WO2021241547A1 - Method for producing dispersion - Google Patents

Method for producing dispersion Download PDF

Info

Publication number
WO2021241547A1
WO2021241547A1 PCT/JP2021/019727 JP2021019727W WO2021241547A1 WO 2021241547 A1 WO2021241547 A1 WO 2021241547A1 JP 2021019727 W JP2021019727 W JP 2021019727W WO 2021241547 A1 WO2021241547 A1 WO 2021241547A1
Authority
WO
WIPO (PCT)
Prior art keywords
dispersion
filler
particles
liquid
polymer
Prior art date
Application number
PCT/JP2021/019727
Other languages
French (fr)
Japanese (ja)
Inventor
敦美 山邊
文 伊藤
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to CN202180038356.2A priority Critical patent/CN115667377A/en
Priority to JP2022526565A priority patent/JPWO2021241547A1/ja
Publication of WO2021241547A1 publication Critical patent/WO2021241547A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • C08J3/11Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids from solid polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/07Aldehydes; Ketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene

Definitions

  • the present invention relates to a method for producing a dispersion containing particles of a tetrafluoroethylene polymer and a filler of an inorganic compound, and a method for producing composite particles by such a method.
  • Tetrafluoroethylene-based polymers such as polytetrafluoroethylene (PTFE) have excellent physical properties such as electrical properties, water and oil repellency, chemical resistance, and heat resistance, and are used in various industrial applications such as printed circuit boards.
  • PTFE polytetrafluoroethylene
  • As a coating agent used to impart the physical properties to the surface of the base material a dispersion liquid containing particles of a tetrafluoroethylene-based polymer is known.
  • the frequency of signals has been increasing, and there is a demand for materials having electrical characteristics such as low dielectric constant and low dielectric loss tangent and excellent insulation performance.
  • a dispersion liquid containing particles of a tetrafluoroethylene polymer has attracted attention. There is.
  • Patent Document 1 discloses a dispersion liquid of PTFE particles further containing an inorganic filler of ceramics from the viewpoint of improving dispersion stability.
  • an object of the present invention is to provide a method for producing a dispersion liquid having excellent dispersion stability and a method for producing composite particles constituting such a dispersion liquid.
  • the present invention has the following aspects.
  • a liquid composition containing heat-meltable tetrafluoroethylene polymer particles, an inorganic compound filler, and a polar liquid dispersion medium is sheared to obtain the tetrafluoroethylene polymer and the inorganic compound filler.
  • a method for producing a dispersion liquid which obtains a dispersion liquid containing the liquid dispersion medium.
  • the tetrafluoroethylene-based polymer contains a unit based on perfluoro (alkyl vinyl ether) and has a polar functional group, and the tetrafluoroethylene-based polymer has 2 units based on perfluoro (alkyl vinyl ether) for all units.
  • the mass ratio of the particles of the tetrafluoroethylene-based polymer to the filler of the inorganic compound in the liquid composition is 0.01 to 2.0, where the mass of the particles is 1 and the mass of the filler is 0.01 to 2.0.
  • the average particle size (volume-based cumulative 50% diameter) of the filler of the inorganic compound in the liquid composition is based on the average particle size (volume-based cumulative 50% diameter) of the particles of the tetrafluoroethylene-based polymer.
  • the production method according to any one of [1] to [8] which keeps the liquid viscosity during the shearing treatment at 100,000 mPa ⁇ s or less.
  • a dispersion liquid of a tetrafluoroethylene-based polymer having excellent dispersion stability. Further, from such a dispersion liquid, composite particles that contribute to the improvement of dispersion stability can be produced.
  • the dispersion liquid produced by the method of the present invention is excellent in physical properties such as electrical characteristics, and is useful as a constituent material of a printed circuit board, for example. Further, the composite particles obtained from the dispersion liquid are also useful as additives and modifiers for various varnishes (resist, ink, paint, etc.).
  • the "average particle size (D50)" is a volume-based cumulative 50% diameter of an object (particle, filler) determined by a laser diffraction / scattering method. That is, the particle size distribution is measured by the laser diffraction / scattering method, the cumulative curve is obtained with the total volume of the group of objects as 100%, and the particle size is the point where the cumulative volume is 50% on the cumulative curve. “D90” is the volume-based cumulative 90% diameter of the object, which is similarly measured.
  • the objects D50 and D90 are analyzed by a laser diffraction / scattering method using a laser diffraction / scattering type particle size distribution measuring device (LA-920 measuring instrument manufactured by HORIBA, Ltd.) after dispersing the object in water. Desired.
  • the "heat-meltable polymer” means a polymer exhibiting melt fluidity, and means a polymer having a temperature at which the melt flow rate is 0.1 to 1000 g / 10 minutes under the condition of a load of 49 N.
  • the "melting temperature” is the temperature corresponding to the maximum value of the melting peak of the polymer measured by the differential scanning calorimetry (DSC) method.
  • the "viscosity of the dispersion liquid” is a viscosity measured using a B-type viscometer under the condition of 25 ° C. and a rotation speed of 30 rpm. The measurement is repeated 3 times, and the average value of the measured values for 3 times is used.
  • the "thixotropic ratio” is a value calculated by dividing the viscosity ⁇ 1 of the dispersion liquid measured under the condition of a rotation speed of 30 rpm by the viscosity ⁇ 2 measured under the condition of a rotation speed of 60 rpm. The measurement of each viscosity is repeated 3 times, and the average value of the measured values for 3 times is used.
  • unit in a polymer is meant an atomic group based on the monomer formed by the polymerization of the monomers.
  • the unit may be a unit directly formed by a polymerization reaction, or may be a unit in which a part of the unit is converted into another structure by processing a polymer.
  • the unit based on the monomer a is also simply referred to as “monomer a unit”.
  • the production method of the present invention (hereinafter, also referred to as “this method”) is also referred to as particles (hereinafter, also referred to as “F powder”) of a heat-meltable tetrafluoroethylene polymer (hereinafter, also referred to as “F polymer”). ), A filler of an inorganic compound (hereinafter, also referred to as “inorganic filler”), and a liquid composition containing a polar liquid dispersion medium (hereinafter, also referred to as “dispersion medium”) are sheared to obtain the F powder. , A method for obtaining a dispersion containing the inorganic filler and the dispersion medium (hereinafter, also referred to as “the present dispersion”).
  • This dispersion has excellent dispersion stability. Further, when the dispersion liquid is air-dried on a glass plate and observed, composite particles in which the F powder and the inorganic filler are fused (hereinafter, also referred to as “main particles”. The inorganic filler adheres to the surface of the F powder). It was also confirmed for the first time that (including composite particles, etc.) existed. The reason why the dispersion stability of the dispersion liquid is improved and the reason why the particles are formed, and their correlation and mechanism of action are not necessarily clear, but are estimated as follows, for example.
  • F-polymers are not only superior in shape stability such as fibril resistance, but also have a high degree of freedom in which restrictions on molecular motion are relaxed at the monomolecular level. Has a formation. Since such an F polymer tends to form microspherulites at the molecular aggregate level, fine uneven structures are likely to be formed on the surface thereof, and the surface area is likely to be large. Therefore, it is considered that the molecular aggregate of the F polymer, typically the F powder, can physically adhere closely to the inorganic filler to form the present particles while remaining stable without damaging its shape.
  • F powder has low surface energy and low dispersion stability, but the particles in which the inorganic filler with high dispersion stability and the F powder are fused are mutual with other particles and the liquid dispersion medium as compared with the F powder. Easy to work. As a result, it is considered that the particles have excellent dispersion stability. As a result, since the particles have the physical characteristics of the F polymer and the physical characteristics of the inorganic filler and are excellent in stability, it is considered that a molded product having excellent electrical characteristics and the like could be formed from the dispersion liquid.
  • the D50 of the F powder is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less.
  • the D50 of the F powder is preferably 0.01 ⁇ m or more, more preferably 0.1 ⁇ m or more.
  • the D90 of the F powder is preferably 10 ⁇ m or less. In D50 and D90 in this range, the fluidity and dispersibility of the F powder become good, and the size of the composite particles existing in the dispersion liquid can be easily controlled so as to be difficult to settle.
  • the bulk density of the F powder is preferably 0.15 g / m 2 or more, more preferably 0.20 g / m 2 or more, from the viewpoint of the dispersion stability of the produced dispersion.
  • the bulk density of the F powder is preferably 0.50 g / m 2 or less, 0.35 g / m 2 or less is more preferable.
  • the F powder may contain a resin other than the F polymer, but it is preferable that the F polymer is the main component.
  • the content of the F polymer in the F powder is preferably 80% by mass or more, more preferably 100% by mass.
  • the resin include heat-resistant resins such as aromatic polyester, polyamide-imide, thermoplastic polyimide, polyphenylene ether, and polyphenylene oxide.
  • the F polymer in this method is a heat-meltable polymer containing a unit (TFE unit) based on tetrafluoroethylene (TFE).
  • the melting temperature of the F polymer is preferably 260 to 325 ° C, more preferably 280 to 320 ° C. In such a case, the heat resistance of the molded product formed from the dispersion liquid obtained by the method of the present invention tends to be excellent.
  • the glass transition point of the F polymer is preferably 75 to 125 ° C, more preferably 80 to 100 ° C.
  • F polymer examples include polymers (PFA) containing TFE units and units based on perfluoro (alkyl vinyl ether) (PAVE) (PAVE units), and polymers (FEP) containing units based on TFE units and hexafluoropropene (HFP). Therefore, it is preferably PFA.
  • PFA polymers containing TFE units and units based on perfluoro (alkyl vinyl ether) (PAVE) (PAVE units)
  • FEP polymers containing units based on TFE units and hexafluoropropene (HFP). Therefore, it is preferably PFA.
  • PFA polymers
  • CF 2 CFOCF 3
  • the F polymer preferably has a polar functional group.
  • the polar functional group may be contained in a unit in the F polymer, or may be contained in the terminal group of the main chain of the polymer.
  • an F polymer having a polar functional group as a terminal group derived from a polymerization initiator, a chain transfer agent, or the like, or an F polymer having a polar functional group obtained by subjecting the F polymer to plasma treatment or ionization line treatment can be used. Can be mentioned.
  • a hydroxyl group-containing group, a carbonyl group-containing group and a phosphono group-containing group are preferable, and a hydroxyl group-containing group and a carbonyl group-containing group are more preferable from the viewpoint of dispersion stability of the dispersion produced by this method, and carbonyl.
  • Group-containing groups are more preferred.
  • the hydroxyl group-containing group is preferably a group containing an alcoholic hydroxyl group, more preferably -CF 2 CH 2 OH, -C (CF 3 ) 2 OH and 1,2-glycol group (-CH (OH) CH 2 OH). ..
  • the carbonyl group-containing group is a group containing a carbonyl group (> C (O)), a carboxyl group, an alkoxycarbonyl group, an amide group, an isocyanate group, a carbamate group (-OC (O) NH 2 ), and an acid anhydride residue.
  • Groups (-C (O) OC (O)-), imide residues (-C (O) NHC (O)-etc.) and carbonate groups (-OC (O) O-) are preferred, and acid anhydride residues. Is more preferable.
  • the number of carbonyl group-containing groups in the F polymer is preferably 10 to 5000, more preferably 100 to 3000, and more preferably 800 per 1 ⁇ 10 6 carbon atoms in the main chain. ⁇ 1500 pieces are more preferable.
  • the number of carbonyl group-containing groups in the F polymer can be quantified by the composition of the polymer or the method described in International Publication No. 2020/145133.
  • the F polymer comprises a polymer having a polar functional group (1) containing TFE units and PAVE units, or 2.0 to 5.0 mol% of PAVE units with respect to all units including TFE units and PAVE units.
  • the polymer (2) having no polar functional group is preferable.
  • These F-polymers not only have excellent dispersion stability of the particles, but are also difficult to be denatured even when the shearing treatment is performed by this method, and in the molded product (polymer layer, etc.) obtained from the produced dispersion liquid, these F polymers are used. It is easy to distribute more densely and uniformly. Further, it is easy to form fine spherulites in the molded product, and it is easy to improve the adhesion with other components. As a result, it is easier to obtain a molded product having excellent various physical properties such as electrical characteristics.
  • the polymer (1) is preferably a polymer containing TFE units, PAVE units and units based on a monomer having a polar functional group, and 90 to 99 mol% of these units are used in this order with respect to all units, 0. More preferably, the polymer contains 5.5 to 9.97 mol% and 0.01 to 3 mol%.
  • the presence of the polar functional group is preferable from the viewpoint of further improving the affinity and adhesion with the inorganic filler.
  • the monomer having a polar functional group itaconic anhydride, citraconic anhydride or 5-norbornen-2,3-dicarboxylic acid anhydride (hereinafter, also referred to as “NAH”) is preferable.
  • Specific examples of the polymer (1) include the polymers described in International Publication No. 2018/16644.
  • the polymer (2) is composed of only TFE units and PAVE units, and preferably contains 95.0 to 98.0 mol% of TFE units and 2.0 to 5.0 mol% of PAVE units with respect to all the units. ..
  • the content of PAVE units in the polymer (2) is preferably 2.1 mol% or more, more preferably 2.2 mol% or more, based on all the units.
  • Such a polymer has a higher degree of freedom in molecular conformation, and the above-mentioned mechanism of action is likely to be enhanced.
  • the polymer (2) does not have polar functional groups when the number of polar functional groups of the polymer is less than 500 with respect to 1 ⁇ 10 6 carbon atoms constituting the polymer main chain. It means that there is.
  • the number of the polar functional groups is preferably 100 or less, more preferably less than 50.
  • the lower limit of the number of polar functional groups is usually 0.
  • the polymer (2) may be produced by using a polymerization initiator, a chain transfer agent, or the like that does not generate a polar functional group as the terminal group of the polymer chain, and is derived from an F polymer having a polar functional group (derived from the polymerization initiator).
  • An F polymer or the like having a polar functional group at the terminal group of the main chain of the polymer may be fluorinated to produce the polymer.
  • Examples of the fluorination treatment method include a method using fluorine gas (see JP-A-2019-194314).
  • the inorganic filler is preferably particles of an inorganic compound.
  • the inorganic filler include fillers composed of oxides, nitrides, simple metals, alloys and carbon, and silicates (silicon oxide (silica), wollastonite, talc, mica) and metal oxides (oxidation). Fillers of beryllium, cerium oxide, aluminum oxide, soda alumina, magnesium oxide, zinc oxide, titanium oxide, etc.), boron nitride and magnesium metasilicate (steatite) are preferred, and are selected from aluminum, magnesium, silicon, titanium and zinc.
  • Fillers of inorganic oxides containing at least one of the elements are more preferred, fillers of silica, titanium oxide, zinc oxide, steatite and boron nitride are even more preferred, and fillers of silica are particularly preferred.
  • the inorganic filler may be ceramics.
  • the inorganic filler one kind may be used, or two or more kinds may be mixed and used. When two or more kinds of inorganic fillers are mixed and used, two kinds of silica fillers may be mixed and used, or a silica filler and a metal oxide filler may be mixed and used.
  • the inorganic filler easily interacts with the F polymer, easily withstands the shearing force even when the shearing treatment is performed in this method, and easily improves the dispersion stability of the obtained dispersion liquid. Further, in the molded product formed from the dispersion liquid (for example, the polymer layer and the film described later), the physical characteristics based on the inorganic filler are remarkably likely to be exhibited.
  • the inorganic filler contains silica.
  • the content of silica in the inorganic filler is preferably 80% by mass or more, more preferably 90% by mass or more.
  • the upper limit of the silica content is 100% by mass.
  • the surface of the inorganic filler is surface-treated.
  • the surface treatment agent used for such surface treatment include polyhydric alcohols (trimethylolethane, pentaeristol, propylene glycol, etc.), saturated fatty acids (stearic acid, lauric acid, etc.), esters thereof, alkanolamines, amines (trimethylamines, etc.). Triethylamine etc.), paraffin wax, silane coupling agent, silicone, polysiloxane, aluminum, silicon, zirconium, tin, titanium, antimony and other oxides, their hydroxides, their hydrated oxides, their phosphoric acid Salt is mentioned.
  • the inorganic filler is surface-treated with a silane coupling agent.
  • the silane coupling agent include 3-aminopropyltriethoxysilane, vinyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane or 3-. Isocyanapropyltriethoxysilane is preferred. In this method, it is most preferable to use a silica filler surface-treated with a silane coupling agent as the inorganic filler.
  • the specific surface area of the inorganic filler is preferably 1 ⁇ 20m 2 / g, more preferably 5 ⁇ 8m 2 / g.
  • the inorganic filler examples include silica filler ("Admafine (registered trademark)” series manufactured by Admatex Co., Ltd.) and zinc oxide surface-treated with an ester such as propylene glycol dicaprate (manufactured by Sakai Chemical Industry Co., Ltd.).
  • the shape of the inorganic filler includes granular, needle-like (fibrous), and plate-like, and specifically, spherical, scaly, layered, leaf-like, apricot kernel-like, columnar, chicken crown-like, equiaxed, and leaf-like.
  • examples include mica, block, flat plate, wedge, rosette, mesh, and prismatic. Of these, spherical and scaly are preferable, and spherical is more preferable.
  • the spherical inorganic filler is preferably substantially spherical. Approximately spherical means that when the inorganic filler is observed with a scanning electron microscope (SEM), the ratio of spherical particles having a ratio of the minor axis to the major axis of 0.5 or more is 95% or more. do. In the substantially spherical inorganic filler particles, the ratio of the minor axis to the major axis is preferably 0.6 or more, more preferably 0.8 or more. The above ratio is preferably less than 1.
  • the inorganic filler and the F polymer are more uniformly distributed in the molded product (polymer layer or the like), and the physical properties of both are more likely to be expressed in a well-balanced manner.
  • the aspect ratio of the scaly inorganic filler is preferably 5 or more, more preferably 10 or more.
  • the aspect ratio is preferably 1000 or less.
  • the average major axis (average value of the diameter in the longitudinal direction) of the scaly inorganic filler is preferably 1 ⁇ m or more, and more preferably 3 ⁇ m or more.
  • the average major axis is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less.
  • the average minor axis is preferably 0.01 ⁇ m or more, more preferably 0.1 ⁇ m or more.
  • the average minor axis is preferably 1 ⁇ m or less, more preferably 0.5 ⁇ m or less.
  • the inorganic filler and the F polymer are more uniformly distributed in the molded product (polymer layer or the like), and the physical properties of both are more likely to be balanced and expressed.
  • the scaly inorganic filler may have a single-layer structure or a multi-layer structure.
  • examples of the latter inorganic filler include an inorganic filler having a hydrophobic layer on the surface and a hydrophilic layer inside. Specific examples thereof include an inorganic filler having a hydrophobic layer, a hydrophilic layer (moisture-containing layer), and a hydrophobic layer in this order.
  • the water content of the hydrophilic layer is preferably 0.3% by mass or more.
  • the inorganic filler may be hollow.
  • the average particle size (D50) of the hollow inorganic filler is preferably 0.01 ⁇ m or more, more preferably 0.1 ⁇ m or more.
  • the average particle size is more preferably 10 ⁇ m or less, further preferably 5 ⁇ m or less.
  • the average pore diameter of the pores of the hollow inorganic filler is preferably 10 to 1000 nm, more preferably 50 to 100 nm.
  • the average pore diameter the pore diameters of a plurality of pores (100) are obtained by direct observation with a scanning electron microscope (SEM) or the like, and the average value thereof is taken as the average pore diameter. In the case of irregularly shaped holes, the maximum diameter of the holes is the hole diameter.
  • the apparent specific gravity of the hollow inorganic filler is preferably 100 g / L or less, more preferably 30 to 60 g / L, from the viewpoint of sufficiently increasing the porosity.
  • the apparent specific gravity of the hollow inorganic filler is obtained from the mass and volume of the inorganic filler when it is charged into a measuring cylinder (capacity: 250 mL).
  • a hollow silica filler is preferable.
  • the inorganic filler may be an isotropic filler or an anisotropic filler.
  • the isotropic filler means a filler having the same physical properties (mechanical strength, electrical characteristics, thermal conductivity, etc.) regardless of the direction, and the anisotropic filler means a filler having different physical properties depending on the direction. ..
  • the average particle size (D50) of the inorganic filler is preferably 20 ⁇ m or less, more preferably 5 ⁇ m or less.
  • the average particle size is preferably 0.001 ⁇ m or more, more preferably 0.01 ⁇ m or more.
  • the inorganic filler is a mixture of two kinds of inorganic fillers, it is preferable that the average particle diameters of the two kinds of inorganic fillers are different from each other.
  • the average particle size of the inorganic filler (1) is the inorganic filler (2).
  • the average particle size of the particles is preferably more than 1 times, more preferably 1.5 times or more.
  • the average particle size of the inorganic filler (1) is preferably 10 times or less, more preferably 5 times or less the average particle size of the inorganic filler (2).
  • the mass ratio of the content of the inorganic filler (2) to the content of the inorganic filler (1) is preferably 1.5 times or more, and more preferably 2 times or more.
  • the mass ratio is preferably 5 times or less.
  • the inorganic filler is less likely to be removed from the molded product formed from the present dispersion, and the surface of the molded product tends to be excellent in smoothness.
  • the molded product tends to have excellent low dielectric loss tangent properties.
  • the polar liquid dispersion medium is preferably a compound that is liquid at 25 ° C., which is classified as polar under atmospheric pressure, and is at least one polar compound selected from amides, ketones and esters. Is more preferable. It is considered that when such a dispersion medium is used, the inorganic filler alone does not have an excessive affinity in the liquid composition, and both the F powder and the inorganic filler can maintain a constant dispersed state. On the other hand, such a constant dispersed state can be said to be an unstable state that can be changed by an external stimulus. It is estimated that composite particles will be produced.
  • the boiling point of the dispersion medium is preferably in the range of 50 to 240 ° C. As the dispersion medium, one type may be used alone, or two or more types may be used in combination.
  • Dispersion media include water, N, N-dimethylformamide, N, N-dimethylacetamide, 3-methoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropanamide, N-methyl-2.
  • -Pyrrolidone, ⁇ -butyrolactone, cyclohexanone, cyclopentanone, butyl acetate, methyl isopropyl ketone, methyl ethyl ketone can be mentioned.
  • the inorganic filler is a silane cup having at least a part of its surface having at least one group selected from the group consisting of an amino group, a vinyl group and a (meth) acryloyloxy group. It is preferably surface-treated with a ring agent, and more preferably surface-treated with phenylaminosilane.
  • the dispersion medium is a protonic compound such as water, it is preferable that the inorganic filler is not surface-treated.
  • the dispersion medium may contain a non-polar solvent as long as the effect of the present invention is not impaired.
  • the dispersion medium contains a non-polar solvent such as toluene
  • a non-polar solvent such as toluene
  • at least a part of the surface of the inorganic filler is hydrophobized, and at least one selected from the group consisting of an alkyl group and a phenyl group. It is preferably surface-treated with a silane coupling agent having a group.
  • the content of the dispersion medium in the liquid composition is preferably 30 to 90% by mass, more preferably 50 to 80% by mass.
  • the total content of the F powder and the inorganic filler in the liquid composition is preferably 40% by mass or more, more preferably 50 to 80% by mass, based on the total mass of the liquid composition.
  • the mass ratio of the F powder to the inorganic filler in the liquid composition is preferably 0.01 to 2.0, with the mass of the F powder being 1.
  • the liquid composition preferably contains 20 to 40% by mass of F powder and 5 to 40% by mass of an inorganic filler.
  • the liquid composition can be prepared by mixing F powder, an inorganic filler and a dispersion medium.
  • a mixing method the F powder and the inorganic filler are collectively added to the dispersion medium and mixed; the F powder and the inorganic filler are sequentially added to the dispersion medium and mixed; the F powder and the inorganic filler are mixed in advance.
  • a method of mixing the obtained mixture and the dispersion medium; a method of premixing the F powder and the dispersion medium, a method of premixing the inorganic filler and the dispersion medium, and further mixing the two obtained mixtures; and the like can be mentioned.
  • the liquid composition is prepared by a procedure in which F powder is dispersed in a dispersion medium in advance, and then particles of an inorganic filler are added as they are (directly) or in a state of being dispersed in a dispersion medium and mixed. After the particles of the inorganic filler are dispersed in the dispersion medium in advance, the liquid composition is prepared by adding the F powder as it is (directly) or in the state of being dispersed in the dispersion medium and mixing them. It is advantageous and preferable from the viewpoint of mixing the powder and the particles of the inorganic filler and dispersing them more uniformly.
  • the F powder is added at the same time as the dispersion medium in advance, or the F powder is dispersed. It is preferable to add it to the previous dispersion medium in advance.
  • Examples of the method of shearing the liquid composition include a stirring device equipped with blades (stirring blades) such as propeller blades, turbine blades, paddle blades, and shell-shaped blades in a single axis or multiple axes, a henshell mixer, and a pressurized kneader.
  • blades such as propeller blades, turbine blades, paddle blades, and shell-shaped blades in a single axis or multiple axes
  • a henshell mixer such as a henshell mixer, and a pressurized kneader.
  • Turbine mixer or planetary mixer Turbine mixer or planetary mixer; ball mill, attritor, basket mill, sand mill, sand grinder, dyno mill (bead mill using crushing medium such as glass beads or zirconium oxide beads), dispermat, SC mill, spike mill or Mixing with a disperser using media such as an agitator mill; using a disperser that does not use media such as high-pressure homogenizers such as microfluidizers, nanomizers, and ultimateizers, ultrasonic homogenizers, resolvers, dispersers, and high-speed impeller dispersers. Mixing is included.
  • high-pressure homogenizers such as microfluidizers, nanomizers, and ultimateizers, ultrasonic homogenizers, resolvers, dispersers, and high-speed impeller dispersers. Mixing is included.
  • the shearing process is preferably under high shear conditions. "High shear” means, in the case of agitation, agitation at a rate greater than at least 300 rpm.
  • the shearing treatment may be started during the addition of the particles of the inorganic filler to the liquid composition containing the F powder, or may be performed after the addition is completed. By continuously performing these shearing treatments for a sufficient time, a dispersion liquid having excellent dispersion stability can be formed.
  • the liquid temperature of the liquid composition containing F powder during the shearing treatment is preferably kept at 70 ° C. or lower, more preferably 50 ° C. or lower. When the liquid temperature is maintained at such a temperature, the obtained dispersion is difficult to thicken and gel. In addition, the particles are easily formed, and the obtained dispersion is likely to have excellent dispersion stability.
  • the liquid temperature is preferably maintained above 0 ° C., more preferably above 10 ° C.
  • the liquid viscosity of the liquid composition containing F powder during the shearing treatment is preferably kept at 100,000 mPa ⁇ s or less, and from the viewpoint of obtaining a dispersion liquid having excellent dispersion stability, it is kept at 10,000 mPa ⁇ s or less. Is more preferable.
  • the liquid viscosity of the liquid composition during the shearing treatment is preferably 1 mPa ⁇ s or more, and more preferably 10 mPa ⁇ s or more.
  • the flow form of the liquid composition in the shearing treatment is preferably an ascending flow.
  • the ascending flow may be an ascending flow in any of a swirling flow, a vertical circulation flow, and a radiating flow.
  • the flow form may be adjusted by a baffle plate or the like, or the flow form may be eccentric by adjusting the installation position and the installation angle of the processing device (stirring machine, stirring tank, etc.).
  • the liquid composition may further contain a silane coupling agent.
  • a silane coupling agent When the liquid composition contains a silane coupling agent, the F powder and the inorganic filler are more firmly bonded to each other, making it easier to obtain the particles in which the F powder or the inorganic filler is less likely to be removed, resulting in dispersion stability. It is easy to obtain an excellent dispersion.
  • the silane coupling agent include compounds similar to those of the above-mentioned silane coupling agent, which can be used in the surface treatment of the inorganic filler.
  • the liquid composition further contains a silane coupling agent, the content thereof is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, still more preferably 1% by mass or more.
  • the content is preferably 20% by mass or less, more preferably 10% by mass or less, still more preferably 5% by mass or less.
  • the ratio of the content of the silane coupling agent to the content of the F powder in the liquid composition is preferably 0.01 or more, more preferably 0.02 or more, still more preferably 0.05 or more.
  • the above ratio is preferably 0.3 or less, more preferably 0.1 or less.
  • the liquid composition may or may not further contain a surfactant.
  • a surfactant the content thereof is preferably 1 to 15% by mass, and the surfactant is preferably nonionic.
  • the hydrophilic moiety of the surfactant preferably has an oxyalkylene group or an alcoholic hydroxyl group.
  • the hydrophobic moiety of the surfactant preferably has an acetylene group, a polysiloxane group, a perfluoroalkyl group or a perfluoroalkenyl group.
  • a glycol-based surfactant a glycol-based surfactant, an acetylene-based surfactant, a silicone-based surfactant or a fluorine-based surfactant is preferable, and a silicone-based surfactant is more preferable.
  • the nonionic surfactant one kind may be used, or two or more kinds may be used. When two kinds of nonionic surfactants are used, the nonionic surfactants are preferably a silicone-based surfactant and a glycol-based surfactant.
  • surfactants include “Futergent” series (manufactured by Neos), “Surflon” series (manufactured by AGC Seimi Chemical), “Megafuck” series (manufactured by DIC), and “Unidyne” series (Daikin).
  • the liquid composition may further contain a resin material other than the F polymer.
  • a resin material may be thermosetting or thermoplastic, may be modified, may be dissolved in the liquid composition and the present dispersion, or may not be dissolved and dispersed. good.
  • resin materials include tetrafluoroethylene polymers other than F polymers, aromatic polyimides, aromatic polyamic acids which are aromatic polyimide precursors, aromatic maleimides, acrylic resins, phenol resins, liquid crystal polyesters, and liquid crystal polyester amides.
  • Polyimide resin modified polyphenylene ether, polyfunctional cyanic acid ester resin, polyfunctional maleimide-cyanic acid ester resin, polyfunctional maleimide, aromatic elastomers such as styrene elastomer, vinyl ester resin, urea resin, diallyl phthalate resin, melamine.
  • polytetrafluoroethylene-based polymer other than the F polymer polytetrafluoroethylene is preferable.
  • the liquid composition preferably further contains an aromatic polymer.
  • the aromatic polymer is preferably aromatic polyimide, aromatic polyamideimide, aromatic maleimide, polyphenylene ether, aromatic polyamic acid, or aromatic elastomer (styrene elastomer or the like), and is a thermoplastic aromatic polyimide. Is more preferable.
  • the adhesiveness and low linear expansion property of the molded product formed from the present dispersion are further improved, but also the liquid properties (viscosity, thixotropic ratio, etc.) of the present dispersion are balanced, and the handling property is improved. Easy to improve.
  • examples of the styrene elastomer include copolymers of styrene and conjugated diene or (meth) acrylic acid esters (styrene-butadiene rubber, styrene-based core-shell type copolymers, styrene-based block copolymers, etc.), and rubber and plastic.
  • Styrene elastomers having both properties, which are plasticized by heating and exhibit flexibility, are preferred.
  • the resin material is a tetrafluoroethylene polymer other than the F polymer.
  • the content thereof is preferably 40% by mass or less with respect to the entire liquid composition.
  • the dispersion liquid produced by this method has a thixotropic agent, a viscosity modifier, a defoaming agent, a dehydrating agent, a plasticizer, a weather resistant agent, and an oxidation, as long as the effects of the present invention are not impaired.
  • Other components such as inhibitors, heat stabilizers, lubricants, antistatic agents, whitening agents, colorants, conductive agents, mold release agents, flame retardants, and various fillers may be further contained.
  • the D50 of the composite particles (main particles) present in the present dispersion is preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less.
  • the D50 of the particles is preferably 0.1 ⁇ m or more, more preferably 1 ⁇ m or more, still more preferably 3 ⁇ m or more.
  • the D90 of the present particles is preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less.
  • an F polymer particle (F powder) is used as a core, and an inorganic filler is attached to the surface of the core (hereinafter, “Aspect I”). Also referred to as), there is an embodiment in which an inorganic filler is used as a core and F powder is adhered to the surface of the core (hereinafter, also referred to as “Aspect II”), and the particles of Aspect I are preferable.
  • the "core” means a core (central part) necessary for forming the particle shape of the composite particle, and does not mean the main component in the composition of the composite particle.
  • the deposit (inorganic filler or F powder) adhering to the surface of the core may be adhered only to a part of the surface of the core, or may be attached to most or the entire surface thereof.
  • the deposits cling to the surface of the core like dust, in other words, a large part of the surface of the core is exposed.
  • the deposits are evenly sprinkled on the surface of the core or are in a state of covering the surface of the core, and such composite particles are formed from the core and the shell covering the core. It can be said that it has a core-shell structure.
  • an inorganic filler having a hardness higher than that of the F polymer and having high dispersion stability is exposed on the surface.
  • the F polymer is less likely to be denatured, and the fluidity of the composite particles and their handleability are likely to be improved.
  • the dispersion stability of the composite particles tends to increase.
  • the core of the F powder and the inorganic filler are preferably in the form of particles, respectively.
  • the core of the F powder may be composed of a single particle of the F powder or an aggregate of the F powder.
  • the D50 of the F powder is set to be larger than the D50 of the particles of the inorganic filler, and the amount of the F powder is set to be larger than the amount of the particles of the inorganic filler. If the dispersion liquid is produced by the method of the present invention with such a relationship set, it is easy to obtain the composite particles of the aspect I.
  • the D50 of the particles of the inorganic filler is preferably 0.0001 to 0.5, more preferably 0.01 to 0.3, based on the D50 of the F powder. Specifically, it is preferable that the D50 of the F powder is more than 1 ⁇ m and the D50 of the particles of the inorganic filler is 0.1 ⁇ m or less.
  • the amount of particles of the inorganic filler is preferably 0.1 part by mass or more, more preferably 1 part by mass or more with respect to 100 parts by mass of F powder.
  • the upper limit is preferably 50 parts by mass, more preferably 25 parts by mass, and even more preferably 5 parts by mass.
  • the D50 of the core of the F powder is larger than the D50 of the particles of the inorganic filler, and the mass of the F polymer occupying the same is larger than the mass of the inorganic filler.
  • the surface of the core of the F powder is covered with a larger amount of particles of the inorganic filler, and the composite particles of the aspect I have a core-shell structure.
  • the aggregation of the F powder particles is suppressed, and it is easy to obtain composite particles (main particles) in which the particles of the inorganic filler are attached to the core composed of the single F powder particles.
  • the inorganic filler is preferably spherical particles, more preferably substantially spherical particles.
  • the dispersibility stability of the obtained composite particles tends to increase.
  • the ratio of the minor axis to the major axis is preferably 0.5 or more, more preferably 0.8 or more. The above ratio is preferably less than 1.
  • the "sphere" includes not only a true sphere but also a slightly distorted sphere.
  • the inorganic filler and the F polymer are more uniformly distributed in the molded product (polymer layer or the like), and the physical properties of both are more likely to be expressed in a well-balanced manner.
  • the average particle size (D50) of the particles of the inorganic filler is preferably in the range of 0.001 to 0.3 ⁇ m, more preferably 0.005 to 0.2 ⁇ m, still more preferably 0.01 to 0.1 ⁇ m.
  • the average particle size (D50) is within such a range, the handleability and fluidity of the composite particles are likely to be improved, and the dispersion stability is likely to be improved.
  • the particle size distribution of the particles of the inorganic filler is preferably 3 or less, and more preferably 2.9 or less, using the value of D90 / D10 as an index.
  • D10 is a volume-based cumulative 10% diameter of the object, which is measured in the same manner as D50 and D90. In such a case, it is easy to control the fluidity of the obtained composite particles.
  • the surface of the particles of the inorganic filler is surface-treated, and it is more preferable that the particles are surface-treated with a silazane compound such as hexamethyldisilazane, a silane coupling agent, or the like.
  • a silazane compound such as hexamethyldisilazane
  • a silane coupling agent such as hexamethyldisilazane
  • silane coupling agent include the above-mentioned compounds.
  • one kind of inorganic filler particles may be used, or two or more kinds of particles may be mixed and used.
  • the average particle diameter of each inorganic filler may be different from each other, and the mass ratio of the content of each inorganic filler can be appropriately set according to the desired function.
  • the D50 of the core of the F powder is preferably 0.1 ⁇ m or more, more preferably more than 1 ⁇ m.
  • the upper limit is preferably 100 ⁇ m, more preferably 50 ⁇ m, and even more preferably 10 ⁇ m.
  • the D50 of the particles of the inorganic filler is preferably 0.001 ⁇ m or more, more preferably 0.01 ⁇ m or more.
  • the upper limit is preferably 1 ⁇ m, more preferably 0.1 ⁇ m.
  • the ratio of the F polymer to the composite particles of the aspect I is preferably 50 to 99% by mass, more preferably 75 to 99% by mass.
  • the proportion of the inorganic filler is preferably 1 to 50% by mass, more preferably 1 to 25% by mass.
  • the composite particles of Aspect I may be further surface-treated depending on the physical properties of the inorganic filler adhering to the surface.
  • Specific examples of such surface treatment include a method of surface-treating the composite particles of Embodiment I with siloxanes (polydimethylsiloxane or the like) or a silane coupling agent.
  • Such surface treatment can be carried out by mixing the dispersion liquid in which the composite particles are dispersed with the siloxanes or the silane coupling agent, reacting the siloxanes or the silane coupling agent, and recovering the composite particles.
  • the silane coupling agent the above-mentioned silane coupling agent having a functional group is preferable. According to such a method, the surface physical characteristics of the composite particles can be further adjusted.
  • the core of the inorganic filler is preferably in the form of particles.
  • the surface of the core of the inorganic filler is easily covered with the F powder.
  • the core of the inorganic filler may be composed of a single particle of the inorganic filler or may be composed of an aggregate of the inorganic filler.
  • the D50 of the particles of the inorganic filler is preferably 0.0001 to 0.5, more preferably 0.01 to 0.3, based on the D50 of the particles of the inorganic filler.
  • the amount of F powder is preferably 0.1 part by mass or more, more preferably 1 part by mass or more, based on 100 parts by mass of the particles of the inorganic filler.
  • the upper limit is preferably 50 parts by mass, more preferably 10 parts by mass.
  • the D50 of the core of the inorganic filler is preferably 0.1 ⁇ m or more, more preferably more than 1 ⁇ m.
  • the upper limit is preferably 30 ⁇ m, more preferably 10 ⁇ m.
  • the proportion of the inorganic filler in the composite particles of Embodiment II is preferably 50 to 99% by mass, more preferably 60 to 90% by mass.
  • the proportion of the F polymer is preferably 1 to 50% by mass, more preferably 10 to 40% by mass.
  • the means for removing the dispersion medium from the dispersion liquid and isolating the particles it is preferable to use heating, depressurization or filtration. These means may be used in combination as appropriate.
  • Specific examples of the means for isolating the particles include (1) distilling off the dispersion medium under atmospheric pressure or reduced pressure to concentrate, filtering and drying as necessary; (2) controlling the temperature of the dispersion. While the particles are agglomerated, or after coagulation / crystallization by adding an electrolyte, a coagulant, a coagulation aid, etc., they are separated and dried by filtration or the like; (3) The dispersion medium can volatilize the dispersion.
  • the dispersion is centrifuged and then dried.
  • the drying means include vacuum drying, high frequency drying, and hot air drying.
  • the dispersion may be diluted with a dispersion medium to adjust the total content of the F polymer and the inorganic filler in the dispersion in advance.
  • a method in which the dispersion liquid is frozen and then the dispersion medium is preferably sublimated and removed under a reduced pressure atmosphere to obtain the composite particles is more preferable.
  • Freezing is preferably performed at a temperature lower than 0 ° C. Specifically, it is preferable to expose the dispersion liquid to an atmosphere at a temperature equal to or lower than the melting point of the dispersion medium used, for example, ⁇ 100 to ⁇ 10 ° C., and freeze it. Freezing is preferably completed within 8 hours from the viewpoint of suppressing the sedimentation of the components of the dispersion liquid. Further, from the viewpoint of suppressing non-uniformity of the frozen product due to rapid freezing, it is preferable to freeze the dispersion liquid for 10 minutes or more.
  • the removal of the dispersion medium from the frozen dispersion (frozen product) by sublimation may be performed under conditions in which the dispersion is suppressed from melting.
  • the temperature at which the dispersion medium is sublimated is preferably less than 0 ° C., specifically, the frozen product is preferably exposed to an atmosphere of ⁇ 100 to 0 ° C.
  • the pressure for sublimation is usually a reduced pressure atmosphere, preferably a reduced pressure atmosphere of 0 to 1 ⁇ 10 2 Pa.
  • the time for sublimating the dispersion medium is usually 4 to 72 hours. Examples of the device used for sublimation include a centrifuge, a shelf dryer and the like.
  • examples of the electrolyte include inorganic salts such as potassium nitrate, sodium nitrate, sodium carbonate, and sodium hydrogen carbonate.
  • examples of the coagulant or coagulation aid include nitrate, hydrochloric acid, sulfuric acid, magnesium chloride, calcium chloride, sodium chloride, aluminum sulfate, magnesium sulfate and barium sulfate.
  • the dispersion liquid may be agitated at the time of coagulation / crystallization to adjust the polymer content and pH of the dispersion liquid, or a pH adjuster and an organic solvent may be added to the dispersion liquid.
  • Examples of the pH adjusting agent include sodium carbonate, sodium hydrogencarbonate, ammonia, ammonium salts, and urea.
  • Examples of the organic solvent include alcohol and acetone.
  • the above means (3) is preferably performed by spraying the dispersion liquid in an atmosphere at a temperature at which the dispersion medium sufficiently volatilizes.
  • a method of spraying the dispersion liquid vertically on a system in which an inert gas such as nitrogen gas having a temperature of more than 100 ° C. is circulated above the vertical direction and drying the mixture is preferable.
  • An apparatus such as a crystallization tower can be used for such a method.
  • the particles can be stably dispersed even if a large amount is added to the liquid dispersion medium. Further, in the molded product (polymer layer, film, etc.) formed from the liquid composition, the F polymer and the inorganic filler are more uniformly distributed, and the physical properties (electrical characteristics, adhesiveness, etc.) of the F polymer and the inorganic filler are obtained. (Low line swelling, etc.) is highly likely to occur.
  • the viscosity of the dispersion liquid produced by this method is preferably 50 mPa ⁇ s or more, more preferably 100 mPa ⁇ s or more, further preferably 5000 mPa ⁇ s or more, and particularly preferably 10,000 mPa ⁇ s or more.
  • the viscosity of this dispersion is preferably 100,000 mPa ⁇ s or less, more preferably 50,000 mPa ⁇ s or less, and even more preferably 20,000 mPa ⁇ s or less.
  • the present dispersion has excellent coatability and easily forms a molded product (polymer layer or the like) having an arbitrary thickness.
  • the inorganic filler is less likely to aggregate and is easily uniformly distributed in the molded product formed from the dispersion, so that the physical characteristics of the F polymer and the inorganic filler are different. It is highly balanced and easy to develop.
  • the viscosity of the dispersion liquid produced by this method is preferably 50 mPa ⁇ s or more, and more preferably 100 mPa ⁇ s or more.
  • the viscosity of this dispersion is preferably 100,000 mPa ⁇ s or less, more preferably 10,000 mPa ⁇ s, and even more preferably 1000 mPa ⁇ s or less.
  • the present dispersion is preferable because it has excellent dispersion stability.
  • the inorganic filler is a non-spherical anisotropic filler, its dispersion stability is more likely to be improved by the above-mentioned mechanism of action.
  • the inorganic filler tends to be randomly oriented and the physical properties tend to be the same regardless of the direction. For example, it is easy to obtain a layer or film whose mechanical strength and electrical characteristics are equivalent in the plane direction and the vertical direction of the layer or film.
  • the viscosity of this dispersion may be adjusted by further mixing a liquid dispersion medium after shearing treatment.
  • the thixotropic ratio of the dispersion liquid produced by this method is preferably 1.0 or more.
  • the thixotropic ratio of this dispersion is preferably 3.0 or less, more preferably 2.0 or less.
  • the present dispersion is excellent in coatability and homogeneity, and it is easy to form a more dense molded product (polymer layer or the like).
  • the total content of the F powder and the inorganic filler in the present dispersion is preferably 40% by mass or more, more preferably 50 to 80% by mass, based on the total mass of the present dispersion.
  • the dispersion stability is improved, and the F powder and the inorganic filler can be contained in the dispersion liquid at a high concentration. Therefore, a molded product such as a coating film can be formed from the dispersion liquid with high uniformity, and the physical characteristics of the F polymer and the physical characteristics of the inorganic filler can be easily expressed in a highly balanced manner.
  • the component sedimentation rate is preferably 60% or more, preferably 70% or more, and more preferably 80% or more.
  • the dispersion liquid produced by this method is applied to the surface of the sheet base material layer to form a liquid film, and the liquid film is heated to remove the dispersion medium to form a dry film, and the dry film is further heated. Then, by firing the F polymer, a laminate having a polymer layer containing the F polymer and an inorganic filler (hereinafter, also referred to as “F layer”) on the surface of the sheet base material layer can be obtained.
  • F layer inorganic filler
  • a metal substrate copper, nickel, aluminum, titanium, metal foil such as an alloy thereof, etc.
  • a heat-resistant resin film polyimide, polyarylate, polysulfone, polyallylsulfone, polyamide, polyetheramide, etc.
  • a film containing one or more of heat-resistant resins such as polyphenylene sulfide, polyallyl ether ketone, polyamideimide, liquid crystal polyester, and liquid crystal polyester amide, which may be a single-layer film or a multilayer film).
  • Prepreg precursor of fiber reinforced resin substrate
  • any method may be used as long as a stable liquid film (wet film) composed of the present dispersion liquid is formed on the surface of the sheet base material, and the coating method and droplets are used. Examples thereof include a discharge method and a dipping method, and a coating method is preferable. If the coating method is used, a liquid film can be efficiently formed on the surface of the base material with simple equipment.
  • the coating methods include spray method, roll coat method, spin coat method, gravure coat method, micro gravure coat method, gravure offset method, knife coat method, kiss coat method, bar coat method, die coat method, fountain Mayer bar method, and slot die coat. The law is mentioned.
  • the liquid film is heated at a temperature at which the dispersion medium volatilizes to form a dry film on the surface of the sheet substrate.
  • the heating temperature is preferably + 50 ° C. or lower, the boiling point of the dispersion medium, more preferably 50 ° C. or lower, and further preferably ⁇ 50 ° C. or lower.
  • the drying temperature is preferably 120 ° C to 200 ° C. Air may be blown in the step of removing the dispersion medium.
  • the dispersion medium does not necessarily have to be completely volatilized, and may be volatilized to the extent that the layer shape after holding is stable and the self-supporting film can be maintained.
  • the heating temperature is preferably 380 ° C. or lower, more preferably 350 ° C. or lower.
  • each heating method include a method using an oven, a method using a ventilation drying furnace, and a method of irradiating heat rays such as infrared rays.
  • the heating may be performed under normal pressure or reduced pressure.
  • the heating atmosphere may be any of an oxidizing gas atmosphere (oxygen gas, etc.), a reducing gas atmosphere (hydrogen gas, etc.), and an inert gas atmosphere (helium gas, neon gas, argon gas, nitrogen gas, etc.). ..
  • the heating time is preferably 0.1 to 30 minutes, more preferably 0.5 to 20 minutes.
  • the thickness of the F layer is preferably 0.1 to 150 ⁇ m. Specifically, when the sheet base material layer is a metal foil, the thickness of the F layer is preferably 1 to 30 ⁇ m. When the sheet base material layer is a heat-resistant resin film, the thickness of the F layer is preferably 1 to 150 ⁇ m, more preferably 10 to 50 ⁇ m.
  • the peel strength between the F layer and the base material layer is preferably 10 N / cm or more, more preferably 15 N / cm or more. The peel strength is preferably 100 N / cm or less.
  • the porosity of the F layer is preferably 30% or less, more preferably 20% or less.
  • the porosity is preferably 0.1% or more, more preferably 1% or more. From this dispersion, it is easy to form an F layer with a low porosity. In particular, even when the porosity of the dry film is 1% or more, it is easy to form an F layer having a low porosity.
  • the void ratio is determined by image processing to determine the void portion of the F layer from the SEM photograph of the cross section of the molded product observed using a scanning electron microscope (SEM), and the area occupied by the void portion is the area occupied by the F layer. It is the ratio (%) divided by the area. The area occupied by the void portion is obtained by approximating the void portion to a circle.
  • the present dispersion may be applied only to one surface of the sheet base material layer, or may be applied to both sides of the sheet base material layer.
  • a laminated body having an F layer on one surface of the sheet base material layer and the sheet base material layer is obtained, and in the latter, the F layer is provided on both the surfaces of the sheet base material layer and the sheet base material layer.
  • a laminate is obtained. Since the latter laminated body is less likely to warp, it is excellent in handleability during its processing.
  • Specific examples of such a laminate include a metal foil, a metal-clad laminate having an F layer on at least one surface of the metal foil, a polyimide film, and a multilayer film having an F layer on both surfaces of the polyimide film. Can be mentioned.
  • a metal foil with a carrier containing two or more layers of metal foil may be used.
  • the metal foil with a carrier includes a carrier copper foil (thickness: 10 to 35 ⁇ m) and an ultrathin copper foil (thickness: 2 to 5 ⁇ m) laminated on the carrier copper foil via a release layer. Copper foil can be mentioned. By using such a copper foil with a carrier, it is possible to form a fine pattern by an MSAP (modified semi-additive) process.
  • As the release layer a metal layer containing nickel or chromium or a multilayer metal layer in which the metal layers are laminated is preferable.
  • the metal leaf with a carrier examples include the trade name "FUTF-5DAF-2" manufactured by Fukuda Metal Leaf Powder Industry Co., Ltd.
  • the ten-point average roughness of the surface of the sheet base material layer is preferably 0.01 to 0.05 ⁇ m. Since the particles are easy to pack densely, a laminated body having excellent peel strength can be formed even if the surface of the sheet base material layer is smooth.
  • the outermost surface of the sheet material may be further surface-treated in order to further improve its low linear expansion property and adhesiveness.
  • the surface treatment method include annealing treatment, corona treatment, plasma treatment, ozone treatment, excimer treatment, and silane coupling treatment.
  • the conditions for the annealing treatment are preferably 120 to 180 ° C., a pressure of 0.005 to 0.015 MPa, and a time of 30 to 120 minutes.
  • the gas used for the plasma treatment include oxygen gas, nitrogen gas, noble gas (argon and the like), hydrogen gas, ammonia gas, and vinyl acetate. One type of these gases may be used, or two or more types may be used in combination.
  • Another substrate may be further laminated on the outermost surface of the laminated body.
  • substrates include a heat-resistant resin film, a prepreg which is a precursor of a fiber-reinforced resin plate, a laminate having a heat-resistant resin film layer, and a laminate having a prepreg layer.
  • the prepreg is a sheet-like substrate in which a base material (tow, woven fabric, etc.) of reinforcing fibers (glass fibers, carbon fibers, etc.) is impregnated with a thermosetting resin or a thermoplastic resin.
  • the heat-resistant resin film is a film containing one or more heat-resistant resins, and examples of the heat-resistant resin include the above-mentioned resins.
  • the laminating method examples include a method of heat-pressing the laminated body and another substrate.
  • the hot press conditions are preferably such that the temperature is 120 to 400 ° C., the atmospheric pressure is a vacuum of 20 kPa or less, and the press pressure is 0.2 to 10 MPa. Since such a laminate has an F layer having excellent electrical characteristics, it is suitable as a printed circuit board material, and specifically, it can be used as a flexible metal-clad laminate or a rigid metal-clad laminate for manufacturing a printed circuit board, and is particularly flexible. It can be suitably used for manufacturing a flexible printed circuit board as a metal-clad laminate.
  • a printed circuit board is obtained by etching a metal foil of a laminate (metal foil with an F layer) in which the sheet base material layer is a metal foil to form a transmission circuit. Specifically, a method of etching a metal foil to process it into a predetermined transmission circuit, or a method of processing a metal foil into a predetermined transmission circuit by an electrolytic plating method (semi-additive method (SAP method), MSAP method, etc.). Can be used to manufacture printed circuit boards.
  • a printed circuit board manufactured from a metal foil with an F layer has a transmission circuit formed from the metal foil and an F layer in this order.
  • the configuration of the printed circuit board includes a transmission circuit / F layer / prepreg layer and a transmission circuit / F layer / prepreg layer / F layer / transmission circuit.
  • an interlayer insulating film may be formed on the transmission circuit, a solder resist may be laminated on the transmission circuit, or a coverlay film may be laminated on the transmission circuit.
  • These interlayer insulating films, solder resists and coverlay films may be formed with the present dispersion.
  • the laminate of the F layer and other base materials is useful as antenna parts, printed substrates, aircraft parts, automobile parts, sports equipment, food industry supplies, paints, cosmetics, etc., and specifically, wire coating.
  • Materials aircraft wires, etc.
  • electrical insulating tapes insulating tapes for oil drilling, materials for printed substrates, separation membranes (precision filtration membranes, ultrafiltration membranes, reverse osmosis membranes, ion exchange membranes, dialysis membranes, gas separation membranes) Etc.), electrode binders (for lithium secondary batteries, fuel cells, etc.), copy rolls, furniture, automobile dashboards, covers for home appliances, sliding members (load bearings, sliding shafts, valves, bearings, gears, cams, etc.) , Belt conveyor, food transport belt, etc.), tools (shovel, razor, cut, saw, etc.), boiler, hopper, pipe, oven, baking mold, chute, die, toilet bowl, container covering material.
  • the present dispersion having excellent dispersibility and dispersion stability can be obtained. Further, when the dispersion medium is removed from the present dispersion liquid, composite particles containing F powder and an inorganic filler and having excellent dispersibility and dispersion stability can be obtained. Such composite particles can be effectively used as additives and modifiers for various varnishes (resist, ink, paint, etc.) and can impart physical properties of F polymer.
  • the present invention is not limited to the configuration of the above-described embodiment.
  • this method may additionally have any other step in the configuration of the above embodiment, or may be replaced with any step that produces the same action.
  • the dispersion liquid and the particles may be added to any other configuration or may be replaced with any configuration exhibiting the same function in the configuration of the above embodiment.
  • F powder 1 A polymer having an acid anhydride group containing 97.9 mol%, 0.1 mol%, and 2.0 mol% of TFE unit, NAH unit, and PPVE unit in this order (melting temperature 300 ° C., acid anhydride).
  • F powder-2 Particles (average particle diameter 2 ⁇ m, bulk) composed of a functional group-free polymer (melting temperature 305 ° C.) containing 97.5 mol% and 2.5 mol% of TFE units and NAH units in this order.
  • F powder 3 Particles composed of PTFE having a number average molecular weight of 20,000 (average particle diameter 0.3 ⁇ m, bulk density 0.2 g / m 2 )
  • Filler 1 Silica filler (substantially spherical, average particle diameter 0.4 ⁇ m), surface treated with silane coupling agent
  • Filler 2 Silica filler (substantially spherical, average particle diameter 5 ⁇ m), surface treated with silane coupling agent Treated filler 3: Borone nitride filler (scaly, average particle size 8 ⁇ m)
  • Filler 4 Boron nitride filler (scaly, average particle size 4 ⁇ m)
  • Filler 5 Silica filler (substantially spherical, average particle diameter 0.03 ⁇ m), surface-treated with silane coupling agent
  • Filler 6 Silica filler (substantially spherical, average particle diameter 0.4 ⁇ m), silane coupling agent
  • Example 1-1 Production and evaluation of dispersion (1)
  • NMP and varnish 1 were added to a tank equipped with a stirring blade, and the inside of the tank was sufficiently stirred.
  • F powder 1 was added to the tank and stirred for 10 minutes to prepare a liquid composition (F powder content: 33% by mass) in which F powder 1 was dispersed.
  • the filler 1 is added, the inside of the tank is stirred at 800 rpm for 15 minutes, and the shearing treatment is performed in a state where an ascending flow is formed.
  • a dispersion 1 containing (1 part by mass as PI1) and NMP (59 parts by mass) was obtained.
  • the viscosity of the obtained dispersion liquid 1 was 400 mPa ⁇ s, and the viscosity did not increase even when stirred at 500 rpm for 72 hours with a ball mill, and the component sedimentation rate was evaluated according to the following, and the result was “ ⁇ ”. .. ⁇ Evaluation criteria for component sedimentation rate> ⁇ : The erythrocyte sedimentation rate is 60% or more. ⁇ : The erythrocyte sedimentation rate is more than 40% and 60% or less. X: The erythrocyte sedimentation rate is 40% or less.
  • the erythrocyte sedimentation rate of the composite particles 1 was " ⁇ " as a result of preparing a liquid composition containing the composite particles 1 (40 parts by mass) and NMP (60 parts by mass) and evaluating the same as the above component sedimentation rate. rice field.
  • Example 1-2 to Example 1-8 Dispersions 2 to 8 and composite particles 2 to 8 were obtained in the same manner as in Example 1-1, except that the type and amount of each component were changed as shown in Table 1 below.
  • Example 1-7 the stirring speed in the shearing treatment was increased to adjust the viscosity of the obtained dispersion.
  • Example 1-8 in addition to NMP and varnish 1, the filler 5 was also stirred in a tank in advance, and F powder 1 was added thereto to produce a dispersion liquid.
  • Table 1 shows the evaluation results of the obtained dispersion liquid and composite particles.
  • Example 2-1 The dispersion liquid 1 was applied to the surface of a long copper foil (thickness 18 ⁇ m) using a bar coater to form a wet film. Next, the metal foil on which the wet film was formed was passed through a drying oven at 110 ° C. for 5 minutes and dried by heating to obtain a dry film. Then, the dry membrane was heated at 380 ° C. for 3 minutes in a nitrogen oven. As a result, a laminate 1 having a metal foil and a polymer layer (thickness 20 ⁇ m) as a molded product containing a melt-fired product of F powder 1 and filler 1 and PI1 on the surface thereof was produced.
  • the cross section of the laminated body 1 was observed using a scanning electron microscope (SEM), and the porosity was evaluated according to the following criteria.
  • ⁇ Electrical characteristics> A rectangular test piece having a length of 100 mm and a width of 50 mm was cut out from the laminate 1 and etched with an aqueous ferric chloride solution to remove the copper foil to obtain a single polymer layer. After holding the polymer layer alone in an atmosphere of 85 ° C. and 85% relative humidity for 72 hours, the dielectric loss tangent (measurement frequency: 10 GHz) of the polymer layer was measured by the SPDR (split post dielectric resonance) method. It was evaluated according to the criteria of. [Evaluation criteria for electrical characteristics after water absorption] ⁇ : The dielectric loss tangent is less than 0.0020. ⁇ : The dielectric loss tangent is 0.0020 or more and 0.0040 or less. X: The dielectric loss tangent is more than 0.0040.
  • ⁇ Linear expansion coefficient> The copper foil of the laminate 1 was removed by etching with an aqueous solution of ferric chloride to prepare a single polymer layer. A 180 mm square test piece is cut out from the prepared polymer layer, and the linear expansion coefficient of the test piece is measured in the range of 25 ° C. or higher and 260 ° C. or lower according to the measurement method specified in JIS C 6471: 1995, and the following criteria are used. Evaluated according to. [Evaluation criteria for coefficient of linear expansion] ⁇ : 50 ppm / ° C or less. ⁇ : More than 50 ppm / ° C. and 75 ppm / ° C. or less. X: Over 75 ppm / ° C.
  • Laminates 2 to 7 were obtained in the same manner as in Example 2-1 except that the dispersions 2 to 7 were used respectively. Table 2 shows the evaluation results for each laminated body.
  • a liquid composition containing the obtained F powder 1 (35 parts by mass), filler 1 (40 parts by mass), varnish 1 (1 part by mass as PI1) and NMP (remaining portion) was prepared, and further NMP was added to the dispersion liquid. 31 (viscosity: 300 mPa ⁇ s) was obtained. A few drops of the dispersion liquid 31 were dropped onto a glass substrate and air-dried at 120 ° C. for 5 minutes to obtain composite particles 31 (D50: 8 ⁇ m) having F powder 1 as a core and filler 1 as a shell.
  • Example 3-2 A dispersion liquid 32 was obtained in the same manner as in Example 3-1 except that the agent 1 was further added so as to be 1% by mass with respect to the content of the F powder 1. Further, composite particles 32 (D50: 8 ⁇ m) were obtained in the same manner as in Example 3-1 except that the dispersion liquid 31 was changed to the dispersion liquid 32.
  • Example 3-3 Dispersion is performed in the same manner as in Example 3-1 except that the increase in the liquid temperature in the tank due to the shearing treatment of Example 3-1 is not controlled and the liquid temperature in the tank during the shearing treatment temporarily exceeds 50 ° C. Liquid 33 was obtained.
  • the composite particles 33 were obtained in the same manner as in Example 3-1 except that the dispersion liquid 31 was changed to the dispersion liquid 33.
  • the dispersion liquid 34 was obtained in the same manner as in Example 3-1 except that the stirring in the shearing treatment was strengthened and the viscosity of the liquid in the tank during the shearing treatment exceeded 10,000 mPa ⁇ s. Further, the composite particles 34 were obtained in the same manner as in Example 3-1 except that the dispersion liquid 31 was changed to the dispersion liquid 34.
  • the dispersion liquid 35 was obtained in the same manner as in Example 3-1 except that the filler 1 was changed to the filler 6. Further, the composite particles 35 were obtained in the same manner as in Example 3-1 except that the dispersion liquid 31 was changed to the dispersion liquid 35.
  • Example 1-1 For each of the obtained dispersions 31 to 35, the dispersion stability and the erythrocyte sedimentation rate were evaluated in the same manner as in “Example 1-1". With respect to the composite particles 31 and the composite particles 32, the erythrocyte sedimentation rate was evaluated in the same manner as in “Example 1-1". The results are shown in Table 3.
  • Part 2 Manufacture and evaluation of laminate (Part 2)
  • the laminated body 31 and the laminated body 32 were obtained in the same manner as in Example 2-1 except that the dispersion liquid 1 was changed to the dispersion liquid 31 and the dispersion liquid 32, respectively.
  • the laminated body 32 as compared with the laminated body 31, powder falling of the inorganic filler was suppressed at the end portion and the curved surface portion of the polymer layer.
  • the dispersion liquid produced by the method of the present invention has excellent dispersion stability and can be easily processed into a film, a fiber reinforced film, a prepreg, and a metal laminated plate (metal foil with resin).
  • the obtained processed article can be used as a material for antenna parts, printed circuit boards, aircraft parts, automobile parts, sports equipment, food industry goods, sliding bearings and the like.
  • the composite particles obtained from the dispersion liquid can be effectively used as additives and modifiers for various varnishes (resist, ink, paint, etc.).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

