WO2021166930A1 - Multilayer film and method for manufacturing same - Google Patents

Multilayer film and method for manufacturing same Download PDF

Info

Publication number
WO2021166930A1
WO2021166930A1 PCT/JP2021/005829 JP2021005829W WO2021166930A1 WO 2021166930 A1 WO2021166930 A1 WO 2021166930A1 JP 2021005829 W JP2021005829 W JP 2021005829W WO 2021166930 A1 WO2021166930 A1 WO 2021166930A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
layer
tfe
multilayer film
polyimide
Prior art date
Application number
PCT/JP2021/005829
Other languages
French (fr)
Japanese (ja)
Inventor
創太 結城
渉 笠井
敦美 山邊
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to CN202180010364.6A priority Critical patent/CN115003506A/en
Priority to JP2022501920A priority patent/JPWO2021166930A1/ja
Priority to KR1020227030025A priority patent/KR20220142456A/en
Publication of WO2021166930A1 publication Critical patent/WO2021166930A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/262Tetrafluoroethene with fluorinated vinyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/08Homopolymers or copolymers of vinylidene chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • C08L33/16Homopolymers or copolymers of esters containing halogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09D127/18Homopolymers or copolymers of tetrafluoroethene
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2427/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2427/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2427/18Homopolymers or copolymers of tetrafluoroethylene

Abstract

[Problem] To provide a method for manufacturing a multilayer film having excellent adhesion and drilling workability and having no wrinkles or extremely few wrinkles, to provide said multilayer film, and also to provide a method for manufacturing a multilayer film with improved interlayer adhesion, and to provide said multilayer film. [Solution] This method for manufacturing a multilayer film includes: disposing a liquid composition containing powder of a thermally fusible tetrafluoroethylene polymer on the surface of a layer containing polyimide having a glass transition point; and applying heat at a temperature that is higher than the melting point of the tetrafluoroethylene polymer and that is at the polyimide glass transition point+40°C or lower, thereby forming a layer containing the tetrafluoroethylene polymer. Another method for manufacturing a multilayer film includes: disposing a liquid composition containing powder of a thermally fusible tetrafluoroethylene polymer and a thermally degradable polymer on the surface of a polyimide film layer; and applying heat to form a layer containing the tetrafluoroethylene polymer.

