acid dihydrazide, etc.) and the like.

本発明の液状組成物中の樹脂パウダーの含有量は、第2の樹脂の100質量部に対して、5〜500質量部が好ましく、10〜400質量部が好ましく、20〜300質量部が特に好ましい。樹脂パウダーの含有量が前記範囲の下限値以上であれば、液状組成物を用いて形成したフィルム等が電気特性に優れる。樹脂パウダーの含有量が前記範囲の上限値以下であれば、液状組成物において樹脂パウダーが均一に分散しやすく、また液状組成物を用いて形成したフィルム等が機械的強度に優れる。 The content of the resin powder in the liquid composition of the present invention is preferably 5 to 500 parts by mass, preferably 10 to 400 parts by mass, and particularly 20 to 300 parts by mass with respect to 100 parts by mass of the second resin. preferable. When the content of the resin powder is at least the lower limit of the above range, a film or the like formed by using the liquid composition has excellent electrical characteristics. When the content of the resin powder is not more than the upper limit of the above range, the resin powder is likely to be uniformly dispersed in the liquid composition, and the film or the like formed by using the liquid composition is excellent in mechanical strength.

本発明の液状組成物が第2の樹脂を含む場合、液状組成物中の液状媒体の含有量は、樹脂パウダーおよび第2の樹脂の合計100質量部に対して、1〜1000質量部が好ましく、10〜500質量部がより好ましく、30〜250質量部が特に好ましい。液状媒体の含有量が前記範囲の下限値以上であれば、液状組成物の粘度が高すぎず、後述の製膜時の塗工性が良好となる。液状媒体の含有量が前記範囲の上限値以下であれば、液状組成物の粘度が低すぎず製膜時の塗工性が良好であり、また液状媒体の使用量が少ないため、液状媒体の除去工程に由来する製膜品への外観不良が起こりにくい。
なお、第2の樹脂が液状媒体とともに配合された場合(例えば、第2の樹脂の分散液や溶液が、樹脂パウダーと液状媒体とを含む組成物に配合された場合)、液状組成物中の液状媒体の含有量とは、それら液状媒体を合計した含有量である。
When the liquid composition of the present invention contains the second resin, the content of the liquid medium in the liquid composition is preferably 1 to 1000 parts by mass with respect to 100 parts by mass in total of the resin powder and the second resin. , 10 to 500 parts by mass is more preferable, and 30 to 250 parts by mass is particularly preferable. When the content of the liquid medium is not more than the lower limit of the above range, the viscosity of the liquid composition is not too high, and the coatability at the time of film formation described later is good. When the content of the liquid medium is not more than the upper limit of the above range, the viscosity of the liquid composition is not too low, the coatability at the time of film formation is good, and the amount of the liquid medium used is small. Poor appearance of the film-formed product due to the removal process is unlikely to occur.
When the second resin is blended together with the liquid medium (for example, when the dispersion liquid or solution of the second resin is blended in the composition containing the resin powder and the liquid medium), it is contained in the liquid composition. The content of the liquid medium is the total content of the liquid media.

本発明の液状組成物が硬化剤を含む場合、液状組成物中の硬化剤の含有量は、熱硬化性樹脂が持つ反応性基量に対して、0.5〜2.0当量が好ましく、0.8〜1.2当量がより好ましい。 When the liquid composition of the present invention contains a curing agent, the content of the curing agent in the liquid composition is preferably 0.5 to 2.0 equivalents with respect to the amount of reactive groups of the thermosetting resin. 0.8 to 1.2 equivalents are more preferred.

本発明の液状組成物の製造方法は、特に限定されず、例えば、樹脂パウダーと、必要に応じて使用する他の成分と、液状媒体とを混合して撹拌する方法が挙げられる。混合撹拌の手段としては、例えば、ホモミキサー、高速攪拌機、超音波分散機、ホモジナイザー、湿式ボールミル、ビーズミル、湿式ジェットミルなどの分散機を使用することが好ましい。
本発明の液状組成物が界面活性剤を含む場合、界面活性剤を含む本発明の液状組成物の場合、樹脂パウダーと界面活性剤と液状媒体とを、分散機を用いて分散させることにより、分散状態において樹脂パウダーの動的光散乱法による平均粒径が、0.3〜6μm以下の微粒子径であり保存安定性、長期保存後の再分散性に優れた安定な液状組成物を得ることができる。
The method for producing the liquid composition of the present invention is not particularly limited, and examples thereof include a method in which a resin powder, other components used as necessary, and a liquid medium are mixed and stirred. As the means for mixing and stirring, for example, it is preferable to use a disperser such as a homomixer, a high-speed stirrer, an ultrasonic disperser, a homogenizer, a wet ball mill, a bead mill, or a wet jet mill.
When the liquid composition of the present invention contains a surfactant, in the case of the liquid composition of the present invention containing a surfactant, the resin powder, the surfactant and the liquid medium are dispersed by using a disperser. To obtain a stable liquid composition in which the average particle size of the resin powder by the dynamic light scattering method in the dispersed state is 0.3 to 6 μm or less and excellent in storage stability and redispersibility after long-term storage. Can be done.

本発明の液状組成物を用いれば、樹脂パウダーを粉体として扱う場合に比べて、樹脂パウダーを飛散させることなく熱可塑性樹脂等に均一に分散できる。
また、本発明の液状組成物では、平均粒径およびD90が特定の範囲に制御された樹脂パウダーが液状媒体に分散されているため、分散性に優れている。そのため、本発明の液状組成物を用いてフィルムや積層体等を形成した際に、それらにおける樹脂パウダーの分散の不均一化に起因する電気特性の低下や、他基材の密着性力の低下等の不具合を抑制できる。
When the liquid composition of the present invention is used, it can be uniformly dispersed in a thermoplastic resin or the like without scattering the resin powder, as compared with the case where the resin powder is treated as a powder.
Further, in the liquid composition of the present invention, since the resin powder in which the average particle size and D90 are controlled in a specific range is dispersed in the liquid medium, the dispersibility is excellent. Therefore, when a film, a laminate, or the like is formed using the liquid composition of the present invention, the electrical characteristics are deteriorated due to the non-uniform dispersion of the resin powder in them, and the adhesive force of other base materials is deteriorated. It is possible to suppress problems such as.

本発明の液状組成物が他の成分としてフィラーを含む場合、樹脂パウダーとともにフィラーのパウダーを液状媒体に分散させることにより本発明の液状組成物を製造できる。フィラーの分散液を樹脂パウダーとともに液状媒体に配合してもよく、フィラーの分散液と樹脂パウダーの分散液とを混合してもよい。フィラーの分散液における液状媒体としては、前記液状媒体を使用できる。フィラーや非熱溶融性樹脂の分散液と樹脂パウダーの分散液における液状媒体が異なる場合は、それら液状媒体が相溶性であればよい。 When the liquid composition of the present invention contains a filler as another component, the liquid composition of the present invention can be produced by dispersing the filler powder together with the resin powder in a liquid medium. The dispersion liquid of the filler may be blended with the resin powder in the liquid medium, or the dispersion liquid of the filler and the dispersion liquid of the resin powder may be mixed. As the liquid medium in the dispersion liquid of the filler, the liquid medium can be used. When the liquid mediums in the dispersion liquid of the filler or non-heat-meltable resin and the dispersion liquid of the resin powder are different, the liquid media may be compatible.

他の成分が第2の樹脂の場合、液状媒体に非溶解性の樹脂はその樹脂の粉末を樹脂パウダーとともに液状媒体に分散させて本発明の液状組成物を製造することができる。また、あらかじめ液状媒体に分散させた第2の樹脂の分散液を樹脂パウダー分散液に混合して製造することもでき、第2の樹脂の分散液に樹脂パウダーを分散させて製造することもできる。
第2の樹脂が液状媒体に溶解性の樹脂の場合、樹脂パウダーの分散液に第2の樹脂の配合し溶解させて本発明の液状組成物を製造することができる。第2の樹脂を液状媒体の溶液に混合して製造することもでき、該溶液に樹脂パウダーを分散させて製造することもできる。
樹脂パウダーの分散液と、他の成分を含む液の混合方法は、特に限定されず、例えば、公知の撹拌機を用いる方法が挙げられる。液状組成物にフィラーや硬化剤等を含ませる場合、それらは混合前の分散液に添加してもよく、混合前の他の成分を含む液に添加してもよく、混合後の混合液に添加してもよい。
When the other component is the second resin, the resin insoluble in the liquid medium can produce the liquid composition of the present invention by dispersing the resin powder together with the resin powder in the liquid medium. Further, it can be produced by mixing a second resin dispersion liquid previously dispersed in a liquid medium with a resin powder dispersion liquid, or by dispersing a resin powder in a second resin dispersion liquid. ..
When the second resin is a resin soluble in a liquid medium, the liquid composition of the present invention can be produced by blending and dissolving the second resin in a dispersion of resin powder. The second resin can be produced by mixing it with a solution of a liquid medium, or can be produced by dispersing the resin powder in the solution.
The method for mixing the dispersion liquid of the resin powder and the liquid containing other components is not particularly limited, and examples thereof include a method using a known stirrer. When the liquid composition contains a filler, a curing agent, etc., they may be added to the dispersion liquid before mixing, may be added to a liquid containing other components before mixing, or may be added to the mixed liquid after mixing. It may be added.

本発明の液状組成物は、例えば、後述するフィルム、繊維強化フィルム、プリプレグ、積層体の製造に使用できる。
また、本発明の液状組成物は、平角導体の絶縁層の形成にも使用できる。例えば、ポリアミドイミド、ポリイミド、ポリエステルイミドのうちいずれかの樹脂を主成分とする絶縁層を形成する際に、該樹脂を含む液である絶縁塗料に本発明の液状組成物を配合した液状組成物を用いることで、絶縁層の誘電率を低下させることが可能である。絶縁層の誘電率の低下は、絶縁塗料に樹脂パウダーを添加した塗料でも達成できるが、分散性の観点で、絶縁塗料に本発明の液状組成物を配合した液状組成物を用いることが好ましい。絶縁層の具体例としては、例えば、特開2013−191356号公報に記載された絶縁皮膜が挙げられる。
The liquid composition of the present invention can be used, for example, in the production of films, fiber-reinforced films, prepregs, and laminates, which will be described later.
The liquid composition of the present invention can also be used for forming an insulating layer of a flat conductor. For example, when forming an insulating layer containing any resin of polyamide-imide, polyimide, or polyesterimide as a main component, a liquid composition obtained by blending the liquid composition of the present invention with an insulating coating material which is a liquid containing the resin. It is possible to reduce the dielectric constant of the insulating layer by using. The decrease in the dielectric constant of the insulating layer can be achieved by adding a resin powder to the insulating paint, but from the viewpoint of dispersibility, it is preferable to use a liquid composition obtained by blending the liquid composition of the present invention with the insulating paint. Specific examples of the insulating layer include the insulating film described in JP2013-191356A.

また、本発明の液状組成物は、シームレスベルトの形成にも使用できる。例えば、ポリイミド系樹脂と導電性フィラーを含む液に対して本発明の液状組成物を配合した液状組成物を使用することで、記録媒体(紙)の搬送性に優れ、かつ、清掃性に優れるシームレスベルトを提供できる。記録媒体の搬送性に優れ、清掃性に優れるシームレスベルトは、ポリイミド系樹脂と導電性フィラーを含む液に樹脂パウダーを添加したものでも得られるが、分散性の観点で、前記液に本発明の液状組成物を配合した液状組成物を用いることが好ましい。シームレスベルトとしては、例えば、特開2011−240616号公報に記載されたものが挙げられる。 The liquid composition of the present invention can also be used for forming a seamless belt. For example, by using a liquid composition obtained by blending the liquid composition of the present invention with a liquid containing a polyimide resin and a conductive filler, the recording medium (paper) is excellent in transportability and cleanability. We can provide seamless belts. A seamless belt having excellent transportability and cleanability of a recording medium can be obtained by adding resin powder to a liquid containing a polyimide resin and a conductive filler, but from the viewpoint of dispersibility, the liquid of the present invention can be obtained. It is preferable to use a liquid composition containing the liquid composition. Examples of the seamless belt include those described in Japanese Patent Application Laid-Open No. 2011-240616.

[フィルムの製造方法]
本発明のフィルムの製造方法は、本発明の液状組成物を製膜化するとともに液状媒体を除去することを特徴とする。製膜化方法は、担体表面上への塗布が好ましく、担体上に塗布することにより液状組成物からなる膜が形成される。液状組成物の膜が形成された後、液状組成物の膜を加熱するなどの方法で液状媒体を揮発させ、液状媒体が除去された固体状の膜や少なくとも液状媒体の一部が除去された非流動性の膜が形成される。以下、液状媒体の除去を「乾燥」ともいい、塗布する操作を「塗工」ともいう。
液状組成物の製膜方法としては、特に限定されず、例えば、スプレー法、ロールコート法、スピンコート法、バー塗布法、グラビアコート法、マイクログラビアコート法、グラビアオフセット法、ナイフコート法、キスコート法、バーコート法、ダイコート法、ファウンテンメイヤーバー法、スロットダイコート法等の公知の湿式塗布方法が挙げられる。
[Film manufacturing method]
The method for producing a film of the present invention is characterized in that the liquid composition of the present invention is formed into a film and the liquid medium is removed. The film-forming method is preferably applied on the surface of the carrier, and by applying on the carrier, a film made of a liquid composition is formed. After the film of the liquid composition was formed, the liquid medium was volatilized by a method such as heating the film of the liquid composition, and the solid film from which the liquid medium was removed or at least a part of the liquid medium was removed. A non-fluid film is formed. Hereinafter, the removal of the liquid medium is also referred to as "drying", and the operation of applying is also referred to as "coating".
The film forming method of the liquid composition is not particularly limited, and for example, a spray method, a roll coating method, a spin coating method, a bar coating method, a gravure coating method, a micro gravure coating method, a gravure offset method, a knife coating method, and a kiss coating method. Examples thereof include known wet coating methods such as a method, a bar coating method, a die coating method, a fountain Mayer bar method, and a slot die coating method.

乾燥においては、必ずしも液状媒体を完全に除去する必要はなく、塗膜が膜形状を安定して維持できるまで行えばよい。乾燥においては、液状組成物に含まれていた液状媒体のうち、50質量%以上を除去することが好ましい。
乾燥方法は、特に限定されず、例えば、オーブンにより加熱する方法、連続乾燥炉により加熱する方法、赤外線等の熱線照射により加熱する方法等が挙げられる。
乾燥温度は、液状媒体が除去される際に気泡が生じない範囲であればよく、例えば、50〜250℃が好ましく、70〜220℃がより好ましい。
乾燥時間は、0.1〜30分が好ましく、0.5〜20分がより好ましい。
乾燥は、1段階で実施してもよく、異なる温度にて2段階以上で実施してもよい。
In the drying, it is not always necessary to completely remove the liquid medium, and the drying may be performed until the coating film can maintain the film shape stably. In drying, it is preferable to remove 50% by mass or more of the liquid medium contained in the liquid composition.
The drying method is not particularly limited, and examples thereof include a method of heating in an oven, a method of heating in a continuous drying furnace, a method of heating by irradiation with heat rays such as infrared rays, and the like.
The drying temperature may be in the range where bubbles do not occur when the liquid medium is removed, and is preferably 50 to 250 ° C, more preferably 70 to 220 ° C, for example.
The drying time is preferably 0.1 to 30 minutes, more preferably 0.5 to 20 minutes.
Drying may be carried out in one step or in two or more steps at different temperatures.

本発明のフィルムの製造方法としては、乾燥後の膜を別途加熱するかまたは乾燥に引き続いて加熱し、重合体(X)を溶融させることが好ましい。重合体(X)を溶融させることにより、樹脂パウダーの個々の粒子を溶融一体化し、均質な樹脂膜とすることができる。本発明の液状組成物がフィラーを有する場合は、フィラーが均一に分散した樹脂膜を得ることができる。本発明の液状組成物が熱溶融性の第2の樹脂を含有する場合は、重合体(X)と第2の樹脂との溶融ブレンド物からなる樹脂膜を製造することができる。熱硬化性の第2の樹脂を含有する場合は、重合体(X)と第2の樹脂の硬化物からなる樹脂膜を製造することができる。樹脂膜の加熱は膜の露出面からの加熱に限られず、担体側から加熱することもできる。また、重合体(X)を溶融させるための加熱は加圧下に行うこともでき、加熱加圧下の溶融等により、より均質な膜とすることができる。 As a method for producing a film of the present invention, it is preferable to separately heat the dried film or heat the film after drying to melt the polymer (X). By melting the polymer (X), the individual particles of the resin powder can be melted and integrated to form a homogeneous resin film. When the liquid composition of the present invention has a filler, a resin film in which the filler is uniformly dispersed can be obtained. When the liquid composition of the present invention contains a heat-meltable second resin, a resin film composed of a melt-blended product of the polymer (X) and the second resin can be produced. When the thermosetting second resin is contained, a resin film composed of the polymer (X) and a cured product of the second resin can be produced. Heating of the resin film is not limited to heating from the exposed surface of the film, and heating can also be performed from the carrier side. Further, heating for melting the polymer (X) can also be performed under pressure, and a more homogeneous film can be obtained by melting under heating and pressurization.

重合体(X)を溶融させるための加熱方法としては、オーブン加熱、熱線照射加熱、連続乾燥炉による加熱、熱板や熱ロールによる加熱等が挙げられる。
重合体(X)を溶融させるための加熱は、閉鎖系で行うこともできる。液状媒体が存在する塗膜の乾燥においては、気化した液状媒体が膜から除去されなければならないことより、膜の片面は解放面である必要がある。一方、液状媒体が膜から充分に除去された後の加熱では、液状媒体の除去を必要としないことより、たとえば2枚の加熱板の間で加圧して均質性の高い膜を製造することができる。
重合体(X)を溶融させるための加熱温度は、270〜400℃が好ましく、310〜370℃がより好ましい。
加熱時間は、1〜300分が好ましく、3〜60分がより好ましい。
Examples of the heating method for melting the polymer (X) include oven heating, heat ray irradiation heating, heating by a continuous drying furnace, heating by a hot plate or a heat roll, and the like.
The heating for melting the polymer (X) can also be performed in a closed system. In drying a coating film in which a liquid medium is present, one side of the film needs to be an open surface because the vaporized liquid medium must be removed from the film. On the other hand, heating after the liquid medium is sufficiently removed from the film does not require removal of the liquid medium, so that, for example, pressure can be applied between two heating plates to produce a highly homogeneous film.
The heating temperature for melting the polymer (X) is preferably 270 to 400 ° C, more preferably 310 to 370 ° C.
The heating time is preferably 1 to 300 minutes, more preferably 3 to 60 minutes.

特に、有効波長帯は2〜20μmである遠赤外線を用いた熱線照射加熱方法が、樹脂の均質な溶融をもたらし、溶融不充分な粒子の残存が少ない溶融樹脂膜を得る方法として好ましい。照射する遠赤外線の有効波長帯は、3〜7μmがより好ましい。また、遠赤外線加熱と熱風加熱を組み合わせて加熱することもできる。
また、遠赤外線を放射する加熱プレートから膜面に向かって熱輻射が放出されるとともに、不活性ガスを噴射しつつ加熱すると、より効率よく熱処理が行われる。担体側から加熱する場合も、膜面側に不活性ガスを噴射することが同様に好ましい。また、加熱対象が酸化する場合は、遠赤外線を放射する際に膜面側の雰囲気中の酸素濃度を500ppmから100ppmにすることが好ましく、さらには300ppmから200ppmが好ましい。
In particular, a heat ray irradiation heating method using far infrared rays having an effective wavelength band of 2 to 20 μm is preferable as a method for obtaining a molten resin film in which uniform melting of the resin is achieved and few particles with insufficient melting remain. The effective wavelength band of the far infrared rays to be irradiated is more preferably 3 to 7 μm. It is also possible to heat by combining far-infrared heating and hot air heating.
In addition, heat radiation is emitted from the heating plate that emits far infrared rays toward the film surface, and heat treatment is performed more efficiently by heating while injecting an inert gas. When heating from the carrier side, it is similarly preferable to inject the inert gas onto the film surface side. When the object to be heated is oxidized, the oxygen concentration in the atmosphere on the film surface side is preferably 500 ppm to 100 ppm, more preferably 300 ppm to 200 ppm when radiating far infrared rays.

本発明の製造方法によって製造されたフィルムが、後述の積層体の材料として使用される場合など、フィルムの用途によっては、本発明の液状組成物中の樹脂パウダー中の重合体(X)が充分溶融されていない状態のフィルムであってもよい。フィルムが加熱されて均質な重合体(X)となる用途にはそのようなフィルムを使用することができる。また、第2の樹脂を含む本発明の液状組成物においても、フィルムの用途によっては(後述のプリプレグ製造の場合など)その第2の樹脂は充分溶融されていなくてもよく、熱硬化性樹脂等の硬化性樹脂は充分硬化されていなくてもよい。
上記の用途以外に使用されるフィルムにおいては、溶融性の第2の樹脂は溶融して均質化していることが好ましく、硬化性樹脂は充分硬化されていることが好ましい。たとえば、ポリアミック酸の場合は、乾燥後の加熱はポリアミック酸がポリイミドとなる温度(例えば、350〜550℃)に加熱されることが好ましく、たとえば、エポキシ樹脂の場合はその硬化温度(例えば、50〜250℃)に加熱されることが好ましい。
Depending on the use of the film, such as when the film produced by the production method of the present invention is used as a material for a laminate described later, the polymer (X) in the resin powder in the liquid composition of the present invention is sufficient. The film may be in an unmelted state. Such films can be used in applications where the film is heated to a homogeneous polymer (X). Further, even in the liquid composition of the present invention containing the second resin, the second resin may not be sufficiently melted depending on the use of the film (such as in the case of prepreg production described later), and is a thermosetting resin. The curable resin such as, etc. does not have to be sufficiently cured.
In films used for purposes other than the above, the meltable second resin is preferably melted and homogenized, and the curable resin is preferably sufficiently cured. For example, in the case of a polyamic acid, the heating after drying is preferably heated to a temperature at which the polyamic acid becomes polyimide (for example, 350 to 550 ° C.), and in the case of an epoxy resin, for example, its curing temperature (for example, 50). It is preferable to heat to ~ 250 ° C.).

担体上に形成された膜を担体から分離することにより、フィルムが得られる。担体として、非付着性の表面を有する担体を用いることにより、容易に分離することができる。また、付着性表面を有する担体においては、付着性を低減させる表面処理等を施した担体を用いることが好ましい。また、付着性の高い表面を有する担体の場合は、担体を溶解させる等の手段で除去することもできる。たとえば、金属製担体の場合は、エッチング等で担体を除去することができる。 A film is obtained by separating the film formed on the carrier from the carrier. By using a carrier having a non-adhesive surface as the carrier, it can be easily separated. Further, as the carrier having an adhesive surface, it is preferable to use a carrier that has been subjected to a surface treatment or the like to reduce the adhesiveness. Further, in the case of a carrier having a highly adhesive surface, the carrier can be removed by means such as dissolving the carrier. For example, in the case of a metal carrier, the carrier can be removed by etching or the like.

