WO2020071381A1 - Dispersion - Google Patents

Dispersion

Info

Publication number
WO2020071381A1
WO2020071381A1 PCT/JP2019/038791 JP2019038791W WO2020071381A1 WO 2020071381 A1 WO2020071381 A1 WO 2020071381A1 JP 2019038791 W JP2019038791 W JP 2019038791W WO 2020071381 A1 WO2020071381 A1 WO 2020071381A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
dispersion
polymer
tetrafluoroethylene
powder
Prior art date
Application number
PCT/JP2019/038791
Other languages
French (fr)
Japanese (ja)
Inventor
敦美 山邊
細田 朋也
渉 笠井
達也 寺田
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to CN201980065446.3A priority Critical patent/CN112805330B/en
Priority to JP2020550464A priority patent/JPWO2020071381A1/en
Publication of WO2020071381A1 publication Critical patent/WO2020071381A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/06Ethers; Acetals; Ketals; Ortho-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides

Definitions

  • the present invention relates to a dispersion containing a liquid dispersion medium, a powder of tetrafluoroethylene-based polymer, and a predetermined fluorine-based dispersant, a method for producing a laminate using the dispersion, and a method for producing a coated woven fabric.
  • Tetrafluoroethylene polymers such as polytetrafluoroethylene, copolymers of tetrafluoroethylene and perfluoro (alkyl vinyl ether), and copolymers of tetrafluoroethylene and hexafluoropropylene, have releasability, electrical properties, water and oil repellency, and chemical resistance. It has excellent physical properties such as weather resistance and heat resistance, and is used for various industrial applications.
  • a layer (resin layer) of the tetrafluoroethylene-based polymer can be formed on the surface, and the above-mentioned properties can be imparted to the substrate. Therefore, it is useful as a coating agent.
  • Patent Document 1 discloses a non-aqueous medium, a powder of a tetrafluoroethylene-based polymer, and a compound represented by the formula R pf- (OQ p1 ) q (OQ p2 ) r -OH (where R pf is a carbon number).
  • R pf is a carbon number
  • Q p1 and Q p1 represent an alkylene group having 2 to 4 carbon atoms
  • q represents an integer of 1 to 12
  • r represents an integer of 0 to 12.
  • Tetrafluoroethylene-based polymers have inherently low surface tension and low interaction with other materials. For this reason, the dispersion in which the powder is dispersed in the organic dispersion medium has low dispersibility, and the powder tends to precipitate in a cake form. Further, it is not easy to re-disperse the precipitated powder.
  • the non-aqueous dispersion described in Patent Document 1 contains the above compound as a dispersant, and is said to be excellent in such dispersibility and redispersibility.
  • the dispersion liquid is not limited to the dispersibility and redispersibility of the powder, but is chemically inert, and has other dispersive properties such as viscosity, color tone, and thixotropic ratio, adhesiveness, transparency, and defoaming property. It is also required to be excellent in resin layer forming properties such as hardly falling off powder.
  • a dispersion comprising a liquid dispersion medium, a powder of a tetrafluoroethylene-based polymer and a dispersant, wherein the powder is dispersed in the liquid dispersion medium, wherein the dispersant is a fluorine-containing site and a secondary hydroxyl group site or A dispersion, which is a compound having a tertiary hydroxyl group.
  • the powder is a powder having a volume-based cumulative 50% diameter of 0.05 to 6 ⁇ m.
  • the tetrafluoroethylene-based polymer is a polymer including a unit based on tetrafluoroethylene and a unit based on perfluoro (alkyl vinyl ether), a unit based on hexafluoropropylene, or a unit based on fluoroalkylethylene.
  • a woven fabric coated with a resin layer containing a tetrafluoroethylene-based polymer by impregnating a woven fabric with the dispersion according to any one of [1] to [13], and further drying the woven fabric.
  • ADVANTAGE OF THE INVENTION in addition to dispersibility and re-dispersibility, it is excellent also in other dispersing properties and resin layer forming properties, and can provide a tetrafluoroethylene-based polymer layer on the surface of various base materials. Is done.