[Problem] To provide: a method for producing a dispersion containing particles of a tetrafluoroethylene-based polymer, having excellent dispersion stability; and a method for producing composite particles obtained from said dispersion. [Solution] This method for producing a dispersion involves performing a shearing treatment on a liquid composition containing particles of a thermomeltable tetrafluoroethylene-based polymer, a filler of an inorganic compound, and a liquid polar dispersion medium, to obtain a dispersion containing the tetrafluoroethylene-based polymer, the filler of the inorganic compound, and the liquid dispersion medium.

Description

分散液の製造方法Dispersion liquid manufacturing method
 本発明は、テトラフルオロエチレン系ポリマーの粒子及び無機化合物のフィラーを含む分散液の製造方法、並びにかかる方法による複合粒子の製造方法に関する。 The present invention relates to a method for producing a dispersion containing particles of a tetrafluoroethylene polymer and a filler of an inorganic compound, and a method for producing composite particles by such a method.
 ポリテトラフルオロエチレン(PTFE)等のテトラフルオロエチレン系ポリマーは、電気特性、撥水撥油性、耐薬品性、耐熱性等の物性に優れており、プリント基板等の種々の産業用途に利用されている。前記物性を基材表面に付与するために用いるコーティング剤として、テトラフルオロエチレン系ポリマーの粒子を含む分散液が知られている。
 特に近年、信号の高周波化が進んでおり、低誘電率、低誘電正接等の電気特性を有し、絶縁性能に優れた材料が要求されている。したがって、低誘電率、低誘電正接等の電気特性に優れ、高周波帯域の周波数に対応するプリント基板の誘電体層を形成する材料として、テトラフルオロエチレン系ポリマーの粒子を含む分散液は注目されている。
Tetrafluoroethylene-based polymers such as polytetrafluoroethylene (PTFE) have excellent physical properties such as electrical properties, water and oil repellency, chemical resistance, and heat resistance, and are used in various industrial applications such as printed circuit boards. There is. As a coating agent used to impart the physical properties to the surface of the base material, a dispersion liquid containing particles of a tetrafluoroethylene-based polymer is known.
In particular, in recent years, the frequency of signals has been increasing, and there is a demand for materials having electrical characteristics such as low dielectric constant and low dielectric loss tangent and excellent insulation performance. Therefore, as a material for forming a dielectric layer of a printed circuit board having excellent electrical characteristics such as low dielectric constant and low dielectric loss tangent and corresponding to frequencies in a high frequency band, a dispersion liquid containing particles of a tetrafluoroethylene polymer has attracted attention. There is.
 テトラフルオロエチレン系ポリマーは分散安定性が著しく低いため、分散安定性に優れた分散液を得る観点から、従前より様々な提案がなされている。特許文献1には、分散安定性を向上する観点から、セラミックスの無機フィラーをさらに含有する、PTFEの粒子の分散液が開示されている。 Since the tetrafluoroethylene polymer has extremely low dispersion stability, various proposals have been made from the viewpoint of obtaining a dispersion liquid having excellent dispersion stability. Patent Document 1 discloses a dispersion liquid of PTFE particles further containing an inorganic filler of ceramics from the viewpoint of improving dispersion stability.
特開2016-194017号公報Japanese Unexamined Patent Publication No. 2016-194017
 しかし、特許文献1に記載の分散液も未だその分散安定性は充分でない。また、その調製に際して、高剪断を加えると、空気の巻き込みや、テトラフルオロエチレン系ポリマーの変質等により、分散液中での発泡や凝集が生じやすい。その結果、かかる分散液から得られる成形物において、成分分布の均一性の低下や、空隙の発生による耐水性の低下が生じやすい。 However, the dispersion stability of the dispersion described in Patent Document 1 is still insufficient. In addition, if high shear is applied during the preparation, foaming and aggregation in the dispersion are likely to occur due to air entrainment, alteration of the tetrafluoroethylene polymer, and the like. As a result, in the molded product obtained from such a dispersion liquid, the uniformity of the component distribution is likely to be lowered, and the water resistance is likely to be lowered due to the generation of voids.
 本発明者らは、鋭意検討した結果、所定のテトラフルオロエチレン系ポリマーの粒子と、無機化合物のフィラーと、極性の液状分散媒とを含有する液状組成物において、好適には各成分を特定し、撹拌等により高剪断を加えると、分散安定性に優れる分散液が得られること、テトラフルオロエチレン系ポリマーが変質し難くなることを知見した。また、かかる分散液から得られる成形物は緻密であり、低誘電正接及び低線膨張係数等に特に優れることを知見した。
 本発明の目的は、分散安定性に優れる分散液の製造方法、及びかかる分散液を構成する複合粒子の製造方法の提供である。
As a result of diligent studies, the present inventors have preferably identified each component in a liquid composition containing predetermined tetrafluoroethylene polymer particles, an inorganic compound filler, and a polar liquid dispersion medium. It was found that when high shearing is applied by stirring or the like, a dispersion liquid having excellent dispersion stability can be obtained, and that the tetrafluoroethylene polymer is less likely to be deteriorated. Further, it was found that the molded product obtained from the dispersion liquid is dense and is particularly excellent in low dielectric loss tangent and low linear expansion coefficient.
An object of the present invention is to provide a method for producing a dispersion liquid having excellent dispersion stability and a method for producing composite particles constituting such a dispersion liquid.
 本発明は、下記の態様を有する。
[1] 熱溶融性のテトラフルオロエチレン系ポリマーの粒子、無機化合物のフィラー、及び極性の液状分散媒を含有する液状組成物を剪断処理して、前記テトラフルオロエチレン系ポリマー、前記無機化合物のフィラー及び前記液状分散媒を含む分散液を得る、分散液の製造方法。
[2] 前記テトラフルオロエチレン系ポリマーが、ペルフルオロ(アルキルビニルエーテル)に基づく単位を含み、極性官能基を有するテトラフルオロエチレン系ポリマー、及び、全単位に対してペルフルオロ(アルキルビニルエーテル)に基づく単位を2.0~5.0モル%含み、極性官能基を有さないテトラフルオロエチレン系ポリマーからなる群から選ばれる少なくとも1種である、[1]の製造方法。
[3] 前記液状分散媒がアミド、ケトン及びエステルから選択される少なくとも1種である、[1]又は[2]の製造方法。
[4] 前記テトラフルオロエチレン系ポリマーの粒子と前記無機化合物のフィラーの合計含有量が、前記液状組成物の全体質量に対して40質量%以上である、[1]~[3]のいずれかの製造方法。
[5] 前記液状組成物中の、前記テトラフルオロエチレン系ポリマーの粒子と前記無機化合物のフィラーの質量比が、前記粒子の質量を1として、前記フィラーの質量が0.01~2.0である、[1]~[4]のいずれかの製造方法。
[6] 前記液状組成物が、前記テトラフルオロエチレン系ポリマーの粒子を20~40質量%、前記無機化合物のフィラーを5~40質量%含む、[1]~[5]のいずれかの製造方法。
[7] 前記液状組成物中の前記無機化合物のフィラーの平均粒子径(体積基準累積50%径)が、前記テトラフルオロエチレン系ポリマーの粒子の平均粒子径(体積基準累積50%径)を基準として0.0001~0.5である、[1]~[6]のいずれかの製造方法。
[8] 剪断処理中の液温を、70℃以下に保持する、[1]~[7]のいずれかの製造方法。
[9] 剪断処理中の液粘度を、100000mPa・s以下に保持する、[1]~[8]のいずれかの製造方法。
[10] 前記無機化合物のフィラーが、シリカフィラーである、[1]~[9]のいずれかの製造方法。
[11] 前記無機化合物のフィラーが、シランカップリング剤で表面処理されている、[1]~[10]のいずれかの製造方法。
[12] 前記液状組成物が、さらにシランカップリング剤を含む、[1]~[11]のいずれかの製造方法。
[13] 粘度が100000mPa・s以下である分散液を得る、[1]~[12]のいずれかの製造方法。
[14] 成分沈降率が60%以上である分散液を得る、[1]~[13]のいずれかの製造方法。
[15] [1]~[14]のいずれかの製造方法により分散液を得、さらに前記液状分散媒を除去して、前記テトラフルオロエチレン系ポリマーの粒子と前記無機化合物のフィラーを含む複合粒子を得る、複合粒子の製造方法。
The present invention has the following aspects.
[1] A liquid composition containing heat-meltable tetrafluoroethylene polymer particles, an inorganic compound filler, and a polar liquid dispersion medium is sheared to obtain the tetrafluoroethylene polymer and the inorganic compound filler. And a method for producing a dispersion liquid, which obtains a dispersion liquid containing the liquid dispersion medium.
[2] The tetrafluoroethylene-based polymer contains a unit based on perfluoro (alkyl vinyl ether) and has a polar functional group, and the tetrafluoroethylene-based polymer has 2 units based on perfluoro (alkyl vinyl ether) for all units. The production method according to [1], which is at least one selected from the group consisting of tetrafluoroethylene-based polymers containing 0.0 to 5.0 mol% and having no polar functional group.
[3] The method for producing [1] or [2], wherein the liquid dispersion medium is at least one selected from amides, ketones and esters.
[4] Any of [1] to [3], wherein the total content of the particles of the tetrafluoroethylene polymer and the filler of the inorganic compound is 40% by mass or more with respect to the total mass of the liquid composition. Manufacturing method.
[5] The mass ratio of the particles of the tetrafluoroethylene-based polymer to the filler of the inorganic compound in the liquid composition is 0.01 to 2.0, where the mass of the particles is 1 and the mass of the filler is 0.01 to 2.0. A manufacturing method according to any one of [1] to [4].
[6] The production method according to any one of [1] to [5], wherein the liquid composition contains 20 to 40% by mass of particles of the tetrafluoroethylene polymer and 5 to 40% by mass of a filler of the inorganic compound. ..
[7] The average particle size (volume-based cumulative 50% diameter) of the filler of the inorganic compound in the liquid composition is based on the average particle size (volume-based cumulative 50% diameter) of the particles of the tetrafluoroethylene-based polymer. The production method according to any one of [1] to [6], which is 0.0001 to 0.5.
[8] The production method according to any one of [1] to [7], which keeps the liquid temperature during the shearing treatment at 70 ° C. or lower.
[9] The production method according to any one of [1] to [8], which keeps the liquid viscosity during the shearing treatment at 100,000 mPa · s or less.
[10] The production method according to any one of [1] to [9], wherein the filler of the inorganic compound is a silica filler.
[11] The production method according to any one of [1] to [10], wherein the filler of the inorganic compound is surface-treated with a silane coupling agent.
[12] The production method according to any one of [1] to [11], wherein the liquid composition further contains a silane coupling agent.
[13] The production method according to any one of [1] to [12], which obtains a dispersion having a viscosity of 100,000 mPa · s or less.
[14] The production method according to any one of [1] to [13], which obtains a dispersion having a component sedimentation rate of 60% or more.
[15] A dispersion liquid is obtained by the production method according to any one of [1] to [14], and the liquid dispersion medium is further removed to contain the particles of the tetrafluoroethylene polymer and the composite particles containing the filler of the inorganic compound. A method for producing composite particles.
 本発明によれば、分散安定性に優れる、テトラフルオロエチレン系ポリマーの分散液を製造できる。また、かかる分散液から、分散安定性の改良に寄与する複合粒子を製造できる。本発明の方法で製造される分散液は、電気特性等の物性に優れ、例えば、プリント基板の構成材料として有用である。また、かかる分散液から得られる複合粒子は、各種ワニス(レジスト、インク、塗料等)の添加剤や改質剤としても有用である。 According to the present invention, it is possible to produce a dispersion liquid of a tetrafluoroethylene-based polymer having excellent dispersion stability. Further, from such a dispersion liquid, composite particles that contribute to the improvement of dispersion stability can be produced. The dispersion liquid produced by the method of the present invention is excellent in physical properties such as electrical characteristics, and is useful as a constituent material of a printed circuit board, for example. Further, the composite particles obtained from the dispersion liquid are also useful as additives and modifiers for various varnishes (resist, ink, paint, etc.).
 以下の用語は、以下の意味を有する。
 「平均粒子径(D50)」は、レーザー回折・散乱法によって求められる、対象物(粒子、フィラー)の体積基準累積50%径である。すなわち、レーザー回折・散乱法によって粒度分布を測定し、対象物の集団の全体積を100%として累積カーブを求め、その累積カーブ上で累積体積が50%となる点の粒子径である。
 「D90」は、同様にして測定される、対象物の体積基準累積90%径である。
 対象物のD50及びD90は、対象物を水中に分散させ、レーザー回折・散乱式の粒度分布測定装置(堀場製作所社製、LA-920測定器)を用いたレーザー回折・散乱法により分析して求められる。
 「熱溶融性のポリマー」とは、溶融流動性を示すポリマーを意味し、荷重49Nの条件下、溶融流れ速度が0.1~1000g/10分となる温度が存在するポリマーを意味する。
 「溶融温度」は、示差走査熱量測定(DSC)法で測定したポリマーの融解ピークの最大値に対応する温度である。
 「分散液の粘度」は、B型粘度計を用いて、25℃で回転数が30rpmの条件下で測定される粘度である。測定を3回繰り返し、3回分の測定値の平均値とする。
 「チキソ比」とは、分散液の、回転数が30rpmの条件で測定される粘度ηを、回転数が60rpmの条件で測定される粘度ηで除して算出される値である。それぞれの粘度の測定は、3回繰り返し、3回分の測定値の平均値とする。
 ポリマーにおける「単位」とは、モノマーの重合により形成された前記モノマーに基づく原子団を意味する。単位は、重合反応によって直接形成された単位であってもよく、ポリマーを処理することによって前記単位の一部が別の構造に変換された単位であってもよい。以下、モノマーaに基づく単位を、単に「モノマーa単位」とも記す。
The following terms have the following meanings.
The "average particle size (D50)" is a volume-based cumulative 50% diameter of an object (particle, filler) determined by a laser diffraction / scattering method. That is, the particle size distribution is measured by the laser diffraction / scattering method, the cumulative curve is obtained with the total volume of the group of objects as 100%, and the particle size is the point where the cumulative volume is 50% on the cumulative curve.
“D90” is the volume-based cumulative 90% diameter of the object, which is similarly measured.
The objects D50 and D90 are analyzed by a laser diffraction / scattering method using a laser diffraction / scattering type particle size distribution measuring device (LA-920 measuring instrument manufactured by HORIBA, Ltd.) after dispersing the object in water. Desired.
The "heat-meltable polymer" means a polymer exhibiting melt fluidity, and means a polymer having a temperature at which the melt flow rate is 0.1 to 1000 g / 10 minutes under the condition of a load of 49 N.
The "melting temperature" is the temperature corresponding to the maximum value of the melting peak of the polymer measured by the differential scanning calorimetry (DSC) method.
The "viscosity of the dispersion liquid" is a viscosity measured using a B-type viscometer under the condition of 25 ° C. and a rotation speed of 30 rpm. The measurement is repeated 3 times, and the average value of the measured values for 3 times is used.
The "thixotropic ratio" is a value calculated by dividing the viscosity η 1 of the dispersion liquid measured under the condition of a rotation speed of 30 rpm by the viscosity η 2 measured under the condition of a rotation speed of 60 rpm. The measurement of each viscosity is repeated 3 times, and the average value of the measured values for 3 times is used.
By "unit" in a polymer is meant an atomic group based on the monomer formed by the polymerization of the monomers. The unit may be a unit directly formed by a polymerization reaction, or may be a unit in which a part of the unit is converted into another structure by processing a polymer. Hereinafter, the unit based on the monomer a is also simply referred to as “monomer a unit”.
 本発明の製造方法(以下、「本法」とも記す。)は、熱溶融性のテトラフルオロエチレン系ポリマー(以下、「Fポリマー」とも記す。)の粒子(以下、「Fパウダー」とも記す。)、無機化合物のフィラー(以下、「無機フィラー」とも記す。)、及び極性の液状分散媒(以下、「分散媒」とも記す。)を含有する液状組成物を剪断処理して、前記Fパウダー、前記無機フィラー及び前記分散媒を含む分散液(以下、「本分散液」とも記す。)を得る方法である。 The production method of the present invention (hereinafter, also referred to as “this method”) is also referred to as particles (hereinafter, also referred to as “F powder”) of a heat-meltable tetrafluoroethylene polymer (hereinafter, also referred to as “F polymer”). ), A filler of an inorganic compound (hereinafter, also referred to as “inorganic filler”), and a liquid composition containing a polar liquid dispersion medium (hereinafter, also referred to as “dispersion medium”) are sheared to obtain the F powder. , A method for obtaining a dispersion containing the inorganic filler and the dispersion medium (hereinafter, also referred to as “the present dispersion”).
 本分散液は分散安定性に優れる。また、本分散液を、ガラス板上で風乾させて観察すると、Fパウダーと無機フィラーが合着した複合粒子(以下、「本粒子」とも記す。無機フィラーがFパウダーの表面に付着してなる複合粒子等を含む。)が存在することも、はじめて確認できた。
 本分散液の分散安定性が向上する理由及び本粒子が形成される理由と、それらの相関関係及び作用機構とは、必ずしも明確ではないが、例えば以下のように推定している。
 Fポリマーは、非熱溶融性のテトラフルオロエチレン系ポリマーに比較して、フィブリル耐性等の形状安定性に優れるだけでなく、単分子レベルで分子運動の制限が緩和された、自由度の高いコンフォメーションを有している。かかるFポリマーは、分子集合体レベルで微小球晶を形成しやすいため、その表面には微小な凹凸構造が生じやすく表面積が大きくなりやすい。このため、Fポリマーの分子集合体、典型的にはFパウダーは、その形状を損なうことなく安定したまま、無機フィラーと物理的に密に付着し、本粒子を形成し得ると考えられる。
 また、Fパウダーは表面エネルギーが低く分散安定性が低いが、分散安定性の高い無機フィラーとFパウダーが合着した本粒子は、Fパウダーに比較して他の本粒子及び液状分散媒と相互作用しやすい。その結果、本粒子は分散安定性に優れると考えられる。
 その結果、本粒子はFポリマーの物性と無機フィラーの物性とを高度に具備し安定性に優れるため、本分散液からは電気特性等に優れた成形物を形成できたと考えられる。
This dispersion has excellent dispersion stability. Further, when the dispersion liquid is air-dried on a glass plate and observed, composite particles in which the F powder and the inorganic filler are fused (hereinafter, also referred to as “main particles”. The inorganic filler adheres to the surface of the F powder). It was also confirmed for the first time that (including composite particles, etc.) existed.
The reason why the dispersion stability of the dispersion liquid is improved and the reason why the particles are formed, and their correlation and mechanism of action are not necessarily clear, but are estimated as follows, for example.
Compared to non-heat-meltable tetrafluoroethylene-based polymers, F-polymers are not only superior in shape stability such as fibril resistance, but also have a high degree of freedom in which restrictions on molecular motion are relaxed at the monomolecular level. Has a formation. Since such an F polymer tends to form microspherulites at the molecular aggregate level, fine uneven structures are likely to be formed on the surface thereof, and the surface area is likely to be large. Therefore, it is considered that the molecular aggregate of the F polymer, typically the F powder, can physically adhere closely to the inorganic filler to form the present particles while remaining stable without damaging its shape.
In addition, F powder has low surface energy and low dispersion stability, but the particles in which the inorganic filler with high dispersion stability and the F powder are fused are mutual with other particles and the liquid dispersion medium as compared with the F powder. Easy to work. As a result, it is considered that the particles have excellent dispersion stability.
As a result, since the particles have the physical characteristics of the F polymer and the physical characteristics of the inorganic filler and are excellent in stability, it is considered that a molded product having excellent electrical characteristics and the like could be formed from the dispersion liquid.
 本法において、FパウダーのD50は20μm以下が好ましく、10μm以下がより好ましい。FパウダーのD50は0.01μm以上が好ましく、0.1μm以上がより好ましい。また、FパウダーのD90は10μm以下が好ましい。この範囲のD50及びD90において、Fパウダーの流動性と分散性とが良好となり、また分散液中に存在する複合粒子の大きさを沈降し難くなるように制御し易い。 In this method, the D50 of the F powder is preferably 20 μm or less, more preferably 10 μm or less. The D50 of the F powder is preferably 0.01 μm or more, more preferably 0.1 μm or more. The D90 of the F powder is preferably 10 μm or less. In D50 and D90 in this range, the fluidity and dispersibility of the F powder become good, and the size of the composite particles existing in the dispersion liquid can be easily controlled so as to be difficult to settle.
 本法では、製造される分散液の分散安定性の観点から、Fパウダーの嵩密度は0.15g/m以上が好ましく、0.20g/m以上がより好ましい。Fパウダーの嵩密度は0.50g/m以下が好ましく、0.35g/m以下がより好ましい。 In this method, the bulk density of the F powder is preferably 0.15 g / m 2 or more, more preferably 0.20 g / m 2 or more, from the viewpoint of the dispersion stability of the produced dispersion. The bulk density of the F powder is preferably 0.50 g / m 2 or less, 0.35 g / m 2 or less is more preferable.
 本法において、Fパウダーは、Fポリマー以外の樹脂を含んでいてもよいが、Fポリマーを主成分とするのが好ましい。FパウダーにおけるFポリマーの含有量は80質量%以上が好ましく、100質量%がより好ましい。
 上記樹脂としては、芳香族ポリエステル、ポリアミドイミド、熱可塑性ポリイミド、ポリフェニレンエーテル、ポリフェニレンオキシド等の耐熱性樹脂が挙げられる。
In this method, the F powder may contain a resin other than the F polymer, but it is preferable that the F polymer is the main component. The content of the F polymer in the F powder is preferably 80% by mass or more, more preferably 100% by mass.
Examples of the resin include heat-resistant resins such as aromatic polyester, polyamide-imide, thermoplastic polyimide, polyphenylene ether, and polyphenylene oxide.
 本法におけるFポリマーは、テトラフルオロエチレン(TFE)に基づく単位(TFE単位)を含む熱溶融性のポリマーである。Fポリマーの溶融温度は260~325℃が好ましく、280~320℃がより好ましい。かかる場合、本発明の方法で得られる分散液から形成される成形物の耐熱性が優れやすい。
 Fポリマーのガラス転移点は、75~125℃が好ましく、80~100℃がより好ましい。
 Fポリマーとしては、TFE単位及びペルフルオロ(アルキルビニルエーテル)(PAVE)に基づく単位(PAVE単位)を含むポリマー(PFA)、TFE単位及びヘキサフルオロプロペン(HFP)に基づく単位を含むポリマー(FEP)が挙げられ、PFAであるのが好ましい。PAVEとしては、CF=CFOCF、CF=CFOCFCF及びCF=CFOCFCFCF(PPVE)が好ましく、PPVEがより好ましい。
The F polymer in this method is a heat-meltable polymer containing a unit (TFE unit) based on tetrafluoroethylene (TFE). The melting temperature of the F polymer is preferably 260 to 325 ° C, more preferably 280 to 320 ° C. In such a case, the heat resistance of the molded product formed from the dispersion liquid obtained by the method of the present invention tends to be excellent.
The glass transition point of the F polymer is preferably 75 to 125 ° C, more preferably 80 to 100 ° C.
Examples of the F polymer include polymers (PFA) containing TFE units and units based on perfluoro (alkyl vinyl ether) (PAVE) (PAVE units), and polymers (FEP) containing units based on TFE units and hexafluoropropene (HFP). Therefore, it is preferably PFA. As the PAVE, CF 2 = CFOCF 3 , CF 2 = CFOCF 2 CF 3 and CF 2 = CFOCF 2 CF 2 CF 3 (PPVE) are preferable, and PPVE is more preferable.
 Fポリマーは、極性官能基を有するのが好ましい。極性官能基は、Fポリマー中の単位に含まれていてもよく、ポリマーの主鎖の末端基に含まれていてもよい。後者の態様としては、重合開始剤、連鎖移動剤等に由来する末端基として極性官能基を有するFポリマー、Fポリマーをプラズマ処理や電離線処理して得られる、極性官能基を有するFポリマーが挙げられる。極性官能基は、水酸基含有基、カルボニル基含有基及びホスホノ基含有基が好ましく、本法で製造される分散液の分散安定性の観点から、水酸基含有基及びカルボニル基含有基がより好ましく、カルボニル基含有基がさらに好ましい。
 水酸基含有基は、アルコール性水酸基を含有する基が好ましく、-CFCHOH、-C(CFOH及び1,2-グリコール基(-CH(OH)CHOH)がより好ましい。
 カルボニル基含有基は、カルボニル基(>C(O))を含む基であり、カルボキシル基、アルコキシカルボニル基、アミド基、イソシアネート基、カルバメート基(-OC(O)NH)、酸無水物残基(-C(O)OC(O)-)、イミド残基(-C(O)NHC(O)-等)及びカーボネート基(-OC(O)O-)が好ましく、酸無水物残基がより好ましい。
 Fポリマーがカルボニル基含有基を有する場合、Fポリマーにおけるカルボニル基含有基の数は、主鎖の炭素数1×10個あたり、10~5000個が好ましく、100~3000個がより好ましく、800~1500個がさらに好ましい。なお、Fポリマーにおけるカルボニル基含有基の数は、ポリマーの組成又は国際公開第2020/145133号に記載の方法によって定量できる。
The F polymer preferably has a polar functional group. The polar functional group may be contained in a unit in the F polymer, or may be contained in the terminal group of the main chain of the polymer. In the latter aspect, an F polymer having a polar functional group as a terminal group derived from a polymerization initiator, a chain transfer agent, or the like, or an F polymer having a polar functional group obtained by subjecting the F polymer to plasma treatment or ionization line treatment can be used. Can be mentioned. As the polar functional group, a hydroxyl group-containing group, a carbonyl group-containing group and a phosphono group-containing group are preferable, and a hydroxyl group-containing group and a carbonyl group-containing group are more preferable from the viewpoint of dispersion stability of the dispersion produced by this method, and carbonyl. Group-containing groups are more preferred.
The hydroxyl group-containing group is preferably a group containing an alcoholic hydroxyl group, more preferably -CF 2 CH 2 OH, -C (CF 3 ) 2 OH and 1,2-glycol group (-CH (OH) CH 2 OH). ..
The carbonyl group-containing group is a group containing a carbonyl group (> C (O)), a carboxyl group, an alkoxycarbonyl group, an amide group, an isocyanate group, a carbamate group (-OC (O) NH 2 ), and an acid anhydride residue. Groups (-C (O) OC (O)-), imide residues (-C (O) NHC (O)-etc.) and carbonate groups (-OC (O) O-) are preferred, and acid anhydride residues. Is more preferable.
When the F polymer has a carbonyl group-containing group, the number of carbonyl group-containing groups in the F polymer is preferably 10 to 5000, more preferably 100 to 3000, and more preferably 800 per 1 × 10 6 carbon atoms in the main chain. ~ 1500 pieces are more preferable. The number of carbonyl group-containing groups in the F polymer can be quantified by the composition of the polymer or the method described in International Publication No. 2020/145133.
 Fポリマーは、TFE単位及びPAVE単位を含む、極性官能基を有するポリマー(1)、又は、TFE単位及びPAVE単位を含み全単位に対してPAVE単位を2.0~5.0モル%含む、極性官能基を有さないポリマー(2)が好ましい。
 これらのFポリマーは、その粒子が分散安定性に優れるだけでなく、本法で剪断処理を行う際にも変性し難く、製造される分散液から得られる成形物(ポリマー層等)中において、より緻密かつ均質に分布しやすい。さらに、成形物中において微小球晶を形成しやすく、他の成分との密着性が高まりやすい。その結果、電気特性等の各種物性に優れた成形物を、より得られやすい。
The F polymer comprises a polymer having a polar functional group (1) containing TFE units and PAVE units, or 2.0 to 5.0 mol% of PAVE units with respect to all units including TFE units and PAVE units. The polymer (2) having no polar functional group is preferable.
These F-polymers not only have excellent dispersion stability of the particles, but are also difficult to be denatured even when the shearing treatment is performed by this method, and in the molded product (polymer layer, etc.) obtained from the produced dispersion liquid, these F polymers are used. It is easy to distribute more densely and uniformly. Further, it is easy to form fine spherulites in the molded product, and it is easy to improve the adhesion with other components. As a result, it is easier to obtain a molded product having excellent various physical properties such as electrical characteristics.