本発明のフィルムの製造方法で得られるフィルムは、金属積層板およびプリント基板の製造に使用できる。これらの用途に使用されるフィルムとしては、樹脂パウダーと液状媒体のみを含むか、または、さらに界面活性剤を含む液状組成物から得られるフィルムが好ましい。場合によっては、フィラーを含む液状組成物であってもよい。
なお、本発明のフィルムの製造方法によって、後述の繊維強化フィルムやプリプレグと呼ばれるフィルムを製造することもできる。さらに、担体と分離されないことを除き、本発明のフィルムの製造方法と同様の方法で、積層体を製造することもできる。本発明の積層体の製造方法においては、分離されない担体を基材という。
The film obtained by the method for producing a film of the present invention can be used for producing a metal laminate and a printed circuit board. As the film used for these applications, a film containing only a resin powder and a liquid medium, or a film obtained from a liquid composition further containing a surfactant is preferable. In some cases, it may be a liquid composition containing a filler.
It should be noted that the film manufacturing method of the present invention can also be used to manufacture a fiber-reinforced film or a film called a prepreg, which will be described later. Further, the laminate can be produced by the same method as the method for producing a film of the present invention, except that it is not separated from the carrier. In the method for producing a laminate of the present invention, the carrier that is not separated is referred to as a base material.

後述の繊維強化フィルムやプリプレグを除き(すなわち、強化繊維を含むものを除き)、本発明の製造方法で製造されるフィルムの厚みは、1〜3000μmが好ましい。プリント基板用途の場合、フィルムの厚みは、3〜2000μmがより好ましく、5〜1000μmがさらに好ましく、6〜500μmが特に好ましい。
上記フィルムの比誘電率は、2.0〜3.5が好ましく、2.0〜3.0が特に好ましい。比誘電率が前記範囲の上限値以下であれば、プリント基板用途等の低誘電率が求められる用途に有用である。比誘電率が前記範囲の下限値以上であれば、電気特性と接着融着性の双方に優れる。
後述の繊維強化フィルムやプリプレグを除き、本発明の製造方法で製造されるフィルムは、MD方向(液状組成物の塗工方向)およびTD方向(MD方向の垂直方向)における熱膨張(収縮)率の比(以下、熱膨張(収縮)変化比、とも記す)であるx/yが1.0〜1.4であることが好ましく、1.0〜1.3であることがより好ましい。x/yが前記範囲であると金属積層板およびプリント基板を形成した際の反りが抑制されるため好ましい。なお、熱膨張(収縮)変化比は、x方向(大きい熱膨張(収縮)率)とy方向(小さい熱膨張(収縮)率)の比であり、「x/y」で表す。
また、上記フィルムは、表面の算術平均粗さRaが樹脂厚み未満であり、2.0μm以上であることが好ましい。これにより、表面にプリプレグ等の積層対象物を熱プレスにより貼り合わせた場合に、フィルムと積層対象物の間で優れた密着性が得られる。
Raは、2.0〜30μmが好ましく、2.1〜10μmがより好ましく、2.2〜5μmがさらに好ましい。Raが前記範囲の下限値以上であれば、フィルムと積層対象物との密着性に優れる。Raが前記範囲の上限値以下であれば、フィルムに貫通穴が形成されにくい。
Except for the fiber-reinforced film and prepreg described later (that is, those containing reinforcing fibers), the thickness of the film produced by the production method of the present invention is preferably 1 to 3000 μm. For printed circuit board applications, the film thickness is more preferably 3 to 2000 μm, even more preferably 5 to 1000 μm, and particularly preferably 6 to 500 μm.
The relative permittivity of the film is preferably 2.0 to 3.5, and particularly preferably 2.0 to 3.0. When the relative permittivity is not more than the upper limit of the above range, it is useful for applications requiring a low dielectric constant such as printed circuit board applications. When the relative permittivity is at least the lower limit of the above range, both the electrical characteristics and the adhesive fusion property are excellent.
Except for the fiber-reinforced film and prepreg described later, the film produced by the production method of the present invention has a coefficient of thermal expansion (shrinkage) in the MD direction (coating direction of the liquid composition) and the TD direction (vertical direction in the MD direction). X / y, which is the ratio of (hereinafter, also referred to as thermal expansion (contraction) change ratio), is preferably 1.0 to 1.4, and more preferably 1.0 to 1.3. When x / y is in the above range, warpage when forming the metal laminated board and the printed circuit board is suppressed, which is preferable. The coefficient of change in thermal expansion (contraction) is the ratio between the x direction (large coefficient of thermal expansion (contraction)) and the y direction (small coefficient of thermal expansion (contraction)), and is represented by "x / y".
Further, it is preferable that the arithmetic average roughness Ra of the surface of the film is less than the resin thickness and 2.0 μm or more. As a result, when a laminated object such as a prepreg is bonded to the surface by a hot press, excellent adhesion between the film and the laminated object can be obtained.
Ra is preferably 2.0 to 30 μm, more preferably 2.1 to 10 μm, and even more preferably 2.2 to 5 μm. When Ra is at least the lower limit of the above range, the adhesion between the film and the object to be laminated is excellent. When Ra is equal to or less than the upper limit of the above range, through holes are unlikely to be formed in the film.

本発明のフィルムの製造方法により、本発明の液状組成物を担体上に配置した強化繊維基材に含浸させ、乾燥した後に加熱して繊維強化フィルムを製造することができる。
強化繊維としては、無機繊維、金属繊維、有機繊維等が挙げられる。
無機繊維としては、炭素繊維、黒鉛繊維、ガラス繊維、シリコンカーバイト繊維、シリコンナイトライド繊維、アルミナ繊維、炭化珪素繊維、ボロン繊維等が挙げられる。
金属繊維としては、アルミニウム繊維、黄銅繊維、ステンレス繊維等が挙げられる。
有機繊維としては、芳香族ポリアミド繊維、ポリアラミド繊維、ポリパラフェニレンベンズオキサゾール(PBO)繊維、ポリフェニレンスルフィド繊維、ポリエステル繊維、アクリル繊維、ナイロン繊維、ポリエチレン繊維等が挙げられる。
強化繊維基材を形成する強化繊維としては、ガラス繊維、アラミド繊維および炭素繊維が好ましい。強化繊維としては、比重が小さく、高強度、高弾性率である点から、炭素繊維が特に好ましい。強化繊維は、表面処理が施されているものであってもよい。強化繊維としては、1種を単独で用いてもよく、2種以上を併用してもよい。
強化繊維は、表面処理が施されているものであってもよい。また、プリント基板用途では、強化繊維としては、ガラス繊維が好ましい。
According to the method for producing a film of the present invention, the liquid composition of the present invention can be impregnated into a reinforcing fiber base material arranged on a carrier, dried, and then heated to produce a fiber-reinforced film.
Examples of the reinforcing fiber include inorganic fiber, metal fiber, organic fiber and the like.
Examples of the inorganic fiber include carbon fiber, graphite fiber, glass fiber, silicon carbide fiber, silicon nitride fiber, alumina fiber, silicon carbide fiber, boron fiber and the like.
Examples of the metal fiber include aluminum fiber, brass fiber, stainless steel fiber and the like.
Examples of the organic fiber include aromatic polyamide fiber, polyaramid fiber, polyparaphenylene benzoxazole (PBO) fiber, polyphenylene sulfide fiber, polyester fiber, acrylic fiber, nylon fiber, polyethylene fiber and the like.
As the reinforcing fiber forming the reinforcing fiber base material, glass fiber, aramid fiber and carbon fiber are preferable. As the reinforcing fiber, carbon fiber is particularly preferable because it has a small specific gravity, high strength, and a high elastic modulus. The reinforcing fiber may be one that has been surface-treated. As the reinforcing fiber, one type may be used alone, or two or more types may be used in combination.
The reinforcing fiber may be one that has been surface-treated. Further, in the use of printed circuit boards, glass fiber is preferable as the reinforcing fiber.

強化繊維基材の形態としては、繊維強化フィルムの機械的特性の点から、シート状に加工されたものが好ましい。具体的には、例えば、複数の強化繊維からなる強化繊維束を織成してなるクロス、複数の強化繊維が一方向に引き揃えられた基材、それらを積み重ねたもの等が挙げられる。強化繊維は、強化繊維シートの長さ方向の全長または幅方向の全幅にわたり連続している必要はなく、途中で分断されていてもよい。
強化繊維としては、長さが10mm以上の連続した長繊維が好ましい。強化繊維は、強化繊維シートの長さ方向の全長または幅方向の全幅にわたり連続している必要はなく、途中で分断されていてもよい。
As the form of the reinforcing fiber base material, one processed into a sheet shape is preferable from the viewpoint of the mechanical properties of the fiber reinforced film. Specific examples thereof include a cloth made by weaving a bundle of reinforcing fibers made of a plurality of reinforcing fibers, a base material in which a plurality of reinforcing fibers are aligned in one direction, and a stack of them. The reinforcing fibers need not be continuous over the entire length in the length direction or the entire width in the width direction of the reinforcing fiber sheet, and may be divided in the middle.
As the reinforcing fiber, continuous long fibers having a length of 10 mm or more are preferable. The reinforcing fibers need not be continuous over the entire length in the length direction or the entire width in the width direction of the reinforcing fiber sheet, and may be divided in the middle.

強化繊維基材に本発明の液状組成物を含浸させた後、乾燥して液状媒体の少なくとも一部を除去し、さらに加熱する。含浸後の乾燥および加熱は、前記と同様に行える。繊維強化フィルムにおいては、その中に含まれる樹脂パウダーに由来する樹脂は、繊維強化フィルムの形状が保持される限り、充分に溶融されていなくてもよい。そのような繊維強化フィルムは成形材料として使用でき、成形とともに加熱加圧して成形体を製造できる。 After impregnating the reinforcing fiber base material with the liquid composition of the present invention, it is dried to remove at least a part of the liquid medium, and further heated. Drying and heating after impregnation can be performed in the same manner as described above. In the fiber-reinforced film, the resin derived from the resin powder contained therein may not be sufficiently melted as long as the shape of the fiber-reinforced film is maintained. Such a fiber-reinforced film can be used as a molding material, and can be heated and pressed together with molding to produce a molded product.

本発明の製造方法で得られる繊維強化フィルムは、金属積層板およびプリント基板の製造に使用できる。
繊維強化フィルムの厚みは、1〜3000μmが好ましい。プリント基板用途の場合、繊維強化フィルムの厚みは、3〜2000μmがより好ましく、5〜1000μmがさらに好ましく、6〜500μmが特に好ましい。
The fiber-reinforced film obtained by the production method of the present invention can be used for producing a metal laminate and a printed circuit board.
The thickness of the fiber reinforced film is preferably 1 to 3000 μm. For printed circuit board applications, the thickness of the fiber reinforced film is more preferably 3 to 2000 μm, further preferably 5 to 1000 μm, and particularly preferably 6 to 500 μm.

繊維強化フィルムの比誘電率は、2.0〜3.5が好ましく、2.0〜3.0が特に好ましい。比誘電率が前記範囲の上限値以下であれば、プリント基板用途等の低誘電率が求められる用途に有用である。比誘電率が前記範囲の下限値以上であれば、電気特性と融着性の双方に優れる。 The relative permittivity of the fiber-reinforced film is preferably 2.0 to 3.5, and particularly preferably 2.0 to 3.0. When the relative permittivity is not more than the upper limit of the above range, it is useful for applications requiring a low dielectric constant such as printed circuit board applications. When the relative permittivity is at least the lower limit of the above range, both electrical characteristics and fusion properties are excellent.

本発明のフィルムの製造方法により、本発明の液状組成物を担体上に配置した強化繊維基材に含浸させ、乾燥させてプリプレグを製造することができる。プリプレグの製造は、乾燥後の加熱を行わないかまたは充分加熱することなく行うことを除き、前記繊維強化フィルムの製造と同様に行える。すなわち、プリプレグは、強化繊維と溶融されていない(または充分溶融されていない)樹脂パウダーと、第2の樹脂である未硬化の硬化性樹脂とを含むフィルムである。
プリプレグ製造に使用される液状組成物は、第2の樹脂として未硬化の硬化性樹脂を含む。未硬化の硬化性樹脂としては、常温で固体状の熱硬化性樹脂が好ましい。常温で液状の熱硬化性樹脂の場合は、プリプレグ製造においける乾燥後の加熱により部分硬化させ、熱硬化し得る固体状の樹脂とすることができる。
According to the method for producing a film of the present invention, the liquid composition of the present invention can be impregnated into a reinforcing fiber base material arranged on a carrier and dried to produce a prepreg. The production of the prepreg can be carried out in the same manner as the production of the fiber-reinforced film, except that the prepreg is not heated after drying or is not sufficiently heated. That is, the prepreg is a film containing reinforcing fibers, an unmelted (or not sufficiently melted) resin powder, and an uncured curable resin which is a second resin.
The liquid composition used in the production of prepreg contains an uncured curable resin as a second resin. As the uncured curable resin, a thermosetting resin that is solid at room temperature is preferable. In the case of a thermosetting resin that is liquid at room temperature, it can be partially cured by heating after drying in prepreg production to obtain a solid resin that can be thermally cured.

プリプレグ製造における乾燥においては、液状媒体が残存していてもよい。プリプレグにおいては、液状組成物に含まれていた液状媒体のうち、70質量%以上が除去されていることが好ましい。
本発明の液状組成物が第2の樹脂として熱硬化性樹脂を含む場合には、乾燥後の加熱で熱硬化性樹脂が硬化しやすいことより、乾燥後の加熱は熱硬化性樹脂が硬化しない温度で行うことが好ましい。ただし、前記のように、部分硬化させることが好ましい場合もある。この場合、通常、重合体(X)は溶融されないことより、プリプレグを硬化させる場合に重合体(X)が溶融する温度で行うことが好ましい。
In the drying in the prepreg production, the liquid medium may remain. In the prepreg, it is preferable that 70% by mass or more of the liquid medium contained in the liquid composition is removed.
When the liquid composition of the present invention contains a thermosetting resin as the second resin, the thermosetting resin is easily cured by heating after drying, so that the heating after drying does not cure the thermosetting resin. It is preferable to carry out at temperature. However, as described above, it may be preferable to partially cure. In this case, since the polymer (X) is not usually melted, it is preferable to perform the prepreg at a temperature at which the polymer (X) is melted when it is cured.

本発明の製造方法で得られるプリプレグは成形材料として使用でき、成形とともに加熱加圧して成形体を製造できる。例えば、金属積層板およびプリント基板の製造に使用できる。また、本発明の製造方法で得られるプレプリグは、プリント基板のような電子部品用途以外にも使用できる。例えば、岸壁工事において耐久性と軽量性が必要とされる矢板の材料や、航空機、自動車、船舶、風車、スポー用具等の様々な用途に向けた部材を製造する材料としても使用できる。 The prepreg obtained by the production method of the present invention can be used as a molding material, and a molded product can be produced by heating and pressurizing with molding. For example, it can be used in the manufacture of metal laminates and printed circuit boards. Further, the preprig obtained by the manufacturing method of the present invention can be used for applications other than electronic components such as printed circuit boards. For example, it can be used as a material for sheet piles that are required to be durable and lightweight in quay construction, and as a material for manufacturing members for various uses such as aircraft, automobiles, ships, wind turbines, and sporting tools.

プリプレグの比誘電率は、2.0〜4.0が好ましく、2.0〜3.5が特に好ましい。比誘電率が前記範囲の上限値以下であれば、プリント基板用途等の低誘電率が求められる用途に有用である。比誘電率が前記範囲の下限値以上であれば、電気特性と融着性の双方に優れる。 The relative permittivity of the prepreg is preferably 2.0 to 4.0, and particularly preferably 2.0 to 3.5. When the relative permittivity is not more than the upper limit of the above range, it is useful for applications requiring a low dielectric constant such as printed circuit board applications. When the relative permittivity is at least the lower limit of the above range, both electrical characteristics and fusion properties are excellent.

[積層体の製造方法]
本発明の積層体の製造方法は、前記した本発明の液状組成物を基材上で製膜化するとともに液状媒体を除去して前記基材に積層された樹脂層を形成することを特徴とする。
この製造方法は、前記フィルムの製造方法において、乾燥後に、または乾燥し加熱した後に、担体とフィルムを分離することなく、フィルムと単体の積層体を得る方法に相当する。積層体の製造方法においては、担体に相当する部分を基材といい、フィルムに相当する部分を「樹脂層」という。樹脂層は、前記繊維強化フィルムに相当する部分であってもよく、前記プリプレグは、に相当する部分であってもよい。
[Manufacturing method of laminated body]
The method for producing a laminated body of the present invention is characterized in that the above-mentioned liquid composition of the present invention is formed into a film on a base material and the liquid medium is removed to form a resin layer laminated on the base material. do.
This production method corresponds to the method for producing a film and a single laminate without separating the carrier and the film after drying or after drying and heating. In the method for producing a laminate, the portion corresponding to the carrier is referred to as a base material, and the portion corresponding to the film is referred to as a "resin layer". The resin layer may be a portion corresponding to the fiber-reinforced film, and the prepreg may be a portion corresponding to.

本発明の積層体の製造方法により形成される樹脂層は、基材の厚み方向の片面のみに形成されてもよく、両面に形成されてもよい。積層体の反りを抑制しやすく、電気的信頼性に優れる金属積層板を得やすい点では、基材の両面に樹脂層を形成することが好ましい。樹脂層はフィルム状であるのが好ましい。 The resin layer formed by the method for producing a laminate of the present invention may be formed on only one side in the thickness direction of the base material, or may be formed on both sides. It is preferable to form resin layers on both sides of the base material in that it is easy to suppress the warp of the laminated body and it is easy to obtain a metal laminated plate having excellent electrical reliability. The resin layer is preferably in the form of a film.

基材の両面に樹脂層を形成する場合、基材の一方の面に対して液状組成物の塗布および乾燥を行った後に、他方の面に対して液状組成物の塗布および乾燥を行うことが好ましい。乾燥後の加熱については、基材の両面に対して液状組成物の塗布および乾燥を行った後に行ってもよく、基材の一方の面に対して分散液または液状組成物の塗布から加熱までを行った後に、他方の面に対して液状組成物の塗布から加熱までを行ってもよい。 When forming resin layers on both sides of a base material, the liquid composition may be applied and dried on one surface of the base material, and then the liquid composition may be applied and dried on the other surface. preferable. The heating after drying may be performed after the liquid composition is applied and dried on both sides of the base material, from the application of the dispersion liquid or the liquid composition to the heating on one surface of the base material. After that, the liquid composition may be applied to the other surface to heat.

積層体における樹脂層の厚みは、樹脂層に含まれるフィラーが10体積%未満の場合、0.5〜30μmが好ましい。プリント基板用途の場合、樹脂層の厚みは、0.5〜25μmがより好ましく、1〜20μmがさらに好ましく、2〜15μmが特に好ましい。好ましい範囲において、積層体の反りが抑制される。樹脂層に含まれるフィラーが10体積%以上の場合、0.5〜3000μmが好ましい。プリント基板用途の場合、樹脂層の厚みは、1〜1500μmがより好ましく、3〜500μmがさらに好ましく、2〜100μmが特に好ましい。
基材の両面に樹脂層を有する積層体の場合、それぞれの樹脂層の組成および厚みが同じになるようにしてもよく、異なるようにしてもよい。積層体の反りの抑制の点では、それぞれの樹脂層の組成や厚みが同じなるようにすることが好ましい。
The thickness of the resin layer in the laminated body is preferably 0.5 to 30 μm when the filler contained in the resin layer is less than 10% by volume. For printed circuit board applications, the thickness of the resin layer is more preferably 0.5 to 25 μm, even more preferably 1 to 20 μm, and particularly preferably 2 to 15 μm. In a preferable range, the warp of the laminated body is suppressed. When the filler contained in the resin layer is 10% by volume or more, 0.5 to 3000 μm is preferable. For printed circuit board applications, the thickness of the resin layer is more preferably 1 to 1500 μm, even more preferably 3 to 500 μm, and particularly preferably 2 to 100 μm.
In the case of a laminate having resin layers on both sides of the base material, the composition and thickness of the respective resin layers may be the same or different. From the viewpoint of suppressing warpage of the laminated body, it is preferable that the composition and thickness of the respective resin layers are the same.

樹脂層の比誘電率は、2.0〜3.5が好ましく、2.0〜3.0が特に好ましい。比誘電率が前記範囲の上限値以下であれば、プリント基板用途等の低誘電率が求められる用途に有用である。比誘電率が前記範囲の下限値以上であれば、電気特性と融着性の双方に優れる。
なお、基材が耐熱性樹脂等の非導電材料からなる場合、積層体全体の比誘電率も上記範囲であることが好ましい。
The relative permittivity of the resin layer is preferably 2.0 to 3.5, and particularly preferably 2.0 to 3.0. When the relative permittivity is not more than the upper limit of the above range, it is useful for applications requiring a low dielectric constant such as printed circuit board applications. When the relative permittivity is at least the lower limit of the above range, both electrical characteristics and fusion properties are excellent.
When the base material is made of a non-conductive material such as a heat-resistant resin, the relative permittivity of the entire laminate is preferably in the above range.

本発明の製造方法で得られた積層体を、その樹脂層表面にフィルムやシート等の積層対象物を積層する用途に使用する場合には、その接合強度を高めまた気泡等の残存を防止するために、樹脂層の露出面は平滑性の高い面であることが好ましい。
なお、積層対象物は本発明の製造方法で得られた積層体であってもよい。この場合、樹脂層の露出面に他の積層体の基材面または樹脂層面が積層される。樹脂面同士を積層する場合は、樹脂層面間に積層対象物を介在させて積層してもよい。
樹脂層の露出面の平滑性を高めるためには、乾燥後の膜の溶融を充分行うことができる温度で行うとともに、加熱板や加熱ロール等で加圧することが好ましい。
得られる積層体の樹脂層の露出面の表面の算術平均粗さRaは樹脂層厚み未満であり、2.0μm以上であると好ましい。これにより、積層対象物を熱プレス等により積層した場合に、樹脂層と積層対象物の間で優れた密着性が得られる。
前記Raは、樹脂層厚み未満であり、かつ、2.0〜30μmが好ましく、2.0〜15μmがより好ましく、2.1〜12μmがさらに好ましく、2.1〜10μmが特に好ましく、2.2〜8μmが最も好ましい。Raが前記範囲の下限値以上であれば、樹脂層と積層対象物との密着性に優れる。Raが前記範囲の上限値以下であれば、樹脂層に貫通穴が形成されることなく積層することができる。
When the laminate obtained by the production method of the present invention is used for laminating an object to be laminated such as a film or a sheet on the surface of the resin layer, the bonding strength thereof is increased and bubbles and the like are prevented from remaining. Therefore, the exposed surface of the resin layer is preferably a surface having high smoothness.
The object to be laminated may be a laminate obtained by the production method of the present invention. In this case, the base material surface or the resin layer surface of another laminated body is laminated on the exposed surface of the resin layer. When laminating the resin surfaces, the laminating object may be interposed between the resin layer surfaces.
In order to improve the smoothness of the exposed surface of the resin layer, it is preferable to carry out the process at a temperature at which the film after drying can be sufficiently melted and pressurize with a heating plate, a heating roll or the like.
The arithmetic mean roughness Ra of the surface of the exposed surface of the resin layer of the obtained laminate is less than the thickness of the resin layer, and is preferably 2.0 μm or more. As a result, when the objects to be laminated are laminated by a hot press or the like, excellent adhesion between the resin layer and the objects to be laminated can be obtained.
Ra is less than the thickness of the resin layer, preferably 2.0 to 30 μm, more preferably 2.0 to 15 μm, further preferably 2.1 to 12 μm, particularly preferably 2.1 to 10 μm. Most preferably 2 to 8 μm. When Ra is equal to or higher than the lower limit of the above range, the adhesion between the resin layer and the object to be laminated is excellent. When Ra is equal to or less than the upper limit of the above range, the resin layer can be laminated without forming through holes.

