WO2020213515A1 - Laminate, method for manufacturing printed circuit board, printed circuit board, and antenna - Google Patents

Laminate, method for manufacturing printed circuit board, printed circuit board, and antenna Download PDF

Info

Publication number
WO2020213515A1
WO2020213515A1 PCT/JP2020/016020 JP2020016020W WO2020213515A1 WO 2020213515 A1 WO2020213515 A1 WO 2020213515A1 JP 2020016020 W JP2020016020 W JP 2020016020W WO 2020213515 A1 WO2020213515 A1 WO 2020213515A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
laminate
printed circuit
metal foil
circuit board
Prior art date
Application number
PCT/JP2020/016020
Other languages
French (fr)
Japanese (ja)
Inventor
渉 笠井
細田 朋也
敦美 山邊
達也 寺田
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to JP2021514914A priority Critical patent/JPWO2020213515A1/ja
Priority to CN202080023614.5A priority patent/CN113677532A/en
Priority to KR1020217026798A priority patent/KR20210155012A/en
Publication of WO2020213515A1 publication Critical patent/WO2020213515A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/082Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to a laminate, a method for manufacturing a printed circuit board, a printed circuit board, and an antenna.
  • a printed circuit board is used as a transmission line through which an electric signal is passed.
  • the dielectric material used for the printed circuit board is required to have low dielectric constant, low dielectric loss tangent and low water absorption in order to reduce the loss of electric signals.
  • Examples of such a dielectric material include tetrafluoroethylene-based polymers.
  • tetrafluoroethylene-based polymers include tetrafluoroethylene-based polymers.
  • Non-thermoplastic polyimides have been proposed as alternatives to such tetrafluoroethylene-based polymers (see Patent Documents 1 to 3).
  • a printed circuit board formed from a laminate having a non-thermoplastic polyimide as a dielectric layer has excellent dielectric properties due to its molecular skeleton characteristics.
  • the present inventors have first found that the dielectric properties of the printed circuit board are still unstable due to the water absorption of the non-thermoplastic polyimide. Further, due to the above characteristics, the heat resistance of the non-thermoplastic polyimide is not yet sufficient, and when the laminate is subjected to a solder float process, which is a mounting process of a printed circuit board, the dielectric layer is easily peeled off or swelled, and printing The present inventors have also found that it is difficult to efficiently manufacture a substrate.
  • the present invention is a laminate (metal-clad) having a dielectric layer in which a non-thermoplastic polyimide and a tetrafluoroethylene polymer are composited, which are excellent in dielectric properties, heat resistance and adhesion and have a low water absorption rate, and a metal foil layer.
  • the purpose is to provide a laminate).
  • Another object of the present invention is to provide a printed circuit board having excellent physical properties and reduced transmission loss, a method for manufacturing the printed circuit board, and an antenna.
  • the laminate according to [1] which is a laminate having at least a four-layer structure in which the layer F is present on both sides of the layer P.
  • a method for manufacturing a printed circuit board wherein the metal foil layer of the laminate according to any one of [1] to [12] is etched to form a transmission circuit to obtain a printed circuit board.
  • a printed circuit board having a layer P of non-thermoplastic polyimide, a layer F of a tetrafluoroethylene polymer existing on at least one surface of the layer P, and a transmission circuit existing on at least one surface thereof.
  • a printed circuit board that is not easily affected by water and has a reduced transmission loss can be obtained. Further, a laminate having a dielectric layer having a dielectric property, heat resistance and adhesion, and a low water absorption rate, which is suitable for efficient production of such a printed circuit board, and a metal foil layer can be obtained.
  • the "heat-meltable polymer (resin)” means a melt-fluid polymer, and has a melt flow rate of 0.1 to 1000 g at a temperature 20 ° C. or higher higher than the melt temperature of the polymer under the condition of a load of 49 N. It means a polymer having a temperature of / 10 minutes.
  • the "melt flow rate” means the melt mass flow rate (MFR) of the polymer defined in JIS K 7210: 1999 (ISO 1133: 1997).
  • the "glass transition point (Tg) of a polymer” is a value measured by analyzing a polymer by a dynamic viscoelasticity measurement (DMA) method.
  • the “polymer melting temperature” is the temperature corresponding to the maximum value of the melting peak measured by the differential scanning calorimetry (DSC) method.
  • D50 of powder is a volume-based cumulative 50% diameter of powder obtained by a laser diffraction / scattering method. That is, the particle size distribution is measured by a laser diffraction / scattering method, the cumulative curve is obtained with the total volume of the particle population as 100%, and the particle diameter is the point at which the cumulative volume is 50% on the cumulative curve.
  • D90 of powder is a volume-based cumulative 90% diameter of powder obtained by a laser diffraction / scattering method.
  • the particle size distribution is measured by a laser diffraction / scattering method
  • the cumulative curve is obtained with the total volume of the particle population as 100%
  • the particle diameter is the point at which the cumulative volume is 90% on the cumulative curve.
  • the powders D50 and D90 are obtained by dispersing the powder in water and analyzing it by a laser diffraction / scattering method using a laser diffraction / scattering type particle size distribution measuring device (LA-920 measuring device manufactured by HORIBA, Ltd.). .. "Liquid viscosity" is the viscosity of the liquid measured at room temperature (25 ° C.) and at a rotation speed of 30 rpm using a B-type viscometer.
  • film dielectric constant and dielectric loss tangent are measured using a split-post dielectric resonator (SPDR) at a frequency of 10 GHz in an environment of 23 ° C. ⁇ 2 ° C. and a relative humidity of 50 ⁇ 5%. Value. The same applies to "dielectric constant and dielectric loss tangent of layer".
  • SPDR split-post dielectric resonator
  • the "tensile elastic modulus of the film” is a value measured at a measurement frequency of 10 Hz using a wide-area viscoelasticity measuring device.
  • the "unit” in an addition polymerization polymer (resin) means an atomic group based on one molecule of the monomer formed by polymerization of a monomer.
  • the unit may be an atomic group directly formed by a polymerization reaction, or may be an atomic group in which a part of the atomic group is converted into another structure by processing a polymer.
  • the unit based on the monomer a is also simply referred to as a “monomer a unit”.
  • the "unit" in the co-condensation polymer (resin) means an atomic group derived from one molecule of each of the two monomers formed by polycondensation of the two monomers to be polycondensed.
  • each of the tetracarboxylic acid residue and the diamine residue is referred to as a unit.
  • the laminate of the present invention has a metal foil layer, a layer P of non-thermoplastic polyimide, and a layer F of a tetrafluoroethylene-based polymer, and at least one of the outermost layers is a metal foil layer.
  • the layer F is present on at least one surface of the layer P.
  • the water absorption rate of the layer P is less than 1.5%
  • the absolute value of the linear expansion coefficient of the layer P is 25 ppm / ° C. or less.
  • the tetrafluoroethylene polymer is also referred to as "F polymer”.
  • the laminate of the present invention (the same applies to the printed circuit board of the present invention) has a low water absorption rate and is excellent in dielectric properties, heat resistance, and adhesion to a metal foil layer (transmission circuit in the case of a printed circuit board). Although it is not always clear, it can be considered as follows.
  • the layer F is present on at least one surface of the layer P in the present invention. Since the F polymer has excellent dielectric properties and heat resistance and a low water absorption rate, it is considered that this configuration improves the dielectric properties, heat resistance and water absorption rate of the laminate. On the other hand, the F polymer generally has a large coefficient of linear expansion, and it is presumed that the dimensional stability and adhesion of the laminate are likely to be lowered. On the other hand, the layer P in the present invention is a layer having a linear expansion coefficient in a predetermined range and containing a non-thermoplastic polyimide.
  • the non-thermoplastic polyimide is a polyimide having a non-thermoplastic block site and having a low imide group density, which is also called a modified polyimide. It is considered that such polyimide highly interacted with the F polymer to improve the dimensional stability and adhesion of the laminate. As a result, it is considered that the peeling of the metal foil layer in the high temperature process such as the solder float process was suppressed, and the swelling of the laminated body was suppressed.
  • non-thermoplastic polyimide is a polyimide that does not soften or show adhesiveness even when heated, and has a storage elastic modulus of 1 at 30 ° C. as measured using a dynamic viscoelasticity measuring device (DMA). It means a polyimide having a storage elastic modulus of 3.0 ⁇ 10 8 Pa or more at 280 ° C. and 0.0 ⁇ 10 9 Pa or more.
  • the "non-thermoplastic polyimide” is a molded product (film, etc.) formed by drying a solution (solution of a polyimide precursor) obtained by combining monomers and solution-polymerizing it, and further imidizing it at 450 ° C. for 1 minute. It is also a polyimide that retains its shape when heated.
  • thermoplastic polyimide a polyimide having a glass transition temperature (Tg) can be confirmed, it was measured using a DMA, and a storage modulus 1.0 ⁇ 10 9 Pa or more at 30 ° C., 280 storage modulus at °C means a polyimide is less than 3.0 ⁇ 10 8 Pa.
  • Thermoplastic polyimide is obtained by drying a solution (solution of a polyimide precursor) obtained by combining monomers and performing solution polymerization, and further heating a molded product (film or the like) formed by imidization at 450 ° C. for 1 minute. It is also a polyimide that deforms or fuses due to wrinkles or elongation.
  • the laminate of the present invention is a laminate (metal-clad laminate) having a metal foil layer, a layer P, and a layer F, and at least one of the outermost layers is a metal foil layer.
  • the layer F may be present only on one side of the layer P, or the layer F may be present on both sides of the layer P. In the former case, the layer F may be present only on the surface of the layer P on the metal foil layer side, and the layer F is present only on the opposite surface (outermost surface) of the layer P on the metal foil layer side. You may be.
  • the laminated body of the present invention includes a metal foil layer, a layer F and a layer P in this order, a metal foil layer, a layer P and a layer F in this order, a metal foil layer, a layer F, a layer P and the like.
  • An embodiment having layers F in this order can be mentioned. If the layer F is provided on the outermost surface, a laminate having a lower water absorption rate can be obtained, and if the layer F is provided between the metal foil layer and the layer P, heat resistance (particularly, solder float resistance) and dielectric properties are improved. A better laminate can be obtained.
  • the last aspect in which the layers F are provided on both sides of the layer P is preferable.
  • the laminate of the present invention may be a double-sided metal-clad laminate having metal foil layers on both sides.
  • the double-sided metal-clad laminate include a mode in which the metal foil layer, the layer F, the layer P and the metal foil layer are provided in this order, and a mode in which the metal foil layer, the layer F, the layer P, the layer F and the metal foil layer are provided in this order. Be done.
  • the latter aspect is preferable as the double-sided metal-clad laminate having layers F on both sides of the layer P.
  • the laminate of the present invention it is preferable that at least a part of the layer P and at least a part of the layer F are in contact with each other, and it is preferable that the entire one side of the layer P and the entire one side of the layer F are in contact with each other. Especially preferable. In this case, not only the adhesion between the layer P and the layer F is further improved, but also the water absorption rate tends to be remarkably lowered.
  • the ratio of the thickness of the layer P to the thickness of the layer F is preferably 1 or more.
  • the ratio is preferably 2 or more, more preferably 4 or more, and particularly preferably 8 or more.
  • the ratio is preferably 100 or less, more preferably 50 or less, more preferably 35 or less, and particularly preferably 20 or less. In this case, it is easy to balance the suppression of dimensional change (warp, etc.) and interfacial peeling of the laminated body due to heating, the water absorption of the laminated body, and the dielectric property of the laminated body.
  • the thickness of the layers F means the thickness of each layer F.
  • the thickness of the metal foil layer in the present invention is preferably 2 to 30 ⁇ m, particularly preferably 3 to 25 ⁇ m.
  • the ratio of the thickness of the layer F to the thickness of the metal foil layer is preferably 0.5 or more, and preferably 1 or more.
  • the ratio is preferably 10 or less, more preferably 5 or less. In this case, it is easy to balance the suppression of dimensional change (warp, etc.) and interfacial peeling of the laminated body due to heating, the water absorption of the laminated body, and the dielectric property of the laminated body.
  • Examples of the material of the metal foil in the present invention include copper, copper alloy, stainless steel, nickel, nickel alloy (including 42 alloy), aluminum, aluminum alloy, titanium, titanium alloy and the like.
  • As the material of the metal foil copper and a copper alloy are preferable.
  • Examples of the copper foil include rolled copper foil and electrolytic copper foil.
  • a rust preventive layer (oxide film such as chromate), a heat resistant layer, or the like may be formed on the surface of the metal foil.
  • the surface of the metal foil layer may be treated with a silane coupling agent. In this case, the entire surface of the metal foil may be treated, or a part of the surface of the metal foil may be treated.
  • the ten-point average roughness of the surface of the metal foil layer (hereinafter, also referred to as “Rzjis”) is preferably 0.2 to 2.5 ⁇ m. In this case, the adhesion between the metal foil layer and the layer F or the layer P is improved, and a laminated body having excellent dielectric properties can be easily obtained.
  • the root mean square roughness (hereinafter, also referred to as “Rq”) of the surface of the metal foil layer is preferably 0.05 ⁇ m or more, more preferably 0.10 ⁇ m or more, still more preferably 0.12 ⁇ m or more.
  • Rq is preferably 0.25 ⁇ m or less, more preferably 0.20 ⁇ m or less.
  • ⁇ c Effective conductivity
  • Conductivity of the conductor s: Skin thickness through which the current flows
  • h Squared average square root roughness of the surface of the conductor Note that the conductivity of the conductor is based on the metal type of the metal foil and is the surface of the conductor. Since the squared average square root roughness of is determined based on the Rq of the metal foil layer and the skin thickness is determined based on the frequency, the effective conductivity of the interface increases as the Rq of the metal foil layer decreases.
  • the metal foil layer may be a metal foil with a carrier including two or more layers of metal foil.
  • the metal foil with a carrier includes a carrier copper foil (thickness: 10 to 35 ⁇ m) and an ultrathin copper foil (thickness: 2 to 5 ⁇ m) laminated on the carrier copper foil via a release layer. Copper foil can be mentioned.
  • a laminate having the ultrathin copper foil can be easily formed. By using this laminate, it is possible to form a fine pattern by using an ultrathin copper foil layer as a plating seed layer by an MSAP (Modified Semi-Additive) process.
  • MSAP Modified Semi-Additive
  • the release layer is preferably a metal layer containing nickel or chromium or a multilayer metal layer in which the metal layers are laminated.
  • the carrier metal foil can be easily peeled from the ultrathin metal foil even after a step of 300 ° C. or higher.
  • Specific examples of the metal foil with a carrier include the trade name "FUTF-5DAF-2" manufactured by Fukuda Metal Foil Powder Industry Co., Ltd.
  • the layer P in the present invention contains a non-thermoplastic polyimide.
  • the layer P may contain other components as long as it does not interfere with the effects of the present invention.
  • specific examples of other components include powders of F polymers such as PTFE and PFA from the viewpoint of further improving the dielectric properties, and glass chopped strands, aramid chopped strands, and polybenzo from the viewpoint of reducing the coefficient of linear expansion. Examples thereof include fillers such as oxazole chopped strands, silica, alumina, and magnesium oxide.
  • the layer P preferably contains non-thermoplastic polyimide as a main component, and preferably contains 80 to 100% by mass of non-thermoplastic polyimide.
  • the water absorption rate of the layer P is less than 1.5%, preferably 1.2% or less.
  • the water absorption rate of the layer P is preferably more than 0%.
  • the absolute value of the coefficient of linear expansion of the layer P is 25 ppm / ° C. or lower, preferably 22 ppm / ° C. or lower, more preferably 15 ppm / ° C. or lower, and particularly preferably 10 ppm / ° C. or lower.
  • the absolute value of the coefficient of linear expansion coefficient of layer P is preferably more than 0 ppm / ° C.
  • the layer P is preferably formed of a non-thermoplastic polyimide film (hereinafter, also referred to as "mPI film").
  • the physical properties of the layer P in this case are regarded as those of the original mPI film.
  • the coefficient of linear expansion coefficient of the layer P is 10 ° C. using a thermomechanical analyzer, using a non-thermoplastic polyimide film used for forming the layer P, with a measurement load of 29.4 mN and a measurement atmosphere of a nitrogen atmosphere.
  • the surface of the mPI film may be surface-treated with a silane coupling agent or the like, or may be surface-modified by corona treatment, plasma treatment or the like. Further, the surface of the mPI film may be roughened or annealed.
  • the plasma treatment is preferably atmospheric pressure plasma treatment or vacuum plasma treatment.
  • the vacuum plasma treatment is preferably a glow discharge treatment (so-called low temperature plasma treatment) in which continuous discharge is performed at a gas pressure of 0.1 to 1330 Pa (preferably 1 to 266 Pa). In this case, if a power of 10 W to 100 kW is applied between the discharge electrodes at a frequency of 10 kHz to 2 GHz, stable glow discharge processing can be performed.
  • the discharge power density of the vacuum plasma treatment is preferably 5 to 400 W ⁇ min / m 2 from the viewpoint of adjusting the wetting tension on the surface of the mPI film.
  • the gas used include helium gas, neon gas, argon gas, nitrogen gas, oxygen gas, carbon dioxide gas, hydrogen gas, air, and water vapor.
  • the gas one type may be used alone, or two or more types may be mixed and used.
  • the gas argon gas, nitrogen gas, hydrogen gas, and a mixed gas thereof are preferable from the viewpoint of further improving the interlayer adhesion strength.
  • the time of the vacuum plasma treatment is preferably 5 to 60 seconds from the viewpoint of further improving the interlayer adhesion strength.
  • the glow discharge treatment is preferable under 0.8 to 1.2 pressure and in an atmosphere of an inert gas (argon gas, nitrogen gas, helium gas, etc.).
  • a trace amount of active gas oxygen gas, hydrogen gas, carbon dioxide gas, ethylene, tetrafluoroethylene, etc.
  • the voltage, the frequency of the power source, and the plasma processing time in the atmospheric pressure plasma processing are usually 1 to 10 kV, 1 to 20 kHz, and 0.1 seconds to 10 minutes in this order.
  • the discharge power density of the atmospheric pressure plasma treatment is preferably 5 to 400 W / min / m 2 .
  • the non-thermoplastic polyimide in the present invention preferably contains a non-thermoplastic block moiety.
  • the non-thermoplastic block site retains its shape when a polyimide precursor obtained by solution polymerization of only the monomers constituting the block site is evaluated in the same manner as the above-mentioned definition method of non-thermoplastic polyimide. It means a block site formed from a combination of monomers that forms the polyimide to be formed.
  • the thermoplastic block site has a shape when evaluated in the same manner as the above-mentioned definition method of non-thermoplastic polyimide from a polyimide precursor obtained by solution-polymerizing only the monomers constituting the block site.
  • the fragments may be collected and heated to determine from the state of holding the shape.
  • the glass transition temperature of the non-thermoplastic polyimide in the present invention is preferably 280 ° C. or higher, more preferably 290 ° C. or higher.
  • the glass transition temperature is preferably 450 ° C. or lower, and particularly preferably 400 ° C. or lower.
  • the layer F and the layer P can be laminated at a lower temperature, and a laminated body having more excellent dimensional stability can be easily obtained.
  • the tensile elastic modulus of the non-thermoplastic polyimide in the present invention at 320 ° C. is preferably 0.2 GPa or more, preferably 0.4 GPa or more.
  • the tensile elastic modulus is preferably 10 GPa or less, and more preferably 5 GPa or less.
  • the laminate in this case is excellent in handleability even when exposed to heating and cooling operations for processing it. That is, when the tensile elastic modulus of the non-thermoplastic polyimide is equal to or higher than the lower limit, the shrinkage of the layer F during heating and cooling is effectively alleviated by the elasticity of the layer P, and wrinkles are less likely to occur in the laminated body.
  • the imide group density of the non-thermoplastic polyimide in the present invention is preferably 0.20 to 0.35.
  • the imide group density is the upper limit, the water absorption rate of the non-thermoplastic polyimide becomes lower, and it is easier to suppress the change in the dielectric property of the laminate.
  • the imide group density is the lower limit, it functions as a polar group, and not only the adhesion between the layer P and the layer F is further improved, but also the water absorption rate is likely to be significantly reduced. Further, if the imide group density of the non-thermoplastic polyimide is within such a range, wrinkles in the processing of the laminated body tend to be more difficult. This tendency becomes remarkable when the glass transition temperature of the non-thermoplastic polyimide is low.
  • the imide group density is a value obtained by dividing the molecular weight per unit of the imide group portion (140.1) by the molecular weight per unit of the polyimide in the polyimide obtained by imidizing the polyimide precursor.
  • a polyimide precursor consisting of two components, 1 mol of pyromellitic dianhydride (molecular weight: 218.1) and 1 mol of 3,4'-oxydianiline (molecular weight: 200.2), was imidized.
  • the imide group density of polyimide (molecular weight per unit: 382.2) is 0.37, which is the value obtained by dividing 140.1 by 382.2.
  • the non-thermal polyimide in the present invention is 2,2'-bis [4- (4-aminophenoxy) phenyl] propane, paraphenylenediamine, 4,4'-bis (4-aminophenoxy) biphenyl, 2,2'.
  • the non-thermoplastic polyimide preferably contains 80 mol% or more of the above units with respect to all the units. The upper limit is 100 mol%.
  • non-thermoplastic polyimides include metaphenylenediamine, 1,5-diaminonaphthalene, benzidine, 3,3'-dimethoxybenzidine, paraxylylene diamine, 4,4'-diaminodiphenylmethane, 3,3'-dimethyl-4.
  • non-thermoplastic polyimides include pyromellitic acid, 2,3,6,7-naphthalenetetracarboxylic acid, pyridine-2,3,5,6-tetracarboxylic acid, 4,4'-oxydiphthalic acid, 3,3.
  • the synthesis of the polyimide precursor (polyamic acid) in producing a non-thermoplastic polyimide is preferably carried out in the presence of a solvent.
  • a solvent include dimethyl sulfoxide, diethyl sulfoxide, N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide, N-methyl-2-pyrrolidone, N. -Vinyl-2-pyrrolidone, phenol, cresol, xylenol, phenol halide, catechol, hexamethylphospholamide can be mentioned.
  • the polyimide precursor is preferably prepared in a solution containing the polyimide precursor as a solid content of 5 to 40% by weight.
  • the viscosity of the solution in this case is preferably 100 to 1000 Pa ⁇ s.
  • a part of the polyimide precursor may be imidized in the solution.
  • the thickness of the layer P in the present invention is preferably 10 to 100 ⁇ m.
  • the dielectric loss tangent of the layer P in the present invention at 10 GHz is preferably 0.008 or less.
  • the dielectric loss tangent is preferably more than 0.
  • the layer F in the present invention contains an F polymer.
  • the layer F may contain other components as long as it does not interfere with the effects of the present invention, but it is preferable that the layer F contains the F polymer as a main component, and preferably contains 80 to 100% by mass of the F polymer.
  • the layer F is preferably a layer formed by melting the F polymer (a layer of a melt-molded product of the F polymer). In this case, since the layer F becomes non-porous, the heat insulating effect at the time of heating in the solder float step is further improved, and the etching resistance is also likely to be improved.
  • the F polymer is preferably a heat-meltable F polymer, and F has a melting temperature of 260 to 320 ° C. from the viewpoint that not only the heat resistance and interlayer adhesion of the laminate are further improved, but also the water absorption rate is likely to be significantly reduced. Polymers are more preferred.
  • the F polymer in the present invention is a polymer having a unit (TFE unit) based on tetrafluoroethylene (hereinafter, also referred to as "TFE").
  • TFE tetrafluoroethylene
  • the F polymer may be a homopolymer of TFE, or may be a copolymer of TFE and a comonomer copolymerizable with TFE.
  • the F polymer preferably has 90 to 100 mol% of TFE units with respect to all the units constituting the polymer.
  • the fluorine content of the F polymer is preferably 70 to 76% by mass, more preferably 72 to 76% by mass.
  • F polymer examples include polytetrafluoroethylene (PTFE), a copolymer of TFE and ethylene (ETFE), a copolymer of TFE and propylene, and a copolymer of TFE and perfluoro (alkyl vinyl ether) (hereinafter, also referred to as "PAVE").
  • PFA polytetrafluoroethylene
  • ETFE copolymer of TFE and ethylene
  • PAVE perfluoro (alkyl vinyl ether)
  • PFA polytetrafluoroethylene
  • HFP hexafluoropropylene
  • FEP a copolymer of TFE and fluoroalkylethylene
  • FPE fluoroalkylethylene
  • TFE and chlorotrifluoro examples include copolymers with ethylene.
  • the copolymer may have a unit based on another comonomer.
  • the F polymer include low molecular weight PTFE, modified PTFE, FEP and PFA.
  • the low molecular weight PTFE or modified PTFE shall also include a copolymer of TFE and a trace amount of comonomer (HFP, PAVE, FAE, etc.).
  • the F polymer is preferably an F polymer having a TFE unit and a functional group.
  • the functional group is preferably a carbonyl group-containing group, a hydroxy group, an epoxy group, an amino group or an isocyanate group.
  • the functional group may be contained in a unit in the F polymer, or may be contained in the terminal group of the main chain of the polymer.
  • Examples of the latter polymer include polymers having a functional group as a terminal group derived from a polymerization initiator, a chain transfer agent, or the like. Further, an F polymer having a functional group obtained by subjecting the surface of the F polymer layer to plasma treatment or ionization line treatment can also be mentioned.
  • the F polymer having a functional group is preferably an F polymer having a TFE unit and a unit having a functional group.
  • As the unit having a functional group a unit based on a monomer having a carbonyl group-containing group, a hydroxy group, an epoxy group, an amino group or an isocyanate group is preferable.
  • a cyclic monomer having an acid anhydride residue As the monomer having a carbonyl group-containing group, a cyclic monomer having an acid anhydride residue, a monomer having a carboxy group, a vinyl ester and a (meth) acrylate are preferable, and a cyclic monomer having an acid anhydride residue is more preferable.
  • itaconic anhydride, citraconic anhydride, 5-norbornene-2,3-dicarboxylic acid anhydride (also known as hymic anhydride) and maleic anhydride are preferable.
  • the F polymer having a functional group include an F polymer having a TFE unit, an HFP unit, a PAVE unit or a FAE unit, and a unit having a functional group.
  • CF 2 CFOCF 3
  • CF 2 CFOCF 2 CF 3
  • CF 2 CFOCF 2 CF 2 CF 3
  • CF 2 CFOCF 2 CF 2 CF 3
  • CF 2 CFOCF 2 CF 2 CF 3
  • CF 2 CFOCF 2 CF 2 CF 3
  • Such an F polymer has 90 to 99 mol% of TFE units, 0.5 to 9.97 mol% of HFP units, PAVE units or FAE units, and 0 units having a functional group with respect to all the units constituting the polymer. It is preferable to have 0.01 to 3 mol%, respectively.
  • Specific examples of such F polymers include the polymers described in International Publication No. 2018/16644.
  • the thickness of layer F is preferably 1 to 38 ⁇ m or less.
  • the thickness is more preferably 2 ⁇ m or more.
  • the thickness is preferably 35 ⁇ m or less, more preferably 30 ⁇ m or less.
  • the heat resistance of the laminate is likely to be improved while suppressing dimensional changes (warpage, etc.) and interfacial peeling of the laminate during heating.
  • the thickness of the layer F is 1 ⁇ m or more, the transmission loss in the high frequency region of the printed circuit board is significantly improved regardless of the configuration of the layer P.
  • the thickness of the layer F is not more than the upper limit value, it is easy to suppress dimensional changes (warpage, etc.) and interfacial peeling of the laminated body due to heating.
  • At least one of the outermost layers is a laminated body which is a copper foil layer, and layers F are present on both sides of the layer P, and at least a part of each layer F.
  • An example is a laminate in which at least a part of the layer P is in contact with the layer P. More specifically, a laminate having a structure of a copper foil layer / layer F / layer P / layer F, and a laminate having a structure of a copper foil layer / layer F / layer P / layer F / copper foil layer. Can be mentioned.
  • the thickness of the copper foil layer is 3 to 25 ⁇ m
  • the thickness of the layer F is 2 to 30 ⁇ m independently
  • the thickness of the layer P is 10 to 100 ⁇ m
  • the thickness of the copper foil layer is 3 to 25 ⁇ m
  • the ratio of the thickness of the layer F to the thickness of the layer F is preferably 0.5 to 5
  • the ratio of the thickness of the layer P to the thickness of the layer F is preferably 1 to 50, respectively.
  • the layer P is preferably a layer formed from an mPI film whose surface is plasma-treated.
  • the layer F is preferably a layer of a heat-meltable F polymer.
  • the layer F may also be a layer formed from a layer of F polymer whose surface is plasma-treated before lamination.
  • the layer P in which the layer F is present on at least one surface is in an environment of normal temperature and humidity. It has excellent long-term sustainability of electrical characteristics underneath.
  • a laminate in which the dielectric constant of the layer P in contact with the layer F is 2.8 or less when the laminate is held at 24 ° C. and an atmosphere having a relative humidity of 50% for 24 hours is preferable.
  • a laminate having a thickness of 2.7 or less is more preferable.
  • the lower limit of the dielectric constant is preferably 2. Further, when the laminate of the present invention is held at 24 ° C.