 ポリマー(1)は、TFE単位、PAVE単位及び極性官能基を有するモノマーに基づく単位を含むポリマーであるのが好ましく、全単位に対して、これらの単位をこの順に、90~99モル%、0.5~9.97モル%、0.01~3モル%、含むポリマーであるのがより好ましい。極性官能基が存在すると、無機フィラーとの親和性や密着性を一層向上させる観点から好ましい。
 また、極性官能基を有するモノマーは、無水イタコン酸、無水シトラコン酸又は5-ノルボルネン-2,3-ジカルボン酸無水物(以下、「NAH」とも記す。)が好ましい。
 ポリマー(1)の具体例としては、国際公開第2018/16644号に記載されるポリマーが挙げられる。
The polymer (1) is preferably a polymer containing TFE units, PAVE units and units based on a monomer having a polar functional group, and 90 to 99 mol% of these units are used in this order with respect to all units, 0. More preferably, the polymer contains 5.5 to 9.97 mol% and 0.01 to 3 mol%. The presence of the polar functional group is preferable from the viewpoint of further improving the affinity and adhesion with the inorganic filler.
Further, as the monomer having a polar functional group, itaconic anhydride, citraconic anhydride or 5-norbornen-2,3-dicarboxylic acid anhydride (hereinafter, also referred to as “NAH”) is preferable.
Specific examples of the polymer (1) include the polymers described in International Publication No. 2018/16644.
 ポリマー(2)は、TFE単位及びPAVE単位のみからなり、全単位に対してTFE単位を95.0~98.0モル%、PAVE単位を2.0~5.0モル%含有するのが好ましい。ポリマー(2)におけるPAVE単位の含有量は、全単位に対して2.1モル%以上が好ましく、2.2モル%以上がより好ましい。
 かかるポリマーは、分子のコンフォメーションの自由度がより高く、上述した作用機構が亢進しやすい。
 なお、ポリマー(2)が極性官能基を有さないとは、ポリマー主鎖を構成する炭素原子数の1×10個あたりに対して、ポリマーが有する極性官能基の数が500個未満であることを意味する。上記極性官能基の数は100個以下が好ましく、50個未満がより好ましい。上記極性官能基の数の下限は、通常、0個である。
The polymer (2) is composed of only TFE units and PAVE units, and preferably contains 95.0 to 98.0 mol% of TFE units and 2.0 to 5.0 mol% of PAVE units with respect to all the units. .. The content of PAVE units in the polymer (2) is preferably 2.1 mol% or more, more preferably 2.2 mol% or more, based on all the units.
Such a polymer has a higher degree of freedom in molecular conformation, and the above-mentioned mechanism of action is likely to be enhanced.
It should be noted that the polymer (2) does not have polar functional groups when the number of polar functional groups of the polymer is less than 500 with respect to 1 × 10 6 carbon atoms constituting the polymer main chain. It means that there is. The number of the polar functional groups is preferably 100 or less, more preferably less than 50. The lower limit of the number of polar functional groups is usually 0.
 ポリマー(2)は、ポリマー鎖の末端基として極性官能基を生じない、重合開始剤や連鎖移動剤等を使用して製造してもよく、極性官能基を有するFポリマー(重合開始剤に由来する極性官能基をポリマーの主鎖の末端基に有するFポリマー等)をフッ素化処理して製造してもよい。フッ素化処理の方法としては、フッ素ガスを使用する方法(特開2019-194314号公報等を参照)が挙げられる。 The polymer (2) may be produced by using a polymerization initiator, a chain transfer agent, or the like that does not generate a polar functional group as the terminal group of the polymer chain, and is derived from an F polymer having a polar functional group (derived from the polymerization initiator). An F polymer or the like having a polar functional group at the terminal group of the main chain of the polymer) may be fluorinated to produce the polymer. Examples of the fluorination treatment method include a method using fluorine gas (see JP-A-2019-194314).
 本法において、無機フィラーは、無機化合物の粒子であるのが好ましい。
 無機フィラーとしては、酸化物、窒化物、金属単体、合金及びカーボンから構成されるフィラーが挙げられ、ケイ酸塩(酸化ケイ素(シリカ)、ウォラストナイト、タルク、マイカ)、金属酸化物(酸化ベリリウム、酸化セリウム、酸化アルミニウム、ソーダアルミナ、酸化マグネシウム、酸化亜鉛、酸化チタン等)、窒化ホウ素及びメタ珪酸マグネシウム(ステアタイト)のフィラーが好ましく、アルミニウム、マグネシウム、ケイ素、チタン、亜鉛から選択される元素の少なくとも1種を含有する無機酸化物のフィラーがより好ましく、シリカ、酸化チタン、酸化亜鉛、ステアタイト及び窒化ホウ素のフィラーがさらに好ましく、シリカのフィラーが特に好ましい。また、無機フィラーはセラミックスであってもよい。無機フィラーは、1種を用いてもよく、2種以上を混合して用いてもよい。2種以上の無機フィラーを混合して用いる場合、2種のシリカのフィラーを混合して用いてもよく、シリカのフィラーと、金属酸化物のフィラーを混合して用いてもよい。
In this method, the inorganic filler is preferably particles of an inorganic compound.
Examples of the inorganic filler include fillers composed of oxides, nitrides, simple metals, alloys and carbon, and silicates (silicon oxide (silica), wollastonite, talc, mica) and metal oxides (oxidation). Fillers of beryllium, cerium oxide, aluminum oxide, soda alumina, magnesium oxide, zinc oxide, titanium oxide, etc.), boron nitride and magnesium metasilicate (steatite) are preferred, and are selected from aluminum, magnesium, silicon, titanium and zinc. Fillers of inorganic oxides containing at least one of the elements are more preferred, fillers of silica, titanium oxide, zinc oxide, steatite and boron nitride are even more preferred, and fillers of silica are particularly preferred. Further, the inorganic filler may be ceramics. As the inorganic filler, one kind may be used, or two or more kinds may be mixed and used. When two or more kinds of inorganic fillers are mixed and used, two kinds of silica fillers may be mixed and used, or a silica filler and a metal oxide filler may be mixed and used.
 かかる無機フィラーはFポリマーとの相互作用が亢進しやすく、本法において剪断処理を行う際にも剪断力に耐えやすく、得られる分散液の分散安定性をより向上させやすい。また分散液から形成される成形物(例えば、後述するポリマー層及びフィルム)において、無機フィラーに基づく物性が顕著に発現しやすい。 The inorganic filler easily interacts with the F polymer, easily withstands the shearing force even when the shearing treatment is performed in this method, and easily improves the dispersion stability of the obtained dispersion liquid. Further, in the molded product formed from the dispersion liquid (for example, the polymer layer and the film described later), the physical characteristics based on the inorganic filler are remarkably likely to be exhibited.
 中でも本法においては、無機フィラーがシリカを含むのが好ましい。無機フィラーにおけるシリカの含有量は80質量%以上が好ましく、90質量%以上がより好ましい。シリカの含有量の上限は100質量%である。 Above all, in this method, it is preferable that the inorganic filler contains silica. The content of silica in the inorganic filler is preferably 80% by mass or more, more preferably 90% by mass or more. The upper limit of the silica content is 100% by mass.
 無機フィラーは、その表面の少なくとも一部が表面処理されているのが好ましい。かかる表面処理に用いられる表面処理剤としては、多価アルコール(トリメチロールエタン、ペンタエリストール、プロピレングリコール等)、飽和脂肪酸(ステアリン酸、ラウリン酸等)、そのエステル、アルカノールアミン、アミン(トリメチルアミン、トリエチルアミン等)、パラフィンワックス、シランカップリング剤、シリコーン、ポリシロキサン、アルミニウム、ケイ素、ジルコニウム、スズ、チタニウム、アンチモン等の酸化物、それらの水酸化物、それらの水和酸化物、それらのリン酸塩が挙げられる。 It is preferable that at least a part of the surface of the inorganic filler is surface-treated. Examples of the surface treatment agent used for such surface treatment include polyhydric alcohols (trimethylolethane, pentaeristol, propylene glycol, etc.), saturated fatty acids (stearic acid, lauric acid, etc.), esters thereof, alkanolamines, amines (trimethylamines, etc.). Triethylamine etc.), paraffin wax, silane coupling agent, silicone, polysiloxane, aluminum, silicon, zirconium, tin, titanium, antimony and other oxides, their hydroxides, their hydrated oxides, their phosphoric acid Salt is mentioned.
 中でも、無機フィラーはシランカップリング剤で表面処理されているのが好ましい。
 シランカップリング剤としては、3-アミノプロピルトリエトキシシラン、ビニルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン又は3-イソシアネートプロピルトリエトキシシランが好ましい。
 本法においては、無機フィラーとして、シランカップリング剤で表面処理されたシリカのフィラーを用いるのが最も好ましい。
Above all, it is preferable that the inorganic filler is surface-treated with a silane coupling agent.
Examples of the silane coupling agent include 3-aminopropyltriethoxysilane, vinyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane or 3-. Isocyanapropyltriethoxysilane is preferred.
In this method, it is most preferable to use a silica filler surface-treated with a silane coupling agent as the inorganic filler.
 無機フィラーの比表面積(BET法)は1~20m/gが好ましく、5~8m/gがより好ましい。 The specific surface area of the inorganic filler (BET method) is preferably 1 ~ 20m 2 / g, more preferably 5 ~ 8m 2 / g.
 無機フィラーの具体例としては、シリカフィラー(アドマテックス社製の「アドマファイン(登録商標)」シリーズ等)、ジカプリン酸プロピレングリコール等のエステルで表面処理された酸化亜鉛(堺化学工業株式会社製の「FINEX(登録商標)」シリーズ等)、球状溶融シリカ(デンカ社製の「SFP(登録商標)」シリーズ等)、多価アルコール及び無機物で被覆処理されたルチル型酸化チタン(石原産業社製の「タイペーク(登録商標)」シリーズ等)、アルキルシランで表面処理されたルチル型酸化チタン(テイカ社製の「JMT(登録商標)」シリーズ等)、中空状シリカフィラー(太平洋セメント社製の「E-SPHERES」シリーズ、日鉄鉱業社製の「シリナックス」シリーズ、エマーソン・アンド・カミング社製「エココスフイヤー」シリーズ、日本アエロジル社製の疎水性AEROSILシリーズ「RX200」等)、タルクフィラー(日本タルク社製の「SG」シリーズ等)、ステアタイトフィラー(日本タルク社製の「BST」シリーズ等)、窒化ホウ素フィラー(昭和電工社製の「UHP」シリーズ、デンカ社製の「デンカボロンナイトライド」シリーズ(「GP」、「HGP」グレード)等)が挙げられる。 Specific examples of the inorganic filler include silica filler ("Admafine (registered trademark)" series manufactured by Admatex Co., Ltd.) and zinc oxide surface-treated with an ester such as propylene glycol dicaprate (manufactured by Sakai Chemical Industry Co., Ltd.). "FINEX (registered trademark)" series, etc.), spherical fused silica ("SFP (registered trademark)" series manufactured by Denka Co., Ltd., etc.), rutile-type titanium oxide coated with polyhydric alcohol and inorganic substances (manufactured by Ishihara Sangyo Co., Ltd.) "Typake (registered trademark)" series, etc.), rutile-type titanium oxide surface-treated with alkylsilane ("JMT (registered trademark)" series manufactured by Teika, etc.), hollow silica filler ("E" manufactured by Pacific Cement Co., Ltd.) -SPHERES "series, Nittetsu Mining Co., Ltd." Sirinax "series, Emerson & Cumming Co., Ltd." Ecocos Fire "series, Nippon Aerosil Co., Ltd. hydrophobic AEROSIL series" RX200 ", etc.), Tarkufiller (Nippon Tarku Co., Ltd.) "SG" series, etc.), Steatite filler ("BST" series, etc., manufactured by Nippon Tarku), Boron nitride filler ("UHP" series, manufactured by Showa Denko, "Dencaboron Nightride" series, manufactured by Denka. ("GP", "HGP" grade), etc.).
 無機フィラーの形状は、粒状、針状(繊維状)、板状が挙げられ、具体的には球状、鱗片状、層状、葉片状、杏仁状、柱状、鶏冠状、等軸状、葉状、雲母状、ブロック状、平板状、楔状、ロゼット状、網目状、角柱状が挙げられる。中でも球状及び鱗片状が好ましく、球状がさらに好ましい。 The shape of the inorganic filler includes granular, needle-like (fibrous), and plate-like, and specifically, spherical, scaly, layered, leaf-like, apricot kernel-like, columnar, chicken crown-like, equiaxed, and leaf-like. Examples include mica, block, flat plate, wedge, rosette, mesh, and prismatic. Of these, spherical and scaly are preferable, and spherical is more preferable.
 球状である無機フィラーは、略真球状であるのが好ましい。略真球状とは、無機フィラーを走査型電子顕微鏡(SEM)によって観察した際に、長径に対する短径の比が0.5以上である球形の粒子の占める割合が95%以上であることを意味する。略真球状の無機フィラー粒子において、長径に対する短径の比は0.6以上が好ましく、0.8以上がより好ましい。上記比は、1未満が好ましい。かかる高度な略真球状の無機フィラー粒子を用いれば、成形物(ポリマー層等)において、無機フィラーとFポリマーとがより均一に分布して、両者の物性がよりバランスよく発現しやすい。 The spherical inorganic filler is preferably substantially spherical. Approximately spherical means that when the inorganic filler is observed with a scanning electron microscope (SEM), the ratio of spherical particles having a ratio of the minor axis to the major axis of 0.5 or more is 95% or more. do. In the substantially spherical inorganic filler particles, the ratio of the minor axis to the major axis is preferably 0.6 or more, more preferably 0.8 or more. The above ratio is preferably less than 1. When such highly spherical inorganic filler particles are used, the inorganic filler and the F polymer are more uniformly distributed in the molded product (polymer layer or the like), and the physical properties of both are more likely to be expressed in a well-balanced manner.
 鱗片状である無機フィラーのアスペクト比は5以上が好ましく、10以上がより好ましい。アスペクト比は、1000以下が好ましい。
 鱗片状である無機フィラーの平均長径(長手方向の直径の平均値)は1μm以上が好ましく、3μm以上がより好ましい。平均長径は20μm以下が好ましく、10μm以下がより好ましい。平均短径は0.01μm以上が好ましく、0.1μm以上がより好ましい。平均短径は1μm以下が好ましく、0.5μm以下がより好ましい。この場合、成形物(ポリマー層等)において、無機フィラーとFポリマーとがより均一に分布して、両者の物性がよりバランスして発現しやすい。
The aspect ratio of the scaly inorganic filler is preferably 5 or more, more preferably 10 or more. The aspect ratio is preferably 1000 or less.
The average major axis (average value of the diameter in the longitudinal direction) of the scaly inorganic filler is preferably 1 μm or more, and more preferably 3 μm or more. The average major axis is preferably 20 μm or less, more preferably 10 μm or less. The average minor axis is preferably 0.01 μm or more, more preferably 0.1 μm or more. The average minor axis is preferably 1 μm or less, more preferably 0.5 μm or less. In this case, the inorganic filler and the F polymer are more uniformly distributed in the molded product (polymer layer or the like), and the physical properties of both are more likely to be balanced and expressed.
 鱗片状である無機フィラーは、単層構造であってもよく、複層構造であってもよい。
 後者の無機フィラーとしては、表面に疎水層を有し、内部に親水層を有する無機フィラーが挙げられる。その具体例としては、疎水層、親水層(含水層)、疎水層をこの順に備えた無機フィラーが挙げられる。親水層の含水率は、0.3質量%以上が好ましい。この場合、本法で製造した分散液の分散状態が安定しやすいだけでなく、成形物(ポリマー層等)における無機フィラーの配向性も一層高まり、Fポリマーの物性と無機フィラーの物性とを高度に具備した成形物(ポリマー層等)が得られやすい。
The scaly inorganic filler may have a single-layer structure or a multi-layer structure.
Examples of the latter inorganic filler include an inorganic filler having a hydrophobic layer on the surface and a hydrophilic layer inside. Specific examples thereof include an inorganic filler having a hydrophobic layer, a hydrophilic layer (moisture-containing layer), and a hydrophobic layer in this order. The water content of the hydrophilic layer is preferably 0.3% by mass or more. In this case, not only the dispersed state of the dispersion liquid produced by this method is easy to stabilize, but also the orientation of the inorganic filler in the molded product (polymer layer, etc.) is further enhanced, and the physical properties of the F polymer and the physical properties of the inorganic filler are highly enhanced. It is easy to obtain a molded product (polymer layer, etc.) provided in.
 また、無機フィラーは中空状であってもよい。中空状の無機フィラーの平均粒子径(D50)は0.01μm以上が好ましく、0.1μm以上がより好ましい。平均粒子径は、10μm以下がより好ましく、5μm以下がさらに好ましい。かかる場合、本法で製造した分散液から成形される成形物において、無機フィラーが互いに接して充填されやすく、成形物が電気絶縁性に優れやすい。 Further, the inorganic filler may be hollow. The average particle size (D50) of the hollow inorganic filler is preferably 0.01 μm or more, more preferably 0.1 μm or more. The average particle size is more preferably 10 μm or less, further preferably 5 μm or less. In such a case, in the molded product molded from the dispersion liquid produced by this method, the inorganic fillers are likely to be in contact with each other and filled, and the molded product is likely to have excellent electrical insulation.
 中空状の無機フィラーの空孔の平均孔径は10~1000nmが好ましく、50~100nmがより好ましい。上記平均孔径は、走査型電子顕微鏡(SEM)等による直接観測によって複数の空孔(100個)の孔径を求め、その平均値を平均孔径とする。なお、不定形の空孔の場合は空孔の最大径を孔径とする。
 中空状の無機フィラーの見かけ比重は、気孔率を充分に高める点から100g/L以下が好ましく、30~60g/Lがより好ましい。中空状の無機フィラーの見かけ比重は、メスシリンダー(容量250mL)に無機フィラーを投入した際の、その質量と容積とから求められる。
 中空状の無機フィラーとしては、中空シリカフィラーが好ましい。
The average pore diameter of the pores of the hollow inorganic filler is preferably 10 to 1000 nm, more preferably 50 to 100 nm. For the average pore diameter, the pore diameters of a plurality of pores (100) are obtained by direct observation with a scanning electron microscope (SEM) or the like, and the average value thereof is taken as the average pore diameter. In the case of irregularly shaped holes, the maximum diameter of the holes is the hole diameter.
The apparent specific gravity of the hollow inorganic filler is preferably 100 g / L or less, more preferably 30 to 60 g / L, from the viewpoint of sufficiently increasing the porosity. The apparent specific gravity of the hollow inorganic filler is obtained from the mass and volume of the inorganic filler when it is charged into a measuring cylinder (capacity: 250 mL).
As the hollow inorganic filler, a hollow silica filler is preferable.
 無機フィラーは、等方性フィラーであってもよく、異方性フィラーであってもよい。なお、等方性フィラーとは物性(機械強度、電気特性、熱伝導性等。)が方向によらず同じであるフィラーを意味し、異方性フィラーとは物性が方向によって異なるフィラーを意味する。 The inorganic filler may be an isotropic filler or an anisotropic filler. The isotropic filler means a filler having the same physical properties (mechanical strength, electrical characteristics, thermal conductivity, etc.) regardless of the direction, and the anisotropic filler means a filler having different physical properties depending on the direction. ..
 無機フィラーの平均粒子径(D50)は20μm以下が好ましく、5μm以下がより好ましい。平均粒子径は、0.001μm以上が好ましく、0.01μm以上がより好ましい。 The average particle size (D50) of the inorganic filler is preferably 20 μm or less, more preferably 5 μm or less. The average particle size is preferably 0.001 μm or more, more preferably 0.01 μm or more.
 無機フィラーが2種の無機フィラーの混合物である場合、2種の無機フィラーの平均粒子径は互いに異なるのが好ましい。かかる場合の、平均粒子径の大きい無機フィラーを無機フィラー(1)、平均粒子径の小さい無機フィラーを無機フィラー(2)としたとき、無機フィラー(1)の平均粒子径は無機フィラー(2)の平均粒子径の1倍超であるのが好ましく、1.5倍以上であるのがより好ましい。無機フィラー(1)の平均粒子径は、無機フィラー(2)の平均粒子径の10倍以下であるのが好ましく、5倍以下であるのがより好ましい。また、無機フィラー(1)の含有量に対する無機フィラー(2)の含有量の質量比は1.5倍以上であるのが好ましく、2倍以上であるのがより好ましい。かかる質量比は、5倍以下が好ましい。
 この場合、本分散液から形成する成形物から無機フィラーが欠落し難く、成形物の表面が平滑性に優れやすい。また、成形物が低誘電正接性に優れやすい。
When the inorganic filler is a mixture of two kinds of inorganic fillers, it is preferable that the average particle diameters of the two kinds of inorganic fillers are different from each other. In such a case, when the inorganic filler having a large average particle size is the inorganic filler (1) and the inorganic filler having a small average particle size is the inorganic filler (2), the average particle size of the inorganic filler (1) is the inorganic filler (2). The average particle size of the particles is preferably more than 1 times, more preferably 1.5 times or more. The average particle size of the inorganic filler (1) is preferably 10 times or less, more preferably 5 times or less the average particle size of the inorganic filler (2). Further, the mass ratio of the content of the inorganic filler (2) to the content of the inorganic filler (1) is preferably 1.5 times or more, and more preferably 2 times or more. The mass ratio is preferably 5 times or less.
In this case, the inorganic filler is less likely to be removed from the molded product formed from the present dispersion, and the surface of the molded product tends to be excellent in smoothness. In addition, the molded product tends to have excellent low dielectric loss tangent properties.
 本法において、極性の液状分散媒は、大気圧下、極性に分類される25℃にて液体の化合物であるのが好ましく、アミド、ケトン及びエステルから選択される少なくとも1種の極性化合物であるのがより好ましい。
 かかる分散媒を用いると、液状組成物中において無機フィラーが単独で親和し過ぎず、かつFパウダー及び無機フィラーが共に一定の分散状態を保てると考えられる。一方、かかる一定の分散状態は、外部刺激により変化し得る不安定な状態とも言え、本法で規定する、後述する剪断処理により、Fパウダーと無機フィラー間の複合化が起き、分散液中において複合粒子が生成すると推定している。
 分散媒の沸点は50~240℃の範囲が好ましい。分散媒は、1種類を単独で用いてもよく、2種類以上を併用してもよい。
In this method, the polar liquid dispersion medium is preferably a compound that is liquid at 25 ° C., which is classified as polar under atmospheric pressure, and is at least one polar compound selected from amides, ketones and esters. Is more preferable.
It is considered that when such a dispersion medium is used, the inorganic filler alone does not have an excessive affinity in the liquid composition, and both the F powder and the inorganic filler can maintain a constant dispersed state. On the other hand, such a constant dispersed state can be said to be an unstable state that can be changed by an external stimulus. It is estimated that composite particles will be produced.
The boiling point of the dispersion medium is preferably in the range of 50 to 240 ° C. As the dispersion medium, one type may be used alone, or two or more types may be used in combination.
 分散媒としては、水、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、N-メチル-2-ピロリドン、γ-ブチロラクトン、シクロヘキサノン、シクロペンタノン、酢酸ブチル、メチルイソプロピルケトン、メチルエチルケトンが挙げられる。 Dispersion media include water, N, N-dimethylformamide, N, N-dimethylacetamide, 3-methoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropanamide, N-methyl-2. -Pyrrolidone, γ-butyrolactone, cyclohexanone, cyclopentanone, butyl acetate, methyl isopropyl ketone, methyl ethyl ketone can be mentioned.
 分散媒が非プロトン性化合物である場合、無機フィラーは、その表面の少なくとも一部が、アミノ基、ビニル基及び(メタ)アクリロイルオキシ基からなる群から選ばれる少なくとも1種の基を有するシランカップリング剤で表面処理されているのが好ましく、フェニルアミノシランで表面処理されているのがより好ましい。分散媒が水等のプロトン性化合物である場合は、無機フィラーは、表面処理されていないのが好ましい。
 なお、分散媒は、本発明の効果を損なわない範囲で非極性溶媒を含有していてもよい。分散媒がトルエン等の非極性溶媒を含む場合、無機フィラーは、その表面の少なくとも一部が、疎水化処理されているのが好ましく、アルキル基及びフェニル基からなる群から選ばれる少なくとも1種の基を有するシランカップリング剤で表面処理されているのが好ましい。
 これらの組み合せにおいて、本分散液の液物性(分散安定性等)がより向上しやすい。
 本法においては、液状組成物における分散媒の含有量は30~90質量%が好ましく、50~80質量%がより好ましい。
When the dispersion medium is an aprotonic compound, the inorganic filler is a silane cup having at least a part of its surface having at least one group selected from the group consisting of an amino group, a vinyl group and a (meth) acryloyloxy group. It is preferably surface-treated with a ring agent, and more preferably surface-treated with phenylaminosilane. When the dispersion medium is a protonic compound such as water, it is preferable that the inorganic filler is not surface-treated.
The dispersion medium may contain a non-polar solvent as long as the effect of the present invention is not impaired. When the dispersion medium contains a non-polar solvent such as toluene, it is preferable that at least a part of the surface of the inorganic filler is hydrophobized, and at least one selected from the group consisting of an alkyl group and a phenyl group. It is preferably surface-treated with a silane coupling agent having a group.
In these combinations, the physical characteristics (dispersion stability, etc.) of the present dispersion are more likely to be improved.
In this method, the content of the dispersion medium in the liquid composition is preferably 30 to 90% by mass, more preferably 50 to 80% by mass.
 本法において、液状組成物におけるFパウダーと無機フィラーの合計含有量は、液状組成物の全体質量に対して40質量%以上であるのが好ましく、50~80質量%がより好ましい。
 また、液状組成物中のFパウダーと無機フィラーの質量比が、Fパウダーの質量を1として、無機フィラーの質量が0.01~2.0であるのが好ましい。本法で製造した分散液から層状などの成形物を好適に形成可能な観点から、液状組成物が、Fパウダーを20~40質量%、無機フィラーを5~40質量%含むのが好ましい。
In this method, the total content of the F powder and the inorganic filler in the liquid composition is preferably 40% by mass or more, more preferably 50 to 80% by mass, based on the total mass of the liquid composition.
Further, the mass ratio of the F powder to the inorganic filler in the liquid composition is preferably 0.01 to 2.0, with the mass of the F powder being 1. From the viewpoint that a molded product such as a layer can be suitably formed from the dispersion liquid produced by this method, the liquid composition preferably contains 20 to 40% by mass of F powder and 5 to 40% by mass of an inorganic filler.
 液状組成物は、Fパウダーと無機フィラーと分散媒を混合して調製できる。混合方法としては、分散媒にFパウダーと無機フィラーを一括して添加して混合する方法;分散媒にFパウダーと無機フィラーとを順次添加しながら混合する方法;予めFパウダーと無機フィラーを混合し、得られた混合物と分散媒を混合する方法;Fパウダーと分散媒、無機フィラーと分散媒をそれぞれ予め混合し、得られた二種の混合物をさらに混合する方法;等が挙げられる。本法では、分散媒にFパウダーを予め分散させた後、無機フィラーの粒子を、そのまま(直接)又は分散媒に分散させた状態で添加して混合する手順で、液状組成物を調製するか、分散媒に無機フィラーの粒子を予め分散させた後、Fパウダーを、そのまま(直接)又は分散媒に分散させた状態で添加して混合する手順で、液状組成物を調製するのが、Fパウダーと無機フィラーの粒子とを混合してより均一に分散させる観点から有利であり、好ましい。
 なお、後述するシランカップリング剤、界面活性剤や他の樹脂材料を、液状組成物にさらに含有させる場合は、Fパウダーを分散媒に予め分散させる際に同時に添加するか、Fパウダーを分散させる前の分散媒に予め添加しておくのが好ましい。
The liquid composition can be prepared by mixing F powder, an inorganic filler and a dispersion medium. As a mixing method, the F powder and the inorganic filler are collectively added to the dispersion medium and mixed; the F powder and the inorganic filler are sequentially added to the dispersion medium and mixed; the F powder and the inorganic filler are mixed in advance. Then, a method of mixing the obtained mixture and the dispersion medium; a method of premixing the F powder and the dispersion medium, a method of premixing the inorganic filler and the dispersion medium, and further mixing the two obtained mixtures; and the like can be mentioned. In this method, the liquid composition is prepared by a procedure in which F powder is dispersed in a dispersion medium in advance, and then particles of an inorganic filler are added as they are (directly) or in a state of being dispersed in a dispersion medium and mixed. After the particles of the inorganic filler are dispersed in the dispersion medium in advance, the liquid composition is prepared by adding the F powder as it is (directly) or in the state of being dispersed in the dispersion medium and mixing them. It is advantageous and preferable from the viewpoint of mixing the powder and the particles of the inorganic filler and dispersing them more uniformly.
When a silane coupling agent, a surfactant or another resin material, which will be described later, is further contained in the liquid composition, the F powder is added at the same time as the dispersion medium in advance, or the F powder is dispersed. It is preferable to add it to the previous dispersion medium in advance.