また、本発明の製造方法で得られた積層体を、その樹脂層表面にフィルムやシート等の積層対象物を積層する用途に使用する場合には、その接合強度を高めるために、積層体製造後樹脂層表面にコロナ放電処理、プラズマ処理等の表面処理を施してもよい。特にプラズマ処理が好ましい。接合強度を高めるための表面処理は、公知の条件で行うことができる。 Further, when the laminate obtained by the production method of the present invention is used for laminating an object to be laminated such as a film or a sheet on the surface of the resin layer, the laminate is manufactured in order to increase the bonding strength. The surface of the post-resin layer may be subjected to surface treatment such as corona discharge treatment and plasma treatment. Plasma treatment is particularly preferable. The surface treatment for increasing the bonding strength can be performed under known conditions.

プラズマ処理に用いるプラズマ照射装置は、特に限定されず、高周波誘導方式、容量結合型電極方式、コロナ放電電極−プラズマジェット方式、平行平板型、リモートプラズマ型、大気圧プラズマ型、ICP型高密度プラズマ型等を採用した装置が挙げられる。
プラズマ処理に使用するガスとしては、特に限定されず、酸素、窒素、希ガス(アルゴン)、水素、アンモニア等が挙げられ、希ガスまたは窒素が好ましい。これらは、1種単独で使用してもよく、2種以上を混合して用いてもよい。
プラズマ処理の雰囲気は、希ガスまたは窒素ガスの体積分率が50体積%以上の雰囲気が好ましく、70体積%以上の雰囲気がより好ましく、90体積%以上の雰囲気がさらに好ましく、100体積%の雰囲気が特に好ましい。希ガスまたは窒素ガスの体積分率が下限値以上であれば、フッ素樹脂フィルムの表面を、算術平均粗さRaが2.0μm以上でありプラズマ処理した表面に更新することが容易になる。
プラズマ処理におけるガス流量は、特に限定されない。
The plasma irradiation device used for plasma processing is not particularly limited, and is limited to a high frequency induction method, a capacitively coupled electrode method, a corona discharge electrode-plasma jet method, a parallel plate type, a remote plasma type, an atmospheric pressure plasma type, and an ICP type high density plasma. Examples include devices that employ molds and the like.
The gas used for the plasma treatment is not particularly limited, and examples thereof include oxygen, nitrogen, a rare gas (argon), hydrogen, and ammonia, and a rare gas or nitrogen is preferable. These may be used individually by 1 type, or may be used by mixing 2 or more types.
The atmosphere of the plasma treatment is preferably an atmosphere having a volume fraction of rare gas or nitrogen gas of 50% by volume or more, more preferably 70% by volume or more, further preferably 90% by volume or more, and an atmosphere of 100% by volume. Is particularly preferable. When the volume fraction of the rare gas or nitrogen gas is at least the lower limit value, the surface of the fluororesin film can be easily renewed to a plasma-treated surface having an arithmetic mean roughness Ra of 2.0 μm or more.
The gas flow rate in the plasma treatment is not particularly limited.

プラズマ処理においては、処理を行うにつれてフィルム表面のRaは大きくなるが、処理を行いすぎると一旦大きくなったRaが再び小さくなる傾向がある。そのため、処理が過度にならないように、電極間ギャップ、装置の出力等を調節して発生する電子のエネルギー(1〜10eV程度)を制御し、処理時間を設定する。 In the plasma treatment, the Ra on the film surface increases as the treatment is performed, but if the treatment is performed too much, the Ra that has once increased tends to decrease again. Therefore, the processing time is set by controlling the electron energy (about 1 to 10 eV) generated by adjusting the gap between electrodes, the output of the device, etc. so that the processing does not become excessive.

基材としては、特に限定されず、例えば、金属フィルム、耐熱性樹脂フィルム、金属蒸着耐熱性樹脂フィルム等が挙げられる。
金属フィルムを構成する金属としては、用途に応じて適宜選択でき、例えば、銅もしくは銅合金、ステンレス鋼もしくはその合金、チタンもしくはその合金等が挙げられる。金属フィルムとしては、圧延銅箔、電解銅箔といった銅フィルムが好ましい。金属フィルムの表面には、防錆層(例えばクロメート等の酸化物皮膜)や耐熱層が形成されていてもよい。また、樹脂層との密着性を向上させるために、金属フィルムの表面にカップリング剤処理等が施されてもよい。
金属フィルムの厚みは、特に限定されず、用途に応じて、充分な機能が発揮できる厚みを選定すればよい。
金属蒸着耐熱性樹脂フィルムとしては、下記耐熱性樹脂フィルムの片面または両面に、真空蒸着法、スパッタリング法、イオンプレーティング法等の蒸着法で上記金属を蒸着したフィルムが挙げられる。
The base material is not particularly limited, and examples thereof include a metal film, a heat-resistant resin film, and a metal-deposited heat-resistant resin film.
The metal constituting the metal film can be appropriately selected depending on the intended use, and examples thereof include copper or a copper alloy, stainless steel or an alloy thereof, titanium or an alloy thereof, and the like. As the metal film, a copper film such as a rolled copper foil or an electrolytic copper foil is preferable. A rust preventive layer (for example, an oxide film such as chromate) or a heat-resistant layer may be formed on the surface of the metal film. Further, in order to improve the adhesion with the resin layer, the surface of the metal film may be treated with a coupling agent or the like.
The thickness of the metal film is not particularly limited, and a thickness capable of exhibiting sufficient functions may be selected according to the application.
Examples of the metal-deposited heat-resistant resin film include a film in which the above metal is vapor-deposited on one or both sides of the following heat-resistant resin film by a vapor deposition method such as a vacuum vapor deposition method, a sputtering method, or an ion plating method.

耐熱性樹脂フィルムは、耐熱性樹脂の1種以上を含むフィルムである。ただし、耐熱性樹脂フィルムは、含フッ素重合体を含まない。耐熱性樹脂フィルムは、単層フィルムであってもよく、多層フィルムであってもよい。
耐熱性樹脂とは、融点が280℃以上の高分子化合物、またはJIS C 4003:2010(IEC 60085:2007)で規定される最高連続使用温度が121℃以上の高分子化合物を意味する。耐熱性樹脂としては、例えば、ポリイミド(芳香族ポリイミド等。)、ポリアリレート、ポリスルホン、ポリアリルスルホン(ポリエーテルスルホン等。)、芳香族ポリアミド、芳香族ポリエーテルアミド、ポリフェニレンスルファイド、ポリアリルエーテルケトン、ポリアミドイミド、液晶ポリエステル等が挙げられる。
耐熱性樹脂フィルムとしては、ポリイミドフィルムおよび液晶ポリエステルが好ましい。ポリイミドフィルムは、必要に応じて、本発明の効果を損なわない範囲で、添加剤を含有してもよい。また、液晶ポリエステルフィルムは、電気特性向上の観点で好ましい。耐熱性樹脂フィルムには、樹脂層を形成する面にコロナ放電処理、プラズマ処理等の表面処理が施されてもよい。
The heat-resistant resin film is a film containing one or more of heat-resistant resins. However, the heat-resistant resin film does not contain a fluorine-containing polymer. The heat-resistant resin film may be a single-layer film or a multilayer film.
The heat-resistant resin means a polymer compound having a melting point of 280 ° C. or higher, or a polymer compound having a maximum continuous use temperature of 121 ° C. or higher as defined by JIS C 4003: 2010 (IEC 60085: 2007). Examples of the heat-resistant resin include polyimide (aromatic polyimide, etc.), polyarylate, polysulfone, polyallyl sulfone (polyether sulfone, etc.), aromatic polyamide, aromatic polyether amide, polyphenylensulfide, and polyallyl ether. Examples thereof include ketones, polyamideimides, and liquid crystal polyesters.
As the heat-resistant resin film, a polyimide film and a liquid crystal polyester are preferable. If necessary, the polyimide film may contain additives as long as the effects of the present invention are not impaired. Further, the liquid crystal polyester film is preferable from the viewpoint of improving the electrical characteristics. The heat-resistant resin film may be subjected to surface treatment such as corona discharge treatment and plasma treatment on the surface forming the resin layer.

本発明の製造方法により得られる積層体が、第2の樹脂を含まない液状組成物から製造されたものであるか、熱融着性の第2の樹脂または熱融着性樹脂となる第2の樹脂を含む液状組成物である場合、積層体の製造において重合体(X)を含む樹脂パウダーを溶融して、熱融着性樹脂層を有する積層体とすることが好ましい。樹脂パウダーの溶融は、未溶融粒子が残存しないように、充分高温で行い、また加熱と同時に加圧も行うことが好ましい。
加熱や加圧が不充分な場合、樹脂パウダー粒子全体が溶融した場合であっても、その後冷却して形成された樹脂層に光学的な不均一部分(粒状物等)が生じることがある。これは、樹脂の結晶化や凝集化が不均一であるために生じると推測される。本発明では、この光学的な不均一部分を「異物」という。異物が生じる場合、30μmを超える大きさの異物は10cmあたりに20個以下であることが好ましく、15個以下であることがより好ましく、10個以下であることが特に好ましい。異物の数が前記範囲の上限値以下であれば、樹脂層と基材間の接着強度が優れる。異物の生成は、前記本発明のフィルム製造においても生成することがある。
本発明の製造方法により得られる積層体が、充分に溶融されていない樹脂パウダーの粒子や硬化性の第2の樹脂を有する場合(例えば、樹脂層がプリプレグの層である場合)、得られた積層体は、その樹脂層面に積層対象物を加熱加圧等により積層する用途に使用することができ、また、加熱加圧等で成形体を製造する用途に使用できる。
The laminate obtained by the production method of the present invention is produced from a liquid composition containing no second resin, or is a second resin having heat-sealing properties or a second resin having heat-sealing properties. In the case of a liquid composition containing the above resin, it is preferable to melt the resin powder containing the polymer (X) in the production of the laminate to obtain a laminate having a heat-sealing resin layer. It is preferable that the resin powder is melted at a sufficiently high temperature so that unmelted particles do not remain, and that the resin powder is pressurized at the same time as heating.
When heating or pressurization is insufficient, even if the entire resin powder particles are melted, optically non-uniform parts (granular substances or the like) may be formed in the resin layer formed by subsequent cooling. It is presumed that this is caused by the non-uniform crystallization and agglutination of the resin. In the present invention, this optically non-uniform portion is referred to as a "foreign substance". When foreign matter is generated, the number of foreign matter having a size exceeding 30 μm is preferably 20 or less, more preferably 15 or less, and particularly preferably 10 or less per 10 cm 2. When the number of foreign substances is not more than the upper limit of the above range, the adhesive strength between the resin layer and the base material is excellent. Foreign matter may also be produced in the film production of the present invention.
It was obtained when the laminate obtained by the production method of the present invention had particles of resin powder that were not sufficiently melted or a second resin that was curable (for example, when the resin layer was a prepreg layer). The laminate can be used for laminating an object to be laminated on the resin layer surface by heating and pressurizing or the like, and can also be used for manufacturing a molded product by heating and pressurizing or the like.

得られた、積層体は、成形体の製造や各種用途の部材として使用できる。この積層体の場合、さらに、その樹脂層面に積層対象物を加熱加圧等により積層することができる。
本発明の製造方法により得られる積層体における樹脂層は、重合体(X)を含む樹脂層であるので、成形性に優れ、また溶融密着性が高いことよりその樹脂面に積層対象物を積層した場合には積層面の接合強度が高い。また、本発明の製造方法により得られる積層体の複数枚を積層した場合も、基材表面と樹脂層との積層面や樹脂層面同士の積層面の接合強度が高い。
The obtained laminated body can be used as a member for manufacturing a molded body or for various purposes. In the case of this laminated body, the object to be laminated can be further laminated on the resin layer surface by heating and pressurizing or the like.
Since the resin layer in the laminate obtained by the production method of the present invention is a resin layer containing the polymer (X), it is excellent in moldability and has high melt adhesion, so that the object to be laminated is laminated on the resin surface. If this is the case, the bonding strength of the laminated surface is high. Further, even when a plurality of laminated bodies obtained by the production method of the present invention are laminated, the bonding strength between the laminated surface between the base material surface and the resin layer and the laminated surface between the resin layer surfaces is high.

本発明の製造方法で得られる積層体としては、金属基板の片面または両面に樹脂層を有する積層体が好ましい。特に、銅箔を基材とした積層体が好ましい。樹脂層は、強化繊維を有していてもよく、プリプレグの層(すなわち、強化繊維と未硬化の硬化性樹脂を含む樹脂層)であってもよい。
本発明の積層体の製造方法で得られる銅箔層を有する積層体は、また、その複数枚を積層して銅箔層を複数有する積層体とすることもできる。これら銅箔層を有する積層体がその片面または両面に樹脂層を有する場合はその樹脂層表面に銅箔層を積層することが好ましい。本発明の積層体の製造方法で得られる銅箔層を有する積層体やその積層物は、フレキシブル銅張積層板やリジッド銅張積層板として使用できる。
以下、銅箔層を有する積層体の製造を例に、本発明の積層体の製造方法をさらに説明する。
As the laminate obtained by the production method of the present invention, a laminate having a resin layer on one side or both sides of a metal substrate is preferable. In particular, a laminate using a copper foil as a base material is preferable. The resin layer may have reinforcing fibers or may be a layer of prepreg (that is, a resin layer containing reinforcing fibers and an uncured curable resin).
The laminate having a copper foil layer obtained by the method for producing a laminate of the present invention can also be a laminate having a plurality of copper foil layers by laminating a plurality of the laminates. When the laminate having the copper foil layer has a resin layer on one side or both sides thereof, it is preferable to laminate the copper foil layer on the surface of the resin layer. A laminate having a copper foil layer or a laminate thereof obtained by the method for producing a laminate of the present invention can be used as a flexible copper-clad laminate or a rigid copper-clad laminate.
Hereinafter, the method for producing a laminate of the present invention will be further described by taking the production of a laminate having a copper foil layer as an example.

銅箔層を有する積層体は、基材として銅箔を使用し、銅箔の片面に本発明の液状組成物を塗布して液状組成物の膜を形成し、次いで加熱乾燥により液状媒体を除去し、引き続き加熱して樹脂パウダーを溶融し、その後冷却して未溶融粒子のない均一な樹脂層を形成して製造することができる。前記のように銅箔の両面に樹脂層を形成することもできる。
液状組成物の膜の形成、加熱乾燥、樹脂パウダーを溶融は前記条件で行うことができる。たとえば、乾燥後の加熱を熱ロールによる加熱で行う場合、乾燥後の未溶融樹脂層と銅箔との積層体を耐熱ロールに接触させ、遠赤外線を照射しながら搬送して、未溶融樹脂層を溶融した樹脂層とすることができる。ロールの搬送速度は特に限定されないが、例えば4.7mの長さの加熱炉を用いた場合は4.7m/minから0.31m/minが好ましい。さらに短時間で膜全体を効率よく加熱するために、2.45mの長さの加熱炉を用いた場合は4.7m/minから2.45m/minとすることができる。
加熱温度は特に限定されないが、加熱炉の滞在時間を1分とすると330〜380℃が好ましく、さらに好ましくは350〜370℃である。滞在時間を長くすることで温度を下げることもできる。
製造される積層体の樹脂層の厚みは15μm以下が好ましく、10μm以下がより好ましく、8μm以下が特に好ましい。前記範囲の上限以下であれば樹脂層/銅箔の非対称な層構成の場合でも、反りを抑制することができる。積層体の反り率は25%以下が好ましく、15%以下がより好ましく、10%以下がさらに好ましく、7%以下が特に好ましい。反りが上限以下であれば、プリント基板に加工する際の成形プロセスにおいてハンドリング性に優れかつプリント基板としての誘電特性に優れる。
また、シリカやPTFE等のフィラーを含む液状組成物や第2の樹脂としてTFE/PAVE共重合体、TFE/HFP共重合体、ポリクロロトリフルオロエチレン(以下、「PCTFE」ともいう。)等のフッ素樹脂(ただし、重合体(X)を除く)を含む液状組成物を用いることで、反りをより一層抑制することができる。
The laminate having a copper foil layer uses a copper foil as a base material, and the liquid composition of the present invention is applied to one side of the copper foil to form a film of the liquid composition, and then the liquid medium is removed by heating and drying. Then, it can be continuously heated to melt the resin powder and then cooled to form a uniform resin layer without unmelted particles. As described above, resin layers can be formed on both sides of the copper foil.
The formation of a film of the liquid composition, heat drying, and melting of the resin powder can be performed under the above conditions. For example, when heating after drying is performed by heating with a hot roll, the laminated body of the unmelted resin layer after drying and the copper foil is brought into contact with the heat-resistant roll and conveyed while irradiating far infrared rays to carry the unmelted resin layer. Can be a molten resin layer. The transport speed of the roll is not particularly limited, but for example, when a heating furnace having a length of 4.7 m is used, it is preferably 4.7 m / min to 0.31 m / min. In order to efficiently heat the entire film in a shorter time, the temperature can be set from 4.7 m / min to 2.45 m / min when a heating furnace having a length of 2.45 m is used.
The heating temperature is not particularly limited, but is preferably 330 to 380 ° C., more preferably 350 to 370 ° C., assuming that the residence time of the heating furnace is 1 minute. The temperature can be lowered by lengthening the staying time.
The thickness of the resin layer of the produced laminate is preferably 15 μm or less, more preferably 10 μm or less, and particularly preferably 8 μm or less. If it is equal to or less than the upper limit of the above range, warpage can be suppressed even in the case of an asymmetric layer structure of a resin layer / copper foil. The warpage rate of the laminated body is preferably 25% or less, more preferably 15% or less, further preferably 10% or less, and particularly preferably 7% or less. When the warp is not more than the upper limit, the handling property is excellent in the molding process when processing the printed circuit board, and the dielectric property as the printed circuit board is excellent.
Further, a liquid composition containing a filler such as silica or PTFE, a TFE / PAVE copolymer, a TFE / HFP copolymer, polychlorotrifluoroethylene (hereinafter, also referred to as "PCTFE") or the like as a second resin, etc. By using a liquid composition containing a fluororesin (however, excluding the polymer (X)), warpage can be further suppressed.

さらに、第2の樹脂として熱硬化性樹脂を含む本発明の液状組成物を用いて、硬化した熱硬化性樹脂を含む樹脂層と銅箔層を有する積層体を製造することもできる。液状組成物はフィラーを含んでもよく、強化繊維を用いて繊維強化樹脂層を形成してもよい。この場合の樹脂層の厚みは200μm以下が好ましく、100μm以下がより好ましい。樹脂層の厚みが200μm以下であればプリント基板に加工された際の穴加工において加工性に優れ、接続信頼性に優れた電子回路を形成することが可能となる。また樹脂層にフィラーを含ませることで反りをより一層抑制することができる。 Further, using the liquid composition of the present invention containing a thermosetting resin as the second resin, a laminate having a resin layer containing a cured thermosetting resin and a copper foil layer can also be produced. The liquid composition may contain a filler, and the fiber-reinforced resin layer may be formed by using reinforcing fibers. In this case, the thickness of the resin layer is preferably 200 μm or less, more preferably 100 μm or less. When the thickness of the resin layer is 200 μm or less, it is possible to form an electronic circuit having excellent workability and connection reliability in hole drilling when the printed circuit board is machined. Further, by including the filler in the resin layer, the warp can be further suppressed.

銅箔層を有する積層体の製造において、アニール処理をすることで厚み方向(Z方向)の線膨張係数を低減することができる。これにより基材と樹脂層の界面間での剥離や、積層体の面内での厚みムラによる基板の電気特性のばらつきを低減することができる。アニール条件は、温度が80から190℃が好ましく、100℃から185℃がより好ましく、120℃から180℃が特に好ましい。時間においては、10分から300分が好ましく、20分から200分がより好ましく、30分から120が特に好ましい。アニールの温度および時間の条件が下限値以上であれば十分な線膨張係数の低減が可能であり、上限値以下であれば熱劣化を伴わず線膨張係数を低減することができる。アニールの圧力においては、0.001MPaから0.030MPaが好ましく、0.003MPaから0.020MPaがより好ましく、0.005MPaから0.015MPaが特に好ましい。下限値以上であれば、線膨張係数を低減することができる。上限値以下であれば、基材の圧縮がおこることなく線膨張係数を低減することができる。 In the production of a laminate having a copper foil layer, the coefficient of linear expansion in the thickness direction (Z direction) can be reduced by performing an annealing treatment. As a result, it is possible to reduce the peeling between the interface between the base material and the resin layer and the variation in the electrical characteristics of the substrate due to the uneven thickness in the plane of the laminated body. As for the annealing conditions, the temperature is preferably 80 to 190 ° C., more preferably 100 ° C. to 185 ° C., and particularly preferably 120 ° C. to 180 ° C. In terms of time, 10 minutes to 300 minutes is preferable, 20 minutes to 200 minutes is more preferable, and 30 minutes to 120 minutes is particularly preferable. If the annealing temperature and time conditions are not less than the lower limit value, the linear expansion coefficient can be sufficiently reduced, and if it is not more than the upper limit value, the linear expansion coefficient can be reduced without thermal deterioration. The annealing pressure is preferably 0.001 MPa to 0.030 MPa, more preferably 0.003 MPa to 0.020 MPa, and particularly preferably 0.005 MPa to 0.015 MPa. If it is at least the lower limit, the coefficient of linear expansion can be reduced. If it is not more than the upper limit value, the coefficient of linear expansion can be reduced without compressing the base material.

本発明の積層体の製造方法により、銅箔以外の金属基材を用いた積層体を製造することもできる。例えば、チタン箔の片面または両面に樹脂層を形成して、チタン箔と樹脂層を有する積層体を製造することができる。樹脂層の厚みは10μm以下が好ましい。このような積層体の樹脂層側に繊維強化複合材料を積層することで、例えばチタン箔/樹脂層/繊維強化複合材料のような層構成の成形体が得られる。積層する繊維強化複合材料としては、炭素繊維強化複合材料が特に好ましい。 By the method for producing a laminate of the present invention, a laminate using a metal base material other than copper foil can also be produced. For example, a resin layer can be formed on one side or both sides of the titanium foil to produce a laminate having the titanium foil and the resin layer. The thickness of the resin layer is preferably 10 μm or less. By laminating the fiber-reinforced composite material on the resin layer side of such a laminated body, a molded product having a layer structure such as a titanium foil / resin layer / fiber-reinforced composite material can be obtained. As the fiber-reinforced composite material to be laminated, a carbon fiber-reinforced composite material is particularly preferable.