  • the dielectric loss tangent of the layer P in contact with the layer F is 0.004 or less, and the laminate is preferably 0.
  • a laminate having a value of .003 or less is more preferable.
  • the lower limit of the dielectric loss tangent is preferably 0.0001.
  • the layer P in the present invention is also excellent in long-term sustainability of electrical characteristics in a hot and humid environment.
  • a laminate in which the dielectric constant of the layer P in contact with the layer F is 2.8 or less when the laminate is held in an atmosphere of 85 ° C. and a relative humidity of 85% for 72 hours is preferable.
  • a laminate having a thickness of 2.7 or less is more preferable.
  • the lower limit of the dielectric constant is preferably 2.
  • the dielectric loss tangent of the layer P in contact with the layer F is 0.007 or less, and the laminate is preferably 0.
  • a laminate having a value of .006 or less is more preferable.
  • the lower limit of the dielectric loss tangent is preferably 0.0001.
  • the resin-attached metal foil having the metal foil layer and the layer F and the mPI film to be the layer P are fused by the hot press method with the resin-attached metal foil layer F and the mPI film facing each other. It is preferable to wear it for production.
  • the tensile elastic modulus of the non-thermoplastic polyimide in the mPI film at 320 ° C. is preferably 0.2 GPa or more, preferably 0.4 GPa or more.
  • the tensile elastic modulus is preferably 10 GPa or less, and more preferably 5 GPa or less.
  • the tensile elastic modulus of the non-thermoplastic polyimide is at least such a lower limit, the shrinkage of the layer F during cooling after hot pressing is likely to be effectively relaxed by the elasticity of the layer P. As a result, wrinkles are less likely to occur in the laminated body, and it is easy to obtain a laminated body having better physical properties such as surface smoothness. This tendency becomes remarkable when the imide group density or the glass transition temperature of the non-thermoplastic polyimide in the mPI film is low. Further, when the tensile elastic modulus of the non-thermoplastic polyimide is not more than such an upper limit, the flexibility of the laminated body is more likely to be excellent.
  • Examples of the method for producing the metal foil with resin include a method of applying a powder dispersion of F polymer to the surface of the metal foil. Specifically, a powder containing an F polymer (hereinafter, also referred to as "F powder”), a solvent, and a powder dispersion containing a dispersant are applied to the surface of the metal foil, and a temperature range of 100 to 300 ° C. is applied. (Hereinafter, also referred to as “holding temperature”), the metal foil layer is held to remove the solvent, and the F polymer is fired in a temperature range exceeding the above temperature range to form a layer F on the surface of the metal foil. There is a way to do it.
  • F powder an F polymer
  • solvent a powder dispersion containing a dispersant
  • the F powder preferably contains the F polymer as a main component, and preferably contains 80 to 100% by mass of the F polymer.
  • the D50 of the F powder is preferably 0.05 to 6.0 ⁇ m, more preferably 0.2 to 3.0 ⁇ m.
  • the D90 of the F powder is preferably 0.3 to 8 ⁇ m, more preferably 0.8 to 5 ⁇ m.
  • the solvent is preferably a compound that does not volatilize instantaneously but volatilizes when it is held at the above-mentioned holding temperature, and more preferably a compound having a boiling point of 125 to 250 ° C.
  • the solvent 1-butanol, 1-methoxy-2-propanol, 3-methoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropanamide, N-methyl-2-pyrrolidone, ⁇ - Butyrolactone, cyclohexanone and cyclopentanone are preferred.
  • the dispersant is a compound having a hydrophilic group and a hydrophobic group, and is preferably a fluorine-based dispersant, a silicone-based dispersant or an acetylene-based dispersant, and more preferably a fluorine-based dispersant.
  • the dispersant is preferably nonionic.
  • fluorine-based dispersant fluoromonool, fluoropolyol, fluorosilicone and fluoropolyether are preferable.
  • the fluoropolyol is preferably a copolymer of a fluoro (meth) acrylate and a (meth) acrylate having a hydroxyl group or a polyoxyalkylene group, and a (meth) acrylate having a polyfluoroalkyl group or a polyfluoroalkenyl group and a polyoxyalkylene monool group. Copolymers with (meth) acrylates have are more preferred.
  • the fluorosilicone polyorganosiloxane having a CF bond in a part of the side chain is preferable.
  • As the fluoropolyether a compound in which a part of hydrogen atoms of the polyoxyalkylene alkyl ether is replaced with a fluorine atom is preferable.
  • the powder dispersion liquid may contain components other than the F powder, the solvent and the dispersant.
  • Other ingredients include thixotropic agents, defoamers, inorganic fillers, reactive alkoxysilanes, dehydrating agents, plasticizers, weather resistant agents, antioxidants, heat stabilizers, lubricants, antistatic agents, whitening agents, etc. Examples thereof include colorants, conductive agents, mold release agents, surface treatment agents, viscosity modifiers, and flame retardants.
  • the powder dispersion liquid may contain a resin component (thermosetting resin, thermoplastic resin, etc.) other than the F polymer.
  • the ratio of F powder in the powder dispersion is preferably 5 to 60% by mass.
  • the ratio of the dispersant in the powder dispersion is preferably 0.1 to 30% by mass.
  • the ratio of the solvent in the powder dispersion is preferably 15 to 65% by mass.
  • the coating methods include spray method, roll coating method, spin coating method, gravure coating method, micro gravure coating method, gravure offset method, knife coating method, kiss coating method, bar coating method, die coating method, fountain Mayer bar method, and slot die coating.
  • the law can be mentioned.
  • the state of the wet film may be adjusted by heating to a temperature lower than the above temperature range. The adjustment should be at a temperature at which the solvent does not completely volatilize.
  • the holding atmosphere may be in any state under normal pressure or reduced pressure.
  • the atmosphere for holding may be any of an oxidizing gas atmosphere such as oxygen gas, a reducing gas atmosphere such as hydrogen gas, and an inert gas atmosphere such as helium gas, neon gas, argon gas, and nitrogen gas.
  • the holding temperature is preferably in the temperature range of 200 to 300 ° C. In this range, the solvent is removed, the partial decomposition and flow of the dispersant proceed effectively, and the dispersant is more likely to be surface segregated.
  • the time for holding at the holding temperature is preferably 0.1 to 10 minutes, and particularly preferably 0.5 to 5 minutes.
  • the F polymer In the production of the metal foil with resin, it is preferable to further fire the F polymer in a temperature region above the holding temperature (hereinafter, also referred to as “firing temperature”) to form the layer F on the surface of the metal foil.
  • the F powder In the firing, the F powder is densely packed and the F polymer is fused in a state where the dispersant is effectively surface segregated, so that the layer F having excellent smoothness and fusion property is formed.
  • the powder dispersion contains a thermosetting resin
  • a layer F composed of a mixture of the F polymer and the soluble resin is formed, and if the powder dispersion contains the thermosetting resin, the F polymer and the thermosetting resin are cured.
  • a layer F made of an object is formed.
  • Examples of the firing method include a method using an oven, a method using a ventilation drying furnace, a method of irradiating heat rays such as infrared rays, and the like.
  • a method using an oven In order to improve the smoothness of the surface of the layer F, pressure may be applied with a heating plate, a heating roll or the like.
  • a firing method a method of irradiating far infrared rays is preferable because it can be fired in a short time and the far infrared ray furnace is relatively compact. In firing, infrared heating and hot air heating may be combined.
  • the atmosphere in firing may be either under normal pressure or under reduced pressure. Further, the atmosphere in firing may be any of an oxidizing gas atmosphere such as oxygen gas, a reducing gas atmosphere such as hydrogen gas, and an inert gas atmosphere such as helium gas, neon gas, argon gas, and nitrogen gas. It is preferable to have an active gas atmosphere.
  • the atmosphere in the firing is preferably an atmosphere composed of an inert gas and having a low oxygen gas concentration, and preferably an atmosphere composed of nitrogen gas and having an oxygen gas concentration (volume basis) of 300 ppm or less.
  • the firing temperature is preferably more than 300 ° C, particularly preferably 330 to 380 ° C. In this case, the F polymer is more likely to form a dense layer F.
  • the time for holding at the firing temperature is preferably 30 seconds to 5 minutes.
  • the surface of the obtained resin-attached metal foil is surface-treated in order to control the coefficient of linear expansion of the layer F and further improve the fusion property of the layer F. May be good.
  • the surface treatment include annealing treatment, corona discharge treatment, atmospheric pressure plasma treatment, vacuum plasma treatment, UV ozone treatment, excimer treatment, chemical etching, silane coupling treatment, and fine roughening treatment.
  • the temperature in the annealing treatment is preferably 80 to 190 ° C.
  • the pressure in the annealing treatment is preferably 0.001 to 0.030 MPa.
  • the annealing treatment time is preferably 10 to 300 minutes.
  • Examples of the plasma irradiation device in plasma processing include a high frequency induction method, a capacitively coupled electrode method, a corona discharge electrode-plasma jet method, a parallel plate type, a remote plasma type, an atmospheric pressure plasma type, and an ICP type high density plasma type. ..
  • Examples of the gas used for the plasma treatment include argon gas, a mixed gas of hydrogen gas and nitrogen gas, and a mixed gas of hydrogen gas, nitrogen gas and argon gas. In this case, by adjusting the surface roughness of the layer F, fine irregularities are likely to be formed.
  • the mPI film is preferably produced by cyclizing a solution of a polyimide precursor (polyamic acid) to obtain a gel film, drying the gel film, and further heat-treating the gel film.
  • the imidization of the polyamic acid proceeds by drying and heat treatment.
  • a method in the cyclization reaction a method of casting a solution into a film and thermally cyclizing it to obtain a gel film (thermal ring closure method), or a method of mixing a catalyst and a dehydrating agent with the solution and chemically ringing the solution.
  • a method of obtaining a gel film by a chemical reaction (chemical ring closure method) can be adopted.
  • Examples of the catalyst include trimethylamine, triethylenediamine, dimethylaniline, isoquinoline, pyridine and ⁇ -picoline.
  • Examples of the dehydrating agent include acetic anhydride, propionic anhydride, butyric anhydride, and benzoic anhydride.
  • the amount of the catalyst and the dehydrating agent used is preferably 1.5 to 10 mol, respectively, with respect to 1 mol of the amide group (or carboxyl group) of the polyamic acid.
  • the obtained gel film is dried and heat-treated.
  • the temperature in the drying treatment is preferably 220 to 300 ° C. Further, in the drying, the drying temperature unevenness is preferably set to 20 ° C. or less from the viewpoint of suppressing the drying temperature unevenness in the film width direction.
  • the gel film after the drying treatment may be subjected to a stretching treatment.
  • the temperature in the heat treatment is more preferably 300 to 550 ° C.
  • the mPI film may be further subjected to surface treatment such as annealing treatment, corona treatment, plasma treatment, roughening treatment, and silane coupling agent treatment.
  • the press temperature in the hot press for laminating the metal foil with resin and the mPI film is preferably 300 ° C. to 350 ° C., more preferably 310 ° C. to 330 ° C. In this range, the layer F and the mPI film can be firmly fused while suppressing thermal deformation of the mPI film.
  • the degree of vacuum in the hot press is preferably 20 kPa or less. In this range, it is possible to suppress the mixing of air bubbles at the interfaces of the metal foil layer, the layer F, and the layer P in the laminated body and deterioration due to oxidation. Further, during hot pressing, it is preferable to raise the temperature after reaching the above vacuum degree.
  • the layer F can be pressure-bonded in a state before it is softened, that is, in a state before a certain degree of fluidity and adhesion is generated, the generation of air bubbles can be prevented.
  • the press pressure in the hot press is preferably 0.2 to 10 MPa. In this range, the layer F and the mPI film can be firmly fused while suppressing the damage of the PI film.
  • the laminate of the present invention is a metal-clad laminate having layers F and P, which is excellent in physical properties such as electrical characteristics, chemical resistance (etching resistance), and heat resistance, and is a flexible printed circuit board or a rigid printed circuit board. Can be used as a material.
  • the printed circuit board of the present invention is a printed circuit board having a layer P, a layer F existing on at least one surface of the layer P, and a transmission circuit existing on at least one surface thereof, and is a printed circuit board having water absorption of the layer P.
  • the rate is less than 1.5%, and the absolute value of the coefficient of linear expansion of the layer P is 25 ppm / ° C. or less.
  • the configuration, the types of layers P and F, etc. in the printed circuit board of the present invention are the same as those in the laminate of the present invention, including a suitable range.
  • the structure of the printed circuit board of the present invention includes, for example, a transmission circuit / layer F / layer P configuration, a transmission circuit / layer F / layer P / layer F configuration, and a transmission circuit / layer F / layer P / layer F / transmission.
  • a circuit configuration can be mentioned.
  • an interlayer insulating film may be formed on the transmission circuit, and a transmission circuit may be further formed on the interlayer insulating film.
  • the interlayer insulating film can also be formed by, for example, the powder dispersion liquid in the present invention.
  • a solder resist may be laminated on a transmission circuit.
  • the solder resist can be formed by the powder dispersion liquid in the present invention.
  • a coverlay film may be laminated on the transmission circuit.
  • the coverlay film can also be formed by the powder dispersion liquid in the present invention.
  • Specific embodiments of the printed circuit board include a laminated body of the present invention or a multilayer printed circuit board in which the printed circuit board of the present invention is multilayered.
  • a preferred embodiment of the multilayer printed circuit board includes a configuration in which the outermost layer is the layer F, and one or more of the metal foil layers, the layers F, and the layers P are provided in this order. It is preferable that a part of the metal foil layer in such an embodiment is removed to form a transmission circuit. Further, a transmission circuit formed by removing a part of the metal foil layer may exist between the layer F and the layer P.
  • the multilayer printed circuit board of the above aspect has a layer F on the outermost layer and is excellent in heat resistance. Specifically, swelling and peeling of the interface are unlikely to occur even at a high temperature of 250 to 300 ° C.
  • the outermost layer is the layer P
  • one or more of the configurations having the metal foil layer, the layer F, and the layer P in this order are included. It is preferable that a part of the metal foil layer in such an embodiment is removed to form a transmission circuit. Further, a transmission circuit formed by removing a part of the metal foil layer may exist between the layer F and the layer P.
  • the multilayer printed circuit board of the above aspect has excellent heat resistance even if it has a layer P on the outermost layer, and swelling or peeling of the interface is unlikely to occur even at a high temperature of 250 to 300 ° C.
  • the multilayer printed circuit board in these embodiments is useful as a printed circuit board having excellent solder float resistance.
  • the present invention is not limited to the configuration of the above-described embodiment.
  • the laminate, the printed circuit board, and the antenna of the present invention may be added with any other configuration or may be replaced with any configuration exhibiting the same function in the configuration of the above-described embodiment.
  • the method for manufacturing a printed circuit board of the present invention may be added to any other step in the configuration of the above-described embodiment, or may be replaced with any step that exhibits the same function.
  • BPDA 3,3', 4,4'-biphenyltetracarboxylic dianhydride
  • ODPA 4,4'-oxydiphthalic anhydride
  • PMDA pyromellitic acid dianhydride
  • PBTA p-phenylenebis (trimeritate anhydride)
  • PDA Paraphenylenediamine
  • BAPP 2,2'-bis [4- (4-aminophenoxy) phenyl]
  • BAPB 4,4'-bis (4-aminophenoxy) biphenyl
  • PPBA 4,4'-(1, 3-Phenylisopropylidene) Bisaniline
  • m-TB 2,2'-dimethyl-4,4'-diaminobiphenyl
  • TPE-R 1,3-bis (4-aminophenoxy) benzene
  • TFE Tetrafluoride
  • Example 1 Preparation Example of Non-Thermoplastic Polyimide Film
  • mPI Film 1 contains BPDA (75 mol%), ODPA (15 mol%) and PMDA (15 mol%) as acid anhydride monomers, and PDA (70 mol%), BAPP (15 mol%) and BABP as diamine monomers. (15 mol%) is selected, BPDA and PDA are first solution-polymerized, then ODPA, PMDA, BAPP and BABP are added and polymerized, and imidized by a chemical ring-closing method to obtain a non-thermoplastic polyimide (glass). It is a non-stretched film having a transition temperature of 298 ° C. and an imide group density of 0.34).
  • mPI film 2 For mPI film 2, PMDA (9 mol%) and BPDA (91 mol%) were selected as acid anhydride monomers, and m-TB (15 mol%) and TPE-R (85 mol%) were selected as diamine monomers, all of which were selected.
  • This is a non-stretched film of non-thermoplastic polyimide (glass transition temperature: 298 ° C., imide group density: 0.26) obtained by solution-polymerizing the monomers of the above and imidizing them by a chemical ring-closing method.
  • mPI film 3 The mPI film 3 is obtained by selecting BPDA (100 mol%) as an acid anhydride monomer and PDA (100 mol%) as a diamine monomer, solution-polymerizing all the monomers, and imidizing them by a chemical ring closure method. It is a non-stretched film of thermoplastic polyimide (glass transition temperature: 420 ° C., imide group density: 0.38).
  • mPI film 4 For the mPI film 4, BPDA (9 mol%) and PBTA (91 mol%) were selected as the acid anhydride monomers, and m-TB (15 mol%) and PPBA (85 mol%) were selected as the diamine monomers, and all the monomers were selected. Is a non-stretched film of non-thermoplastic polyimide (glass transition temperature: 268 ° C., imide group density: 0.18) obtained by solution polymerization and imidization by a chemical ring closure method.
  • mPI film 5 Non-thermoplastic polyimide (manufactured by SKC Kolon PI, "FS-200"; glass transition temperature: 310 ° C., imide group density: 0.25). The physical properties of each film are summarized in Table 1.
  • the measurement conditions were a sample measurement range of 9 mm in width, a distance of 20 mm between grippers, a measurement temperature of 0 ° C to 440 ° C, a temperature rise rate of 3 ° C / min, a measurement atmosphere of air, and a strain amplitude of 10 ⁇ m.
  • the measurement frequency was 5 Hz
  • the minimum tension / compressive force was 100 mN
  • the tension / compression gain was 1.5
  • the initial force amplitude was 100 mN.
  • thermomechanical analyzer (“TMA / SS6100” manufactured by SII Nanotechnology Inc.)
  • the polyimide film (width: 3 mm, length: 10 mm) was raised from 0 ° C to 400 ° C at 10 ° C / min. After warming, it was cooled to 10 ° C. at 40 ° C./min and further heated from 10 ° C. to 200 ° C. at 10 ° C./min to determine the coefficient of linear expansion.
  • the measurement load was 29.4 mN, and the measurement atmosphere was an air atmosphere.
  • ⁇ Water absorption rate> It was measured by the method described later.
  • Dispersion Solution 1 contains 98.0 mol%, 0.1 mol%, and 1.9 mol% of TFE units, NAH units, and PPVE units in this order, and is an F polymer 1 having an acid anhydride group (melting temperature: 300). 50 parts by mass of powder (D50: 2.6 ⁇ m, D90: 7.1 ⁇ m) of °C), 3 parts by mass of nonionic fluoropolymer, and 47 parts by mass of NMP were put into a pot, and zirconia balls were put into the pot. Is a dispersion liquid in which the powder of F polymer 1 is dispersed in NMP, which is obtained by rolling the pot at 150 rpm for 1 hour.
  • Dispersion liquid 2 contains 98.0 mol% and 2.0 mol% of TFE units and PPVE units in this order, and is a powder (D50: 3.) of F polymer 2 having no functional group (melting temperature: 305 ° C.). 50 parts by mass of 5 ⁇ m, D90: 9.2 ⁇ m), 3 parts by mass of nonionic fluoropolymer, and 47 parts by mass of N-methyl-2-pyrrolidone (NMP) were put into a pot, and zirconia balls were put into the pot. Is a dispersion liquid in which the powder of F polymer 2 is dispersed in NMP, which is obtained by rolling the pot at 150 rpm for 1 hour.
  • NMP N-methyl-2-pyrrolidone
  • Example 3 (Reference example)
  • Example of preparation of copper foil with resin [Example 3-1]
  • Example of preparation of copper foil with resin 1 Disperse liquid 1 is added to electrolytic copper foil 1 (thickness: 18 ⁇ m, Rzjis: 1.0 ⁇ m, Rq : 0.21 ⁇ m; “CF-T4X-SV-18” manufactured by Fukuda Metal Foil Powder Industry Co., Ltd.) was coated by a roll-to-roll method by a gravure reverse method to form a liquid film. Next, this liquid film was passed through a drying oven at 120 ° C. for 5 minutes, heated and dried to obtain a dry film. Then, the dry film was heated in a nitrogen oven at 380 ° C. for 3 minutes.
  • a resin-attached copper foil 1 in which a layer F 1 (thickness: 25 ⁇ m) containing the polymer 1 was formed on the surface of the electrolytic copper foil 1 was obtained.
  • the water absorption of the layer F 1 measured after an electrolytic copper foil 1 and the etching was 0.01%.
  • the surface roughness of the copper foil used for adjusting the resin-attached copper foil was measured by the following method. ⁇ Copper foil surface roughness>
  • the Rzjis value and the Rq value of the surface (matte surface) of the copper foil were measured using a contact type surface roughness meter (manufactured by Tokyo Seimitsu Co., Ltd., "SURFCOM NEX001").
  • the measurement terminal uses a terminal with a tip radius of 2 ⁇ m and a cone (taper angle: 60 °), and the cutoff values are 0.8 mm for ⁇ c and 2.5 ⁇ m for ⁇ s, and the reference length of the roughness curve is 0.8 mm.
  • the evaluation length of the roughness curve was 4.0 mm.
  • Example 3-2 Example of preparation of copper foil 2 with resin Layer F 2 (thickness) containing F polymer 2 in the same manner as copper foil 1 with resin except that the dispersion liquid 2 was used instead of the dispersion liquid 1. : A copper foil 2 with a resin on which 25 ⁇ m) was formed was obtained. Water absorption of the layer F 2 measured after an electrolytic copper foil 1 and the etching was 0.01%.
  • Example 3-3 Preparation example of copper foil 3 with resin A varnish containing 10% by mass of aromatic thermoplastic polyimide is applied to the electrolytic copper foil 1 by a roll-to-roll method by a gravure reverse method to form a liquid film. did. Next, this liquid film was passed through a drying oven at 120 ° C. for 5 minutes and at 200 ° C. for 10 minutes, heated and dried to obtain a dry film. As a result, a resin-attached copper foil 3 in which an aromatic thermoplastic polyimide layer PI 1 (thickness: 25 ⁇ m) was formed on the surface of the electrolytic copper foil 1 was obtained. The water absorption rate of the layer PI 1 measured after etching the electrolytic copper foil 1 was 1.5%. The water absorption rate of each layer after etching was measured by a method described later.
  • Example 3-4 Preparation example of copper foil 4 with resin
  • An electrolytic copper foil 2 (thickness: 18 ⁇ m, Rzjis: 1.2 ⁇ m, Rq: 0.28 ⁇ m; manufactured by Mitsui Metal Mining Co., Ltd., “TQ-M7”
  • a resin-containing copper foil 4 was obtained in the same manner as the resin-containing copper foil 1 except that the value was changed to ⁇ VSP-18 ”).
  • Example 3-5 Example of preparation of copper foil 5 with resin An electrolytic copper foil 3 (thickness: 18 ⁇ m, Rzjis: 0.6 ⁇ m, Rq: 0.14 ⁇ m; manufactured by Mitsui Metal Mining Co., Ltd., “TQ-M4” A resin-containing copper foil 5 was obtained in the same manner as the resin-containing copper foil 1 except that the value was changed to ⁇ VSP-18 ”).
  • Example 4 The resin coated copper foil 1 layer F 1 is arranged to face the respective surfaces of Preparation Example 4-1]
  • the laminate 1 is a laminate having a structure of electrolytic copper foil 1 / layer F 1 / layer P 1 / layer F 1 / electrolytic copper foil 1.
  • the surface of the mPI film 1 was subjected to a mixed gas of 95% by volume argon and 5% by volume hydrogen (flow rate:) under the condition of a high frequency voltage of 40 kHz (discharge power density: 300 W / min / m 2 ).
  • the surface was treated by vacuum plasma treatment (vacuum degree: 20 Pa) using 2000 sccm).
  • Example 4-2 Production example of laminate 2 Electrolytic copper foil 1 / layer F 2 / layer in the same manner as in Example 4-1 except that the resin-attached copper foil 2 was used instead of the resin-attached copper foil 1.
  • a laminate 2 having a configuration of P 1 / layer F 2 / electrolytic copper foil 1 was obtained.
  • Example 4-3 Production example of laminate 3 Electrolytic copper foil 1 / layer F 1 / layer P 2 (mPI) in the same manner as in Example 4-1 except that the mPI film 2 was used instead of the mPI film 1.
  • a laminate 3 having a structure of film 2) / layer F 1 / electrolytic copper foil 1 was obtained.
  • Example 4-4 Production example of laminated body 4 Electrolytic copper foil 1 / layer F 1 / layer P 3 (mPI) in the same manner as in Example 4-1 except that the mPI film 3 was used instead of the mPI film 1. A laminate 4 having a structure of film 3) / layer F 1 / electrolytic copper foil 1 was obtained. [Example 4-5] Production example of laminate 5 Electrolytic copper foil 1 / layer F 1 / layer P 4 (mPI) in the same manner as in Example 4-1 except that the mPI film 4 was used instead of the mPI film 1. A laminate 5 having a structure of film 4) / layer F 1 / electrolytic copper foil 1 was obtained.
  • Example 4-6 Production example of laminate 6 Electrolytic copper foil 1 / layer PI 1 / layer in the same manner as in Example 4-1 except that the resin-attached copper foil 3 was used instead of the resin-attached copper foil 1. A laminate 6 having a configuration of P 1 / layer PI 1 / electrolytic copper foil 1 was obtained.
  • Example 4-7 Production example of laminate 7 Electrolytic copper foil 1 / layer F 1 / layer P 5 (mPI) in the same manner as in Example 4-1 except that the mPI film 5 was used instead of the mPI film 1. A laminate 7 having a structure of film 5) / layer F 1 / electrolytic copper foil 1 was obtained.
  • Example 4-8 Production Example of Laminated Body 8 A laminated body 8 was obtained in the same manner as in Example 4-1 except that the resin-attached copper foil 4 was used instead of the resin-attached copper foil 1.
  • Example 4-9 Production Example of Laminated Body 9 A laminated body 9 was obtained in the same manner as in Example 4-1 except that the copper foil 5 with resin was used instead of the copper foil 1 with resin.
  • Example 5 Evaluation example of laminated body Each laminated body was evaluated by the following evaluation items. ⁇ Peel strength> The laminate was cut into a width of 1 cm, peeled off at an angle of 90 ° and a speed of 50 mm / min, and the peel strength (kN / m) was measured. ⁇ Normal-Electrical characteristics> The copper foil of each laminate was removed by etching and dried at 100 ° C. for 2 hours to prepare a measurement sample composed of a layer P having layers F on both sides. After holding each measurement sample in an atmosphere of 24 ° C. and 50% relative humidity for 24 hours, the respective dielectric constants (normal-dielectric constant) and dielectric loss tangent (normal-dielectric loss tangent) were measured.
  • each measurement sample was further held at 85 ° C. and an atmosphere of 85% relative humidity for 72 hours. Within 5 minutes after holding, the dielectric constant (humidification-dielectric constant) and dielectric loss tangent (humidification-dielectric loss tangent) of each measurement sample were measured.
  • ⁇ Water absorption rate> The measurement was performed according to the method of JIS K 7209: 2000A. First, a copper foil of a laminated body cut into 10 cm squares was removed by etching to prepare a test piece. The test piece was then dried at 50 ° C. for 24 hours and cooled in a desiccator. The mass of the test piece at this point was defined as the mass of the test piece before immersion. Then, the dried test piece was immersed in pure water at 23 ° C. for 24 hours. Then, the test piece was taken out from pure water, the water on the surface was quickly wiped off, and the mass measured within 1 minute was taken as the mass after immersion of the test piece.
  • the mass change rate of the test piece before and after immersion was determined and used as the "water absorption rate (actual measurement value)" of the laminated body. Further, a value obtained by simply summing the water absorption rates of each layer of the laminated body was defined as "water absorption rate (calculated value)".
  • a transmission line was formed on each of the laminated bodies to form a printed circuit board.
  • a microstrip line was used to form the transmission line.
  • the 28 GHz signal on the printed circuit board was processed using a vector network analyzer (“E8361A” manufactured by Keysight Technology Co., Ltd.), and the S21 parameter representing the transmission loss was measured using the Universal Test Fixture as a probe.
  • the characteristic impedance of the line was set to 50 ⁇
  • the length of the transmission line of the printed circuit board was set to 50 mm
  • the transmission loss was measured.
  • S21-parameter which is one of the network parameters used to express the characteristics of high-frequency electronic circuits and high-frequency electronic components, was used as the transmission loss value.
  • the transmission loss value of the printed circuit board formed from the laminated body not immersed in pure water is defined as "transmission loss before water absorption", and the printed circuit board formed from the laminated body after being immersed in pure water for 24 hours at 23 ° C.
  • the transmission loss value was defined as "transmission loss after water absorption”.
  • ⁇ Solder float resistance> The appearance of the laminate after being cut into 5 cm squares, immersed in pure water at 24 ° C. for 24 hours, and floated in a solder bath at 260 ° C. for 30 seconds was evaluated according to the following criteria. ⁇ (Good): No swelling or peeling is seen. ⁇ (Yes): No swelling was observed, but some peeling was observed. ⁇ (impossible): Swelling and peeling were observed.
  • the laminate of the present invention is useful as a material for a printed circuit board. Further, if the printed circuit board of the present invention is used, an antenna having excellent characteristics can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention provides a laminate (metal clad laminate) which comprises a dielectric layer that has a low water absorption rate and excellent dielectric characteristics, heat resistance, and adhesion, and a metal foil layer, and which has excellent properties as materials or the like of printed circuit boards such as flexible printed circuit boards and rigid printed circuit boards. The laminate has at least a three-layer structure and includes the metal foil layer, a non-thermoplastic polyimide layer P, and a tetrafluoroethylene polymer layer F, at least one of the outermost layers being the metal foil layer. The layer F is present on at least one surface of the layer P. The layer P has a water absorption rate of less than 1.5%, and the absolute value of the coefficient of linear expansion thereof is 25 ppm/°C or less.