 液状組成物に剪断処理を行う方法には、例えば、プロペラブレード、タービンブレード、パドルブレード、シェル状ブレード等のブレード(撹拌翼)を一軸あるいは多軸で備える撹拌装置や、ヘンシェルミキサー、加圧ニーダー、バンバリーミキサーまたはプラネタリーミキサーによる撹拌;ボールミル、アトライター、バスケットミル、サンドミル、サンドグラインダー、ダイノーミル(ガラスビーズ又は酸化ジルコニウムビーズなどの粉砕媒体を用いたビーズミル)、ディスパーマット、SCミル、スパイクミル又はアジテーターミル等のメディアを使用する分散機による混合;マイクロフルイダイザー、ナノマイザー、アルティマイザーなどの高圧ホモジナイザー、超音波ホモジナイザー、デゾルバー、ディスパー、高速インペラー分散機等の、メディアを使用しない分散機を用いた混合が含まれる。 Examples of the method of shearing the liquid composition include a stirring device equipped with blades (stirring blades) such as propeller blades, turbine blades, paddle blades, and shell-shaped blades in a single axis or multiple axes, a henshell mixer, and a pressurized kneader. , Turbine mixer or planetary mixer; ball mill, attritor, basket mill, sand mill, sand grinder, dyno mill (bead mill using crushing medium such as glass beads or zirconium oxide beads), dispermat, SC mill, spike mill or Mixing with a disperser using media such as an agitator mill; using a disperser that does not use media such as high-pressure homogenizers such as microfluidizers, nanomizers, and ultimateizers, ultrasonic homogenizers, resolvers, dispersers, and high-speed impeller dispersers. Mixing is included.
 剪断処理は高剪断条件であるのが好ましい。「高剪断」は、撹拌の場合には、少なくとも300rpmを超える速度で撹拌することを意味する。
 剪断処理は、Fパウダーを含む液状組成物に無機フィラーの粒子を添加している途中に開始してもよく、又は添加を終了した後に行ってもよい。これらの剪断処理を、充分な時間継続して行うことで、分散安定性に優れる分散液を形成できる。
The shearing process is preferably under high shear conditions. "High shear" means, in the case of agitation, agitation at a rate greater than at least 300 rpm.
The shearing treatment may be started during the addition of the particles of the inorganic filler to the liquid composition containing the F powder, or may be performed after the addition is completed. By continuously performing these shearing treatments for a sufficient time, a dispersion liquid having excellent dispersion stability can be formed.
 剪断処理中の、Fパウダーを含む液状組成物の液温は、70℃以下に保持するのが好ましく、50℃以下に保持するのがより好ましい。液温をかかる温度に保持する場合、得られる分散液が増粘及びゲル化しにくい。また、本粒子が形成されやすく、得られる分散液が分散安定性に優れやすい。前記液温は、0℃超に保持するのが好ましく、10℃以上に保持するのがより好ましい。
 また、剪断処理中の、Fパウダーを含む液状組成物の液粘度は、100000mPa・s以下に保持するのが好ましく、分散安定性に優れる分散液を得る観点から、10000mPa・s以下に保持するのがより好ましい。剪断処理中の、液状組成物の液粘度は、1mPa・s以上が好ましく、10mPa・s以上がより好ましい。
The liquid temperature of the liquid composition containing F powder during the shearing treatment is preferably kept at 70 ° C. or lower, more preferably 50 ° C. or lower. When the liquid temperature is maintained at such a temperature, the obtained dispersion is difficult to thicken and gel. In addition, the particles are easily formed, and the obtained dispersion is likely to have excellent dispersion stability. The liquid temperature is preferably maintained above 0 ° C., more preferably above 10 ° C.
Further, the liquid viscosity of the liquid composition containing F powder during the shearing treatment is preferably kept at 100,000 mPa · s or less, and from the viewpoint of obtaining a dispersion liquid having excellent dispersion stability, it is kept at 10,000 mPa · s or less. Is more preferable. The liquid viscosity of the liquid composition during the shearing treatment is preferably 1 mPa · s or more, and more preferably 10 mPa · s or more.
 剪断処理における液状組成物の流動形態は、上昇流であるのが好ましい。上昇流は、旋回流、上下循環流、放射流のいずれの状態の上昇流であってもよい。また、上昇流の形成に際して、邪魔板等により流動形態を調整してもよく、処理装置(撹拌機、撹拌槽等)の設置位置や設置角度を調整して流動形態を偏心させてもよい。
 上昇流を形成して液状組成物を剪断処理すれば、剪断処理中のFパウダーと無機フィラーの相互作用が均一に進行して、本分散液の分散安定性が一層向上しやすい。
The flow form of the liquid composition in the shearing treatment is preferably an ascending flow. The ascending flow may be an ascending flow in any of a swirling flow, a vertical circulation flow, and a radiating flow. Further, when forming the ascending flow, the flow form may be adjusted by a baffle plate or the like, or the flow form may be eccentric by adjusting the installation position and the installation angle of the processing device (stirring machine, stirring tank, etc.).
When the liquid composition is sheared by forming an ascending flow, the interaction between the F powder and the inorganic filler during the shearing process proceeds uniformly, and the dispersion stability of the present dispersion is more likely to be improved.
 本法において、液状組成物は、さらにシランカップリング剤を含んでいてもよい。液状組成物がシランカップリング剤を含む場合、Fパウダーと無機フィラーとがより強固に合着し、Fパウダー又は無機フィラーが欠落しにくい本粒子が得られやすくなり、その結果、分散安定性に優れる本分散液を得やすい。シランカップリング剤としては、無機フィラーの表面処理において用いることができる、上述したシランカップリング剤と同様の化合物が挙げられる。
 液状組成物がシランカップリング剤をさらに含む場合、その含有量は0.01質量%以上が好ましく、0.1質量%以上がより好ましく、1質量%以上がさらに好ましい。上記含有量は、20質量%以下が好ましく、10質量%以下がより好ましく、5質量%以下がさらに好ましい。
 また、液状組成物におけるFパウダーの含有量に対する、シランカップリング剤の含有量の質量での比は、0.01以上が好ましく、0.02以上がより好ましく、0.05以上がさらに好ましい。上記比は、0.3以下が好ましく、0.1以下がさらに好ましい。
 シランカップリング剤の含有量、又は上記比(質量比)がかかる範囲にある場合、上述した作用機構が一層亢進して、分散安定性等に優れた本分散液が得られやすい。
In this method, the liquid composition may further contain a silane coupling agent. When the liquid composition contains a silane coupling agent, the F powder and the inorganic filler are more firmly bonded to each other, making it easier to obtain the particles in which the F powder or the inorganic filler is less likely to be removed, resulting in dispersion stability. It is easy to obtain an excellent dispersion. Examples of the silane coupling agent include compounds similar to those of the above-mentioned silane coupling agent, which can be used in the surface treatment of the inorganic filler.
When the liquid composition further contains a silane coupling agent, the content thereof is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, still more preferably 1% by mass or more. The content is preferably 20% by mass or less, more preferably 10% by mass or less, still more preferably 5% by mass or less.
The ratio of the content of the silane coupling agent to the content of the F powder in the liquid composition is preferably 0.01 or more, more preferably 0.02 or more, still more preferably 0.05 or more. The above ratio is preferably 0.3 or less, more preferably 0.1 or less.
When the content of the silane coupling agent or the above ratio (mass ratio) is within such a range, the above-mentioned mechanism of action is further enhanced, and the present dispersion having excellent dispersion stability and the like can be easily obtained.
 本法において、液状組成物は、さらに界面活性剤を含んでもよく、含まなくてもよい。
 液状組成物が界面活性剤を含む場合、その含有量は1~15質量%が好ましく、また界面活性剤はノニオン性であるのが好ましい。
 界面活性剤の親水部位は、オキシアルキレン基又はアルコール性水酸基を有するのが好ましい。界面活性剤の疎水部位は、アセチレン基、ポリシロキサン基、ペルフルオロアルキル基又はペルフルオロアルケニル基を有するのが好ましい。
 界面活性剤は、グリコール系界面活性剤、アセチレン系界面活性剤、シリコーン系界面活性剤又はフッ素系界面活性剤が好ましく、シリコーン系界面活性剤がより好ましい。ノニオン性界面活性剤は、1種を用いてもよく、2種以上を用いてもよい。2種のノニオン性界面活性剤を用いる場合のノニオン性界面活性剤は、シリコーン系界面活性剤とグリコール系界面活性剤とであるのが好ましい。
 かかる界面活性剤の具体例としては、「フタージェント」シリーズ(ネオス社製)、「サーフロン」シリーズ(AGCセイミケミカル社製)、「メガファック」シリーズ(DIC社製)、「ユニダイン」シリーズ(ダイキン工業社製)、「BYK-347」、「BYK-349」、「BYK-378」、「BYK-3450」、「BYK-3451」、「BYK-3455」、「BYK-3456」(ビックケミー・ジャパン社製)、「KF-6011」、「KF-6043」(信越化学工業社製)、「Tergitol」シリーズ(ダウケミカル社製、「Tergitol TMN-100X」等。)が挙げられる。
 しかしながら、本法によれば、上述した作用機構により、必ずしも界面活性剤を用いなくとも、分散安定性とハンドリング性に優れた本分散液を製造できる。また、界面活性剤を含まない本分散液から形成される成形物の、低誘電正接性等が一層向上しやすい。
In this method, the liquid composition may or may not further contain a surfactant.
When the liquid composition contains a surfactant, the content thereof is preferably 1 to 15% by mass, and the surfactant is preferably nonionic.
The hydrophilic moiety of the surfactant preferably has an oxyalkylene group or an alcoholic hydroxyl group. The hydrophobic moiety of the surfactant preferably has an acetylene group, a polysiloxane group, a perfluoroalkyl group or a perfluoroalkenyl group.
As the surfactant, a glycol-based surfactant, an acetylene-based surfactant, a silicone-based surfactant or a fluorine-based surfactant is preferable, and a silicone-based surfactant is more preferable. As the nonionic surfactant, one kind may be used, or two or more kinds may be used. When two kinds of nonionic surfactants are used, the nonionic surfactants are preferably a silicone-based surfactant and a glycol-based surfactant.
Specific examples of such surfactants include "Futergent" series (manufactured by Neos), "Surflon" series (manufactured by AGC Seimi Chemical), "Megafuck" series (manufactured by DIC), and "Unidyne" series (Daikin). (Made by Kogyo Co., Ltd.), "BYK-347", "BYK-349", "BYK-378", "BYK-3450", "BYK-3451", "BYK-3455", "BYK-3456" (Big Chemie Japan) , "KF-6011", "KF-6043" (manufactured by Shin-Etsu Chemical Co., Ltd.), "Tergitol" series (manufactured by Dow Chemical Corporation, "Tergitol TMN-100X", etc.).
However, according to this method, according to the above-mentioned mechanism of action, it is possible to produce the present dispersion liquid having excellent dispersion stability and handleability without necessarily using a surfactant. In addition, the low dielectric loss tangent property of the molded product formed from the present dispersion liquid containing no surfactant is likely to be further improved.
 本法において、本分散液から形成される成形物の接着性と低線膨張性を向上させる観点から、液状組成物は、Fポリマー以外の樹脂材料をさらに含んでいてもよい。かかる樹脂材料は熱硬化性であっても熱可塑性であってもよく、変性されていてもよく、液状組成物および本分散液中に溶解していてもよく、溶解せず分散していてもよい。
 かかる樹脂材料としては、Fポリマー以外のテトラフルオロエチレン系ポリマー、芳香族ポリイミド、芳香族ポリイミド前駆体である芳香族ポリアミック酸、芳香族マレイミド、アクリル樹脂、フェノール樹脂、液晶性ポリエステル、液晶性ポリエステルアミド、ポリオレフィン樹脂、変性ポリフェニレンエーテル、多官能シアン酸エステル樹脂、多官能マレイミド-シアン酸エステル樹脂、多官能性マレイミド、スチレンエラストマーのような芳香族エラストマー、ビニルエステル樹脂、尿素樹脂、ジアリルフタレート樹脂、メラミン樹脂、グアナミン樹脂、メラミン-尿素共縮合樹脂、ポリカーボネート、ポリアリレート、ポリスルホン、ポリアリルスルホン、芳香族ポリアミド、芳香族ポリエーテルアミド、ポリフェニレンスルファイド、ポリアリルエーテルケトン、ポリアミドイミド、ポリフェニレンエーテル、エポキシ樹脂等が挙げられる。Fポリマー以外のテトラフルオロエチレン系ポリマーとしてはポリテトラフルオロエチレンが好ましい。
In this method, from the viewpoint of improving the adhesiveness and low linear expansion property of the molded product formed from the present dispersion, the liquid composition may further contain a resin material other than the F polymer. Such a resin material may be thermosetting or thermoplastic, may be modified, may be dissolved in the liquid composition and the present dispersion, or may not be dissolved and dispersed. good.
Examples of such resin materials include tetrafluoroethylene polymers other than F polymers, aromatic polyimides, aromatic polyamic acids which are aromatic polyimide precursors, aromatic maleimides, acrylic resins, phenol resins, liquid crystal polyesters, and liquid crystal polyester amides. , Polyimide resin, modified polyphenylene ether, polyfunctional cyanic acid ester resin, polyfunctional maleimide-cyanic acid ester resin, polyfunctional maleimide, aromatic elastomers such as styrene elastomer, vinyl ester resin, urea resin, diallyl phthalate resin, melamine. Resin, guanamine resin, melamine-urea cocondensation resin, polycarbonate, polyarylate, polysulfone, polyallylsulfone, aromatic polyamide, aromatic polyetheramide, polyphenylene sulphide, polyallyl ether ketone, polyamideimide, polyphenylene ether, epoxy resin. And so on. As the tetrafluoroethylene-based polymer other than the F polymer, polytetrafluoroethylene is preferable.
 本法において、液状組成物は、さらに芳香族ポリマーを含むのが好ましい。芳香族ポリマーは、芳香族ポリイミド、芳香族ポリアミドイミド、芳香族マレイミド、ポリフェニレンエーテル、芳香族ポリアミック酸、又は芳香族エラストマー(スチレンエラストマー等)であるのが好ましく、熱可塑性の芳香族ポリイミドであるのがより好ましい。
 この場合、本分散液から形成される成形物の接着性と低線膨張性が一層向上するだけでなく、本分散液の液物性(粘度、チキソ比等)がバランスして、そのハンドリング性が向上しやすい。
 ここで、スチレンエラストマーとしては、スチレンと共役ジエン又は(メタ)アクリル酸エステルとのコポリマー(スチレン-ブタジエンゴム、スチレン系コア・シェル型コポリマー、スチレン系ブロックコポリマー等)が挙げられ、ゴムとプラスチックの両方の性質を備え、加熱により可塑化して柔軟性を示すスチレンエラストマーが好ましい。
 本分散液から形成される成形物の電気特性を向上させる観点からは、上記樹脂材料が、Fポリマー以外のテトラフルオロエチレン系ポリマーであるのが好ましい。
In this method, the liquid composition preferably further contains an aromatic polymer. The aromatic polymer is preferably aromatic polyimide, aromatic polyamideimide, aromatic maleimide, polyphenylene ether, aromatic polyamic acid, or aromatic elastomer (styrene elastomer or the like), and is a thermoplastic aromatic polyimide. Is more preferable.
In this case, not only the adhesiveness and low linear expansion property of the molded product formed from the present dispersion are further improved, but also the liquid properties (viscosity, thixotropic ratio, etc.) of the present dispersion are balanced, and the handling property is improved. Easy to improve.
Here, examples of the styrene elastomer include copolymers of styrene and conjugated diene or (meth) acrylic acid esters (styrene-butadiene rubber, styrene-based core-shell type copolymers, styrene-based block copolymers, etc.), and rubber and plastic. Styrene elastomers having both properties, which are plasticized by heating and exhibit flexibility, are preferred.
From the viewpoint of improving the electrical properties of the molded product formed from the present dispersion, it is preferable that the resin material is a tetrafluoroethylene polymer other than the F polymer.
 液状組成物が樹脂材料を含む場合、その含有量は液状組成物全体に対して40質量%以下が好ましい。 When the liquid composition contains a resin material, the content thereof is preferably 40% by mass or less with respect to the entire liquid composition.
 本法で製造される本分散液は、上記成分以外にも、本発明の効果を損なわない範囲で、チキソ性付与剤、粘度調節剤、消泡剤、脱水剤、可塑剤、耐候剤、酸化防止剤、熱安定剤、滑剤、帯電防止剤、増白剤、着色剤、導電剤、離型剤、難燃剤、各種フィラー等の他の成分をさらに含んでいてもよい。 In addition to the above components, the dispersion liquid produced by this method has a thixotropic agent, a viscosity modifier, a defoaming agent, a dehydrating agent, a plasticizer, a weather resistant agent, and an oxidation, as long as the effects of the present invention are not impaired. Other components such as inhibitors, heat stabilizers, lubricants, antistatic agents, whitening agents, colorants, conductive agents, mold release agents, flame retardants, and various fillers may be further contained.
 本分散液中に存在する複合粒子(本粒子)のD50は、20μm以下が好ましく、15μm以下がより好ましい。本粒子のD50は、0.1μm以上が好ましく、1μm以上がより好ましく、3μm以上がさらに好ましい。
 また、本粒子のD90は、30μm以下が好ましく、20μm以下がより好ましい。
 本粒子のD50及びD90が、かかる範囲にあれば、本分散液中における本粒子の分散安定性と、本分散液から得られる成形物(ポリマー層等)の物性とがより向上しやすい。
The D50 of the composite particles (main particles) present in the present dispersion is preferably 20 μm or less, more preferably 15 μm or less. The D50 of the particles is preferably 0.1 μm or more, more preferably 1 μm or more, still more preferably 3 μm or more.
The D90 of the present particles is preferably 30 μm or less, more preferably 20 μm or less.
When D50 and D90 of the present particles are within such a range, the dispersion stability of the present particles in the present dispersion liquid and the physical properties of the molded product (polymer layer or the like) obtained from the present dispersion liquid are more likely to be improved.
 本分散液中に存在する複合粒子(本粒子)の態様としては、Fポリマーの粒子(Fパウダー)をコアとし、このコアの表面に無機フィラーが付着している態様(以下、「態様I」とも記す。)、無機フィラーをコアとし、このコアの表面にFパウダーが付着している態様(以下、「態様II」とも記す。)が挙げられ、態様Iの本粒子が好ましい。 As an embodiment of the composite particles (main particles) present in the present dispersion, an F polymer particle (F powder) is used as a core, and an inorganic filler is attached to the surface of the core (hereinafter, “Aspect I”). Also referred to as), there is an embodiment in which an inorganic filler is used as a core and F powder is adhered to the surface of the core (hereinafter, also referred to as “Aspect II”), and the particles of Aspect I are preferable.
 ここで、「コア」とは、複合粒子の粒子形状を形成するのに必要な核(中心部)を意味し、複合粒子の組成における主成分を意味するのではない。
 コアの表面に付着する付着物(無機フィラー又はFパウダー)は、コアの表面の一部にのみ付着していてもよく、その大部分乃至全面にわたって付着していてもよい。前者の場合、付着物は埃状にコアの表面にまとわり付くような状態、換言すれば、コアの表面の多くの部分を露出させた状態となっているとも言える。後者の場合、付着物はコアの表面に満遍なくまぶされた態様であるか、又はコアの表面を被覆した状態となっているとも言え、かかる複合粒子は、コアとコアを被覆するシェルとからなるコア・シェル構造を有するとも言える。
Here, the "core" means a core (central part) necessary for forming the particle shape of the composite particle, and does not mean the main component in the composition of the composite particle.
The deposit (inorganic filler or F powder) adhering to the surface of the core may be adhered only to a part of the surface of the core, or may be attached to most or the entire surface thereof. In the former case, it can be said that the deposits cling to the surface of the core like dust, in other words, a large part of the surface of the core is exposed. In the latter case, it can be said that the deposits are evenly sprinkled on the surface of the core or are in a state of covering the surface of the core, and such composite particles are formed from the core and the shell covering the core. It can be said that it has a core-shell structure.
 態様Iの場合、複合粒子において、Fポリマーより硬度が高く、分散安定性の高い無機フィラーが表面に露出する。その結果、Fポリマーが変性し難くなり、複合粒子の流動性とその取り扱い性が向上しやすい。また、複合粒子の分散安定性が高まりやすい。
 Fパウダーのコア及び無機フィラーは、それぞれ粒子状であるのが好ましい。なお、態様Iの場合、Fパウダーのコアは、Fパウダーの単一粒子で構成されてもよく、Fパウダーの集合物で構成されてもよい。
 態様Iの複合粒子は、FパウダーのD50を無機フィラーの粒子のD50よりも大きく設定し、Fパウダーの量を無機フィラーの粒子の量よりも多く設定するのが好ましい。このような関係に設定して本発明の方法で分散液を製造すれば、態様Iの複合粒子を得やすい。
In the case of the aspect I, in the composite particles, an inorganic filler having a hardness higher than that of the F polymer and having high dispersion stability is exposed on the surface. As a result, the F polymer is less likely to be denatured, and the fluidity of the composite particles and their handleability are likely to be improved. In addition, the dispersion stability of the composite particles tends to increase.
The core of the F powder and the inorganic filler are preferably in the form of particles, respectively. In the case of the aspect I, the core of the F powder may be composed of a single particle of the F powder or an aggregate of the F powder.
For the composite particles of aspect I, it is preferable that the D50 of the F powder is set to be larger than the D50 of the particles of the inorganic filler, and the amount of the F powder is set to be larger than the amount of the particles of the inorganic filler. If the dispersion liquid is produced by the method of the present invention with such a relationship set, it is easy to obtain the composite particles of the aspect I.
 態様Iの場合、無機フィラーの粒子のD50は、FパウダーのD50を基準として、0.0001~0.5が好ましく、0.01~0.3がより好ましい。具体的には、FパウダーのD50が1μm超、かつ無機フィラーの粒子のD50が0.1μm以下であるのが好ましい。また、無機フィラーの粒子の量は、Fパウダー100質量部に対して0.1質量部以上が好ましく、1質量部以上がより好ましい。その上限は、50質量部が好ましく、25質量部がより好ましく、5質量部がさらに好ましい。
 このようにして得られる態様Iの複合粒子では、上記関係が維持されて、FパウダーのコアのD50が無機フィラーの粒子のD50より大きく、かつ、それに占めるFポリマーの質量が無機フィラーの質量より多くなる。この場合、Fパウダーのコアの表面は、より多量の無機フィラーの粒子により被覆されて、態様Iの複合粒子はコア・シェル構造を有するようになる。また、この場合、Fパウダーの粒子同士の凝集が抑制され、単独のFパウダーの粒子からなるコアに無機フィラーの粒子が付着した複合粒子(本粒子)が得られやすい。
In the case of the aspect I, the D50 of the particles of the inorganic filler is preferably 0.0001 to 0.5, more preferably 0.01 to 0.3, based on the D50 of the F powder. Specifically, it is preferable that the D50 of the F powder is more than 1 μm and the D50 of the particles of the inorganic filler is 0.1 μm or less. The amount of particles of the inorganic filler is preferably 0.1 part by mass or more, more preferably 1 part by mass or more with respect to 100 parts by mass of F powder. The upper limit is preferably 50 parts by mass, more preferably 25 parts by mass, and even more preferably 5 parts by mass.
In the composite particles of the aspect I thus obtained, the above relationship is maintained, the D50 of the core of the F powder is larger than the D50 of the particles of the inorganic filler, and the mass of the F polymer occupying the same is larger than the mass of the inorganic filler. Will increase. In this case, the surface of the core of the F powder is covered with a larger amount of particles of the inorganic filler, and the composite particles of the aspect I have a core-shell structure. Further, in this case, the aggregation of the F powder particles is suppressed, and it is easy to obtain composite particles (main particles) in which the particles of the inorganic filler are attached to the core composed of the single F powder particles.
 態様Iにおいて、無機フィラーは球状の粒子が好ましく、略真球状の粒子であるのがより好ましい。かかる場合、得られる複合粒子の分散性安定性が高まりやすい。略真球状の無機フィラーの粒子において、長径に対する短径の比は0.5以上が好ましく、0.8以上がより好ましい。上記比は、1未満が好ましい。ここで「球状」とは、真球だけでなく、若干歪んだ球も含む。
 かかる高度な略真球状の無機フィラー粒子を用いれば、成形物(ポリマー層等)において、無機フィラーとFポリマーとがより均一に分布して、両者の物性がよりバランスよく発現しやすい。
In the aspect I, the inorganic filler is preferably spherical particles, more preferably substantially spherical particles. In such a case, the dispersibility stability of the obtained composite particles tends to increase. In the particles of the substantially spherical inorganic filler, the ratio of the minor axis to the major axis is preferably 0.5 or more, more preferably 0.8 or more. The above ratio is preferably less than 1. Here, the "sphere" includes not only a true sphere but also a slightly distorted sphere.
When such highly spherical inorganic filler particles are used, the inorganic filler and the F polymer are more uniformly distributed in the molded product (polymer layer or the like), and the physical properties of both are more likely to be expressed in a well-balanced manner.
 態様Iにおいて、無機フィラーの粒子の平均粒子径(D50)は0.001~0.3μmの範囲が好ましく、0.005~0.2μmがより好ましく、0.01~0.1μmがさらに好ましい。平均粒子径(D50)がかかる範囲にあれば、複合粒子の取り扱い性や流動性が向上しやすく、また分散安定性が高まりやすい。
 また、無機フィラーの粒子の粒度分布が、D90/D10の値を指標として、3以下であるのが好ましく、2.9以下であるのがより好ましい。ここで、「D10」は、D50及びD90と同様にして測定される、対象物の体積基準累積10%径である。かかる場合、得られる複合粒子の流動性制御が容易になりやすい。
In the aspect I, the average particle size (D50) of the particles of the inorganic filler is preferably in the range of 0.001 to 0.3 μm, more preferably 0.005 to 0.2 μm, still more preferably 0.01 to 0.1 μm. When the average particle size (D50) is within such a range, the handleability and fluidity of the composite particles are likely to be improved, and the dispersion stability is likely to be improved.
Further, the particle size distribution of the particles of the inorganic filler is preferably 3 or less, and more preferably 2.9 or less, using the value of D90 / D10 as an index. Here, "D10" is a volume-based cumulative 10% diameter of the object, which is measured in the same manner as D50 and D90. In such a case, it is easy to control the fluidity of the obtained composite particles.
 態様Iにおいて、無機フィラーの粒子は、その表面の少なくとも一部が表面処理されているのが好ましく、ヘキサメチルジシラザンなどのシラザン化合物や、シランカップリング剤等により表面処理されているのがより好ましい。シランカップリング剤としては、上述した化合物が挙げられる。 In the aspect I, it is preferable that at least a part of the surface of the particles of the inorganic filler is surface-treated, and it is more preferable that the particles are surface-treated with a silazane compound such as hexamethyldisilazane, a silane coupling agent, or the like. preferable. Examples of the silane coupling agent include the above-mentioned compounds.
 態様Iにおいて、無機フィラーの粒子は、1種を用いてもよく、2種以上を混合して用いてもよい。2種の無機フィラーの粒子を混合して用いる場合、各無機フィラーの平均粒子径は互いに異なっていてもよく、各無機フィラーの含有量の質量比は、求める機能に応じて適宜設定できる。 In the aspect I, one kind of inorganic filler particles may be used, or two or more kinds of particles may be mixed and used. When the particles of the two kinds of inorganic fillers are mixed and used, the average particle diameter of each inorganic filler may be different from each other, and the mass ratio of the content of each inorganic filler can be appropriately set according to the desired function.
 態様Iの複合粒子において、FパウダーのコアのD50は0.1μm以上が好ましく、1μm超がより好ましい。その上限は100μmが好ましく、50μmがより好ましく、10μmがさらに好ましい。また、無機フィラーの粒子のD50は0.001μm以上が好ましく、0.01μm以上がより好ましい。その上限は1μmが好ましく、0.1μmがより好ましい。
 また、態様Iの複合粒子に占めるFポリマーの割合は50~99質量%が好ましく、75~99質量%がより好ましい。無機フィラーの割合は1~50質量%が好ましく、1~25質量%がより好ましい。
In the composite particles of aspect I, the D50 of the core of the F powder is preferably 0.1 μm or more, more preferably more than 1 μm. The upper limit is preferably 100 μm, more preferably 50 μm, and even more preferably 10 μm. The D50 of the particles of the inorganic filler is preferably 0.001 μm or more, more preferably 0.01 μm or more. The upper limit is preferably 1 μm, more preferably 0.1 μm.
Further, the ratio of the F polymer to the composite particles of the aspect I is preferably 50 to 99% by mass, more preferably 75 to 99% by mass. The proportion of the inorganic filler is preferably 1 to 50% by mass, more preferably 1 to 25% by mass.
 態様Iの複合粒子は、表面に付着した無機フィラーの物性に応じて、さらに表面処理してもよい。かかる表面処理の具体例としては、態様Iの複合粒子をシロキサン類(ポリジメチルシロキサン等)又はシランカップリング剤により表面処理する方法が挙げられる。
 かかる表面処理は、複合粒子が分散した分散液とシロキサン類又はシランカップリング剤とを混合し、シロキサン類又はシランカップリング剤を反応させ、複合粒子を回収して実施できる。シランカップリング剤としては、上述した官能基を有するシランカップリング剤が好ましい。
 かかる方法によれば、上記複合粒子の表面物性を更に調整できる。