[フィルムや積層体の利用]
本発明の積層体の製造方法で得られる積層体と同様の構成の積層体は、本発明の積層体の製造方法以外の方法でも製造することができる。たとえば、前記本発明のフィルムの製造方法で得られたフィルムを基材の相当するフィルムやシートと積層して、前記積層体と同様の構成を有する積層体を製造することができる。また、本発明の積層体の製造方法では、両面が基材である積層体を製造することは困難であるが(基材間の液状組成物から液状媒体を除去することは困難であるから)、本発明のフィルムの製造方法で得られたフィルムを用いることにより、両面が基材である積層体を製造することができる。
また、本発明の積層体の製造方法で得られた積層体の樹脂層の面に基材に相当する積層対象物を積層して、両面が基材である積層体を製造することもできる。
以下、金属層と樹脂層(重合体(X)を有する樹脂層)とを各々少なくとも1層有する積層体(以下、「金属積層板」ともいう。)を例として、本発明の製造方法で得られたフィルムや積層体の利用例を説明する。
金属積層板は、前記した本発明のフィルムの製造方法で得られたフィルム(繊維強化フィルム、プリプレグのフィルムも包含する。)または本発明の積層体の製造方法で得られた積層体の、重合体(X)を含む樹脂層面に、金属層を形成して金属積層板を得ることができる。
フィルムや積層体の片面または両面に金属層を形成する方法としては、例えば、フィルムや積層体と金属箔とを積層する方法、フィルムや積層体の樹脂層表面に金属を蒸着する方法等が挙げられる。積層方法としては、例えば、熱ラミネート等が挙げられる。金属の蒸着方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法等が挙げられる。
[Use of film and laminate]
A laminate having the same structure as the laminate obtained by the method for producing a laminate of the present invention can be produced by a method other than the method for producing a laminate of the present invention. For example, the film obtained by the method for producing a film of the present invention can be laminated with a film or sheet corresponding to a base material to produce a laminate having a structure similar to that of the laminate. Further, in the method for producing a laminate of the present invention, it is difficult to produce a laminate having both sides as a base material (because it is difficult to remove a liquid medium from the liquid composition between the base materials). By using the film obtained by the method for producing a film of the present invention, a laminate having both sides as a base material can be produced.
Further, it is also possible to produce a laminate having both sides as a substrate by laminating an object to be laminated corresponding to a base material on the surface of the resin layer of the laminate obtained by the method for producing a laminate of the present invention.
Hereinafter, a laminate having at least one metal layer and a resin layer (resin layer having a polymer (X)) (hereinafter, also referred to as “metal laminate”) will be taken as an example, and obtained by the production method of the present invention. An example of using the obtained film or laminate will be described.
The metal laminate is the weight of the film obtained by the method for producing a film of the present invention (including a fiber-reinforced film and a prepreg film) or the laminate obtained by the method for producing a laminate of the present invention. A metal layer can be formed on the surface of the resin layer containing the coalesced (X) to obtain a metal laminated plate.
Examples of the method of forming the metal layer on one side or both sides of the film or laminate include a method of laminating the film or laminate and the metal foil, a method of depositing metal on the surface of the resin layer of the film or laminate, and the like. Be done. Examples of the laminating method include thermal laminating and the like. Examples of the metal vapor deposition method include a vacuum deposition method, a sputtering method, and an ion plating method.

製造される金属積層板の積層構造としては、本発明の製造方法で得られるフィルムを使用する場合、フィルム/金属層、金属層/フィルム/金属層等が挙げられる。また、本発明の製造方法で得られる積層体を使用する場合、金属積層板の積層構造としては、積層体層/金属層、金属層/積層体層/金属層等が挙げられる。ただし、金属層に接する積層体中の層は樹脂層である。 Examples of the laminated structure of the manufactured metal laminate include a film / metal layer, a metal layer / film / metal layer, and the like when the film obtained by the production method of the present invention is used. When the laminate obtained by the production method of the present invention is used, examples of the laminated structure of the metal laminate include a laminate layer / metal layer, a metal layer / laminate layer / metal layer, and the like. However, the layer in the laminate in contact with the metal layer is a resin layer.

前記本発明の製造方法で得られたフィルムや積層体は、また、金属以外の材料からなるフィルムやシート等の形状の積層対象物と積層して、新たな積層体を製造する用途に使用できる。積層対象物としては、耐熱性樹脂のフィルムやシート、繊維強化樹脂シート、プリプレグ等が挙げられる。
積層対象物としてはプリプレグが好ましい。プリプレグとしては、強化繊維シートにマトリックス樹脂が含浸されたものが挙げられる。
The film or laminate obtained by the production method of the present invention can also be used for producing a new laminate by laminating with a laminate object in the shape of a film or sheet made of a material other than metal. .. Examples of the object to be laminated include a heat-resistant resin film or sheet, a fiber-reinforced resin sheet, a prepreg, and the like.
A prepreg is preferable as the object to be laminated. Examples of the prepreg include a reinforcing fiber sheet impregnated with a matrix resin.

強化繊維シートとしては、前記強化繊維から構成されるシートが挙げられる。
マトリックス樹脂は、熱可塑性樹脂であってもよく、熱硬化性樹脂であってもよい。本発明は、低温接合という観点ではマトリックス樹脂として、融点が280℃以下の熱可塑性樹脂または熱硬化温度が280℃以下の熱硬化性樹脂を用いる場合に特に有効である。
マトリックス樹脂は、1種を単独で用いてもよく、2種以上を併用してもよい。また、マトリックス樹脂中に国際公開第2016/017801号の[0089]に記載のフィラーを含んでもいてもよく、上記の強化繊維を含んでいてもよい。また強化繊維およびフィラーを同時に含んでいてもよい。
Examples of the reinforcing fiber sheet include a sheet composed of the reinforcing fibers.
The matrix resin may be a thermoplastic resin or a thermosetting resin. The present invention is particularly effective when a thermoplastic resin having a melting point of 280 ° C. or lower or a thermosetting resin having a thermosetting temperature of 280 ° C. or lower is used as the matrix resin from the viewpoint of low-temperature bonding.
As the matrix resin, one type may be used alone, or two or more types may be used in combination. Further, the matrix resin may contain the filler described in [089] of International Publication No. 2016/017801, or may contain the above-mentioned reinforcing fibers. It may also contain reinforcing fibers and fillers at the same time.

マトリックス樹脂が熱硬化性樹脂の場合は、液状組成物の説明で挙げた熱硬化性樹脂と同じものが挙げられる。熱硬化性樹脂としては、エポキシ樹脂、ポリフェニレンオキサイド、ポリフェニレンエーテル、ポリブタジエンが好ましい。
マトリックス樹脂が熱可塑性樹脂の場合、ポリエステル系樹脂(ポリエチレンテレフタレート等)、ポリオレフィン系樹脂(ポリエチレン等)、スチレン系樹脂(ポリスチレン等)、ポリカーボネート、ポリイミド(芳香族ポリイミド等。)、ポリアリレート、ポリスルホン、ポリアリルスルホン(ポリエーテルスルホン等。)、芳香族ポリアミド、芳香族ポリエーテルアミド、ポリフェニレンスルファイド、ポリアリルエーテルケトン、ポリアミドイミド、液晶ポリエステル、ポリフェニレンエーテル、PTFE、TFE/PAVE共重合体、TFE/HFP共重合体、PCTFE等のフッ素樹脂(ただし、重合体(X)を除く)等が挙げられる。
When the matrix resin is a thermosetting resin, the same one as the thermosetting resin mentioned in the description of the liquid composition can be mentioned. As the thermosetting resin, an epoxy resin, polyphenylene oxide, polyphenylene ether, and polybutadiene are preferable.
When the matrix resin is a thermoplastic resin, polyester resin (polyethylene terephthalate, etc.), polyolefin resin (polyethylene, etc.), styrene resin (polystyrene, etc.), polycarbonate, polyimide (aromatic polyimide, etc.), polyarylate, polysulfone, Polyallyl sulfone (polyether sulfone, etc.), aromatic polyamide, aromatic polyetheramide, polyphenylene sulfide, polyallyl ether ketone, polyamideimide, liquid crystal polyester, polyphenylene ether, PTFE, TFE / PAVE copolymer, TFE / Examples thereof include HFP copolymers and fluororesins such as PCTFE (excluding the polymer (X)).

本発明の製造方法で得られたフィルムや積層体とプリプレグとの熱プレスの温度は、重合体(X)の融点以下が好ましく、120〜300℃がより好ましく、140〜240℃がさらに好ましく、160〜220℃がさらに好ましい。熱プレス温度が前記範囲内であれば、プリプレグの熱劣化を抑制しつつ、本発明の製造方法で得られたフィルムや積層体とプリプレグとを優れた密着性で貼り付けられる。なお、樹脂層にフィラーおよび強化繊維、積層対象物にフィラー、強化繊維および重合体(X)を含んでいてもよい。
上記樹脂層と積層対象物を含む金属積層板の構成は下記に限定されるものではないが、金属層/樹脂層/積層対象物/樹脂層/金属層や金属層/積層対象物/樹脂層/積層対象物/金属層等の構成において、樹脂層の厚みは0.1μm〜300μmが好ましく、0.3μm〜150μmがより好ましく、0.5μm〜100μmがより好ましく、0.7μm〜70μmがさらに好ましく、1μm〜50μmがさらに好ましく、2μm〜40μmが特に好ましい。前記範囲の上限以下であれば、銅張積層板としての穴開け加工性が良好であり誘電特性が優れる。前記範囲の下限以上であれば金属層と樹脂層および積層対象物と樹脂層とを優れた密着性で貼り付けられる。
The temperature of the hot press of the film or laminate obtained by the production method of the present invention and the prepreg is preferably equal to or lower than the melting point of the polymer (X), more preferably 120 to 300 ° C, still more preferably 140 to 240 ° C. 160 to 220 ° C. is more preferable. When the hot press temperature is within the above range, the film or laminate obtained by the production method of the present invention and the prepreg can be attached with excellent adhesion while suppressing thermal deterioration of the prepreg. The resin layer may contain fillers and reinforcing fibers, and the object to be laminated may contain fillers, reinforcing fibers and the polymer (X).
The configuration of the metal laminate including the resin layer and the object to be laminated is not limited to the following, but the metal layer / resin layer / object to be laminated / resin layer / metal layer or metal layer / object to be laminated / resin layer. In the composition of the object to be laminated / the metal layer and the like, the thickness of the resin layer is preferably 0.1 μm to 300 μm, more preferably 0.3 μm to 150 μm, more preferably 0.5 μm to 100 μm, and further preferably 0.7 μm to 70 μm. Preferably, 1 μm to 50 μm is more preferable, and 2 μm to 40 μm is particularly preferable. When it is not more than the upper limit of the above range, the drilling workability as a copper-clad laminate is good and the dielectric property is excellent. If it is at least the lower limit of the above range, the metal layer, the resin layer, and the object to be laminated and the resin layer can be attached with excellent adhesion.

また積層対象物が熱可塑性樹脂であり、前記熱可塑性樹脂の内ポリイミド(芳香族ポリイミド等。)、液晶ポリエステル、PTFE、TFE/PAVE共重合体、TFE/HFP共重合体、PCTFEのいずれかが50質量%以上含まれる場合、もしくは上記熱可塑性樹脂が合わせて50質量%以上含まれる場合、樹脂層と積層対象物との熱プレスの温度は、310〜400℃が好ましく、320〜380℃がより好ましく、330〜370℃がさらに好ましい。熱プレス温度が前記範囲内であれば、積層対象物の熱劣化を抑制しつつ、樹脂層と積層対象物とを優れた密着性で貼り付けられる。尚、樹脂層にフィラーおよび強化繊維、積層対象物にフィラー、強化繊維および共重合体(X)を含んでいてもよい。
上記樹脂層と積層対象物を含む金属積層板の構成は下記に限定されるものではないが、金属層/樹脂層/積層対象物/樹脂層/金属層や金属層/積層対象物/樹脂層/積層対象物/金属層等の構成において、樹脂層の厚みは0.1μm〜300μmが好ましく、0.3μm〜150μmがより好ましく、0.5μm〜100μmがより好ましく、0.7μm〜70μmがさらに好ましく、1μm〜50μmがさらに好ましく、2μm〜40μmが特に好ましい。前記範囲の上限以下であれば、銅張積層板としての穴開け加工性が良好であり誘電特性が優れる。前記範囲の下限以上であれば金属層と接着層および積層対象物と樹脂層とを優れた密着性で貼り付けられる。
本発明の製造方法で得られたフィルムや積層体と積層対象物との密着性(剥離強度)は、5N/cm以上が好ましく、6N/cm以上がさらに好ましく、7N/cm以上が特に好ましい。
Further, the object to be laminated is a thermoplastic resin, and any one of the thermoplastic resin inner polyimide (aromatic polyimide, etc.), liquid crystal polyester, PTFE, TFE / PAVE copolymer, TFE / HFP copolymer, and PCTFE When 50% by mass or more is contained, or when 50% by mass or more of the above thermoplastic resin is contained in total, the temperature of the hot press between the resin layer and the object to be laminated is preferably 310 to 400 ° C, preferably 320 to 380 ° C. More preferably, 330 to 370 ° C. is further preferable. When the hot press temperature is within the above range, the resin layer and the object to be laminated can be attached with excellent adhesion while suppressing thermal deterioration of the object to be laminated. The resin layer may contain a filler and reinforcing fibers, and the object to be laminated may contain a filler, reinforcing fibers and a copolymer (X).
The configuration of the metal laminate including the resin layer and the object to be laminated is not limited to the following, but the metal layer / resin layer / object to be laminated / resin layer / metal layer or metal layer / object to be laminated / resin layer. In the composition of the object to be laminated / the metal layer and the like, the thickness of the resin layer is preferably 0.1 μm to 300 μm, more preferably 0.3 μm to 150 μm, more preferably 0.5 μm to 100 μm, and further preferably 0.7 μm to 70 μm. Preferably, 1 μm to 50 μm is more preferable, and 2 μm to 40 μm is particularly preferable. When it is not more than the upper limit of the above range, the drilling workability as a copper-clad laminate is good and the dielectric property is excellent. If it is at least the lower limit of the above range, the metal layer, the adhesive layer, and the object to be laminated and the resin layer can be attached with excellent adhesion.
The adhesion (peeling strength) between the film or laminate obtained by the production method of the present invention and the object to be laminated is preferably 5 N / cm or more, more preferably 6 N / cm or more, and particularly preferably 7 N / cm or more.

プリプレグとしては、市販のプリプレグを使用できる。
例えば市販されているプリプレグとしては、以下の商品名のものが挙げられる。
パナソニック社製のMEGTRON GXシリーズのR−G520、R−1410W、R−1410A、R−1410E、MEGTRONシリーズのR−5680、R−5680(N)、R−5670、R−5670(N)、R−5620S、R−5620、R−5630、R−1570、HIPERシリーズノR−1650V、R−1650D、R−1650M、R−1650E。
日立化成工業社製のGEA−770G、GEA−705G、GEA−700G、GEA−679FG、GEA−679F(R)、GEA−78G、TD−002、GEA−75G、GEA−67、GEA−67G。
三菱ガス化学社製のGEPL−190T、GEPL−230T、GHPL−830X TypeA、GHPL−830NS、GHPL−830NSR、GHPL−830NSF。
DOOSAN CORPORATION社製のGEPL−190T、GEPL−230T、GHPL−830X TypeA、GHPL−830NS、GHPL−830NSR、GHPL−830NSF。
GUANDONG Shengyi SCI. TECH社製のSP120N、S1151G、S1151GB、S1170G、S1170GB、S1150G、S1150GB、S1140F、S1140FB、S7045G、SP175M、S1190、S1190B、S1170、S0701、S1141KF、S0401KF、S1000−2M、S1000−2MB、S1000−2、S1000−2B、S1000、S1000B、S1000H、S1000HB、S7136H、S7439、S7439B。
SHANGHAI NANYA社製のNY1135、NY1140、NY1150、NY1170、NY2150、NY2170、NY9135、NY9140、NY9600、NY9250、NY9140 HF、NY6200、NY6150、NY3170 LK、NY6300、NY3170M、NY6200、NY3150 HF CTI600、NY3170HF、NY3150D、NY3150HF、NY2170H、NY2170、NY2150、NY2140、NY1600、NY1140、NY9815HF、NY9810HF、NY9815、NY9810。
ITEQ CORPORATION社製のIT−180GN、IT−180I、IT−180A、IT−189、IT−180、IT−258GA3、IT−158、IT−150GN、IT−140、IT−150GS、IT−150G、IT−168G1、IT−168G2、IT−170G、IT−170GRA1、IT−958G、IT−200LK、IT−200D、IT−150DA、IT−170GLE、IT−968G、IT−968G SE、IT−968、IT−968 SE。
NANYA PLASTICS社製のUV BLOCK FR−4−86、NP−140 TL/B、NP−140M TL/B、NP−150 R/TL/B、NP−170 R/TL/B、NP− 180 R/TL/B、NPG R/TL/B、NPG−151、NPG−150N、NPG−150LKHD、NPG−170N、NPG−170 R/TL/B、NPG−171、NPG−170D R/TL/B、NPG−180ID/B、NPG−180IF/B、NPG−180IN/B、NPG−180INBK/B(BP)、NPG−186、NPG−200R/TL、NPG−200WT、FR−4−86 PY、FR−140TL PY、NPG−PY R/TL、CEM−3−92、CEM−3−92PY、CEM−3−98、CEM−3−01PY、CEM−3−01HC、CEM−3−09、CEM−3−09HT、CEM−3−10、NP−LDII、NP−LDIII、NP−175R/TL/B、NP−155F R/TL/B、NP−175F R/TL/B、NP−175F BH、NP−175FM BH。
TAIWAN UNION TECHNOLOGY社製のULVP series、LDP series。
ISOLA GROUP社製のA11、R406N、P25N、TerraGreen、I−Tera MT40、IS680 AG、IS680、Astra MT77、G200、DE104、FR408、ED130UV、FR406、IS410、FR402、FR406N、IS420、IS620i、370TURBO、254、I−Speed、FR−408HR、IS415、370HR。
PARK ELECTROCHEMICAL社製のNY9000、NX9000、NL9000、NH9000、N9000−13 RF、N8000Q、N8000、N7000−1、N7000−2 HTスラッシュ −3、N7000−3、N5000、N5000−30、N−5000−32、N4000−12、N4000−12SI、N4000−13、N4000−13SI、N4000−13SI、N4000−13EP、N4000−13EP SI、N4350−13RF、N4380−13RF、N4800−20、N4800−20SI、Meteorwave1000、Meteorwave2000、Meteorwave3000、Meteorwave4000、Mercurywave9350、N4000−6、N4000−6FC、N4000−7、N4000−7SI、N4000−11、N4000−29。
ROGERS CORPORATION社製のRO4450B、RO4450F、CLTE−P、3001 Bonding Film、2929 Bondply、CuClad 6700 Bonding Film、ULTRALAM 3908 Bondply、CuClad 6250 Bonding Film。
利昌工業社製のES−3329、ES−3317B、ES−3346、ES−3308S、ES−3310A、ES−3306S、ES−3350、ES−3352、ES−3660、ES−3351S、ES−3551S、ES−3382S、ES−3940、ES−3960V、ES−3960C、ES−3753、ES−3305、ES−3615、ES−3306S、ES−3506S、ES−3308S、ES−3317B、ES−3615。
As the prepreg, a commercially available prepreg can be used.
For example, commercially available prepregs include those having the following trade names.
Panasonic's MEGTRON GX series R-G520, R-1410W, R-1410A, R-1410E, MEGTRON series R-5680, R-5680 (N), R-5670, R-5670 (N), R -5620S, R-5620, R-5630, R-1570, HIPER Series No. R-1650V, R-1650D, R-1650M, R-1650E.
GEA-770G, GEA-705G, GEA-700G, GEA-679FG, GEA-679F (R), GEA-78G, TD-002, GEA-75G, GEA-67, GEA-67G manufactured by Hitachi Kasei Kogyo Co., Ltd.
GEPL-190T, GEPL-230T, GHPL-830X TypeA, GHPL-830NS, GHPL-830NSR, GHPL-830NSF manufactured by Mitsubishi Gas Chemical Company.
GEPL-190T, GEPL-230T, GHPL-830X TypeA, GHPL-830NS, GHPL-830NSR, GHPL-830NSF manufactured by DOOSAN CORPORATION.
GUANDONG Shengyi SCI. SP120N, S1151G, S1151GB, S1170G, S1170GB, S1150G, S1150GB, S1140F, S1140FB, S7045G, SP175M, S1190, S1190B, S1170, S0701, S1141KF, S0401KF, S10002 S1000-2B, S1000, S1000B, S1000H, S1000HB, S7136H, S7439, S7439B.
NY1135, NY1140, NY1150, NY1170, NY2150, NY2170, NY9135, NY9140, NY9600, NY9250, NY9140 HF, NY6200, NY6150, NY3170 LK, NY6300 , NY2170H, NY2170, NY2150, NY2140, NY1600, NY1140, NY9815HF, NY9810HF, NY9815, NY9810.
IT-180GN, IT-180I, IT-180A, IT-189, IT-180, IT-258GA3, IT-158, IT-150GN, IT-140, IT-150GS, IT-150G, IT manufactured by ITEQ CORPORATION -168G1, IT-168G2, IT-170G, IT-170GRA1, IT-958G, IT-200LK, IT-200D, IT-150DA, IT-170GLE, IT-968G, IT-968G SE, IT-968, IT- 968 SE.
UV BLOCK FR-4-86, NP-140 TL / B, NP-140M TL / B, NP-150 R / TL / B, NP-170 R / TL / B, NP-180 R / manufactured by NANYA PLASTICS. TL / B, NPG R / TL / B, NPG-151, NPG-150N, NPG-150LKHD, NPG-170N, NPG-170 R / TL / B, NPG-171, NPG-170D R / TL / B, NPG -180ID / B, NPG-180IF / B, NPG-180IN / B, NPG-180INBK / B (BP), NPG-186, NPG-200R / TL, NPG-200WT, FR-4-86 PY, FR-140TL PY, NPG-PY R / TL, CEM-3-92, CEM-3-92PY, CEM-3-98, CEM-3-01PY, CEM-3-01HC, CEM-3-09, CEM-3-09HT , CEM-3-10, NP-LDII, NP-LDIII, NP-175R / TL / B, NP-155F R / TL / B, NP-175F R / TL / B, NP-175F BH, NP-175FM BH ..
ULVP series and LDP series manufactured by TAIWAN UNION TECHNOLOGY.
A11, R406N, P25N, TERAGreen, I-Tera MT40, IS680 AG, IS680, Astra MT77, G200, DE104, FR408, ED130UV, FR406, IS410, FR402, FR406N, IS420, IS620i, 370TU I-Speed, FR-408HR, IS415, 370HR.
NY9000, NX9000, NL9000, NH9000, N9000-13 RF, N8000Q, N8000, N7000-1, N7000-2 HT Slash-3, N7000-3, N5000, N5000-30, N-5000-32, manufactured by PARK ELECTROCHEMICAL. N4000-12, N4000-12SI, N4000-13, N4000-13SI, N4000-13SI, N4000-13EP, N4000-13EP SI, N4350-13RF, N4380-13RF, N4800-20, N4800-20SI, Meteorwave1000, Meteorwave2000 , Meteorwave4000, Mercurywave9350, N4000-6, N4000-6FC, N4000-7, N4000-7SI, N4000-11, N4000-29.
ROGERS CORPORATION RO4450B, RO4450F, CLITE-P, 3001 Bonding Film, 2929 Bondpley, CuClad 6700 Bonding Film, ULTRALAM 3908 Bondpley, CuClad 6250 Bond.
ES-3329, ES-3317B, ES-3346, ES-3308S, ES-3310A, ES-3306S, ES-3350, ES-3352, ES-3660, ES-3351S, ES-3551S, ES manufactured by Risho Kogyo Co., Ltd. -3382S, ES-3940, ES-3960V, ES-3960C, ES-37353, ES-3305, ES-3615, ES-3306S, ES-3506S, ES-3308S, ES-3317B, ES-3615.