Description

積層体、プリント基板の製造方法、プリント基板及びアンテナLaminates, printed circuit board manufacturing methods, printed circuit boards and antennas
 本発明は、積層体、プリント基板の製造方法、プリント基板及びアンテナに関する。 The present invention relates to a laminate, a method for manufacturing a printed circuit board, a printed circuit board, and an antenna.
 情報通信社会の発達に伴い、データ転送量が増大している。その結果、情報伝達に使用する電波の周波数は上昇の一途をたどっている。電気信号を通過させる伝送路には、例えばプリント基板が使用される。その伝送路に高周波の電気信号を通過させると、周波数が高くなる程、その劣化(損失)が大きくなる。
 プリント基板に使用する誘電体材料には、電気信号の損失を低減するために、低誘電率、低誘電正接及び低吸水率である特性が求められている。かかる誘電体材料としては、テトラフルオロエチレン系ポリマーが挙げられる。しかし、テトラフルオロエチレン系ポリマーを使用すると、プリント基板の寸法安定性と機械的強度とが低下しやすい。かかるテトラフルオロエチレン系ポリマーの代替として、非熱可塑性ポリイミドが提案されている(特許文献1~3を参照)。
With the development of the information and communication society, the amount of data transferred is increasing. As a result, the frequency of radio waves used for information transmission is steadily rising. For example, a printed circuit board is used as a transmission line through which an electric signal is passed. When a high-frequency electric signal is passed through the transmission line, the higher the frequency, the greater the deterioration (loss).
The dielectric material used for the printed circuit board is required to have low dielectric constant, low dielectric loss tangent and low water absorption in order to reduce the loss of electric signals. Examples of such a dielectric material include tetrafluoroethylene-based polymers. However, when a tetrafluoroethylene polymer is used, the dimensional stability and mechanical strength of the printed circuit board tend to decrease. Non-thermoplastic polyimides have been proposed as alternatives to such tetrafluoroethylene-based polymers (see Patent Documents 1 to 3).
国際公開第2016/159060号International Publication No. 2016/159060 国際公開第2018/061727号International Publication No. 2018/061727 特開2018-150544号JP-A-2018-150544
 非熱可塑性ポリイミドを誘電体層とする積層体から形成されるプリント基板は、その分子骨格上の特徴により、誘電特性に優れている。しかし、本発明者らは、前記プリント基板の誘電特性は、非熱可塑性ポリイミドの吸水性により依然不安定であるという点を、まず知見している。
 また、前記特徴から非熱可塑性ポリイミドの耐熱性が未だ充分ではなく、前記積層体をプリント基板の実装工程である、はんだフロート工程に供すると、誘電体層が剥離したり膨れたりし易く、プリント基板を効率的に製造しにくいという点も、本発明者らは知見している。
 本発明は、非熱可塑性ポリイミドとテトラフルオロエチレン系ポリマーとを複合化した誘電特性、耐熱性及び密着性に優れた吸水率が低い誘電体層と、金属箔層とを有する積層体(金属張積層体)の提供を目的とする。また、かかる物性に優れ、伝送損失が低減されたプリント基板及びその製造方法、並びにアンテナの提供を目的とする。
A printed circuit board formed from a laminate having a non-thermoplastic polyimide as a dielectric layer has excellent dielectric properties due to its molecular skeleton characteristics. However, the present inventors have first found that the dielectric properties of the printed circuit board are still unstable due to the water absorption of the non-thermoplastic polyimide.
Further, due to the above characteristics, the heat resistance of the non-thermoplastic polyimide is not yet sufficient, and when the laminate is subjected to a solder float process, which is a mounting process of a printed circuit board, the dielectric layer is easily peeled off or swelled, and printing The present inventors have also found that it is difficult to efficiently manufacture a substrate.
The present invention is a laminate (metal-clad) having a dielectric layer in which a non-thermoplastic polyimide and a tetrafluoroethylene polymer are composited, which are excellent in dielectric properties, heat resistance and adhesion and have a low water absorption rate, and a metal foil layer. The purpose is to provide a laminate). Another object of the present invention is to provide a printed circuit board having excellent physical properties and reduced transmission loss, a method for manufacturing the printed circuit board, and an antenna.
 本発明は、下記の態様を有する。
[1]金属箔層と非熱可塑性ポリイミドの層Pとテトラフルオロエチレン系ポリマーの層Fとを有し、最外層の少なくとも一方が金属箔層である、少なくとも3層構造の積層体であって、前記層Pの少なくとも一方の面に前記層Fが存在し、前記層Pの吸水率が1.5%未満で、かつ線膨張係数の絶対値が25ppm/℃以下である、積層体。
[2]前記層Pの両面にそれぞれ前記層Fが存在する、少なくとも4層構造の積層体である、[1]に記載の積層体。
[3]前記金属箔層の表面の二乗平均平方根粗さが、0.25μm以上である、[1]又は[2]に記載の積層体。
[4]前記金属箔層の厚さが、2~30μmである、[1]~[3]のいずれかに記載の積層体。
[5]前記非熱可塑性ポリイミドが、ガラス転移温度が280℃以上の非熱可塑性ポリイミドである、[1]~[4]のいずれかに記載の積層体。
The present invention has the following aspects.
[1] A laminated body having at least a three-layer structure having a metal foil layer, a layer P of non-thermoplastic polyimide, and a layer F of a tetrafluoroethylene-based polymer, and at least one of the outermost layers is a metal foil layer. A laminate in which the layer F is present on at least one surface of the layer P, the water absorption rate of the layer P is less than 1.5%, and the absolute value of the linear expansion coefficient is 25 ppm / ° C. or less.
[2] The laminate according to [1], which is a laminate having at least a four-layer structure in which the layer F is present on both sides of the layer P.
[3] The laminate according to [1] or [2], wherein the root mean square roughness of the surface of the metal foil layer is 0.25 μm or more.
[4] The laminate according to any one of [1] to [3], wherein the thickness of the metal foil layer is 2 to 30 μm.
[5] The laminate according to any one of [1] to [4], wherein the non-thermoplastic polyimide is a non-thermoplastic polyimide having a glass transition temperature of 280 ° C. or higher.
[6]前記非熱可塑性ポリイミドが、320℃における引張弾性率が0.2GPa以上の非熱可塑性ポリイミドである、[1]~[5]のいずれかに記載の積層体。
[7]前記非熱可塑性ポリイミドのイミド基密度が、0.20~0.35である、[1]~[6]のいずれかに記載の積層体。
[8]前記層Pの厚さが、10~100μmである、[1]~[7]のいずれかに記載の積層体。
[9]前記テトラフルオロエチレン系ポリマーが、溶融温度が260~320℃の熱溶融性のテトラフルオロエチレン系ポリマーである、[1]~[8]のいずれかに記載の積層体。
[10]前記層Fの厚さが、1~38μmである、[1]~[9]のいずれかに記載の積層体。
[6] The laminate according to any one of [1] to [5], wherein the non-thermoplastic polyimide is a non-thermoplastic polyimide having a tensile elastic modulus of 0.2 GPa or more at 320 ° C.
[7] The laminate according to any one of [1] to [6], wherein the non-thermoplastic polyimide has an imide group density of 0.20 to 0.35.
[8] The laminate according to any one of [1] to [7], wherein the layer P has a thickness of 10 to 100 μm.
[9] The laminate according to any one of [1] to [8], wherein the tetrafluoroethylene polymer is a heat-meltable tetrafluoroethylene polymer having a melting temperature of 260 to 320 ° C.
[10] The laminate according to any one of [1] to [9], wherein the layer F has a thickness of 1 to 38 μm.
[11]前記積層体を24℃で相対湿度50%の雰囲気に24時間保持した場合の、前記層Fに接している前記層Pの誘電率が2.8以下、かつ誘電正接が0.004以下である、積層体である、[1]~[10]のいずれかに記載の積層体。
[12]前記積層体を85℃で相対湿度85%の雰囲気に72時間保持した場合の、前記層Fに接している前記層Pの誘電率が2.8以下、かつ誘電正接が0.007以下である、積層体である、[1]~[11]のいずれかに記載の積層体。
[13]前記[1]~[12]のいずれかに記載の積層体の前記金属箔層をエッチング処理し、伝送回路を形成してプリント基板を得る、プリント基板の製造方法。
[14]非熱可塑性ポリイミドの層Pと、前記層Pの少なくとも一方の面に存在するテトラフルオロエチレン系ポリマーの層Fと、その少なくとも一方の面に存在する伝送回路と、を有するプリント基板であって、前記層Pの吸水率が1.5%未満、かつ線膨張係数の絶対値が25ppm/℃以下である、プリント基板。
[15]前記[14]に記載のプリント基板から形成された、アンテナ。
[11] When the laminate is held at 24 ° C. in an atmosphere of 50% relative humidity for 24 hours, the dielectric constant of the layer P in contact with the layer F is 2.8 or less, and the dielectric loss tangent is 0.004. The laminate according to any one of [1] to [10], which is the laminate below.
[12] When the laminate is held at 85 ° C. in an atmosphere of 85% relative humidity for 72 hours, the dielectric constant of the layer P in contact with the layer F is 2.8 or less, and the dielectric loss tangent is 0.007. The laminate according to any one of [1] to [11], which is the laminate below.
[13] A method for manufacturing a printed circuit board, wherein the metal foil layer of the laminate according to any one of [1] to [12] is etched to form a transmission circuit to obtain a printed circuit board.
[14] A printed circuit board having a layer P of non-thermoplastic polyimide, a layer F of a tetrafluoroethylene polymer existing on at least one surface of the layer P, and a transmission circuit existing on at least one surface thereof. A printed circuit board in which the water absorption rate of the layer P is less than 1.5% and the absolute value of the linear expansion coefficient is 25 ppm / ° C. or less.
[15] An antenna formed from the printed circuit board according to the above [14].
 本発明によれば、水の影響を受けにくい伝送損失が低減されたプリント基板が得られる。また、かかるプリント基板の効率的な製造に適した、誘電特性、耐熱性及び密着性に優れ、吸水率が低い誘電体層と金属箔層とを有する積層体が得られる。 According to the present invention, a printed circuit board that is not easily affected by water and has a reduced transmission loss can be obtained. Further, a laminate having a dielectric layer having a dielectric property, heat resistance and adhesion, and a low water absorption rate, which is suitable for efficient production of such a printed circuit board, and a metal foil layer can be obtained.
 以下の用語は、以下の意味を有する。
 「熱溶融性のポリマー(樹脂)」とは、溶融流動性のポリマーを意味し、荷重49Nの条件下、ポリマーの溶融温度よりも20℃以上高い温度において、溶融流れ速度が0.1~1000g/10分となる温度が存在するポリマーを意味する。なお、「溶融流れ速度」とは、JIS K 7210:1999(ISO 1133:1997)に規定される、ポリマーのメルトマスフローレート(MFR)を意味する。
 「ポリマーのガラス転移点(Tg)」とは、動的粘弾性測定(DMA)法でポリマーを分析して測定される値である。
 「ポリマーの溶融温度」は、示差走査熱量測定(DSC)法で測定した融解ピークの最大値に対応する温度である。
 「パウダーのD50」は、レーザー回折・散乱法によって求められるパウダーの体積基準累積50%径である。すなわち、レーザー回折・散乱法によって粒度分布を測定し、粒子の集団の全体積を100%として累積カーブを求め、その累積カーブ上で累積体積が50%となる点の粒子径である。
 「パウダーのD90」は、レーザー回折・散乱法によって求められるパウダーの体積基準累積90%径である。すなわち、レーザー回折・散乱法によって粒度分布を測定し、粒子の集団の全体積を100%として累積カーブを求め、その累積カーブ上で累積体積が90%となる点の粒子径である。
 パウダーのD50及びD90は、パウダーを水中に分散させ、レーザー回折・散乱式の粒度分布測定装置(堀場製作所社製、LA-920測定器)を用いたレーザー回折・散乱法により分析して求められる。
 「液の粘度」は、B型粘度計を用いて、室温下(25℃)で回転数が30rpmの条件下で測定される液の粘度である。測定を3回繰り返し、3回分の測定値の平均値とする。
 「層の十点平均粗さ」は、JIS B 0601:2013の附属書JAで規定される値である。
 「層の二乗平均平方根粗さ」は、JIS B 0601:2013(ISO 4287:1997,Amd.1:2009)で規定される値である。
 「フィルムの誘電率及び誘電正接」は、特記しない限り、23℃±2℃、相対湿度50±5%の環境下、周波数10GHzにて、スプリットポスト誘電体共振器(SPDR)を用いて測定される値である。「層の誘電率及び誘電正接」も、同様である。
 「フィルムの引張弾性率」は、広域粘弾性測定装置を用いて、測定周波数10Hzにて測定される値である。
 付加重合系ポリマー(樹脂)における「単位」とは、モノマーの重合により形成された前記モノマー1分子に基づく原子団を意味する。単位は、重合反応によって直接形成された原子団であってもよく、ポリマーを処理することによって前記原子団の一部が別の構造に変換された原子団であってもよい。以下、モノマーaに基づく単位を、単に「モノマーa単位」とも記す。
 共縮重合系ポリマー(樹脂)における「単位」とは、共縮重合する2種のモノマーの共縮重合により形成された、2種のモノマーのそれぞれ1分子に由来する原子団を意味する。例えば、本発明における非熱可塑性ポリイミドでは、テトラカルボン酸残基とジアミン残基のそれぞれを単位という。
The following terms have the following meanings.
The "heat-meltable polymer (resin)" means a melt-fluid polymer, and has a melt flow rate of 0.1 to 1000 g at a temperature 20 ° C. or higher higher than the melt temperature of the polymer under the condition of a load of 49 N. It means a polymer having a temperature of / 10 minutes. The "melt flow rate" means the melt mass flow rate (MFR) of the polymer defined in JIS K 7210: 1999 (ISO 1133: 1997).
The "glass transition point (Tg) of a polymer" is a value measured by analyzing a polymer by a dynamic viscoelasticity measurement (DMA) method.
The “polymer melting temperature” is the temperature corresponding to the maximum value of the melting peak measured by the differential scanning calorimetry (DSC) method.
"D50 of powder" is a volume-based cumulative 50% diameter of powder obtained by a laser diffraction / scattering method. That is, the particle size distribution is measured by a laser diffraction / scattering method, the cumulative curve is obtained with the total volume of the particle population as 100%, and the particle diameter is the point at which the cumulative volume is 50% on the cumulative curve.
"D90 of powder" is a volume-based cumulative 90% diameter of powder obtained by a laser diffraction / scattering method. That is, the particle size distribution is measured by a laser diffraction / scattering method, the cumulative curve is obtained with the total volume of the particle population as 100%, and the particle diameter is the point at which the cumulative volume is 90% on the cumulative curve.
The powders D50 and D90 are obtained by dispersing the powder in water and analyzing it by a laser diffraction / scattering method using a laser diffraction / scattering type particle size distribution measuring device (LA-920 measuring device manufactured by HORIBA, Ltd.). ..
"Liquid viscosity" is the viscosity of the liquid measured at room temperature (25 ° C.) and at a rotation speed of 30 rpm using a B-type viscometer. The measurement is repeated 3 times, and the average value of the measured values for 3 times is used.
The “ten-point average roughness of the layer” is a value specified in Annex JA of JIS B 0601: 2013.
The “root mean square roughness of the layer” is a value defined by JIS B 0601: 2013 (ISO 4287: 1997, Amd. 1: 2009).
Unless otherwise specified, "film dielectric constant and dielectric loss tangent" are measured using a split-post dielectric resonator (SPDR) at a frequency of 10 GHz in an environment of 23 ° C. ± 2 ° C. and a relative humidity of 50 ± 5%. Value. The same applies to "dielectric constant and dielectric loss tangent of layer".
The "tensile elastic modulus of the film" is a value measured at a measurement frequency of 10 Hz using a wide-area viscoelasticity measuring device.
The "unit" in an addition polymerization polymer (resin) means an atomic group based on one molecule of the monomer formed by polymerization of a monomer. The unit may be an atomic group directly formed by a polymerization reaction, or may be an atomic group in which a part of the atomic group is converted into another structure by processing a polymer. Hereinafter, the unit based on the monomer a is also simply referred to as a “monomer a unit”.
The "unit" in the co-condensation polymer (resin) means an atomic group derived from one molecule of each of the two monomers formed by polycondensation of the two monomers to be polycondensed. For example, in the non-thermoplastic polyimide of the present invention, each of the tetracarboxylic acid residue and the diamine residue is referred to as a unit.
 本発明の積層体は、金属箔層と非熱可塑性ポリイミドの層Pとテトラフルオロエチレン系ポリマーの層Fとを有し、最外層の少なくとも一方が金属箔層である、少なくとも3層構造の積層体であって、前記層Pの少なくとも一方の面に層Fが存在している。本発明における、層Pの吸水率は1.5%未満であり、層Pの線膨張係数の絶対値は25ppm/℃以下である。なお、以下、上記テトラフルオロエチレン系ポリマーを「Fポリマー」とも記す。
 本発明の積層体(本発明のプリント基板も同様。)が、吸水率が低く、誘電特性と、耐熱性と、金属箔層(プリント基板の場合は伝送回路)に対する密着性とに優れる理由は、必ずしも明確ではないが、以下の様に考えられる。
The laminate of the present invention has a metal foil layer, a layer P of non-thermoplastic polyimide, and a layer F of a tetrafluoroethylene-based polymer, and at least one of the outermost layers is a metal foil layer. In the body, the layer F is present on at least one surface of the layer P. In the present invention, the water absorption rate of the layer P is less than 1.5%, and the absolute value of the linear expansion coefficient of the layer P is 25 ppm / ° C. or less. Hereinafter, the tetrafluoroethylene polymer is also referred to as "F polymer".
The reason why the laminate of the present invention (the same applies to the printed circuit board of the present invention) has a low water absorption rate and is excellent in dielectric properties, heat resistance, and adhesion to a metal foil layer (transmission circuit in the case of a printed circuit board). Although it is not always clear, it can be considered as follows.
 本発明における層Pの少なくとも一方の面には、層Fが存在している。Fポリマーは誘電特性と耐熱性とに優れ、吸水率が低いため、この構成により積層体の誘電特性と耐熱性と吸水率とが向上したと考えられる。一方、Fポリマーは概して線膨張係数が大きく、積層体の寸法安定性と密着性とを低下させやすいと推察される。これに対して、本発明における層Pは、線膨張係数が所定の範囲にあり、非熱可塑性ポリイミドを含む層である。非熱可塑性ポリイミドは、モディファイドポリイミドとも称される、非熱可塑性ブロック部位を有し、イミド基密度が低いポリイミドである。かかるポリイミドが、Fポリマーと高度に相互作用して、積層体の寸法安定性と密着性とを向上させたと考えられる。その結果、はんだフロート工程等の高温プロセスにおける、金属箔層の剥離が抑制され、積層体の膨れが抑制されたと考えられる。 The layer F is present on at least one surface of the layer P in the present invention. Since the F polymer has excellent dielectric properties and heat resistance and a low water absorption rate, it is considered that this configuration improves the dielectric properties, heat resistance and water absorption rate of the laminate. On the other hand, the F polymer generally has a large coefficient of linear expansion, and it is presumed that the dimensional stability and adhesion of the laminate are likely to be lowered. On the other hand, the layer P in the present invention is a layer having a linear expansion coefficient in a predetermined range and containing a non-thermoplastic polyimide. The non-thermoplastic polyimide is a polyimide having a non-thermoplastic block site and having a low imide group density, which is also called a modified polyimide. It is considered that such polyimide highly interacted with the F polymer to improve the dimensional stability and adhesion of the laminate. As a result, it is considered that the peeling of the metal foil layer in the high temperature process such as the solder float process was suppressed, and the swelling of the laminated body was suppressed.
 なお、「非熱可塑性ポリイミド」とは、加熱しても軟化、接着性を示さないポリイミドであって、動的粘弾性測定装置(DMA)を用いて測定した、30℃における貯蔵弾性率が1.0×10Pa以上であり、280℃における貯蔵弾性率が3.0×10Pa以上であるポリイミドを意味する。「非熱可塑性ポリイミド」は、モノマーを組み合わせ溶液重合させて得られる溶液(ポリイミド前駆体の溶液)を乾燥させ、さらにイミド化させて形成される成形体(フィルム等)を450℃にて1分間加熱した際、形状が保持されるポリイミドでもある。
 また、「熱可塑性ポリイミド」とは、ガラス転移温度(Tg)が確認できるポリイミドであって、DMAを用いて測定した、30℃における貯蔵弾性率が1.0×10Pa以上であり、280℃における貯蔵弾性率が3.0×10Pa未満であるポリイミドを意味する。「熱可塑性ポリイミド」は、モノマーを組み合わせ溶液重合させて得られる溶液(ポリイミド前駆体の溶液)を乾燥させ、さらにイミド化させて形成される成形体(フィルム等)を450℃にて1分間加熱した際に、皺又は伸びにより変形したり融着したりするポリイミでもある。
The "non-thermoplastic polyimide" is a polyimide that does not soften or show adhesiveness even when heated, and has a storage elastic modulus of 1 at 30 ° C. as measured using a dynamic viscoelasticity measuring device (DMA). It means a polyimide having a storage elastic modulus of 3.0 × 10 8 Pa or more at 280 ° C. and 0.0 × 10 9 Pa or more. The "non-thermoplastic polyimide" is a molded product (film, etc.) formed by drying a solution (solution of a polyimide precursor) obtained by combining monomers and solution-polymerizing it, and further imidizing it at 450 ° C. for 1 minute. It is also a polyimide that retains its shape when heated.
Further, the "thermoplastic polyimide", a polyimide having a glass transition temperature (Tg) can be confirmed, it was measured using a DMA, and a storage modulus 1.0 × 10 9 Pa or more at 30 ° C., 280 storage modulus at ℃ means a polyimide is less than 3.0 × 10 8 Pa. "Thermoplastic polyimide" is obtained by drying a solution (solution of a polyimide precursor) obtained by combining monomers and performing solution polymerization, and further heating a molded product (film or the like) formed by imidization at 450 ° C. for 1 minute. It is also a polyimide that deforms or fuses due to wrinkles or elongation.
 本発明の積層体は、金属箔層と層Pと層Fとを有し、少なくとも一方の最外層が金属箔層である積層体(金属張積層体)である。
 本発明の積層体は、層Pの片面にのみに層Fが存在していてもよく、層Pの両面に層Fが存在していてもよい。前者の場合、層Pの金属箔層側の面にのみに層Fが存在していてもよく、層Pの金属箔層側の反対側の面(最表面)にのみに層Fが存在していてもよい。
The laminate of the present invention is a laminate (metal-clad laminate) having a metal foil layer, a layer P, and a layer F, and at least one of the outermost layers is a metal foil layer.
In the laminate of the present invention, the layer F may be present only on one side of the layer P, or the layer F may be present on both sides of the layer P. In the former case, the layer F may be present only on the surface of the layer P on the metal foil layer side, and the layer F is present only on the opposite surface (outermost surface) of the layer P on the metal foil layer side. You may be.
 本発明の積層体の態様としては、金属箔層、層F及び層Pをこの順に有する態様、金属箔層、層P及び層Fをこの順に有する態様、金属箔層、層F、層P及び層Fをこの順に有する態様が挙げられる。最表面に層Fを有すれば吸水率がより低い積層体が得られ、金属箔層と層Pとの間に層Fを有すれば耐熱性(特に、はんだフロート耐性)と誘電特性とがより優れた積層体が得られる。本発明の積層体の態様としては、層Pの両面にそれぞれ層Fを有する、最後者の態様が好ましい。
 さらに、本発明の積層体は、両面に金属箔層を有する、両面金属張積層体であってもよい。両面金属張積層体としては、金属箔層、層F、層P及び金属箔層をこの順に有する態様、金属箔層、層F、層P、層F及び金属箔層をこの順に有する態様が挙げられる。両面金属張積層体としては、層Pの両面にそれぞれ層Fを有する、後者の態様が好ましい。
 本発明の積層体においては、層Pの少なくとも一部と層Fの少なくとも一部とが接しているのが好ましく、層Pの片面の全体と層Fの片面の全体とが接しているのが特に好ましい。この場合、層Pと層Fとの密着力がより向上するだけでなく、吸水率が顕著に低下しやすい。
The laminated body of the present invention includes a metal foil layer, a layer F and a layer P in this order, a metal foil layer, a layer P and a layer F in this order, a metal foil layer, a layer F, a layer P and the like. An embodiment having layers F in this order can be mentioned. If the layer F is provided on the outermost surface, a laminate having a lower water absorption rate can be obtained, and if the layer F is provided between the metal foil layer and the layer P, heat resistance (particularly, solder float resistance) and dielectric properties are improved. A better laminate can be obtained. As the aspect of the laminated body of the present invention, the last aspect in which the layers F are provided on both sides of the layer P is preferable.
Further, the laminate of the present invention may be a double-sided metal-clad laminate having metal foil layers on both sides. Examples of the double-sided metal-clad laminate include a mode in which the metal foil layer, the layer F, the layer P and the metal foil layer are provided in this order, and a mode in which the metal foil layer, the layer F, the layer P, the layer F and the metal foil layer are provided in this order. Be done. The latter aspect is preferable as the double-sided metal-clad laminate having layers F on both sides of the layer P.
In the laminate of the present invention, it is preferable that at least a part of the layer P and at least a part of the layer F are in contact with each other, and it is preferable that the entire one side of the layer P and the entire one side of the layer F are in contact with each other. Especially preferable. In this case, not only the adhesion between the layer P and the layer F is further improved, but also the water absorption rate tends to be remarkably lowered.
 本発明において、層Fの厚さに対する層Pの厚さの比は、1以上が好ましい。前記比は、2以上が好ましく、4以上がより好ましく、8以上が特に好ましい。前記比は、100以下が好ましく、50以下がより好ましく、35以下がより好ましく、20以下が特に好ましい。この場合、加熱における積層体の寸法変化(反り等)及び界面剥離の抑制と、積層体の吸水性と、積層体の誘電特性とを、バランスさせやすい。なお、前記最後者の態様のように、本発明の積層体が複数の層Fを含む場合、前記層Fの厚さは、それぞれの層Fの厚さを意味する。
 本発明における金属箔層の厚さは、2~30μmが好ましく、3~25μmが特に好ましい。
 また、金属箔層の厚さに対する層Fの厚さの比は、0.5以上が好ましく、1以上が好ましい。前記比は10以下が好ましく、5以下がより好ましい。この場合、加熱における積層体の寸法変化(反り等)及び界面剥離の抑制と、積層体の吸水性と、積層体の誘電特性とを、バランスさせやすい。
In the present invention, the ratio of the thickness of the layer P to the thickness of the layer F is preferably 1 or more. The ratio is preferably 2 or more, more preferably 4 or more, and particularly preferably 8 or more. The ratio is preferably 100 or less, more preferably 50 or less, more preferably 35 or less, and particularly preferably 20 or less. In this case, it is easy to balance the suppression of dimensional change (warp, etc.) and interfacial peeling of the laminated body due to heating, the water absorption of the laminated body, and the dielectric property of the laminated body. When the laminate of the present invention contains a plurality of layers F as in the last aspect, the thickness of the layers F means the thickness of each layer F.
The thickness of the metal foil layer in the present invention is preferably 2 to 30 μm, particularly preferably 3 to 25 μm.
The ratio of the thickness of the layer F to the thickness of the metal foil layer is preferably 0.5 or more, and preferably 1 or more. The ratio is preferably 10 or less, more preferably 5 or less. In this case, it is easy to balance the suppression of dimensional change (warp, etc.) and interfacial peeling of the laminated body due to heating, the water absorption of the laminated body, and the dielectric property of the laminated body.
 本発明における金属箔の材質としては、銅、銅合金、ステンレス鋼、ニッケル、ニッケル合金(42合金も含む。)、アルミニウム、アルミニウム合金、チタン、チタン合金等が挙げられる。金属箔の材質としては、銅及び銅合金が好ましい。
 銅箔としては、圧延銅箔、電解銅箔が挙げられる。
 金属箔の表面には、防錆層(クロメート等の酸化物皮膜等)、耐熱層等が形成されていてもよい。
 金属箔層の表面はシランカップリング剤により処理されていてもよい。この場合、金属箔の表面の全体が処理されていてもよく、金属箔の表面の一部が処理されていてもよい。
 金属箔層の表面の十点平均粗さ(以下、「Rzjis」とも記す。)は、0.2~2.5μmが好ましい。この場合、金属箔層と層F又は層Pとの密着性が良好となり、誘電特性に優れた積層体が得られやすい。
Examples of the material of the metal foil in the present invention include copper, copper alloy, stainless steel, nickel, nickel alloy (including 42 alloy), aluminum, aluminum alloy, titanium, titanium alloy and the like. As the material of the metal foil, copper and a copper alloy are preferable.
Examples of the copper foil include rolled copper foil and electrolytic copper foil.
A rust preventive layer (oxide film such as chromate), a heat resistant layer, or the like may be formed on the surface of the metal foil.
The surface of the metal foil layer may be treated with a silane coupling agent. In this case, the entire surface of the metal foil may be treated, or a part of the surface of the metal foil may be treated.
The ten-point average roughness of the surface of the metal foil layer (hereinafter, also referred to as “Rzjis”) is preferably 0.2 to 2.5 μm. In this case, the adhesion between the metal foil layer and the layer F or the layer P is improved, and a laminated body having excellent dielectric properties can be easily obtained.
 金属箔層の表面の二乗平均平方根粗さ(以下、「Rq」とも記す。)は、0.05μm以上が好ましく、0.10μm以上がより好ましく、0.12μm以上がさらに好ましい。Rqは、0.25μm以下が好ましく、0.20μm以下がより好ましい。
 金属箔層のRqがかかる範囲にあれば、金属箔層とそれぞれの層との密着性が良好となり、かつ、その界面の実効導電率が高くなって、伝送損失がより低減されやすい。
 なお、界面の実効導電率とは、層の樹脂と金属箔層との接触界面における導電率である。高周波電気信号であるほど、電気信号は界面付近を流れるため、界面の実効導電率が高いほど、その伝送損失が低減される。
 界面の実効導電率は、下記のGroisse近似式にて、求められる。
Figure JPOXMLDOC01-appb-M000001
The root mean square roughness (hereinafter, also referred to as “Rq”) of the surface of the metal foil layer is preferably 0.05 μm or more, more preferably 0.10 μm or more, still more preferably 0.12 μm or more. Rq is preferably 0.25 μm or less, more preferably 0.20 μm or less.
When the Rq of the metal foil layer is within the range, the adhesion between the metal foil layer and each layer is good, the effective conductivity at the interface is high, and the transmission loss is likely to be reduced.
The effective conductivity of the interface is the conductivity at the contact interface between the resin of the layer and the metal foil layer. The higher the frequency of the electric signal, the more the electric signal flows near the interface. Therefore, the higher the effective conductivity of the interface, the smaller the transmission loss.
The effective conductivity of the interface is determined by the following Groisse approximation formula.
Figure JPOXMLDOC01-appb-M000001
 式中の記号は、以下の意味を示す。
 σ:実効導電率
 σ:導体の導電率
 s:電流の流れる表皮厚さ
 h:導体の表面の二乗平均平方根粗さ
 なお、導体の導電率は金属箔の金属種に基づいて、導体の表面の二乗平均平方根粗さは金属箔層のRqに基づいて、表皮厚さは周波数に基づいて、それぞれ決まるため、界面の実効導電率は、金属箔層のRqが小さい程、大きくなる。
The symbols in the formula have the following meanings.
σ c : Effective conductivity σ: Conductivity of the conductor s: Skin thickness through which the current flows h: Squared average square root roughness of the surface of the conductor Note that the conductivity of the conductor is based on the metal type of the metal foil and is the surface of the conductor. Since the squared average square root roughness of is determined based on the Rq of the metal foil layer and the skin thickness is determined based on the frequency, the effective conductivity of the interface increases as the Rq of the metal foil layer decreases.
 また、金属箔層は2層以上の金属箔を含むキャリア付金属箔でもよい。キャリア付金属箔としては、キャリア銅箔(厚さ:10~35μm)と、剥離層を介してキャリア銅箔上に積層された極薄銅箔(厚さ:2~5μm)とからなるキャリア付銅箔が挙げられる。
 かかるキャリア付銅箔の極薄銅箔側に層を順次積層した後に、キャリア銅箔のみを剥離すれば、極薄銅箔を有する積層体を容易に形成できる。この積層体を使用すれば、MSAP(モディファイドセミアディティブ)プロセスによる、極薄銅箔層をめっきシード層として利用する、ファインパターンの形成が可能である。
 上記剥離層としては、耐熱性の観点から、ニッケル又はクロムを含む金属層か、この金属層を積層した多層金属層が好ましい。かかる剥離層であれば、300℃以上の工程を経ても、キャリア金属箔を容易に極薄金属箔から剥離できる。
 キャリア付金属箔の具体例としては、福田金属箔粉工業株式会社製の商品名「FUTF-5DAF-2」が挙げられる。
Further, the metal foil layer may be a metal foil with a carrier including two or more layers of metal foil. The metal foil with a carrier includes a carrier copper foil (thickness: 10 to 35 μm) and an ultrathin copper foil (thickness: 2 to 5 μm) laminated on the carrier copper foil via a release layer. Copper foil can be mentioned.