The composite particles of Aspect I may be further surface-treated depending on the physical properties of the inorganic filler adhering to the surface. Specific examples of such surface treatment include a method of surface-treating the composite particles of Embodiment I with siloxanes (polydimethylsiloxane or the like) or a silane coupling agent.
Such surface treatment can be carried out by mixing the dispersion liquid in which the composite particles are dispersed with the siloxanes or the silane coupling agent, reacting the siloxanes or the silane coupling agent, and recovering the composite particles. As the silane coupling agent, the above-mentioned silane coupling agent having a functional group is preferable.
According to such a method, the surface physical characteristics of the composite particles can be further adjusted.
 態様IIの場合、無機フィラーのコアは粒子状であるのが好ましい。この場合、複合粒子は、無機フィラーのコアの表面がFパウダーで覆われやすい。なお、無機フィラーのコアは、無機フィラーの単一粒子で構成されてもよく、無機フィラーの集合物で構成されてもよい。 In the case of Aspect II, the core of the inorganic filler is preferably in the form of particles. In this case, in the composite particles, the surface of the core of the inorganic filler is easily covered with the F powder. The core of the inorganic filler may be composed of a single particle of the inorganic filler or may be composed of an aggregate of the inorganic filler.
 態様IIの複合粒子は、好ましくは、無機フィラーの粒子のD50をFパウダーのD50よりも大きく設定し、無機フィラーの粒子の量をFパウダーの量よりも多く設定するのが好ましい。このような関係に設定して本発明の方法で分散液を製造すれば、態様IIの複合粒子を得やすい。
 態様IIの場合、FパウダーのD50は、無機フィラーの粒子のD50を基準として、0.0001~0.5が好ましく、0.01~0.3がより好ましい。
 また、Fパウダーの量は、無機フィラーの粒子100質量部に対して0.1質量部以上が好ましく、1質量部以上がより好ましい。その上限は、50質量部が好ましく、10質量部がより好ましい。
 このようにして得られる態様IIの複合粒子では、上記関係が維持されて、無機フィラーのコアのD50がFパウダーのD50より大きく、かつ、それに占める無機フィラーの質量がFポリマーの質量より多くなる。この場合、無機フィラーのコアの表面は、より多量のFパウダーにより被覆されて、態様IIの複合粒子はコア・シェル構造を有するようになる。
For the composite particles of the aspect II, it is preferable to set the D50 of the particles of the inorganic filler to be larger than the D50 of the F powder, and to set the amount of the particles of the inorganic filler to be larger than the amount of the F powder. If the dispersion is produced by the method of the present invention with such a relationship set, it is easy to obtain the composite particles of the second aspect.
In the case of Aspect II, the D50 of the F powder is preferably 0.0001 to 0.5, more preferably 0.01 to 0.3, based on the D50 of the particles of the inorganic filler.
The amount of F powder is preferably 0.1 part by mass or more, more preferably 1 part by mass or more, based on 100 parts by mass of the particles of the inorganic filler. The upper limit is preferably 50 parts by mass, more preferably 10 parts by mass.
In the composite particles of the aspect II thus obtained, the above relationship is maintained, the D50 of the core of the inorganic filler is larger than the D50 of the F powder, and the mass of the inorganic filler occupying the D50 is larger than the mass of the F polymer. .. In this case, the surface of the core of the inorganic filler is coated with a larger amount of F powder so that the composite particles of aspect II have a core-shell structure.
 態様IIの複合粒子において、無機フィラーのコアのD50は0.1μm以上が好ましく、1μm超がより好ましい。その上限は30μmが好ましく、10μmがより好ましい。また、態様IIの複合粒子に占める無機フィラーの割合は50~99質量%が好ましく、60~90質量%がより好ましい。Fポリマーの割合は1~50質量%が好ましく、10~40質量%がより好ましい。 In the composite particles of Aspect II, the D50 of the core of the inorganic filler is preferably 0.1 μm or more, more preferably more than 1 μm. The upper limit is preferably 30 μm, more preferably 10 μm. The proportion of the inorganic filler in the composite particles of Embodiment II is preferably 50 to 99% by mass, more preferably 60 to 90% by mass. The proportion of the F polymer is preferably 1 to 50% by mass, more preferably 10 to 40% by mass.
 本分散液から分散媒を除去して本粒子を単離する手段としては、加熱、減圧又は濾過による手段であるのが好ましい。これらの手段は、適宜組合せて用いてもよい。
 本粒子を単離する手段の具体例としては、(1)分散媒を大気圧下又は減圧下で留去して濃縮し、必要に応じ濾過し乾燥する;(2)分散液を温度調節しながら本粒子を凝集させるか、又は電解質や凝析剤、凝集助剤などの添加による凝析・晶析後に、濾過等で分離し乾燥する;(3)本分散液を分散媒が揮発可能な温度とした乾燥気体中に噴霧して乾燥し、回収する;(4)分散液を遠心分離後、乾燥する、などが挙げられる。
 ここで、乾燥手段としては真空乾燥、高周波乾燥、熱風乾燥が挙げられる。
 上記の各手段(1)~(4)においては、必要に応じて分散液を分散媒で希釈し、分散液中の、Fポリマー及び無機フィラーの合計含有量を予め調整してもよい。
As a means for removing the dispersion medium from the dispersion liquid and isolating the particles, it is preferable to use heating, depressurization or filtration. These means may be used in combination as appropriate.
Specific examples of the means for isolating the particles include (1) distilling off the dispersion medium under atmospheric pressure or reduced pressure to concentrate, filtering and drying as necessary; (2) controlling the temperature of the dispersion. While the particles are agglomerated, or after coagulation / crystallization by adding an electrolyte, a coagulant, a coagulation aid, etc., they are separated and dried by filtration or the like; (3) The dispersion medium can volatilize the dispersion. It is sprayed into a dry gas having a temperature to be dried and recovered; (4) the dispersion is centrifuged and then dried.
Here, examples of the drying means include vacuum drying, high frequency drying, and hot air drying.
In each of the above means (1) to (4), if necessary, the dispersion may be diluted with a dispersion medium to adjust the total content of the F polymer and the inorganic filler in the dispersion in advance.
 上記の手段(1)においては、分散液を凍結させ、次いで分散媒を、好適には減圧雰囲気下で昇華させて除去して前記複合粒子を得る方法がより好ましい。
 凍結は、0℃未満にて行うのが好ましい。具体的には、分散液を、用いる分散媒の融点以下の温度、例えば-100~-10℃の雰囲気に暴露して凍結させるのが好ましい。凍結は、分散液の成分の沈降を抑制する観点から、8時間以内で完了するのが好ましい。また、急激な凍結による凍結物の不均一化を抑制する観点から、分散液は10分以上かけて凍結させるのが好ましい。
 凍結させた分散液(凍結物)からの分散媒の昇華による除去は、分散液の融解を抑制した条件下で行われればよい。分散媒を昇華させる際の温度は、0℃未満が好ましく、具体的には、凍結物を-100~0℃の雰囲気に暴露するのが好ましい。また、昇華させる際の圧力は、通常、減圧雰囲気であり、0~1×10Paの減圧雰囲気が好ましい。分散媒を昇華させる際の時間は、通常、4~72時間である。
 昇華に使用する装置としては、遠心分離器、棚段乾燥器等が挙げられる。
In the above means (1), a method in which the dispersion liquid is frozen and then the dispersion medium is preferably sublimated and removed under a reduced pressure atmosphere to obtain the composite particles is more preferable.
Freezing is preferably performed at a temperature lower than 0 ° C. Specifically, it is preferable to expose the dispersion liquid to an atmosphere at a temperature equal to or lower than the melting point of the dispersion medium used, for example, −100 to −10 ° C., and freeze it. Freezing is preferably completed within 8 hours from the viewpoint of suppressing the sedimentation of the components of the dispersion liquid. Further, from the viewpoint of suppressing non-uniformity of the frozen product due to rapid freezing, it is preferable to freeze the dispersion liquid for 10 minutes or more.
The removal of the dispersion medium from the frozen dispersion (frozen product) by sublimation may be performed under conditions in which the dispersion is suppressed from melting. The temperature at which the dispersion medium is sublimated is preferably less than 0 ° C., specifically, the frozen product is preferably exposed to an atmosphere of −100 to 0 ° C. The pressure for sublimation is usually a reduced pressure atmosphere, preferably a reduced pressure atmosphere of 0 to 1 × 10 2 Pa. The time for sublimating the dispersion medium is usually 4 to 72 hours.
Examples of the device used for sublimation include a centrifuge, a shelf dryer and the like.
 上記の手段(2)において、電解質としては、硝酸カリウム、硝酸ナトリウム、炭酸ナトリウム、炭酸水素ナトリウムなどの無機塩が挙げられる。凝析剤または凝集助剤としては、硝酸、塩酸、硫酸、塩化マグネシウム、塩化カルシウム、塩化ナトリウム、硫酸アルミニウム、硫酸マグネシウム、硫酸バリウムが挙げられる。
 また、凝析・晶析に際して必要に応じ分散液を撹拌し、分散液のポリマー含有量やpHを調節してもよく、分散液にpH調整剤、有機溶剤を添加してもよい。pH調節剤としては、炭酸ナトリウム、炭酸水素ナトリウム、アンモニア、アンモニウム塩、尿素が挙げられる。有機溶剤としては、アルコール、アセトンが挙げられる。
 上記の手段(2)では、複合粒子を凝析させ、分散媒から濾過等で分離すると、湿潤状態の複合粒子が得られ、これを乾燥すると、複合粒子が得られる。乾燥温度は、110~250℃が好ましい。
In the above means (2), examples of the electrolyte include inorganic salts such as potassium nitrate, sodium nitrate, sodium carbonate, and sodium hydrogen carbonate. Examples of the coagulant or coagulation aid include nitrate, hydrochloric acid, sulfuric acid, magnesium chloride, calcium chloride, sodium chloride, aluminum sulfate, magnesium sulfate and barium sulfate.
Further, the dispersion liquid may be agitated at the time of coagulation / crystallization to adjust the polymer content and pH of the dispersion liquid, or a pH adjuster and an organic solvent may be added to the dispersion liquid. Examples of the pH adjusting agent include sodium carbonate, sodium hydrogencarbonate, ammonia, ammonium salts, and urea. Examples of the organic solvent include alcohol and acetone.
In the above means (2), when the composite particles are coagulated and separated from the dispersion medium by filtration or the like, the composite particles in a wet state are obtained, and when this is dried, the composite particles are obtained. The drying temperature is preferably 110 to 250 ° C.
 上記の手段(3)は、分散媒が充分に揮発する温度の雰囲気下に、分散液を噴霧して行うのが好ましい。具体的には、鉛直上方に100℃超の窒素ガス等の不活性ガスを流通させた系に、分散液を鉛直下法に噴霧して乾燥させる方法が好ましい。かかる方法には、晶析塔等の装置を使用できる。 The above means (3) is preferably performed by spraying the dispersion liquid in an atmosphere at a temperature at which the dispersion medium sufficiently volatilizes. Specifically, a method of spraying the dispersion liquid vertically on a system in which an inert gas such as nitrogen gas having a temperature of more than 100 ° C. is circulated above the vertical direction and drying the mixture is preferable. An apparatus such as a crystallization tower can be used for such a method.
 本粒子は、多量に液状分散媒に添加しても、安定的に分散できる。また、かかる液状組成物から形成される成形物(ポリマー層、フィルム等)では、Fポリマーと無機フィラーとがより均一に分布して、Fポリマーによる物性(電気特性、接着性等)と無機フィラーによる物性(低線膨張性等)とが高度に発現しやすい。 The particles can be stably dispersed even if a large amount is added to the liquid dispersion medium. Further, in the molded product (polymer layer, film, etc.) formed from the liquid composition, the F polymer and the inorganic filler are more uniformly distributed, and the physical properties (electrical characteristics, adhesiveness, etc.) of the F polymer and the inorganic filler are obtained. (Low line swelling, etc.) is highly likely to occur.
 本法で製造される本分散液の粘度は50mPa・s以上が好ましく、100mPa・s以上がより好ましく、5000mPa・s以上がさらに好ましく、10000mPa・s以上が特に好ましい。本分散液の粘度は100000mPa・s以下が好ましく、50000mPa・s以下がより好ましく、20000mPa・s以下がさらに好ましい。この場合、本分散液は塗工性に優れ、任意の厚さを有する成形物(ポリマー層等)を形成しやすい。
 また、かかる範囲の粘度、特に高粘度の範囲にある本分散液は、それから形成される成形物において、無機フィラーが凝集し難く均一分布し易くなるため、Fポリマーと無機フィラーのそれぞれの物性が高度にバランスよく発現しやすい。
 また、本法で製造される本分散液の粘度は、50mPa・s以上が好ましく、100mPa・s以上がより好ましい。本分散液の粘度は、100000mPa・s以下が好ましく、10000mPa・sがより好ましく、1000mPa・s以下がさらに好ましい。この場合、本分散液は分散安定性に優れやすく好ましい。
 さらに、例えば、無機フィラーが非球状の異方性フィラーである場合には、上述した作用機構により、一層、その分散安定性が向上しやすい。また、かかる本分散液から形成される塗膜等の成形物において、無機フィラーがランダムに配向しやすく、物性が方向によらず同等になりやすい。例えば、機械強度や電気特性が、層やフィルムの平面方向と垂直方向で同等である層やフィルムが得られやすい。
 本分散液は、剪断処理した後、さらに液状分散媒を混合して、粘度を調整してもよい。
The viscosity of the dispersion liquid produced by this method is preferably 50 mPa · s or more, more preferably 100 mPa · s or more, further preferably 5000 mPa · s or more, and particularly preferably 10,000 mPa · s or more. The viscosity of this dispersion is preferably 100,000 mPa · s or less, more preferably 50,000 mPa · s or less, and even more preferably 20,000 mPa · s or less. In this case, the present dispersion has excellent coatability and easily forms a molded product (polymer layer or the like) having an arbitrary thickness.
Further, in the present dispersion having a viscosity in such a range, particularly in a high viscosity range, the inorganic filler is less likely to aggregate and is easily uniformly distributed in the molded product formed from the dispersion, so that the physical characteristics of the F polymer and the inorganic filler are different. It is highly balanced and easy to develop.
The viscosity of the dispersion liquid produced by this method is preferably 50 mPa · s or more, and more preferably 100 mPa · s or more. The viscosity of this dispersion is preferably 100,000 mPa · s or less, more preferably 10,000 mPa · s, and even more preferably 1000 mPa · s or less. In this case, the present dispersion is preferable because it has excellent dispersion stability.
Further, for example, when the inorganic filler is a non-spherical anisotropic filler, its dispersion stability is more likely to be improved by the above-mentioned mechanism of action. Further, in a molded product such as a coating film formed from the present dispersion liquid, the inorganic filler tends to be randomly oriented and the physical properties tend to be the same regardless of the direction. For example, it is easy to obtain a layer or film whose mechanical strength and electrical characteristics are equivalent in the plane direction and the vertical direction of the layer or film.
The viscosity of this dispersion may be adjusted by further mixing a liquid dispersion medium after shearing treatment.
 本法で製造される本分散液のチキソ比は1.0以上が好ましい。本分散液のチキソ比は3.0以下が好ましく、2.0以下がより好ましい。この場合、本分散液は塗工性及び均質性に優れ、より緻密な成形物(ポリマー層等)を形成しやすい。 The thixotropic ratio of the dispersion liquid produced by this method is preferably 1.0 or more. The thixotropic ratio of this dispersion is preferably 3.0 or less, more preferably 2.0 or less. In this case, the present dispersion is excellent in coatability and homogeneity, and it is easy to form a more dense molded product (polymer layer or the like).
 本分散液におけるFパウダーと無機フィラーの合計含有量は、本分散液の全体質量に対して40質量%以上であるのが好ましく、50~80質量%がより好ましい。本法では、剪断処理によってFパウダーと無機フィラーの複合粒子化が生じるため分散安定性が向上し、分散液中にFパウダー及び無機フィラーを高濃度で含有させることが可能となる。従って、分散液から塗膜等の成形物を均一性高く形成でき、Fポリマーによる物性と無機フィラーによる物性を高度にバランスよく発現しやすい。 The total content of the F powder and the inorganic filler in the present dispersion is preferably 40% by mass or more, more preferably 50 to 80% by mass, based on the total mass of the present dispersion. In this method, since the F powder and the inorganic filler are made into composite particles by the shearing treatment, the dispersion stability is improved, and the F powder and the inorganic filler can be contained in the dispersion liquid at a high concentration. Therefore, a molded product such as a coating film can be formed from the dispersion liquid with high uniformity, and the physical characteristics of the F polymer and the physical characteristics of the inorganic filler can be easily expressed in a highly balanced manner.
 本分散液においては、成分沈降率が60%以上であるのが好ましく、70%以上であるのが好ましく、80%以上であるのがより好ましい。ここで、成分沈降率とは、本分散液(18mL)をスクリュー管(内容積:30mL)に入れ、25℃にて14日静置した際、静置前後の、スクリュー管中の分散液全体の高さと沈降層(分散層)の高さとから、以下の式により算出される値である。なお、静置後に沈降層が確認されず、状態に変化がない場合には、分散液全体の高さに変化がないとして、成分沈降率は100%とする。
 成分沈降率(%)=(沈降層の高さ)/(分散液全体の高さ)×100
In this dispersion, the component sedimentation rate is preferably 60% or more, preferably 70% or more, and more preferably 80% or more. Here, the component sedimentation rate is the entire dispersion liquid in the screw pipe before and after standing when the present dispersion liquid (18 mL) is placed in a screw tube (internal volume: 30 mL) and allowed to stand at 25 ° C. for 14 days. It is a value calculated by the following formula from the height of the above and the height of the sedimentation layer (dispersion layer). If the sedimentation layer is not confirmed after standing and there is no change in the state, it is assumed that the height of the entire dispersion liquid does not change, and the component sedimentation rate is 100%.
Erythrocyte sedimentation rate (%) = (height of sedimentation layer) / (height of the entire dispersion) x 100
 本法で製造される本分散液をシート基材層の表面に付与して液状被膜を形成し、この液状被膜を加熱して分散媒を除去して乾燥被膜を形成し、さらに乾燥被膜を加熱してFポリマーを焼成すれば、Fポリマーと無機フィラーを含むポリマー層(以下、「F層」とも記す。)をシート基材層の表面に有する積層体が得られる。 The dispersion liquid produced by this method is applied to the surface of the sheet base material layer to form a liquid film, and the liquid film is heated to remove the dispersion medium to form a dry film, and the dry film is further heated. Then, by firing the F polymer, a laminate having a polymer layer containing the F polymer and an inorganic filler (hereinafter, also referred to as “F layer”) on the surface of the sheet base material layer can be obtained.
 シート基材層としては、金属基板(銅、ニッケル、アルミニウム、チタン、それらの合金等の金属箔等)、耐熱性樹脂フィルム(ポリイミド、ポリアリレート、ポリスルホン、ポリアリルスルホン、ポリアミド、ポリエーテルアミド、ポリフェニレンスルフィド、ポリアリルエーテルケトン、ポリアミドイミド、液晶性ポリエステル、液晶性ポリエステルアミド等の耐熱性樹脂の1種以上を含むフィルムであり、単層フィルムであっても多層フィルムであってもよい)、プリプレグ(繊維強化樹脂基板の前駆体)が挙げられる。 As the sheet base material layer, a metal substrate (copper, nickel, aluminum, titanium, metal foil such as an alloy thereof, etc.), a heat-resistant resin film (polyimide, polyarylate, polysulfone, polyallylsulfone, polyamide, polyetheramide, etc.) A film containing one or more of heat-resistant resins such as polyphenylene sulfide, polyallyl ether ketone, polyamideimide, liquid crystal polyester, and liquid crystal polyester amide, which may be a single-layer film or a multilayer film). Prepreg (precursor of fiber reinforced resin substrate) can be mentioned.
 本分散液をシート基材の表面に付与する方法としては、シート基材の表面に本分散液からなる安定した液状被膜(ウェット膜)が形成される方法であればよく、塗布法、液滴吐出法、浸漬法が挙げられ、塗布法が好ましい。塗布法を用いれば、簡単な設備で効率よく基材の表面に液状被膜を形成できる。
 塗布法としては、スプレー法、ロールコート法、スピンコート法、グラビアコート法、マイクログラビアコート法、グラビアオフセット法、ナイフコート法、キスコート法、バーコート法、ダイコート法、ファウンテンメイヤーバー法、スロットダイコート法が挙げられる。
As a method of applying the present dispersion liquid to the surface of the sheet base material, any method may be used as long as a stable liquid film (wet film) composed of the present dispersion liquid is formed on the surface of the sheet base material, and the coating method and droplets are used. Examples thereof include a discharge method and a dipping method, and a coating method is preferable. If the coating method is used, a liquid film can be efficiently formed on the surface of the base material with simple equipment.
The coating methods include spray method, roll coat method, spin coat method, gravure coat method, micro gravure coat method, gravure offset method, knife coat method, kiss coat method, bar coat method, die coat method, fountain Mayer bar method, and slot die coat. The law is mentioned.
 液状被膜を乾燥する際は、液状被膜を分散媒が揮発する温度で加熱し、乾燥被膜をシート基材の表面に形成する。かかる加熱の温度は、分散媒の沸点+50℃以下が好ましく、分散媒の沸点以下がより好ましく、分散媒の沸点-50℃以下の温度がさらに好ましい。乾燥時の温度は、120℃~200℃が好ましい。なお、分散媒を除去する工程で空気を吹き付けてもよい。
 乾燥時に、分散媒は、必ずしも完全に揮発させる必要はなく、保持後の層形状が安定し、自立膜を維持できる程度まで揮発させればよい。
 Fポリマーの焼成の際は、Fポリマーの溶融温度以上の温度で乾燥被膜を加熱するのが好ましい。かかる加熱の温度は380℃以下が好ましく、350℃以下がより好ましい。
 それぞれの加熱の方法としては、オーブンを用いる方法、通風乾燥炉を用いる方法、赤外線等の熱線を照射する方法が挙げられる。加熱は、常圧下および減圧下のいずれの状態で行ってもよい。また、加熱雰囲気は、酸化性ガス雰囲気(酸素ガス等)、還元性ガス雰囲気(水素ガス等)、不活性ガス雰囲気(ヘリウムガス、ネオンガス、アルゴンガス、窒素ガス等)のいずれであってもよい。
 加熱時間は0.1~30分間が好ましく、0.5~20分間がより好ましい。
 以上のような条件で加熱すれば、高い生産性を維持しつつ、F層を好適に形成できる。
When the liquid film is dried, the liquid film is heated at a temperature at which the dispersion medium volatilizes to form a dry film on the surface of the sheet substrate. The heating temperature is preferably + 50 ° C. or lower, the boiling point of the dispersion medium, more preferably 50 ° C. or lower, and further preferably −50 ° C. or lower. The drying temperature is preferably 120 ° C to 200 ° C. Air may be blown in the step of removing the dispersion medium.
At the time of drying, the dispersion medium does not necessarily have to be completely volatilized, and may be volatilized to the extent that the layer shape after holding is stable and the self-supporting film can be maintained.
When firing the F polymer, it is preferable to heat the dry film at a temperature equal to or higher than the melting temperature of the F polymer. The heating temperature is preferably 380 ° C. or lower, more preferably 350 ° C. or lower.
Examples of each heating method include a method using an oven, a method using a ventilation drying furnace, and a method of irradiating heat rays such as infrared rays. The heating may be performed under normal pressure or reduced pressure. The heating atmosphere may be any of an oxidizing gas atmosphere (oxygen gas, etc.), a reducing gas atmosphere (hydrogen gas, etc.), and an inert gas atmosphere (helium gas, neon gas, argon gas, nitrogen gas, etc.). ..
The heating time is preferably 0.1 to 30 minutes, more preferably 0.5 to 20 minutes.
By heating under the above conditions, the F layer can be suitably formed while maintaining high productivity.
 F層の厚さは0.1~150μmが好ましい。具体的には、シート基材層が金属箔である場合、F層の厚さは1~30μmが好ましい。シート基材層が耐熱性樹脂フィルムである場合、F層の厚さは1~150μmが好ましく、10~50μmがより好ましい。
 F層と基材層との剥離強度は、10N/cm以上が好ましく、15N/cm以上がより好ましい。上記剥離強度は、100N/cm以下が好ましい。本分散液を用いれば、F層におけるFポリマーの物性を損なわずに、かかる本積層体を容易に形成できる。
The thickness of the F layer is preferably 0.1 to 150 μm. Specifically, when the sheet base material layer is a metal foil, the thickness of the F layer is preferably 1 to 30 μm. When the sheet base material layer is a heat-resistant resin film, the thickness of the F layer is preferably 1 to 150 μm, more preferably 10 to 50 μm.
The peel strength between the F layer and the base material layer is preferably 10 N / cm or more, more preferably 15 N / cm or more. The peel strength is preferably 100 N / cm or less. By using the present dispersion, the present laminate can be easily formed without impairing the physical properties of the F polymer in the F layer.
 F層の空隙率は30%以下が好ましく、20%以下がより好ましい。空隙率は0.1%以上が好ましく、1%以上がより好ましい。本分散液からはかかる空隙率の低いF層を形成しやすい。特に、乾燥被膜の空隙率が1%以上である場合にも、空隙率の低いF層を形成しやすい。なお、空隙率は、走査型電子顕微鏡(SEM)を用いて観察される成形物の断面におけるSEM写真から、画像処理にてF層の空隙部分を判定し、空隙部分が占める面積をF層の面積で除した割合(%)である。空隙部分が占める面積は空隙部分を円形と近似して求められる。 The porosity of the F layer is preferably 30% or less, more preferably 20% or less. The porosity is preferably 0.1% or more, more preferably 1% or more. From this dispersion, it is easy to form an F layer with a low porosity. In particular, even when the porosity of the dry film is 1% or more, it is easy to form an F layer having a low porosity. The void ratio is determined by image processing to determine the void portion of the F layer from the SEM photograph of the cross section of the molded product observed using a scanning electron microscope (SEM), and the area occupied by the void portion is the area occupied by the F layer. It is the ratio (%) divided by the area. The area occupied by the void portion is obtained by approximating the void portion to a circle.
 本分散液は、シート基材層の一方の表面にのみ付与してもよく、シート基材層の両面に付与してもよい。前者では、シート基材層と、シート基材層の片方の表面にF層を有する積層体が得られ、後者では、シート基材層と、シート基材層の両方の表面にF層を有する積層体が得られる。後者の積層体は、より反りが発生しにくいため、その加工に際するハンドリング性に優れる。
 かかる積層体の具体例としては、金属箔と、その金属箔の少なくとも一方の表面にF層を有する金属張積層体、ポリイミドフィルムと、そのポリイミドフィルムの両方の表面にF層を有する多層フィルムが挙げられる。
The present dispersion may be applied only to one surface of the sheet base material layer, or may be applied to both sides of the sheet base material layer. In the former, a laminated body having an F layer on one surface of the sheet base material layer and the sheet base material layer is obtained, and in the latter, the F layer is provided on both the surfaces of the sheet base material layer and the sheet base material layer. A laminate is obtained. Since the latter laminated body is less likely to warp, it is excellent in handleability during its processing.
Specific examples of such a laminate include a metal foil, a metal-clad laminate having an F layer on at least one surface of the metal foil, a polyimide film, and a multilayer film having an F layer on both surfaces of the polyimide film. Can be mentioned.
 なお、金属箔には、2層以上の金属箔を含むキャリア付金属箔を使用してもよい。キャリア付金属箔としては、キャリア銅箔(厚さ:10~35μm)と、剥離層を介してキャリア銅箔上に積層された極薄銅箔(厚さ:2~5μm)とからなるキャリア付銅箔が挙げられる。かかるキャリア付銅箔を使用すれば、MSAP(モディファイドセミアディティブ)プロセスによるファインパターンの形成が可能である。上記剥離層としては、ニッケル又はクロムを含む金属層、又はこの金属層を積層した多層金属層が好ましい。
 キャリア付金属箔の具体例としては、福田金属箔粉工業株式会社製の商品名「FUTF-5DAF-2」が挙げられる。
 シート基材層の表面の十点平均粗さは、0.01~0.05μmが好ましい。本粒子は緻密にパッキングしやすいため、表面が平滑なシート基材層であっても、剥離強度に優れた積層体を形成できる。
As the metal foil, a metal foil with a carrier containing two or more layers of metal foil may be used. The metal foil with a carrier includes a carrier copper foil (thickness: 10 to 35 μm) and an ultrathin copper foil (thickness: 2 to 5 μm) laminated on the carrier copper foil via a release layer. Copper foil can be mentioned. By using such a copper foil with a carrier, it is possible to form a fine pattern by an MSAP (modified semi-additive) process. As the release layer, a metal layer containing nickel or chromium or a multilayer metal layer in which the metal layers are laminated is preferable.