本発明のフィルムの製造方法で製造されたフィルムや本発明の積層体の製造方法で製造された積層体を用いて得られた、金属層が銅や銅合金等からなる金属積層板は、プリント基板の製造に用いることができる。本発明の積層体の製造方法で製造された、基材が銅や銅合金等からなる積層体もまた、プリント基板の製造に用いることができる。
プリント基板は、前記金属積層板等の金属層をエッチングしてパターン回路を形成して得ることができる。金属層のエッチングは、公知の方法を採用できる。
プリント基板の製造においては、金属層をエッチングしてパターン回路を形成した後に、該パターン回路上に層間絶縁膜を形成し、該層間絶縁膜上にさらにパターン回路を形成してもよい。層間絶縁膜は、例えば、本発明の製造方法で得られる液状組成物により形成できる。
具体的には、例えば、以下の方法が挙げられる。任意の積層構造の金属積層板の金属層をエッチングしてパターン回路を形成した後、本発明の液状組成物を該パターン回路上に塗布し、乾燥した後に加熱して層間絶縁膜とする。次いで、前記層間絶縁膜上に蒸着等で金属層を形成し、エッチングしてさらなるパターン回路を形成する。
A metal laminate whose metal layer is made of copper, a copper alloy, or the like, which is obtained by using the film produced by the method for producing a film of the present invention or the laminate produced by the method for producing a laminate of the present invention, is printed. It can be used in the manufacture of substrates. A laminate whose base material is made of copper, a copper alloy, or the like, which is produced by the method for producing a laminate of the present invention, can also be used for producing a printed circuit board.
The printed circuit board can be obtained by etching a metal layer such as the metal laminate to form a pattern circuit. A known method can be adopted for etching the metal layer.
In the production of a printed circuit board, a metal layer may be etched to form a pattern circuit, an interlayer insulating film may be formed on the pattern circuit, and a pattern circuit may be further formed on the interlayer insulating film. The interlayer insulating film can be formed, for example, by the liquid composition obtained by the production method of the present invention.
Specifically, for example, the following method can be mentioned. After etching the metal layer of a metal laminate having an arbitrary laminated structure to form a pattern circuit, the liquid composition of the present invention is applied onto the pattern circuit, dried, and then heated to form an interlayer insulating film. Next, a metal layer is formed on the interlayer insulating film by thin film deposition or the like, and etching is performed to form a further pattern circuit.

プリント基板の製造においては、パターン回路上にソルダーレジストを積層してもよい。ソルダーレジストは、例えば、本発明の液状組成物により形成できる。具体的には、本発明の液状組成物をパターン回路上に塗布し、乾燥した後に加熱してソルダーレジストを形成してもよい。 In the production of the printed circuit board, a solder resist may be laminated on the pattern circuit. The solder resist can be formed, for example, by the liquid composition of the present invention. Specifically, the liquid composition of the present invention may be applied onto a pattern circuit, dried, and then heated to form a solder resist.

また、プリント基板の製造においては、カバーレイフィルムを積層してもよい。カバーレイフィルムは、典型的には、基材フィルムと、その表面に形成された接着剤層とから構成され、接着剤層側の面がプリント基板に貼り合わされる。カバーレイフィルムとしては、例えば、本発明の製造方法で得たフィルムを使用できる。
また、金属積層板の金属層をエッチングして形成したパターン回路上に、本発明の製造方法で得たフィルムを用いた層間絶縁膜を形成し、該層間絶縁膜上にカバーレイフィルムとしてポリイミドフィルムを積層してもよい。
Further, in the production of the printed circuit board, the coverlay film may be laminated. The coverlay film is typically composed of a base film and an adhesive layer formed on the surface thereof, and the surface on the adhesive layer side is bonded to the printed circuit board. As the coverlay film, for example, a film obtained by the production method of the present invention can be used.
Further, an interlayer insulating film using the film obtained by the production method of the present invention is formed on a pattern circuit formed by etching a metal layer of a metal laminated plate, and a polyimide film is formed as a coverlay film on the interlayer insulating film. May be laminated.

得られるプリント基板は、高周波特性が必要とされるレーダー、ネットワークのルーター、バックプレーン、無線インフラ等の電子機器用基板や自動車用各種センサ用基板、エンジンマネージメントセンサ用基板として有用であり、特にミリ波帯域の伝送損失低減を目的とする用途に好適である。 The obtained printed circuit boards are useful as substrates for electronic devices such as radars, network routers, backplanes, and wireless infrastructures that require high-frequency characteristics, substrates for various sensors for automobiles, and substrates for engine management sensors, and are particularly useful in millimeters. It is suitable for applications aimed at reducing transmission loss in the wave band.

本発明の製造方法で得られるフィルムや積層体は、アンテナ部品、プリント基板、航空機用部品、自動車用部品、スポーツ用具や、食品工業用品、のこぎり、すべり軸受け等の被覆物品等として使用できる。さらに例示すると、国際公開第2015/182702号の[0040]〜[0044]に記載の用途にも使用できる。また、プリプレグはFRP、CFRPに用いることができるが、これは国際公開第2015/182702号の[0046]に記載の用途が挙げられる。また、本発明の液状組成物は、溶液系の塗料として用いることもできる。該塗料でコーティングされた物品としては、国際公開第2015/182702号の[0045]に記載されたものが挙げられる。また、特許第2686148号公報のように絶縁電線の絶縁層を形成する絶縁塗料として用いることもできる。 The film or laminate obtained by the manufacturing method of the present invention can be used as an antenna part, a printed circuit board, an aircraft part, an automobile part, a sports equipment, a food industry product, a saw, a covering article such as a sliding bearing, and the like. Further, for example, it can also be used for the uses described in [0040] to [0044] of International Publication No. 2015/182702. Further, the prepreg can be used for FRP and CFRP, and this includes the uses described in [0046] of International Publication No. 2015/182702. The liquid composition of the present invention can also be used as a solution-based coating material. Examples of the article coated with the paint include those described in [0045] of International Publication No. 2015/182702. Further, as in Japanese Patent No. 2686148, it can also be used as an insulating coating material for forming an insulating layer of an insulated electric wire.

絶縁電線としては、本発明の液状組成物を用いて、平角線の外周に厚みが10〜150μmである絶縁被覆層を形成させた絶縁電線が挙げられる。前記絶縁被覆層の比誘電率は2.8以下であることが好ましい。また、前記絶縁被覆層と平角線で使用する金属種との密着強度が10N/cm以上であることが好ましい。前記絶縁電線は、絶縁増幅器、絶縁トランス、自動車のオルタネータ、ハイブリッド車の電動機の何れかの機器として好適である。 Examples of the insulated wire include an insulated wire in which the liquid composition of the present invention is used to form an insulating coating layer having a thickness of 10 to 150 μm on the outer circumference of a flat wire. The relative permittivity of the insulating coating layer is preferably 2.8 or less. Further, it is preferable that the adhesion strength between the insulating coating layer and the metal type used for the flat wire is 10 N / cm or more. The insulated wire is suitable as any device of an insulating amplifier, an isolation transformer, an alternator of an automobile, and an electric motor of a hybrid vehicle.

以下、実施例によって本発明を具体的に説明するが、本発明は以下の記載によっては限定されない。なお、以下の実施例では、本発明の液状組成物を含め、固体粒子を含む液状媒体を「分散液」という。
[測定方法]
重合体(X)および樹脂パウダーについての各種測定方法を以下に示す。
(1)共重合組成
重合体(X)の共重合組成のうち、NAHに基づく単位の割合(モル%)は、以下の赤外吸収スペクトル分析によって求めた。他の単位の割合は、溶融NMR分析およびフッ素含有量分析により求めた。
Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to the following description. In the following examples, the liquid medium containing the solid particles including the liquid composition of the present invention is referred to as "dispersion liquid".
[Measuring method]
Various measuring methods for the polymer (X) and the resin powder are shown below.
(1) Copolymerization Composition The proportion (mol%) of the unit based on NAH in the copolymerization composition of the polymer (X) was determined by the following infrared absorption spectrum analysis. The proportions of the other units were determined by melt NMR analysis and fluorine content analysis.

<NAHに基づく単位の割合(モル%)>
含フッ素共重合体をプレス成形して厚み200μmのフィルムを得た後、赤外分光法により分析して赤外吸収スペクトルを得た。赤外吸収スペクトルにおいて、含フッ素共重合体中のNAHに基づく単位における吸収ピークは1778cm−1に現れる。該吸収ピークの吸光度を測定し、NAHのモル吸光係数20810mol−1・l・cm−1を用いて、含フッ素共重合体におけるNAHに基づく単位の割合を求めた。
<Percentage of units based on NAH (mol%)>
The fluorine-containing copolymer was press-molded to obtain a film having a thickness of 200 μm, which was then analyzed by infrared spectroscopy to obtain an infrared absorption spectrum. In the infrared absorption spectrum, the absorption peak in the NAH-based unit in the fluorine-containing copolymer appears at 1778 cm -1. The absorbance of the absorption peak was measured, and the molar extinction coefficient of NAH 20810 mol -1 · l · cm -1 was used to determine the proportion of units based on NAH in the fluorine-containing copolymer.

(2)融点(℃)
セイコー電子社製の示差走査熱量計(DSC装置)を用い、共重合体(X)を10℃/分の速度で昇温したときの融解ピークを記録し、極大値に対応する温度(℃)を融点(Tm)とした。
(2) Melting point (° C)
Using a differential scanning calorimeter (DSC device) manufactured by Seiko Electronics Co., Ltd., the melting peak when the temperature of the copolymer (X) is raised at a rate of 10 ° C./min is recorded, and the temperature (° C.) corresponding to the maximum value is recorded. Was defined as the melting point (Tm).

(3)MFR(g/10分)
テクノセブン社製のメルトインデクサーを用い、372℃、49N荷重下で、直径2mm、長さ8mmのノズルから10分間(単位時間)に流出する共重合体(X)の質量(g)を測定してMFRとした。
(3) MFR (g / 10 minutes)
Using a melt indexer manufactured by Techno Seven, measure the mass (g) of the copolymer (X) flowing out from a nozzle having a diameter of 2 mm and a length of 8 mm in 10 minutes (unit time) under a load of 49 N at 372 ° C. And made it MFR.

(4)比誘電率
ASTM D 150準拠の変成器ブリッジ法にて、温度を23℃±2℃の範囲内、相対湿度を50%±5%RHの範囲内に保持した試験環境において、絶縁破壊試験装置(YSY−243−100RHO(ヤマヨ試験機社製))にて、1MHzで求めた値を比誘電率とした。
(4) Relative permittivity Dielectric breakdown in a test environment in which the temperature was kept within the range of 23 ° C ± 2 ° C and the relative humidity was kept within the range of 50% ± 5% RH by the transformer bridge method based on ASTM D 150. The relative permittivity was defined as a value obtained at 1 MHz using a test device (YSY-243-100RHO (manufactured by Yamayo Testing Machine Co., Ltd.)).

(5)重合体(X)の平均粒径
2.000メッシュ篩(目開き2.400mm)、1.410メッシュ篩(目開き1.705mm)、1.000メッシュ篩(目開き1.205mm)、0.710メッシュ篩(目開き0.855mm)、0.500メッシュ篩(目開き0.605mm)、0.250メッシュ篩(目開き0.375mm)、0.149メッシュ篩(目開き0.100mm)、および受け皿をこの順に上から重ねた。その上から試料(重合体(X))を入れ、30分間振とう器で篩分けを行った。その後、各篩の上に残った試料の質量を測定し、各目開き値に対する通過質量の累計をグラフに表し、通過質量の累計が50%の時の粒径を試料の平均粒径とした。
(5) Average particle size of the polymer (X) 2,000 mesh sieve (opening 2.400 mm), 1.410 mesh sieve (opening 1.705 mm), 1.000 mesh sieve (opening 1.205 mm) , 0.710 mesh sieve (opening 0.855 mm), 0.500 mesh sieve (opening 0.605 mm), 0.250 mesh sieve (opening 0.375 mm), 0.149 mesh sieve (opening 0. 100 mm) and the saucer were stacked in this order from the top. A sample (polymer (X)) was put therein and sieved with a shaker for 30 minutes. After that, the mass of the sample remaining on each sieve was measured, the cumulative mass of passing mass for each opening value was shown in a graph, and the particle size when the cumulative mass of passing mass was 50% was taken as the average particle size of the sample. ..

(6)樹脂パウダーの平均粒径およびD90
堀場製作所社製のレーザー回折・散乱式粒度分布測定装置(LA−920測定器)を用い、樹脂パウダーを水中に分散させ、粒度分布を測定し、平均粒径(μm)およびD90(μm)を算出した。
(6) Average particle size of resin powder and D90
Using a laser diffraction / scattering particle size distribution measuring device (LA-920 measuring device) manufactured by Horiba Seisakusho, the resin powder was dispersed in water, the particle size distribution was measured, and the average particle size (μm) and D90 (μm) were measured. Calculated.

(7)疎充填嵩密度および密充填嵩密度
樹脂パウダーの疎充填嵩密度、密充填嵩密度は、国際公開第2016/017801号の[0117]、[0118]に記載の方法を用いて測定した。
(7) Sparsely Filled Bulk Density and Densely Filled Bulk Density The sparsely filled bulk density and densely packed bulk density of the resin powder were measured by using the methods described in [0117] and [0118] of International Publication No. 2016/017801. ..

(8)銅箔との剥離強度
各例で得た片面銅張積層板、両面銅張積層板または積層体から、長さ100mm、幅10mmの矩形状の試験片を切り出した。前記試験片の長さ方向の一端から50mmの位置まで、一方の銅箔と樹脂層、銅箔を使用していない試験片については樹脂層と融着している相手材とを剥離した。次いで、前記試験片の長さ方向の一端から50mmの位置を中央にして、引張り試験機(オリエンテック社製)を用いて、引張り速度50mm/分で90度剥離し、最大荷重を剥離強度(N/10mm)とした。剥離強度が大きいほど、樹脂層と銅箔または樹脂層と相手材との間の密着性が優れていることを示す。
(8) Peeling Strength from Copper Foil A rectangular test piece having a length of 100 mm and a width of 10 mm was cut out from the single-sided copper-clad laminate, double-sided copper-clad laminate or laminate obtained in each example. From one end of the test piece in the length direction to a position of 50 mm, one copper foil and the resin layer, and for the test piece not using the copper foil, the resin layer and the mating material fused to each other were peeled off. Next, using a tensile tester (manufactured by Orientec Co., Ltd.), the test piece is peeled 90 degrees at a tensile speed of 50 mm / min with the position 50 mm from one end in the length direction as the center, and the maximum load is set to the peel strength (peeling strength (manufactured by Orientec). N / 10 mm). The larger the peel strength, the better the adhesion between the resin layer and the copper foil or between the resin layer and the mating material.

(9)片面銅張積層板の反り率
各例で得た片面銅張積層板から180mm角の四角い試験片を切り出した。この試験片をJIS C 6471に規定されている測定方法に従い反り率を測定した。反り率が小さいほど、片面銅張積層板を他材料と積層した場合に、積層加工時の反りによる他材料との積層不良や、積層体としての反りが抑制された平坦性の高いプリント基板を得ることが可能となる。
(9) Warpage rate of single-sided copper-clad laminate A 180 mm square test piece was cut out from the single-sided copper-clad laminate obtained in each example. The warpage rate of this test piece was measured according to the measuring method specified in JIS C 6471. The smaller the warpage rate, the higher the flatness of the printed circuit board, in which when a single-sided copper-clad laminate is laminated with other materials, poor lamination with other materials due to warpage during laminating processing and warpage as a laminated body are suppressed. It becomes possible to obtain.

(10)厚み方向線膨張係数(ppm/℃)
各例で得た両面銅張積層板を10mm×10mmに裁断したサンプルについて、熱機械分析装置(NETZSCH社製、TMA402 F1 Hyperion)を用いて厚み方向の線膨張係数CTE(z)を測定した。具体的には、窒素雰囲気中、荷重を19.6mNとし、測定温度が−65℃から150℃の温度範囲を2℃/分の速度でサンプルを昇温し、サンプルの厚みの変位量を測定した。測定終了後、−40℃から125℃間のサンプルの変位量から−40℃から125℃での線膨張係数を求めた。
(10) Thickness direction linear expansion coefficient (ppm / ° C)
The linear expansion coefficient CTE (z) in the thickness direction was measured using a thermomechanical analyzer (TMA402 F1 Hyperion manufactured by NETZSCH) for a sample obtained by cutting the double-sided copper-clad laminate obtained in each example into 10 mm × 10 mm. Specifically, in a nitrogen atmosphere, the load is 19.6 mN, the sample is heated at a rate of 2 ° C./min in the temperature range of -65 ° C to 150 ° C, and the displacement of the sample thickness is measured. bottom. After the measurement was completed, the coefficient of linear expansion from −40 ° C. to 125 ° C. was determined from the displacement of the sample between −40 ° C. and 125 ° C.

(11)算術平均粗さRa
JIS B0601:2013(ISO4287:1997,Amd.1:2009)に基づいて、片面銅張積層板の樹脂層の表面のRaを測定した。Raを求める際の、粗さ曲線用の基準長さlr(カットオフ値λc)は0.8mmとした。
(11) Arithmetic Mean Roughness Ra
Based on JIS B0601: 2013 (ISO4287: 1997, Amd.1: 2009), Ra on the surface of the resin layer of the single-sided copper-clad laminate was measured. The reference length rl (cutoff value λc) for the roughness curve when calculating Ra was set to 0.8 mm.

(12)プリプレグとの界面の剥離強度
各例で得た金属積層板から、長さ100mm、幅10mmの矩形状の試験片を切り出した。前記試験片の長さ方向の一端から50mmの位置まで樹脂層とプリプレグとを剥離した。次いで、前記試験片の長さ方向の一端から50mmの位置を中央にして、引張り試験機(オリエンテック社製)を用いて、引張り速度50mm/分で90度剥離し、最大荷重を剥離強度(N/10mm)とした。剥離強度が大きいほど、樹脂層とプリプレグとの密着性が優れていることを示す。
(12) Peeling Strength at Interface with Prepreg A rectangular test piece having a length of 100 mm and a width of 10 mm was cut out from the metal laminated plate obtained in each example. The resin layer and the prepreg were peeled off from one end in the length direction of the test piece to a position of 50 mm. Next, using a tensile tester (manufactured by Orientec Co., Ltd.), the test piece is peeled 90 degrees at a tensile speed of 50 mm / min with the position 50 mm from one end in the length direction as the center, and the maximum load is set to the peel strength (peeling strength (manufactured by Orientec). N / 10 mm). The larger the peel strength, the better the adhesion between the resin layer and the prepreg.

[製造例1]
単位(1)を形成する単量体としてNAH(無水ハイミック酸、日立化成社製)を、PPVE(CF=CFO(CFF、旭硝子社製)を用いて、国際公開第2016/017801号の[0123]に記載の手順で重合体(X−1)を製造した。
重合体(X−1)の共重合組成は、NAH単位/TFE単位/PPVE単位=0.1/97.9/2.0(モル%)であった。重合体(X−1)の融点は300℃であり、比誘電率は2.1であり、MFRは17.6g/10分であり、平均粒径は1554μmであった。
[Manufacturing Example 1]
Unit (1) monomer as NAH (himic anhydride, manufactured by Hitachi Chemical Co., Ltd.) to form an a, PPVE (CF 2 = CFO ( CF 2) 3 F, manufactured by Asahi Glass Co., Ltd.) using, WO 2016 / The polymer (X-1) was produced by the procedure described in [0123] of No. 017801.
The copolymer composition of the polymer (X-1) was NAH unit / TFE unit / PPVE unit = 0.1 / 97.9 / 2.0 (mol%). The melting point of the polymer (X-1) was 300 ° C., the relative permittivity was 2.1, the MFR was 17.6 g / 10 minutes, and the average particle size was 1554 μm.

次いで、ジェットミル(セイシン企業社製、シングルトラックジェットミル FS−4型)を用い、粉砕圧力0.5MPa、処理速度1kg/hrの条件で、重合体(X−1)を粉砕して樹脂パウダー(A)を得た。樹脂パウダー(A)の平均粒径は2.58μmであり、D90は7.1μmであった。樹脂パウダー(A)の疎充填嵩密度は0.278g/mLであり、密充填嵩密度は0.328g/mLであった。 Next, using a jet mill (single track jet mill FS-4 type manufactured by Seishin Enterprise Co., Ltd.), the polymer (X-1) was pulverized under the conditions of a pulverization pressure of 0.5 MPa and a processing speed of 1 kg / hr to form a resin powder. (A) was obtained. The average particle size of the resin powder (A) was 2.58 μm, and the D90 was 7.1 μm. The sparsely packed bulk density of the resin powder (A) was 0.278 g / mL, and the densely packed bulk density was 0.328 g / mL.

[製造例2]
ジェットミル(セイシン企業社製、シングルトラックジェットミル FS−4型)を用い、粉砕圧力0.5MPa、処理速度1kg/hrの条件で、PTFE(旭硝子社製 L169J)を粉砕し、PTFEからなる樹脂パウダー(B)を得た。樹脂パウダー(B)の平均粒径は3.01μmであり、D90は8.5μmであり、疎充填嵩密度は0.355g/mLであり、密充填嵩密度は0.387g/mLであった。
[Manufacturing Example 2]
A resin made of PTFE by crushing PTFE (L169J manufactured by Asahi Glass Co., Ltd.) under the conditions of a crushing pressure of 0.5 MPa and a processing speed of 1 kg / hr using a jet mill (single track jet mill FS-4 type manufactured by Seishin Enterprise Co., Ltd.). Powder (B) was obtained. The average particle size of the resin powder (B) was 3.01 μm, D90 was 8.5 μm, the sparsely packed bulk density was 0.355 g / mL, and the densely packed bulk density was 0.387 g / mL. ..