Description

多層フィルム、及びその製造方法Multilayer film and its manufacturing method
 本発明は、ポリイミドを含む層と、テトラフルオロエチレン系ポリマーを含む層とを有する多層フィルム、及びその製造方法に関する。 The present invention relates to a multilayer film having a layer containing polyimide and a layer containing a tetrafluoroethylene-based polymer, and a method for producing the same.
 高周波信号の伝送に用いられるプリント配線基板は、伝送特性に優れることが要求される。伝送特性を高めるには、プリント配線基板の絶縁層に、比誘電率及び誘電正接の低い材料を用いる必要がある。かかる材料として、ポリイミドを含む層と、テトラフルオロエチレン系ポリマーを含む層とを有する多層フィルムが知られている。
 この多層フィルムをプリント配線基板の絶縁層として用いる場合、ビアホールを形成するため、穴あけ加工性が優れることが求められる。
The printed wiring board used for transmitting high-frequency signals is required to have excellent transmission characteristics. In order to improve the transmission characteristics, it is necessary to use a material having a low relative permittivity and dielectric loss tangent for the insulating layer of the printed wiring board. As such a material, a multilayer film having a layer containing polyimide and a layer containing a tetrafluoroethylene-based polymer is known.
When this multilayer film is used as an insulating layer of a printed wiring board, it is required to have excellent drilling workability because it forms via holes.
 特許文献1には、上記多層フィルムを、ポリイミドを含むフィルムと、テトラフルオロエチレン系ポリマーを含むフィルムとを貼り合わせて作製する方法が記載されている。
 また、特許文献2~4には、上記多層フィルムにおけるテトラフルオロエチレン系ポリマーを含む層を、ポリイミドのフィルムにテトラフルオロエチレン系ポリマーのパウダーを含む分散液を塗布し、加熱して形成する方法が提案されている。
Patent Document 1 describes a method for producing the multilayer film by laminating a film containing polyimide and a film containing a tetrafluoroethylene-based polymer.
Further, Patent Documents 2 to 4 describe a method of forming a layer containing a tetrafluoroethylene polymer in the multilayer film by applying a dispersion liquid containing a powder of a tetrafluoroethylene polymer to a polyimide film and heating the film. Proposed.
国際公開第2010/084867号International Publication No. 2010/084867 特開平09-157418号公報Japanese Unexamined Patent Publication No. 09-157418 特開2000-211081号公報Japanese Unexamined Patent Publication No. 2000-211081 特開2005-035300号公報Japanese Unexamined Patent Publication No. 2005-035300
 本発明者らは、上記多層フィルムの使用態様の拡張を目的とし、隣接する層同士の間の密着性、及び穴あけ加工性に優れ、皺が発生し無いか極めて少ない多層フィルムの製造方法を検討した。
 本発明者らの検討によると、上記多層フィルムを、フィルムを貼り合わせて作製すると、満足な穴あけ加工性を有するフィルムを作製できなかった。一方、上記多層フィルムを、分散液から作製すると、テトラフルオロエチレン系ポリマーの焼成時にポリイミドフィルムが収縮し、多層フィルムに皺が発生する問題があった。
The present inventors have studied a method for producing a multilayer film having excellent adhesion between adjacent layers and drilling workability, with no wrinkles or extremely few wrinkles, for the purpose of expanding the usage mode of the multilayer film. bottom.
According to the study by the present inventors, when the above-mentioned multilayer film was produced by laminating the films, it was not possible to produce a film having satisfactory drilling workability. On the other hand, when the multilayer film is produced from a dispersion liquid, there is a problem that the polyimide film shrinks when the tetrafluoroethylene polymer is fired and wrinkles are generated in the multilayer film.
 本発明の目的は、密着性、及び穴あけ加工性に優れ、皺が発生し無いか極めて少ない多層フィルムの製造方法、及び多層フィルムの提供である。
 また、近年、上記多層フィルムには、層間の密着性の更なる向上が要求されている。
 本発明の目的は、ポリイミドのフィルムをベース層とし、ベース層の表面にテトラフルオロエチレン系ポリマーの層を設けた多層フィルムであって、層間の密着性に優れる多層フィルムの製造方法、及び多層フィルムの提供である。
An object of the present invention is to provide a method for producing a multilayer film having excellent adhesion and drilling workability and having no or very few wrinkles, and providing a multilayer film.
Further, in recent years, the multilayer film has been required to further improve the adhesion between layers.
An object of the present invention is a method for producing a multilayer film in which a polyimide film is used as a base layer and a layer of a tetrafluoroethylene-based polymer is provided on the surface of the base layer, and the multilayer film has excellent adhesion between layers, and a multilayer film. Is provided.
 本発明者らは鋭意検討し、密着性、及び穴あけ加工性に優れ、皺が発生し無いか極めて少ない多層フィルムを得るには、ガラス転移点を有するポリイミドと、熱溶融性のテトラフルオロエチレン系ポリマーを用い、所定の温度領域にて、熱溶融性のテトラフルオロエチレン系ポリマーを含む層を形成する必要があることを知見した。
 また、本発明者らは鋭意検討し、層間の密着性に優れる多層フィルムを得るには、ポリイミドフィルム層の表面に、所定のテトラフルオロエチレン系ポリマーのパウダー及び熱分解性ポリマーを含む層を形成する必要があることを知見した。
 本発明は、下記の態様を有する。
 (1)ガラス転移点を有するポリイミドを含む層の表面に、熱溶融性のテトラフルオロエチレン系ポリマーのパウダーを含む液状組成物を配置し、上記テトラフルオロエチレン系ポリマーの融点超、かつ、上記ポリイミドのガラス転移点+40℃以下の温度にて加熱し、上記テトラフルオロエチレン系ポリマーを含む層を形成して、上記ポリイミドを含む層と、上記ポリイミドを含む層の表面に形成された上記テトラフルオロエチレン系ポリマーを含む層とを有する多層フィルムを得る、多層フィルムの製造方法。
 (2)上記テトラフルオロエチレン系ポリマーが、ペルフルオロ(アルキルビニルエーテル)に基づく単位を含むテトラフルオロエチレン系ポリマーである、(1)の製造方法。
 (3)上記テトラフルオロエチレン系ポリマーが、極性官能基を有するポリマー、又は、全単位に対してペルフルオロ(アルキルビニルエーテル)に基づく単位を2.0~5.0モル%含み、極性官能基を有さないポリマーである、(1)又は(2)の製造方法。
 (4)上記液状組成物が、さらに芳香族ポリマーを含む、(1)~(3)のいずれかの製造方法。
 (5)上記テトラフルオロエチレン系ポリマーを含む層の厚さが、100μm以下である、(1)~(4)のいずれかの製造方法。
 (6)上記ポリイミドを含む層の厚さに対する、上記テトラフルオロエチレン系ポリマーを含む層の厚さの比が、0.4以上である、(1)~(5)のいずれかの製造方法。
 (7)上記ポリイミドを含む層の両面に、上記テトラフルオロエチレン系ポリマーを含む層をそれぞれ形成する、(1)~(6)のいずれかの製造方法。
 (8)ガラス転移点を有するポリイミドを含む層と、上記ポリイミドを含む層の両面に形成された熱溶融性のテトラフルオロエチレン系ポリマーを含む層とを有し、上記ポリイミドのガラス転移点が上記テトラフルオロエチレン系ポリマーの融点超、かつ、上記テトラフルオロエチレン系ポリマーの融点+60℃以下である、多層フィルム。
 (9)上記テトラフルオロエチレン系ポリマーが、ペルフルオロ(アルキルビニルエーテル)に基づく単位を含むテトラフルオロエチレン系ポリマーである、(8)の多層フィルム。
 (10)上記テトラフルオロエチレン系ポリマーが、極性官能基を有するポリマー、又は、全単位に対してペルフルオロ(アルキルビニルエーテル)に基づく単位を2.0~5.0モル%含み、極性官能基を有さないポリマーである、(8)又は(9)の多層フィルム。
 (11)上記テトラフルオロエチレン系ポリマーの融点が、260~325℃である、(8)~(10)のいずれかの多層フィルム。
 (12)上記ポリイミドのガラス転移点が、300~380℃である、(8)~(11)のいずれかの多層フィルム。
 (13)上記フィルムの吸水率が、0.3%以下である、(8)~(12)のいずれかの多層フィルム。
 (14)上記フィルムの剥離強度が、10N/cm以上である、(8)~(13)のいずれかの多層フィルム。
 (15)ポリイミドフィルム層の表面に、熱溶融性のテトラフルオロエチレン系ポリマーのパウダー及び熱分解性ポリマーを含む液状組成物を配置し、加熱して、上記テトラフルオロエチレン系ポリマーを含む層を形成し、上記ポリイミドフィルム層と、上記ポリイミドフィルム層の表面に形成されたテトラフルオロエチレン系ポリマーを含む層とを有する多層フィルムを得る、多層フィルムの製造方法。
 (16)上記熱分解性ポリマーが、(メタ)アクリル系ポリマーである、(15)の製造方法。
 (17)上記テトラフルオロエチレン系ポリマーが、ペルフルオロ(アルキルビニルエーテル)に基づく単位を含むテトラフルオロエチレン系ポリマーである、(15)又は(16)の製造方法。
 (18)上記テトラフルオロエチレン系ポリマーが、極性官能基を有するポリマー、又は、全単位に対してペルフルオロ(アルキルビニルエーテル)に基づく単位を2.0~5.0モル%含み、極性官能基を有さないポリマーである、(15)~(17)のいずれかの製造方法。
 (19)上記熱分解性ポリマーが、側鎖に下式(1)~(5)で表されるいずれか1種の基を有する(メタ)アクリル系ポリマーである、(15)~(18)のいずれかの製造方法。
 式(1)-C(O)-OC(-R11)(-R12)(-R13
 式(2)-C(O)-OCH(-R21)(-OR22
 式(3)-C(O)-O-Q3-O-CF(CF3)(-R31
 式(4)-C(O)-O-Q4-O-C(CF3)(=C(-R41)(-R42))
 式(5)-C(O)-OC(CF32(-R51
 式中の記号は、下記の意味を示す。
 R11、R12及びR13は、R11、R12及びR13がそれぞれ独立にアルキル基又はアリール基であるか、R11及びR12が水素原子でありR13がアリール基であるか、R11及びR12がそれぞれ独立に水素原子又はアルキル基でありR13がアルコキシ基であるか、R11が水素原子又はアルキル基でありR12及びR13が共同してアルキレン基を形成する基である。
 R21及びR22は、R21がアルキル基でありR22はフルオロアルキル基であるか、共同してアルキレン基を形成する基である。
 Q3及びQ4は、それぞれ独立にアルキレン基である。
 R31は、ペルフルオロアルケニル基である。
 R41及びR42は、それぞれ独立にペルフルオロアルキル基である。
 R51は、アルキル基又はシクロアルキル基である。
 (20)上記ポリイミドフィルム層のポリイミドが、イミド基密度が0.35以下であるポリイミドである、(15)~(19)のいずれかの製造方法。
 (21)上記ポリイミドフィルム層のポリイミドが、2個以上のアリーレン基が連結基を介して連結された構造を有する芳香族ジアミン、又は、脂肪族ジアミンに基づく単位を含む、ポリイミドである、(15)~(20)のいずれかの製造方法。
 (22)上記ポリイミドフィルム層のポリイミドが、芳香族テトラカルボン酸の酸二無水物に基づく単位を含み、上記芳香族テトラカルボン酸の酸二無水物が、2つの無水フタル酸構造が連結基を介して連結された構造を有する、(15)~(21)のいずれかの製造方法。
 (23)上記液状組成物が、ポリイミド又はポリイミド前駆体を含む、(15)~(22)のいずれかの製造方法。
 (24)ポリイミドフィルム層と、上記ポリイミドフィルム層の両面に、熱溶融性のテトラフルオロエチレン系ポリマー及び熱分解性ポリマーを含む層とを有する、多層フィルム。
 (25)上記ポリイミドフィルム層のポリイミドが、イミド基密度が0.35以下であるポリイミドである、(24)の多層フィルム。
 (26)上記テトラフルオロエチレン系ポリマーが、ペルフルオロ(アルキルビニルエーテル)に基づく単位を含むテトラフルオロエチレン系ポリマーである、(24)又は(25)の多層フィルム。
 (27)上記テトラフルオロエチレン系ポリマーが、極性官能基を有するポリマー、又は、全単位に対してペルフルオロ(アルキルビニルエーテル)に基づく単位を2.0~5.0モル%含み、極性官能基を有さないポリマーである、(24)~(26)のいずれかの多層フィルム。
 (28)上記層が、さらに芳香族ポリマーを含む、(24)~(27)のいずれかの多層フィルム。
 (29)上記層が、上記熱分解性ポリマー由来の熱分解物を含む、(24)~(28)のいずれかの多層フィルム。
The present inventors have studied diligently, and in order to obtain a multilayer film having excellent adhesion and drilling workability and having no or very few wrinkles, a polyimide having a glass transition point and a heat-meltable tetrafluoroethylene system are used. It was found that it is necessary to form a layer containing a heat-meltable tetrafluoroethylene-based polymer in a predetermined temperature range using a polymer.
Further, the present inventors have studied diligently, and in order to obtain a multilayer film having excellent adhesion between layers, a layer containing a predetermined tetrafluoroethylene polymer powder and a thermally decomposable polymer is formed on the surface of the polyimide film layer. I found that it was necessary to do so.
The present invention has the following aspects.
(1) A liquid composition containing a heat-meltable tetrafluoroethylene polymer powder is placed on the surface of a layer containing a polyimide having a glass transition point, and the polyimide is above the melting point of the tetrafluoroethylene polymer. The glass transition point of the above is heated at a temperature of + 40 ° C. or lower to form a layer containing the tetrafluoroethylene-based polymer, and the tetrafluoroethylene formed on the surfaces of the layer containing the polyimide and the layer containing the polyimide. A method for producing a multilayer film, which comprises a multilayer film having a layer containing a based polymer.
(2) The method for producing (1), wherein the tetrafluoroethylene-based polymer is a tetrafluoroethylene-based polymer containing a unit based on perfluoro (alkyl vinyl ether).
(3) The tetrafluoroethylene-based polymer contains 2.0 to 5.0 mol% of a polymer having a polar functional group or a unit based on perfluoro (alkyl vinyl ether) with respect to all the units, and has a polar functional group. The method for producing (1) or (2), which is a non-polymer.
(4) The production method according to any one of (1) to (3), wherein the liquid composition further contains an aromatic polymer.
(5) The production method according to any one of (1) to (4), wherein the thickness of the layer containing the tetrafluoroethylene polymer is 100 μm or less.
(6) The production method according to any one of (1) to (5), wherein the ratio of the thickness of the layer containing the tetrafluoroethylene-based polymer to the thickness of the layer containing the polyimide is 0.4 or more.
(7) The production method according to any one of (1) to (6), wherein layers containing the tetrafluoroethylene-based polymer are formed on both sides of the layer containing the polyimide.
(8) It has a layer containing a polyimide having a glass transition point and a layer containing a heat-meltable tetrafluoroethylene polymer formed on both sides of the layer containing the polyimide, and the glass transition point of the polyimide is the above. A multilayer film having a temperature exceeding the melting point of the tetrafluoroethylene-based polymer and having a melting point of the above-mentioned tetrafluoroethylene-based polymer + 60 ° C. or lower.
(9) The multilayer film of (8), wherein the tetrafluoroethylene-based polymer is a tetrafluoroethylene-based polymer containing a unit based on perfluoro (alkyl vinyl ether).
(10) The tetrafluoroethylene-based polymer contains 2.0 to 5.0 mol% of a polymer having a polar functional group or a unit based on perfluoro (alkyl vinyl ether) with respect to all the units, and has a polar functional group. The multilayer film of (8) or (9) which is a non-polymer.
(11) The multilayer film according to any one of (8) to (10), wherein the tetrafluoroethylene polymer has a melting point of 260 to 325 ° C.
(12) The multilayer film according to any one of (8) to (11), wherein the glass transition point of the polyimide is 300 to 380 ° C.
(13) The multilayer film according to any one of (8) to (12), wherein the water absorption rate of the film is 0.3% or less.
(14) The multilayer film according to any one of (8) to (13), wherein the peel strength of the film is 10 N / cm or more.
(15) A liquid composition containing a heat-meltable tetrafluoroethylene polymer powder and a thermodegradable polymer is placed on the surface of the polyimide film layer and heated to form a layer containing the tetrafluoroethylene polymer. A method for producing a multilayer film, wherein a multilayer film having the polyimide film layer and a layer containing a tetrafluoroethylene-based polymer formed on the surface of the polyimide film layer is obtained.
(16) The production method of (15), wherein the pyrolytic polymer is a (meth) acrylic polymer.
(17) The method for producing (15) or (16), wherein the tetrafluoroethylene-based polymer is a tetrafluoroethylene-based polymer containing a unit based on perfluoro (alkyl vinyl ether).
(18) The tetrafluoroethylene-based polymer contains 2.0 to 5.0 mol% of a polymer having a polar functional group or a unit based on perfluoro (alkyl vinyl ether) with respect to all the units, and has a polar functional group. The production method according to any one of (15) to (17), which is a non-polymer.
(19) The thermally decomposable polymer is a (meth) acrylic polymer having any one of the groups represented by the following formulas (1) to (5) in the side chain (15) to (18). Any manufacturing method.
Equations (1) -C (O) -OC (-R 11 ) ( -R 12 ) (-R 13 )
Equation (2) -C (O) -OCH (-R 21 ) (-OR 22 )
Equation (3) -C (O) -O-Q 3- O-CF (CF 3 ) (-R 31 )
Equation (4) -C (O) -OQ 4- OC (CF 3 ) (= C (-R 41 ) ( -R 42 ))
Equation (5) -C (O) -OC (CF 3 ) 2 (-R 51 )
The symbols in the formula have the following meanings.
In R 11 , R 12 and R 13 , whether R 11 , R 12 and R 13 are independently alkyl or aryl groups, or whether R 11 and R 12 are hydrogen atoms and R 13 is an aryl group, respectively. R 11 and R 12 are independent hydrogen atoms or alkyl groups and R 13 is an alkoxy group, or R 11 is a hydrogen atom or alkyl group and R 12 and R 13 jointly form an alkylene group. Is.
R 21 and R 22 are groups in which R 21 is an alkyl group and R 22 is a fluoroalkyl group or jointly forms an alkylene group.
Q 3 and Q 4 are independently alkylene groups.
R 31 is a perfluoroalkanoic group.
R 41 and R 42 are independently perfluoroalkyl groups.
R 51 is an alkyl group or a cycloalkyl group.
(20) The production method according to any one of (15) to (19), wherein the polyimide of the polyimide film layer is a polyimide having an imide group density of 0.35 or less.
(21) The polyimide of the polyimide film layer is a polyimide containing an aromatic diamine having a structure in which two or more arylene groups are linked via a linking group, or a unit based on an aliphatic diamine (15). )-(20).
(22) The polyimide of the polyimide film layer contains a unit based on the acid dianhydride of the aromatic tetracarboxylic dian, and the acid dianhydride of the aromatic tetracarboxylic dian has two phthalic anhydride structures as a linking group. The production method according to any one of (15) to (21), which has a structure connected via.
(23) The production method according to any one of (15) to (22), wherein the liquid composition contains polyimide or a polyimide precursor.
(24) A multilayer film having a polyimide film layer and a layer containing a heat-meltable tetrafluoroethylene polymer and a pyrolytic polymer on both sides of the polyimide film layer.
(25) The multilayer film of (24), wherein the polyimide of the polyimide film layer is a polyimide having an imide group density of 0.35 or less.
(26) The multilayer film of (24) or (25), wherein the tetrafluoroethylene-based polymer is a tetrafluoroethylene-based polymer containing a unit based on perfluoro (alkyl vinyl ether).
(27) The tetrafluoroethylene-based polymer contains 2.0 to 5.0 mol% of a polymer having a polar functional group or a unit based on perfluoro (alkyl vinyl ether) with respect to all the units, and has a polar functional group. The multilayer film according to any one of (24) to (26), which is a non-polymer.
(28) The multilayer film according to any one of (24) to (27), wherein the layer further contains an aromatic polymer.
(29) The multilayer film according to any one of (24) to (28), wherein the layer contains a pyrolyzed product derived from the thermally decomposable polymer.
 本発明によれば、密着性、及び穴あけ加工性に優れ、皺が発生し無いか極めて少ない多層フィルムの製造方法、及び多層フィルムが得られる。
 また、本発明によれば、層間の密着性に優れる多層フィルムの製造方法、及び多層フィルムが得られる。
According to the present invention, it is possible to obtain a method for producing a multilayer film having excellent adhesion and drilling workability and having no or very few wrinkles, and a multilayer film.
Further, according to the present invention, a method for producing a multilayer film having excellent adhesion between layers and a multilayer film can be obtained.
 以下の用語は、以下の意味を有する。
 「ガラス転移点(以下、「Tg」とも記す。)を有する」とは、固体動的粘弾性(以下、「DMA」とも記す。)法でポリマーを分析した際に、Tgが測定可能であることを意味する。
 「ポリマーのTg」は、DMA法でポリマーを分析して測定される値である。
 「テトラフルオロエチレン系ポリマー」とは、テトラフルオロエチレンに基づく単位(以下、「TFE単位」とも記す。)を含むポリマーであり、単に「TFE系ポリマー」とも記す。
 「熱溶融性のテトラフルオロエチレン系ポリマー」とは、示差走査熱量測定(以下、「DSC」とも記す。)法で測定した際に、ポリマーが硬化することなく融解するものを意味する。
 「ポリマーの溶融温度(融点)」は、示差走査熱量測定(DSC)法で測定したポリマーの融解ピークの最大値に対応する温度である。
The following terms have the following meanings.
“Having a glass transition point (hereinafter, also referred to as“ Tg ”)” means that Tg can be measured when a polymer is analyzed by the solid dynamic viscoelasticity (hereinafter, also referred to as “DMA”) method. Means that.
"Polymer Tg" is a value measured by analyzing a polymer by the DMA method.
The "tetrafluoroethylene-based polymer" is a polymer containing a unit based on tetrafluoroethylene (hereinafter, also referred to as "TFE unit"), and is also simply referred to as "TFE-based polymer".
The "heat-meltable tetrafluoroethylene polymer" means a polymer that melts without curing when measured by a differential scanning calorimetry (hereinafter, also referred to as "DSC") method.
The "polymer melting temperature (melting point)" is the temperature corresponding to the maximum value of the polymer melting peak measured by the differential scanning calorimetry (DSC) method.
 「ポリイミドのイミド基密度」とは、イミド基部分の分子量(140.1)を単位あたりの分子量で除した値を意味する。例えば、ピロメリット酸二無水物の1モルと3,4’-オキシジアニリンの1モルとの2成分から成るポリイミド前駆体をイミド化して得られたポリイミドの場合、単位あたりの分子量は382.4であり、そのイミド基密度は0.37(140.1/382.4)である。 The "imide group density of polyimide" means a value obtained by dividing the molecular weight (140.1) of the imide group portion by the molecular weight per unit. For example, in the case of a polyimide obtained by imidizing a polyimide precursor consisting of 1 mol of pyromellitic dianhydride and 1 mol of 3,4'-oxydianiline, the molecular weight per unit is 382. It is 4, and its imide group density is 0.37 (140.1 / 382.4).
 「吸水率」とは、10cm角に切り出した試験片を50℃にて24時間乾燥させ、デシケーター内で冷却した時点における試験片の質量を、試験片の水浸漬前質量とし、その後、この乾燥させた試験片を、23℃にて24時間、純水に浸漬させた後、試験片を純水から取り出し、速やかに表面の水分を拭き取った後、1分以内に測定した質量を試験片の水浸漬後質量とし、浸漬前後での試験片の質量変化率(%)[{(水浸漬後質量-水浸漬前質量)/水浸漬前質量}×100]を意味する。 The "water absorption rate" is defined as the mass of the test piece at the time when the test piece cut into 10 cm squares is dried at 50 ° C. for 24 hours and cooled in a desiccator, and the mass of the test piece before water immersion is used. After immersing the test piece in pure water at 23 ° C. for 24 hours, the test piece was taken out from the pure water, the water on the surface was quickly wiped off, and the mass measured within 1 minute was measured for the test piece. The mass after immersion in water means the rate of change in mass of the test piece before and after immersion (%) [{(mass after immersion in water-mass before immersion in water) / mass before immersion in water} x 100].
 「剥離強度」とは、長さ100mm、幅10mmの矩形状の試験片を切り出し、試験片の長さ方向の一端から50mmの位置まで後述するPI層と後述するTFE系ポリマー層とを剥離し、次いで、試験片の長さ方向の一端から50mmの位置を中央にして、引張り試験機を用いて、引張り速度50mm/分で90度剥離させた際の、最大荷重を意味する。 “Peeling strength” means that a rectangular test piece having a length of 100 mm and a width of 10 mm is cut out, and the PI layer described later and the TFE polymer layer described later are peeled from one end in the length direction of the test piece to a position 50 mm. Next, it means the maximum load when the test piece is peeled 90 degrees at a tensile speed of 50 mm / min using a tensile tester with the position 50 mm from one end in the length direction as the center.
 「降伏強度」とは、歪みを大きくしていった際に、歪みと応力との関係が比例しなくなり、応力を除去しても歪みが残る現象が起き始める応力を意味し、ASTM D882に従って、ベースフィルムの引張弾性率を測定した際の「5%ひずみ時応力」の値で規定する。
 「難塑性変形性」とは、ベースフィルムを塑性変形させた際に応力が増加していく特性、又は塑性変形させた際に必要な応力が大きい特性を意味し、ASTM D882に従って、ベースフィルムの引張弾性率を測定した際の「15%ひずみ時応力」の値で規定する。
The "yield strength" means a stress in which the relationship between the strain and the stress becomes non-proportional when the strain is increased, and a phenomenon in which the strain remains even if the stress is removed is started. According to ASTM D882, It is specified by the value of "stress at 5% strain" when the tensile elastic modulus of the base film is measured.
"Resistant plastic deformation" means a property in which the stress increases when the base film is plastically deformed, or a property in which the stress required when the base film is plastically deformed is large. It is specified by the value of "stress at 15% strain" when the tensile elastic modulus is measured.
 「パウダーのD50」は、レーザー回折・散乱法によってパウダーの粒度分布を測定し、パウダーを構成する粒子の集団の全体積を100%として累積カーブを求め、その累積カーブ上で累積体積が50%となる点の粒子径(体積基準累積50%径)である。
 「パウダーのD90」は、同様にして測定される、パウダーの体積基準累積90%径である。
 なお、D50及びD90は、レーザー回折・散乱式粒度分布測定装置(堀場製作所社製、LA-920測定器)を用い、パウダーを水中に分散させて測定した値である。
"D50 of powder" measures the particle size distribution of powder by laser diffraction / scattering method, obtains a cumulative curve with the total volume of the group of particles constituting the powder as 100%, and the cumulative volume is 50% on the cumulative curve. It is the particle size (volume-based cumulative 50% diameter) of the point.
“Powder D90” is the volume-based cumulative 90% diameter of the powder, measured in the same manner.
In addition, D50 and D90 are values measured by dispersing powder in water using a laser diffraction / scattering type particle size distribution measuring device (LA-920 measuring device manufactured by HORIBA, Ltd.).
 「液状組成物の粘度」は、B型粘度計を用いて、室温下(25℃)で回転数が30rpmの条件下で液状組成物について測定される値である。測定を3回繰り返し、3回分の測定値の平均値とする。 The "viscosity of the liquid composition" is a value measured for the liquid composition at room temperature (25 ° C.) and at a rotation speed of 30 rpm using a B-type viscometer. The measurement is repeated 3 times, and the average value of the measured values for 3 times is used.
 ポリマーにおける「単位」は、重合反応によってモノマーから直接形成された原子団であってもよく、重合反応によって得られたポリマーを所定の方法で処理して、構造の一部が変換された原子団であってもよい。また、モノマーAに基づく単位をモノマーA単位とも記す。
 「金属箔の表面の十点平均粗さ(Rzjis)」は、JIS B 0601:2013の附属書JAで規定される値である。
The "unit" in the polymer may be an atomic group formed directly from the monomer by the polymerization reaction, and the polymer obtained by the polymerization reaction is treated by a predetermined method to convert a part of the structure. May be. Further, the unit based on the monomer A is also referred to as a monomer A unit.
The "ten-point average roughness (Rzjis) of the surface of the metal foil" is a value specified in Annex JA of JIS B 0601: 2013.
 本発明の製造方法(以下、「本法」とも記す。)は、ポリイミド(以下、「PI」とも記す。)を含む層(以下、「PI層」とも記す。)の表面に、熱溶融性のテトラフルオロエチレン系ポリマー(以下、「TFE系ポリマー」)のパウダーを含む液状組成物を配置し、加熱して、TFE系ポリマーを含む層を形成して、PI層と、PI層の表面に形成されたTFE系ポリマーを含む層(以下、「TFE系ポリマー層」とも記す。)とを有する多層フィルムを得る方法である。 The production method of the present invention (hereinafter, also referred to as "this method") is thermally meltable on the surface of a layer (hereinafter, also referred to as "PI layer") containing a polyimide (hereinafter, also referred to as "PI"). A liquid composition containing a powder of a tetrafluoroethylene-based polymer (hereinafter, “TFE-based polymer”) is placed and heated to form a layer containing the TFE-based polymer, and is formed on the PI layer and the surface of the PI layer. This is a method for obtaining a multilayer film having a layer containing the formed TFE-based polymer (hereinafter, also referred to as “TFE-based polymer layer”).
 本発明の第1の製造方法(以下、「本法1」とも記す。)は、Tgを有するPI(以下、「PI1」とも記す。)を含むPI層(以下、「PI層1」とも記す。)の表面に、TFE系ポリマーのパウダーを含む液状組成物を配置し、TFE系ポリマーの融点超、かつ、PI1のTg+40℃以下の温度にて加熱し、TFE系ポリマーを含む層(以下、「TFE系ポリマー層1」とも記す。)を形成して、PI層1と、PI層1の表面に形成されたTFE系ポリマー層1とを有する多層フィルムを得る方法である。 The first production method of the present invention (hereinafter, also referred to as "the present method 1") is also referred to as a PI layer (hereinafter, also referred to as "PI layer 1") containing a PI having Tg (hereinafter, also referred to as "PI1"). A liquid composition containing a powder of the TFE polymer is placed on the surface of the TFE polymer and heated at a temperature above the melting point of the TFE polymer and at a temperature of Tg + 40 ° C. or lower of PI1 to form a layer containing the TFE polymer (hereinafter referred to as “)”. This is a method of forming a "TFE-based polymer layer 1") to obtain a multilayer film having a PI layer 1 and a TFE-based polymer layer 1 formed on the surface of the PI layer 1.
 本法1によると、密着性、及び穴あけ加工性に優れ、皺が発生し無いか極めて少ない多層フィルムが得られる。その理由は必ずしも明確ではないが、以下のように考えられる。
 加熱に伴うPI層1の収縮は、PI層1の緻密化を促し、耐水性等の物性を向上する反面、皺が発生する原因ともなり層間の密着性と多層フィルムの穴あけ加工性とを低下させてしまう。つまり、収縮をコントロールしつつ、これらの物性を具備した緻密な多層フィルムを製造するのは困難であった。
According to this method 1, a multilayer film having excellent adhesion and drilling workability and having no wrinkles or very few wrinkles can be obtained. The reason is not always clear, but it can be considered as follows.
The shrinkage of the PI layer 1 due to heating promotes the densification of the PI layer 1 and improves physical properties such as water resistance, but also causes wrinkles and reduces the adhesion between layers and the drilling workability of the multilayer film. I will let you. That is, it has been difficult to produce a dense multilayer film having these physical characteristics while controlling shrinkage.
 そこで、本法1では、熱溶融性のTFE系ポリマーとTgを有するPIとを使用し、かつ、TFE系ポリマーの融点超、PIのTg+40℃以下の温度にて加熱を行う。つまり、加熱において、PI層1を軟化させつつTFE系ポリマーのパウダーを溶融させて、TFE系ポリマー層1を形成させている。そのため、TFE系ポリマー層1とPI層1との高度な密着が促され、収縮がコントロールされたと考えられる。