By sequentially laminating the layers on the ultrathin copper foil side of the copper foil with a carrier and then peeling off only the carrier copper foil, a laminate having the ultrathin copper foil can be easily formed. By using this laminate, it is possible to form a fine pattern by using an ultrathin copper foil layer as a plating seed layer by an MSAP (Modified Semi-Additive) process.
From the viewpoint of heat resistance, the release layer is preferably a metal layer containing nickel or chromium or a multilayer metal layer in which the metal layers are laminated. With such a peeling layer, the carrier metal foil can be easily peeled from the ultrathin metal foil even after a step of 300 ° C. or higher.
Specific examples of the metal foil with a carrier include the trade name "FUTF-5DAF-2" manufactured by Fukuda Metal Foil Powder Industry Co., Ltd.
 本発明における層Pは、非熱可塑性ポリイミドを含む。層Pは、本発明の効果を妨げない限り、他の成分を含んでいてもよい。他の成分の具体例としては、誘電特性をさらに改善する観点からはPTFE、PFA等のFポリマーのパウダーが挙げられ、線膨張係数を低減する観点からはガラスチョップドストランド、アラミドチョップドストランド、ポリベンゾオキサゾールチョップドストランド、シリカ、アルミナ、酸化マグネシウム等のフィラーが挙げられる。
 層Pは、非熱可塑性ポリイミドを主成分とするのが好ましく、非熱可塑性ポリイミドを80~100質量%含むのが好ましい。
The layer P in the present invention contains a non-thermoplastic polyimide. The layer P may contain other components as long as it does not interfere with the effects of the present invention. Specific examples of other components include powders of F polymers such as PTFE and PFA from the viewpoint of further improving the dielectric properties, and glass chopped strands, aramid chopped strands, and polybenzo from the viewpoint of reducing the coefficient of linear expansion. Examples thereof include fillers such as oxazole chopped strands, silica, alumina, and magnesium oxide.
The layer P preferably contains non-thermoplastic polyimide as a main component, and preferably contains 80 to 100% by mass of non-thermoplastic polyimide.
 層Pの吸水率は、1.5%未満であり、1.2%以下が好ましい。層Pの吸水率は、0%超が好ましい。
 層Pの線膨張係数の絶対値は、25ppm/℃以下であり、22ppm/℃以下が好ましく、15ppm/℃以下がより好ましく、10ppm/℃以下が特に好ましい。層Pの線膨張率係数の絶対値は、0ppm/℃超が好ましい。
 層Pは、非熱可塑性ポリイミドのフィルム(以下、「mPIフィルム」とも記す。)から形成されているのが好ましい。この場合の層Pの物性は、元のmPIフィルムのそれとみなす。
 層Pの線膨張率係数は、熱機械的分析装置を用いて、層Pの形成に使用される非熱可塑性ポリイミドのフィルムを、測定荷重を29.4mN、測定雰囲気を窒素雰囲気として、10℃/分にて0℃から400℃に昇温させた後、40℃/分にて10℃まで冷却し、さらに10℃/分にて10℃から200℃に昇温させた際の線膨張係数として求められたものである。
 mPIフィルムの表面は、シランカップリング剤等により表面処理されていてもよく、コロナ処理、プラズマ処理等により表面改質されていてもよい。また、mPIフィルムの表面は、粗面化処理されていてもよく、アニール処理されていてもよい。
The water absorption rate of the layer P is less than 1.5%, preferably 1.2% or less. The water absorption rate of the layer P is preferably more than 0%.
The absolute value of the coefficient of linear expansion of the layer P is 25 ppm / ° C. or lower, preferably 22 ppm / ° C. or lower, more preferably 15 ppm / ° C. or lower, and particularly preferably 10 ppm / ° C. or lower. The absolute value of the coefficient of linear expansion coefficient of layer P is preferably more than 0 ppm / ° C.
The layer P is preferably formed of a non-thermoplastic polyimide film (hereinafter, also referred to as "mPI film"). The physical properties of the layer P in this case are regarded as those of the original mPI film.
The coefficient of linear expansion coefficient of the layer P is 10 ° C. using a thermomechanical analyzer, using a non-thermoplastic polyimide film used for forming the layer P, with a measurement load of 29.4 mN and a measurement atmosphere of a nitrogen atmosphere. Linear expansion coefficient when the temperature is raised from 0 ° C to 400 ° C at 1 / min, cooled to 10 ° C at 40 ° C / min, and further raised from 10 ° C to 200 ° C at 10 ° C / min. It was requested as.
The surface of the mPI film may be surface-treated with a silane coupling agent or the like, or may be surface-modified by corona treatment, plasma treatment or the like. Further, the surface of the mPI film may be roughened or annealed.
 特に、mPIフィルムの表面がプラズマ処理されていれば、より低温で層Fとの積層が可能となり、層Pの変形をより低減しやすい。プラズマ処理は、大気圧プラズマ処理又は真空プラズマ処理であるのが好ましい。
 真空プラズマ処理は、0.1~1330Pa(好ましくは1~266Pa)のガス圧力で持続放電するグロー放電処理(所謂、低温プラズマ処理)が好ましい。この場合、放電電極間に10kHz~2GHzの周波数で10W~100kWの電力を与えれば、安定なグロー放電処理ができる。
 真空プラズマ処理の放電電力密度は、mPIフィルムの表面のぬれ張力を調整する観点から、5~400W・分/mが好ましい。
 使用ガスとしては、ヘリウムガス、ネオンガス、アルゴンガス、窒素ガス、酸素ガス、炭酸ガス、水素ガス、空気、水蒸気等が挙げられる。ガスは、1種を単独で用いてもよく、2種以上を混合して用いてもよい。ガスとしては、層間密着強度をより向上させる観点から、アルゴンガス、窒素ガス、水素ガス、及びこれらの混合ガスが好ましい。
 真空プラズマ処理の時間は、層間密着強度をより向上させる観点から、5~60秒が好ましい。
In particular, if the surface of the mPI film is plasma-treated, it can be laminated with the layer F at a lower temperature, and the deformation of the layer P can be more easily reduced. The plasma treatment is preferably atmospheric pressure plasma treatment or vacuum plasma treatment.
The vacuum plasma treatment is preferably a glow discharge treatment (so-called low temperature plasma treatment) in which continuous discharge is performed at a gas pressure of 0.1 to 1330 Pa (preferably 1 to 266 Pa). In this case, if a power of 10 W to 100 kW is applied between the discharge electrodes at a frequency of 10 kHz to 2 GHz, stable glow discharge processing can be performed.
The discharge power density of the vacuum plasma treatment is preferably 5 to 400 W · min / m 2 from the viewpoint of adjusting the wetting tension on the surface of the mPI film.
Examples of the gas used include helium gas, neon gas, argon gas, nitrogen gas, oxygen gas, carbon dioxide gas, hydrogen gas, air, and water vapor. As the gas, one type may be used alone, or two or more types may be mixed and used. As the gas, argon gas, nitrogen gas, hydrogen gas, and a mixed gas thereof are preferable from the viewpoint of further improving the interlayer adhesion strength.
The time of the vacuum plasma treatment is preferably 5 to 60 seconds from the viewpoint of further improving the interlayer adhesion strength.
 大気圧プラズマ処理においては、0.8~1.2気圧下かつ不活性ガス(アルゴンガス、窒素ガス、ヘリウムガス等)の雰囲気下におけるグロー放電処理が好ましい。不活性ガスには微量の活性ガス(酸素ガス、水素ガス、炭酸ガス、エチレン、テトラフルオロエチレン等)が混合されていてもよい。
 使用ガスとしては、層間密着強度をより向上させる観点から、アルゴンガス、窒素ガス、水素ガス、及びこれらの混合ガスが好ましい。
 大気圧プラズマ処理における電圧、電源の周波数、プラズマ処理の時間は、通常、この順に、1~10kV、1~20kHz、0.1秒~10分である。
 大気圧プラズマ処理の放電電力密度は、5~400W・分/mが好ましい。
In the atmospheric pressure plasma treatment, the glow discharge treatment is preferable under 0.8 to 1.2 pressure and in an atmosphere of an inert gas (argon gas, nitrogen gas, helium gas, etc.). A trace amount of active gas (oxygen gas, hydrogen gas, carbon dioxide gas, ethylene, tetrafluoroethylene, etc.) may be mixed with the inert gas.
As the gas used, argon gas, nitrogen gas, hydrogen gas, and a mixed gas thereof are preferable from the viewpoint of further improving the interlayer adhesion strength.
The voltage, the frequency of the power source, and the plasma processing time in the atmospheric pressure plasma processing are usually 1 to 10 kV, 1 to 20 kHz, and 0.1 seconds to 10 minutes in this order.
The discharge power density of the atmospheric pressure plasma treatment is preferably 5 to 400 W / min / m 2 .
 本発明における非熱可塑性ポリイミドは、非熱可塑性ブロック部位を含むのが好ましい。非熱可塑性ブロック部位とは、ブロック部位を構成するモノマーのみを溶液重合して得られたポリイミド前駆体を、上述した、非熱可塑性ポリイミドの定義方法と同じ様に評価した際に、形状が保持されるポリイミドを形成する、モノマーの組み合せから形成されるブロック部位を意味する。一方、熱可塑性ブロック部位とは、ブロック部位を構成するモノマーのみを溶液重合して得られたポリイミド前駆体から、上述した、非熱可塑性ポリイミドの定義方法と同じ様に評価した際に、形状が保持されないポリイミドを形成する、モノマーの組み合せから形成されるブロック部位を意味する。
 なお、ブロック部位が、熱可塑性であるか非熱可塑性であるか判断する際に、剛直なモ場合は、その破片を集めて加熱して、その形状の保持状態から判断すればよい。
The non-thermoplastic polyimide in the present invention preferably contains a non-thermoplastic block moiety. The non-thermoplastic block site retains its shape when a polyimide precursor obtained by solution polymerization of only the monomers constituting the block site is evaluated in the same manner as the above-mentioned definition method of non-thermoplastic polyimide. It means a block site formed from a combination of monomers that forms the polyimide to be formed. On the other hand, the thermoplastic block site has a shape when evaluated in the same manner as the above-mentioned definition method of non-thermoplastic polyimide from a polyimide precursor obtained by solution-polymerizing only the monomers constituting the block site. It means a block site formed from a combination of monomers that forms a non-retained polyimide.
When determining whether the block portion is thermoplastic or non-thermoplastic, if the block portion is rigid, the fragments may be collected and heated to determine from the state of holding the shape.
 本発明における非熱可塑性ポリイミドのガラス転移温度は、280℃以上が好ましく、290℃以上がより好ましい。前記ガラス転移温度は、450℃以下が好ましく、400℃以下が特に好ましい。この場合、より低温での層Fと層Pとの積層が可能となり、より寸法安定性に優れた積層体が得られやすい。 The glass transition temperature of the non-thermoplastic polyimide in the present invention is preferably 280 ° C. or higher, more preferably 290 ° C. or higher. The glass transition temperature is preferably 450 ° C. or lower, and particularly preferably 400 ° C. or lower. In this case, the layer F and the layer P can be laminated at a lower temperature, and a laminated body having more excellent dimensional stability can be easily obtained.
 本発明における非熱可塑性ポリイミドの320℃における引張弾性率は、0.2GPa以上が好ましく、0.4GPa以上が好ましい。その引張弾性率は、10GPa以下が好ましく、5GPa以下がより好ましい。
 この場合の積層体は、それを加工するために加熱操作と冷却操作に曝してもハンドリング性に優れている。つまり、非熱可塑性ポリイミドの引張弾性率が、かかる下限以上であれば、加熱冷却に際する層Fの収縮が層Pの弾性により効果的に緩和され、積層体に皺がより難くなり、得られる加工品の物性(表面平滑性等)が向上しやすい。かかる傾向は、層F中のFポリマーの含有量や層Fの厚さが大きい場合に顕著になる。また、非熱可塑性ポリイミドの引張弾性率が、かかる上限以下であれば、積層体の柔軟性が一層優れやすい。
The tensile elastic modulus of the non-thermoplastic polyimide in the present invention at 320 ° C. is preferably 0.2 GPa or more, preferably 0.4 GPa or more. The tensile elastic modulus is preferably 10 GPa or less, and more preferably 5 GPa or less.
The laminate in this case is excellent in handleability even when exposed to heating and cooling operations for processing it. That is, when the tensile elastic modulus of the non-thermoplastic polyimide is equal to or higher than the lower limit, the shrinkage of the layer F during heating and cooling is effectively alleviated by the elasticity of the layer P, and wrinkles are less likely to occur in the laminated body. It is easy to improve the physical properties (surface smoothness, etc.) of the processed product. This tendency becomes remarkable when the content of the F polymer in the layer F and the thickness of the layer F are large. Further, when the tensile elastic modulus of the non-thermoplastic polyimide is not more than such an upper limit, the flexibility of the laminated body is more likely to be excellent.
 本発明における非熱可塑性ポリイミドのイミド基密度は、0.20~0.35が好ましい。イミド基密度が前記上限であれば、非熱可塑性ポリイミドの吸水率がより低くなり、積層体の誘電特性の変化をより抑制しやすい。前記イミド基密度が前記下限であれば、極性基として機能して、層Pと層Fとの密着力がより向上するだけでなく、吸水率が顕著に低下しやすい。
 また、非熱可塑性ポリイミドのイミド基密度がかかる範囲にあれば、積層体の加工における皺がより難くなり易い。かかる傾向は、非熱可塑性ポリイミドのガラス転移温度が低い場合に顕著になる。
 なお、イミド基密度は、ポリイミド前駆体をイミド化したポリイミドにおいて、イミド基部分の単位当たり分子量(140.1)をポリイミドの単位当たり分子量で除した値である。例えば、ピロメリット酸二無水物(分子量:218.1)の1モルと3,4’-オキシジアニリン(分子量:200.2)の1モルとの2成分からなるポリイミド前駆体をイミド化したポリイミド(単位辺りの分子量:382.2)のイミド基密度は、140.1を382.2で除した値である0.37となる。
The imide group density of the non-thermoplastic polyimide in the present invention is preferably 0.20 to 0.35. When the imide group density is the upper limit, the water absorption rate of the non-thermoplastic polyimide becomes lower, and it is easier to suppress the change in the dielectric property of the laminate. When the imide group density is the lower limit, it functions as a polar group, and not only the adhesion between the layer P and the layer F is further improved, but also the water absorption rate is likely to be significantly reduced.
Further, if the imide group density of the non-thermoplastic polyimide is within such a range, wrinkles in the processing of the laminated body tend to be more difficult. This tendency becomes remarkable when the glass transition temperature of the non-thermoplastic polyimide is low.
The imide group density is a value obtained by dividing the molecular weight per unit of the imide group portion (140.1) by the molecular weight per unit of the polyimide in the polyimide obtained by imidizing the polyimide precursor. For example, a polyimide precursor consisting of two components, 1 mol of pyromellitic dianhydride (molecular weight: 218.1) and 1 mol of 3,4'-oxydianiline (molecular weight: 200.2), was imidized. The imide group density of polyimide (molecular weight per unit: 382.2) is 0.37, which is the value obtained by dividing 140.1 by 382.2.
 本発明における非熱可塑性ポリイミドは、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、パラフェニレンジアミン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、2,2’-ジメチル-4,4’-ジアミノビフェニル、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、4,4'-ジアミノジフェニルエーテル、3,4'-ジアミノジフェニルエーテル、4,4’-(1,3-フェニレンジイソプロピリデン)ビスアニリン、2,2’-n-プロピル-4,4’-ジアミノビフェニル及び4-アミノフェニル-4’-アミノベンゾエートからなる群より選択される複数の芳香族ジアミンと、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,3,3',4'-ビフェニルテトラカルボン酸二無水物、2,3,2',3'-ビフェニルテトラカルボン酸二無水物、4,4’-オキシジフタル酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、1,4-フェニレンビス(トリメリット酸モノエステル)二無水物、p-フェニレンビス(トリテート無水物)、1,4-フェニレンビス(トリメリット酸モノエステル)二無水物、3,3',4,4'-ジフェニルスルホンテトラカルボン酸二無水物、及び2,3,6,7-ナフタレンテトラカルボン酸二無水物からなる群より選択される複数の芳香族酸二無水物とから形成される単位を含むのが好ましい。この場合、非熱可塑性ポリイミドの非熱可塑性が向上し、層Pと層Fとの密着力がより向上するだけでなく、吸水率が顕著に低下しやすい。
 非熱可塑性ポリイミドは、全単位に対して、前記単位を80モル%以上含むのが好ましい。その上限は、100モル%である。
The non-thermal polyimide in the present invention is 2,2'-bis [4- (4-aminophenoxy) phenyl] propane, paraphenylenediamine, 4,4'-bis (4-aminophenoxy) biphenyl, 2,2'. -Dimethyl-4,4'-diaminobiphenyl, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 1,4-bis (3-aminophenoxy) benzene, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-(1,3-phenylenediisopropyridene) bisaniline, 2,2'-n-propyl-4,4'-diaminobiphenyl and Multiple aromatic diamines selected from the group consisting of 4-aminophenyl-4'-aminobenzoate, pyromellitic dianhydride, 3,3', 4,4'-biphenyltetracarboxylic dianhydride, 2 , 3,3', 4'-biphenyltetracarboxylic dianhydride, 2,3,2', 3'-biphenyltetracarboxylic dianhydride, 4,4'-oxydiphthalic dianhydride, 3,3' , 4,4'-Benzenetetracarboxylic dianhydride, 1,4-phenylenebis (trimellitic acid monoester) dianhydride, p-phenylenebis (tritate anhydride), 1,4-phenylenebis (trimerit) Acid monoester) Selected from the group consisting of dianhydride, 3,3', 4,4'-diphenylsulfonetetracarboxylic dianhydride, and 2,3,6,7-naphthalenetetracarboxylic dianhydride. It preferably contains a unit formed from a plurality of aromatic acid dianhydrides. In this case, not only the non-thermoplasticity of the non-thermoplastic polyimide is improved and the adhesion between the layer P and the layer F is further improved, but also the water absorption rate tends to be remarkably lowered.
The non-thermoplastic polyimide preferably contains 80 mol% or more of the above units with respect to all the units. The upper limit is 100 mol%.
 さらに、非熱可塑性ポリイミドは、メタフェニレンジアミン、1,5-ジアミノナフタレン、ベンジジン、3,3’-ジメトキシベンジジン、パラキシリレンジアミン、4,4’-ジアミノジフェニルメタン、3,3’-ジメチル-4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルホン、1,4-ビス(3-メチル-5-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2’-ビス(トリフルオロメチル)ベンジジン、3,3’-ビス(トリフルオロメチル)ベンジジン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン等の他のジアミンを単位のモノマー成分としていてもよい。これらの他のジアミンは、1種を単独で使用しても、2種以上を併用してもよい。 In addition, non-thermoplastic polyimides include metaphenylenediamine, 1,5-diaminonaphthalene, benzidine, 3,3'-dimethoxybenzidine, paraxylylene diamine, 4,4'-diaminodiphenylmethane, 3,3'-dimethyl-4. , 4'-diaminodiphenylmethane, 4,4'-diaminodiphenylsulfone, 1,4-bis (3-methyl-5-aminophenyl) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4- Bis (4-aminophenoxy) benzene, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2'-bis (trifluoromethyl) benzidine, 3,3'-bis (trifluoromethyl) ) Other diamines such as benzidine and 2,2-bis (4-aminophenyl) hexafluoropropane may be used as the unit monomer component. These other diamines may be used alone or in combination of two or more.
 さらに、非熱可塑性ポリイミドは、ピロメリット酸、2,3,6,7-ナフタレンテトラカルボン酸、ピリジン-2,3,5,6-テトラカルボン酸、4,4’-オキシジフタル酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3’,3,4’-ビフェニルテトラカルボン酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、5,5’-[1-メチル-1,1-エタンジイルビス(1,4-フェニレン)ビスオキシ]ビス(イソベンゾフラン-1,3-ジオン)、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物等の他のテトラカルボン酸又はその誘導体を単位のモノマー成分としていてもよい。これらの他のテトラカルボン酸又はその誘導体は、1種を単独で使用しても、2種以上を併用してもよい。 In addition, non-thermoplastic polyimides include pyromellitic acid, 2,3,6,7-naphthalenetetracarboxylic acid, pyridine-2,3,5,6-tetracarboxylic acid, 4,4'-oxydiphthalic acid, 3,3. ', 4,4'-biphenyltetracarboxylic acid, 2,3', 3,4'-biphenyltetracarboxylic acid, 3,3', 4,4'-benzophenonetetracarboxylic acid, 5,5'-[1- Other tetracarboxylic acids such as methyl-1,1-ethanediylbis (1,4-phenylene) bisoxy] bis (isobenzofuran-1,3-dione), 4,4'-(hexafluoroisopropyridene) diphthalic acid anhydride Alternatively, a derivative thereof may be used as a unit monomer component. These other tetracarboxylic acids or derivatives thereof may be used alone or in combination of two or more.
 非熱可塑性ポリイミドを製造する際のポリイミド前駆体(ポリアミック酸)の合成は、溶媒存在下に行うのが好ましい。溶媒の具体例としては、ジメチルスルホキシド、ジエチルスルホキシド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N-メチル-2-ピロリドン、N-ビニル-2-ピロリドン、フェノール、クレゾール、キシレノール、ハロゲン化フェノール、カテコール、ヘキサメチルホスホルアミドが挙げられる。
 ポリイミド前駆体は、ポリイミド前駆体を5~40重量%の固形分として含有する溶液に調製するのが好ましい。また、この場合の溶液の粘度は、100~1000Pa・sが好ましい。また、溶液においてポリイミド前駆体の一部は、イミド化されていてもよい。
The synthesis of the polyimide precursor (polyamic acid) in producing a non-thermoplastic polyimide is preferably carried out in the presence of a solvent. Specific examples of the solvent include dimethyl sulfoxide, diethyl sulfoxide, N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide, N-methyl-2-pyrrolidone, N. -Vinyl-2-pyrrolidone, phenol, cresol, xylenol, phenol halide, catechol, hexamethylphospholamide can be mentioned.
The polyimide precursor is preferably prepared in a solution containing the polyimide precursor as a solid content of 5 to 40% by weight. The viscosity of the solution in this case is preferably 100 to 1000 Pa · s. In addition, a part of the polyimide precursor may be imidized in the solution.
 本発明における層Pの厚さは、10~100μmが好ましい。
 本発明における層Pの10GHzにおける誘電正接は、0.008以下が好ましい。前記誘電正接は、0超が好ましい。
The thickness of the layer P in the present invention is preferably 10 to 100 μm.
The dielectric loss tangent of the layer P in the present invention at 10 GHz is preferably 0.008 or less. The dielectric loss tangent is preferably more than 0.
 本発明における層Fは、Fポリマーを含む。
 層Fは、本発明の効果を妨げない限り、他の成分を含んでいてもよいが、Fポリマーを主成分とするのが好ましく、Fポリマーを80~100質量%含むのが好ましい。
 層Fは、Fポリマーが溶融して形成される層(Fポリマーの溶融成形物の層)であるのが好ましい。この場合、層Fは、非多孔質になるため、はんだフロート工程における加熱の際の断熱効果がより向上し、エッチング耐性もより向上しやすい。
 Fポリマーは、熱溶融性のFポリマーが好ましく、積層体の耐熱性と層間密着力とがより向上するだけでなく、吸水率が顕著に低下しやすい観点から、溶融温度260~320℃のFポリマーがより好ましい。
The layer F in the present invention contains an F polymer.
The layer F may contain other components as long as it does not interfere with the effects of the present invention, but it is preferable that the layer F contains the F polymer as a main component, and preferably contains 80 to 100% by mass of the F polymer.
The layer F is preferably a layer formed by melting the F polymer (a layer of a melt-molded product of the F polymer). In this case, since the layer F becomes non-porous, the heat insulating effect at the time of heating in the solder float step is further improved, and the etching resistance is also likely to be improved.
The F polymer is preferably a heat-meltable F polymer, and F has a melting temperature of 260 to 320 ° C. from the viewpoint that not only the heat resistance and interlayer adhesion of the laminate are further improved, but also the water absorption rate is likely to be significantly reduced. Polymers are more preferred.
 本発明におけるFポリマーは、テトラフルオロエチレン(以下、「TFE」とも記す。)に基づく単位(TFE単位)を有するポリマーである。Fポリマーは、TFEのホモポリマーであってもよく、TFEと、TFEと共重合可能なコモノマーとのコポリマーであってもよい。Fポリマーは、ポリマーを構成する全単位に対して、TFE単位を90~100モル%有するのが好ましい。Fポリマーのフッ素含有量は、70~76質量%が好ましく、72~76質量%がより好ましい。
 Fポリマーとしては、ポリテトラフルオロエチレン(PTFE)、TFEとエチレンとのコポリマー(ETFE)、TFEとプロピレンとのコポリマー、TFEとペルフルオロ(アルキルビニルエーテル)(以下、「PAVE」とも記す。)とのコポリマー(PFA)、TFEとヘキサフルオロプロピレン(以下、「HFP」とも記す。)とのコポリマー(FEP)、TFEとフルオロアルキルエチレン(以下、「FAE」とも記す。)とのコポリマー、TFEとクロロトリフルオロエチレンとのコポリマーが挙げられる。なお、コポリマーは、さらに他のコモノマーに基づく単位を有していてもよい。
The F polymer in the present invention is a polymer having a unit (TFE unit) based on tetrafluoroethylene (hereinafter, also referred to as "TFE"). The F polymer may be a homopolymer of TFE, or may be a copolymer of TFE and a comonomer copolymerizable with TFE. The F polymer preferably has 90 to 100 mol% of TFE units with respect to all the units constituting the polymer. The fluorine content of the F polymer is preferably 70 to 76% by mass, more preferably 72 to 76% by mass.
Examples of the F polymer include polytetrafluoroethylene (PTFE), a copolymer of TFE and ethylene (ETFE), a copolymer of TFE and propylene, and a copolymer of TFE and perfluoro (alkyl vinyl ether) (hereinafter, also referred to as "PAVE"). (PFA), a copolymer of TFE and hexafluoropropylene (hereinafter, also referred to as "HFP") (FEP), a copolymer of TFE and fluoroalkylethylene (hereinafter, also referred to as "FAE"), TFE and chlorotrifluoro. Examples include copolymers with ethylene. The copolymer may have a unit based on another comonomer.
 Fポリマーの好適な具体例としては、低分子量PTFE、変性PTFE、FEP、PFAが挙げられる。なお、低分子量PTFE又は変性PTFEには、TFEと極微量のコモノマー(HFP、PAVE、FAE等)のコポリマーも包含されるものとする。
 Fポリマーは、TFE単位及び官能基を有するFポリマーが好ましい。官能基は、カルボニル基含有基、ヒドロキシ基、エポキシ基、アミノ基又はイソシアネート基が好ましい。官能基は、Fポリマー中の単位に含まれていてもよく、ポリマーの主鎖の末端基に含まれていてもよい。後者のポリマーとしては、重合開始剤、連鎖移動剤等に由来する末端基として官能基を有するポリマーが挙げられる。また、Fポリマー層表面を、プラズマ処理や電離線処理して得られる、官能基を有するFポリマーも挙げられる。
 官能基を有するFポリマーは、TFE単位及び官能基を有する単位を有するFポリマーが好ましい。官能基を有する単位としては、カルボニル基含有基、ヒドロキシ基、エポキシ基、アミノ基又はイソシアネート基を有するモノマーに基づく単位が好ましい。
Preferable specific examples of the F polymer include low molecular weight PTFE, modified PTFE, FEP and PFA. The low molecular weight PTFE or modified PTFE shall also include a copolymer of TFE and a trace amount of comonomer (HFP, PAVE, FAE, etc.).
The F polymer is preferably an F polymer having a TFE unit and a functional group. The functional group is preferably a carbonyl group-containing group, a hydroxy group, an epoxy group, an amino group or an isocyanate group. The functional group may be contained in a unit in the F polymer, or may be contained in the terminal group of the main chain of the polymer. Examples of the latter polymer include polymers having a functional group as a terminal group derived from a polymerization initiator, a chain transfer agent, or the like. Further, an F polymer having a functional group obtained by subjecting the surface of the F polymer layer to plasma treatment or ionization line treatment can also be mentioned.
The F polymer having a functional group is preferably an F polymer having a TFE unit and a unit having a functional group. As the unit having a functional group, a unit based on a monomer having a carbonyl group-containing group, a hydroxy group, an epoxy group, an amino group or an isocyanate group is preferable.
 カルボニル基含有基を有するモノマーとしては、酸無水物残基を有する環状モノマー、カルボキシ基を有するモノマー、ビニルエステル及び(メタ)アクリレートが好ましく、酸無水物残基を有する環状モノマーがより好ましい。特に、無水イタコン酸、無水シトラコン酸、5-ノルボルネン-2,3-ジカルボン酸無水物(別称:無水ハイミック酸)及び無水マレイン酸が好ましい。
 官能基を有するFポリマーの好適な具体例としては、TFE単位と、HFP単位、PAVE単位又はFAE単位と、官能基を有する単位とを有するFポリマーが挙げられる。
 PAVEとしては、CF=CFOCF、CF=CFOCFCF、CF=CFOCFCFCF、CF=CFOCFCFCFCF、CF=CFO(CFFが挙げられる。
 FAEとしては、CH=CH(CFF、CH=CH(CFF、CH=CH(CFF、CH=CF(CFH、CH=CF(CFHが挙げられる。
 かかるFポリマーは、ポリマーを構成する全単位に対して、TFE単位を90~99モル%、HFP単位、PAVE単位又はFAE単位を0.5~9.97モル%、官能基を有する単位を0.01~3モル%、それぞれ有するのが好ましい。かかるFポリマーの具体例としては、国際公開第2018/16644号に記載されるポリマーが挙げられる。
As the monomer having a carbonyl group-containing group, a cyclic monomer having an acid anhydride residue, a monomer having a carboxy group, a vinyl ester and a (meth) acrylate are preferable, and a cyclic monomer having an acid anhydride residue is more preferable. In particular, itaconic anhydride, citraconic anhydride, 5-norbornene-2,3-dicarboxylic acid anhydride (also known as hymic anhydride) and maleic anhydride are preferable.
Preferable specific examples of the F polymer having a functional group include an F polymer having a TFE unit, an HFP unit, a PAVE unit or a FAE unit, and a unit having a functional group.
As PAVE, CF 2 = CFOCF 3 , CF 2 = CFOCF 2 CF 3 , CF 2 = CFOCF 2 CF 2 CF 3 , CF 2 = CFOCF 2 CF 2 CF 2 CF 3 , CF 2 = CFO (CF 2 ) 8 F Can be mentioned.
As FAE, CH 2 = CH (CF 2 ) 2 F, CH 2 = CH (CF 2 ) 3 F, CH 2 = CH (CF 2 ) 4 F, CH 2 = CF (CF 2 ) 3 H, CH 2 = CF (CF 2 ) 4 H can be mentioned.
Such an F polymer has 90 to 99 mol% of TFE units, 0.5 to 9.97 mol% of HFP units, PAVE units or FAE units, and 0 units having a functional group with respect to all the units constituting the polymer. It is preferable to have 0.01 to 3 mol%, respectively. Specific examples of such F polymers include the polymers described in International Publication No. 2018/16644.
 層Fの厚さは、1~38μm以下が好ましい。前記厚さは、2μm以上がより好ましい。前記厚さは、35μm以下が好ましく、30μm以下がより好ましい。この場合、加熱における積層体の寸法変化(反り等)及び界面剥離の抑制しつつ、その耐熱性がより向上しやすい。さらに、層Fの厚さが1μm以上であれば、層Pの構成に依らずに、プリント基板の高周波領域における伝送損失が大幅に改善される。層Fの厚さが上限値以下であれば、特に加熱における積層体の寸法変化(反り等)及び界面剥離を抑制しやすい。 The thickness of layer F is preferably 1 to 38 μm or less. The thickness is more preferably 2 μm or more. The thickness is preferably 35 μm or less, more preferably 30 μm or less. In this case, the heat resistance of the laminate is likely to be improved while suppressing dimensional changes (warpage, etc.) and interfacial peeling of the laminate during heating. Further, when the thickness of the layer F is 1 μm or more, the transmission loss in the high frequency region of the printed circuit board is significantly improved regardless of the configuration of the layer P. When the thickness of the layer F is not more than the upper limit value, it is easy to suppress dimensional changes (warpage, etc.) and interfacial peeling of the laminated body due to heating.
 本発明の積層体の具体的な構成としては、最外層の少なくとも一方が銅箔層である積層体であって、前記層Pの両面に層Fが存在し、それぞれの層Fの少なくとも一部と層Pの少なくとも一部とが接している、積層体が挙げられる。より具体的には、銅箔層/層F/層P/層Fなる構成を有する積層体、及び、銅箔層/層F/層P/層F/銅箔層なる構成を有する積層体、が挙げられる。
 前記構成における、銅箔層の厚さは3~25μmであり、層Fの厚さは、それぞれ独立に2~30μmであり、層Pの厚さは10~100μmであり、銅箔層の厚さに対する層Fの厚さの比は0.5~5であり、層Fの厚さに対する前記層Pの厚さの比は1~50であるのが、それぞれ好ましい。
 また、前記層Pは、表面をプラズマ処理されたmPIフィルムから形成された層であるのが好ましい。
 また、前記層Fは、熱溶融性のFポリマーの層であるのが好ましい。前記層Fも、積層前にその表面がプラズマ処理されたFポリマーの層から形成された層であってもよい。
As a specific configuration of the laminated body of the present invention, at least one of the outermost layers is a laminated body which is a copper foil layer, and layers F are present on both sides of the layer P, and at least a part of each layer F. An example is a laminate in which at least a part of the layer P is in contact with the layer P. More specifically, a laminate having a structure of a copper foil layer / layer F / layer P / layer F, and a laminate having a structure of a copper foil layer / layer F / layer P / layer F / copper foil layer. Can be mentioned.
In the above configuration, the thickness of the copper foil layer is 3 to 25 μm, the thickness of the layer F is 2 to 30 μm independently, the thickness of the layer P is 10 to 100 μm, and the thickness of the copper foil layer. The ratio of the thickness of the layer F to the thickness of the layer F is preferably 0.5 to 5, and the ratio of the thickness of the layer P to the thickness of the layer F is preferably 1 to 50, respectively.