[実施例1]
樹脂パウダー(A)120gに対し、ノニオン性界面活性剤(ネオス社製、フタージェント250)を9g、蒸留水234gの混合水溶液を徐々に添加し、撹拌機であるラボスターラー(ヤマト科学社製、型式:LT−500)を用いて60分撹拌して分散液(C−1)を得た。
[Example 1]
To 120 g of resin powder (A), a mixed aqueous solution of 9 g of a nonionic surfactant (manufactured by Neos, Futergent 250) and 234 g of distilled water was gradually added, and a stirrer, Labo Stirrer (manufactured by Yamato Kagaku Co., Ltd.). A dispersion (C-1) was obtained by stirring for 60 minutes using Model: LT-500).

[実施例2]
ノニオン性界面活性剤をFTX−218P(ネオス社製)に変更し、蒸留水をN−メチル−2−ピロリドンに変更した以外は、実施例1と同様にして分散液(C−2)を得た。
[Example 2]
A dispersion liquid (C-2) was obtained in the same manner as in Example 1 except that the nonionic surfactant was changed to FTX-218P (manufactured by Neos) and the distilled water was changed to N-methyl-2-pyrrolidone. rice field.

[実施例3]
ノニオン性界面活性剤をFTX−218P(ネオス社製)に変更し、蒸留水をN,N−ジメチルホルムアミドに変更した以外は、実施例1と同様にして分散液(C−3)を得た。
[Example 3]
A dispersion (C-3) was obtained in the same manner as in Example 1 except that the nonionic surfactant was changed to FTX-218P (manufactured by Neos) and the distilled water was changed to N, N-dimethylformamide. ..

[実施例4]
ノニオン性界面活性剤をフタージェント710FM(ネオス社製)に変更し、蒸留水をN,N−ジメチルアセトアミドに変更した以外は、実施例1と同様にして分散液(C−4)を得た。
[Example 4]
A dispersion (C-4) was obtained in the same manner as in Example 1 except that the nonionic surfactant was changed to Futagent 710FM (manufactured by Neos) and the distilled water was changed to N, N-dimethylacetamide. ..

[比較例1]
樹脂パウダー(A)の代わりに、製造例2で得た樹脂パウダー(B)を用いた以外は、実施例1と同様にして分散液(C−5)を得た。
[Comparative Example 1]
A dispersion liquid (C-5) was obtained in the same manner as in Example 1 except that the resin powder (B) obtained in Production Example 2 was used instead of the resin powder (A).

[分散性評価]
各例で得た分散液について、1時間静置後と3日静置後の分散状態を目視にて確認し、下記の評価基準に従って分散性を評価した。
<1時間静置後>
○:樹脂パウダーが沈降せず、樹脂パウダーと液状媒体との分離が見られない。
×:樹脂パウダーが沈降し、樹脂パウダーと液状媒体との分離が見られる。
<3日静置後>
○:樹脂パウダーと液状媒体との分離が見られるが、再度ラボスターラーで6時間撹拌すると、凝集物の浮遊が見られず再分散可能である。
×:樹脂パウダーと液状媒体との分離が見られ、再度ラボスターラーで6時間撹拌しても、凝集物の浮遊が見られ再分散できない。
[Dispersibility evaluation]
With respect to the dispersions obtained in each example, the dispersion state after standing for 1 hour and after standing for 3 days was visually confirmed, and the dispersibility was evaluated according to the following evaluation criteria.
<After standing for 1 hour>
◯: The resin powder did not settle, and no separation between the resin powder and the liquid medium was observed.
X: The resin powder settles, and separation between the resin powder and the liquid medium is observed.
<After standing for 3 days>
◯: Separation of the resin powder and the liquid medium was observed, but when the mixture was stirred again with a lab stirrer for 6 hours, no floating of agglomerates was observed and redispersion was possible.
X: Separation of the resin powder and the liquid medium was observed, and even if the mixture was stirred again with a lab stirrer for 6 hours, agglomerates were observed to float and could not be redispersed.

各例の評価結果を表1に示す。なお、表1における略号は以下の意味を示す。
F250:フタージェント250(ネオス社製)
FTX−218P:FTX−218P(ネオス社製)
NMP:N−メチル−2−ピロリドン
DMF:N,N−ジメチルホルムアミド
DMAc:N,N−ジメチルアセトアミド
The evaluation results of each example are shown in Table 1. The abbreviations in Table 1 have the following meanings.
F250: Futergent 250 (manufactured by Neos)
FTX-218P: FTX-218P (manufactured by Neos)
NMP: N-methyl-2-pyrrolidone DMF: N, N-dimethylformamide DMAc: N, N-dimethylacetamide

Figure 2021121675
Figure 2021121675

表1に示すように、樹脂パウダー(A)が液状媒体に分散した実施例1〜4の分散液は、1時間静置後の分散状態は良好であり、分散性に優れていた。また、3日静置後には樹脂パウダーと液状媒体との分離が見られるが、再度ラボスターラーで6時間撹拌すると、凝集物の浮遊が見られず再分散可能であり、再分散性に優れていた。
一方、樹脂パウダー(A)の代わりに樹脂パウダー(B)を用いた比較例1の分散液は、1時間静置後後に樹脂パウダー(B)の一部が沈降して液状媒体と分離しており、分散状態が悪かった。また、3日静置後には樹脂パウダー(B)が全て沈降して分離しており、再度ラボスターラーで6時間撹拌しても、凝集体が浮遊して均一な分散液が得られず、再分散性も悪かった。
As shown in Table 1, the dispersions of Examples 1 to 4 in which the resin powder (A) was dispersed in a liquid medium had a good dispersion state after standing for 1 hour and were excellent in dispersibility. In addition, the resin powder and the liquid medium are separated after standing for 3 days, but when the mixture is stirred again with a lab stirrer for 6 hours, the agglomerates do not float and can be redispersed, which is excellent in redispersibility. rice field.
On the other hand, in the dispersion liquid of Comparative Example 1 in which the resin powder (B) was used instead of the resin powder (A), a part of the resin powder (B) settled and separated from the liquid medium after standing for 1 hour. The dispersion was bad. In addition, after standing for 3 days, all the resin powder (B) settled and separated, and even if the mixture was stirred again with a lab stirrer for 6 hours, the agglomerates floated and a uniform dispersion could not be obtained. The dispersibility was also poor.

[実施例5]
実施例1で得た分散液(C−1)を銅箔上に塗布し、乾燥して片面銅張積層板を2枚作製した。次いで、樹脂層が向い合うように片面銅張積層板2枚を重ね、プレス温度340℃、プレス圧力4.0MPa、プレス時間15分で真空熱プレスを行って両面銅張積層板を得た。得られた両面銅張積層板をエッチングし、比誘電率および剥離強度の測定結果を表2に示す。
[Example 5]
The dispersion liquid (C-1) obtained in Example 1 was applied onto a copper foil and dried to prepare two single-sided copper-clad laminates. Next, two single-sided copper-clad laminates were laminated so that the resin layers faced each other, and vacuum heat pressing was performed at a press temperature of 340 ° C., a press pressure of 4.0 MPa, and a press time of 15 minutes to obtain a double-sided copper-clad laminate. Table 2 shows the measurement results of the relative permittivity and the peel strength after etching the obtained double-sided copper-clad laminate.

[実施例6]
実施例2で得た分散液(C−2)に平均粒径0.7μmのシリカフィラー(SFP−30M、Denka社製)を25質量%となるように添加し、その混合液を分散液(C−1)の代わりに用いる以外は、実施例5と同様にして両面銅張積層板を得た。剥離強度の測定結果を表2に示す。
[Example 6]
A silica filler (SFP-30M, manufactured by Denka) having an average particle size of 0.7 μm was added to the dispersion liquid (C-2) obtained in Example 2 so as to have a concentration of 25% by mass, and the mixed liquid was added to the dispersion liquid (SFP-30M, manufactured by Denka Co., Ltd.). A double-sided copper-clad laminate was obtained in the same manner as in Example 5 except that it was used in place of C-1). Table 2 shows the measurement results of the peel strength.

[比較例2]
比較例1で得た分散液(C−5)を分散液(C−1)の代わりに用いる以外は、実施例5と同様にして両面銅張積層板を得た。剥離強度の測定結果を表2に示す。
[Comparative Example 2]
A double-sided copper-clad laminate was obtained in the same manner as in Example 5 except that the dispersion liquid (C-5) obtained in Comparative Example 1 was used instead of the dispersion liquid (C-1). Table 2 shows the measurement results of the peel strength.

Figure 2021121675
Figure 2021121675

表2に示すように、本発明の分散液を用いた実施例5、6では、分散状態が悪い分散液(C−1)を用いた比較例2に比べて、両面銅張積層板における樹脂層と銅箔との剥離強度が高かった。 As shown in Table 2, in Examples 5 and 6 using the dispersion liquid of the present invention, the resin in the double-sided copper-clad laminate was compared with Comparative Example 2 using the dispersion liquid (C-1) having a poor dispersion state. The peel strength between the layer and the copper foil was high.

[実施例7]
ノニオン性界面活性剤をフタージェント710−FM(ネオス社製)に変更し、蒸留水をジエチレングリコールジブチルエーテルに変更した以外は、実施例1と同様にして分散液を得た。続いて、上記のようにして得られた分散液を、横型のボールミルを用いて、15mm径のジルコニアボールにて分散を行い、分散液(C−6)を得た。分散液(C−6)を銅箔上に塗布し、窒素雰囲気下で220℃15分で乾燥し、その後350℃15分で加熱した後、徐冷することで樹脂層厚みが30μmの片面銅張積層体を2枚作製した。次いで、樹脂層が向い合うように片面銅張積層板2枚を重ね、プレス温度340℃、プレス圧力4.0MPa、プレス時間15分で真空熱プレスを行って両面銅張積層板を得た。
[Example 7]
A dispersion was obtained in the same manner as in Example 1 except that the nonionic surfactant was changed to Futagent 710-FM (manufactured by Neos) and the distilled water was changed to diethylene glycol dibutyl ether. Subsequently, the dispersion liquid obtained as described above was dispersed with a zirconia ball having a diameter of 15 mm using a horizontal ball mill to obtain a dispersion liquid (C-6). A dispersion liquid (C-6) is applied onto a copper foil, dried in a nitrogen atmosphere at 220 ° C. for 15 minutes, then heated at 350 ° C. for 15 minutes, and then slowly cooled to obtain a single-sided copper having a resin layer thickness of 30 μm. Two tension laminates were produced. Next, two single-sided copper-clad laminates were laminated so that the resin layers faced each other, and vacuum heat pressing was performed at a press temperature of 340 ° C., a press pressure of 4.0 MPa, and a press time of 15 minutes to obtain a double-sided copper-clad laminate.

[実施例8]
ジエチレングリコールジブチルエーテルをブチルカルビトールアセテートに変更した以外は、実施例7と同様にして分散液(C−7)を得た。分散液(C−7)を銅箔上に塗布し、窒素雰囲気下で250℃15分で乾燥し、実施例7と同様に片面銅張積層体および両面銅張積層板を得た。片面銅張積層体の反り率は4.4%であり、反りは小さかった。
[Example 8]
A dispersion (C-7) was obtained in the same manner as in Example 7 except that diethylene glycol dibutyl ether was changed to butyl carbitol acetate. The dispersion liquid (C-7) was applied onto a copper foil and dried at 250 ° C. for 15 minutes in a nitrogen atmosphere to obtain a single-sided copper-clad laminate and a double-sided copper-clad laminate in the same manner as in Example 7. The warpage rate of the single-sided copper-clad laminate was 4.4%, and the warp was small.

[実施例9]
ブチルカルビトールアセテートをブチルカルビトールに変更した以外は、実施例7と同様にして分散液(C−8)を得た。分散液(C−8)を銅箔上に塗布し、窒素雰囲気下で230℃15分で乾燥し、実施例7と同様に片面銅張積層体および両面銅張積層板を得た。片面銅張積層体の反り率は5.0%であり、反りは小さかった。
[Example 9]
A dispersion liquid (C-8) was obtained in the same manner as in Example 7 except that butyl carbitol acetate was changed to butyl carbitol. The dispersion liquid (C-8) was applied onto a copper foil and dried at 230 ° C. for 15 minutes in a nitrogen atmosphere to obtain a single-sided copper-clad laminate and a double-sided copper-clad laminate in the same manner as in Example 7. The warpage rate of the single-sided copper-clad laminate was 5.0%, and the warp was small.

[実施例10]
平均粒径0.7μmのシリカフィラー(SFP−30M、Denka社製。)120gに対し、ノニオン性界面活性剤(ネオス社製、フタージェント250)を9g、蒸留水234gの混合水溶液を徐々に添加し、撹拌機であるラボスターラー(ヤマト科学社製、型式:LT−500)を用いて60分撹拌して分散液(C−9)を得た。実施例1で作製した分散液(C−1)と分散液(C−9)を、(C−1):(C−9)=70:30の質量比で混合し、ラボスターラーで撹拌し均一な分散液を得た。続いて、上記のようにして得られた分散液を、横型のボールミルを用いて、15mm径のジルコニアボールにて分散を行い、分散液(C−10)を得た。分散液(C−10)を銅箔上に塗布し、窒素雰囲気下で100℃15分で乾燥し、その後350℃15分で加熱した後、徐冷することで片面銅張積層体板を作製した。得られた積層体を7cm角に成形した積層体は、円筒状に丸まることはなく、反りが抑制されていた。
[Example 10]
A mixed aqueous solution of 9 g of a nonionic surfactant (Futergent 250, manufactured by Neos) and 234 g of distilled water is gradually added to 120 g of a silica filler (SFP-30M, manufactured by Denka) having an average particle size of 0.7 μm. Then, a dispersion liquid (C-9) was obtained by stirring for 60 minutes using a lab stirrer (manufactured by Yamato Scientific Co., Ltd., model: LT-500). The dispersion liquid (C-1) and the dispersion liquid (C-9) prepared in Example 1 are mixed at a mass ratio of (C-1) :( C-9) = 70:30, and stirred with a lab stirrer. A uniform dispersion was obtained. Subsequently, the dispersion liquid obtained as described above was dispersed with a zirconia ball having a diameter of 15 mm using a horizontal ball mill to obtain a dispersion liquid (C-10). A single-sided copper-clad laminate is prepared by applying a dispersion liquid (C-10) on a copper foil, drying it in a nitrogen atmosphere at 100 ° C. for 15 minutes, heating it at 350 ° C. for 15 minutes, and then slowly cooling it. bottom. The laminated body obtained by molding the obtained laminated body into a 7 cm square did not curl into a cylindrical shape, and warpage was suppressed.

[実施例11]
実施例10の(C−1):(C−9)を60:40の質量比として分散液(C−11)を得た他は、実施例10と同様に片面銅張積層板を作製した。得られた片面銅張積層板を7cm角に成形した積層体は、円筒状に丸まることはなく、反りが抑制されていた。
[Example 11]
A single-sided copper-clad laminate was produced in the same manner as in Example 10 except that the dispersion liquid (C-11) was obtained by setting (C-1): (C-9) of Example 10 as a mass ratio of 60:40. .. The laminated body obtained by molding the obtained single-sided copper-clad laminate into a 7 cm square did not curl into a cylindrical shape, and warpage was suppressed.

[実施例12]
実施例10の(C−1):(C−9)を50:50の質量比として分散液(C−12)を得た他は、実施例10と同様に片面銅張積層板を作製した。得られた片面銅張積層板を7cm角に成形した積層体は、円筒状に丸まることはなく、反りが抑制されていた。
[Example 12]
A single-sided copper-clad laminate was produced in the same manner as in Example 10 except that the dispersion liquid (C-12) was obtained by setting (C-1): (C-9) of Example 10 as a mass ratio of 50:50. .. The laminated body obtained by molding the obtained single-sided copper-clad laminate into a 7 cm square did not curl into a cylindrical shape, and warpage was suppressed.

[実施例13]
実施例10の(C−1):(C−9)を40:60の質量比として分散液(C−13)を得た他は、実施例10と同様に片面銅張積層板を作製した。得られた片面銅張積層板を7cm角に成形した積層体は、円筒状に丸まることはなく、反りが抑制されていた。
[Example 13]
A single-sided copper-clad laminate was produced in the same manner as in Example 10 except that the dispersion liquid (C-13) was obtained by setting (C-1): (C-9) of Example 10 as a mass ratio of 40:60. .. The laminated body obtained by molding the obtained single-sided copper-clad laminate into a 7 cm square did not curl into a cylindrical shape, and warpage was suppressed.

[実施例14]
ブチルカルビトールアセテートをDMFに変更した以外は、実施例7と同様にして分散液(C−14)を得た。分散液(C−14)を銅箔上に塗布し、窒素雰囲気下で150℃15分で乾燥し、その後350℃15分で加熱した後、実施例7と同様に両面銅張積層板を得た。
[Example 14]
A dispersion (C-14) was obtained in the same manner as in Example 7 except that butyl carbitol acetate was changed to DMF. The dispersion liquid (C-14) is applied onto a copper foil, dried in a nitrogen atmosphere at 150 ° C. for 15 minutes, and then heated at 350 ° C. for 15 minutes to obtain a double-sided copper-clad laminate as in Example 7. rice field.

[実施例15]
ブチルカルビトールアセテートをDMACに変更した以外は、実施例7と同様にして分散液(C−15)を得た。分散液(C−15)を銅箔上に塗布し、窒素雰囲気下で165℃15分で乾燥し、実施例7と同様に両面銅張積層板を得た。
[Example 15]
A dispersion liquid (C-15) was obtained in the same manner as in Example 7 except that butyl carbitol acetate was changed to DMAC. The dispersion liquid (C-15) was applied onto a copper foil and dried at 165 ° C. for 15 minutes in a nitrogen atmosphere to obtain a double-sided copper-clad laminate in the same manner as in Example 7.

実施例7〜15の剥離強度および、実施例10〜13の比誘電率を表3に記す。 Table 3 shows the peel strength of Examples 7 to 15 and the relative permittivity of Examples 10 to 13.

Figure 2021121675
Figure 2021121675

[実施例16]
分散液(C−1)とPTFE分散液である旭硝子社製のAD−911E(平均粒径0.25μm)を(C−1):AD−911Eを60:40の質量比で混合し、ラボスターラーで撹拌し均一な分散液(D−1)を得た。分散液(D−1)を銅箔上に塗布し、窒素雰囲気下で100℃15分で乾燥し、その後350℃15分で加熱した後、徐冷することで片面銅張積層板を2枚作製した。次いで、樹脂層が向い合うように片面銅張積層板2枚を重ね、プレス温度340℃、プレス圧力4.0MPa、プレス時間15分で真空熱プレスを行って両面銅張積層板を得た。
[Example 16]
The dispersion liquid (C-1) and AD-911E (average particle size 0.25 μm) manufactured by Asahi Glass Co., Ltd., which is a PTFE dispersion liquid, are mixed at a mass ratio of (C-1): AD-911E at a mass ratio of 60:40, and a laboratory is used. The mixture was stirred with a stirrer to obtain a uniform dispersion liquid (D-1). The dispersion liquid (D-1) is applied onto a copper foil, dried in a nitrogen atmosphere at 100 ° C. for 15 minutes, then heated at 350 ° C. for 15 minutes, and then slowly cooled to obtain two single-sided copper-clad laminates. Made. Next, two single-sided copper-clad laminates were laminated so that the resin layers faced each other, and vacuum heat pressing was performed at a press temperature of 340 ° C., a press pressure of 4.0 MPa, and a press time of 15 minutes to obtain a double-sided copper-clad laminate.

[実施例17]
分散液(C−1)を銅箔上に塗布し、窒素雰囲気下で100℃15分で乾燥し、その後350℃15分で加熱した後、徐冷することで片面銅張積層板を作製した。次いで、0.1mm厚みのPTFEシート(淀川ヒューテック社製、PTFEシート)を中心に樹脂層が向い合うように片面銅張積層板2枚を重ね、プレス温度340℃、プレス圧力4.0MPa、プレス時間15分で真空熱プレスを行って両面銅張積層板を得た。
[Example 17]
A single-sided copper-clad laminate was prepared by applying the dispersion liquid (C-1) on a copper foil, drying it in a nitrogen atmosphere at 100 ° C. for 15 minutes, heating it at 350 ° C. for 15 minutes, and then slowly cooling it. .. Next, two single-sided copper-clad laminates were stacked around a 0.1 mm-thick PTFE sheet (PTFE sheet manufactured by Yodogawa Hu-Tech Co., Ltd.) so that the resin layers face each other, and the press temperature was 340 ° C., the press pressure was 4.0 MPa, and the press was performed. Vacuum heat pressing was performed for 15 minutes to obtain a double-sided copper-clad laminate.

[実施例18]
分散液(C−1)を銅箔上に塗布し、窒素雰囲気下で100℃15分で乾燥し、その後350℃15分で加熱した後、徐冷することで片面銅張積層板を作製した。
片面銅張積層板の樹脂層をポリイミドフィルム(東レ・デュポン社製、カプトン100EN。以下「PI」とも記す。)と接するように重ね、プレス温度340℃、プレス圧力4.0MPa、プレス時間15分で真空熱プレスを行って銅箔/樹脂層/PI構造の片面銅張積層板を作製した。得られた片面銅張積層板を7cm角に成形した積層体は、円筒状に丸まることはなく、反りが抑制されていた。
[Example 18]
A single-sided copper-clad laminate was prepared by applying the dispersion liquid (C-1) on a copper foil, drying it in a nitrogen atmosphere at 100 ° C. for 15 minutes, heating it at 350 ° C. for 15 minutes, and then slowly cooling it. ..
The resin layer of the single-sided copper-clad laminate was laminated so as to be in contact with the polyimide film (manufactured by Toray DuPont, Kapton 100EN; hereinafter also referred to as "PI"), and the press temperature was 340 ° C, the press pressure was 4.0 MPa, and the press time was 15 minutes. A single-sided copper-clad laminate having a copper foil / resin layer / PI structure was produced by vacuum heat pressing. The laminated body obtained by molding the obtained single-sided copper-clad laminate into a 7 cm square did not curl into a cylindrical shape, and warpage was suppressed.

[実施例19]
分散液(C−1)をPI上に塗布し、窒素雰囲気下で100℃15分で乾燥し、その後350℃15分で加熱した後、徐冷することでPI/樹脂層構造の積層体を2枚作製した。得られた積層体を樹脂層が向き合うように重ね、プレス温度340℃、プレス圧力4.0MPa、プレス時間15分で真空熱プレスを行ってPI/樹脂層/PI構造の積層体を作製した。得られた積層体を7cm角に成形した積層体は、円筒状に丸まることはなく、反りが抑制されていた。
[Example 19]
The dispersion liquid (C-1) is applied onto the PI, dried in a nitrogen atmosphere at 100 ° C. for 15 minutes, then heated at 350 ° C. for 15 minutes, and then slowly cooled to form a laminated body having a PI / resin layer structure. Two sheets were prepared. The obtained laminates were laminated so that the resin layers faced each other, and vacuum heat pressing was performed at a press temperature of 340 ° C., a press pressure of 4.0 MPa, and a press time of 15 minutes to prepare a laminate having a PI / resin layer / PI structure. The laminated body obtained by molding the obtained laminated body into a 7 cm square did not curl into a cylindrical shape, and warpage was suppressed.