 かかる作用機構により、本法1によると、密着性、及び穴あけ加工性に優れ、皺が発生し無いか極めて少ない、緻密な多層フィルムが得られると考えられる。
Therefore, in this method 1, a heat-meltable TFE-based polymer and a PI having Tg are used, and heating is performed at a temperature above the melting point of the TFE-based polymer and Tg + 40 ° C. or lower of the PI. That is, in heating, the powder of the TFE-based polymer is melted while softening the PI layer 1 to form the TFE-based polymer layer 1. Therefore, it is considered that a high degree of adhesion between the TFE polymer layer 1 and the PI layer 1 is promoted and the shrinkage is controlled.
According to this method 1, it is considered that a dense multilayer film having excellent adhesion and drilling workability and having no or very few wrinkles can be obtained by such an action mechanism.
 本法1におけるPI1のTgは、300℃以上であるのが好ましく、310℃以上であるのがより好ましい。PI1のTgは、380℃以下であるのが好ましく、360℃以下であるのがより好ましい。
 この場合、加熱におけるPI層1の軟化とパウダーの溶融とが一層バランスして進行しやすいだけでなく、PI層1とTFE系ポリマー層1がより高度に密着して、得られる多層フィルムの物性(高剥離強度、耐水性、低線膨張性等)が向上しやすい。
The Tg of PI1 in this method 1 is preferably 300 ° C. or higher, more preferably 310 ° C. or higher. The Tg of PI1 is preferably 380 ° C. or lower, and more preferably 360 ° C. or lower.
In this case, not only the softening of the PI layer 1 and the melting of the powder in heating are more likely to proceed in a balanced manner, but also the PI layer 1 and the TFE polymer layer 1 are more highly adhered to each other, and the physical characteristics of the obtained multilayer film are obtained. (High peel strength, water resistance, low line expansion, etc.) are likely to improve.
 PI1は、芳香族性ポリイミドであるのが好ましい。
 芳香族性ポリイミドとしては、ジアミンとカルボン酸二無水物とを反応させてポリアミック酸を合成し、このポリアミック酸を熱イミド化法又は化学イミド化法によりイミド化して得られるポリイミドが挙げられる。
PI1 is preferably an aromatic polyimide.
Examples of the aromatic polyimide include a polyimide obtained by reacting a diamine with a carboxylic acid dianhydride to synthesize a polyamic acid, and imidizing the polyamic acid by a thermal imidization method or a chemical imidization method.
 ジアミンとしては、芳香族ジアミンが好ましい。芳香族ジアミンの具体例としては、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルメタン、4,4’-オキシジアニリン、3,3’-オキシジアニリン、3,4’-オキシジアニリン、4,4’-ジアミノジフェニルジエチルシラン、4,4’-ジアミノジフェニルシラン、1,4-ジアミノベンゼン(p-フェニレンジアミン)、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、3,3’-ジアミノベンゾフェノン、4,4’-ジアミノベンゾフェノン、2,2’-ジメチル-4,4’-ジアミノビフェニル、2,2-ビス{4-(4-アミノフェノキシ)フェニル}プロパン、3,3’-ジヒドロキシ-4,4’-ジアミノ-1,1’-ビフェニル、2,4-ジアミノトルエンが挙げられる。ジアミンは、1種を単独で使用しても、2種以上を併用してもよい。 As the diamine, aromatic diamine is preferable. Specific examples of aromatic diamines include 4,4'-diaminodiphenylpropane, 4,4'-diaminodiphenylmethane, 4,4'-oxydianiline, 3,3'-oxydianiline, and 3,4'-oxy. Dianiline, 4,4'-diaminodiphenyldiethylsilane, 4,4'-diaminodiphenylsilane, 1,4-diaminobenzene (p-phenylenediamine), 4,4'-bis (4-aminophenoxy) biphenyl, 4 , 4'-bis (3-aminophenoxy) biphenyl, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) Benzene, 1,3-bis (3-aminophenoxy) benzene, 3,3'-diaminobenzophenone, 4,4'-diaminobenzophenone, 2,2'-dimethyl-4,4'-diaminobiphenyl, 2,2- Examples thereof include bis {4- (4-aminophenoxy) phenyl} propane, 3,3'-dihydroxy-4,4'-diamino-1,1'-biphenyl and 2,4-diaminotoluene. One type of diamine may be used alone, or two or more types may be used in combination.
 カルボン酸二無水物としては、ピロメリット酸二無水物、3,3’4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルエーテルテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,3,2’,3’-ベンゾフェノンテトラカルボン酸二無水物、2,3,3’,4’-ベンゾフェノンテトラカルボン酸二無水物、1,3-ビス(3,4-ジカルボキシフェニル)-1,1,3,3-テトラメチルジシクロヘキサン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物、2,2-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]ヘキサフルオロプロパン二無水物、2,2-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物が挙げられる。カルボン酸二無水物は、1種を単独で使用しても、2種以上を併用してもよい。 Examples of the carboxylic acid dianhydride include pyromellitic dianhydride, 3,3'4,5'-biphenyltetracarboxylic dianhydride, 2,2', 3,3'-biphenyltetracarboxylic dianhydride, and the like. 2,3,3', 4'-biphenyltetracarboxylic dianhydride, 3,3', 4,4'-biphenyl ethertetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) ) Propane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, 1,1-bis ( 3,4-dicarboxyphenyl) ethane dianhydride, bis (2,3-dicarboxyphenyl) methane dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride, 3,3', 4, 4'-benzophenonetetracarboxylic dianhydride, 2,3,2', 3'-benzophenonetetracarboxylic dianhydride, 2,3,3', 4'-benzophenonetetracarboxylic dianhydride, 1,3 -Bis (3,4-dicarboxyphenyl) -1,1,3,3-tetramethyldicyclohexanedianhydride, 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropanedianhydride, 2 , 2-bis [4- (3,4-dicarboxyphenoxy) phenyl] hexafluoropropane dianhydride, 2,2-bis [4- (3,4-dicarboxyphenoxy) phenyl] propane dianhydride, and the like. To be done. The carboxylic acid dianhydride may be used alone or in combination of two or more.
 また、ジアミンとカルボン酸二無水物との合計モル数に対する、ジアミン及びカルボン酸二無水物が含むエーテル結合に由来する酸素原子の総モル数の割合は、35~70%が好ましく、45~65%がより好ましい。この場合、PI1のポリマー主鎖の柔軟性が高まり、芳香族環のスタック性が向上して、PI層1とTFE系ポリマー層1との接着性がより向上する。また、この場合、本発明の多層フィルムの穴あけ加工性もより良好になる。 The ratio of the total number of moles of oxygen atoms derived from the ether bond contained in the diamine and the carboxylic acid dianhydride to the total number of moles of the diamine and the carboxylic acid dianhydride is preferably 35 to 70%, preferably 45 to 65. % Is more preferable. In this case, the flexibility of the polymer main chain of PI1 is increased, the stackability of the aromatic ring is improved, and the adhesiveness between the PI layer 1 and the TFE-based polymer layer 1 is further improved. Further, in this case, the drilling workability of the multilayer film of the present invention is also improved.
 PI1のイミド基密度は、0.4以下であるのが好ましく、0.3以下であるのがより好ましい。PI1のイミド基密度は、0.1以上であるのが好ましい。この場合、加熱におけるPI層1の軟化とパウダーの溶融とが一層バランスして進行しやすい。 The imide group density of PI1 is preferably 0.4 or less, and more preferably 0.3 or less. The imide group density of PI1 is preferably 0.1 or more. In this case, the softening of the PI layer 1 and the melting of the powder during heating are more likely to proceed in a balanced manner.
 本法1におけるPI層1には、降伏強度、難塑性変形性、熱伝導性、ループスティフネス等の特性を高める目的で、無機フィラーが含まれていてもよい。かかる無機フィラーとしては、酸化珪素、酸化チタン、酸化アルミニウム、窒化珪素、窒化ホウ素、リン酸水素カルシウム、リン酸カルシウムが挙げられる。 The PI layer 1 in the present method 1 may contain an inorganic filler for the purpose of enhancing properties such as yield strength, resistance to plastic deformation, thermal conductivity, and loop stiffness. Examples of such an inorganic filler include silicon oxide, titanium oxide, aluminum oxide, silicon nitride, boron nitride, calcium hydrogen phosphate, and calcium phosphate.
 PI層1の引張弾性率は、5GPa以上が好ましく、10GPa以上がより好ましい。引張弾性率は、25GPa以下が好ましく、20GPa以下がより好ましい。引張弾性率がかかる範囲にあるPI層1を用いれば、上記した本法1の作用機構が向上し、得られる多層フィルムに皺が発生するのをより確実に防止できる。それにより、表面平滑性が高い多層フィルムが得られる。 The tensile elastic modulus of the PI layer 1 is preferably 5 GPa or more, and more preferably 10 GPa or more. The tensile elastic modulus is preferably 25 GPa or less, more preferably 20 GPa or less. By using the PI layer 1 in the range where the tensile elastic modulus is applied, the mechanism of action of the above-mentioned method 1 is improved, and wrinkles can be more reliably prevented from being generated in the obtained multilayer film. As a result, a multilayer film having high surface smoothness can be obtained.
 PI層1の5%ひずみ時応力は、180MPa以上が好ましく、210MPa以上がより好ましい。PI層1の5%ひずみ時応力は、500MPa以下が好ましい。
 PI層1の15%ひずみ時応力は、225MPa以上が好ましく、245MPa以上がより好ましい。PI層1の15%ひずみ時応力は、580MPa以下が好ましい。
 かかるPI層1は、降伏強度が高く、難塑性変形性であり、得られる多層フィルムの線膨張係数を低減させ、それに皺が発生するのをより確実に防止できる。
The stress at 5% strain of the PI layer 1 is preferably 180 MPa or more, more preferably 210 MPa or more. The stress at 5% strain of the PI layer 1 is preferably 500 MPa or less.
The stress at 15% strain of the PI layer 1 is preferably 225 MPa or more, more preferably 245 MPa or more. The stress at 15% strain of PI layer 1 is preferably 580 MPa or less.
The PI layer 1 has a high yield strength and is resistant to plastic deformation, and can reduce the coefficient of linear expansion of the obtained multilayer film and more reliably prevent wrinkles from being generated therein.
 本法におけるTFE系ポリマーは、さらに、ペルフルオロ(アルキルビニルエーテル)(PAVE)に基づく単位(PAVE単位)を含むのが好ましい。この場合、加熱におけるPI層1の軟化とパウダーの溶融とが一層バランスして進行しやすい。 The TFE-based polymer in this method preferably further contains a unit (PAVE unit) based on perfluoro (alkyl vinyl ether) (PAVE). In this case, the softening of the PI layer 1 and the melting of the powder during heating are more likely to proceed in a balanced manner.
 TFE系ポリマーの融点は、260~325℃が好ましく、280~320℃がより好ましい。この場合、加熱におけるPI層1の軟化とパウダーの溶融とが一層バランスして進行しやすいだけでなく、PI層1とTFE系ポリマー層1とが一層密着して、得られる多層フィルムの物性が向上しやすい。
 TFE系ポリマーのTgは、75~125℃が好ましく、80~100℃がより好ましい。
The melting point of the TFE polymer is preferably 260 to 325 ° C, more preferably 280 to 320 ° C. In this case, not only the softening of the PI layer 1 and the melting of the powder in heating are more balanced and easily proceeded, but also the PI layer 1 and the TFE polymer layer 1 are more closely adhered to obtain the physical characteristics of the obtained multilayer film. Easy to improve.
The Tg of the TFE polymer is preferably 75 to 125 ° C, more preferably 80 to 100 ° C.
 TFE系ポリマーは、極性官能基を有するのが好ましい。極性官能基は、TFE系ポリマー中の単位に含まれていてもよく、ポリマーの主鎖の末端基に含まれていてもよい。後者の態様としては、重合開始剤、連鎖移動剤等に由来する末端基として極性官能基を有するTFE系ポリマー、TFE系ポリマーをプラズマ処理や電離線処理して得られる極性官能基を有するTFE系ポリマーが挙げられる。 The TFE polymer preferably has a polar functional group. The polar functional group may be contained in a unit in the TFE-based polymer, or may be contained in the terminal group of the main chain of the polymer. In the latter aspect, a TFE-based polymer having a polar functional group as a terminal group derived from a polymerization initiator, a chain transfer agent, or the like, or a TFE-based polymer having a polar functional group obtained by subjecting a TFE-based polymer to a plasma treatment or an ionization line treatment. Examples include polymers.
 極性官能基は、水酸基含有基又はカルボニル基含有基が好ましく、液状組成物の状態安定性を高める観点から、カルボニル基含有基が特に好ましい。
 水酸基含有基は、アルコール性水酸基を含む基が好ましく、-CFCHOH又は-C(CF32OHが好ましい。
 カルボニル基含有基は、カルボニル基(>C(O))を含む基であり、カルボキシル基、アルコキシカルボニル基、アミド基、イソシアネート基、カルバメート基(-OC(O)NH2)、酸無水物残基(-C(O)OC(O)-)、イミド残基(-C(O)NHC(O)-等)又はカーボネート基(-OC(O)O-)が好ましい。
 TFE系ポリマーがカルボニル基含有基を有する場合、TFE系ポリマーにおけるカルボニル基含有基の数は、主鎖炭素数1×106個あたり、10~5000個が好ましく、50~4000個がより好ましく、100~2000個がさらに好ましい。この場合、TFE系ポリマーがPI層1と相互作用しやすく、得られる多層フィルムの剥離強度が向上しやすい。また、得られる多層フィルムの線膨張係数を低減させ、それに皺が発生するのをより確実に防止できる。なお、TFE系ポリマーにおけるカルボニル基含有基の数は、ポリマーの組成又は国際公開2020/145133号に記載の方法によって定量できる。
The polar functional group is preferably a hydroxyl group-containing group or a carbonyl group-containing group, and a carbonyl group-containing group is particularly preferable from the viewpoint of enhancing the state stability of the liquid composition.
The hydroxyl group-containing group is preferably a group containing an alcoholic hydroxyl group, and preferably -CF 2 CH 2 OH or -C (CF 3 ) 2 OH.
The carbonyl group-containing group is a group containing a carbonyl group (> C (O)), and is a carboxyl group, an alkoxycarbonyl group, an amide group, an isocyanate group, a carbamate group (-OC (O) NH 2 ), and an acid anhydride residue. A group (-C (O) OC (O)-), an imide residue (-C (O) NHC (O)-etc.) or a carbonate group (-OC (O) O-) is preferred.
When the TFE-based polymer has a carbonyl group-containing group, the number of carbonyl group-containing groups in the TFE-based polymer is preferably 10 to 5000, more preferably 50 to 4000, per 1 × 10 6 carbon atoms in the main chain. More preferably, 100 to 2000 pieces. In this case, the TFE-based polymer easily interacts with the PI layer 1, and the peel strength of the obtained multilayer film tends to be improved. In addition, the coefficient of linear expansion of the obtained multilayer film can be reduced, and wrinkles can be prevented more reliably. The number of carbonyl group-containing groups in the TFE-based polymer can be quantified by the composition of the polymer or the method described in International Publication No. 2020/145133.
 TFE系ポリマーは、融点が260~320℃であり、PAVE単位を含み、全単位に対してPAVE単位を1.0~5.0モル%含むポリマーが好ましく、TFE単位及びPAVE単位を含み、全単位に対してPAVE単位を1.0~5.0モル%含む、極性官能基を有するTFE系ポリマー(1)、又は、TFE単位及びPAVE単位を含み、全単位に対してPAVE単位を2.0~5.0モル%含む、極性官能基を有さないTFE系ポリマー(2)がより好ましく、密着性及び耐水性の点から、TFE系ポリマー(1)が特に好ましい。
 なお、TFE系ポリマー(1)は、TFE単位、PAVE単位及び極性官能基を有するモノマーに基づく単位を含むことが好ましい。
 TFE系ポリマー(1)又は(2)は、そのパウダーが液中分散性に優れるだけでなく、TFE系ポリマー層1の形成において、微小球晶を形成しやすく、PI層1との密着性が一層向上しやすい。
The TFE-based polymer has a melting point of 260 to 320 ° C., contains PAVE units, and preferably contains 1.0 to 5.0 mol% of PAVE units with respect to all units, and contains TFE units and PAVE units. 2. A TFE-based polymer (1) having a polar functional group containing 1.0 to 5.0 mol% of PAVE units with respect to units, or a PAVE unit containing TFE units and PAVE units, and PAVE units for all units. A TFE-based polymer (2) containing 0 to 5.0 mol% and having no polar functional group is more preferable, and a TFE-based polymer (1) is particularly preferable from the viewpoint of adhesion and water resistance.
The TFE-based polymer (1) preferably contains a TFE unit, a PAVE unit, and a unit based on a monomer having a polar functional group.
In the TFE-based polymer (1) or (2), not only is the powder excellent in liquid dispersibility, but also in the formation of the TFE-based polymer layer 1, it is easy to form microspherulites, and the adhesion with the PI layer 1 is good. It is easier to improve.
 TFE系ポリマー(1)は、全単位に対して、TFE単位を94~98.99モル%、PAVE単位を1.0~5.0モル%及び極性官能基を有するモノマーに基づく単位を0.01~3.0モル%、それぞれ含むのが好ましい。
 また、極性官能基を有するモノマーは、無水イタコン酸、無水シトラコン酸又は5-ノルボルネン-2,3-ジカルボン酸無水物(別称:無水ハイミック酸;以下、「NAH」とも記す。)が好ましい。
 TFE系ポリマー(1)の具体例としては、国際公開第2018/16644号に記載されるポリマーが挙げられる。
The TFE-based polymer (1) has 94 to 98.99 mol% of TFE units, 1.0 to 5.0 mol% of PAVE units, and 0. It is preferable to contain 01 to 3.0 mol%, respectively.
The monomer having a polar functional group is preferably itaconic anhydride, citraconic anhydride or 5-norbornene-2,3-dicarboxylic acid anhydride (also known as hymic anhydride; hereinafter also referred to as “NAH”).
Specific examples of the TFE-based polymer (1) include the polymers described in International Publication No. 2018/16644.
 TFE系ポリマー(2)は、TFE単位及びPAVE単位のみからなり、全単位に対して、TFE単位を95.0~98.0モル%、PAVE単位を2.0~5.0モル%含むのが好ましい。
 TFE系ポリマー(2)におけるPAVE単位の含有量は、全単位に対して、2.1モル%以上が好ましく、2.2モル%以上がより好ましい。
 なお、TFE系ポリマー(2)が極性官能基を有さないとは、ポリマー主鎖を構成する炭素原子数の1×106個あたり、ポリマーが有する極性官能基の数が、500個未満であることを意味する。上記極性官能基の数は、100個以下が好ましく、50個未満が特に好ましい。上記極性官能基の数の下限は、通常、0個である。
 TFE系ポリマー(2)は、ポリマー鎖の末端基として極性官能基を生じない、重合開始剤や連鎖移動剤等を使用して製造してもよく、極性官能基を有するFポリマー(重合開始剤に由来する極性官能基をポリマーの主鎖の末端基に有するFポリマー等)をフッ素化処理して製造してもよい。フッ素化処理の方法としては、フッ素ガスを使用する方法(特開2019-194314号公報等を参照)が挙げられる。
The TFE-based polymer (2) consists of only TFE units and PAVE units, and contains 95.0 to 98.0 mol% of TFE units and 2.0 to 5.0 mol% of PAVE units with respect to all the units. Is preferable.
The content of PAVE units in the TFE polymer (2) is preferably 2.1 mol% or more, more preferably 2.2 mol% or more, based on all the units.
The fact that the TFE polymer (2) does not have polar functional groups means that the number of polar functional groups contained in the polymer is less than 500 per 1 × 10 6 carbon atoms constituting the polymer main chain. It means that there is. The number of the polar functional groups is preferably 100 or less, and particularly preferably less than 50. The lower limit of the number of polar functional groups is usually 0.
The TFE-based polymer (2) may be produced by using a polymerization initiator, a chain transfer agent, or the like that does not generate a polar functional group as a terminal group of the polymer chain, and is an F polymer having a polar functional group (polymerization initiator). An F polymer or the like having a polar functional group derived from the above in the terminal group of the main chain of the polymer) may be fluorinated to produce the polymer. Examples of the fluorination treatment method include a method using fluorine gas (see JP-A-2019-194314, etc.).
 TFE系ポリマーのパウダーにおけるTFE系ポリマーの含有量は、80質量%以上が好ましく、100質量%がより好ましい。
 パウダーのD50は、10μm以下が好ましく、6μm以下がより好ましく、4μm以下がさらに好ましい。パウダーのD50は、0.01μm以上が好ましく、0.1μm以上がより好ましく、1μm以上がさらに好ましい。また、パウダーのD90は、10μm以下が好ましい。
The content of the TFE polymer in the powder of the TFE polymer is preferably 80% by mass or more, more preferably 100% by mass.
The D50 of the powder is preferably 10 μm or less, more preferably 6 μm or less, still more preferably 4 μm or less. The D50 of the powder is preferably 0.01 μm or more, more preferably 0.1 μm or more, and even more preferably 1 μm or more. The powder D90 is preferably 10 μm or less.
 TFE系ポリマーのパウダーは、無機物又はTFE系ポリマーとは異なるポリマーを含有してもよい。
 無機物の例としては、酸化物、窒化物、金属単体、合金及びカーボンが好ましく、酸化ケイ素(シリカ)、酸化ベリリウム、酸化セリウム、アルミナ、ソーダアルミナ、酸化マグネシウム、酸化亜鉛、酸化チタン等の金属酸化物、窒化ホウ素、ステアナイト及びメタ珪酸マグネシウムがより好ましく、シリカ及び窒化ホウ素がさらに好ましく、シリカが特に好ましい。
 異なるポリマーの例としては、芳香族ポリマーが挙げられる。芳香族ポリマーは、スチレンエラストマーのような芳香族エラストマー、芳香族ポリイミド、芳香族マレイミド、芳香族ポリアミック酸が挙げられる。
 無機物又は異なるポリマーを含むTFE系ポリマーのパウダーは、TFE系ポリマーをコアとし、上記成分をシェルに有するコアシェル構造を有するか、TFE系ポリマーをシェルとし、上記成分をコアに有するコアシェル構造を有するのが好ましい。かかるコアシェル構造を有するパウダーは、例えば、TFE系ポリマーの粒子と、上記成分の粒子とを衝突又は凝集により合着させて得られる。
The powder of the TFE-based polymer may contain an inorganic substance or a polymer different from the TFE-based polymer.
Examples of inorganic substances are oxides, nitrides, simple metals, alloys and carbons, and metal oxidation of silicon oxide (silica), beryllium oxide, cerium oxide, alumina, soda alumina, magnesium oxide, zinc oxide, titanium oxide and the like. Materials, boron nitride, steanite and magnesium metasilicate are more preferred, silica and boron nitride are even more preferred, and silica is particularly preferred.
Examples of different polymers include aromatic polymers. Examples of the aromatic polymer include aromatic elastomers such as styrene elastomers, aromatic polyimides, aromatic maleimides, and aromatic polyamic acids.
A powder of a TFE-based polymer containing an inorganic substance or a different polymer has a core-shell structure having a TFE-based polymer as a core and the above component in a shell, or a TFE-based polymer having a shell and a core-shell structure having the above component in the core. Is preferable. The powder having such a core-shell structure is obtained, for example, by coalescing particles of a TFE-based polymer and particles of the above components by collision or agglomeration.
 本法1における液状組成物は、TFE系ポリマーのパウダーが分散した分散液である。
 液状組成物は、液状分散媒を含むのが好ましい。
 液状分散媒は、25℃で液状の、上記パウダーの分散媒である。液状分散媒は、1種を単独で使用してもよく、2種以上を併用してもよい。
 液状分散媒の沸点は、125~250℃が好ましい。この範囲において、液状組成物から液状分散媒を揮発させる際に、上記パウダーが、高度に流動して緻密にパッキングし、その結果、緻密なTFE系ポリマー層が形成されやすい。
 液状分散媒は、非プロトン性の極性媒体であるのが好ましい。
The liquid composition in this method 1 is a dispersion liquid in which powder of a TFE polymer is dispersed.
The liquid composition preferably contains a liquid dispersion medium.
The liquid dispersion medium is a dispersion medium for the powder, which is liquid at 25 ° C. As the liquid dispersion medium, one type may be used alone, or two or more types may be used in combination.
The boiling point of the liquid dispersion medium is preferably 125 to 250 ° C. In this range, when the liquid dispersion medium is volatilized from the liquid composition, the powder is highly fluidized and densely packed, and as a result, a dense TFE-based polymer layer is likely to be formed.
The liquid dispersion medium is preferably an aprotic polar medium.
 液状分散媒の具体例としては、水、1-プロパノール、2-プロパノール、1-ブタノール、1-メトキシ-2-プロパノール、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、メチルエチルケトン、N-メチル-2-ピロリドン(以下、「NMP」とも記す。)、γ-ブチロラクトン、シクロヘキサノン、シクロペンタノン、ジメチルスルホキシド、ジエチルエーテル、ジオキサン、酢酸ブチル、メチルイソプロピルケトン、シクロペンタノン、シクロヘキサノン、エチレングリコールモノイソプロピルエーテル、セロソルブ(メチルセロソルブ、エチルセロソルブ等)が挙げられる。
 液状分散媒は、液状組成物の液物性(粘度、チキソ比等)の調整と各成分の高度な相互作用との観点から、エステル、ケトン及びアミドが好ましく、γ-ブチロラクトン、メチルエチルケトン、シクロヘキサノン、N,N-ジメチルホルムアミド及びNMPがより好ましい。
Specific examples of the liquid dispersion medium include water, 1-propanol, 2-propanol, 1-butanol, 1-methoxy-2-propanol, N, N-dimethylformamide, N, N-dimethylacetamide, methyl ethyl ketone, N-methyl. -2-pyrrolidone (hereinafter, also referred to as "NMP"), γ-butyrolactone, cyclohexanone, cyclopentanone, dimethyl sulfoxide, diethyl ether, dioxane, butyl acetate, methylisopropylketone, cyclopentanone, cyclohexanone, ethylene glycol monoisopropyl Examples thereof include ether and cellosolve (methylcellosolve, ethyl cellosolve, etc.).
As the liquid dispersion medium, esters, ketones and amides are preferable from the viewpoint of adjusting the liquid physical characteristics (viscosity, thixo ratio, etc.) of the liquid composition and the high degree of interaction of each component, and γ-butyrolactone, methyl ethyl ketone, cyclohexanone, N. , N-Dimethylformamide and NMP are more preferred.
 液状組成物におけるTFE系ポリマーの含有量は、10質量%以上が好ましく、25質量%以上がより好ましい。TFE系ポリマーの含有量は、50質量%以下が好ましく、40質量%以下がより好ましい。 The content of the TFE polymer in the liquid composition is preferably 10% by mass or more, more preferably 25% by mass or more. The content of the TFE polymer is preferably 50% by mass or less, more preferably 40% by mass or less.
 液状組成物は、さらに、芳香族ポリマー(以下、「AR系ポリマー」とも記す。)を含むのが好ましい。この場合、TFE系ポリマー層1の反り及び剥離の発生が充分に抑制され、得られる多層フィルムの他の基材に対する接着性も向上する。この要因は、TFE系ポリマー層1中でAR系ポリマーが高度に分散してTFE系ポリマー層1の線膨張を緩和するだけでなく、TFE系ポリマー層1の表層に存在するAR系ポリマーの芳香族環によってPI層1に対する相互作用が生じるためと考えられる。具体的には、TFE系ポリマー層1とPI層1との界面付近に存在する、AR系ポリマーの芳香族環とPI1の芳香族環とがスタッキングするため、TFE系ポリマー層1のPI層1に対する密着性が向上すると考えられる。 The liquid composition preferably further contains an aromatic polymer (hereinafter, also referred to as "AR polymer"). In this case, the occurrence of warpage and peeling of the TFE-based polymer layer 1 is sufficiently suppressed, and the adhesiveness of the obtained multilayer film to other substrates is also improved. This factor is due not only that the AR polymer is highly dispersed in the TFE polymer layer 1 to alleviate the linear expansion of the TFE polymer layer 1, but also the aroma of the AR polymer present on the surface layer of the TFE polymer layer 1. It is considered that the family ring causes an interaction with PI layer 1. Specifically, since the aromatic ring of the AR polymer and the aromatic ring of PI1 existing near the interface between the TFE polymer layer 1 and the PI layer 1 are stacked, the PI layer 1 of the TFE polymer layer 1 is stacked. It is considered that the adhesion to the material is improved.
 AR系ポリマーとしては、芳香族性ポリイミド及び芳香族ビスマレイミドが好ましい。この場合、TFE系ポリマー層1のPI層1に対する密着性が向上しやすいだけでなく、多層フィルムの物性(UV吸収性等)が向上しやすい。
 AR系ポリマーの5%質量減少温度は、260~600℃が好ましい。この場合、AR系ポリマーの分解ガス(気泡)やAR系ポリマー自体の反応に伴う副生物によるガス(気泡)による、TFE系ポリマー層1の界面荒れを効果的に抑制でき、TFE系ポリマー層1のPI層1に対する接着性が一層向上しやすい。
As the AR polymer, aromatic polyimide and aromatic bismaleimide are preferable. In this case, not only the adhesion of the TFE polymer layer 1 to the PI layer 1 is likely to be improved, but also the physical characteristics (UV absorption, etc.) of the multilayer film are likely to be improved.
The 5% mass reduction temperature of the AR polymer is preferably 260 to 600 ° C. In this case, the interface roughness of the TFE polymer layer 1 due to the decomposition gas (air bubbles) of the AR polymer or the gas (air bubbles) caused by the by-products accompanying the reaction of the AR polymer itself can be effectively suppressed, and the TFE polymer layer 1 can be effectively suppressed. The adhesiveness to the PI layer 1 is more likely to be improved.
 AR系ポリマーは、熱可塑性であってもよく、熱硬化性であってもよい。
 AR系ポリマーが熱可塑性であれば、その可塑性により、TFE系ポリマー層1中のAR系ポリマーの分散性がより向上し、緻密かつ均一なTFE系ポリマー層1が形成されやすい。その結果、TFE系ポリマー層1のPI層1に対する密着性と、多層フィルムの物性(UV吸収性等)とが向上しやすい。
 熱可塑性のAR系ポリマーは、熱可塑性ポリイミドが好ましい。熱可塑性ポリイミドとは、イミド化が完了した、イミド化反応がさらに生じないポリイミドを意味する。
 熱可塑性のAR系ポリマーのTgは、200~500℃が好ましい。
The AR-based polymer may be thermoplastic or thermosetting.
If the AR-based polymer is thermoplastic, the plasticity further improves the dispersibility of the AR-based polymer in the TFE-based polymer layer 1, and the dense and uniform TFE-based polymer layer 1 is likely to be formed. As a result, the adhesion of the TFE-based polymer layer 1 to the PI layer 1 and the physical characteristics (UV absorption, etc.) of the multilayer film are likely to be improved.
As the thermoplastic AR polymer, thermoplastic polyimide is preferable. The thermoplastic polyimide means a polyimide that has been imidized and does not undergo a further imidization reaction.
The Tg of the thermoplastic AR polymer is preferably 200 to 500 ° C.
 AR系ポリマーが熱硬化性であれば、換言すれば、熱硬化性の芳香族ポリマーの硬化物であれば、TFE系ポリマー層1の線膨張性が一層低下し、多層フィルムの反りの発生が抑制されやすい。
 熱硬化性のAR系ポリマーとしては、熱硬化性芳香族ビスマレイミド樹脂が好ましい。 AR系ポリマーの具体例としては、「HPC」シリーズ(日立化成社製)等の芳香族性ポリアミドイミド、「ネオプリム」シリーズ(三菱ガス化学社製)、「スピクセリア」シリーズ(ソマール社製)、「Q-PILON」シリーズ(ピーアイ技術研究所製)、「WINGO」シリーズ(ウィンゴーテクノロジー社製)、「トーマイド」シリーズ(T&K TOKA社製)、「KPI-MX」シリーズ(河村産業社製)、「ユピア-AT」シリーズ(宇部興産社製)等の芳香族性ポリイミドが挙げられる。
If the AR-based polymer is thermosetting, in other words, if it is a cured product of a thermosetting aromatic polymer, the linear expansion property of the TFE-based polymer layer 1 is further reduced, and the multilayer film is warped. Easy to be suppressed.
As the thermosetting AR polymer, a thermosetting aromatic bismaleimide resin is preferable. Specific examples of AR-based polymers include aromatic polyamide-imides such as the "HPC" series (manufactured by Hitachi Kasei), "Neoprim" series (manufactured by Mitsubishi Gas Chemical Company), "Spixeria" series (manufactured by Somar), and ""Q-PILON" series (manufactured by PI Technology Research Institute), "WINGO" series (manufactured by Wingo Technology Co., Ltd.), "Toimide" series (manufactured by T & K TOKA), "KPI-MX" series (manufactured by Kawamura Sangyo Co., Ltd.), " Examples include aromatic polyimides such as the "Yupia-AT" series (manufactured by Ube Industries, Ltd.).