Further, the layer P is preferably a layer formed from an mPI film whose surface is plasma-treated.
Further, the layer F is preferably a layer of a heat-meltable F polymer. The layer F may also be a layer formed from a layer of F polymer whose surface is plasma-treated before lamination.
 本発明における、少なくとも一方の面に層Fが存在している層P(すなわち、片面が層Fに接している層P又は両面が層Fに接している層P)は、常温常湿の環境下における、電気特性の長期持続性に優れている。
 本発明の積層体としては、それを24℃で相対湿度50%の雰囲気に24時間保持した場合の、層Fに接している層Pの誘電率が2.8以下である、積層体が好ましく、2.7以下である積層体がより好ましい。なお、上記誘電率の下限値は、2が好ましい。
 また、本発明の積層体を24℃で相対湿度50%の雰囲気に24時間保持した場合の、層Fに接している層Pの誘電正接が0.004以下である、積層体が好ましく、0.003以下である積層体がより好ましい。なお、上記誘電正接の下限値は、0.0001が好ましい。
In the present invention, the layer P in which the layer F is present on at least one surface (that is, the layer P in which one side is in contact with the layer F or the layer P in which both sides are in contact with the layer F) is in an environment of normal temperature and humidity. It has excellent long-term sustainability of electrical characteristics underneath.
As the laminate of the present invention, a laminate in which the dielectric constant of the layer P in contact with the layer F is 2.8 or less when the laminate is held at 24 ° C. and an atmosphere having a relative humidity of 50% for 24 hours is preferable. A laminate having a thickness of 2.7 or less is more preferable. The lower limit of the dielectric constant is preferably 2.
Further, when the laminate of the present invention is held at 24 ° C. in an atmosphere of 50% relative humidity for 24 hours, the dielectric loss tangent of the layer P in contact with the layer F is 0.004 or less, and the laminate is preferably 0. A laminate having a value of .003 or less is more preferable. The lower limit of the dielectric loss tangent is preferably 0.0001.
 また、本発明における層Pは、高温多湿の環境下における、電気特性の長期持続性にも優れている。本発明の積層体としては、それを85℃で相対湿度85%の雰囲気に72時間保持した場合の、層Fに接している層Pの誘電率が2.8以下である、積層体が好ましく、2.7以下である積層体がより好ましい。なお、上記誘電率の下限値は、2が好ましい。
 また、本発明の積層体を85℃で相対湿度85%の雰囲気に72時間保持した場合の、層Fに接している層Pの誘電正接が0.007以下である、積層体が好ましく、0.006以下である積層体がより好ましい。なお、上記誘電正接の下限値は、0.0001が好ましい。
In addition, the layer P in the present invention is also excellent in long-term sustainability of electrical characteristics in a hot and humid environment. As the laminate of the present invention, a laminate in which the dielectric constant of the layer P in contact with the layer F is 2.8 or less when the laminate is held in an atmosphere of 85 ° C. and a relative humidity of 85% for 72 hours is preferable. A laminate having a thickness of 2.7 or less is more preferable. The lower limit of the dielectric constant is preferably 2.
Further, when the laminate of the present invention is held in an atmosphere of 85 ° C. and a relative humidity of 85% for 72 hours, the dielectric loss tangent of the layer P in contact with the layer F is 0.007 or less, and the laminate is preferably 0. A laminate having a value of .006 or less is more preferable. The lower limit of the dielectric loss tangent is preferably 0.0001.
 本発明の積層体は、金属箔層及び層Fを有する樹脂付金属箔と、層PとなるmPIフィルムとを、樹脂付金属箔の層FとmPIフィルムとを対向させ、熱プレス法により融着させて製造するのが好ましい。
 この際、mPIフィルムにおける非熱可塑性ポリイミドの320℃における引張弾性率は、0.2GPa以上が好ましく、0.4GPa以上が好ましい。また、その引張弾性率は、10GPa以下が好ましく、5GPa以下がより好ましい。非熱可塑性ポリイミドの引張弾性率が、かかる下限以上であれば、熱プレス後の冷却に際する層Fの収縮が層Pの弾性により効果的に緩和されやすい。その結果、積層体に皺がより生じ難くなり、表面平滑性等の物性により優れた積層体が得られやすい。かかる傾向は、mPIフィルムにおける非熱可塑性ポリイミドの、イミド基密度又はガラス転移温度が低い場合に顕著になる。また、非熱可塑性ポリイミドの引張弾性率が、かかる上限以下であれば、積層体の柔軟性が一層優れやすい。
In the laminate of the present invention, the resin-attached metal foil having the metal foil layer and the layer F and the mPI film to be the layer P are fused by the hot press method with the resin-attached metal foil layer F and the mPI film facing each other. It is preferable to wear it for production.
At this time, the tensile elastic modulus of the non-thermoplastic polyimide in the mPI film at 320 ° C. is preferably 0.2 GPa or more, preferably 0.4 GPa or more. The tensile elastic modulus is preferably 10 GPa or less, and more preferably 5 GPa or less. When the tensile elastic modulus of the non-thermoplastic polyimide is at least such a lower limit, the shrinkage of the layer F during cooling after hot pressing is likely to be effectively relaxed by the elasticity of the layer P. As a result, wrinkles are less likely to occur in the laminated body, and it is easy to obtain a laminated body having better physical properties such as surface smoothness. This tendency becomes remarkable when the imide group density or the glass transition temperature of the non-thermoplastic polyimide in the mPI film is low. Further, when the tensile elastic modulus of the non-thermoplastic polyimide is not more than such an upper limit, the flexibility of the laminated body is more likely to be excellent.
 前記樹脂付金属箔の製造方法としては、金属箔の表面に、Fポリマーのパウダー分散液を塗布して製造する方法が挙げられる。具体的には、Fポリマーを含むパウダー(以下、「Fパウダー」とも記す。)と、溶媒と、分散剤とを含むパウダー分散液を金属箔の表面に塗布し、100~300℃の温度領域(以下、「保持温度」とも記す。)にて金属箔層を保持して溶媒を除去するとともに、上記温度領域超の温度領域にてFポリマーを焼成させ、金属箔の表面に層Fを形成する方法が挙げられる。 Examples of the method for producing the metal foil with resin include a method of applying a powder dispersion of F polymer to the surface of the metal foil. Specifically, a powder containing an F polymer (hereinafter, also referred to as "F powder"), a solvent, and a powder dispersion containing a dispersant are applied to the surface of the metal foil, and a temperature range of 100 to 300 ° C. is applied. (Hereinafter, also referred to as “holding temperature”), the metal foil layer is held to remove the solvent, and the F polymer is fired in a temperature range exceeding the above temperature range to form a layer F on the surface of the metal foil. There is a way to do it.
 Fパウダーは、Fポリマーを主成分とするのが好ましく、Fポリマーを80~100質量%含むのが好ましい。
 FパウダーのD50は、0.05~6.0μmが好ましく、0.2~3.0μmがより好ましい。
 FパウダーのD90は、0.3~8μmが好ましく、0.8~5μmがより好ましい。
 FパウダーのD50又はD90が上記範囲にあることで、Fパウダーの流動性と分散性とが良好となり、層Fの誘電特性や耐熱性が一層向上しやすい。
 溶媒は、瞬間的に揮発せずに、上記保持温度に保持している際に揮発する化合物が好ましく、沸点125~250℃の化合物がより好ましい。
 溶媒としては、1-ブタノール、1-メトキシ-2-プロパノール、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、N-メチル-2-ピロリドン、γ-ブチロラクトン、シクロヘキサノン及びシクロペンタノンが好ましい。
The F powder preferably contains the F polymer as a main component, and preferably contains 80 to 100% by mass of the F polymer.
The D50 of the F powder is preferably 0.05 to 6.0 μm, more preferably 0.2 to 3.0 μm.
The D90 of the F powder is preferably 0.3 to 8 μm, more preferably 0.8 to 5 μm.
When D50 or D90 of the F powder is in the above range, the fluidity and dispersibility of the F powder are improved, and the dielectric properties and heat resistance of the layer F are more likely to be improved.
The solvent is preferably a compound that does not volatilize instantaneously but volatilizes when it is held at the above-mentioned holding temperature, and more preferably a compound having a boiling point of 125 to 250 ° C.
As the solvent, 1-butanol, 1-methoxy-2-propanol, 3-methoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropanamide, N-methyl-2-pyrrolidone, γ- Butyrolactone, cyclohexanone and cyclopentanone are preferred.
 分散剤は、親水性基と疎水性基を有する化合物であり、フッ素系分散剤、シリコーン系分散剤又はアセチレン系分散剤であるのが好ましく、フッ素系分散剤であるのがより好ましい。分散剤は、ノニオン性であるのが好ましい。
 フッ素系分散剤としては、フルオロモノオール、フルオロポリオール、フルオロシリコーン及びフルオロポリエーテルが好ましい。
 フルオロポリオールは、フルオロ(メタ)アクリレートと水酸基又はポリオキシアルキレン基を有する(メタ)アクリレートとのコポリマーが好ましく、ポリフルオロアルキル基又はポリフルオロアルケニル基を有する(メタ)アクリレートとポリオキシアルキレンモノオール基を有する(メタ)アクリレートとのコポリマーがより好ましい。
 フルオロシリコーンとしては、側鎖の一部にC-F結合を含むポリオルガノシロキサンが好ましい。
 フルオロポリエーテルとしては、ポリオキシアルキレンアルキルエーテルの水素原子の一部がフッ素原子に置換された化合物が好ましい。
The dispersant is a compound having a hydrophilic group and a hydrophobic group, and is preferably a fluorine-based dispersant, a silicone-based dispersant or an acetylene-based dispersant, and more preferably a fluorine-based dispersant. The dispersant is preferably nonionic.
As the fluorine-based dispersant, fluoromonool, fluoropolyol, fluorosilicone and fluoropolyether are preferable.
The fluoropolyol is preferably a copolymer of a fluoro (meth) acrylate and a (meth) acrylate having a hydroxyl group or a polyoxyalkylene group, and a (meth) acrylate having a polyfluoroalkyl group or a polyfluoroalkenyl group and a polyoxyalkylene monool group. Copolymers with (meth) acrylates have are more preferred.
As the fluorosilicone, polyorganosiloxane having a CF bond in a part of the side chain is preferable.
As the fluoropolyether, a compound in which a part of hydrogen atoms of the polyoxyalkylene alkyl ether is replaced with a fluorine atom is preferable.
 パウダー分散液は、Fパウダー、溶媒及び分散剤以外の成分を含んでいてもよい。他の成分としては、チキソ性付与剤、消泡剤、無機フィラー、反応性アルコキシシラン、脱水剤、可塑剤、耐候剤、酸化防止剤、熱安定剤、滑剤、帯電防止剤、増白剤、着色剤、導電剤、離型剤、表面処理剤、粘度調節剤、難燃剤等が挙げられる。また、パウダー分散液は、Fポリマー以外の樹脂成分(熱硬化性樹脂、熱可塑性樹脂等)を含んでいてもよい。
 パウダー分散液中のFパウダーの割合は、5~60質量%が好ましい。
 パウダー分散液中の分散剤の割合は、0.1~30質量%が好ましい。
 パウダー分散液中の溶媒の割合は、15~65質量%が好ましい。
The powder dispersion liquid may contain components other than the F powder, the solvent and the dispersant. Other ingredients include thixotropic agents, defoamers, inorganic fillers, reactive alkoxysilanes, dehydrating agents, plasticizers, weather resistant agents, antioxidants, heat stabilizers, lubricants, antistatic agents, whitening agents, etc. Examples thereof include colorants, conductive agents, mold release agents, surface treatment agents, viscosity modifiers, and flame retardants. Further, the powder dispersion liquid may contain a resin component (thermosetting resin, thermoplastic resin, etc.) other than the F polymer.
The ratio of F powder in the powder dispersion is preferably 5 to 60% by mass.
The ratio of the dispersant in the powder dispersion is preferably 0.1 to 30% by mass.
The ratio of the solvent in the powder dispersion is preferably 15 to 65% by mass.
 塗布方法としては、スプレー法、ロールコート法、スピンコート法、グラビアコート法、マイクログラビアコート法、グラビアオフセット法、ナイフコート法、キスコート法、バーコート法、ダイコート法、ファウンテンメイヤーバー法、スロットダイコート法が挙げられる。
 塗布後、ウェット膜付き金属箔を保持温度に供する前に、上記温度領域未満の温度に加熱して、ウェット膜の状態を調整してもよい。調整は、溶媒が完全に揮発しない温度ですればよい。
The coating methods include spray method, roll coating method, spin coating method, gravure coating method, micro gravure coating method, gravure offset method, knife coating method, kiss coating method, bar coating method, die coating method, fountain Mayer bar method, and slot die coating. The law can be mentioned.
After the coating, before the metal foil with the wet film is subjected to the holding temperature, the state of the wet film may be adjusted by heating to a temperature lower than the above temperature range. The adjustment should be at a temperature at which the solvent does not completely volatilize.
 パウダー分散液を金属箔の表面に塗布して保持温度に保持すると、溶媒の揮発と分散剤の分解とが進行しながら、Fパウダーが密にパッキングした平滑性の高い被膜が形成される。この際、分散剤は、Fパウダーに弾かれやすくなり、表面に流動しやすくなると考えられる。つまり、この保持により、分散剤が表面に偏析した状態が形成されるとも考えられる。
 保持雰囲気は、常圧下、減圧下のいずれの状態であってよい。また、保持における雰囲気は、酸素ガス等の酸化性ガス雰囲気、水素ガス等の還元性ガス雰囲気、ヘリウムガス、ネオンガス、アルゴンガス、窒素ガス等の不活性ガス雰囲気のいずれであってもよい。
 保持温度は、200~300℃の温度領域が好ましい。この範囲において、溶媒が除去されるとともに、分散剤の部分的な分解及び流動が効果的に進行し、分散剤をより表面偏析させやすい。
 保持温度に保持する時間は、0.1~10分間が好ましく、0.5~5分間が特に好ましい。
When the powder dispersion is applied to the surface of the metal foil and kept at the holding temperature, the solvent volatilizes and the dispersant decomposes, and a highly smooth film in which the F powder is densely packed is formed. At this time, it is considered that the dispersant is easily repelled by the F powder and easily flows to the surface. That is, it is considered that this retention forms a state in which the dispersant is segregated on the surface.
The holding atmosphere may be in any state under normal pressure or reduced pressure. Further, the atmosphere for holding may be any of an oxidizing gas atmosphere such as oxygen gas, a reducing gas atmosphere such as hydrogen gas, and an inert gas atmosphere such as helium gas, neon gas, argon gas, and nitrogen gas.
The holding temperature is preferably in the temperature range of 200 to 300 ° C. In this range, the solvent is removed, the partial decomposition and flow of the dispersant proceed effectively, and the dispersant is more likely to be surface segregated.
The time for holding at the holding temperature is preferably 0.1 to 10 minutes, and particularly preferably 0.5 to 5 minutes.
 樹脂付金属箔の製造においては、さらに、保持温度超の温度領域(以下、「焼成温度」とも記す。)にてFポリマーを焼成させて金属箔の表面に層Fを形成するのが好ましい。
 焼成においては、Fパウダーが密にパッキングし、分散剤が効果的に表面偏析した状態でFポリマーの融着が進行するため、平滑性及び融着性に優れた層Fが形成される。
 なお、パウダー分散液が熱溶融性樹脂を含めばFポリマーと溶解性樹脂との混合物からなる層Fが形成され、パウダー分散液が熱硬化性樹脂を含めばFポリマーと熱硬化性樹脂の硬化物とからなる層Fが形成される。
 焼成の方法としては、オーブンを用いる方法、通風乾燥炉を用いる方法、赤外線等の熱線を照射する方法等が挙げられる。層Fの表面の平滑性を高めるために、加熱板、加熱ロール等で加圧してもよい。焼成の方法としては、短時間で焼成でき、遠赤外線炉が比較的コンパクトである点から、遠赤外線を照射する方法が好ましい。焼成においては、赤外線加熱と熱風加熱とを組み合わせてもよい。
In the production of the metal foil with resin, it is preferable to further fire the F polymer in a temperature region above the holding temperature (hereinafter, also referred to as “firing temperature”) to form the layer F on the surface of the metal foil.
In the firing, the F powder is densely packed and the F polymer is fused in a state where the dispersant is effectively surface segregated, so that the layer F having excellent smoothness and fusion property is formed.
If the powder dispersion contains a thermosetting resin, a layer F composed of a mixture of the F polymer and the soluble resin is formed, and if the powder dispersion contains the thermosetting resin, the F polymer and the thermosetting resin are cured. A layer F made of an object is formed.
Examples of the firing method include a method using an oven, a method using a ventilation drying furnace, a method of irradiating heat rays such as infrared rays, and the like. In order to improve the smoothness of the surface of the layer F, pressure may be applied with a heating plate, a heating roll or the like. As a firing method, a method of irradiating far infrared rays is preferable because it can be fired in a short time and the far infrared ray furnace is relatively compact. In firing, infrared heating and hot air heating may be combined.
 焼成における雰囲気は、常圧下、減圧下のいずれの状態であってよい。また、焼成における雰囲気は、酸素ガス等の酸化性ガス雰囲気、水素ガス等の還元性ガス雰囲気、ヘリウムガス、ネオンガス、アルゴンガス、窒素ガス等の不活性ガス雰囲気のいずれであってもよく、不活性ガス雰囲気であるのが好ましい。
 焼成における雰囲気としては、不活性ガスから構成され、酸素ガス濃度が低い雰囲気が好ましく、窒素ガスから構成され、酸素ガス濃度(体積基準)が300ppm以下の雰囲気が好ましい。
 焼成温度は、300℃超が好ましく、330~380℃が特に好ましい。この場合、Fポリマーが、緻密な層Fをより形成しやすい。
 焼成温度に保持する時間は、30秒~5分間が好ましい。
The atmosphere in firing may be either under normal pressure or under reduced pressure. Further, the atmosphere in firing may be any of an oxidizing gas atmosphere such as oxygen gas, a reducing gas atmosphere such as hydrogen gas, and an inert gas atmosphere such as helium gas, neon gas, argon gas, and nitrogen gas. It is preferable to have an active gas atmosphere.
The atmosphere in the firing is preferably an atmosphere composed of an inert gas and having a low oxygen gas concentration, and preferably an atmosphere composed of nitrogen gas and having an oxygen gas concentration (volume basis) of 300 ppm or less.
The firing temperature is preferably more than 300 ° C, particularly preferably 330 to 380 ° C. In this case, the F polymer is more likely to form a dense layer F.
The time for holding at the firing temperature is preferably 30 seconds to 5 minutes.
 樹脂付金属箔の製造においては、層Fの線膨張係数を制御したり、層Fの融着性をさらに改善するために、得られた樹脂付金属箔の層Fの表面を表面処理してもよい。
 表面処理としては、アニール処理、コロナ放電処理、大気圧プラズマ処理、真空プラズマ処理、UVオゾン処理、エキシマ処理、ケミカルエッチング、シランカップリング処理、微粗面化処理等が挙げられる。
 アニール処理における温度は、80~190℃が好ましい。アニール処理における圧力は、0.001~0.030MPaが好ましい。アニール処理の時間は、10~300分間が好ましい。
 プラズマ処理におけるプラズマ照射装置としては、高周波誘導方式、容量結合型電極方式、コロナ放電電極-プラズマジェット方式、平行平板型、リモートプラズマ型、大気圧プラズマ型、ICP型高密度プラズマ型等が挙げられる。
 プラズマ処理に用いるガスとしては、アルゴンガス、水素ガスと窒素ガスとの混合ガス、水素ガスと窒素ガスとアルゴンガスとの混合ガスが挙げられる。この場合、層Fの表面の粗さを調整することにより、微細凹凸が形成されやすい。
In the production of the resin-attached metal foil, the surface of the obtained resin-attached metal foil is surface-treated in order to control the coefficient of linear expansion of the layer F and further improve the fusion property of the layer F. May be good.
Examples of the surface treatment include annealing treatment, corona discharge treatment, atmospheric pressure plasma treatment, vacuum plasma treatment, UV ozone treatment, excimer treatment, chemical etching, silane coupling treatment, and fine roughening treatment.
The temperature in the annealing treatment is preferably 80 to 190 ° C. The pressure in the annealing treatment is preferably 0.001 to 0.030 MPa. The annealing treatment time is preferably 10 to 300 minutes.
Examples of the plasma irradiation device in plasma processing include a high frequency induction method, a capacitively coupled electrode method, a corona discharge electrode-plasma jet method, a parallel plate type, a remote plasma type, an atmospheric pressure plasma type, and an ICP type high density plasma type. ..
Examples of the gas used for the plasma treatment include argon gas, a mixed gas of hydrogen gas and nitrogen gas, and a mixed gas of hydrogen gas, nitrogen gas and argon gas. In this case, by adjusting the surface roughness of the layer F, fine irregularities are likely to be formed.
 mPIフィルムは、ポリイミド前駆体(ポリアミック酸)の溶液を環化反応させてゲルフィルムを得て、このゲルフィルムを乾燥処理し、さらに熱処理して製造するのが好ましい。なお、乾燥及び熱処理により、ポリアミック酸のイミド化が進行する。 
 環化反応における方法としては、溶液をフィルム状にキャストし、熱的に環化反応させてゲルフィルムを得る方法(熱閉環法)や、溶液に触媒及び脱水剤を混合し、化学的に環化反応させてゲルフィルムを得る方法(化学閉環法)を採用できる。
 触媒としては、トリメチルアミン、トリエチレンジアミン、ジメチルアニリン、イソキノリン、ピリジン、β-ピコリンが挙げられる。
 脱水剤としては、無水酢酸、無水プロピオン酸、無水酪酸、無水安息香酸が挙げられる。
 触媒及び脱水剤の使用量は、それぞれ、ポリアミック酸のアミド基(又はカルボキシル基)1モルに対して、1.5~10モルが好ましい。
The mPI film is preferably produced by cyclizing a solution of a polyimide precursor (polyamic acid) to obtain a gel film, drying the gel film, and further heat-treating the gel film. The imidization of the polyamic acid proceeds by drying and heat treatment.
As a method in the cyclization reaction, a method of casting a solution into a film and thermally cyclizing it to obtain a gel film (thermal ring closure method), or a method of mixing a catalyst and a dehydrating agent with the solution and chemically ringing the solution. A method of obtaining a gel film by a chemical reaction (chemical ring closure method) can be adopted.
Examples of the catalyst include trimethylamine, triethylenediamine, dimethylaniline, isoquinoline, pyridine and β-picoline.
Examples of the dehydrating agent include acetic anhydride, propionic anhydride, butyric anhydride, and benzoic anhydride.
The amount of the catalyst and the dehydrating agent used is preferably 1.5 to 10 mol, respectively, with respect to 1 mol of the amide group (or carboxyl group) of the polyamic acid.
 得られたゲルフィルムは、乾燥処理され、熱処理される。
 乾燥処理における温度は、220~300℃が好ましい。
 また、乾燥は、フィルム幅方向の乾燥温度ムラを抑制する観点から、乾燥温度ムラを20℃以下にするのが好ましい。また、乾燥処理後のゲルフィルムに延伸処理を施してもよい。
 熱処理における温度は、300~550℃がより好ましい。
 mPIフィルムに対しては、さらにアニール処理、コロナ処理、プラズマ処理、粗面化処理、シランカップリング剤処理等の表面処理をしてもよい。
The obtained gel film is dried and heat-treated.
The temperature in the drying treatment is preferably 220 to 300 ° C.
Further, in the drying, the drying temperature unevenness is preferably set to 20 ° C. or less from the viewpoint of suppressing the drying temperature unevenness in the film width direction. Further, the gel film after the drying treatment may be subjected to a stretching treatment.
The temperature in the heat treatment is more preferably 300 to 550 ° C.
The mPI film may be further subjected to surface treatment such as annealing treatment, corona treatment, plasma treatment, roughening treatment, and silane coupling agent treatment.
 樹脂付金属箔とmPIフィルムとを積層する熱プレスにおけるプレス温度は、300℃~350℃が好ましく、310℃~330℃がより好ましい。この範囲において、mPIフィルムの熱変形を抑えつつ、層FとmPIフィルムとを強固に融着できる。
 熱プレスにおける真空度は、20kPa以下が好ましい。この範囲において、積層体における金属箔層、層F、層Pのそれぞれの界面への気泡混入と酸化による劣化とを抑制できる。
 また、熱プレス時は上記真空度に到達した後に昇温することが好ましい。この場合、層Fが軟化する前の状態、すなわち一定程度の流動性、密着性が生じる前の状態にて圧着できるため、気泡の発生を防止し得る。
 熱プレスにおけるプレス圧力は、0.2~10MPaが好ましい。この範囲において、PIフィルム破損を抑えつつ、層FとmPIフィルムとを強固に融着できる。
The press temperature in the hot press for laminating the metal foil with resin and the mPI film is preferably 300 ° C. to 350 ° C., more preferably 310 ° C. to 330 ° C. In this range, the layer F and the mPI film can be firmly fused while suppressing thermal deformation of the mPI film.
The degree of vacuum in the hot press is preferably 20 kPa or less. In this range, it is possible to suppress the mixing of air bubbles at the interfaces of the metal foil layer, the layer F, and the layer P in the laminated body and deterioration due to oxidation.
Further, during hot pressing, it is preferable to raise the temperature after reaching the above vacuum degree. In this case, since the layer F can be pressure-bonded in a state before it is softened, that is, in a state before a certain degree of fluidity and adhesion is generated, the generation of air bubbles can be prevented.
The press pressure in the hot press is preferably 0.2 to 10 MPa. In this range, the layer F and the mPI film can be firmly fused while suppressing the damage of the PI film.
 本発明の積層体は、電気特性、耐薬品性(エッチング耐性)、耐熱性等の物性に優れた、層Fと層Pとを有する金属張積層体であり、フレキシブルプリント基板やリジッドプリント基板の材料として使用できる。
 本発明の積層体の金属箔層をエッチング処理して所定のパターンの導体回路(伝送回路)に加工する方法や、本発明の積層体の金属箔層を電解めっき法(セミアディティブ法(SAP法)、モディファイドセミアディティブ法(MSAP法)等)によって伝送回路に加工する方法によって、本発明の積層体からプリント基板を製造できる。
The laminate of the present invention is a metal-clad laminate having layers F and P, which is excellent in physical properties such as electrical characteristics, chemical resistance (etching resistance), and heat resistance, and is a flexible printed circuit board or a rigid printed circuit board. Can be used as a material.
A method of etching the metal foil layer of the laminate of the present invention to process it into a conductor circuit (transmission circuit) having a predetermined pattern, or an electrolytic plating method (semi-additive method (SAP method)) of the metal foil layer of the laminate of the present invention. ), Modified semi-additive method (MSAP method), etc.), a printed circuit board can be manufactured from the laminate of the present invention by a method of processing into a transmission circuit.
 本発明のプリント基板は、層Pと、前記層Pの少なくとも一方の面に存在する層Fと、その少なくとも一方の面に存在する伝送回路と、を有するプリント基板であり、前記層Pの吸水率は1.5%未満であり、前記層Pの線膨張係数の絶対値は25ppm/℃以下である。
 本発明のプリント基板における構成、層P及び層Fの種類等は、本発明の積層体におけるそれと、好適な範囲を含めて同じである。
 本発明のプリント基板の構成としては、例えば、伝送回路/層F/層Pなる構成、伝送回路/層F/層P/層Fなる構成、伝送回路/層F/層P/層F/伝送回路なる構成が挙げられる。
The printed circuit board of the present invention is a printed circuit board having a layer P, a layer F existing on at least one surface of the layer P, and a transmission circuit existing on at least one surface thereof, and is a printed circuit board having water absorption of the layer P. The rate is less than 1.5%, and the absolute value of the coefficient of linear expansion of the layer P is 25 ppm / ° C. or less.
The configuration, the types of layers P and F, etc. in the printed circuit board of the present invention are the same as those in the laminate of the present invention, including a suitable range.
The structure of the printed circuit board of the present invention includes, for example, a transmission circuit / layer F / layer P configuration, a transmission circuit / layer F / layer P / layer F configuration, and a transmission circuit / layer F / layer P / layer F / transmission. A circuit configuration can be mentioned.
 プリント基板の製造においては、伝送回路を形成した後に、伝送回路上に層間絶縁膜を形成し、層間絶縁膜上にさらに伝送回路を形成してもよい。層間絶縁膜は、例えば、本発明におけるパウダー分散液によっても形成できる。
 プリント基板の製造においては、伝送回路上にソルダーレジストを積層してもよい。ソルダーレジストは、本発明におけるパウダー分散液によって形成できる。
 プリント基板の製造においては、伝送回路上にカバーレイフィルムを積層してもよい。カバーレイフィルムは、本発明におけるパウダー分散液によっても形成できる。
 プリント基板の具体的な態様としては、本発明の積層体又は本発明のプリント基板を多層化した多層プリント回路基板が挙げられる。
In the manufacture of the printed circuit board, after forming the transmission circuit, an interlayer insulating film may be formed on the transmission circuit, and a transmission circuit may be further formed on the interlayer insulating film. The interlayer insulating film can also be formed by, for example, the powder dispersion liquid in the present invention.
In the manufacture of a printed circuit board, a solder resist may be laminated on a transmission circuit. The solder resist can be formed by the powder dispersion liquid in the present invention.
In the manufacture of the printed circuit board, a coverlay film may be laminated on the transmission circuit. The coverlay film can also be formed by the powder dispersion liquid in the present invention.
Specific embodiments of the printed circuit board include a laminated body of the present invention or a multilayer printed circuit board in which the printed circuit board of the present invention is multilayered.
 多層プリント回路基板の好適な態様としては、最外層が層Fであり、金属箔層、層F、層Pをこの順に有する構成を1以上有する態様が挙げられる。
 かかる態様における金属箔層は、その一部が除去されて伝送回路を形成しているのが好ましい。また、層Fと層Pとの間に、金属箔層の一部が除去されて形成された伝送回路が存在していてもよい。
 上記態様の多層プリント回路基板は、最外層に層Fを有し、耐熱性に優れており、具体的には、250~300℃の高温においても、界面の膨れや剥離が発生しにくい。特に、伝送回路を形成している場合、つまり、金属箔層の一部が除去されて露出した層Fと他の層とが接触面を有する場合、かかる傾向が顕著になりやすい。その理由としては、金属箔層の表面粗さが層Fの表面に転写されて生じた層Fの表面粗さが、他の層との接触においてアンカー効果を発現するためと考えられる。その結果、プラズマ処理等の親水化処理を施すことなくとも、それぞれの界面が強固に融着し、加熱時にも界面膨れや界面剥離、特に最外層における膨れや剥離を抑制し得る。
A preferred embodiment of the multilayer printed circuit board includes a configuration in which the outermost layer is the layer F, and one or more of the metal foil layers, the layers F, and the layers P are provided in this order.
It is preferable that a part of the metal foil layer in such an embodiment is removed to form a transmission circuit. Further, a transmission circuit formed by removing a part of the metal foil layer may exist between the layer F and the layer P.
The multilayer printed circuit board of the above aspect has a layer F on the outermost layer and is excellent in heat resistance. Specifically, swelling and peeling of the interface are unlikely to occur even at a high temperature of 250 to 300 ° C. In particular, when a transmission circuit is formed, that is, when a layer F exposed by removing a part of the metal foil layer and another layer have a contact surface, such a tendency tends to be remarkable. It is considered that the reason is that the surface roughness of the metal foil layer is transferred to the surface of the layer F, and the surface roughness of the layer F exerts an anchor effect in contact with other layers. As a result, the respective interfaces are strongly fused without subjecting to a hydrophilization treatment such as plasma treatment, and interface swelling and interfacial peeling, particularly swelling and peeling in the outermost layer can be suppressed even during heating.
 多層プリント回路基板の好適な態様としては、最外層が層Pであり、金属箔層、層F、層Pをこの順に有する構成を1以上有する態様も挙げられる。
 かかる態様における金属箔層は、その一部が除去されて伝送回路を形成しているのが好ましい。また、層Fと層Pとの間に、金属箔層の一部が除去されて形成された伝送回路が存在していてもよい。
 上記態様の多層プリント回路基板は、最外層に層Pを有していても耐熱性に優れており、250~300℃の高温においても、界面の膨れや剥離が発生しにくい。特に、伝送回路を形成している場合、つまり、金属箔層の一部が除去されて露出した層Fと他の層との接触面を有する場合、かかる傾向が顕著になりやすい。その理由としては、金属箔層の表面粗さが層Fの表面に転写されて生じた層Fの表面粗さが、他の層との接触においてアンカー効果を発現するためと考えられる。その結果、プラズマ処理等の親水化処理を施すことなくとも、それぞれの界面が強固に融着し、加熱時にも界面の膨れや剥離、特に最外層における膨れや剥離を抑制し得る。
 これらの態様における多層プリント回路基板は、はんだフロート耐性に優れたプリント基板として有用である。
As a preferred embodiment of the multilayer printed circuit board, there is also an embodiment in which the outermost layer is the layer P, and one or more of the configurations having the metal foil layer, the layer F, and the layer P in this order are included.
It is preferable that a part of the metal foil layer in such an embodiment is removed to form a transmission circuit. Further, a transmission circuit formed by removing a part of the metal foil layer may exist between the layer F and the layer P.