Specific examples of the metal leaf with a carrier include the trade name "FUTF-5DAF-2" manufactured by Fukuda Metal Leaf Powder Industry Co., Ltd.
The ten-point average roughness of the surface of the sheet base material layer is preferably 0.01 to 0.05 μm. Since the particles are easy to pack densely, a laminated body having excellent peel strength can be formed even if the surface of the sheet base material layer is smooth.
 ここで、シート材の最表面(F層の基材層と反対側の表面)は、その低線膨張性や接着性を一層向上させるために、さらに表面処理されてもよい。
 表面処理の方法としては、アニール処理、コロナ処理、プラズマ処理、オゾン処理、エキシマ処理、シランカップリング処理が挙げられる。
 アニール処理における条件は、温度を120~180℃とし、圧力を0.005~0.015MPaとし、時間を30~120分間とするのが好ましい。
 プラズマ処理に用いるガスとしては、酸素ガス、窒素ガス、希ガス(アルゴン等)、水素ガス、アンモニアガス、酢酸ビニルが挙げられる。これらのガスは、1種を使用してもよく、2種以上を併用してもよい。
Here, the outermost surface of the sheet material (the surface opposite to the base material layer of the F layer) may be further surface-treated in order to further improve its low linear expansion property and adhesiveness.
Examples of the surface treatment method include annealing treatment, corona treatment, plasma treatment, ozone treatment, excimer treatment, and silane coupling treatment.
The conditions for the annealing treatment are preferably 120 to 180 ° C., a pressure of 0.005 to 0.015 MPa, and a time of 30 to 120 minutes.
Examples of the gas used for the plasma treatment include oxygen gas, nitrogen gas, noble gas (argon and the like), hydrogen gas, ammonia gas, and vinyl acetate. One type of these gases may be used, or two or more types may be used in combination.
 積層体の最表面には、さらに他の基板を積層してもよい。
 他の基板としては、耐熱性樹脂フィルム、繊維強化樹脂板の前駆体であるプリプレグ、耐熱性樹脂フィルム層を有する積層体、プリプレグ層を有する積層体が挙げられる。
 なお、プリプレグは、強化繊維(ガラス繊維、炭素繊維等)の基材(トウ、織布等)に熱硬化性樹脂又は熱可塑性樹脂を含浸させたシート状の基板である。
 耐熱性樹脂フィルムは、1種以上の耐熱性樹脂を含むフィルムであり、耐熱性樹脂としては、上記した樹脂が挙げられる。
Another substrate may be further laminated on the outermost surface of the laminated body.
Examples of other substrates include a heat-resistant resin film, a prepreg which is a precursor of a fiber-reinforced resin plate, a laminate having a heat-resistant resin film layer, and a laminate having a prepreg layer.
The prepreg is a sheet-like substrate in which a base material (tow, woven fabric, etc.) of reinforcing fibers (glass fibers, carbon fibers, etc.) is impregnated with a thermosetting resin or a thermoplastic resin.
The heat-resistant resin film is a film containing one or more heat-resistant resins, and examples of the heat-resistant resin include the above-mentioned resins.
 積層の方法としては、積層体と他の基板とを熱プレスする方法が挙げられる。
 他の基板がプリプレグである場合の熱プレスの条件は、温度を120~400℃とし、雰囲気の圧力を20kPa以下の真空とし、プレス圧力を0.2~10MPaとするのが好ましい。かかる積層体は、電気特性に優れるF層を有するため、プリント基板材料として好適であり、具体的にはフレキシブル金属張積層板やリジッド金属張積層板としてプリント基板の製造に使用でき、特に、フレキシブル金属張積層板としてフレキシブルプリント基板の製造に好適に使用できる。
Examples of the laminating method include a method of heat-pressing the laminated body and another substrate.
When the other substrate is a prepreg, the hot press conditions are preferably such that the temperature is 120 to 400 ° C., the atmospheric pressure is a vacuum of 20 kPa or less, and the press pressure is 0.2 to 10 MPa. Since such a laminate has an F layer having excellent electrical characteristics, it is suitable as a printed circuit board material, and specifically, it can be used as a flexible metal-clad laminate or a rigid metal-clad laminate for manufacturing a printed circuit board, and is particularly flexible. It can be suitably used for manufacturing a flexible printed circuit board as a metal-clad laminate.
 シート基材層が金属箔である積層体(F層付金属箔)の金属箔をエッチング加工し、伝送回路を形成してプリント基板が得られる。具体的には、金属箔をエッチング処理して所定の伝送回路に加工する方法や、金属箔を電解めっき法(セミアディティブ法(SAP法)、MSAP法等)によって所定の伝送回路に加工する方法によって、プリント基板を製造できる。
 F層付金属箔から製造されたプリント基板は、金属箔から形成された伝送回路とF層とをこの順に有する。プリント基板の構成の具体例としては、伝送回路/F層/プリプレグ層、伝送回路/F層/プリプレグ層/F層/伝送回路が挙げられる。
 かかるプリント基板の製造においては、伝送回路上に層間絶縁膜を形成してもよく、伝送回路上にソルダーレジストを積層してもよく、伝送回路上にカバーレイフィルムを積層してもよい。これらの層間絶縁膜、ソルダーレジスト及びカバーレイフィルムを、本分散液で形成してもよい。
A printed circuit board is obtained by etching a metal foil of a laminate (metal foil with an F layer) in which the sheet base material layer is a metal foil to form a transmission circuit. Specifically, a method of etching a metal foil to process it into a predetermined transmission circuit, or a method of processing a metal foil into a predetermined transmission circuit by an electrolytic plating method (semi-additive method (SAP method), MSAP method, etc.). Can be used to manufacture printed circuit boards.
A printed circuit board manufactured from a metal foil with an F layer has a transmission circuit formed from the metal foil and an F layer in this order. Specific examples of the configuration of the printed circuit board include a transmission circuit / F layer / prepreg layer and a transmission circuit / F layer / prepreg layer / F layer / transmission circuit.
In the manufacture of such a printed circuit board, an interlayer insulating film may be formed on the transmission circuit, a solder resist may be laminated on the transmission circuit, or a coverlay film may be laminated on the transmission circuit. These interlayer insulating films, solder resists and coverlay films may be formed with the present dispersion.
 F層と他の基材との積層体は、アンテナ部品、プリント基板、航空機用部品、自動車用部品、スポーツ用具、食品工業用品、塗料、化粧品等として有用であり、具体的には、電線被覆材(航空機用電線等)、電気絶縁性テープ、石油掘削用絶縁テープ、プリント基板用材料、分離膜(精密濾過膜、限外濾過膜、逆浸透膜、イオン交換膜、透析膜、気体分離膜等)、電極バインダー(リチウム二次電池用、燃料電池用等)、コピーロール、家具、自動車ダッシュボート、家電製品等のカバー、摺動部材(荷重軸受、すべり軸、バルブ、ベアリング、歯車、カム、ベルトコンベア、食品搬送用ベルト等)、工具(シャベル、やすり、きり、のこぎり等)、ボイラー、ホッパー、パイプ、オーブン、焼き型、シュート、ダイス、便器、コンテナ被覆材として有用である。 The laminate of the F layer and other base materials is useful as antenna parts, printed substrates, aircraft parts, automobile parts, sports equipment, food industry supplies, paints, cosmetics, etc., and specifically, wire coating. Materials (aircraft wires, etc.), electrical insulating tapes, insulating tapes for oil drilling, materials for printed substrates, separation membranes (precision filtration membranes, ultrafiltration membranes, reverse osmosis membranes, ion exchange membranes, dialysis membranes, gas separation membranes) Etc.), electrode binders (for lithium secondary batteries, fuel cells, etc.), copy rolls, furniture, automobile dashboards, covers for home appliances, sliding members (load bearings, sliding shafts, valves, bearings, gears, cams, etc.) , Belt conveyor, food transport belt, etc.), tools (shovel, razor, cut, saw, etc.), boiler, hopper, pipe, oven, baking mold, chute, die, toilet bowl, container covering material.
 上述のとおり、本法によれば分散性と分散安定性に優れた本分散液が得られる。また、本分散液から分散媒を除去すると、Fパウダーおよび無機フィラーを含有する、分散性及び分散安定性に優れる複合粒子が得られる。かかる複合粒子は各種ワニス(レジスト、インク、塗料等)の添加剤、改質剤として有効に使用できFポリマーの物性を付与できる。 As described above, according to this method, the present dispersion having excellent dispersibility and dispersion stability can be obtained. Further, when the dispersion medium is removed from the present dispersion liquid, composite particles containing F powder and an inorganic filler and having excellent dispersibility and dispersion stability can be obtained. Such composite particles can be effectively used as additives and modifiers for various varnishes (resist, ink, paint, etc.) and can impart physical properties of F polymer.
 以上、本法、本分散液及び本粒子(複合粒子)について説明したが、本発明は、前述した実施形態の構成に限定されない。
 例えば、本法は、上記実施形態の構成において、他の任意の工程を追加で有してもよいし、同様の作用を生じる任意の工程と置換されていてよい。また本分散液および本粒子は、上記実施形態の構成において、他の任意の構成を追加してもよいし、同様の機能を発揮する任意の構成と置換されていてよい。
Although the present method, the present dispersion and the present particles (composite particles) have been described above, the present invention is not limited to the configuration of the above-described embodiment.
For example, this method may additionally have any other step in the configuration of the above embodiment, or may be replaced with any step that produces the same action. Further, the dispersion liquid and the particles may be added to any other configuration or may be replaced with any configuration exhibiting the same function in the configuration of the above embodiment.
 以下、実施例によって本発明を詳細に説明するが、本発明はこれらに限定されない。
 各成分の詳細を以下に示す。
[Fパウダー]
 Fパウダー1:TFE単位、NAH単位及びPPVE単位を、この順に97.9モル%、0.1モル%、2.0モル%含む、酸無水物基を有するポリマー(溶融温度300℃、酸無水物基の含有量:主鎖の炭素数1×10個あたり1000個)からなる粒子(平均粒子径2μm、嵩密度0.18g/m
 Fパウダ-2:TFE単位及びNAH単位を、この順に97.5モル%、2.5モル%含む、官能基を有さないポリマー(溶融温度305℃)からなる粒子(平均粒子径2μm、嵩密度0.19g/m
 Fパウダー3:数平均分子量が2万のPTFEからなる粒子(平均粒子径0.3μm、嵩密度0.2g/m
[無機フィラー]
 フィラー1:シリカフィラー(略真球状、平均粒子径0.4μm)、シランカップリング剤で表面処理されている
 フィラー2:シリカフィラー(略真球状、平均粒子径5μm)、シランカップリング剤で表面処理されている
 フィラー3:窒化ホウ素フィラー(鱗片状、平均粒子径8μm)
 フィラー4:窒化ホウ素フィラー(鱗片状、平均粒子径4μm)
 フィラー5:シリカフィラー(略真球状、平均粒子径0.03μm)、シランカップリング剤で表面処理されている
 フィラー6:シリカフィラー(略真球状、平均粒子径0.4μm)、シランカップリング剤で表面処理されていない
 なお、フィラー3及び4は、異方性のフィラーである。
[分散媒]
 NMP:N-メチル-2-ピロリドン
[ワニス]
 ワニス1:熱可塑性の芳香族ポリイミド(PI1)がNMPに溶解したワニス
[シランカップリング剤]
 剤1:3-アミノプロピルトリエトキシシラン
Hereinafter, the present invention will be described in detail by way of examples, but the present invention is not limited thereto.
Details of each component are shown below.
[F powder]
F powder 1: A polymer having an acid anhydride group containing 97.9 mol%, 0.1 mol%, and 2.0 mol% of TFE unit, NAH unit, and PPVE unit in this order (melting temperature 300 ° C., acid anhydride). Content of polymer: 1000 particles per 1 × 10 6 carbon atoms in the main chain) (average particle diameter 2 μm, bulk density 0.18 g / m 2 )
F powder-2: Particles (average particle diameter 2 μm, bulk) composed of a functional group-free polymer (melting temperature 305 ° C.) containing 97.5 mol% and 2.5 mol% of TFE units and NAH units in this order. Density 0.19 g / m 2 )
F powder 3: Particles composed of PTFE having a number average molecular weight of 20,000 (average particle diameter 0.3 μm, bulk density 0.2 g / m 2 )
[Inorganic filler]
Filler 1: Silica filler (substantially spherical, average particle diameter 0.4 μm), surface treated with silane coupling agent Filler 2: Silica filler (substantially spherical, average particle diameter 5 μm), surface treated with silane coupling agent Treated filler 3: Borone nitride filler (scaly, average particle size 8 μm)
Filler 4: Boron nitride filler (scaly, average particle size 4 μm)
Filler 5: Silica filler (substantially spherical, average particle diameter 0.03 μm), surface-treated with silane coupling agent Filler 6: Silica filler (substantially spherical, average particle diameter 0.4 μm), silane coupling agent The fillers 3 and 4 are anisotropic fillers.
[Dispersion medium]
NMP: N-methyl-2-pyrrolidone [varnish]
Varnish 1: A varnish in which thermoplastic aromatic polyimide (PI1) is dissolved in NMP [silane coupling agent]
Agent 1: 3-aminopropyltriethoxysilane
1.分散液の製造及び評価(その1)
[例1-1]
(1)撹拌翼を備えた槽に、NMP、及びワニス1を加え、槽内を充分に撹拌した。次いで、Fパウダー1を槽内に加えて、10分間撹拌して、Fパウダー1が分散した液状組成物(Fパウダー含有量:33質量%)を調製した。
 その後、フィラー1を投入し、槽内を800rpmで15分間撹拌し、上昇流を形成させた状態にて剪断処理し、Fパウダー1(20質量部)、フィラー1(20質量部)、ワニス1(PI1として1質量部)及びNMP(59質量部)を含む分散液1を得た。
(2)得られた分散液1の粘度は400mPa・sであり、ボールミルで、500rpmで72時間撹拌しても増粘せず、その成分沈降率を下記に従って評価した結果「〇」であった。
 <成分沈降率の評価基準>
  〇:成分沈降率が、60%以上である。
  △:成分沈降率が、40%超60%以下である。
  ×:成分沈降率が、40%以下である。
1. 1. Production and evaluation of dispersion (1)
[Example 1-1]
(1) NMP and varnish 1 were added to a tank equipped with a stirring blade, and the inside of the tank was sufficiently stirred. Next, F powder 1 was added to the tank and stirred for 10 minutes to prepare a liquid composition (F powder content: 33% by mass) in which F powder 1 was dispersed.
After that, the filler 1 is added, the inside of the tank is stirred at 800 rpm for 15 minutes, and the shearing treatment is performed in a state where an ascending flow is formed. F powder 1 (20 parts by mass), filler 1 (20 parts by mass), varnish 1 A dispersion 1 containing (1 part by mass as PI1) and NMP (59 parts by mass) was obtained.
(2) The viscosity of the obtained dispersion liquid 1 was 400 mPa · s, and the viscosity did not increase even when stirred at 500 rpm for 72 hours with a ball mill, and the component sedimentation rate was evaluated according to the following, and the result was “〇”. ..
<Evaluation criteria for component sedimentation rate>
◯: The erythrocyte sedimentation rate is 60% or more.
Δ: The erythrocyte sedimentation rate is more than 40% and 60% or less.
X: The erythrocyte sedimentation rate is 40% or less.
 分散液1の調製直後の状態と、容器中に25℃で3時間保管後の状態とを目視にて確認し、分散安定性を下記基準に従って評価した。
 <分散安定性の評価基準>
  〇:調製直後及び保管後、共に泡立ちが少なく凝集物は見られず、均一分散している
  △:調製直後及び保管後、共に一部凝集物が観察される
  ×:凝集物が多くみられ均一に分散していない
The state immediately after the preparation of the dispersion liquid 1 and the state after storage in the container at 25 ° C. for 3 hours were visually confirmed, and the dispersion stability was evaluated according to the following criteria.
<Evaluation criteria for dispersion stability>
〇: Immediately after preparation and after storage, there is little foaming and no agglomerates are observed, and the particles are uniformly dispersed. Not dispersed in
(3)得られた分散液1を数滴、ガラス基板上に滴下して120℃で5分風乾させた。得られた固形分を走査型電子顕微鏡(SEM)で観察したところ、Fパウダー1をコアとし、フィラー1をシェルとする複合粒子が形成していることを確認した。
 分散液1を減圧下で濃縮して30質量部のNMPを留去した後、濾過した。次に、得られた濾渣を25℃にて真空乾燥して、複合粒子1(D50:12μm)を得た。複合粒子1の粒子沈降率を、複合粒子1(40質量部)とNMP(60質量部)を含む液状組成物を作製して、上記成分沈降率と同様に評価した結果、「〇」であった。
(3) A few drops of the obtained dispersion liquid 1 were dropped onto a glass substrate and air-dried at 120 ° C. for 5 minutes. When the obtained solid content was observed with a scanning electron microscope (SEM), it was confirmed that composite particles having F powder 1 as a core and filler 1 as a shell were formed.
The dispersion 1 was concentrated under reduced pressure to distill off 30 parts by mass of NMP, and then filtered. Next, the obtained filtrate was vacuum dried at 25 ° C. to obtain composite particles 1 (D50: 12 μm). The erythrocyte sedimentation rate of the composite particles 1 was "○" as a result of preparing a liquid composition containing the composite particles 1 (40 parts by mass) and NMP (60 parts by mass) and evaluating the same as the above component sedimentation rate. rice field.
[例1-2~例1-8]
 各成分の種類及び量を下表1に示す通りに変更した以外は、例1-1と同様にして分散液2~8と複合粒子2~8を得た。
 例1-7においては、剪断処理における撹拌速度を上げて、得られる分散液の粘度を調整した。
 例1-8においては、NMP及びワニス1に加えてフィラー5も予め槽に入れた状態で撹拌し、そこにFパウダー1を加えて、分散液を製造した。
 得られた分散液及び複合粒子の評価結果を表1に示す。
[Example 1-2 to Example 1-8]
Dispersions 2 to 8 and composite particles 2 to 8 were obtained in the same manner as in Example 1-1, except that the type and amount of each component were changed as shown in Table 1 below.
In Example 1-7, the stirring speed in the shearing treatment was increased to adjust the viscosity of the obtained dispersion.
In Example 1-8, in addition to NMP and varnish 1, the filler 5 was also stirred in a tank in advance, and F powder 1 was added thereto to produce a dispersion liquid.
Table 1 shows the evaluation results of the obtained dispersion liquid and composite particles.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
2.積層体の製造及び評価(その1)
[例2-1]
 長尺の銅箔(厚さ18μm)の表面に、バーコーターを用いて分散液1を塗布して、ウェット膜を形成した。次いで、このウェット膜が形成された金属箔を、110℃にて5分間、乾燥炉に通し、加熱により乾燥させてドライ膜を得た。その後、窒素オーブン中で、ドライ膜を380℃にて3分間、加熱した。これにより、金属箔と、その表面にFパウダー1の溶融焼成物、フィラー1及びPI1を含む、成形物としてのポリマー層(厚さ20μm)とを有する積層体1を製造した。積層体1の断面を、走査型電子顕微鏡(SEM)を用いて観察し、空隙率を以下の基準に従って評価した。
<空隙率の評価基準>
 〇:その空隙率が0%以上5%以下である。
 ×:その空隙率が5%超である。
2. 2. Manufacture and evaluation of laminate (1)
[Example 2-1]
The dispersion liquid 1 was applied to the surface of a long copper foil (thickness 18 μm) using a bar coater to form a wet film. Next, the metal foil on which the wet film was formed was passed through a drying oven at 110 ° C. for 5 minutes and dried by heating to obtain a dry film. Then, the dry membrane was heated at 380 ° C. for 3 minutes in a nitrogen oven. As a result, a laminate 1 having a metal foil and a polymer layer (thickness 20 μm) as a molded product containing a melt-fired product of F powder 1 and filler 1 and PI1 on the surface thereof was produced. The cross section of the laminated body 1 was observed using a scanning electron microscope (SEM), and the porosity was evaluated according to the following criteria.
<Evaluation criteria for porosity>
〇: The porosity is 0% or more and 5% or less.
X: The porosity is more than 5%.
<電気特性>
 積層体1から、長さ100mm、幅50mmの矩形状の試験片を切り出し、塩化第二鉄水溶液でエッチングして銅箔を除去し、ポリマー層単体を得た。ポリマー層単体を85℃かつ相対湿度85%の雰囲気下にて72時間保持した後、SPDR(スプリットポスト誘電体共振)法にて、ポリマー層の誘電正接(測定周波数:10GHz)を測定し、以下の基準に従って評価した。
[吸水後の電気特性の評価基準]
 〇:その誘電正接が0.0020未満である。
 △:その誘電正接が0.0020以上0.0040以下である。
 ×:その誘電正接が0.0040超である。
<Electrical characteristics>
A rectangular test piece having a length of 100 mm and a width of 50 mm was cut out from the laminate 1 and etched with an aqueous ferric chloride solution to remove the copper foil to obtain a single polymer layer. After holding the polymer layer alone in an atmosphere of 85 ° C. and 85% relative humidity for 72 hours, the dielectric loss tangent (measurement frequency: 10 GHz) of the polymer layer was measured by the SPDR (split post dielectric resonance) method. It was evaluated according to the criteria of.
[Evaluation criteria for electrical characteristics after water absorption]
〇: The dielectric loss tangent is less than 0.0020.
Δ: The dielectric loss tangent is 0.0020 or more and 0.0040 or less.
X: The dielectric loss tangent is more than 0.0040.
<線膨張係数>
 積層体1の銅箔を塩化第二鉄水溶液でエッチングにより除去して単独のポリマー層を作製した。作成したポリマー層から180mm角の四角い試験片を切り出し、JIS C 6471:1995に規定される測定方法に従って、25℃以上260℃以下の範囲における、試験片の線膨張係数を測定し、下記の基準に従って評価した。
[線膨張係数の評価基準]
 〇:50ppm/℃以下である。
 △:50ppm/℃超、75ppm/℃以下である。
 ×:75ppm/℃超である。
<Linear expansion coefficient>
The copper foil of the laminate 1 was removed by etching with an aqueous solution of ferric chloride to prepare a single polymer layer. A 180 mm square test piece is cut out from the prepared polymer layer, and the linear expansion coefficient of the test piece is measured in the range of 25 ° C. or higher and 260 ° C. or lower according to the measurement method specified in JIS C 6471: 1995, and the following criteria are used. Evaluated according to.
[Evaluation criteria for coefficient of linear expansion]
〇: 50 ppm / ° C or less.
Δ: More than 50 ppm / ° C. and 75 ppm / ° C. or less.
X: Over 75 ppm / ° C.
[例2-2~例2-7]
 分散液2~7を各々用いた以外は例2-1と同様にして積層体2~7を得た。各積層体についての評価結果を表2に示す。
[Example 2-2 to Example 2-7]
Laminates 2 to 7 were obtained in the same manner as in Example 2-1 except that the dispersions 2 to 7 were used respectively. Table 2 shows the evaluation results for each laminated body.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
3.分散液の製造及び評価(その2)
[例3-1]
 撹拌翼を備えた槽に、NMP、及びワニス1を加え撹拌し、次にFパウダー1を加えて撹拌して、Fパウダー1が分散した液状組成物を調製した。
 その後、フィラー1を投入し、槽内を撹拌し上昇流を形成させつつ、槽内溶液を剪断処理した。剪断処理中、槽内の液温は25℃に、槽内の液粘度は10000mPa・s以下に保持した。得られたFパウダー1(35質量部)、フィラー1(40質量部)、ワニス1(PI1として1質量部)及びNMP(残部)を含む液状組成物を調製し、さらにNMPを加えて分散液31(粘度:300mPa・s)を得た。
 分散液31を数滴、ガラス基板上に滴下して120℃で5分風乾させ、Fパウダー1をコアとし、フィラー1をシェルとする複合粒子31(D50:8μm)を得た。
3. 3. Production and evaluation of dispersion liquid (Part 2)
[Example 3-1]
NMP and varnish 1 were added to a tank provided with a stirring blade and stirred, and then F powder 1 was added and stirred to prepare a liquid composition in which F powder 1 was dispersed.
Then, the filler 1 was added, and the solution in the tank was sheared while stirring the inside of the tank to form an ascending flow. During the shearing treatment, the liquid temperature in the tank was kept at 25 ° C., and the viscosity of the liquid in the tank was kept below 10000 mPa · s. A liquid composition containing the obtained F powder 1 (35 parts by mass), filler 1 (40 parts by mass), varnish 1 (1 part by mass as PI1) and NMP (remaining portion) was prepared, and further NMP was added to the dispersion liquid. 31 (viscosity: 300 mPa · s) was obtained.
A few drops of the dispersion liquid 31 were dropped onto a glass substrate and air-dried at 120 ° C. for 5 minutes to obtain composite particles 31 (D50: 8 μm) having F powder 1 as a core and filler 1 as a shell.
[例3-2]
 Fパウダー1の含有量に対して1質量%となる様に剤1をさらに加える以外は、例3-1と同様にして分散液32を得た。さらに分散液31を分散液32に変更する以外は例3-1と同様にして複合粒子32(D50:8μm)を得た。
[例3-3]
 例3-1の剪断処理に伴う槽内の液温上昇を制御せず、剪断処理中の槽内の液温が一時的に50℃を超えた以外は、例3-1と同様にして分散液33を得た。さらに分散液31を分散液33に変更する以外は例3-1と同様にして複合粒子33を得た。
[例3-4]
 剪断処理における撹拌を強め、剪断処理中の槽内の液粘度が10000mPa・sを超えた以外は、例3-1と同様にして分散液34を得た。さらに分散液31を分散液34に変更する以外は例3-1と同様にして複合粒子34を得た。
[例3-5]
 フィラー1をフィラー6に変更した以外は、例3-1と同様にして分散液35を得た。さらに分散液31を分散液35に変更する以外は例3-1と同様にして複合粒子35を得た。
[Example 3-2]
A dispersion liquid 32 was obtained in the same manner as in Example 3-1 except that the agent 1 was further added so as to be 1% by mass with respect to the content of the F powder 1. Further, composite particles 32 (D50: 8 μm) were obtained in the same manner as in Example 3-1 except that the dispersion liquid 31 was changed to the dispersion liquid 32.
[Example 3-3]
Dispersion is performed in the same manner as in Example 3-1 except that the increase in the liquid temperature in the tank due to the shearing treatment of Example 3-1 is not controlled and the liquid temperature in the tank during the shearing treatment temporarily exceeds 50 ° C. Liquid 33 was obtained. Further, the composite particles 33 were obtained in the same manner as in Example 3-1 except that the dispersion liquid 31 was changed to the dispersion liquid 33.
[Example 3-4]
The dispersion liquid 34 was obtained in the same manner as in Example 3-1 except that the stirring in the shearing treatment was strengthened and the viscosity of the liquid in the tank during the shearing treatment exceeded 10,000 mPa · s. Further, the composite particles 34 were obtained in the same manner as in Example 3-1 except that the dispersion liquid 31 was changed to the dispersion liquid 34.
[Example 3-5]
The dispersion liquid 35 was obtained in the same manner as in Example 3-1 except that the filler 1 was changed to the filler 6. Further, the composite particles 35 were obtained in the same manner as in Example 3-1 except that the dispersion liquid 31 was changed to the dispersion liquid 35.
 得られた分散液31~35のそれぞれに関して、分散安定性と成分沈降率とを上記「例1-1」と同様にして評価した。複合粒子31及び複合粒子32に関しては、粒子沈降率を上記「例1-1」と同様にして評価した。
 その結果を表3に示す。
For each of the obtained dispersions 31 to 35, the dispersion stability and the erythrocyte sedimentation rate were evaluated in the same manner as in "Example 1-1". With respect to the composite particles 31 and the composite particles 32, the erythrocyte sedimentation rate was evaluated in the same manner as in "Example 1-1".
The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
4.積層体の製造及び評価(その2)
 分散液1を分散液31、分散液32に各々変更した以外は、例2-1と同様にして積層体31、積層体32を得た。
 積層体32は積層体31に比較して、ポリマー層の端部や曲面部において無機フィラーの粉落ちが抑制されていた。
4. Manufacture and evaluation of laminate (Part 2)
The laminated body 31 and the laminated body 32 were obtained in the same manner as in Example 2-1 except that the dispersion liquid 1 was changed to the dispersion liquid 31 and the dispersion liquid 32, respectively.
In the laminated body 32, as compared with the laminated body 31, powder falling of the inorganic filler was suppressed at the end portion and the curved surface portion of the polymer layer.
 本発明の方法で製造される分散液は分散安定性に優れ、フィルム、繊維強化フィルム、プリプレグ、金属積層板(樹脂付金属箔)に容易に加工できる。得られる加工物品は、アンテナ部品、プリント基板、航空機用部品、自動車用部品、スポーツ用具、食品工業用品、すべり軸受け等の材料として使用できる。
 また、かかる分散液から得られる複合粒子は、各種ワニス(レジスト、インク、塗料等)の添加剤、改質剤として有効に使用できる。
The dispersion liquid produced by the method of the present invention has excellent dispersion stability and can be easily processed into a film, a fiber reinforced film, a prepreg, and a metal laminated plate (metal foil with resin). The obtained processed article can be used as a material for antenna parts, printed circuit boards, aircraft parts, automobile parts, sports equipment, food industry goods, sliding bearings and the like.
Further, the composite particles obtained from the dispersion liquid can be effectively used as additives and modifiers for various varnishes (resist, ink, paint, etc.).