[実施例20]
分散液(C−1)を銅箔上に塗布し、窒素雰囲気下で100℃15分で乾燥し、その後350℃15分で加熱した後、徐冷することで片面銅張積層体を作製した。
片面銅張積層体の樹脂層をPIと接するように重ね、プレス温度340℃、プレス圧力4.0MPa、プレス時間15分で真空熱プレスを行って銅箔/樹脂層/PI/樹脂層/銅箔構造の両面銅張積層板を作製した。
[Example 20]
A single-sided copper-clad laminate was prepared by applying the dispersion liquid (C-1) on a copper foil, drying it in a nitrogen atmosphere at 100 ° C. for 15 minutes, heating it at 350 ° C. for 15 minutes, and then slowly cooling it. ..
The resin layer of the single-sided copper-clad laminate is laminated so as to be in contact with PI, and vacuum heat press is performed at a press temperature of 340 ° C., a press pressure of 4.0 MPa, and a press time of 15 minutes to perform a copper foil / resin layer / PI / resin layer / copper. A double-sided copper-clad laminate with a foil structure was produced.

[実施例21]
分散液(C−1)を、ガラスクロス(有沢製作所製、品番:#1031)に含浸させ、110℃20分で乾燥させ、プリプレグを得た。該プリプレグの両面に銅箔を重ね、プレス温度340℃、プレス圧力4.0MPa、プレス時間15分で真空熱プレスを行って銅箔/プリプレグ/銅箔構造の両面銅張積層板を作製した。得られた積層板を用いて線膨張係数であるCTE(z)を測定したところ、189ppm/℃であった。
[Example 21]
The dispersion liquid (C-1) was impregnated into a glass cloth (manufactured by Arisawa Mfg. Co., Ltd., product number: # 1031) and dried at 110 ° C. for 20 minutes to obtain a prepreg. Copper foils were laminated on both sides of the prepreg, and vacuum heat pressing was performed at a press temperature of 340 ° C., a press pressure of 4.0 MPa, and a press time of 15 minutes to prepare a double-sided copper-clad laminate having a copper foil / prepreg / copper foil structure. When the coefficient of linear expansion CTE (z) was measured using the obtained laminated board, it was 189 ppm / ° C.

[実施例22]
分散液(C−1)を銅箔上に塗布し、窒素雰囲気下で100℃15分で乾燥し、その後350℃15分で加熱した後、徐冷することで片面銅張積層体を2枚作製した。片面銅張積層板の樹脂層をエポキシ系プリプレグ(日立化成社製、GEA−67N)と接するように重ね、プレス温度180℃、プレス圧力3.0MPa、プレス時間60分で真空熱プレスを行って銅箔/樹脂層/硬化エポキシ系樹脂層/樹脂層/銅箔構造の両面銅張積層板を作製した。
[Example 22]
The dispersion liquid (C-1) is applied onto a copper foil, dried in a nitrogen atmosphere at 100 ° C. for 15 minutes, then heated at 350 ° C. for 15 minutes, and then slowly cooled to form two single-sided copper-clad laminates. Made. The resin layer of the single-sided copper-clad laminate was laminated so as to be in contact with the epoxy-based prepreg (manufactured by Hitachi Kasei Co., Ltd., GEA-67N), and vacuum heat pressing was performed at a pressing temperature of 180 ° C., a pressing pressure of 3.0 MPa, and a pressing time of 60 minutes. A double-sided copper-clad laminate having a copper foil / resin layer / cured epoxy resin layer / resin layer / copper foil structure was produced.

実施例16〜22の樹脂層厚みおよび剥離強度を表4に記す。 Table 4 shows the resin layer thickness and peel strength of Examples 16 to 22.

Figure 2021121675
Figure 2021121675

[実施例23]
実施例5で得られた片面銅張積層板をエッチングし銅箔を除去して、フィルムを得た。得られたフィルムにおいてMD方向(分散液塗工時の塗工方向)およびTD方向(MD方向の垂直方向)の熱膨張率をTMA装置にて測定した。尚、測定装置はNETZSCH社製のTMA402F1Hyperionを用いて、測定モードが引張モード、測定温度が30℃から100℃、測定荷重が19.6mN、昇温速度が5℃/分、測定雰囲気が窒素雰囲気下で測定し、30℃から100℃に推移した際の熱膨張率を測定した。得られたフィルムを7cm角に成形したフィルムは、円筒状に丸まることはなく、反りが抑制されていた。
[Example 23]
The single-sided copper-clad laminate obtained in Example 5 was etched to remove the copper foil to obtain a film. The coefficient of thermal expansion in the MD direction (coating direction at the time of dispersion liquid coating) and the TD direction (vertical direction in the MD direction) of the obtained film was measured by a TMA device. As the measuring device, TMA402F1 Hyperion manufactured by NETZSCH is used, the measurement mode is the tensile mode, the measurement temperature is 30 ° C to 100 ° C, the measurement load is 19.6 mN, the temperature rise rate is 5 ° C / min, and the measurement atmosphere is a nitrogen atmosphere. The measurement was carried out below, and the thermal expansion rate when the temperature changed from 30 ° C. to 100 ° C. was measured. The film obtained by molding the obtained film into a 7 cm square did not curl into a cylindrical shape, and warpage was suppressed.

[実施例24]
実施例14で得られた片面銅張積層板をエッチングし銅箔を除去して、銅箔塗工されていたフィルムを得た。得られたフィルムをTMA装置を用いて、MD方向およびTD方向の熱膨張率を測定した。得られたフィルムを7cm角に成形したフィルムは、円筒状に丸まることはなく、反りが抑制されていた。
[Example 24]
The single-sided copper-clad laminate obtained in Example 14 was etched to remove the copper foil to obtain a film coated with the copper foil. The obtained film was measured for thermal expansion coefficient in the MD direction and the TD direction using a TMA device. The film obtained by molding the obtained film into a 7 cm square did not curl into a cylindrical shape, and warpage was suppressed.

[実施例25]
実施例7で得られた片面銅張積層板をエッチングし銅箔を除去して、銅箔塗工されていたフィルムを得た。得られたフィルムを得られたフィルムをTMA装置を用いて、MD方向およびTD方向の熱膨張率を測定した。得られたフィルムを7cm角に成形したフィルムは、円筒状に丸まることはなく、反りが抑制されていた。
[Example 25]
The single-sided copper-clad laminate obtained in Example 7 was etched to remove the copper foil to obtain a film coated with the copper foil. The obtained film The obtained film was measured for the coefficient of thermal expansion in the MD direction and the TD direction using a TMA device. The film obtained by molding the obtained film into a 7 cm square did not curl into a cylindrical shape, and warpage was suppressed.

[比較例3]
市販のPFAフッ素樹脂を用い、従来公知の手法にてフッ素樹脂フィルムを作成した。得られたフッ素樹脂フィルムの得られたフィルムを得られたフィルムをTMA装置を用いて、MD方向およびTD方向の熱膨張率を測定した。得られたフィルムを7cm角に成形したフィルムは、円筒状に1周丸まることはないが、反りはみられた。
[Comparative Example 3]
A fluororesin film was prepared by a conventionally known method using a commercially available PFA fluororesin. The obtained film of the obtained fluororesin film was measured for the coefficient of thermal expansion in the MD direction and the TD direction using a TMA device. The film obtained by molding the obtained film into a 7 cm square did not curl around once in a cylindrical shape, but warpage was observed.

実施例23〜25、比較例3のMD方向およびTD方向の熱膨張率を求めた。熱膨張率を「+」、収縮率を「−」で記す。MD方向/TD方向の各熱膨張率(収縮率)と、熱膨張(収縮)率比、樹脂層厚みおよび剥離強度を表5に記す。
なお、熱膨張(収縮)変化比は、x方向(大きい熱膨張(収縮)率)とy方向(小さい熱膨張(収縮)率)の比であり、「x/y」で表す。
The coefficients of thermal expansion in the MD direction and the TD direction of Examples 23 to 25 and Comparative Example 3 were determined. The coefficient of thermal expansion is indicated by "+" and the coefficient of contraction is indicated by "-". Table 5 shows each coefficient of thermal expansion (shrinkage rate) in the MD direction / TD direction, the coefficient of thermal expansion (shrinkage) rate, the thickness of the resin layer, and the peel strength.
The coefficient of change in thermal expansion (contraction) is the ratio between the x direction (large coefficient of thermal expansion (contraction)) and the y direction (small coefficient of thermal expansion (contraction)), and is represented by "x / y".

Figure 2021121675
Figure 2021121675

[実施例26]
実施例21で得られた両面銅張積層板をプレス温度170℃、プレス圧力0.005MPa、30分で真空熱プレスを行ってアニールを実施した。得られた両面銅張積層板を用いて線膨張係数であるCTE(z)を測定したところ、45ppm/℃であった。
[Example 26]
The double-sided copper-clad laminate obtained in Example 21 was vacuum-heat pressed at a press temperature of 170 ° C. and a press pressure of 0.005 MPa for 30 minutes to perform annealing. The coefficient of linear expansion CTE (z) was measured using the obtained double-sided copper-clad laminate and found to be 45 ppm / ° C.

[実施例27]
樹脂パウダー(A)120gに対し、ノニオン性界面活性剤(ネオス社製、フタージェント710FL)を12g、メチルエチルケトン234gを横型ボールミルポットに投入し、15mm径のジルコニアボールにて分散を行い、分散液(C−16)を得た。分散液(C−16)を厚み12μmの銅箔上に塗布し、窒素雰囲気下において100℃で15分乾燥し、350℃で15分加熱した後、徐冷することで厚み7μmの樹脂層を有する片面銅張積層板を得た。
得られた片面銅張積層板の樹脂層の表面をプラズマ処理した。プラズマ処理装置としてはNORDSON MARCH社のAP−1000を用いた。プラズマ処理条件としては、AP−1000のRF出力を300W、電極間ギャップを2インチ、導入ガスの種類をアルゴン(Ar)、導入ガス流量を50cm/分、圧力を13Pa、処理時間を1分とした。プラズマ処理後の樹脂層の表面の算術平均粗さRaは2.5μmであった。
表面処理を実施してから72時間以内の片面銅箔積層板の樹脂層側に、プリプレグとしてFR−4(日立化成社製、強化繊維:ガラス繊維、マトリックス樹脂:エポキシ樹脂、品名:CEA−67N 0.2t(HAN)、厚み:0.2mm)を重ね、プレス温度185℃、プレス圧力3.0MPa、プレス時間60分の条件で真空熱プレスを行って金属積層板を得た(No.1)。
[Example 27]
To 120 g of the resin powder (A), 12 g of a nonionic surfactant (Futergent 710FL manufactured by Neos) and 234 g of methyl ethyl ketone were put into a horizontal ball mill pot, dispersed with a zirconia ball having a diameter of 15 mm, and a dispersion liquid (a dispersion liquid (A)). C-16) was obtained. The dispersion liquid (C-16) is applied onto a copper foil having a thickness of 12 μm, dried at 100 ° C. for 15 minutes in a nitrogen atmosphere, heated at 350 ° C. for 15 minutes, and then slowly cooled to form a resin layer having a thickness of 7 μm. A single-sided copper-clad laminate having was obtained.
The surface of the resin layer of the obtained single-sided copper-clad laminate was plasma-treated. As the plasma processing apparatus, AP-1000 manufactured by NORDSON MARCH was used. As plasma processing conditions, the RF output of AP-1000 is 300 W, the gap between electrodes is 2 inches, the type of introduced gas is argon (Ar), the introduced gas flow rate is 50 cm 3 / min, the pressure is 13 Pa, and the processing time is 1 minute. And said. The arithmetic mean roughness Ra of the surface of the resin layer after the plasma treatment was 2.5 μm.
FR-4 (manufactured by Hitachi Kasei Co., Ltd., reinforcing fiber: glass fiber, matrix resin: epoxy resin, product name: CEA-67N) on the resin layer side of the single-sided copper foil laminated plate within 72 hours after the surface treatment was performed. 0.2t (HAN), thickness: 0.2mm) were layered, and vacuum heat pressing was performed under the conditions of a press temperature of 185 ° C., a press pressure of 3.0 MPa, and a press time of 60 minutes to obtain a metal laminated plate (No. 1). ).

プラズマ処理条件を表6に示すとおりに変更した以外は上記と同様にして片面銅張積層板を作製し、該片面銅張積層板を用いる以外は上記と同様にして金属積層板を得た(No.2〜7)。 A single-sided copper-clad laminate was produced in the same manner as above except that the plasma treatment conditions were changed as shown in Table 6, and a metal laminate was obtained in the same manner as above except that the single-sided copper-clad laminate was used (). No. 2-7).

各例のプラズマ処理条件、ならびにプラズマ処理後の樹脂層の表面の算術平均粗さRa、表面官能基密度、および樹脂層とプリプレグからなる層の間の剥離強度の測定結果を表6に示す。 Table 6 shows the plasma treatment conditions of each example, and the measurement results of the arithmetic mean roughness Ra of the surface of the resin layer after the plasma treatment, the surface functional group density, and the peel strength between the resin layer and the layer composed of the prepreg.

Figure 2021121675
Figure 2021121675

表6に示すように、樹脂層の表面のRaを2.0μm以上にしたNo.1〜4では、樹脂層とプリプレグからなる層の間の剥離強度が高く、それらの密着性が優れていた。 As shown in Table 6, No. 1 having a Ra on the surface of the resin layer of 2.0 μm or more. In Nos. 1 to 4, the peel strength between the resin layer and the layer made of the prepreg was high, and their adhesion was excellent.

[実施例28]
分散液(C−6)を銅箔上に塗布し、窒素雰囲気下で100℃15分で乾燥した。得られた積層体の銅箔側を、「ノリタケカンパニーリミテド社 R to R式 NORITAKE遠赤外線N2雰囲気炉」の搬送ロールであるポリイミドロールにポリイミドテープを貼り付け、設定温度340℃、酸素濃度200ppmで加熱し、片面銅張積層板を製造した。加熱時間は1分になるようにロール速度を調整した(4.7mの加熱炉を利用、ロール速度は4.7m/min)。
加熱処理後、目視で重合体(X)の溶融状態を評価した(No.1)。
評価は溶融後に残った異物(光学的な不均一物)の数と溶融の状態から目視で判断した。判断基準を以下に示す。
異物の数:
1:10cmの面積の中に目視で確認できる異物の数が50個以上
2:10cmの面積の中に目視で確認できる異物の数が20個以上〜50個以下
3:10cmの面積の中に目視で確認できる異物の数が20個以下
溶融の状態:
1:白い溶け残りが一部みられる
2:白い溶け残りはないが、部分的に光沢がみられない
3:溶け残りはない(全面が光沢にみえる)
[Example 28]
The dispersion liquid (C-6) was applied onto a copper foil and dried at 100 ° C. for 15 minutes in a nitrogen atmosphere. The copper foil side of the obtained laminate was attached to a polyimide roll, which is a transport roll of "Noritake Company Limited R to R type NORITAKE far-infrared N2 atmosphere furnace", at a set temperature of 340 ° C. and an oxygen concentration of 200 ppm. It was heated to produce a single-sided copper-clad laminate. The roll speed was adjusted so that the heating time was 1 minute (using a 4.7 m heating furnace, the roll speed was 4.7 m / min).
After the heat treatment, the molten state of the polymer (X) was visually evaluated (No. 1).
The evaluation was visually judged from the number of foreign substances (optically non-uniform substances) remaining after melting and the state of melting. The judgment criteria are shown below.
Number of foreign objects:
The number of foreign substances that can be visually confirmed in the area of 1:10 cm 2 is 50 or more and the number of foreign substances that can be visually confirmed in the area of 2:10 cm 2 is 20 to 50 or less 3:10 cm 2 area The number of foreign substances that can be visually confirmed in the inside is 20 or less.
1: Some white undissolved residue is seen 2: No white undissolved residue, but partially glossy 3: No undissolved residue (the entire surface looks glossy)

各例の設定温度(加熱温度)、加熱時間(加熱炉滞在時間)、加熱炉の長さ、ロール速度を表7に示すとおりに変更した以外は上記と同様にして片面銅張積層板を製造した(No.2〜8)。

Figure 2021121675
A single-sided copper-clad laminate was manufactured in the same manner as above except that the set temperature (heating temperature), heating time (heating furnace staying time), heating furnace length, and roll speed of each example were changed as shown in Table 7. (No. 2-8).
Figure 2021121675

また、No.3、4、6について、マイクロスコープを用いて異物の大きさを測長した。異物の大きさはマイクロスコープでの撮影画像から短尺および長尺箇所を測長し、それらの平均測長を異物の大きさとした。MORITEX CORPORATION社製のSCOPEMAN DIGITAL CCD MICROSCOPE MS−804を用いて異物を観察および測長した。大きさが30μmを超えるものを異物として数え、10cm2の面積の中に存在する異物を数えた。No.3、4、6いずれも、10cmの面積の中にマイクロスコープで確認できる異物の数が20個以下であった。 In addition, No. For 3, 4 and 6, the size of the foreign matter was measured using a microscope. The size of the foreign matter was measured at short and long points from the image taken with a microscope, and the average length of those was taken as the size of the foreign matter. Foreign matter was observed and measured using a SCOPEMAN DIGITAL CCD MICROSCOPE MS-804 manufactured by MORITEX CORPORATION. Foreign substances having a size of more than 30 μm were counted as foreign substances, and foreign substances existing in an area of 10 cm2 were counted. No. In all of 3, 4, and 6, the number of foreign substances that can be confirmed with a microscope in an area of 10 cm 2 was 20 or less.

本発明で得られるフィルム、繊維強化フィルム、プリプレグ、金属積層板、プリント基板等は、アンテナ部品、プリント基板、航空機用部品、自動車用部品、スポーツ用具や、食品工業用品、のこぎり、すべり軸受け等の被覆物品等として使用できる。
なお、2016年07月22日に出願された日本特許出願2016−144722号、2017年02月15日に出願された日本特許出願2017−026385号および2017年05月18日に出願された日本特許出願2017−099294号の明細書、特許請求の範囲および要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The films, fiber reinforced films, prepregs, metal laminates, printed circuit boards, etc. obtained in the present invention include antenna parts, printed circuit boards, aircraft parts, automobile parts, sports equipment, food industry supplies, saws, sliding bearings, etc. It can be used as a covering article or the like.
Japanese patent application 2016-144722 filed on July 22, 2016, Japanese patent application 2017-0236385 filed on February 15, 2017, and Japanese patent filed on May 18, 2017. The entire contents of the specification, claims and abstract of application 2017-09294 are cited herein and incorporated as disclosure of the specification of the present invention.

Claims (11)