The multilayer printed circuit board of the above aspect has excellent heat resistance even if it has a layer P on the outermost layer, and swelling or peeling of the interface is unlikely to occur even at a high temperature of 250 to 300 ° C. In particular, when a transmission circuit is formed, that is, when a part of the metal foil layer is removed and the exposed layer F has a contact surface with another layer, such a tendency tends to be remarkable. It is considered that the reason is that the surface roughness of the metal foil layer is transferred to the surface of the layer F, and the surface roughness of the layer F exerts an anchor effect in contact with other layers. As a result, the respective interfaces are strongly fused without subjecting to a hydrophilization treatment such as plasma treatment, and swelling or peeling of the interface, particularly swelling or peeling in the outermost layer can be suppressed even during heating.
The multilayer printed circuit board in these embodiments is useful as a printed circuit board having excellent solder float resistance.
 以上、本発明の積層体、プリント基板の製造方法、プリント基板及びアンテナについて説明したが、本発明は、上述した実施形態の構成に限定されない。
 本発明の積層体、プリント基板及びアンテナは、上述した実施形態の構成において、他の任意の構成を追加してもよいし、同様の機能を発揮する任意の構成と置換されてもよい。
 また、本発明のプリント基板の製造方法は、上述した実施形態の構成において、他の任意の工程を追加してもよいし、同様の機能を発揮する任意の工程と置換されてもよい。
Although the laminate of the present invention, the method for manufacturing the printed circuit board, the printed circuit board and the antenna have been described above, the present invention is not limited to the configuration of the above-described embodiment.
The laminate, the printed circuit board, and the antenna of the present invention may be added with any other configuration or may be replaced with any configuration exhibiting the same function in the configuration of the above-described embodiment.
In addition, the method for manufacturing a printed circuit board of the present invention may be added to any other step in the configuration of the above-described embodiment, or may be replaced with any step that exhibits the same function.
 以下、実施例によって本発明を詳細に説明するが、本発明はこれらに限定されない。
 モノマー及び溶媒の略称は、以下の意味を示す。
 BPDA:3,3’,4,4’-ビフェニルテトラカルボン酸二無水物
 ODPA:4,4’-オキシジフタル酸無水物
 PMDA:ピロメリット酸二無水物
 PBTA:p-フェニレンビス(トリメリテート無水物)
 PDA:パラフェニレンジアミン
 BAPP:2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン
 BAPB:4,4’-ビス(4-アミノフェノキシ)ビフェニル
 PPBA:4,4’-(1,3-フェニレンジイソプロピリデン)ビスアニリン
 m-TB:2,2'-ジメチル-4,4’-ジアミノビフェニル
 TPE-R:1,3-ビス(4-アミノフェノキシ)ベンゼン
 TFE:テトラフルオロエチレン
 PPVE:ペルフルオロプロピルビニルエーテル
 NAH:5-ノルボルネン-2,3-ジカルボン酸無水物(無水ハイミック酸)
 NMP:N-メチル-2-ピロリドン
Hereinafter, the present invention will be described in detail by way of examples, but the present invention is not limited thereto.
Abbreviations for monomers and solvents have the following meanings.
BPDA: 3,3', 4,4'-biphenyltetracarboxylic dianhydride ODPA: 4,4'-oxydiphthalic anhydride PMDA: pyromellitic acid dianhydride PBTA: p-phenylenebis (trimeritate anhydride)
PDA: Paraphenylenediamine BAPP: 2,2'-bis [4- (4-aminophenoxy) phenyl] Propyl BAPB: 4,4'-bis (4-aminophenoxy) biphenyl PPBA: 4,4'-(1, 3-Phenylisopropylidene) Bisaniline m-TB: 2,2'-dimethyl-4,4'-diaminobiphenyl TPE-R: 1,3-bis (4-aminophenoxy) benzene TFE: Tetrafluoroethylene PPVE: Perfluoro Propylvinyl ether NAH: 5-norbornene-2,3-dicarboxylic acid anhydride (hymicic anhydride)
NMP: N-methyl-2-pyrrolidone
 [例1(参考例)]非熱可塑性ポリイミドのフィルムの調製例
 [例1-1]mPIフィルム1
 mPIフィルム1は、酸無水物モノマーとしてBPDA(75モル%)、ODPA(15モル%)及びPMDA(15モル%)を、ジアミンモノマーとしてPDA(70モル%)、BAPP(15モル%)及びBAPB(15モル%)を選択し、BPDA及びPDAをまず溶液重合させ、さらにODPA、PMDA、BAPP及びBAPBを追添して重合させ、化学閉環法によりイミド化させて得られる非熱可塑性ポリイミド(ガラス転移温度:298℃、イミド基密度:0.34)の無延伸フィルムである。
[Example 1 (Reference Example)] Preparation Example of Non-Thermoplastic Polyimide Film [Example 1-1] mPI Film 1
The mPI film 1 contains BPDA (75 mol%), ODPA (15 mol%) and PMDA (15 mol%) as acid anhydride monomers, and PDA (70 mol%), BAPP (15 mol%) and BABP as diamine monomers. (15 mol%) is selected, BPDA and PDA are first solution-polymerized, then ODPA, PMDA, BAPP and BABP are added and polymerized, and imidized by a chemical ring-closing method to obtain a non-thermoplastic polyimide (glass). It is a non-stretched film having a transition temperature of 298 ° C. and an imide group density of 0.34).
 [例1-2]mPIフィルム2
 mPIフィルム2は、酸無水物モノマーとしてPMDA(9モル%)及びBPDA(91モル%)を、ジアミンモノマーとしてm-TB(15モル%)及びTPE-R(85モル%)を選択し、全てのモノマーを溶液重合させ、化学閉環法によりイミド化させて得られる非熱可塑性ポリイミド(ガラス転移温度:298℃、イミド基密度:0.26)の無延伸フィルムである。
[Example 1-2] mPI film 2
For mPI film 2, PMDA (9 mol%) and BPDA (91 mol%) were selected as acid anhydride monomers, and m-TB (15 mol%) and TPE-R (85 mol%) were selected as diamine monomers, all of which were selected. This is a non-stretched film of non-thermoplastic polyimide (glass transition temperature: 298 ° C., imide group density: 0.26) obtained by solution-polymerizing the monomers of the above and imidizing them by a chemical ring-closing method.
 [例1-3]mPIフィルム3
 mPIフィルム3は、酸無水物モノマーとしてBPDA(100モル%)を、ジアミンモノマーとしてPDA(100モル%)を選択し、全てのモノマーを溶液重合させ、化学閉環法によりイミド化させて得られる非熱可塑性ポリイミド(ガラス転移温度:420℃、イミド基密度:0.38)の無延伸フィルムである。
[Example 1-3] mPI film 3
The mPI film 3 is obtained by selecting BPDA (100 mol%) as an acid anhydride monomer and PDA (100 mol%) as a diamine monomer, solution-polymerizing all the monomers, and imidizing them by a chemical ring closure method. It is a non-stretched film of thermoplastic polyimide (glass transition temperature: 420 ° C., imide group density: 0.38).
 [例1-4]mPIフィルム4
 mPIフィルム4は、酸無水物モノマーとしてBPDA(9モル%)及びPBTA(91モル%)を、ジアミンモノマーとしてm-TB(15モル%)及びPPBA(85モル%)を選択し、全てのモノマーを溶液重合させ、化学閉環法によりイミド化させて得られる非熱可塑性ポリイミド(ガラス転移温度:268℃、イミド基密度:0.18)の無延伸フィルムである。
 [例1-5]mPIフィルム5
 非熱可塑性ポリイミド(SKC Kolon PI社製、「FS-200」;ガラス転移温度:310℃、イミド基密度:0.25)。
 それぞれのフィルムの物性を、まとめて表1に示す。
[Example 1-4] mPI film 4
For the mPI film 4, BPDA (9 mol%) and PBTA (91 mol%) were selected as the acid anhydride monomers, and m-TB (15 mol%) and PPBA (85 mol%) were selected as the diamine monomers, and all the monomers were selected. Is a non-stretched film of non-thermoplastic polyimide (glass transition temperature: 268 ° C., imide group density: 0.18) obtained by solution polymerization and imidization by a chemical ring closure method.
[Example 1-5] mPI film 5
Non-thermoplastic polyimide (manufactured by SKC Kolon PI, "FS-200"; glass transition temperature: 310 ° C., imide group density: 0.25).
The physical properties of each film are summarized in Table 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 なお、それぞれのポリイミド及びフィルムの物性は、以下の方法にて測定した。
 <ガラス転移温度>
 動的粘弾性測定装置(SIIナノテクノロジー社製、「DMS6100」)を用いてポリイミドのフィルムを分析し、貯蔵弾性率に対する損失弾性率の比である損失正接(tanδ)を温度に対してプロットした際に、tanδが極大値となる温度を、ポリイミドのガラス転移温度とした。
 測定条件は、サンプル測定範囲を幅9mm、つかみ具間距離20mmとし、測定温度は0℃~440℃とし、昇温速度は3℃/分とし、測定雰囲気は空気雰囲気とし、歪み振幅は10μmとし、測定周波数は5Hzとし、最小張力/圧縮力は100mNとし、張力/圧縮ゲインは1.5とし、力振幅初期値は100mNとした。
The physical properties of each polyimide and film were measured by the following methods.
<Glass transition temperature>
A polyimide film was analyzed using a dynamic viscoelasticity measuring device (“DMS6100” manufactured by SII Nanotechnology), and the loss tangent (tan δ), which is the ratio of the loss modulus to the storage modulus, was plotted against temperature. At that time, the temperature at which tan δ became the maximum value was defined as the glass transition temperature of polyimide.
The measurement conditions were a sample measurement range of 9 mm in width, a distance of 20 mm between grippers, a measurement temperature of 0 ° C to 440 ° C, a temperature rise rate of 3 ° C / min, a measurement atmosphere of air, and a strain amplitude of 10 μm. The measurement frequency was 5 Hz, the minimum tension / compressive force was 100 mN, the tension / compression gain was 1.5, and the initial force amplitude was 100 mN.
 <線膨張係数>
 熱機械的分析装置(SIIナノテクノロジー社製、「TMA/SS6100」)を用いて、ポリイミドのフィルム(幅:3mm、長さ:10mm)を、10℃/分にて0℃から400℃に昇温させた後、40℃/分にて10℃まで冷却し、さらに10℃/分にて10℃から200℃に昇温させた際の線膨張係数として求めた。測定荷重は29.4mNとし、測定雰囲気を空気雰囲気とした。
 <吸水率>
 後述する方法にて測定した。
 <引張弾性率>
 広域粘弾性測定装置(RHEOLOGY CO.,LTD社製、「DVE RHEO SPECTOLER」)を用いて320℃における引張弾性率を測定した。測定周波数は10Hzとした。
<Coefficient of linear expansion>
Using a thermomechanical analyzer (“TMA / SS6100” manufactured by SII Nanotechnology Inc.), the polyimide film (width: 3 mm, length: 10 mm) was raised from 0 ° C to 400 ° C at 10 ° C / min. After warming, it was cooled to 10 ° C. at 40 ° C./min and further heated from 10 ° C. to 200 ° C. at 10 ° C./min to determine the coefficient of linear expansion. The measurement load was 29.4 mN, and the measurement atmosphere was an air atmosphere.
<Water absorption rate>
It was measured by the method described later.
<Tension modulus>
The tensile elastic modulus at 320 ° C. was measured using a wide-area viscoelasticity measuring device (RHEOLOGY CO., manufactured by LTD, "DVE RHEO SPECTORER"). The measurement frequency was 10 Hz.
 [例2(参考例)]Fポリマーのパウダー分散液の調製例
 [例2-1]分散液1
 分散液1は、TFE単位、NAH単位及びPPVE単位を、この順に98.0モル%、0.1モル%、1.9モル%含む、酸無水物基を有するFポリマー1(溶融温度:300℃)のパウダー(D50:2.6μm、D90:7.1μm)の50質量部と、ノニオン性フルオロポリオールの3質量部と、NMPの47質量部とをポットに投入し、ポット内にジルコニアボールを投入し、150rpmにて1時間、ポットをころがして得られる、Fポリマー1のパウダーがNMPに分散した分散液である。
[Example 2 (Reference Example)] Preparation Example of Powder Dispersion Solution of F Polymer [Example 2-1] Dispersion Solution 1
The dispersion liquid 1 contains 98.0 mol%, 0.1 mol%, and 1.9 mol% of TFE units, NAH units, and PPVE units in this order, and is an F polymer 1 having an acid anhydride group (melting temperature: 300). 50 parts by mass of powder (D50: 2.6 μm, D90: 7.1 μm) of ℃), 3 parts by mass of nonionic fluoropolymer, and 47 parts by mass of NMP were put into a pot, and zirconia balls were put into the pot. Is a dispersion liquid in which the powder of F polymer 1 is dispersed in NMP, which is obtained by rolling the pot at 150 rpm for 1 hour.
 [例2-2]分散液2
 分散液2は、TFE単位及びPPVE単位を、この順に98.0モル%、2.0モル%含む、官能基を有さないFポリマー2(溶融温度:305℃)のパウダー(D50:3.5μm、D90:9.2μm)の50質量部と、ノニオン性フルオロポリオールの3質量部と、N-メチル-2-ピロリドン(NMP)の47質量部とをポットに投入し、ポット内にジルコニアボールを投入し、150rpmにて1時間、ポットをころがして得られる、Fポリマー2のパウダーがNMPに分散した分散液である。
[Example 2-2] Dispersion liquid 2
The dispersion liquid 2 contains 98.0 mol% and 2.0 mol% of TFE units and PPVE units in this order, and is a powder (D50: 3.) of F polymer 2 having no functional group (melting temperature: 305 ° C.). 50 parts by mass of 5 μm, D90: 9.2 μm), 3 parts by mass of nonionic fluoropolymer, and 47 parts by mass of N-methyl-2-pyrrolidone (NMP) were put into a pot, and zirconia balls were put into the pot. Is a dispersion liquid in which the powder of F polymer 2 is dispersed in NMP, which is obtained by rolling the pot at 150 rpm for 1 hour.
 [例3(参考例)]樹脂付銅箔の調製例
 [例3-1]樹脂付銅箔1の調製例
 分散液1を電解銅箔1(厚さ:18μm、Rzjis:1.0μm、Rq:0.21μm;福田金属箔粉工業社製、「CF-T4X-SV-18」)に、グラビアリバース法によりロールツーロールで塗工して液状被膜を形成した。次いで、この液状被膜を120℃にて5分間乾燥炉に通し、加熱し乾燥して、乾燥被膜を得た。その後、乾燥被膜を窒素オーブン下で380℃にて3分間加熱した。これにより、電解銅箔1の表面にポリマー1を含む層F(厚さ:25μm)が形成された樹脂付銅箔1を得た。電解銅箔1をエッチングした後に測定した層Fの吸水率は0.01%であった。
 なお、樹脂付銅箔の調整に用いた銅箔の表面粗さは、以下の方法にて測定した。
 <銅箔の表面粗さ>
 接触式表面粗さ計(東京精密社製、「SURFCOM NEX001」)を用いて、銅箔の表面(マット面)の、Rzjis値及びRq値をそれぞれ測定した。測定端子は先端半径2μm、円錐(テーパ角:60°)の端子を用い、カットオフ値は、λcを0.8mmと、λsを2.5μmとし、粗さ曲線の基準長さは0.8mmとし、粗さ曲線の評価長さは4.0mmとした。
[Example 3 (Reference example)] Example of preparation of copper foil with resin [Example 3-1] Example of preparation of copper foil with resin 1 Disperse liquid 1 is added to electrolytic copper foil 1 (thickness: 18 μm, Rzjis: 1.0 μm, Rq : 0.21 μm; “CF-T4X-SV-18” manufactured by Fukuda Metal Foil Powder Industry Co., Ltd.) was coated by a roll-to-roll method by a gravure reverse method to form a liquid film. Next, this liquid film was passed through a drying oven at 120 ° C. for 5 minutes, heated and dried to obtain a dry film. Then, the dry film was heated in a nitrogen oven at 380 ° C. for 3 minutes. As a result, a resin-attached copper foil 1 in which a layer F 1 (thickness: 25 μm) containing the polymer 1 was formed on the surface of the electrolytic copper foil 1 was obtained. The water absorption of the layer F 1 measured after an electrolytic copper foil 1 and the etching was 0.01%.
The surface roughness of the copper foil used for adjusting the resin-attached copper foil was measured by the following method.
<Copper foil surface roughness>
The Rzjis value and the Rq value of the surface (matte surface) of the copper foil were measured using a contact type surface roughness meter (manufactured by Tokyo Seimitsu Co., Ltd., "SURFCOM NEX001"). The measurement terminal uses a terminal with a tip radius of 2 μm and a cone (taper angle: 60 °), and the cutoff values are 0.8 mm for λc and 2.5 μm for λs, and the reference length of the roughness curve is 0.8 mm. The evaluation length of the roughness curve was 4.0 mm.
 [例3-2]樹脂付銅箔2の調製例
 分散液1に代えて分散液2を使用した以外は、樹脂付銅箔1と同様にして、Fポリマー2を含む層F(厚さ:25μm)が形成された樹脂付銅箔2を得た。電解銅箔1をエッチングした後に測定した層Fの吸水率は0.01%であった。
[Example 3-2] Example of preparation of copper foil 2 with resin Layer F 2 (thickness) containing F polymer 2 in the same manner as copper foil 1 with resin except that the dispersion liquid 2 was used instead of the dispersion liquid 1. : A copper foil 2 with a resin on which 25 μm) was formed was obtained. Water absorption of the layer F 2 measured after an electrolytic copper foil 1 and the etching was 0.01%.
 [例3-3]樹脂付銅箔3の調製例
 芳香族性の熱可塑性ポリイミドを10質量%含むワニスを電解銅箔1に、グラビアリバース法によりロールツーロールで塗工して液状被膜を形成した。次いで、この液状被膜を120℃にて5分間、200℃にて10分間乾燥炉に通し、加熱し乾燥して、乾燥被膜を得た。これにより、電解銅箔1の表面に、芳香族性の熱可塑性ポリイミドの層PI(厚さ:25μm)が形成された樹脂付銅箔3を得た。電解銅箔1をエッチングした後に測定した層PIの吸水率は1.5%であった。
 なお、エッチングした後のそれぞれの層の吸水率は、後述する方法で測定した。
[Example 3-3] Preparation example of copper foil 3 with resin A varnish containing 10% by mass of aromatic thermoplastic polyimide is applied to the electrolytic copper foil 1 by a roll-to-roll method by a gravure reverse method to form a liquid film. did. Next, this liquid film was passed through a drying oven at 120 ° C. for 5 minutes and at 200 ° C. for 10 minutes, heated and dried to obtain a dry film. As a result, a resin-attached copper foil 3 in which an aromatic thermoplastic polyimide layer PI 1 (thickness: 25 μm) was formed on the surface of the electrolytic copper foil 1 was obtained. The water absorption rate of the layer PI 1 measured after etching the electrolytic copper foil 1 was 1.5%.
The water absorption rate of each layer after etching was measured by a method described later.
 [例3-4]樹脂付銅箔4の調製例
 銅箔を、電解銅箔2(厚さ:18μm、Rzjis:1.2μm、Rq:0.28μm;三井金属鉱業社製、「TQ-M7-VSP-18」)に変更した以外は、樹脂付き銅箔1と同様にして樹脂付き銅箔4を得た。
 [例3-5]樹脂付き銅箔5の調製例
 銅箔を、電解銅箔3(厚さ:18μm、Rzjis:0.6μm、Rq:0.14μm;三井金属鉱業社製、「TQ-M4-VSP-18」)に変更した以外は、樹脂付き銅箔1と同様にして樹脂付き銅箔5を得た。
[Example 3-4] Preparation example of copper foil 4 with resin An electrolytic copper foil 2 (thickness: 18 μm, Rzjis: 1.2 μm, Rq: 0.28 μm; manufactured by Mitsui Metal Mining Co., Ltd., “TQ-M7” A resin-containing copper foil 4 was obtained in the same manner as the resin-containing copper foil 1 except that the value was changed to −VSP-18 ”).
[Example 3-5] Example of preparation of copper foil 5 with resin An electrolytic copper foil 3 (thickness: 18 μm, Rzjis: 0.6 μm, Rq: 0.14 μm; manufactured by Mitsui Metal Mining Co., Ltd., “TQ-M4” A resin-containing copper foil 5 was obtained in the same manner as the resin-containing copper foil 1 except that the value was changed to −VSP-18 ”).
 [例4]積層体の製造例
 [例4-1]積層体1の製造例
 mPIフィルム1の両面のそれぞれに樹脂付銅箔1を層Fが対向するように配置し、真空熱プレス(プレス温度:320℃、プレス圧力:2MPa、プレス時間:2分間)して、電解銅箔1(厚さ:18μm)及び非熱可塑性のポリイミド1の層P(mPIフィルム1;厚さ:50μm)を有し、さらに層Pの両面にFポリマー1の層F(厚さ:25μm)を有する積層体1を得た。積層体1は、電解銅箔1/層F/層P/層F/電解銅箔1なる構成を有する積層体である。なお、真空熱プレス前に、mPIフィルム1の表面は、40kHzの高周波電圧(放電電力密度:300W・分/m)の条件下、アルゴン95体積%、水素5体積%の混合ガス(流量:2000sccm)を使用する、真空プラズマ処理(真空度:20Pa)によって表面処理した。
[Example 4] The resin coated copper foil 1 layer F 1 is arranged to face the respective surfaces of Preparation Example 4-1] Production Example mPI film 1 of the laminated body 1 of the stack, a vacuum hot press ( Press temperature: 320 ° C., press pressure: 2 MPa, press time: 2 minutes), electrolytic copper foil 1 (thickness: 18 μm) and non-thermoplastic polyimide 1 layer P 1 (mPI film 1; thickness: 50 μm) ) has a further layer F 1 of F polymer 1 on both sides of the layer P 1 (thickness: to obtain a laminate 1 having a 25 [mu] m). The laminate 1 is a laminate having a structure of electrolytic copper foil 1 / layer F 1 / layer P 1 / layer F 1 / electrolytic copper foil 1. Before the vacuum heat press, the surface of the mPI film 1 was subjected to a mixed gas of 95% by volume argon and 5% by volume hydrogen (flow rate:) under the condition of a high frequency voltage of 40 kHz (discharge power density: 300 W / min / m 2 ). The surface was treated by vacuum plasma treatment (vacuum degree: 20 Pa) using 2000 sccm).
 [例4-2]積層体2の製造例
 樹脂付銅箔1に代えて樹脂付銅箔2を使用した以外は、例4-1と同様にして、電解銅箔1/層F/層P/層F/電解銅箔1なる構成を有する積層体2を得た。
 [例4-3]積層体3の製造例
 mPIフィルム1に代えてmPIフィルム2を使用した以外は、例4-1と同様にして、電解銅箔1/層F/層P(mPIフィルム2)/層F/電解銅箔1なる構成を有する積層体3を得た。
[Example 4-2] Production example of laminate 2 Electrolytic copper foil 1 / layer F 2 / layer in the same manner as in Example 4-1 except that the resin-attached copper foil 2 was used instead of the resin-attached copper foil 1. A laminate 2 having a configuration of P 1 / layer F 2 / electrolytic copper foil 1 was obtained.
[Example 4-3] Production example of laminate 3 Electrolytic copper foil 1 / layer F 1 / layer P 2 (mPI) in the same manner as in Example 4-1 except that the mPI film 2 was used instead of the mPI film 1. A laminate 3 having a structure of film 2) / layer F 1 / electrolytic copper foil 1 was obtained.
 [例4-4]積層体4の製造例
 mPIフィルム1に代えてmPIフィルム3を使用した以外は、例4-1と同様にして、電解銅箔1/層F/層P(mPIフィルム3)/層F/電解銅箔1なる構成を有する積層体4を得た。
 [例4-5]積層体5の製造例
 mPIフィルム1に代えてmPIフィルム4を使用した以外は、例4-1と同様にして、電解銅箔1/層F/層P(mPIフィルム4)/層F/電解銅箔1なる構成を有する積層体5を得た。
[Example 4-4] Production example of laminated body 4 Electrolytic copper foil 1 / layer F 1 / layer P 3 (mPI) in the same manner as in Example 4-1 except that the mPI film 3 was used instead of the mPI film 1. A laminate 4 having a structure of film 3) / layer F 1 / electrolytic copper foil 1 was obtained.
[Example 4-5] Production example of laminate 5 Electrolytic copper foil 1 / layer F 1 / layer P 4 (mPI) in the same manner as in Example 4-1 except that the mPI film 4 was used instead of the mPI film 1. A laminate 5 having a structure of film 4) / layer F 1 / electrolytic copper foil 1 was obtained.
 [例4-6]積層体6の製造例
 樹脂付銅箔1に代えて樹脂付銅箔3を使用した以外は、例4-1と同様にして、電解銅箔1/層PI/層P/層PI/電解銅箔1なる構成を有する積層体6を得た。
 [例4-7]積層体7の製造例
 mPIフィルム1に代えてmPIフィルム5を使用した以外は、例4-1と同様にして、電解銅箔1/層F/層P(mPIフィルム5)/層F/電解銅箔1なる構成を有する積層体7を得た。
[Example 4-6] Production example of laminate 6 Electrolytic copper foil 1 / layer PI 1 / layer in the same manner as in Example 4-1 except that the resin-attached copper foil 3 was used instead of the resin-attached copper foil 1. A laminate 6 having a configuration of P 1 / layer PI 1 / electrolytic copper foil 1 was obtained.
[Example 4-7] Production example of laminate 7 Electrolytic copper foil 1 / layer F 1 / layer P 5 (mPI) in the same manner as in Example 4-1 except that the mPI film 5 was used instead of the mPI film 1. A laminate 7 having a structure of film 5) / layer F 1 / electrolytic copper foil 1 was obtained.
 [例4-8]積層体8の製造例
 樹脂付銅箔1に代えて樹脂付銅箔4を使用した以外は、例4-1と同様にして積層体8を得た。
 [例4-9]積層体9の製造例
 樹脂付銅箔1に代えて樹脂付銅箔5を使用した以外は、例4-1と同様にして積層体9を得た。
[Example 4-8] Production Example of Laminated Body 8 A laminated body 8 was obtained in the same manner as in Example 4-1 except that the resin-attached copper foil 4 was used instead of the resin-attached copper foil 1.
[Example 4-9] Production Example of Laminated Body 9 A laminated body 9 was obtained in the same manner as in Example 4-1 except that the copper foil 5 with resin was used instead of the copper foil 1 with resin.
 [例5]積層体の評価例
 それぞれの積層体を、以下の評価項目で評価した。
 <ピール強度>
 積層体を1cm幅に切りだし、90°の角度、50mm/分の速度で引き剥がしてピール強度(kN/m)を測定した。
 <常態-電気特性>
 それぞれの積層体の銅箔をエッチングにより除去し、100℃にて2時間乾燥して、両面に層Fが存在する層Pからなる測定サンプルを調製した。それぞれの測定サンプルを24℃かつ相対湿度50%の雰囲気下にて24時間保持した後、それぞれの誘電率(常態-誘電率)及び誘電正接(常態-誘電正接)を測定した。
 <加湿-電気特性>
 上記電気特性を測定した後のそれぞれの測定サンプルを、さらに85℃かつ相対湿度85%の雰囲気下にて72時間保持した。保持後5分以内に、それぞれの測定サンプルの誘電率(加湿-誘電率)及び誘電正接(加湿-誘電正接)を測定した。
[Example 5] Evaluation example of laminated body Each laminated body was evaluated by the following evaluation items.
<Peel strength>
The laminate was cut into a width of 1 cm, peeled off at an angle of 90 ° and a speed of 50 mm / min, and the peel strength (kN / m) was measured.
<Normal-Electrical characteristics>
The copper foil of each laminate was removed by etching and dried at 100 ° C. for 2 hours to prepare a measurement sample composed of a layer P having layers F on both sides. After holding each measurement sample in an atmosphere of 24 ° C. and 50% relative humidity for 24 hours, the respective dielectric constants (normal-dielectric constant) and dielectric loss tangent (normal-dielectric loss tangent) were measured.
<Humidification-Electrical characteristics>
After measuring the electrical characteristics, each measurement sample was further held at 85 ° C. and an atmosphere of 85% relative humidity for 72 hours. Within 5 minutes after holding, the dielectric constant (humidification-dielectric constant) and dielectric loss tangent (humidification-dielectric loss tangent) of each measurement sample were measured.
 <吸水率>
 JIS K 7209:2000Aの方法に準じて測定した。
 まず、10cm角に切り出した積層体の銅箔をエッチングにて除去して、試験片を調製した。次に、この試験片を50℃にて24時間乾燥させ、デシケーター内で冷却した。この時点における試験片の質量を、試験片の浸漬前質量とした。
 その後、この乾燥させた試験片を、23℃にて24時間、純水に浸漬させた。その後、試験片を純水から取り出し、速やかに表面の水分を拭き取った後、1分以内に測定した質量を試験片の浸漬後質量とした。浸漬前後での試験片の質量変化率を求め、積層体の「吸水率(実測値)」とした。また、積層体が有する、それぞれの層の吸水率を単純に和した値を「吸水率(計算値)」とした。
<Water absorption rate>
The measurement was performed according to the method of JIS K 7209: 2000A.
First, a copper foil of a laminated body cut into 10 cm squares was removed by etching to prepare a test piece. The test piece was then dried at 50 ° C. for 24 hours and cooled in a desiccator. The mass of the test piece at this point was defined as the mass of the test piece before immersion.
Then, the dried test piece was immersed in pure water at 23 ° C. for 24 hours. Then, the test piece was taken out from pure water, the water on the surface was quickly wiped off, and the mass measured within 1 minute was taken as the mass after immersion of the test piece. The mass change rate of the test piece before and after immersion was determined and used as the "water absorption rate (actual measurement value)" of the laminated body. Further, a value obtained by simply summing the water absorption rates of each layer of the laminated body was defined as "water absorption rate (calculated value)".
 <伝送損失>
 積層体のそれぞれに伝送線路を形成してプリント基板とした。伝送線路の形成には、マイクロストリップラインを用いた。プリント基板における28GHzの信号を、ベクトルネットワークアナライザー(キーサイトテクノロジー社製、「E8361A」)を用いて処理し、Universal Test Fixtureをプローブとして伝送損失を表すS21パラメーターを測定した。その際、線路の特性インピーダンスは50Ωとし、プリント基板の伝送線路の長さは50mmとして、伝送損失を測定した。
 伝送損失の尺度としては、高周波電子回路や高周波電子部品の特性を表すために使用される回路網パラメーターの一つである「S21-parameter」を伝送損失値とした。この値は、その値が0に近い程、伝送損失が小さいことを意味する。
 純水に浸漬させていない積層体から形成したプリント基板の伝送損失値を「吸水前 伝送損失」とし、23℃にて24時間、純水に浸漬させた後の積層体から形成したプリント基板の伝送損失値を「吸水後 伝送損失」とした。
<Transmission loss>
A transmission line was formed on each of the laminated bodies to form a printed circuit board. A microstrip line was used to form the transmission line. The 28 GHz signal on the printed circuit board was processed using a vector network analyzer (“E8361A” manufactured by Keysight Technology Co., Ltd.), and the S21 parameter representing the transmission loss was measured using the Universal Test Fixture as a probe. At that time, the characteristic impedance of the line was set to 50Ω, the length of the transmission line of the printed circuit board was set to 50 mm, and the transmission loss was measured.
As a measure of transmission loss, "S21-parameter", which is one of the network parameters used to express the characteristics of high-frequency electronic circuits and high-frequency electronic components, was used as the transmission loss value. This value means that the closer the value is to 0, the smaller the transmission loss.
The transmission loss value of the printed circuit board formed from the laminated body not immersed in pure water is defined as "transmission loss before water absorption", and the printed circuit board formed from the laminated body after being immersed in pure water for 24 hours at 23 ° C. The transmission loss value was defined as "transmission loss after water absorption".
 <はんだフロート耐性>
 積層体を5cm角に切断し、24℃の純水に24時間浸漬した、260℃のはんだ槽に30秒間浮かべた後の積層体の外観を、以下の基準に従って評価した。
 ○(良) :膨れ及び剥がれが見られない。
 △(可) :膨れは見られないが、一部に剥がれが見られた。
 ×(不可):膨れ及び剥がれが見られた。
<Solder float resistance>
The appearance of the laminate after being cut into 5 cm squares, immersed in pure water at 24 ° C. for 24 hours, and floated in a solder bath at 260 ° C. for 30 seconds was evaluated according to the following criteria.
○ (Good): No swelling or peeling is seen.
Δ (Yes): No swelling was observed, but some peeling was observed.
× (impossible): Swelling and peeling were observed.
 <エッチング処理後の反り(うねり)>
 積層体の銅箔をエッチング処理して除去した後に平らなガラスの上に置き、反り(うねり)の有無を、以下の基準に従って評価した。
 ○(可) :反り(うねり)が見られなかった。
 ×(不可):反り(うねり)が見られ、ガラスから浮いている部分がある。
 それぞれの評価結果を、表2及び表3にまとめて示す。
<Waviness after etching treatment>
After removing the copper foil of the laminated body by etching treatment, it was placed on a flat glass and the presence or absence of warpage (waviness) was evaluated according to the following criteria.
○ (Yes): No warpage was seen.
× (impossible): Warpage (waviness) is seen, and there is a part floating from the glass.
The evaluation results are summarized in Tables 2 and 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 なお、それぞれの積層体の外観を目視で確認した結果、積層体3を除く積層体には、外観に皺が見られなかった。積層体3には、層Pに由来する波皺の発生が認められた。
 それぞれの積層体を、5mm角に切断し、曲率半径(300μm)の条件で180°折り曲げ、上から荷重(50mN、1分間)をかけた後に折り曲げを戻し、外観を確認した結果、積層体1~3及び積層体5~9では折り目に外観異常は見られず、積層体6では折り目に白化が見られた。
As a result of visually confirming the appearance of each of the laminated bodies, no wrinkles were observed in the appearance of the laminated bodies other than the laminated body 3. The occurrence of wrinkles derived from the layer P was observed in the laminated body 3.
Each laminate was cut into 5 mm squares, bent 180 ° under the condition of radius of curvature (300 μm), applied a load (50 mN, 1 minute) from above, and then unfolded. As a result of checking the appearance, the laminate 1 No abnormal appearance was observed in the creases of the layers 3 and 5 to 9, and whitening was observed in the folds of the laminate 6.
 本発明の積層体は、プリント基板の材料として有用である。また、本発明のプリント基板を使用すれば、特性に優れたアンテナが得られる。
 なお、2019年04月16日に出願された日本特許出願2019-077829号、2019年08月21日に出願された日本特許出願2019-151453号及び2019年10月25日に出願された日本特許出願2019-194515号の明細書、特許請求の範囲及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The laminate of the present invention is useful as a material for a printed circuit board. Further, if the printed circuit board of the present invention is used, an antenna having excellent characteristics can be obtained.
The Japanese patent application 2019-077829 filed on April 16, 2019, the Japanese patent application 2019-151453 filed on August 21, 2019, and the Japanese patent filed on October 25, 2019. The entire contents of the specification, the scope of patent claims and the abstract of the application No. 2019-194515 are cited herein and incorporated as disclosure of the specification of the present invention.