Claims (15)

  1.  熱溶融性のテトラフルオロエチレン系ポリマーの粒子、無機化合物のフィラー、及び極性の液状分散媒を含有する液状組成物を剪断処理して、前記テトラフルオロエチレン系ポリマー、前記無機化合物のフィラー及び前記液状分散媒を含む分散液を得る、分散液の製造方法。 A liquid composition containing particles of a heat-meltable tetrafluoroethylene polymer, a filler of an inorganic compound, and a polar liquid dispersion medium is sheared to the tetrafluoroethylene polymer, the filler of the inorganic compound, and the liquid. A method for producing a dispersion liquid, which obtains a dispersion liquid containing a dispersion medium.
  2.  前記テトラフルオロエチレン系ポリマーが、ペルフルオロ(アルキルビニルエーテル)に基づく単位を含み、極性官能基を有するテトラフルオロエチレン系ポリマー、及び、全単位に対してペルフルオロ(アルキルビニルエーテル)に基づく単位を2.0~5.0モル%含み、極性官能基を有さないテトラフルオロエチレン系ポリマーからなる群から選ばれる少なくとも1種である、請求項1に記載の製造方法。 The tetrafluoroethylene-based polymer contains a unit based on perfluoro (alkyl vinyl ether), and has a tetrafluoroethylene-based polymer having a polar functional group, and 2.0 to 2.0 to all units are based on perfluoro (alkyl vinyl ether). The production method according to claim 1, wherein the production method is at least one selected from the group consisting of a tetrafluoroethylene-based polymer containing 5.0 mol% and having no polar functional group.
  3.  前記液状分散媒がアミド、ケトン及びエステルから選択される少なくとも1種である、請求項1又は請求項2に記載の製造方法。 The production method according to claim 1 or 2, wherein the liquid dispersion medium is at least one selected from amides, ketones and esters.
  4.  前記テトラフルオロエチレン系ポリマーの粒子と前記無機化合物のフィラーの合計含有量が、前記液状組成物の全体質量に対して40質量%以上である、請求項1~3のいずれか1項に記載の製造方法。 The invention according to any one of claims 1 to 3, wherein the total content of the particles of the tetrafluoroethylene polymer and the filler of the inorganic compound is 40% by mass or more with respect to the total mass of the liquid composition. Production method.
  5.  前記液状組成物中の、前記テトラフルオロエチレン系ポリマーの粒子と前記無機化合物のフィラーの質量比が、前記粒子の質量を1として、前記フィラーの質量が0.01~2.0である、請求項1~4のいずれか1項に記載の製造方法。 The mass ratio of the particles of the tetrafluoroethylene polymer to the filler of the inorganic compound in the liquid composition is 0.01 to 2.0, where the mass of the particles is 1 and the mass of the filler is 0.01 to 2.0. Item 6. The manufacturing method according to any one of Items 1 to 4.
  6.  前記液状組成物が、前記テトラフルオロエチレン系ポリマーの粒子を20~40質量%、前記無機化合物のフィラーを5~40質量%含む、請求項1~5のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 5, wherein the liquid composition contains 20 to 40% by mass of particles of the tetrafluoroethylene polymer and 5 to 40% by mass of a filler of the inorganic compound.
  7.  前記液状組成物中の前記無機化合物のフィラーの平均粒子径(体積基準累積50%径)が、前記テトラフルオロエチレン系ポリマーの粒子の平均粒子径(体積基準累積50%径)を基準として0.0001~0.5である、請求項1~6のいずれか1項に記載の製造方法。 The average particle size (volume-based cumulative 50% diameter) of the filler of the inorganic compound in the liquid composition is 0, based on the average particle size (volume-based cumulative 50% diameter) of the particles of the tetrafluoroethylene polymer. The production method according to any one of claims 1 to 6, which is 0001 to 0.5.
  8.  剪断処理中の液温を、70℃以下に保持する、請求項1~7のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 7, wherein the liquid temperature during the shearing treatment is maintained at 70 ° C. or lower.
  9.  剪断処理中の液粘度を、100000mPa・s以下に保持する、請求項1~8のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 8, wherein the liquid viscosity during the shearing treatment is maintained at 100,000 mPa · s or less.
  10.  前記無機化合物のフィラーが、シリカフィラーである、請求項1~9のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 9, wherein the filler of the inorganic compound is a silica filler.
  11.  前記無機化合物のフィラーが、シランカップリング剤で表面処理されている、請求項1~10のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 10, wherein the filler of the inorganic compound is surface-treated with a silane coupling agent.
  12.  前記液状組成物が、さらにシランカップリング剤を含む、請求項1~11のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 11, wherein the liquid composition further contains a silane coupling agent.
  13.  粘度が100000mPa・s以下である分散液を得る、請求項1~12のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 12, which obtains a dispersion having a viscosity of 100,000 mPa · s or less.
  14.  成分沈降率が60%以上である分散液を得る、請求項1~13のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 13, which obtains a dispersion having a component sedimentation rate of 60% or more.
  15.  請求項1~14のいずれか1項に記載の製造方法により分散液を得、さらに前記液状分散媒を除去して、前記テトラフルオロエチレン系ポリマーの粒子と前記無機化合物のフィラーを含む複合粒子を得る、複合粒子の製造方法。 A dispersion liquid is obtained by the production method according to any one of claims 1 to 14, and the liquid dispersion medium is further removed to obtain composite particles containing the tetrafluoroethylene polymer particles and the inorganic compound filler. Obtaining, a method for producing composite particles.
PCT/JP2021/019727 2020-05-28 2021-05-25 Method for producing dispersion WO2021241547A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180038356.2A CN115667377A (en) 2020-05-28 2021-05-25 Method for producing dispersion liquid
JP2022526565A JPWO2021241547A1 (en) 2020-05-28 2021-05-25