液状媒体と該液状媒体に分散した樹脂パウダーとを含み、樹脂パウダーの体積基準累積90%径が8μm以下であり、樹脂パウダーが下記重合体(X)を含む樹脂であり、ポリテトラフルオロエチレンのパウダー、または、無機質フィラーを含むことを特徴とする液状組成物。
重合体(X):テトラフルオロエチレンに基づく単位を有する含フッ素重合体であって、カルボニル基含有基、ヒドロキシ基、エポキシ基およびイソシアネート基からなる群から選ばれる少なくとも1種の官能基を有する、融点が260〜320℃である含フッ素重合体。
A resin containing a liquid medium and a resin powder dispersed in the liquid medium, the volume standard cumulative 90% diameter of the resin powder is 8 μm or less, and the resin powder contains the following polymer (X). A liquid composition comprising a powder or an inorganic filler.
Polymer (X): A fluoropolymer having a unit based on tetrafluoroethylene, which has at least one functional group selected from the group consisting of a carbonyl group-containing group, a hydroxy group, an epoxy group and an isocyanate group. A fluorine-containing polymer having a melting point of 260 to 320 ° C.
前記樹脂パウダーの平均粒径が0.3〜6μmである、請求項1に記載の液状組成物。 The liquid composition according to claim 1, wherein the resin powder has an average particle size of 0.3 to 6 μm. 前記無機質フィラーが、シリカ、クレー、タルク、炭酸カルシウム、マイカ、珪藻土、アルミナ、酸化亜鉛、酸化チタン、酸化カルシウム、酸化マグネシウム、酸化鉄、酸化錫、酸化アンチモン、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム、塩基性炭酸マグネシウム、炭酸マグネシウム、炭酸亜鉛、炭酸バリウム、ドーソナイト、ハイドロタルサイト、硫酸カルシウム、硫酸バリウム、珪酸カルシウム、モンモリロナイト、ベントナイト、活性白土、セピオライト、イモゴライト、セリサイト、ガラス繊維、ガラスビーズ、シリカ系バルーン、カーボンブラック、カーボンナノチューブ、カーボンナノホーン、グラファイト、炭素繊維、ガラスバルーン、炭素バーン、木粉およびホウ酸亜鉛からなる群から選ばれる少なくとも1種である、請求項1または2に記載の液状組成物。 The inorganic fillers are silica, clay, talc, calcium carbonate, mica, diatomaceous earth, alumina, zinc oxide, titanium oxide, calcium oxide, magnesium oxide, iron oxide, tin oxide, antimony oxide, calcium hydroxide, magnesium hydroxide, and water. Aluminum oxide, basic magnesium carbonate, magnesium carbonate, zinc carbonate, barium carbonate, dosonite, hydrotalcite, calcium sulfate, barium sulfate, calcium silicate, montmorillonite, bentonite, active white clay, sepiolite, imogolite, cericite, glass fiber, glass Claim 1 or 2, which is at least one selected from the group consisting of beads, silica-based balloons, carbon black, carbon nanotubes, carbon nanohorns, graphite, carbon fibers, glass balloons, carbon burns, wood flour and zinc borate. The liquid composition described. 前記ポリテトラフルオロエチレンのパウダーと前記無機質フィラーとを含む、請求項1〜3のいずれか一項に記載の液状組成物。 The liquid composition according to any one of claims 1 to 3, which comprises the polytetrafluoroethylene powder and the inorganic filler. 前記樹脂パウダーの含有量が、前記ポリテトラフルオロエチレンのパウダーの100質量部に対して、5〜500質量部である、請求項1〜4のいずれか一項に記載の液状組成物。 The liquid composition according to any one of claims 1 to 4, wherein the content of the resin powder is 5 to 500 parts by mass with respect to 100 parts by mass of the polytetrafluoroethylene powder. 前記ポリテトラフルオロエチレンのパウダーと前記無機質フィラーの総含有量が、前記樹脂パウダー100質量部に対して、0.1〜300質量部である、請求項1〜5のいずれか一項に記載の液状組成物。 The invention according to any one of claims 1 to 5, wherein the total content of the polytetrafluoroethylene powder and the inorganic filler is 0.1 to 300 parts by mass with respect to 100 parts by mass of the resin powder. Liquid composition. 前記液状媒体が、水、アルコール類、含窒素化合物、含硫黄化合物、エーテル類、エステル類、ケトン類、グリコールエーテル類およびセロソルブ類からなる群から選ばれる少なくとも1種である、請求項1〜6のいずれか一項に記載の液状組成物。 Claims 1 to 6 wherein the liquid medium is at least one selected from the group consisting of water, alcohols, nitrogen-containing compounds, sulfur-containing compounds, ethers, esters, ketones, glycol ethers and cellosolves. The liquid composition according to any one of the above. 前記液状媒体が、水、γ−ブチロラクトン、アセトン、メチルエチルケトン、ヘキサン、ヘプタン、オクタン、2−ヘプタノン、シクロヘプタノン、シクロヘキサノン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、メチル−n−ペンチルケトン、メチルイソブチルケトン、メチルイソペンチルケトン、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、エチレングリコールモノアセテート、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノアセテート、ジエチレングリコールジエチルエーテル、プロピレングリコールモノアセテート、ジプロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、シクロヘキシルアセテート、3−エトキシプロピオン酸エチル、ジオキサン、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸ブチル、ピルビン酸メチル、ピルビン酸エチル、メトキシプロピオン酸メチル、エトキシプロピオン酸エチル、アニソール、エチルベンジルエーテル、クレジルメチルエーテル、ジフェニルエーテル、ジベンジルエーテル、フェネトール、ブチルフェニルエーテル、ベンゼン、エチルベンゼン、ジエチルベンゼン、ペンチルベンゼン、イソプロピルベンゼン、トルエン、キシレン、シメン、メシチレン、メタノール、エタノール、イソプロパノール、ブタノール、メチルモノグリシジルエーテル、エチルモノグリシジルエーテル、ジメチルホルムアミド、ミネラルスピリット、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、パーフルオロカーボン、ハイドロフルオロエーテル、ハイドロクロロフルオロカーボン、ハイドロフルオロカーボン、パーフルオロポリエーテルおよび各種シリコーンオイルからなる群から選ばれる少なくとも1種である、請求項1〜6のいずれか一項に記載の液状組成物。 The liquid medium is water, γ-butyrolactone, acetone, methyl ethyl ketone, hexane, heptane, octane, 2-heptanone, cycloheptanone, cyclohexanone, cyclohexane, methylcyclohexane, ethylcyclohexane, methyl-n-pentylketone, methylisobutylketone, Methylisopentyl ketone, ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, ethylene glycol monoacetate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monoacetate, diethylene glycol diethyl ether, propylene glycol monoacetate, dipropylene Glycol monoacetate, propylene glycol diacetate, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, cyclohexyl acetate, ethyl 3-ethoxypropionate, dioxane, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate , Butyl acetate, methyl pyruvate, ethyl pyruvate, methyl methoxypropionate, ethyl ethoxypropionate, anisole, ethyl benzyl ether, cresyl methyl ether, diphenyl ether, dibenzyl ether, phenetol, butylphenyl ether, benzene, ethylbenzene, diethylbenzene , Pentylbenzene, isopropylbenzene, toluene, xylene, simene, mesityrene, methanol, ethanol, isopropanol, butanol, methyl monoglycidyl ether, ethyl monoglycidyl ether, dimethylformamide, mineral spirit, N, N-dimethylformamide, N, N- Claims 1 to 6, which are at least one selected from the group consisting of dimethylacetamide, N-methyl-2-pyrrolidone, perfluorocarbon, hydrofluoroether, hydrochlorofluorocarbon, hydrofluorocarbon, perfluoropolyether and various silicone oils. The liquid composition according to any one of the above. 前記液状媒体が水である、請求項1〜8のいずれか一項に記載の液状組成物。 The liquid composition according to any one of claims 1 to 8, wherein the liquid medium is water. 前記液状組成物が、さらに、ノニオン性界面活性剤を含む、請求項1〜9のいずれか一項に記載の液状組成物。 The liquid composition according to any one of claims 1 to 9, wherein the liquid composition further contains a nonionic surfactant. 液状媒体と該液状媒体に分散した樹脂パウダーとを含み、樹脂パウダーの体積基準累積90%径が8μm以下であり、樹脂パウダーが下記重合体(X)を含む樹脂であることを特徴とする分散液と、ポリテトラフルオロエチレン、または、無機質フィラーとを混合して、前記樹脂パウダーと前記液状媒体と前記ポリテトラフルオロエチレンのパウダー、または、前記無機質フィラーとを含む液状組成物を得る、液状組成物の製造方法。
重合体(X):テトラフルオロエチレンに基づく単位を有する含フッ素重合体であって、カルボニル基含有基、ヒドロキシ基、エポキシ基およびイソシアネート基からなる群から選ばれる少なくとも1種の官能基を有する、融点が260〜320℃である含フッ素重合体。
A dispersion containing a liquid medium and a resin powder dispersed in the liquid medium, the volume standard cumulative 90% diameter of the resin powder is 8 μm or less, and the resin powder is a resin containing the following polymer (X). A liquid composition obtained by mixing a liquid with polytetrafluoroethylene or an inorganic filler to obtain a liquid composition containing the resin powder, the liquid medium, the polytetrafluoroethylene powder, or the inorganic filler. How to make things.
Polymer (X): A fluoropolymer having a unit based on tetrafluoroethylene, which has at least one functional group selected from the group consisting of a carbonyl group-containing group, a hydroxy group, an epoxy group and an isocyanate group. A fluorine-containing polymer having a melting point of 260 to 320 ° C.
JP2021083930A 2016-07-22 2021-05-18 LIQUID COMPOSITIONS AND METHOD FOR MANUFACTURING FILM AND LAMINATES USING SAME LIQUID COMPOSITIONS Active JP7115589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022114307A JP7396403B2 (en) 2016-07-22 2022-07-15 Liquid composition and method for producing films and laminates using the liquid composition

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2016144722 2016-07-22
JP2016144722 2016-07-22
JP2017026385 2017-02-15
JP2017026385 2017-02-15
JP2017099294 2017-05-18
JP2017099294 2017-05-18
JP2018528908A JP6891890B2 (en) 2016-07-22 2017-07-21 A liquid composition and a method for producing a film and a laminate using the liquid composition.

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018528908A Division JP6891890B2 (en) 2016-07-22 2017-07-21 A liquid composition and a method for producing a film and a laminate using the liquid composition.

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022114307A Division JP7396403B2 (en) 2016-07-22 2022-07-15 Liquid composition and method for producing films and laminates using the liquid composition

Publications (2)

Publication Number Publication Date
JP2021121675A true JP2021121675A (en) 2021-08-26
JP7115589B2 JP7115589B2 (en) 2022-08-09

Family

ID=60992623

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2018528908A Active JP6891890B2 (en) 2016-07-22 2017-07-21 A liquid composition and a method for producing a film and a laminate using the liquid composition.
JP2021083930A Active JP7115589B2 (en) 2016-07-22 2021-05-18 LIQUID COMPOSITIONS AND METHOD FOR MANUFACTURING FILM AND LAMINATES USING SAME LIQUID COMPOSITIONS
JP2022114307A Active JP7396403B2 (en) 2016-07-22 2022-07-15 Liquid composition and method for producing films and laminates using the liquid composition

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018528908A Active JP6891890B2 (en) 2016-07-22 2017-07-21 A liquid composition and a method for producing a film and a laminate using the liquid composition.

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022114307A Active JP7396403B2 (en) 2016-07-22 2022-07-15 Liquid composition and method for producing films and laminates using the liquid composition

Country Status (7)

Country Link
US (1) US11174411B2 (en)
EP (1) EP3489299A4 (en)
JP (3) JP6891890B2 (en)
KR (1) KR102353961B1 (en)
CN (2) CN109476897B (en)
TW (1) TWI752062B (en)
WO (1) WO2018016644A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022149551A1 (en) * 2021-01-06 2022-07-14 Agc株式会社 Method for producing tetrafluoroethylene-based polymer composition, composition, metal-clad laminate, and stretched sheet

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3489299A4 (en) * 2016-07-22 2020-01-08 Agc Inc. Liquid composition, and method for manufacturing film and layered body using same
CN111492006A (en) * 2017-12-27 2020-08-04 Agc株式会社 Dispersion liquid, metal laminate, and method for producing printed board
KR20200103641A (en) * 2017-12-27 2020-09-02 에이지씨 가부시키가이샤 Dispersion, method of manufacturing metal laminates and printed boards
JP7151140B2 (en) * 2018-04-11 2022-10-12 Agc株式会社 Fluororesin sheet, laminate and method for producing the same
JP7363771B2 (en) 2018-04-16 2023-10-18 Agc株式会社 Laminated body and its manufacturing method
KR20210016322A (en) * 2018-05-30 2021-02-15 에이지씨 가부시키가이샤 Manufacturing method of resin-attached metal foil, resin-attached metal foil, laminate and printed circuit board
CN112203844B (en) * 2018-05-30 2023-07-28 Agc株式会社 Method for producing resin-coated metal foil and resin-coated metal foil
WO2019235439A1 (en) 2018-06-06 2019-12-12 Agc株式会社 Liquid dispersion, production method for resin-including metal foil, and production method for printed board
CN112334534B (en) * 2018-06-27 2023-05-02 Agc株式会社 Powder dispersion, laminate, film, and impregnated woven fabric
CN112334301A (en) * 2018-06-27 2021-02-05 Agc株式会社 Metal foil with resin
CN112351961A (en) * 2018-06-29 2021-02-09 Agc株式会社 Glass resin laminate, composite laminate, and methods for producing these
JPWO2020050178A1 (en) * 2018-09-05 2021-08-26 Agc株式会社 Dispersion liquid manufacturing method
KR20210058748A (en) * 2018-09-18 2021-05-24 에이지씨 가부시키가이샤 Laminate, printed circuit board, and manufacturing method thereof
WO2020071382A1 (en) * 2018-10-03 2020-04-09 Agc株式会社 Dispersion and method for manufacturing resin-coated metal foil
JPWO2020071381A1 (en) * 2018-10-03 2021-09-02 Agc株式会社 Dispersion
JP7247536B2 (en) * 2018-11-21 2023-03-29 Agc株式会社 Composite manufacturing method and composite
JP7396301B2 (en) * 2018-12-25 2023-12-12 Agc株式会社 Powder dispersion liquid, laminate manufacturing method, polymer film manufacturing method, and covering woven fabric manufacturing method
KR20210110621A (en) * 2018-12-27 2021-09-08 에이지씨 가부시키가이샤 Powder dispersions, laminates and printed boards
CN110181904A (en) * 2018-12-31 2019-08-30 曾瑾 A kind of high frequency is without glue double side flexible copper coated board and preparation method thereof
JP7060825B2 (en) * 2019-01-11 2022-04-27 ダイキン工業株式会社 Fluororesin composition, fluororesin sheet, laminate and circuit board
JPWO2020171024A1 (en) * 2019-02-21 2021-12-23 Agc株式会社 Laminated body and manufacturing method of the laminated body
WO2020197485A1 (en) * 2019-03-22 2020-10-01 Agc Asia Pacific Pte. Ltd. Composition comprising fluororesin and methods of producing the composition and a fluororesin dispersion
JP7452534B2 (en) * 2019-04-11 2024-03-19 Agc株式会社 Powder dispersion liquid, method for manufacturing powder dispersion liquid, and method for manufacturing resin-coated substrate
JPWO2020235532A1 (en) * 2019-05-21 2020-11-26
JP7468520B2 (en) * 2019-05-29 2024-04-16 Agc株式会社 Liquid Composition
WO2020250919A1 (en) * 2019-06-13 2020-12-17 Agc株式会社 Method for producing container with content and liquid composition
KR20220032567A (en) * 2019-07-10 2022-03-15 에이지씨 가부시키가이샤 Long film, manufacturing method of long film, manufacturing method of long laminate, and long laminate
WO2021015079A1 (en) * 2019-07-22 2021-01-28 Agc株式会社 Method for producing laminate, and laminate
WO2021024883A1 (en) * 2019-08-06 2021-02-11 Agc株式会社 Substrate and metal laminate
CN114302908A (en) * 2019-08-27 2022-04-08 Agc株式会社 Film, method for producing film, metal-clad laminate, and metal-clad conductor
JP7443715B2 (en) * 2019-10-03 2024-03-06 Agc株式会社 Non-aqueous dispersion and method for producing non-aqueous dispersion
WO2021075504A1 (en) * 2019-10-18 2021-04-22 Agc株式会社 Non-aqueous dispersion liquid, and method for producing laminate
WO2021095662A1 (en) * 2019-11-11 2021-05-20 Agc株式会社 Nonaqueous dispersions, method for producing layered product, and molded object
WO2021106764A1 (en) * 2019-11-29 2021-06-03 デンカ株式会社 Method for producing lcp film for circuit boards, and lcp film for circuit boards melt extruded from t-die
KR20220113354A (en) * 2019-12-06 2022-08-12 에이지씨 가부시키가이샤 Dispersions, methods for preparing dispersions and moldings
WO2021166930A1 (en) * 2020-02-20 2021-08-26 Agc株式会社 Multilayer film and method for manufacturing same
CN115175947A (en) * 2020-02-26 2022-10-11 Agc株式会社 Fluoropolymer, film, method for producing film, and organic optoelectronic element
TWI724836B (en) * 2020-03-25 2021-04-11 臻鼎科技股份有限公司 Fluorine-based resin modified composition, composite film, and copper-clad plate
JPWO2021241547A1 (en) * 2020-05-28 2021-12-02
WO2022019223A1 (en) * 2020-07-21 2022-01-27 Agc株式会社 Dispersion, composite particles, and method for producing composite particles
JP7476721B2 (en) 2020-08-21 2024-05-01 Agc株式会社 Manufacturing method of laminate and laminate
CN115996990B (en) * 2020-08-31 2024-06-11 Agc株式会社 Liquid composition and substrate with convex portion
US11312109B2 (en) * 2020-09-01 2022-04-26 Mitsubishi Chemical Composites America, Inc. Composite panel having noncombustible polymer matrix core
KR20230061353A (en) 2020-09-03 2023-05-08 에이지씨 가부시키가이샤 Methods for preparing powder dispersions and composites
WO2022097679A1 (en) 2020-11-06 2022-05-12 ダイキン工業株式会社 Aqueous coating composition and coated article
EP4242270A1 (en) * 2020-11-06 2023-09-13 Daikin Industries, Ltd. Aqueous coating composition, and coated article
CN112574521B (en) * 2020-12-09 2022-04-26 广东生益科技股份有限公司 Fluorine-containing resin composition, resin glue solution containing same, fluorine-containing medium sheet, laminated board, copper-clad plate and printed circuit board
JPWO2022138483A1 (en) 2020-12-22 2022-06-30
KR20230129473A (en) 2021-01-08 2023-09-08 에이지씨 가부시키가이샤 Glass-reinforced container, manufacturing method of drug receptor, and manufacturing method of glass-reinforced container
TW202244171A (en) * 2021-02-12 2022-11-16 日商Agc股份有限公司 Liquid composition, production method therefor, and member having protrusions
WO2022234363A1 (en) * 2021-05-05 2022-11-10 3M Innovative Properties Company Fluoropolmyer compositions comprising uncrosslinked fluoropolymer suitable for copper and electronic telecommunications articles
WO2022234365A1 (en) * 2021-05-05 2022-11-10 3M Innovative Properties Company Fluoropolymer compositions comprising amorphous fluoropolymer and crystalline fluoropolymer suitable for copper and electronic telecommunications articles
US20240194371A1 (en) * 2021-05-05 2024-06-13 3M Innovative Properties Company Fluoropolymer compositions comprising fluoropolymer with polymerized unsaturated fluorinated alkyl ether suitable for copper and electronic telecommunications articles
KR20240001705A (en) 2021-05-25 2024-01-03 다이킨 고교 가부시키가이샤 Paint compositions and laminates
EP4349595A1 (en) 2021-05-25 2024-04-10 Daikin Industries, Ltd. Coating composition and laminate
WO2022258785A1 (en) 2021-06-11 2022-12-15 Solvay Specialty Polymers Usa, Llc Composite films for mobile electronic device components
TW202317697A (en) * 2021-08-04 2023-05-01 日商Agc股份有限公司 Sheet manufacturing method, laminate sheet manufacturing method and sheet
CN114292615B (en) 2022-03-10 2022-06-03 武汉市三选科技有限公司 Composition, adhesive film and chip packaging structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997048774A1 (en) * 1996-06-19 1997-12-24 Daikin Industries, Ltd. Coating composition, coating film, and process for the production of the film

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060115401A (en) * 2000-04-19 2006-11-08 다이낑 고오교 가부시키가이샤 Molded fluoroelastomer with excellent detachability and process for producing the same
US7538170B2 (en) * 2002-03-14 2009-05-26 Daikin Industries, Ltd. Fluorocopolymer, process for producing fluorocopolymer, fluorocopolymer curable composition, and cured object
DE60336553D1 (en) * 2002-05-20 2011-05-12 Daikin Ind Ltd AQUEOUS FLUOROLE-DISPERSION COMPOSITION AND FLUORED WATER-BASED COATING COMPOSITION
US6911512B2 (en) * 2003-10-10 2005-06-28 3M Innovative Properties Company Powder coating fluoropolymer compositions with aromatic materials
US7026032B2 (en) 2003-11-05 2006-04-11 E. I. Du Pont De Nemours And Company Polyimide based compositions useful as electronic substrates, derived in part from (micro-powder) fluoropolymer, and methods and compositions relating thereto
CN100513477C (en) * 2004-03-18 2009-07-15 捷时雅股份有限公司 Curable liquid resin composition and method for producing multilayer body using same
JP4956925B2 (en) 2005-07-13 2012-06-20 旭硝子株式会社 Polytetrafluoroethylene aqueous dispersion and process for producing the same
JP4957079B2 (en) * 2006-05-29 2012-06-20 旭硝子株式会社 Printed circuit board and manufacturing method thereof
JP5176375B2 (en) * 2007-04-12 2013-04-03 ダイキン工業株式会社 Method for producing aqueous dispersion and aqueous dispersion
JP5111508B2 (en) * 2007-08-22 2013-01-09 ユニチカ株式会社 Release sheet
JP2011089074A (en) * 2009-10-26 2011-05-06 Sumico Lubricant Co Ltd Coating composition for forming dry type sliding film
JP5392188B2 (en) * 2010-06-01 2014-01-22 旭硝子株式会社 Method for producing fluoropolymer aqueous dispersion
US9389525B2 (en) * 2011-03-09 2016-07-12 Fuji Xerox Co., Ltd. Fluorine-containing resin particle dispersion, method for preparing fluorine-containing resin particle dispersion, coating liquid which contains fluorine-containing resin particles, method for preparing coating film which contains fluorine-containing resin particles, coating film which contains fluorine-containing resin particles, molded body, electrophotographic photoreceptor, method for preparing electrophotographic photoreceptor, image forming apparatus, and process cartridge
CN104220517B (en) * 2012-03-27 2016-08-24 大金工业株式会社 Aqueous fluorine-containing polymer dispersion
JP5914169B2 (en) * 2012-05-28 2016-05-11 株式会社有沢製作所 Resin composition for flexible printed wiring board
WO2014106930A1 (en) * 2013-01-07 2014-07-10 日本化薬株式会社 High-frequency circuit substrate
GB2529563A (en) * 2013-04-10 2016-02-24 Asahi Glass Co Ltd Polymer cement composition and cementing method
EP2803691B1 (en) * 2013-05-17 2016-04-20 3M Innovative Properties Company Fluoropolymer compositions containing a polyhydroxy surfactant
CN105408113A (en) * 2013-07-26 2016-03-16 旭硝子株式会社 Laminated sheet and manufacturing method therefor
TWI691576B (en) * 2013-11-29 2020-04-21 日商Agc股份有限公司 Then the film and flexible metal laminate
KR102325460B1 (en) * 2013-12-03 2021-11-11 에이지씨 가부시키가이샤 Aqueous primer composition and laminate using same
KR102387084B1 (en) * 2014-04-02 2022-04-15 미쓰비시 엔피쯔 가부시키가이샤 Polytetrafluoroethylene dispersion in oily solvent
TWI690548B (en) * 2014-08-01 2020-04-11 日商Agc股份有限公司 Resin powder, its manufacturing method, composite, molded body, ceramic molded body manufacturing method, metal laminate, printed circuit board and prepreg
JP6455367B2 (en) * 2014-09-16 2019-01-23 Agc株式会社 Fluorine-containing resin composition, molded article, electric wire, and method for producing fluorine-containing resin composition
CN107107475B (en) * 2014-12-26 2019-03-12 Agc株式会社 The manufacturing method of plywood and flexible printed board
JP6904347B2 (en) * 2016-06-23 2021-07-14 Agc株式会社 Method for Producing Liquid Composition Containing Fluororesin Powder
EP3489299A4 (en) * 2016-07-22 2020-01-08 Agc Inc. Liquid composition, and method for manufacturing film and layered body using same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997048774A1 (en) * 1996-06-19 1997-12-24 Daikin Industries, Ltd. Coating composition, coating film, and process for the production of the film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022149551A1 (en) * 2021-01-06 2022-07-14 Agc株式会社 Method for producing tetrafluoroethylene-based polymer composition, composition, metal-clad laminate, and stretched sheet

Also Published As

Publication number Publication date
CN113817366B (en) 2022-08-23
JP7115589B2 (en) 2022-08-09
CN109476897B (en) 2021-12-14
EP3489299A1 (en) 2019-05-29
JP6891890B2 (en) 2021-06-18
JP7396403B2 (en) 2023-12-12
US20190144700A1 (en) 2019-05-16
EP3489299A4 (en) 2020-01-08
TW201821517A (en) 2018-06-16
WO2018016644A1 (en) 2018-01-25
US11174411B2 (en) 2021-11-16
KR20190034526A (en) 2019-04-02
JPWO2018016644A1 (en) 2019-06-13
KR102353961B1 (en) 2022-01-21
CN113817366A (en) 2021-12-21
TWI752062B (en) 2022-01-11
JP2022140517A (en) 2022-09-26
CN109476897A (en) 2019-03-15

Similar Documents

Publication Publication Date Title
JP7396403B2 (en) Liquid composition and method for producing films and laminates using the liquid composition
JP6904347B2 (en) Method for Producing Liquid Composition Containing Fluororesin Powder
JP6954293B2 (en) Metal laminate and its manufacturing method, and printed circuit board manufacturing method
JP7247896B2 (en) Method for producing dispersion, metal laminate and printed circuit board
KR102468437B1 (en) Resin powder, method for producing same, complex, molded article, method for producing ceramic molded article, metal laminated plate, print substrate, and prepreg
JPWO2019131809A1 (en) Manufacturing method of dispersion liquid, metal laminate and printed circuit board
JP7371681B2 (en) Liquid composition, powder, and method for producing powder
CN112236302B (en) Method for producing resin-coated metal foil, laminate, and printed board
WO2020241607A1 (en) Liquid composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220711

R150 Certificate of patent or registration of utility model

Ref document number: 7115589

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150