Claims (15)

  1.  金属箔層と非熱可塑性ポリイミドの層Pとテトラフルオロエチレン系ポリマーの層Fとを有し、最外層の少なくとも一方が金属箔層である、少なくとも3層構造の積層体であって、前記層Pの少なくとも一方の面に前記層Fが存在し、前記層Pの吸水率が1.5%未満で、かつ線膨張係数の絶対値が25ppm/℃以下である、積層体。 A laminated body having at least a three-layer structure having a metal foil layer, a layer P of non-thermoplastic polyimide, and a layer F of a tetrafluoroethylene-based polymer, and at least one of the outermost layers is a metal foil layer. A laminate in which the layer F is present on at least one surface of P, the water absorption rate of the layer P is less than 1.5%, and the absolute value of the linear expansion coefficient is 25 ppm / ° C. or less.
  2.  前記層Pの両面にそれぞれ前記層Fが存在する、少なくとも4層構造の積層体である、請求項1に記載の積層体。 The laminate according to claim 1, wherein the layer F is present on both sides of the layer P, which is a laminate having at least a four-layer structure.
  3.  前記金属箔層の表面の二乗平均平方根粗さが、0.25μm以上である、請求項1又は2に記載の積層体。 The laminate according to claim 1 or 2, wherein the root mean square roughness of the surface of the metal foil layer is 0.25 μm or more.
  4.  前記金属箔層の厚さが、2~30μmである、請求項1~3のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 3, wherein the thickness of the metal foil layer is 2 to 30 μm.
  5.  前記非熱可塑性ポリイミドが、ガラス転移温度が280℃以上の非熱可塑性ポリイミドである、請求項1~4のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 4, wherein the non-thermoplastic polyimide is a non-thermoplastic polyimide having a glass transition temperature of 280 ° C. or higher.
  6.  前記非熱可塑性ポリイミドが、320℃における引張弾性率が0.2GPa以上の非熱可塑性ポリイミドである、請求項1~5のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 5, wherein the non-thermoplastic polyimide is a non-thermoplastic polyimide having a tensile elastic modulus of 0.2 GPa or more at 320 ° C.
  7.  前記非熱可塑性ポリイミドのイミド基密度が、0.20~0.35である、請求項1~6のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 6, wherein the non-thermoplastic polyimide has an imide group density of 0.20 to 0.35.
  8.  前記層Pの厚さが、10~100μmである、請求項1~7のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 7, wherein the layer P has a thickness of 10 to 100 μm.
  9.  前記テトラフルオロエチレン系ポリマーが、溶融温度が260~320℃の熱溶融性のテトラフルオロエチレン系ポリマーである、請求項1~8のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 8, wherein the tetrafluoroethylene polymer is a heat-meltable tetrafluoroethylene polymer having a melting temperature of 260 to 320 ° C.
  10.  前記層Fの厚さが、1~38μmである、請求項1~9のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 9, wherein the layer F has a thickness of 1 to 38 μm.
  11.  前記積層体を24℃で相対湿度50%の雰囲気に24時間保持した場合の、前記層Fに接している前記層Pの誘電率が2.8以下、かつ誘電正接が0.004以下である、積層体である、請求項1~10のいずれか1項に記載の積層体。 When the laminate is held at 24 ° C. in an atmosphere of 50% relative humidity for 24 hours, the dielectric constant of the layer P in contact with the layer F is 2.8 or less, and the dielectric loss tangent is 0.004 or less. The laminate according to any one of claims 1 to 10, which is a laminate.
  12.  前記積層体を85℃で相対湿度85%の雰囲気に72時間保持した場合の、前記層Fに接している前記層Pの誘電率が2.8以下、かつ誘電正接が0.007以下である、積層体である、請求項1~11のいずれか1項に記載の積層体。 When the laminate is held in an atmosphere of 85 ° C. and a relative humidity of 85% for 72 hours, the dielectric constant of the layer P in contact with the layer F is 2.8 or less, and the dielectric loss tangent is 0.007 or less. The laminate according to any one of claims 1 to 11, which is a laminate.
  13.  請求項1~12のいずれか1項に記載の積層体の前記金属箔層をエッチング処理し、伝送回路を形成してプリント基板を得る、プリント基板の製造方法。 A method for manufacturing a printed circuit board, wherein the metal foil layer of the laminate according to any one of claims 1 to 12 is etched to form a transmission circuit to obtain a printed circuit board.
  14.  非熱可塑性ポリイミドの層Pと、前記層Pの少なくとも一方の面に存在するテトラフルオロエチレン系ポリマーの層Fと、その少なくとも一方の面に存在する伝送回路と、を有するプリント基板であって、前記層Pの吸水率が1.5%未満、かつ線膨張係数の絶対値が25ppm/℃以下である、プリント基板。 A printed circuit board having a layer P of non-thermoplastic polyimide, a layer F of a tetrafluoroethylene-based polymer existing on at least one surface of the layer P, and a transmission circuit existing on at least one surface thereof. A printed circuit board in which the water absorption rate of the layer P is less than 1.5% and the absolute value of the linear expansion coefficient is 25 ppm / ° C. or less.
  15.  請求項14に記載のプリント基板から形成された、アンテナ。 An antenna formed from the printed circuit board according to claim 14.
PCT/JP2020/016020 2019-04-16 2020-04-09 Laminate, method for manufacturing printed circuit board, printed circuit board, and antenna WO2020213515A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021514914A JPWO2020213515A1 (en) 2019-04-16 2020-04-09
CN202080023614.5A CN113677532A (en) 2019-04-16 2020-04-09 Laminate, method for manufacturing printed circuit board, and antenna
KR1020217026798A KR20210155012A (en) 2019-04-16 2020-04-09 A laminate, a method for manufacturing a printed circuit board, a printed circuit board, and an antenna