 液状組成物がAR系ポリマーを含む場合、AR系ポリマーのTgがTFE系ポリマーの溶融温度以下であり、TFE系ポリマーの溶融温度が280~325℃であり、AR系ポリマーのTgが180~320℃であることが好ましい。
 この場合、TFE系ポリマー層1中でTFE系ポリマーとAR系ポリマーとが均一に分散して多層フィルムの物性が向上しやすいだけでなく、高温環境下において、TFE系ポリマーとAR系ポリマーとが高度に相互作用して、フィルムの耐熱性がより向上しやすい。
When the liquid composition contains an AR polymer, the Tg of the AR polymer is equal to or lower than the melting temperature of the TFE polymer, the melting temperature of the TFE polymer is 280 to 325 ° C, and the Tg of the AR polymer is 180 to 320. It is preferably ° C.
In this case, not only the TFE polymer and the AR polymer are uniformly dispersed in the TFE polymer layer 1 to improve the physical characteristics of the multilayer film, but also the TFE polymer and the AR polymer are separated from each other in a high temperature environment. It interacts with a high degree and tends to improve the heat resistance of the film.
 液状組成物は、パウダーの分散及びAR系ポリマーとの相互作用を促し、形成されるTFE系ポリマー層1の物性を向上させる観点から、さらに、界面活性剤を含むのが好ましい。なお、界面活性剤は、TFE系ポリマーともAR系ポリマーとも異なる成分(化合物)である。
 界面活性剤は、ノニオン性であるのが好ましい。
 界面活性剤の親水部位は、ノニオン性の官能基(アルコール性水酸基、オキシアルキレン基等)を含む分子鎖が好ましい。
 界面活性剤の疎水部位は、アルキル基、アセチレン基、シロキサン基又は含フッ素基を含む分子鎖が好ましく、シロキサン基を含む分子鎖が特に好ましい。換言すれば、界面活性剤は、アセチレン系界面活性剤、シリコーン系界面活性剤及びフッ素系界面活性剤が好ましく、シリコーン系界面活性剤がより好ましい。
The liquid composition preferably further contains a surfactant from the viewpoint of promoting the dispersion of the powder and the interaction with the AR-based polymer and improving the physical properties of the formed TFE-based polymer layer 1. The surfactant is a component (compound) different from that of the TFE polymer and the AR polymer.
The surfactant is preferably nonionic.
The hydrophilic moiety of the surfactant is preferably a molecular chain containing a nonionic functional group (alcoholic hydroxyl group, oxyalkylene group, etc.).
The hydrophobic moiety of the surfactant is preferably a molecular chain containing an alkyl group, an acetylene group, a siloxane group or a fluorine-containing group, and particularly preferably a molecular chain containing a siloxane group. In other words, as the surfactant, an acetylene-based surfactant, a silicone-based surfactant and a fluorine-based surfactant are preferable, and a silicone-based surfactant is more preferable.
 界面活性剤の好適な態様としては、ペルフルオロアルキル基又はペルフルオロアルケニル基を有する(メタ)アクリレートと、オキシアルキレン基又はアルコール性水酸基を有する(メタ)アクリレートとのコポリマーが挙げられる。
 かかる界面活性剤の具体例としては、「フタージェント」シリーズ(ネオス社製)、「サーフロン」シリーズ(AGCセイミケミカル社製)、「メガファック」シリーズ(DIC社製)、「ユニダイン」シリーズ(ダイキン工業社製)、「BYK-347」、「BYK-349」、「BYK-378」、「BYK-3450」、「BYK-3451」、「BYK-3455」、「BYK-3456」(ビックケミー・ジャパン株式会社社製)、「KF-6011」、「KF-6043」(信越化学工業株式会社製)が挙げられる。
Preferable embodiments of the surfactant include a copolymer of a (meth) acrylate having a perfluoroalkyl group or a perfluoroalkenyl group and a (meth) acrylate having an oxyalkylene group or an alcoholic hydroxyl group.
Specific examples of such surfactants include "Futergent" series (manufactured by Neos), "Surflon" series (manufactured by AGC Seimi Chemical), "Megafuck" series (manufactured by DIC), and "Unidyne" series (Daikin). (Made by Kogyo Co., Ltd.), "BYK-347", "BYK-349", "BYK-378", "BYK-3450", "BYK-3451", "BYK-3455", "BYK-3456" (Big Chemie Japan) (Manufactured by Shin-Etsu Chemical Co., Ltd.), "KF-6011", "KF-6043" (manufactured by Shin-Etsu Chemical Co., Ltd.) can be mentioned.
 液状組成物は、本発明の効果を損なわない範囲で、さらに他の材料を含んでいてもよい。かかる他の材料としては、チキソ性付与剤、消泡剤、無機フィラー、反応性アルコキシシラン、脱水剤、可塑剤、耐候剤、酸化防止剤、熱安定剤、滑剤、帯電防止剤、増白剤、着色剤、導電剤、離型剤、表面処理剤、粘度調節剤、難燃剤が挙げられる。
 これらの他の材料は、液状組成物に溶解してもよく、溶解しなくてもよい。
The liquid composition may further contain other materials as long as the effects of the present invention are not impaired. Other such materials include thixo-imparting agents, defoaming agents, inorganic fillers, reactive alkoxysilanes, dehydrating agents, plasticizers, weather resistant agents, antioxidants, heat stabilizers, lubricants, antistatic agents, whitening agents. , Colorants, conductive agents, mold release agents, surface treatment agents, viscosity modifiers, flame retardants.
These other materials may or may not dissolve in the liquid composition.
 液状組成物をPI層1へ配置するには、PI層1の表面に、液状組成物を塗布すればよい。液状組成物の塗布方法としては、スプレー法、ロールコート法、スピンコート法、グラビアコート法、マイクログラビアコート法、グラビアオフセット法、ナイフコート法、キスコート法、バーコート法、ダイコート法、ファウンテンメイヤーバー法、スロットダイコート法が挙げられる。 To arrange the liquid composition on the PI layer 1, the liquid composition may be applied to the surface of the PI layer 1. The liquid composition can be applied by spray method, roll coating method, spin coating method, gravure coating method, micro gravure coating method, gravure offset method, knife coating method, kiss coating method, bar coating method, die coating method, fountain Mayer bar. The method and the slot die coat method can be mentioned.
 液状組成物をPI層1へ配置後、TFE系ポリマーの融点超、かつ、PI1のTg+40℃以下の温度にて加熱してTFE系ポリマーを含む層1を形成する。PI層1を加熱する際には、予め、より低温領域に保持して、乾燥被膜を形成するのが好ましい。具体的には、液状組成物が液状分散媒を含む場合、予め、より低温領域に保持して液状分散媒を留去(すなわち乾燥)して、乾燥被膜を形成するのが好ましい。低温領域の温度は、80~200℃が好ましい。低温領域の温度は、乾燥における雰囲気の温度を意味する。
 低温領域での保持は、1段階で実施してもよく、異なる温度にて2段階以上で実施してもよい。
After arranging the liquid composition on the PI layer 1, the layer 1 containing the TFE polymer is formed by heating at a temperature above the melting point of the TFE polymer and at a temperature of Tg + 40 ° C. or lower of the PI1. When the PI layer 1 is heated, it is preferable to hold it in a lower temperature region in advance to form a dry film. Specifically, when the liquid composition contains a liquid dispersion medium, it is preferable to hold it in a lower temperature region in advance and distill off (that is, dry) the liquid dispersion medium to form a dry film. The temperature in the low temperature region is preferably 80 to 200 ° C. The temperature in the low temperature region means the temperature of the atmosphere in drying.
The holding in the low temperature region may be carried out in one step, or may be carried out in two or more steps at different temperatures.
 上記の手順で乾燥被膜を得た後、さらに、TFE系ポリマーの融点超、かつ、PI1のTg+40℃以下(好ましくは、PI1のTg+30℃以下)の温度にて乾燥被膜を加熱し、TFE系ポリマーを焼成させてPI層1の表面にTFE系ポリマー層1を形成するのが好ましい。
 この際の温度の保持時間は、30秒~5分間が好ましく、1~2分間がより好ましい。 この際の雰囲気は、常圧下、減圧下のいずれの状態であってよい。また、上記雰囲気は、酸化性ガス(酸素ガス等)雰囲気、還元性ガス(水素ガス等)雰囲気、不活性ガス(希ガス、窒素ガス)雰囲気のいずれであってもよい。
After obtaining the dry film by the above procedure, the dry film is further heated at a temperature above the melting point of the TFE polymer and Tg + 40 ° C. or lower of PI1 (preferably Tg + 30 ° C. or lower of PI1) to obtain the TFE polymer. Is preferably fired to form the TFE-based polymer layer 1 on the surface of the PI layer 1.
The temperature holding time at this time is preferably 30 seconds to 5 minutes, more preferably 1 to 2 minutes. The atmosphere at this time may be either under normal pressure or under reduced pressure. The atmosphere may be any of an oxidizing gas (oxygen gas and the like) atmosphere, a reducing gas (hydrogen gas and the like) atmosphere, and an inert gas (noble gas, nitrogen gas) atmosphere.
 本法1により得られる多層フィルムは、PI層1とTFE系ポリマー層1とが直接接触しているのが好ましい。すなわち、PI層1の表面に、シランカップリング剤、接着剤等による表面処理を施すことなく、TFE系ポリマー層1が直接形成(積層)されているのが好ましい。この場合、多層フィルムの物性が低下しにくい。なお、本法1により得られる多層フィルムは、上記した構成により、PI層1とTFE系ポリマー層1とが直接接触していても、PI層1とTFE系ポリマー層1との間に高い密着性が発現する。 In the multilayer film obtained by this method 1, it is preferable that the PI layer 1 and the TFE polymer layer 1 are in direct contact with each other. That is, it is preferable that the TFE-based polymer layer 1 is directly formed (laminated) on the surface of the PI layer 1 without subjecting the surface treatment with a silane coupling agent, an adhesive or the like. In this case, the physical characteristics of the multilayer film are unlikely to deteriorate. The multilayer film obtained by the present method 1 has a high adhesion between the PI layer 1 and the TFE polymer layer 1 even if the PI layer 1 and the TFE polymer layer 1 are in direct contact with each other due to the above configuration. Sex is expressed.
 本法1により得られる多層フィルムの厚さ(総厚)は、25μm以上が好ましく、50μm以上がより好ましい。上記厚さは、1000μm以下が好ましい。
 PI層1の厚さに対する、TFE系ポリマー層1の厚さの比は、得られるフィルムの耐水性及び電気特性の観点から、0.4以上が好ましく、1以上がより好ましい。上限は、5以下が好ましい。上記した作用機構により、本法1によれば、層間の密着性が高まるため、かかる比が高く、TFE系ポリマー層1が厚い多層フィルムが容易に得られやすい。
 PI層1の厚さは、100μm以下が好ましく、75μm以下がより好ましい。下限は、10μm以上が好ましい。TFE系ポリマー層1の厚さは、100μm以下が好ましく、75μm以下がより好ましい。下限は、10μm以上が好ましい。
The thickness (total thickness) of the multilayer film obtained by this method 1 is preferably 25 μm or more, more preferably 50 μm or more. The thickness is preferably 1000 μm or less.
The ratio of the thickness of the TFE-based polymer layer 1 to the thickness of the PI layer 1 is preferably 0.4 or more, and more preferably 1 or more, from the viewpoint of water resistance and electrical properties of the obtained film. The upper limit is preferably 5 or less. According to the present method 1, the adhesion between layers is enhanced by the above-mentioned action mechanism, so that a multilayer film having a high ratio and a thick TFE-based polymer layer 1 can be easily obtained.
The thickness of the PI layer 1 is preferably 100 μm or less, more preferably 75 μm or less. The lower limit is preferably 10 μm or more. The thickness of the TFE-based polymer layer 1 is preferably 100 μm or less, more preferably 75 μm or less. The lower limit is preferably 10 μm or more.
 PI層1の両面にTFE系ポリマー層1が形成されている場合、PI層1の厚さに対する、2つのTFE系ポリマー層1の合計での厚さの比は、1以上が好ましい。上記比は、3以下が好ましい。この場合、PI層1におけるPI1の物性(高降伏強度、難塑性変形性等)と、TFE系ポリマー層1におけるTFE系ポリマー(低誘電率、低誘電正接等の電気特性、低吸水性等)とがバランスよく発現しやすい。また、上記比が大きく、TFE系ポリマー層1が厚い多層フィルムにおいても、反りや剥離の発生が抑制されやすい。 When the TFE-based polymer layer 1 is formed on both sides of the PI layer 1, the ratio of the total thickness of the two TFE-based polymer layers 1 to the thickness of the PI layer 1 is preferably 1 or more. The above ratio is preferably 3 or less. In this case, the physical properties of PI1 in the PI layer 1 (high yield strength, resistance to plastic deformation, etc.) and the TFE-based polymer in the TFE-based polymer layer 1 (electrical properties such as low dielectric constant and low dielectric loss tangent, low water absorption, etc.) Is easy to express in a well-balanced manner. Further, even in a multilayer film having a large ratio and a thick TFE-based polymer layer 1, the occurrence of warpage and peeling is likely to be suppressed.
 本発明の第1の多層フィルム(以下、「本フィルム1」とも記す。)は、Tgを有するPI(PI1)を含むPI層(PI層1)と、PI層1の両面にTFE系ポリマーを含む層(TFE系ポリマー層1)とを有し、PI1のTgがTFE系ポリマーの融点超、かつ、TFE系ポリマーの融点+60℃以下である。
 本フィルム1におけるTFE系ポリマー及びPI1の範囲は、好適な範囲も含めて、本法1におけるそれと同様である。
The first multilayer film of the present invention (hereinafter, also referred to as “the present film 1”) has a PI layer (PI layer 1) containing PI (PI1) having Tg and a TFE polymer on both sides of the PI layer 1. It has a layer containing (TFE-based polymer layer 1), and the Tg of PI1 is above the melting point of the TFE-based polymer and is not more than the melting point of the TFE-based polymer + 60 ° C.
The range of the TFE polymer and PI1 in the film 1 is the same as that in the method 1 including the suitable range.
 本フィルム1におけるPI1のガラス転移点は、TFE系ポリマーの融点+10℃以上が好ましい。また、PI1のガラス転移点は、TFE系ポリマーの融点+50℃以下が好ましく、+40℃以下がより好ましい。この場合、その層間の剥離強度と、その耐水性とが、一層高まりやすい。
 本フィルム1におけるTFE系ポリマー層1は、さらに芳香族ポリマーを含むのが好ましい。芳香族ポリマーとしては、本法1における芳香族ポリマーと同様のものが挙げられる。
 本フィルム1の剥離強度は、10N/cm以上が好ましく、15N/cm以上がより好ましく、20N/cm以上がさらに好ましい。この場合、本フィルム1をプリント基板材料、金属導体の被覆材料(電線等の被覆材料)として好適に使用できる。本フィルム1の剥離強度の上限は、100N/cmである。
The glass transition point of PI1 in the present film 1 is preferably the melting point of the TFE polymer + 10 ° C. or higher. The glass transition point of PI1 is preferably the melting point of the TFE polymer + 50 ° C. or lower, more preferably + 40 ° C. or lower. In this case, the peel strength between the layers and the water resistance thereof are likely to be further increased.
The TFE-based polymer layer 1 in the film 1 preferably further contains an aromatic polymer. Examples of the aromatic polymer include the same aromatic polymers as those in the first method.
The peel strength of the film 1 is preferably 10 N / cm or more, more preferably 15 N / cm or more, and even more preferably 20 N / cm or more. In this case, the film 1 can be suitably used as a printed circuit board material and a coating material for metal conductors (coating material for electric wires and the like). The upper limit of the peel strength of the film 1 is 100 N / cm.
 本フィルム1は、低い吸水性(高い水バリア性)を発揮する。この要因は、TFE系ポリマー層1とPI層1とが相溶した一体化物でなく、互いに独立して存在するため、TFE系ポリマーの低吸水性がPI1の高吸水性を補完するためであると考えられる。
 本フィルム1の吸水率は、0.3%以下が好ましく、0.1%以下がより好ましい。この場合、本フィルム1は、水蒸気がより透過しにくく、長期にわたって優れた絶縁性を発揮するため、特に、金属導体の被覆材料として好適に使用できる。本フィルム1の吸水率の下限は、0%である。
The film 1 exhibits low water absorption (high water barrier property). This factor is because the low water absorption of the TFE polymer complements the high water absorption of PI1 because the TFE polymer layer 1 and the PI layer 1 are not integrated with each other and exist independently of each other. it is conceivable that.
The water absorption rate of the film 1 is preferably 0.3% or less, more preferably 0.1% or less. In this case, the present film 1 is more difficult for water vapor to permeate and exhibits excellent insulating properties for a long period of time, and therefore can be particularly suitably used as a coating material for metal conductors. The lower limit of the water absorption rate of this film 1 is 0%.
 本フィルム1は、本法1により製造するのが好ましい。
 本フィルム1の厚さ等の好適な範囲は、本法1により得られる多層フィルムと同様である。
 本フィルム1は、PI層1の両面にTFE系ポリマー層1を有するのが、ハイエンドな電子部材(プリント基板材料、電線被覆材料等)に使用する観点から好ましい。
 本フィルム1は、TFE系ポリマー層1の表面の接着性に優れるため、他の基材と容易かつ強固に接合できる。他の基材としては、金属箔、金属導体が挙げられる。
The film 1 is preferably produced by the method 1.
A suitable range such as the thickness of the film 1 is the same as that of the multilayer film obtained by the method 1.
It is preferable that the film 1 has TFE-based polymer layers 1 on both sides of the PI layer 1 from the viewpoint of being used for high-end electronic members (printed circuit board material, electric wire coating material, etc.).
Since the film 1 has excellent adhesiveness on the surface of the TFE polymer layer 1, it can be easily and firmly bonded to other base materials. Examples of other base materials include metal foils and metal conductors.
 本フィルム1は、両面のTFE系ポリマー層1に金属箔を貼着して金属張積層体としてもよい。このような金属張積層体は、金属箔を加工すればプリント基板に容易に加工できる。
 金属箔を構成する金属としては、銅、銅合金、ステンレス鋼、ニッケル、ニッケル合金(42合金も含む)、アルミニウム、アルミニウム合金、チタン、チタン合金が挙げられる。
 金属箔としては、銅箔が好ましく、表裏の区別のない圧延銅箔又は表裏の区別のある電解銅箔がより好ましく、圧延銅箔がさらに好ましい。圧延銅箔は、表面粗さが小さいため、金属張積層体をプリント配線板に加工した場合でも、伝送損失を低減できる。また、圧延銅箔は、炭化水素系有機溶剤に浸漬し圧延油を除去してから使用するのが好ましい。
The film 1 may be formed into a metal-clad laminate by attaching a metal foil to the TFE-based polymer layers 1 on both sides. Such a metal-clad laminate can be easily processed into a printed circuit board by processing a metal foil.
Examples of the metal constituting the metal foil include copper, copper alloy, stainless steel, nickel, nickel alloy (including 42 alloy), aluminum, aluminum alloy, titanium, and titanium alloy.
As the metal foil, a copper foil is preferable, a rolled copper foil having no distinction between the front and back surfaces or an electrolytic copper foil having a distinction between the front and back surfaces is more preferable, and a rolled copper foil is further preferable. Since the rolled copper foil has a small surface roughness, transmission loss can be reduced even when a metal-clad laminate is processed into a printed wiring board. Further, the rolled copper foil is preferably used after being immersed in a hydrocarbon-based organic solvent to remove rolling oil.
 金属箔の表面の十点平均粗さは、0.01~4μmが好ましい。この場合、TFE系ポリマー層1との接着性が良好となり、伝送特性に優れたプリント基板が得られやすい。
 金属箔の表面は、粗化処理されていてもよい。粗化処理の方法としては、粗化処理層を形成する方法、ドライエッチング法、ウエットエッチング法が挙げられる。
 金属箔の厚さは、金属張積層体の用途において充分な機能が発揮できる厚さであればよい。金属箔の厚さは、20μm未満が好ましく、2~15μmがより好ましい。
 また、金属箔の表面は、その一部又は全部がシランカップリング剤により処理されていてもよい。
The ten-point average roughness of the surface of the metal foil is preferably 0.01 to 4 μm. In this case, the adhesiveness with the TFE-based polymer layer 1 becomes good, and it is easy to obtain a printed circuit board having excellent transmission characteristics.
The surface of the metal foil may be roughened. Examples of the roughening treatment method include a method of forming a roughening treatment layer, a dry etching method, and a wet etching method.
The thickness of the metal foil may be a thickness that can exhibit sufficient functions in the application of the metal-clad laminate. The thickness of the metal foil is preferably less than 20 μm, more preferably 2 to 15 μm.
Further, the surface of the metal foil may be partially or wholly treated with a silane coupling agent.
 金属張積層体を作製する際に、TFE系ポリマー層1の表面に金属箔を積層する方法としては、本フィルム1と金属箔とを熱プレスする方法が挙げられる。
 熱プレスにおけるプレス温度は、310~400℃が好ましい。
 熱プレスは、気泡混入を抑制し、酸化による劣化を抑制する観点から、20kPa以下の真空度で行うのが好ましい。
 また、熱プレス時には上記真空度に到達した後に昇温することが好ましい。上記真空度に到達する前に昇温すると、TFE系ポリマー層1が軟化した状態、すなわち一定程度の流動性、密着性がある状態にて圧着されてしまい、気泡の原因となる場合がある。
 熱プレスにおける圧力は、金属箔の破損を抑制しつつ、TFE系ポリマー層1と金属箔とを強固に密着させる観点から、0.2~10MPaが好ましい。
Examples of the method of laminating the metal foil on the surface of the TFE-based polymer layer 1 when producing the metal-clad laminate include a method of hot-pressing the film 1 and the metal foil.
The press temperature in the hot press is preferably 310 to 400 ° C.
The hot press is preferably performed at a vacuum degree of 20 kPa or less from the viewpoint of suppressing air bubble mixing and suppressing deterioration due to oxidation.
Further, at the time of hot pressing, it is preferable to raise the temperature after reaching the above vacuum degree. If the temperature is raised before reaching the degree of vacuum, the TFE polymer layer 1 may be crimped in a softened state, that is, in a state of having a certain degree of fluidity and adhesion, which may cause air bubbles.
The pressure in the hot press is preferably 0.2 to 10 MPa from the viewpoint of firmly adhering the TFE-based polymer layer 1 and the metal foil while suppressing damage to the metal foil.
 上記の手順で得られた金属張積層体は、フレキシブル銅張積層板やリジッド銅張積層板として、プリント基板の製造に使用できる。
 プリント基板は、例えば、金属張積層体における金属箔をエッチング等によって所定のパターンの導体回路(パターン回路)に加工する方法や、金属張積層体を電解めっき法(セミアディティブ法(SAP法)、モディファイドセミアディティブ法(MSAP法)等)によってパターン回路に加工する方法を使用して製造できる。
 プリント基板の製造においては、パターン回路を形成した後に、パターン回路上に層間絶縁膜を形成し、層間絶縁膜上にさらに導体回路を形成してもよい。層間絶縁膜は、上記液状組成物によって形成してもよい。
 プリント基板の製造においては、パターン回路上にソルダーレジストを積層してもよい。ソルダーレジストは、上記液状組成物によって形成してもよい。
 プリント基板の製造においては、パターン回路上にカバーレイフィルムを積層してもよい。
The metal-clad laminate obtained by the above procedure can be used as a flexible copper-clad laminate or a rigid copper-clad laminate for manufacturing a printed circuit board.
For the printed circuit board, for example, a method of processing a metal foil in a metal-clad laminate into a conductor circuit (pattern circuit) having a predetermined pattern by etching or the like, or an electrolytic plating method (semi-additive method (SAP method)) of a metal-clad laminate. It can be manufactured by using a method of processing into a pattern circuit by a modified semi-additive method (MSAP method, etc.).
In the production of the printed circuit board, after forming the pattern circuit, an interlayer insulating film may be formed on the pattern circuit, and a conductor circuit may be further formed on the interlayer insulating film. The interlayer insulating film may be formed by the above liquid composition.
In the production of the printed circuit board, a solder resist may be laminated on the pattern circuit. The solder resist may be formed by the above liquid composition.
In the manufacture of the printed circuit board, a coverlay film may be laminated on the pattern circuit.
 本フィルム1で金属導体を被覆することにより、被覆金属導体を得ることができる。このような被覆金属導体は、例えば、航空宇宙用の電線及び電線コイルに好適に使用できる。
 金属導体の構成材料は、銅、銅合金、アルミニウム、アルミニウム合金が好ましい。これらの金属は、優れた導電性を有するためである。
 また、金属導体の横断面形状は、円形であってもよく、矩形であってもよい。
 本フィルム1の一方の表面に金属導体を配置し、本フィルム1で金属導体を被覆することにより被覆金属導体を製造できる。
 かかる被覆金属導体の製造方法としては、本フィルム1を細幅の帯状に切断してテープを作製し、このテープを金属導体の周囲に螺旋状に卷回して製造する方法が挙げられる。また、金属導体の周囲にテープを卷回した後、さらにその周囲にテープを重ねて卷回してもよい。なお、テープは、ラッピングマシーン等を用いて金属導体の周囲に卷回してもよい。
By coating the metal conductor with the present film 1, a coated metal conductor can be obtained. Such coated metal conductors can be suitably used for, for example, aerospace electric wires and electric wire coils.
As the constituent material of the metal conductor, copper, a copper alloy, aluminum, and an aluminum alloy are preferable. This is because these metals have excellent conductivity.
Further, the cross-sectional shape of the metal conductor may be circular or rectangular.
A coated metal conductor can be manufactured by arranging a metal conductor on one surface of the film 1 and coating the metal conductor with the film 1.
Examples of the method for producing such a coated metal conductor include a method in which the film 1 is cut into a narrow strip to produce a tape, and the tape is spirally wound around the metal conductor to produce the tape. Further, after the tape is wound around the metal conductor, the tape may be further layered around the tape and wound around the metal conductor. The tape may be wrapped around a metal conductor using a wrapping machine or the like.
 本発明の第2の製造方法(以下、「本法2」とも記す。)は、ポリイミドフィルム層(以下、「PI層2」とも記す。)の表面に、TFE系ポリマーのパウダーと熱分解性ポリマーを含む液状組成物を配置し、加熱して、TFE系ポリマーを含む層(以下、「TFE系ポリマー層2」とも記す。)を形成し、PI層2と、PI層2の表面に形成されたTFE系ポリマー層2とを有する多層フィルムの製造方法である。 In the second production method of the present invention (hereinafter, also referred to as "the present method 2"), a TFE polymer powder and thermodegradability are formed on the surface of the polyimide film layer (hereinafter, also referred to as "PI layer 2"). A liquid composition containing a polymer is placed and heated to form a layer containing a TFE-based polymer (hereinafter, also referred to as "TFE-based polymer layer 2"), which is formed on the surfaces of the PI layer 2 and the PI layer 2. This is a method for producing a multilayer film having the TFE-based polymer layer 2 formed therein.
 本法2により、密着性が向上した多層フィルムが得られる理由は、必ずしも明確ではないが、以下のように考えられる。
 PI層2の表面に、パウダーを含む液状組成物を塗布し、加熱してTFE系ポリマー層2を形成する場合、その熱履歴により、PI層2に含まれるポリイミドが少なからず変性するため、PI層2は必然的に変形(収縮)する。本発明者らは、このPI層2の変形が、両層の密着性を低下させると考えた。
The reason why the multilayer film with improved adhesion can be obtained by this method 2 is not necessarily clear, but it is considered as follows.
When a liquid composition containing powder is applied to the surface of the PI layer 2 and heated to form the TFE polymer layer 2, the polyimide contained in the PI layer 2 is not a little modified by the heat history, so PI Layer 2 inevitably deforms (shrinks). The present inventors considered that the deformation of the PI layer 2 reduces the adhesion between the two layers.
 本法2では、PI層2の表面に、パウダーに加えて、さらに熱分解性ポリマーを含む液状組成物を配置し、加熱してTFE系ポリマー層2を形成する。
 熱分解性ポリマーは、液状組成物において、パウダーの分散を促し、その均一分散性を向上させている。そのため、PI層2の表面に液状組成物を配置し、加熱すると、パウダーの緻密なパッキングが進行し、さらにパウダーが溶融焼成し、高均質なTFE系ポリマー層2が形成され、PI層2との密着性が向上する。
In this method 2, a liquid composition containing a thermally decomposable polymer is placed on the surface of the PI layer 2 in addition to the powder, and heated to form the TFE polymer layer 2.
The pyrolytic polymer promotes the dispersion of the powder in the liquid composition and improves its uniform dispersibility. Therefore, when the liquid composition is placed on the surface of the PI layer 2 and heated, the powder is densely packed, the powder is melt-fired, and a highly homogeneous TFE-based polymer layer 2 is formed. Adhesion is improved.
 一方、加熱による液状分散媒の除去に伴い、熱分解性ポリマーとTFE系ポリマーとの親和性が相対的に低下し、熱分解性ポリマーは、TFE系ポリマーに弾かれやすくなる。そのため、TFE系ポリマー層2の形成に伴い、熱分解性ポリマーは、TFE系ポリマー層2とPI層2との界面に偏析しやすくなる。そして、界面に偏析した熱分解性ポリマーが、可塑成分又は柔軟成分、若しくは接着成分として、PI層2の変形を緩和し、両層の密着性を向上させると考えられる。
 本法2についてさらに記載する。
On the other hand, as the liquid dispersion medium is removed by heating, the affinity between the pyrolytic polymer and the TFE-based polymer is relatively lowered, and the thermally decomposable polymer is easily repelled by the TFE-based polymer. Therefore, with the formation of the TFE-based polymer layer 2, the pyrolytic polymer tends to segregate at the interface between the TFE-based polymer layer 2 and the PI layer 2. Then, it is considered that the thermally decomposable polymer segregated at the interface relaxes the deformation of the PI layer 2 as a plastic component, a soft component, or an adhesive component, and improves the adhesion between the two layers.
This method 2 will be further described.
 本法2におけるPI層2のPIのイミド基密度は、0.35以下が好ましく、0.3以下がより好ましい。PIのイミド基密度が0.35以下であれば、加熱時の熱収縮が少なく、製造される多層フィルムに発生する反りが少なく、寸法安定性が高い。PIのイミド基密度は、0.1以上であるのが好ましい。この場合、加熱におけるPI層2の変形とパウダーの溶融がバランスして進行し、TFE系ポリマー層2とPI層2とが密着性に優れやすい。 The imide group density of PI in the PI layer 2 in this method 2 is preferably 0.35 or less, more preferably 0.3 or less. When the imide group density of PI is 0.35 or less, heat shrinkage during heating is small, warpage generated in the produced multilayer film is small, and dimensional stability is high. The imide group density of PI is preferably 0.1 or more. In this case, the deformation of the PI layer 2 and the melting of the powder during heating proceed in a balanced manner, and the TFE-based polymer layer 2 and the PI layer 2 tend to have excellent adhesion.
 PI層2のPIは、2個以上のアリーレン基が連結基を介して連結された構造を有する芳香族ジアミンに基づく単位を含むことが好ましい。
 芳香族ジアミンとしては、本法1と同様の芳香族ジアミンが挙げられる。
 また、PI層2のPIは、脂肪族ジアミンに基づく単位を含むことが好ましい。脂肪族ジアミンとしては、1,2-エチレンジアミン、1,3-プロピレンジアミン、1,4-ブタンジアミン、1,5-ペンタンジアミン、1,6-ヘキサンジアミン、1,7-ヘプタンジアミン、1,8-オクタンジアミン、2-メチル-1,8-オクタンジアミン、1,9-ノナンジアミン、1,10-デカンジアミン、1,11-ウンデカンジアミン、1,12-ドデカンジアミンが挙げられる。
 ジアミンは、1種を単独で使用しても、2種以上を併用してもよい。