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020093304 2020-05-28
JP2020-093304 2020-05-28
JP2020-111771 2020-06-29
JP2020111771 2020-06-29

Publications (1)

Publication Number Publication Date
WO2021241547A1 true WO2021241547A1 (en) 2021-12-02

Family

ID=78744448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019727 WO2021241547A1 (en) 2020-05-28 2021-05-25 Method for producing dispersion

Country Status (4)

Country Link
JP (1) JPWO2021241547A1 (en)
CN (1) CN115667377A (en)
TW (1) TW202204486A (en)
WO (1) WO2021241547A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023234377A1 (en) * 2022-06-03 2023-12-07 Agc株式会社 Elongated laminated substrate, elongated sheet roll, and methods for manufacturing these
WO2024053554A1 (en) * 2022-09-09 2024-03-14 Agc株式会社 Liquid composition and method for producing laminate using liquid composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018016644A1 (en) * 2016-07-22 2018-01-25 旭硝子株式会社 Liquid composition, and method for manufacturing film and layered body using same
WO2020071381A1 (en) * 2018-10-03 2020-04-09 Agc株式会社 Dispersion
WO2020090607A1 (en) * 2018-10-30 2020-05-07 Agc株式会社 Dispersion

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018016644A1 (en) * 2016-07-22 2018-01-25 旭硝子株式会社 Liquid composition, and method for manufacturing film and layered body using same
WO2020071381A1 (en) * 2018-10-03 2020-04-09 Agc株式会社 Dispersion
WO2020090607A1 (en) * 2018-10-30 2020-05-07 Agc株式会社 Dispersion

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023234377A1 (en) * 2022-06-03 2023-12-07 Agc株式会社 Elongated laminated substrate, elongated sheet roll, and methods for manufacturing these
WO2024053554A1 (en) * 2022-09-09 2024-03-14 Agc株式会社 Liquid composition and method for producing laminate using liquid composition

Also Published As

Publication number Publication date
TW202204486A (en) 2022-02-01
CN115667377A (en) 2023-01-31
JPWO2021241547A1 (en) 2021-12-02

Similar Documents

Publication Publication Date Title
WO2021241547A1 (en) Method for producing dispersion
WO2021095662A1 (en) Nonaqueous dispersions, method for producing layered product, and molded object
JP2022011017A (en) Powder dispersion and laminate manufacturing method
CN114729171B (en) Dispersion, method for producing dispersion, and molded article
WO2022145333A1 (en) Aqueous dispersion and method for producing same
WO2020184437A1 (en) Liquid composition, powder, and method for producing said powder
WO2022149551A1 (en) Method for producing tetrafluoroethylene-based polymer composition, composition, metal-clad laminate, and stretched sheet
WO2022050253A1 (en) Powder dispersion and production method for composite
WO2021235252A1 (en) Method for producing laminate which has layer containing thermofusible tetrafluoroethylene polymer
WO2021246306A1 (en) Method for producing powder, powder and powder dispersion liquid
WO2022019252A1 (en) Powder composition and composite particles
WO2021132055A1 (en) Dispersion liquid
JP2020037661A (en) Fluororesin film, method for producing fluid dispersion and method for producing base material having fluororesin film
JP2022061412A (en) Production method of liquid composition and production method of laminate
WO2022138483A1 (en) Aqueous dispersion
JP7511117B2 (en) Composite particles, method for producing composite particles, liquid composition, method for producing laminate, and method for producing film
WO2022019223A1 (en) Dispersion, composite particles, and method for producing composite particles
JP2021167368A (en) Liquid composition, and production method of laminate
WO2021193505A1 (en) Composite particle, composite particle production method, liquid composition, laminate manufacturing method, and film manufacturing method
JP2022061774A (en) Manufacturing method of dispersion liquid and manufacturing method of laminated body
JP7511109B2 (en) Method for producing liquid composition, impregnated substrate, polymer-carrying substrate, and laminate
TW202311422A (en) Sheet
WO2022009918A1 (en) Sizing agent, sized fibers, prepreg, and dispersion
JP2022072333A (en) Composition including tetrafluoroethylene polymer, liquid composition comprising the composition, laminate and film
JP2023019614A (en) Composition and production method of laminate having layer formed from composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21813328

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022526565

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21813328

Country of ref document: EP

Kind code of ref document: A1