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2019077829 2019-04-16
JP2019-077829 2019-04-16
JP2019-151453 2019-08-21
JP2019151453 2019-08-21
JP2019-194515 2019-10-25
JP2019194515 2019-10-25

Publications (1)

Publication Number Publication Date
WO2020213515A1 true WO2020213515A1 (en) 2020-10-22

Family

ID=72837121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/016020 WO2020213515A1 (en) 2019-04-16 2020-04-09 Laminate, method for manufacturing printed circuit board, printed circuit board, and antenna

Country Status (5)

Country Link
JP (1) JPWO2020213515A1 (en)
KR (1) KR20210155012A (en)
CN (1) CN113677532A (en)
TW (1) TW202103934A (en)
WO (1) WO2020213515A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011051203A (en) * 2009-09-01 2011-03-17 Toyobo Co Ltd Multilayer polyimide film and printed wiring board
JP2017024265A (en) * 2015-07-22 2017-02-02 株式会社カネカ Insulating film, method for manufacturing insulating film, and method for manufacturing metal-clad laminate
JP2018172790A (en) * 2017-03-31 2018-11-08 Jx金属株式会社 Surface treated copper foil, and laminate, copper foil with carrier, printed wiring board, method for manufacturing electronic device and method for manufacturing printed wiring board, each of which uses the surface treated copper foil

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004128361A (en) * 2002-10-04 2004-04-22 Daikin Ind Ltd Charging member, charging member manufacturing method and manufacturing method of electret microphone assembly
TWI243751B (en) * 2003-10-21 2005-11-21 Park Electrochemical Corp Laminates having a low dielectric, low dissipation factor bond core and method of making same
CN102275341B (en) * 2011-05-06 2013-11-13 广东生益科技股份有限公司 Flexible double-sided copper-clad board and manufacturing method thereof
CN103635015A (en) * 2012-08-28 2014-03-12 昆山雅森电子材料科技有限公司 High-frequency substrate structure and manufacturing method thereof
WO2014106930A1 (en) * 2013-01-07 2014-07-10 日本化薬株式会社 High-frequency circuit substrate
TWI682019B (en) 2015-03-31 2020-01-11 日商鐘化股份有限公司 Multilayer adhesive film and flexible metal-clad laminate
US10448507B2 (en) * 2016-01-15 2019-10-15 Jx Nippon Mining & Metals Corporation Copper foil, copper-clad laminate board, method for producing printed wiring board, method for producing electronic apparatus, method for producing transmission channel, and method for producing antenna
CN109789689A (en) 2016-09-29 2019-05-21 日铁化学材料株式会社 Polyimide film, copper plywood and circuit substrate
JP6517399B2 (en) 2018-05-01 2019-05-22 株式会社有沢製作所 Polyimide resin precursor
CN108943895A (en) * 2018-07-31 2018-12-07 招远春鹏电子科技有限公司 Two layers of method double side flexible copper coated board of one kind and preparation method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011051203A (en) * 2009-09-01 2011-03-17 Toyobo Co Ltd Multilayer polyimide film and printed wiring board
JP2017024265A (en) * 2015-07-22 2017-02-02 株式会社カネカ Insulating film, method for manufacturing insulating film, and method for manufacturing metal-clad laminate
JP2018172790A (en) * 2017-03-31 2018-11-08 Jx金属株式会社 Surface treated copper foil, and laminate, copper foil with carrier, printed wiring board, method for manufacturing electronic device and method for manufacturing printed wiring board, each of which uses the surface treated copper foil

Also Published As

Publication number Publication date
CN113677532A (en) 2021-11-19
KR20210155012A (en) 2021-12-21
JPWO2020213515A1 (en) 2020-10-22
TW202103934A (en) 2021-02-01

Similar Documents

Publication Publication Date Title
JP6971580B2 (en) Multilayer polyimide film and flexible metal-clad laminate
CN113227232B (en) Powder dispersion, laminate, and printed board
TW201700673A (en) Multilayer adhesive film and flexible metal-clad laminate
KR20200052847A (en) Polyimide Composite Film with Superior Performance for Dielectric Property and Method for Preparing the Same
TWI826452B (en) Method for manufacturing resin-coated metal foil, resin-coated metal foil, laminate and printed circuit board
WO2020090607A1 (en) Dispersion
JPWO2019230568A1 (en) Manufacturing method of metal leaf with resin and metal leaf with resin
CN112703107B (en) Laminate, printed board, and method for producing same
TW202010636A (en) Resin-attached metal foil
JP7476721B2 (en) Manufacturing method of laminate and laminate
JP7380690B2 (en) Film, film manufacturing method, metal clad laminate, and coated metal conductor
CN116390971B (en) Polyimide resin precursor, polyimide resin, metal-clad laminate, and flexible printed wiring board
WO2020213515A1 (en) Laminate, method for manufacturing printed circuit board, printed circuit board, and antenna
JP7163840B2 (en) Laminate, printed circuit board manufacturing method, printed circuit board, and antenna
CN115003506B (en) Multilayer film and method for producing same
JP2020146970A (en) Laminate and production method of laminate
KR102445910B1 (en) Polyimide film with high dimensional stability and manufacturing method thereof
WO2022050163A1 (en) Method for manufacturing multilayer film, and multilayer film
JP2023182523A (en) polyimide laminated film
CN115397672A (en) Multilayer film, method for producing same, metal-clad laminate, and method for producing printed wiring board
WO2021166930A1 (en) Multilayer film and method for manufacturing same
JP2024007467A (en) Polyimide film and method for producing the same
JP2022101201A (en) Polyamide acid composition, polyimide composition, metal-clad laminate sheet, and circuit board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20791344

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021514914

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20791344

Country of ref document: EP

Kind code of ref document: A1