The PI of the PI layer 2 preferably contains a unit based on an aromatic diamine having a structure in which two or more arylene groups are linked via a linking group.
Examples of the aromatic diamine include the same aromatic diamines as in the first method.
Further, the PI of the PI layer 2 preferably contains a unit based on an aliphatic diamine. Examples of aliphatic diamines include 1,2-ethylenediamine, 1,3-propylene diamine, 1,4-butanediamine, 1,5-pentanediamine, 1,6-hexanediamine, 1,7-heptanediamine, and 1,8. Examples thereof include -octanediamine, 2-methyl-1,8-octanediamine, 1,9-nonanediamine, 1,10-decanediamine, 1,11-undecanediamine, and 1,12-dodecanediamine.
One type of diamine may be used alone, or two or more types may be used in combination.
 PI層2のPIは、芳香族テトラカルボン酸の酸二無水物に基づく単位を含み、芳香族テトラカルボン酸の酸二無水物が、2つの無水フタル酸構造が連結基を介して連結された構造を有することが好ましい。
 PI層2のPIは、Tgを有するのが好ましい。本法2におけるPIの好ましい態様は、本法1におけるPI1のそれと同様である。この場合、隣接する層同士の間の密着性、及び穴あけ加工性に優れ、皺が発生し無いか極めて少ない多層フィルムを得やすい。
 なお、本法2におけるTFE系ポリマーの定義及び範囲は、上述したとおりである。
The PI of the PI layer 2 contained a unit based on the acid dianhydride of the aromatic tetracarboxylic dian, in which the acid dianhydride of the aromatic tetracarboxylic dianhydride was linked with two phthalic anhydride structures via a linking group. It preferably has a structure.
The PI of the PI layer 2 preferably has Tg. The preferred embodiment of the PI in the present method 2 is the same as that of the PI 1 in the present method 1. In this case, it is easy to obtain a multilayer film which is excellent in adhesion between adjacent layers and drilling workability and has no wrinkles or very few wrinkles.
The definition and scope of the TFE polymer in this method 2 are as described above.
 本法2における熱分解性ポリマーは、加熱により熱分解するため、TFE系ポリマー層2の形成に伴い、熱分解性ポリマー由来の熱分解物が、TFE系ポリマー層2とPI層2との界面に偏析する。そして、界面に偏析した熱分解性ポリマー由来の熱分解物が、可塑成分又は柔軟成分、若しくは接着成分として、PI層2の変形をさらに緩和し、両層の密着性をさらに向上させると考えられる。
 したがって、本法2で得られる多層フィルムは、TFE系ポリマー層2が、熱分解性ポリマー由来の熱分解物を含んでいてもよい。
Since the thermally decomposable polymer in this method 2 is thermally decomposed by heating, the thermally decomposed product derived from the thermally decomposable polymer is generated at the interface between the TFE polymer layer 2 and the PI layer 2 as the TFE polymer layer 2 is formed. Segregate into. Then, it is considered that the pyrolyzed product derived from the thermally decomposable polymer segregated at the interface further alleviates the deformation of the PI layer 2 as a plastic component, a soft component, or an adhesive component, and further improves the adhesion between the two layers. ..
Therefore, in the multilayer film obtained by the present method 2, the TFE-based polymer layer 2 may contain a pyrolyzed product derived from a thermally decomposable polymer.
 熱分解性ポリマーは、熱分解性の(メタ)アクリル系ポリマーが好ましい。
 熱分解性の(メタ)アクリル系ポリマーは、側鎖にフルオロアルキル基又はフルオロアルケニル基を有するのが好ましい。
 フルオロアルキル基又はフルオロアルケニル基の炭素数は、4~16が好ましい。また、フルオロアルキル基又はフルオロアルケニル基の炭素原子-炭素原子間には、エーテル性酸素原子が挿入されていてもよい。
The thermally decomposable polymer is preferably a thermally decomposable (meth) acrylic polymer.
The thermally decomposable (meth) acrylic polymer preferably has a fluoroalkyl group or a fluoroalkenyl group in the side chain.
The fluoroalkyl group or fluoroalkenyl group preferably has 4 to 16 carbon atoms. Further, an ether oxygen atom may be inserted between the carbon atoms of the fluoroalkyl group or the fluoroalkenyl group.
 側鎖にフルオロアルキル基又はフルオロアルケニル基を有する(メタ)アクリレート系ポリマーを構成するメタクリレートの具体例としては、CH2=C(CH3)C(O)OCH2CH2(CF24F、CH2=C(CH3)C(O)OCH2CH2(CF26F、CH2=CHC(O)OCH2CH2OCF(CF3)C(=C(CF32)(CF(CF32)、CH2=C(CH3)C(O)OCH2CH2OCF(CF3)C(=C(CF32)(CF(CF32)、CH2=CHC(O)OCH2CH2CH2CH2OCF(CF3)C(=C(CF32)(CF(CF32)、CH2=C(CH3)C(O)OCH2CH2CH2CH2OCF(CF3)C(=C(CF32)(CF(CF32)が挙げられる。 Specific examples of methacrylate constituting a (meth) acrylate-based polymer having a fluoroalkyl group or a fluoroalkenyl group in the side chain include CH 2 = C (CH 3 ) C (O) OCH 2 CH 2 (CF 2 ) 4 F. , CH 2 = C (CH 3 ) C (O) OCH 2 CH 2 (CF 2 ) 6 F, CH 2 = CHC (O) OCH 2 CH 2 OCF (CF 3 ) C (= C (CF 3 ) 2 ) (CF (CF 3 ) 2 ), CH 2 = C (CH 3 ) C (O) OCH 2 CH 2 OCF (CF 3 ) C (= C (CF 3 ) 2 ) (CF (CF 3 ) 2 ), CH 2 = CHC (O) OCH 2 CH 2 CH 2 CH 2 OCF (CF 3 ) C (= C (CF 3 ) 2 ) (CF (CF 3 ) 2 ), CH 2 = C (CH 3 ) C (O) OCH 2 CH 2 CH 2 CH 2 OCF (CF 3 ) C (= C (CF 3 ) 2 ) (CF (CF 3 ) 2 ) can be mentioned.
 また、熱分解性の(メタ)アクリル系ポリマーは、側鎖に水酸基又はオキシアルキレン基を有するものが好ましい。
 オキシアルキレン基は、1種のオキシアルキレン基から構成されていてもよく、2種以上のオキシアルキレン基から構成されていてもよい。後者の場合、種類の違うオキシアルキレン基は、ランダム状に配置されていてもよく、ブロック状に配置されていてもよい。
 オキシアルキレン基は、オキシエチレン基又はオキシプロピレン基が好ましく、オキシエチレン基が特に好ましい。
Further, the thermally decomposable (meth) acrylic polymer preferably has a hydroxyl group or an oxyalkylene group in the side chain.
The oxyalkylene group may be composed of one kind of oxyalkylene group or may be composed of two or more kinds of oxyalkylene groups. In the latter case, different types of oxyalkylene groups may be arranged in a random manner or in a block shape.
As the oxyalkylene group, an oxyethylene group or an oxypropylene group is preferable, and an oxyethylene group is particularly preferable.
 側鎖に水酸基又はオキシアルキレン基を有する熱分解性の(メタ)アクリル系ポリマーを構成するメタクリレートの具体例としては、CH2=C(CH3)C(O)OCH2CH2OH、CH2=C(CH3)C(O)OCH2CH2CH2CH2OH、CH2=C(CH3)C(O)(OCH2CH24OH、CH2=C(CH3)C(O)(OCH2CH29OH、CH2=C(CH3)C(O)(OCH2CH223OH、CH2=C(CH3)C(O)(OCH2CH29OCH3、CH2=C(CH3)C(O)(OCH2CH223OCH3、CH2=C(CH3)C(O)(OCH2CH266OCH3、CH2=C(CH3)C(O)(OCH2CH2120OCH3が挙げられる。 Specific examples of methacrylate constituting a thermally decomposable (meth) acrylic polymer having a hydroxyl group or an oxyalkylene group in the side chain include CH 2 = C (CH 3 ) C (O) OCH 2 CH 2 OH, CH 2 = C (CH 3 ) C (O) OCH 2 CH 2 CH 2 CH 2 OH, CH 2 = C (CH 3 ) C (O) (OCH 2 CH 2 ) 4 OH, CH 2 = C (CH 3 ) C (O) (OCH 2 CH 2 ) 9 OH, CH 2 = C (CH 3 ) C (O) (OCH 2 CH 2 ) 23 OH, CH 2 = C (CH 3 ) C (O) (OCH 2 CH 2) ) 9 OCH 3 , CH 2 = C (CH 3 ) C (O) (OCH 2 CH 2 ) 23 OCH 3 , CH 2 = C (CH 3 ) C (O) (OCH 2 CH 2 ) 66 OCH 3 , CH 2 = C (CH 3 ) C (O) (OCH 2 CH 2 ) 120 OCH 3 can be mentioned.
 熱分解性の(メタ)アクリル系ポリマーは、フルオロアルキル基又はフルオロアルケニル基と、水酸基又はオキシアルキレン基とをそれぞれ有するのが好ましい。このような熱分解性の(メタ)アクリル系ポリマーの具体例としては、フルオロアルキル基又はフルオロアルケニル基を有する(メタ)アクリレートと、水酸基又はオキシアルキレン基を有する(メタ)アクリレートとのコポリマーが挙げられる。 The thermally decomposable (meth) acrylic polymer preferably has a fluoroalkyl group or a fluoroalkenyl group and a hydroxyl group or an oxyalkylene group, respectively. Specific examples of such a thermally decomposable (meth) acrylic polymer include a copolymer of a (meth) acrylate having a fluoroalkyl group or a fluoroalkenyl group and a (meth) acrylate having a hydroxyl group or an oxyalkylene group. Be done.
 熱分解性の(メタ)アクリル系ポリマー由来の熱分解物の一例としては、カルボキシル基、水酸基、ポリオキシアルキレン基を有する化合物が挙げられる。上記熱分解物は、例えば、熱分解性ポリマーが、ポリオキシアルキレン基を有する(メタ)アクリル系ポリマーである場合、好適には、水酸基及びポリオキシアルキレン基を有する(メタ)アクリル系ポリマーである場合に、得られる。
 (メタ)アクリル系ポリマーが熱分解して、これら親水基を有する化合物が界面に偏析することにより、TFE系ポリマー層2とPI層2との密着性が向上する。また、本法2により得られる多層フィルムをプリント基板材料として用いる場合、TFE系ポリマー層2の表面に銅箔などの金属箔を貼着するが、これら親水基を有する化合物がTFE系ポリマー層2の表面に偏析することにより、金属箔との接着性が向上する。
An example of a pyrolyzed product derived from a thermally decomposable (meth) acrylic polymer is a compound having a carboxyl group, a hydroxyl group, and a polyoxyalkylene group. The pyrolyzed product is, for example, a (meth) acrylic polymer having a hydroxyl group and a polyoxyalkylene group when the pyrolyzable polymer is a (meth) acrylic polymer having a polyoxyalkylene group. If you get it.
The (meth) acrylic polymer is thermally decomposed, and the compounds having these hydrophilic groups segregate at the interface, so that the adhesion between the TFE polymer layer 2 and the PI layer 2 is improved. When the multilayer film obtained by the present method 2 is used as a printed circuit board material, a metal foil such as a copper foil is attached to the surface of the TFE polymer layer 2, and the compound having these hydrophilic groups is the TFE polymer layer 2. By segregating on the surface of the metal leaf, the adhesiveness with the metal foil is improved.
 熱分解性の(メタ)アクリル系ポリマーは、側鎖に下式(1)~(5)で表されるいずれか1種の基を有するのが好ましい。この場合、(メタ)アクリル系ポリマーの熱分解性が向上しやすく、その分解物が、可塑成分又は柔軟成分、若しくは接着成分として、PI層2に発生する変形をさらに緩和し、層間密着性をさらに向上させやすい。
 式(1)-C(O)-OC(-R11)(-R12)(-R13
 式(2)-C(O)-OCH(-R21)(-OR22
 式(3)-C(O)-O-Q3-O-CF(CF3)(-R31
 式(4)-C(O)-O-Q4-O-C(CF3)(=C(-R41)(-R42))
 式(5)-C(O)-OC(CF32(-R51
 式中の記号は、下記の意味を示す。
The thermally decomposable (meth) acrylic polymer preferably has any one group represented by the following formulas (1) to (5) in the side chain. In this case, the thermal decomposability of the (meth) acrylic polymer is likely to be improved, and the decomposed product further alleviates the deformation generated in the PI layer 2 as a plastic component, a soft component, or an adhesive component, and improves interlayer adhesion. It is easier to improve.
Equations (1) -C (O) -OC (-R 11 ) ( -R 12 ) (-R 13 )
Equation (2) -C (O) -OCH (-R 21 ) (-OR 22 )
Equation (3) -C (O) -O-Q 3- O-CF (CF 3 ) (-R 31 )
Equation (4) -C (O) -OQ 4- OC (CF 3 ) (= C (-R 41 ) ( -R 42 ))
Equation (5) -C (O) -OC (CF 3 ) 2 (-R 51 )
The symbols in the formula have the following meanings.
 R11、R12及びR13は、R11、R12及びR13がそれぞれ独立にアルキル基又はアリール基であるか、R11及びR12が水素原子でありR13がアリール基であるか、R11及びR12がそれぞれ独立に水素原子又はアルキル基でありR13がアルコキシ基であるか、R11が水素原子又はアルキル基でありR12及びR13が共同してアルキレン基を形成する基である。
 R21及びR22は、R21がアルキル基でありR22はフルオロアルキル基であるか、共同してアルキレン基を形成する基である。
 Q3及びQ4は、それぞれ独立にアルキレン基である。
 R31は、ペルフルオロアルケニル基である。
 R41及びR42は、それぞれ独立にペルフルオロアルキル基である。
 R51は、アルキル基又はシクロアルキル基である。
In R 11 , R 12 and R 13 , whether R 11 , R 12 and R 13 are independently alkyl or aryl groups, or whether R 11 and R 12 are hydrogen atoms and R 13 is an aryl group, respectively. R 11 and R 12 are independent hydrogen atoms or alkyl groups and R 13 is an alkoxy group, or R 11 is a hydrogen atom or alkyl group and R 12 and R 13 jointly form an alkylene group. Is.
R 21 and R 22 are groups in which R 21 is an alkyl group and R 22 is a fluoroalkyl group or jointly forms an alkylene group.
Q 3 and Q 4 are independently alkylene groups.
R 31 is a perfluoroalkanoic group.
R 41 and R 42 are independently perfluoroalkyl groups.
R 51 is an alkyl group or a cycloalkyl group.
 式(1)で表される基を有するポリマーの具体例としては、CH2=CX11C(O)O-Q5-R61、又はCH2=CX12C(O)OC(-R11)(-R12)(-R13)が挙げられる。
 式中の記号は、下記の意味を示す。
 X11は、水素原子、塩素原子又はメチル基を示す。
 X12は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基を示す。
 Q5は、アルキレン基又はオキシアルキレン基を示す。
 R61は、ペルフルオロアルキル基又はペルフルオロアルケニル基を示す。
Specific examples of the polymer having a group represented by the formula (1) include CH 2 = CX 11 C (O) OQ 5- R 61 or CH 2 = CX 12 C (O) OC (-R 11). ) (-R 12 ) (-R 13 ).
The symbols in the formula have the following meanings.
X 11 represents a hydrogen atom, a chlorine atom or a methyl group.
X 12 represents a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
Q 5 indicates an alkylene group or an oxyalkylene group.
R 61 represents a perfluoroalkyl group or a perfluoroalkenyl group.
 R11、R12及びR13は上記した通りである。
 X11及びX12は、それぞれ独立に、水素原子又はメチル基であることが好ましい。
 Q5及びR61における炭素含有基の炭素数は、それぞれ独立に、1~16であることが好ましい。
 Q5は、-CH2CH2-、-CH2CH2CH2CH2-、-CH2CH2O-又は-CH2CH2CH2CH2O-であることが好ましい。
 R61は、炭素数1~6のペルフルオロアルキル基又は炭素数1~12のペルフルオロアルケニル基であることが好ましく、-(CF24F、-(CF26F又は-OCF(CF3)C(=C(CF32)(CF(CF32)であることが特に好ましい。
R 11 , R 12 and R 13 are as described above.
It is preferable that X 11 and X 12 are independently hydrogen atoms or methyl groups, respectively.
The number of carbon atoms of the carbon-containing group in Q 5 and R 61 are each independently, is preferably 1 to 16.
Q 5 is, -CH 2 CH 2 -, - CH 2 CH 2 CH 2 CH 2 -, - CH 2 CH 2 O- or -CH 2 CH 2 CH 2 CH 2 is preferably O-.
R 61 is preferably a perfluoroalkyl group having 1 to 6 carbon atoms or a perfluoroalkenyl group having 1 to 12 carbon atoms, preferably − (CF 2 ) 4 F, − (CF 2 ) 6 F or −OCF (CF 3). ) C (= C (CF 3 ) 2 ) (CF (CF 3 ) 2 ) is particularly preferable.
 式(1)で表される基を有するモノマーの具体例としては、CH2=CHC(O)OCH2CH2(CF24F、CH2=CClC(O)OCH2CH2(CF24F、CH2=C(CH3)C(O)OCH2CH2(CF24F、CH2=CHC(O)OCH2CH2(CF26F、CH2=CClC(O)OCH2CH2(CF26F、CH2=C(CH3)C(O)OCH2CH2(CF26F、CH2=CHC(O)OCH2CH2OCF(CF3)C(=C(CF32)(CF(CF32)、CH2=C(CH3)C(O)OCH2CH2OCF(CF3)C(=C(CF32)(CF(CF32)、CH2=CHC(O)OCH2CH2CH2CH2OCF(CF3)C(=C(CF32)(CF(CF32)、CH2=C(CH3)C(O)OCH2CH2CH2CH2OCF(CF3)C(=C(CF32)(CF(CF32)が挙げられる。 Specific examples of the monomer having a group represented by the formula (1) include CH 2 = CHC (O) OCH 2 CH 2 (CF 2 ) 4 F, CH 2 = CClC (O) OCH 2 CH 2 (CF 2). ) 4 F, CH 2 = C (CH 3 ) C (O) OCH 2 CH 2 (CF 2 ) 4 F, CH 2 = CHC (O) OCH 2 CH 2 (CF 2 ) 6 F, CH 2 = CClC ( O) OCH 2 CH 2 (CF 2 ) 6 F, CH 2 = C (CH 3 ) C (O) OCH 2 CH 2 (CF 2 ) 6 F, CH 2 = CHC (O) OCH 2 CH 2 OCF (CF) 3 ) C (= C (CF 3 ) 2 ) (CF (CF 3 ) 2 ), CH 2 = C (CH 3 ) C (O) OCH 2 CH 2 OCF (CF 3 ) C (= C (CF 3 )) 2 ) (CF (CF 3 ) 2 ), CH 2 = CHC (O) OCH 2 CH 2 CH 2 CH 2 OCF (CF 3 ) C (= C (CF 3 ) 2 ) (CF (CF 3 ) 2 ), CH 2 = C (CH 3 ) C (O) OCH 2 CH 2 CH 2 CH 2 OCF (CF 3 ) C (= C (CF 3 ) 2 ) (CF (CF 3 ) 2 ).
 式(1)で表されるモノマーの具体例としては、下記モノマーが挙げられる。かかるモノマーは、1種を単独使用してもよく、2種以上を使用してもよい。
Figure JPOXMLDOC01-appb-C000001
Specific examples of the monomer represented by the formula (1) include the following monomers. As such a monomer, one kind may be used alone, or two or more kinds may be used.
Figure JPOXMLDOC01-appb-C000001
 式(1)で表される基を有する(メタ)アクリル系ポリマーに含まれる全単位に対するかかるモノマーに基づく単位の含有量は、20~80モル%が好ましい。
 式(1)で表される基を有する熱分解性ポリマーのフッ素含有量は、10~45質量%が好ましく、15~40質量%が特に好ましい。
 式(1)で表される基を有する熱分解性ポリマーは、ノニオン性であることが好ましい。
 式(1)で表される基を有する熱分解性ポリマーの質量平均分子量は、2000~80000が好ましく、6000~20000が特に好ましい。
 式(2)で表される基の具体例としては、式-C(O)-O-CH(CH3)(-OR22)で表される基が挙げられる。
 R22はフルオロアルキル基であり、フッ素原子が直接結合した炭素数が1~6のフルオロアルキル基が好ましく、炭素数が4~6のフルオロアルキル基がより好ましく、炭素数が6のフルオロアルキル基が特に好ましい。
The content of such monomer-based units with respect to all the units contained in the (meth) acrylic polymer having a group represented by the formula (1) is preferably 20 to 80 mol%.
The fluorine content of the thermally decomposable polymer having a group represented by the formula (1) is preferably 10 to 45% by mass, particularly preferably 15 to 40% by mass.
The pyrolytic polymer having a group represented by the formula (1) is preferably nonionic.
The mass average molecular weight of the thermally decomposable polymer having a group represented by the formula (1) is preferably 2000 to 80,000, and particularly preferably 6000 to 20000.
Specific examples of the group represented by the formula (2) include a group represented by the formula —C (O) —O—CH (CH 3 ) (−OR 22 ).
R 22 is a fluoroalkyl group, preferably a fluoroalkyl group having 1 to 6 carbon atoms to which a fluorine atom is directly bonded, more preferably a fluoroalkyl group having 4 to 6 carbon atoms, and a fluoroalkyl group having 6 carbon atoms. Is particularly preferable.
 式(3)で表される基の具体例としては、式-C(O)-O-Q6-O-CF(CF3)(-C(=C(CF32)(CF(CF32))が挙げられる。
 Q6は、-(CH22-又は-(CH24-である。
 式(4)で表される基の具体例としては、下式(10)で表される基が挙げられる。
式(10)-C(O)-O-Q7-O-C(CF3)(=C(-CF(CF322
 Q7は炭素数2又は4のアルキレン基である。
As a specific example of the group represented by the formula (3), the formula-C (O) -O-Q 6- O-CF (CF 3 ) (-C (= C (CF 3 ) 2 )) (CF (CF) 3 ) 2 )) can be mentioned.
Q 6 is, - (CH 2) 2 - or - (CH 2) 4 - a.
Specific examples of the group represented by the formula (4) include the group represented by the following formula (10).
Equation (10) -C (O) -O-Q 7- OC (CF 3 ) (= C (-CF (CF 3 ) 2 ) 2 )
Q 7 is an alkylene group having 2 or 4 carbon atoms.
 本法2における液状組成物は、TFE系ポリマーのパウダーが分散した分散液である。液状組成物は、液状分散媒を含むのが好ましい。本法2における液状分散媒の定義及び範囲は、その好適な態様も含めて、本法1における液状分散媒のそれらと同様である。
 液状組成物におけるTFE系ポリマーの含有量は、10質量%以上が好ましく、25質量%以上がより好ましい。TFE系ポリマーの含有量は、50質量%以下が好ましく、40質量%以下がより好ましい。
 液状組成物における熱分解性ポリマーの含有量は、0.1質量%以上が好ましく、1質量%以上がより好ましい。熱分解性ポリマーの含有量は、20質量%以下が好ましく、5質量%以下がより好ましい。
The liquid composition in this method 2 is a dispersion liquid in which powder of a TFE polymer is dispersed. The liquid composition preferably contains a liquid dispersion medium. The definition and scope of the liquid dispersion medium in the present method 2 are the same as those of the liquid dispersion medium in the present method 1, including the preferred embodiment thereof.
The content of the TFE polymer in the liquid composition is preferably 10% by mass or more, more preferably 25% by mass or more. The content of the TFE polymer is preferably 50% by mass or less, more preferably 40% by mass or less.
The content of the thermally decomposable polymer in the liquid composition is preferably 0.1% by mass or more, more preferably 1% by mass or more. The content of the thermally decomposable polymer is preferably 20% by mass or less, more preferably 5% by mass or less.
 液状組成物は、パウダー、熱分解性ポリマー、及び液状分散媒以外の成分を必要に応じて含んでもよい。
 液状組成物は、ポリイミド、ポリイミド前駆体又はビスマレイミドを含んでもよく、ポリイミド又はポリイミド前駆体を含むのが好ましい。なお、ポリイミドの前駆体とは、TFE系ポリマー層2の形成における加熱において、ポリイミドを形成する化合物であり、ポリアミック酸が挙げられる。以下、ポリイミドと記載した場合、ポリイミド前駆体も包含する。
The liquid composition may optionally contain components other than the powder, the pyrolytic polymer, and the liquid dispersion medium.
The liquid composition may contain a polyimide, a polyimide precursor or a bismaleimide, and preferably contains a polyimide or a polyimide precursor. The polyimide precursor is a compound that forms polyimide during heating in the formation of the TFE-based polymer layer 2, and examples thereof include polyamic acids. Hereinafter, when the term polyimide is used, it also includes a polyimide precursor.
 液状組成物がポリイミド又はビスマレイミドを含む場合、形成されるTFE系ポリマー層2における反り及び剥離の発生が充分に抑制され、他の基材に対する接着性も向上する。この場合、TFE系ポリマー層2に含まれるポリイミド又はビスマレイミドが高度に分散してTFE系ポリマー層2の線膨張性を低下させやすい。
 ポリイミド又はビスマレイミドは、芳香族性ポリイミド又は芳香族性ビスマレイミドが好ましい。この場合、TFE系ポリマー層2の表層に存在するポリイミド又はビスマレイミドがPI層2と相互作用する。具体的には、TFE系ポリマー層2とPI層2との界面付近に存在する、ポリイミド又はビスマレイミドの芳香族環とPIの芳香族環とがスタッキングするため、TFE系ポリマー層2のPI層2に対する密着性が向上すると考えられる。
 また、TFE系ポリマー層2が、芳香族性ポリイミド又は芳香族性マレイミドを含む場合、本法2で得られる多層フィルムは、剥離強度と、UV吸収性(すなわちUV加工性)とに優れやすい。
When the liquid composition contains polyimide or bismaleimide, the occurrence of warpage and peeling in the formed TFE-based polymer layer 2 is sufficiently suppressed, and the adhesiveness to other substrates is also improved. In this case, the polyimide or bismaleimide contained in the TFE-based polymer layer 2 is highly dispersed, and the linear expansion property of the TFE-based polymer layer 2 tends to be lowered.
As the polyimide or bismaleimide, aromatic polyimide or aromatic bismaleimide is preferable. In this case, the polyimide or bismaleimide present on the surface layer of the TFE-based polymer layer 2 interacts with the PI layer 2. Specifically, since the aromatic ring of polyimide or bismaleimide and the aromatic ring of PI existing near the interface between the TFE polymer layer 2 and the PI layer 2 are stacked, the PI layer of the TFE polymer layer 2 is stacked. It is considered that the adhesion to 2 is improved.
Further, when the TFE-based polymer layer 2 contains an aromatic polyimide or an aromatic maleimide, the multilayer film obtained by the present method 2 tends to be excellent in peel strength and UV absorption (that is, UV processability).
 ポリイミドは、熱可塑性であってもよく、熱硬化性であってもよい。
 ポリイミドが熱可塑性であれば、その加熱時の可塑性の発現により、TFE系ポリマー層2中のポリイミドの分散性がより向上し、緻密かつ均一なTFE系ポリマー層2が形成されやすい。その結果、TFE系ポリマー層2のPI層2に対する密着性が向上しやすい。
 熱可塑性のポリイミドとは、イミド化が完了した、イミド化反応がさらに生じないポリイミドを意味する。
The polyimide may be thermoplastic or thermosetting.
If the polyimide is thermoplastic, the dispersibility of the polyimide in the TFE-based polymer layer 2 is further improved by the development of the plasticity at the time of heating, and the dense and uniform TFE-based polymer layer 2 is likely to be formed. As a result, the adhesion of the TFE polymer layer 2 to the PI layer 2 is likely to be improved.
The thermoplastic polyimide means a polyimide that has been imidized and does not undergo a further imidization reaction.
 ポリイミドが熱硬化性であれば、換言すれば、熱硬化性のポリイミドの硬化物であれば、TFE系ポリマー層2の線膨張性が一層低下し、多層フィルムに反りが発生するのを抑制しやすい。
 熱硬化性のポリイミドとしては、ポリイミド前駆体(ポリアミック酸等)のイミド化反応により形成される可塑性を有さないポリイミドが好ましい。
If the polyimide is thermosetting, in other words, if it is a cured product of thermosetting polyimide, the linear expansion property of the TFE-based polymer layer 2 is further lowered, and the occurrence of warpage of the multilayer film is suppressed. Cheap.
As the thermosetting polyimide, a polyimide having no plasticity formed by an imidization reaction of a polyimide precursor (polyamic acid or the like) is preferable.
 ポリイミドの具体例としては、「ネオプリム」シリーズ(三菱ガス化学社製)、「スピクセリア」シリーズ(ソマール社製)、「Q-PILON」シリーズ(ピーアイ技術研究所製)、「WINGO」シリーズ(ウィンゴーテクノロジー社製)、「トーマイド」シリーズ(T&K TOKA社製)、「KPI-MX」シリーズ(河村産業社製)、「ユピア-AT」シリーズ(宇部興産社製)が挙げられる。 Specific examples of polyimide include "Neoprim" series (manufactured by Mitsubishi Gas Chemical Company), "Spixeria" series (manufactured by Somar), "Q-PILON" series (manufactured by PI Technology Research Institute), and "WINGO" series (Wingo). "Technology"), "Tomid" series (T & K TOKA), "KPI-MX" series (Kawamura Sangyo), "Yupia-AT" series (Ube Industries).
 ポリイミドは、液状組成物の液状分散媒に可溶なポリマーが好ましい。これにより、液状組成物中でのポリイミドと他成分(TFE系ポリマー、液状分散媒)との相互作用が高まり、液状組成物の分散性がより向上しやすい。その結果、TFE系ポリマー層2の形成における加熱において、ポリイミドの流動性が高まり、ポリイミドが高度に分散する。よって、電気特性等のTFE系ポリマーに基づく物性が高度に発現するとともに、PI層2に対する密着性のより高いTFE系ポリマー層2が形成されやすい。 The polyimide is preferably a polymer that is soluble in the liquid dispersion medium of the liquid composition. As a result, the interaction between the polyimide and other components (TFE-based polymer, liquid dispersion medium) in the liquid composition is enhanced, and the dispersibility of the liquid composition is more likely to be improved. As a result, in the heating in the formation of the TFE-based polymer layer 2, the fluidity of the polyimide is increased and the polyimide is highly dispersed. Therefore, the physical properties based on the TFE-based polymer such as electrical characteristics are highly exhibited, and the TFE-based polymer layer 2 having higher adhesion to the PI layer 2 is likely to be formed.
 ポリイミドの、液状組成物の液状分散媒に対する25℃における溶解度(g/溶媒100g)は、5~30が好ましい。
 ビスマレイミドは、熱硬化性の芳香族性ビスマレイミド樹脂が好ましい。この場合、TFE系ポリマー層2の線膨張性が一層低下し、フィルムの反りが抑制されやすい。
The solubility (g / solvent 100 g) of polyimide in a liquid dispersion medium of a liquid composition at 25 ° C. is preferably 5 to 30.
As the bismaleimide, a thermosetting aromatic bismaleimide resin is preferable. In this case, the linear expansion property of the TFE-based polymer layer 2 is further reduced, and the warp of the film is likely to be suppressed.
 本法2における液状組成物は、本発明の効果を損なわない範囲で、さらに他の材料を含んでいてもよい。かかる他の材料としては、本法1における他の材料と同様のものが挙げられる。
 液状組成物をPI層2へ配置するには、PI層2の表面に、液状組成物を塗布すればよい。液状組成物の塗布方法としては、本法1における液状組成物の塗布方法と同様の方法が挙げられる。
The liquid composition in the second method may further contain other materials as long as the effects of the present invention are not impaired. Examples of such other materials include those similar to the other materials in the present method 1.
In order to arrange the liquid composition on the PI layer 2, the liquid composition may be applied to the surface of the PI layer 2. Examples of the method for applying the liquid composition include the same method as the method for applying the liquid composition in the present method 1.
 本法2において、液状組成物の配置後、PI層2を加熱する際には、低温領域の温度に保持して、乾燥被膜を形成するのが好ましい。具体的には、液状組成物が液状分散媒を含む場合には、予め、より低温領域に保持して液状分散媒を留去(すなわち乾燥)して、乾燥被膜を形成するのが好ましい。低温領域の温度は、80~200℃が好ましい。低温領域の温度は、乾燥における雰囲気の温度を意味する。
 低温領域の温度での保持は、1段階で実施してもよく、異なる温度にて2段階以上で実施してもよい。
In the present method 2, when the PI layer 2 is heated after the liquid composition is arranged, it is preferable to maintain the temperature in the low temperature region to form a dry film. Specifically, when the liquid composition contains a liquid dispersion medium, it is preferable to hold the liquid composition in a lower temperature region in advance and distill off (that is, dry) the liquid dispersion medium to form a dry film. The temperature in the low temperature region is preferably 80 to 200 ° C. The temperature in the low temperature region means the temperature of the atmosphere in drying.
Holding at a temperature in the low temperature region may be carried out in one step, or may be carried out in two or more steps at different temperatures.
 上記の手順で乾燥被膜を得た後、さらに、低温領域での保持温度を超える温度領域(以下、「焼成領域」とも記す。)にて乾燥被膜を加熱し、TFE系ポリマーを焼成させてPI層2の表面にTFE系ポリマー層2を形成するのが好ましい。焼成領域の温度は、焼成における雰囲気の温度を意味する。 After obtaining the dry film by the above procedure, the dry film is further heated in a temperature region exceeding the holding temperature in the low temperature region (hereinafter, also referred to as “firing region”), and the TFE polymer is calcined to perform PI. It is preferable to form the TFE-based polymer layer 2 on the surface of the layer 2. The temperature of the firing region means the temperature of the atmosphere in firing.
 TFE系ポリマー層2の形成は、パウダーの粒子が密にパッキングし、TFE系ポリマーが融着して進行すると考えられる。なお、液状組成物が、熱可塑性のポリイミドを含む場合、TFE系ポリマーとポリイミドとの混合物からなるTFE系ポリマー層2が形成され、液状組成物が熱硬化性のポリイミド又は熱硬化性のマレイミドを含む場合、TFE系ポリマーとポリイミドの硬化物又は熱硬化性のマレイミドとからなるTFE系ポリマー層2が形成される。 It is considered that the formation of the TFE-based polymer layer 2 proceeds by densely packing the powder particles and fusing the TFE-based polymer. When the liquid composition contains a thermoplastic polyimide, a TFE polymer layer 2 composed of a mixture of the TFE polymer and the polyimide is formed, and the liquid composition is a thermosetting polyimide or a thermosetting maleimide. When included, a TFE-based polymer layer 2 composed of a TFE-based polymer and a cured product of polyimide or a thermosetting maleimide is formed.
 焼成における雰囲気は、常圧下、減圧下のいずれの状態であってよい。また、上記雰囲気は、酸化性ガス(酸素ガス等)雰囲気、還元性ガス(水素ガス等)雰囲気、不活性ガス(希ガス、窒素ガス)雰囲気のいずれであってもよい。
 焼成領域の温度は、TFE系ポリマーの溶融温度以上が好ましく、300~380℃が特に好ましい。
 焼成領域の温度に保持する時間は、30秒~5分間が好ましく、1~2分間が特に好ましい。
The atmosphere in firing may be either under normal pressure or under reduced pressure. The atmosphere may be any of an oxidizing gas (oxygen gas and the like) atmosphere, a reducing gas (hydrogen gas and the like) atmosphere, and an inert gas (noble gas, nitrogen gas) atmosphere.
The temperature of the firing region is preferably equal to or higher than the melting temperature of the TFE polymer, and particularly preferably 300 to 380 ° C.
The time for keeping the temperature of the firing region is preferably 30 seconds to 5 minutes, and particularly preferably 1 to 2 minutes.
 PI層2におけるPIがTgを有する場合、PI層2の表面に、液状組成物を配置し、TFE系ポリマーの融点超、かつ、PIのTg+40℃以下の温度にて加熱してTFE系ポリマー層2を形成するのが好ましい。この場合、本法2におけるTFE系ポリマー層2を形成する方法の好ましい態様は、本法1におけるTFE系ポリマー層1を形成する方法のそれと同様である。 When the PI in the PI layer 2 has Tg, a liquid composition is placed on the surface of the PI layer 2 and heated at a temperature above the melting point of the TFE polymer and at a temperature of Tg + 40 ° C. or lower of the PI to heat the TFE polymer layer. It is preferable to form 2. In this case, the preferred embodiment of the method for forming the TFE-based polymer layer 2 in the present method 2 is the same as that for the method for forming the TFE-based polymer layer 1 in the present method 1.
 本法2で得られる多層フィルムは、PI層2とTFE系ポリマー層2とが直接接触しているのが好ましい。
 本法2で得られる多層フィルムの厚さ及び各層の厚さの好ましい範囲は、本法1で得られる多層フィルムの厚さ及び各層の厚さのそれと同様である。
In the multilayer film obtained by this method 2, it is preferable that the PI layer 2 and the TFE polymer layer 2 are in direct contact with each other.
The preferable range of the thickness of the multilayer film and the thickness of each layer obtained by the present method 2 is the same as that of the thickness of the multilayer film and the thickness of each layer obtained by the present method 1.
 本発明の第2の多層フィルム(以下、「本フィルム2」とも記す。)は、PI層2と、PI層2の両面に、熱溶融性のTFE系ポリマー並びに熱分解性ポリマーを含むTFE系ポリマー層2とを有する。
 本フィルム2におけるTFE系ポリマー及びPIの範囲は、好適な範囲も含めて、本法2におけるそれと同様である。
The second multilayer film of the present invention (hereinafter, also referred to as “the present film 2”) is a TFE-based film containing a heat-meltable TFE-based polymer and a pyrolytic polymer on both sides of the PI layer 2 and the PI layer 2. It has a polymer layer 2.
The range of the TFE polymer and PI in the present film 2 is the same as that in the present method 2, including the suitable range.
 本フィルム2におけるTFE系ポリマー層2は、芳香族ポリマーを含むのが好ましい。この場合、本フィルム2が加工性に優れやすい。芳香族ポリマーとしては、本法1と同様の芳香族ポリマーが挙げられる。
 本フィルム2におけるTFE系ポリマー層2は、熱分解性ポリマー由来の熱分解物を含むのが好ましい。この場合、本フィルム2における隣接する層同士の間の接着性が向上しやすく、本フィルム2が耐水性に優れやすい。
The TFE-based polymer layer 2 in the film 2 preferably contains an aromatic polymer. In this case, the film 2 tends to have excellent workability. Examples of the aromatic polymer include the same aromatic polymer as in the first method.
The TFE-based polymer layer 2 in the film 2 preferably contains a pyrolyzed product derived from a thermally decomposable polymer. In this case, the adhesiveness between adjacent layers in the present film 2 is likely to be improved, and the present film 2 is likely to be excellent in water resistance.
 本フィルム2は、剥離強度は、10N/cm以上が好ましく、15N/cm以上がより好ましく、20N/cm以上がさらに好ましい。この場合、本フィルム2をプリント基板材料、金属導体の被覆材料(電線等の被覆材料)として好適に使用できる。本フィルム2の剥離強度の上限は、100N/cmである。 The peel strength of the film 2 is preferably 10 N / cm or more, more preferably 15 N / cm or more, and even more preferably 20 N / cm or more. In this case, the film 2 can be suitably used as a printed circuit board material and a coating material for metal conductors (coating material for electric wires and the like). The upper limit of the peel strength of the film 2 is 100 N / cm.
 本フィルム2は、低い吸水性(高い水バリア性)を発揮する。この要因は、ポリマー層2とPI層2とが相溶した一体化物でなく、互いに独立して存在するため、TFE系ポリマーの低吸水性がPIの高吸水性を補完するためであると考えられる。
 本フィルム2の吸水率は、0.1%以下が好ましく、0.07%以下がより好ましく、0.05%以下がさらに好ましい。この場合、本フィルム2は、水蒸気がより透過し難く、長期にわたって優れた絶縁性を発揮するため、特に、金属導体の被覆材料として好適に使用できる。本フィルム2の吸水率の下限は、0%である。
The film 2 exhibits low water absorption (high water barrier property). It is considered that this factor is because the low water absorption of the TFE polymer complements the high water absorption of PI because the polymer layer 2 and the PI layer 2 are not integrated with each other and exist independently of each other. Be done.
The water absorption rate of the film 2 is preferably 0.1% or less, more preferably 0.07% or less, still more preferably 0.05% or less. In this case, the present film 2 is more difficult for water vapor to permeate and exhibits excellent insulating properties for a long period of time, and therefore can be particularly suitably used as a coating material for metal conductors. The lower limit of the water absorption rate of the film 2 is 0%.
 本フィルム2の構成の好適な態様は、本法2の多層フィルムの構成の好適な態様と同様である。
 本法2の多層フィルムは、TFE系ポリマー層2の表面の接着性に優れるため、他の基材と容易かつ強固に接合できる。他の基材としては、金属箔、金属導体が挙げられる。
 本法2の多層フィルムは、両面のTFE系ポリマー層2に金属箔を貼着して金属張積層体としてもよい。このような金属張積層体は、金属箔を加工すればプリント基板に容易に加工できる。
The preferred embodiment of the configuration of the present film 2 is the same as the preferred embodiment of the configuration of the multilayer film of the present method 2.
Since the multilayer film of this method 2 has excellent adhesiveness on the surface of the TFE-based polymer layer 2, it can be easily and firmly bonded to other base materials. Examples of other base materials include metal foils and metal conductors.
The multilayer film of the present method 2 may be formed as a metal-clad laminate by attaching a metal foil to the TFE-based polymer layers 2 on both sides. Such a metal-clad laminate can be easily processed into a printed circuit board by processing a metal foil.
 以下、実施例によって本発明を詳細に説明する。本発明はこれらの実施例に限定されない。
 [実施例1]
 <<使用材料>>
 <PIフィルム>
 PIフィルム11:FS-100(製品名、SKC Kolon PI社製)、厚さ25μm、Tg=315℃、引張弾性率=8.0GPa
 PIフィルム12:UPILEX(製品名、宇部興産社製)、厚さ25μm、Tg=350℃、引張弾性率=9.1GPa
 PIフィルム13:FG-100(製品名、PI Advanced Materials社製)、厚さ25μm、Tg=330℃、引張弾性率=10.0GPa
Hereinafter, the present invention will be described in detail by way of examples. The present invention is not limited to these examples.
[Example 1]
<< Materials used >>
<PI film>
PI film 11: FS-100 (product name, manufactured by SKC Kolon PI), thickness 25 μm, Tg = 315 ° C, tensile modulus = 8.0 GPa
PI film 12: UPILEX (product name, manufactured by Ube Industries, Ltd.), thickness 25 μm, Tg = 350 ° C., tensile modulus = 9.1 GPa
PI film 13: FG-100 (product name, manufactured by PI Advanced Materials), thickness 25 μm, Tg = 330 ° C., tensile modulus = 10.0 GPa
 <TFE系ポリマー>
 TFE系ポリマー11:TFE単位、PPVE単位及びNAH単位を、この順に98.0モル%、1.9モル%、0.1モル%含むポリマー(溶融温度:300℃)
 TFE系ポリマー12:TFE単位及びPPVE単位を、この順に98.5モル%、1.5モル%含むポリマー(溶融温度:305℃)
 なお、TFE系ポリマー11は、カルボニル基含有基を、主鎖炭素数1×10個あたり、1000個有し、TFE系ポリマー12は、40個有する。
 <TFE系ポリマーのパウダー>
 パウダー11:TFE系ポリマー11のパウダー(平均粒径(D50):1.9μm)
 パウダー12:TFE系ポリマー12のパウダー(平均粒径(D50):1.5μm)
<TFE polymer>
TFE-based polymer 11: A polymer containing 98.0 mol%, 1.9 mol%, and 0.1 mol% of TFE units, PPVE units, and NAH units in this order (melting temperature: 300 ° C.).
TFE-based polymer 12: Polymer containing 98.5 mol% and 1.5 mol% of TFE units and PPVE units in this order (melting temperature: 305 ° C.)
The TFE-based polymer 11 has 1000 carbonyl group-containing groups per 1 × 10 6 main chain carbon atoms, and the TFE-based polymer 12 has 40 carbonyl group-containing groups.
<TFE polymer powder>
Powder 11: Powder of TFE polymer 11 (average particle size (D50): 1.9 μm)
Powder 12: Powder of TFE polymer 12 (average particle size (D50): 1.5 μm)
 <AR系ポリマー>
 熱可塑性芳香族ポリイミド11:3,3’4,4’-ベンゾフェノンテトラカルボン酸二無水物及び3,3’4,4’-ビフェニルテトラカルボン酸二無水物と、2,4-ジアミノトルエン及び2,2-ビス{4-(4-アミノフェノキシ)フェニル}プロパンとのブロックコポリマー
 <ポリマー分散剤>
 (メタ)アクリル系ポリマー11:ペルフルオロアルケニル基を有する(メタ)アクリレートとポリオキシエチレンモノグリコール基を有する(メタ)アクリレートのコポリマー
<AR polymer>
Thermoplastic Aromatic Polypolymer 11: 3,3'4,4'-benzophenone tetracarboxylic acid dianhydride and 3,3'4,4'-biphenyltetracarboxylic acid dianhydride, 2,4-diaminotoluene and 2 , 2-Bis {4- (4-aminophenoxy) phenyl} Block copolymer with propane <Polymer dispersant>
(Meta) Acrylic Polymer 11: Copolymer of (meth) acrylate having a perfluoroalkenyl group and (meth) acrylate having a polyoxyethylene monoglycol group
 <液状組成物>
 N-メチル-2-ピロリドン(NMP)を液状分散媒とする、40質量%のパウダー11と4質量%の(メタ)アクリル系ポリマー11とを含む、液状組成物11を調製した。
 液状組成物11に、熱可塑性芳香族ポリイミド11のワニス(溶媒:NMP)を添加して、さらに、0.5質量%の熱可塑性芳香族ポリイミド11を含む、液状組成物12を調製した。
<Liquid composition>
A liquid composition 11 containing 40% by mass of powder 11 and 4% by mass of (meth) acrylic polymer 11 using N-methyl-2-pyrrolidone (NMP) as a liquid dispersion medium was prepared.
A varnish (solvent: NMP) of the thermoplastic aromatic polyimide 11 was added to the liquid composition 11 to further prepare a liquid composition 12 containing 0.5% by mass of the thermoplastic aromatic polyimide 11.
 <<製造例>>
 <多層フィルム>
 [例1-1]
 PIフィルム11の一方の面に、液状組成物12を小径グラビアリバース法で塗布し、通風乾燥炉(炉温:150℃)に3分間で通過させて、NMPを除去して乾燥被膜を形成した。さらに、他方の面にも、同様に、液状組成物12を塗布、乾燥し、乾燥被膜を形成した。
 次いで、両面に乾燥被膜が形成されたPIフィルム11を、遠赤外線炉(炉温:320℃)に5分間で通過させて、パウダー11を溶融焼成させた。これにより、PIフィルム11の両面にTFE系ポリマー11及び熱可塑性芳香族ポリイミドを含むTFE系ポリマー層(厚さ:25μm)を形成し、TFE系ポリマー層、PIフィルム11、TFE系ポリマー層がこの順に直接形成された多層フィルム1を得た。
<< Manufacturing example >>
<Multilayer film>
[Example 1-1]
The liquid composition 12 was applied to one surface of the PI film 11 by a small-diameter gravure reverse method and passed through a ventilation drying furnace (furnace temperature: 150 ° C.) for 3 minutes to remove NMP and form a dry film. .. Further, the liquid composition 12 was similarly applied and dried on the other surface to form a dry film.
Next, the PI film 11 having the dry film formed on both sides was passed through a far-infrared ray furnace (furnace temperature: 320 ° C.) for 5 minutes to melt-fire the powder 11. As a result, a TFE-based polymer layer (thickness: 25 μm) containing the TFE-based polymer 11 and the thermoplastic aromatic polyimide is formed on both sides of the PI film 11, and the TFE-based polymer layer, the PI film 11, and the TFE-based polymer layer are formed. A multilayer film 1 directly formed in order was obtained.
 [例1-2]
 パウダー11をパウダー12に変更した以外は、例1-1と同様にして多層フィルム12を得た。
 [例1-3]
 PIフィルム11をPIフィルム12に変更した以外は、例1-1と同様にして多層フィルム13を得た。
 [例1-4]
 液状組成物12を液状組成物11に変更した以外は、例1-1と同様にして多層フィルム14を得た。
[Example 1-2]
A multilayer film 12 was obtained in the same manner as in Example 1-1 except that the powder 11 was changed to the powder 12.
[Example 1-3]
A multilayer film 13 was obtained in the same manner as in Example 1-1 except that the PI film 11 was changed to the PI film 12.
[Example 1-4]
A multilayer film 14 was obtained in the same manner as in Example 1-1 except that the liquid composition 12 was changed to the liquid composition 11.
 [例1-5]
 溶融焼成温度を300℃に変更した以外は、例1-1と同様にして多層フィルム15を得た。
 [例1-6]
 溶融焼成温度を350℃に変更した以外は、例1-1と同様にして多層フィルム16を得た。
 [例1-7]
 溶融焼成温度を360℃に変更した以外は、例1-1と同様にして多層フィルム17を得た。
[Example 1-5]
A multilayer film 15 was obtained in the same manner as in Example 1-1 except that the melt firing temperature was changed to 300 ° C.
[Example 1-6]
A multilayer film 16 was obtained in the same manner as in Example 1-1 except that the melt firing temperature was changed to 350 ° C.
[Example 1-7]
A multilayer film 17 was obtained in the same manner as in Example 1-1 except that the melt firing temperature was changed to 360 ° C.
 [例1-8]
 PIフィルム11の両面にTFE系ポリマー11を溶融押出成形して得られるフィルム(厚さ:50μm)をそれぞれ対向させて、320℃にて15分間、真空プレスし、TFE系ポリマー層、PIフィルム11、TFE系ポリマー層がこの順に直接形成された多層フィルム18を得た。
 [例1-9]
 PIフィルム11をPIフィルム13に変更した以外は、例1-1と同様にして多層フィルム19を得た。
[Example 1-8]
A film (thickness: 50 μm) obtained by melt extrusion molding the TFE polymer 11 is opposed to both sides of the PI film 11 and vacuum pressed at 320 ° C. for 15 minutes to obtain a TFE polymer layer and the PI film 11. , A multilayer film 18 in which a TFE-based polymer layer was directly formed in this order was obtained.
[Example 1-9]
A multilayer film 19 was obtained in the same manner as in Example 1-1 except that the PI film 11 was changed to the PI film 13.
 <<評価項目>>
 <外観>
 得られた多層フィルムを平滑なガラスの表面に静置し、反り(うねり)の発生の有無を確認し、以下の基準にて評価した。
 〇:反りの発生が確認されない。
 △:反りの発生が確認される。
 ×:反りの発生が確認されるだけでなく、皺が寄っている。
 多層フィルム19は、皺の発生が無く、表面平滑性が多層フィルム中で最も高かった。
<< Evaluation items >>
<Appearance>
The obtained multilayer film was allowed to stand on a smooth glass surface, the presence or absence of warpage (waviness) was confirmed, and the evaluation was made according to the following criteria.
〇: No warpage is confirmed.
Δ: The occurrence of warpage is confirmed.
×: Not only the occurrence of warpage is confirmed, but also wrinkles are formed.
The multilayer film 19 had no wrinkles and had the highest surface smoothness among the multilayer films.
 <熱収縮率>
 得られた多層フィルムから、12cm角に裁断した試料を作製して、下記の方法で熱収縮率を求めた。
 25℃において、試料に約10cmの長さの直線を1本描き、直線の端点間距離を初期長L0とする。次いで、試料を320℃で5分間熱処理し、25℃まで冷却した後、試料上に描かれた直線の端点間の直線距離L1を測定し、下式1により熱収縮率(%)を求め、以下の基準で評価した。
 熱収縮率(%)=(1-L1/L0)×100  ・・・式1
 〇:熱収縮率≦2%
 △:2%<熱収縮率<3%
 ×:熱収縮率≧3%
<Heat shrinkage rate>
A sample cut into 12 cm squares was prepared from the obtained multilayer film, and the heat shrinkage rate was determined by the following method.
At 25 ° C., draw a straight line with a length of about 10 cm on the sample, and let the distance between the end points of the straight line be the initial length L 0 . Next, the sample is heat-treated at 320 ° C. for 5 minutes, cooled to 25 ° C., the linear distance L 1 between the end points of the straight lines drawn on the sample is measured, and the heat shrinkage rate (%) is obtained by the following formula 1. , Evaluated according to the following criteria.
Heat shrinkage rate (%) = (1-L 1 / L 0 ) × 100 ・ ・ ・ Equation 1
〇: Heat shrinkage rate ≤ 2%
Δ: 2% <heat shrinkage rate <3%
×: Heat shrinkage rate ≥ 3%
 <密着性>
 得られた多層フィルムから、長さ100mm、幅10mmの矩形状の試験片を切り出した。その後、試験片の長さ方向の一端から50mmの位置まで、PIフィルムとTFE系ポリマー層とを剥離した。次いで、試験片の長さ方向の一端から50mmの位置を中央にして、引張り試験機(オリエンテック社製)を用いて、引張り速度50mm/分で90度剥離させた際の、最大荷重を剥離強度(N/cm)とし、以下の基準にて評価した。
 〇:剥離強度≧10N/cm
 △:5N/cm<剥離強度<10N/cm
 ×:剥離強度≦5N/cm
<Adhesion>
From the obtained multilayer film, a rectangular test piece having a length of 100 mm and a width of 10 mm was cut out. Then, the PI film and the TFE polymer layer were peeled off from one end in the length direction of the test piece to a position of 50 mm. Next, the maximum load was peeled off when the test piece was peeled 90 degrees at a tensile speed of 50 mm / min using a tensile tester (manufactured by Orientec) with the position 50 mm from one end in the length direction of the test piece at the center. The strength (N / cm) was evaluated according to the following criteria.
〇: Peeling strength ≧ 10 N / cm
Δ: 5N / cm <peeling strength <10N / cm
X: Peeling strength ≤ 5 N / cm
 <加工性>
 得られた多層フィルムの両面に、銅箔(電解銅箔CF-T49A-DS-HD2-12、福田金属箔粉工業株式会社)を配し、340℃にて20分間、真空下でプレスし、両面銅張積層体を作製した。
 レーザー加工機を使用して、それぞれの両面銅張積層体に対して、直径100μmの円周上を周回するように、波長355nmのUV-YAGレーザーを照射した。これにより、両面銅張積層体に円形の貫通孔を形成した。なお、レーザー出力を1.2W、レーザー焦点径を25μm、円周上の周回回数を20回、発振周波数を40kHzとした。
<Workability>
Copper foil (electrolytic copper foil CF-T49A-DS-HD2-12, Fukuda Metal Foil Powder Industry Co., Ltd.) was placed on both sides of the obtained multilayer film and pressed at 340 ° C. for 20 minutes under vacuum. A double-sided copper-clad laminate was produced.
Using a laser machine, each double-sided copper-clad laminate was irradiated with a UV-YAG laser having a wavelength of 355 nm so as to orbit around a circumference of 100 μm in diameter. As a result, a circular through hole was formed in the double-sided copper-clad laminate. The laser output was 1.2 W, the laser focal diameter was 25 μm, the number of orbits on the circumference was 20 times, and the oscillation frequency was 40 kHz.
 その後、貫通孔を含む両面銅張積層体の断片を切り出し、熱硬化性エポキシ樹脂で固めた。次いで、貫通孔の断面が露出するまで研磨し、貫通孔が形成された部分の断面を顕微鏡で観察して、貫通孔の周辺を目視で確認して評価し、以下の基準にて評価した。
 〇:貫通孔内部の層界面に、削れと剥がれが確認されない。
 △:貫通孔内部の層界面に、削れが確認されるが、剥がれは確認されない。
 ×:貫通孔内部の層界面に、削れと剥がれが確認される。
Then, a fragment of the double-sided copper-clad laminate including the through hole was cut out and hardened with a thermosetting epoxy resin. Next, polishing was performed until the cross section of the through hole was exposed, the cross section of the portion where the through hole was formed was observed with a microscope, the periphery of the through hole was visually confirmed and evaluated, and the evaluation was made according to the following criteria.
〇: No scraping or peeling is confirmed at the layer interface inside the through hole.
Δ: Shaving is confirmed at the layer interface inside the through hole, but peeling is not confirmed.
X: Shaving and peeling are confirmed at the layer interface inside the through hole.
 <耐水性>
 JISK7209:2000Aの方法に準じて吸水率を測定した。
 得られた多層フィルムを、10cm角に切り出し、試験片を調製した。次に、この試験片を50℃にて24時間乾燥させ、デシケーター内で冷却した。この時点における試験片の質量を、試験片の水浸漬前質量とした。
 その後、この乾燥させた試験片を、23℃にて24時間、純水に浸漬させた。その後、試験片を純水から取り出し、速やかに表面の水分を拭き取った後、1分以内に質量を測定し、試験片の水浸漬後質量とした。
<Water resistance>
The water absorption rate was measured according to the method of JISK7209: 2000A.
The obtained multilayer film was cut into 10 cm squares to prepare test pieces. Next, the test piece was dried at 50 ° C. for 24 hours and cooled in a desiccator. The mass of the test piece at this point was defined as the mass of the test piece before immersion in water.
Then, the dried test piece was immersed in pure water at 23 ° C. for 24 hours. Then, the test piece was taken out from pure water, the water on the surface was quickly wiped off, and the mass was measured within 1 minute to obtain the mass of the test piece after being immersed in water.
 浸漬前後での試験片の質量変化率を多層フィルムの「吸水率」として求め、耐水性を以下の基準にて評価した。
 〇:吸水率が0.3%以下である。
 △:吸水率が0.3%超、1%未満である。
 ×:吸水率が1%以上である。
 それぞれの評価結果を、まとめて表1に示す。
The mass change rate of the test piece before and after immersion was determined as the "water absorption rate" of the multilayer film, and the water resistance was evaluated according to the following criteria.
〇: The water absorption rate is 0.3% or less.
Δ: The water absorption rate is more than 0.3% and less than 1%.
X: The water absorption rate is 1% or more.
The results of each evaluation are summarized in Table 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 [実施例2]
 <<使用材料>>
 <TFE系ポリマー>
 TFE系ポリマー21:TFE単位、PPVE単位及びNAH単位を、この順に98.0モル%、1.9モル%、0.1モル%含む、極性官能基を有するポリマー(溶融温度300℃)
 なお、TFE系ポリマー21は、カルボニル基含有基を、主鎖炭素数1×10個あたり、1000個有する。
 <TFE系ポリマーのパウダー>
 パウダー21:TFE系ポリマー21のパウダー(平均粒径(D50):2μm)
[Example 2]
<< Materials used >>
<TFE polymer>
TFE-based polymer 21: A polymer having a polar functional group containing 98.0 mol%, 1.9 mol%, and 0.1 mol% of TFE units, PPVE units, and NAH units in this order (melting temperature 300 ° C.).
The TFE polymer 21 has 1000 carbonyl group-containing groups per 1 × 10 6 carbon atoms in the main chain.
<TFE polymer powder>
Powder 21: Powder of TFE polymer 21 (average particle size (D50): 2 μm)
 <(メタ)アクリル系ポリマー>
 (メタ)アクリル系ポリマー21:
 CH2=C(CH3)COO(CH24OCF(CF3)C(=C(CF32)(CF(CF32)と、CH2=C(CH3)COO(CH24(OCH2CH29OHのコポリマー
 (メタ)アクリル系ポリマー22:
 CH2=C(CH3)COO(CH22(CF26Fと、CH2=C(CH3)COO(CH2(OCH2CH223OHのコポリマー
 <液状分散媒>
 NMP:N-メチル-2-ピロリドン
<(Meta) acrylic polymer>
(Meta) Acrylic Polymer 21:
CH 2 = C (CH 3 ) COO (CH 2 ) 4 OCF (CF 3 ) C (= C (CF 3 ) 2 ) (CF (CF 3 ) 2 ) and CH 2 = C (CH 3 ) COO (CH) 2 ) 4 (OCH 2 CH 2 ) 9 OH copolymer (meth) acrylic polymer 22:
Copolymer of CH 2 = C (CH 3 ) COO (CH 2 ) 2 (CF 2 ) 6 F and CH 2 = C (CH 3 ) COO (CH 2 ) 4 (OCH 2 CH 2 ) 23 OH <Liquid dispersion medium >
NMP: N-methyl-2-pyrrolidone
 <<PIフィルム>>
 PIフィルム21:酸無水物モノマーがBPDA(3,3’,4,4’-ビフェニルテトラカルボン酸二無水物)であり、ジアミンモノマーがBAFL(9,9-ビス(4-アミノフェニル)フルオレン)であるポリイミド(イミド基密度:≦0.35)のフィルム(厚さ:50μm)
 なお、PIフィルム21のTgは320℃、引張弾性率は9.5GPaである。
 PIフィルム22:酸無水物モノマーがBPDAであり、ジアミンモノマーがPDA(p-フェニレンジアミン)であるポリイミド(イミド基密度:>0.35)のフィルム(厚さ:50μm)
 なお、PIフィルム22のTgは315℃、引張弾性率は8.2GPaである。
<< PI film >>
PI film 21: The acid anhydride monomer is BPDA (3,3', 4,4'-biphenyltetracarboxylic dianhydride), and the diamine monomer is BAFL (9,9-bis (4-aminophenyl) fluorene). Polymer (imide group density: ≤0.35) film (thickness: 50 μm)
The Tg of the PI film 21 is 320 ° C., and the tensile elastic modulus is 9.5 GPa.
PI film 22: Polyimide (imide group density:> 0.35) film (thickness: 50 μm) in which the acid anhydride monomer is BPDA and the diamine monomer is PDA (p-phenylenediamine).
The Tg of the PI film 22 is 315 ° C., and the tensile elastic modulus is 8.2 GPa.
 <<液状組成物>>
 液状組成物21:パウダー21(30質量%)、熱可塑性ポリイミド(1質量%)、(メタ)アクリル系ポリマー21(3質量%)及びNMP(残部)を含む、パウダー分散液
 液状組成物22:パウダー21(30質量%)、熱可塑性ポリイミド(1質量%)、(メタ)アクリル系ポリマー22(3質量%)及びNMP(残部)を含む、パウダー分散液
 液状組成物23:パウダー21(30質量%)、(メタ)アクリル系ポリマー21(3質量%)及びNMP(残部)を含む、パウダー分散液
 液状組成物24:パウダー21(30質量%)及びNMP(残部)を含む、パウダー分散液
<< Liquid composition >>
Liquid composition 21: Powder dispersion containing powder 21 (30% by mass), thermoplastic polyimide (1% by mass), (meth) acrylic polymer 21 (3% by mass) and NMP (remaining portion) Liquid composition 22: Powder dispersion liquid composition 23: powder 21 (30% by mass) containing powder 21 (30% by mass), thermoplastic polyimide (1% by mass), (meth) acrylic polymer 22 (3% by mass) and NMP (remaining). %), (Meta) Acrylic Polymer 21 (3% by Mass) and NMP (Remaining), Powder Dispersion Liquid Composition 24: Powder 21 (30% by Mass) and NMP (Remaining).
 <<製造例>>
 <多層フィルム>
 [例2-1]多層フィルム21の製造例
 PIフィルム21の一方の表面に液状組成物21を小径グラビアリバース法で塗布し、通風乾燥炉(炉温:150℃)にて3分間乾燥させて、NMPを除去して乾燥被膜を形成した。さらに、他方の表面にも、同様に、液状組成物21を塗布、乾燥させて、乾燥被膜を形成した。
 次いで、遠赤外線炉(炉温:320℃)に20分間で通過させて、パウダー21を溶融焼成させた。これにより、PIフィルム21の両方の最表面にTFE系ポリマー21及び熱可塑性ポリイミドを含むポリマー層(厚さ:25μm)を形成し、TFE系ポリマー層、PIフィルム層、TFE系ポリマー層をこの順に有する多層フィルム21を得た。
<< Manufacturing example >>
<Multilayer film>
[Example 2-1] Production example of multilayer film 21 The liquid composition 21 is applied to one surface of the PI film 21 by the small-diameter gravure reverse method, and dried in a ventilation drying furnace (furnace temperature: 150 ° C.) for 3 minutes. , NMP was removed to form a dry film. Further, the liquid composition 21 was similarly applied and dried on the other surface to form a dry film.
Next, the powder 21 was melt-fired by passing it through a far-infrared ray furnace (furnace temperature: 320 ° C.) for 20 minutes. As a result, a polymer layer (thickness: 25 μm) containing the TFE polymer 21 and the thermoplastic polyimide is formed on both outermost surfaces of the PI film 21, and the TFE polymer layer, the PI film layer, and the TFE polymer layer are arranged in this order. A multilayer film 21 having a structure was obtained.
 [例2-2]多層フィルム22の製造例
 PIフィルム21をPIフィルム22に変更した以外は、例2-1と同様にして多層フィルム22を得た。
 [例2-3]多層フィルム23の製造例
 液状組成物21を液状組成物23に変更した以外は、例2-1と同様にして多層フィルム23を得た。
 [例2-4]多層フィルム24の製造例
 液状組成物21を液状組成物22に変更した以外は、例2-1と同様にして多層フィルム24を得た。
 [例2-5]多層フィルム25の製造例
 液状組成物21を液状組成物24に変更した以外は、例2-1と同様にして多層フィルム25を得た。
[Example 2-2] Production example of multilayer film 22 A multilayer film 22 was obtained in the same manner as in Example 2-1 except that the PI film 21 was changed to the PI film 22.
[Example 2-3] Production example of multilayer film 23 A multilayer film 23 was obtained in the same manner as in Example 2-1 except that the liquid composition 21 was changed to the liquid composition 23.
[Example 2-4] Production example of multilayer film 24 A multilayer film 24 was obtained in the same manner as in Example 2-1 except that the liquid composition 21 was changed to the liquid composition 22.
[Example 2-5] Production example of multilayer film 25 A multilayer film 25 was obtained in the same manner as in Example 2-1 except that the liquid composition 21 was changed to the liquid composition 24.
 <<評価項目>>
 <層表面の分解物>
 TFE系ポリマー層の表面を、全反射-赤外吸収スペクトル法(ATR-IR分析法)と、AFM-IR法とで分析して、検出される官能基の種類から評価し、前者の方法でカルボキシ基が、後者の方法でエーテル性酸素原子が、それぞれ検出された場合は分解物「有」、いずれも検出されない場合は分解物「無」とする。
<< Evaluation items >>
<Decomposition of layer surface>
The surface of the TFE polymer layer is analyzed by total reflection-infrared absorption spectroscopy (ATR-IR analysis method) and AFM-IR method, evaluated from the types of functional groups detected, and the former method is used. When the carboxy group and the ether oxygen atom are detected by the latter method, the decomposition product is "present", and when neither is detected, the decomposition product is "absent".
 <密着性>
 多層フィルム21~25のそれぞれの密着性を、実施例1における密着性と同様の方法で評価した結果は、密着性の程度は、高い順に、多層フィルム21、多層フィルム22、多層フィルム23、多層フィルム24の順であり、これらの多層フィルムの密着性より多層フィルム25の密着性は低かった。
<Adhesion>
As a result of evaluating the adhesion of each of the multilayer films 21 to 25 by the same method as the adhesion in Example 1, the degree of adhesion is in descending order of the multilayer film 21, the multilayer film 22, the multilayer film 23, and the multilayer. The order was film 24, and the adhesion of the multilayer film 25 was lower than the adhesion of these multilayer films.
 <耐水性>
 実施例1における耐水性と同様の方法で評価した。
 <外観>
 実施例1における外観と同様の方法で評価した。
 それぞれの評価結果を、まとめて表1に示す。
<Water resistance>
It was evaluated by the same method as the water resistance in Example 1.
<Appearance>
It was evaluated in the same manner as the appearance in Example 1.
The results of each evaluation are summarized in Table 1.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 本発明によれば、密着性、及び穴あけ加工性に優れ、皺が発生し無いか極めて少ない多層フィルムが得られる。また、本発明によれば、層間の密着性に優れた多層フィルムが得られる。本発明の多層フィルムは、アンテナ部品、プリント基板、航空機用部品、自動車用部品等に加工して使用できる。また、かかる多層フィルムで被覆された金属導体は、長期にわたって高い絶縁性を発揮し、航空宇宙用の電線又は電導コイルに好適に使用できる。 According to the present invention, a multilayer film having excellent adhesion and drilling workability and having no wrinkles or very few wrinkles can be obtained. Further, according to the present invention, a multilayer film having excellent adhesion between layers can be obtained. The multilayer film of the present invention can be processed and used for antenna parts, printed circuit boards, aircraft parts, automobile parts, and the like. Further, the metal conductor coated with such a multilayer film exhibits high insulating properties for a long period of time, and can be suitably used for an electric wire or a conducting coil for aerospace.

Claims (15)

  1.  ガラス転移点を有するポリイミドを含む層の表面に、熱溶融性のテトラフルオロエチレン系ポリマーのパウダーを含む液状組成物を配置し、前記テトラフルオロエチレン系ポリマーの融点超、かつ、前記ポリイミドのガラス転移点+40℃以下の温度にて加熱し、前記テトラフルオロエチレン系ポリマーを含む層を形成して、前記ポリイミドを含む層と、前記ポリイミドを含む層の表面に形成された前記テトラフルオロエチレン系ポリマーを含む層とを有する多層フィルムを得る、多層フィルムの製造方法。 A liquid composition containing a heat-meltable tetrafluoroethylene polymer powder is placed on the surface of a layer containing a polyimide having a glass transition point, and the temperature exceeds the melting point of the tetrafluoroethylene polymer and the glass transition of the polyimide is performed. By heating at a temperature of +40 ° C. or lower to form a layer containing the tetrafluoroethylene-based polymer, the layer containing the polyimide and the tetrafluoroethylene-based polymer formed on the surface of the layer containing the polyimide are formed. A method for producing a multilayer film, which obtains a multilayer film having a layer containing the mixture.
  2.  前記テトラフルオロエチレン系ポリマーが、ペルフルオロ(アルキルビニルエーテル)に基づく単位を含むテトラフルオロエチレン系ポリマーである、請求項1に記載の製造方法。 The production method according to claim 1, wherein the tetrafluoroethylene-based polymer is a tetrafluoroethylene-based polymer containing a unit based on perfluoro (alkyl vinyl ether).
  3.  前記テトラフルオロエチレン系ポリマーが、極性官能基を有するポリマー、又は、全単位に対してペルフルオロ(アルキルビニルエーテル)に基づく単位を2.0~5.0モル%含み、極性官能基を有さないポリマーである、請求項1又は2に記載の製造方法。 The tetrafluoroethylene-based polymer is a polymer having a polar functional group, or a polymer containing 2.0 to 5.0 mol% of units based on perfluoro (alkyl vinyl ether) with respect to all units and having no polar functional group. The production method according to claim 1 or 2.
  4.  前記液状組成物が、さらに芳香族ポリマーを含む、請求項1~3のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 3, wherein the liquid composition further contains an aromatic polymer.
  5.  前記テトラフルオロエチレン系ポリマーを含む層の厚さが、100μm以下である、請求項1~4のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 4, wherein the thickness of the layer containing the tetrafluoroethylene polymer is 100 μm or less.
  6.  前記ポリイミドを含む層の厚さに対する、前記テトラフルオロエチレン系ポリマーを含む層の厚さの比が、0.4以上である、請求項1~5のいずれか1項に記載の製造方法。  The production method according to any one of claims 1 to 5, wherein the ratio of the thickness of the layer containing the tetrafluoroethylene polymer to the thickness of the layer containing the polyimide is 0.4 or more. Twice
  7.  前記ポリイミドを含む層の両面に、前記テトラフルオロエチレン系ポリマーを含む層をそれぞれ形成する、請求項1~6のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 6, wherein a layer containing the tetrafluoroethylene polymer is formed on both sides of the layer containing the polyimide.
  8.  ガラス転移点を有するポリイミドを含む層と、前記ポリイミドを含む層の両面に形成された熱溶融性のテトラフルオロエチレン系ポリマーを含む層とを有し、前記ポリイミドのガラス転移点が前記テトラフルオロエチレン系ポリマーの融点超、かつ、前記テトラフルオロエチレン系ポリマーの融点+60℃以下である、多層フィルム。 It has a layer containing a polyimide having a glass transition point and a layer containing a heat-meltable tetrafluoroethylene-based polymer formed on both sides of the layer containing the polyimide, and the glass transition point of the polyimide is the tetrafluoroethylene. A multilayer film having a temperature above the melting point of the polymer and having a melting point of + 60 ° C. or lower of the tetrafluoroethylene polymer.
  9.  前記テトラフルオロエチレン系ポリマーが、ペルフルオロ(アルキルビニルエーテル)に基づく単位を含むテトラフルオロエチレン系ポリマーである、請求項8に記載の多層フィルム。 The multilayer film according to claim 8, wherein the tetrafluoroethylene-based polymer is a tetrafluoroethylene-based polymer containing a unit based on perfluoro (alkyl vinyl ether).
  10.  前記テトラフルオロエチレン系ポリマーが、極性官能基を有するポリマー、又は、全単位に対してペルフルオロ(アルキルビニルエーテル)に基づく単位を2.0~5.0モル%含み、極性官能基を有さないポリマーである、請求項8又は9に記載の多層フィルム。 The tetrafluoroethylene-based polymer is a polymer having a polar functional group, or a polymer containing 2.0 to 5.0 mol% of units based on perfluoro (alkyl vinyl ether) with respect to all units and having no polar functional group. The multilayer film according to claim 8 or 9.
  11.  前記テトラフルオロエチレン系ポリマーの融点が、260~325℃である、請求項8~10のいずれか1項に記載の多層フィルム。 The multilayer film according to any one of claims 8 to 10, wherein the tetrafluoroethylene polymer has a melting point of 260 to 325 ° C.
  12.  前記ポリイミドのガラス転移点が、300~380℃である、請求項8~11のいずれか1項に記載の多層フィルム。 The multilayer film according to any one of claims 8 to 11, wherein the glass transition point of the polyimide is 300 to 380 ° C.
  13.  前記フィルムの剥離強度が、10N/cm以上である、請求項8~13のいずれか1項に記載の多層フィルム。 The multilayer film according to any one of claims 8 to 13, wherein the peel strength of the film is 10 N / cm or more.
  14.  ポリイミドフィルム層の表面に、熱溶融性のテトラフルオロエチレン系ポリマーのパウダー及び熱分解性ポリマーを含む液状組成物を配置し、加熱して、前記テトラフルオロエチレン系ポリマーを含む層を形成し、前記ポリイミドフィルム層と、前記ポリイミドフィルム層の表面に形成されたテトラフルオロエチレン系ポリマーを含む層とを有する多層フィルムを得る、多層フィルムの製造方法。 A liquid composition containing a heat-meltable tetrafluoroethylene polymer powder and a thermodegradable polymer is placed on the surface of the polyimide film layer and heated to form a layer containing the tetrafluoroethylene polymer. A method for producing a multilayer film, which comprises a polyimide film layer and a layer containing a tetrafluoroethylene-based polymer formed on the surface of the polyimide film layer.
  15.  ポリイミドフィルム層と、前記ポリイミドフィルム層の両面に、熱溶融性のテトラフルオロエチレン系ポリマー及び熱分解性ポリマーを含む層とを有する、多層フィルム。

     
    A multilayer film having a polyimide film layer and a layer containing a heat-meltable tetrafluoroethylene polymer and a pyrolytic polymer on both sides of the polyimide film layer.

PCT/JP2021/005829 2020-02-20 2021-02-17 Multilayer film and method for manufacturing same WO2021166930A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180010364.6A CN115003506A (en) 2020-02-20 2021-02-17 Multilayer film and method for producing same
JP2022501920A JPWO2021166930A1 (en) 2020-02-20 2021-02-17
KR1020227030025A KR20220142456A (en) 2020-02-20 2021-02-17 Multilayer film, and method of manufacturing the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2020-026912 2020-02-20
JP2020026957 2020-02-20
JP2020026912 2020-02-20
JP2020-026957 2020-02-20
JP2020-192535 2020-11-19
JP2020192535 2020-11-19

Publications (1)

Publication Number Publication Date
WO2021166930A1 true WO2021166930A1 (en) 2021-08-26

Family

ID=77391942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/005829 WO2021166930A1 (en) 2020-02-20 2021-02-17 Multilayer film and method for manufacturing same

Country Status (5)

Country Link
JP (1) JPWO2021166930A1 (en)
KR (1) KR20220142456A (en)
CN (1) CN115003506A (en)
TW (1) TW202136056A (en)
WO (1) WO2021166930A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011162581A (en) * 2010-02-04 2011-08-25 Canon Inc Inkjet ink
JP2015110697A (en) * 2013-12-06 2015-06-18 共栄社化学株式会社 Dispersant for fluorine polymer
WO2018016644A1 (en) * 2016-07-22 2018-01-25 旭硝子株式会社 Liquid composition, and method for manufacturing film and layered body using same
JP2019166844A (en) * 2013-11-29 2019-10-03 Agc株式会社 Glue film, flexible metal laminate, manufacturing method of glue film, manufacturing method of flexible metal laminate, flexible printed circuit board, and manufacturing method of flexible printed circuit board

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3581945B2 (en) 1995-10-04 2004-10-27 鐘淵化学工業株式会社 Fluororesin laminate having improved surface properties and method for producing the same
JP3945947B2 (en) 1998-11-20 2007-07-18 株式会社カネカ Insulating tape for covering electric wires and method for producing the same
US7022402B2 (en) 2003-07-14 2006-04-04 E. I. Du Pont De Nemours And Company Dielectric substrates comprising a polymide core layer and a high temperature fluoropolymer bonding layer, and methods relating thereto
TWI461119B (en) 2009-01-20 2014-11-11 Toyoboseki Kabushikikaisha Multilayer fluorine resin film and printed wiring board

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011162581A (en) * 2010-02-04 2011-08-25 Canon Inc Inkjet ink
JP2019166844A (en) * 2013-11-29 2019-10-03 Agc株式会社 Glue film, flexible metal laminate, manufacturing method of glue film, manufacturing method of flexible metal laminate, flexible printed circuit board, and manufacturing method of flexible printed circuit board
JP2015110697A (en) * 2013-12-06 2015-06-18 共栄社化学株式会社 Dispersant for fluorine polymer
WO2018016644A1 (en) * 2016-07-22 2018-01-25 旭硝子株式会社 Liquid composition, and method for manufacturing film and layered body using same

Also Published As

Publication number Publication date
TW202136056A (en) 2021-10-01
KR20220142456A (en) 2022-10-21
JPWO2021166930A1 (en) 2021-08-26
CN115003506A (en) 2022-09-02

Similar Documents

Publication Publication Date Title
JP7363818B2 (en) Powder dispersion, laminate and printed circuit board
JP7435462B2 (en) dispersion liquid
WO2016181936A1 (en) Material for printed circuit board, metal laminate, method for manufacturing same, and method for manufacturing printed circuit board
JP7371681B2 (en) Liquid composition, powder, and method for producing powder
TWI826452B (en) Method for manufacturing resin-coated metal foil, resin-coated metal foil, laminate and printed circuit board
WO2021075504A1 (en) Non-aqueous dispersion liquid, and method for producing laminate
JPWO2019230568A1 (en) Manufacturing method of metal leaf with resin and metal leaf with resin
CN112703107B (en) Laminate, printed board, and method for producing same
JP7380690B2 (en) Film, film manufacturing method, metal clad laminate, and coated metal conductor
JP2021075030A (en) Laminate, method for producing laminate, sheet and printed circuit board
WO2021166930A1 (en) Multilayer film and method for manufacturing same
JP2007189011A (en) Substrate for flexible printed wiring board and its production process
KR20230010621A (en) Method for producing a laminate having a layer containing a thermally meltable tetrafluoroethylene-based polymer
JP7476721B2 (en) Manufacturing method of laminate and laminate
WO2020241607A1 (en) Liquid composition
TW202110654A (en) Method for producing laminate, and laminate
WO2022050163A1 (en) Method for manufacturing multilayer film, and multilayer film
JP2021146707A (en) Multilayer film
WO2021200630A1 (en) Multilayer film, method for producing same, metal-clad laminate, and method for producing printed wiring board
JP7163840B2 (en) Laminate, printed circuit board manufacturing method, printed circuit board, and antenna
JP2022035805A (en) Method for manufacturing laminated plate and laminated plate
WO2020213515A1 (en) Laminate, method for manufacturing printed circuit board, printed circuit board, and antenna
WO2023153485A1 (en) Composition, film, laminate, and method for manufacturing laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21757640

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022501920

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227030025

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21757640

Country of ref document: EP

Kind code of ref document: A1