  • D50 of powder is a point where the particle size distribution of a powder is measured by a laser diffraction / scattering method, a cumulative curve is obtained with the total volume of a group of powder particles being 100%, and the cumulative volume is 50% on the cumulative curve. (A cumulative 50% diameter based on volume).
  • D90 of powder is a point where the particle size distribution of a powder is measured by a laser diffraction / scattering method, a cumulative curve is determined with the total volume of a group of powder particles being 100%, and the cumulative volume on the cumulative curve is 90%. (90% diameter based on volume).
  • the “melt viscosity of polymer” was measured according to ASTM D 1238 by using a flow tester and a 2 ⁇ -8L die and applying a 0.7 MPa load to a polymer sample (2 g) that had been heated at a measurement temperature for 5 minutes in advance. Is a value measured at a measurement temperature.
  • the melting point (melting temperature) of a polymer is the temperature corresponding to the maximum value of the melting peak measured by differential scanning calorimetry (DSC).
  • “Viscosity” is a value measured using a B-type viscometer at room temperature (25 ° C.) and at a rotation speed of 30 rpm. The measurement is repeated three times, and the average value of the three measured values is used.
  • the “thixo ratio” is a value calculated by dividing the viscosity ⁇ 1 of the liquid composition measured at a rotation speed of 30 rpm by the viscosity ⁇ 2 of the liquid composition measured at a rotation speed of 60 rpm ( ⁇ 1 / ⁇ 2 ).
  • “Ten-point average roughness (Rz JIS )” is a value defined in Annex JA of JIS B 0601: 2013.
  • the “unit” in the polymer is a general term for an atomic group derived from one molecule of the monomer formed by polymerization of the monomer, and an atomic group obtained by chemically converting a part of the atomic group.
  • the ⁇ unit '' in the polymer may be an atomic group directly formed from a monomer by a polymerization reaction, or an atomic group obtained by treating a polymer obtained by a polymerization reaction by a predetermined method and converting a part of the structure. It may be.
  • the dispersion of the present invention includes a liquid dispersion medium, a powder of a tetrafluoroethylene-based polymer (hereinafter, also referred to as “TFE-based polymer”) and a dispersant, and is a dispersion in which the powder is dispersed in the liquid dispersion medium. is there.
  • the dispersant is a compound having a fluorine-containing site and a secondary hydroxyl group site or a tertiary hydroxyl group site (hereinafter, also referred to as “predetermined dispersant”).
  • Dispersion of the present invention in addition to dispersibility and redispersibility, low chemical activity, excellent viscosity, excellent dispersive properties such as color tone, thixotropic ratio, adhesiveness, transparency, defoaming, powder falling Excellent resin layer forming properties such as difficulty.
  • the reason for this is that the secondary or tertiary hydroxyl group of a given dispersant has lower activity (reaction activity, acidity, etc.) and polarity, and lower hydrophilicity than a dispersant having a primary hydroxyl group. Points. That is, it is considered that the predetermined dispersant has a lower interaction with the hydrophilic component than the conventional dispersant, but has a relatively stronger interaction with the TFE-based polymer. As a result, it is considered that a dispersion having low chemical activity and excellent in the properties of the dispersion and the resin layer was obtained. This effect is remarkably exhibited in a preferred embodiment of the present invention described later.
  • the D50 of the powder in the present invention is preferably from 0.05 to 6 ⁇ m, particularly preferably from 0.1 to 3 ⁇ m.
  • the fluidity and dispersibility of the powder are further enhanced, and the resin layer or layer (hereinafter, also referred to as “F layer”) formed from the dispersion of the present invention has more excellent surface smoothness.
  • D90 of the powder is preferably 8 ⁇ m or less, particularly preferably 1.5 to 5 ⁇ m. In this case, the dispersibility of the powder and the homogeneity of the F layer are excellent.
  • the loosely packed bulk density and the densely packed bulk density of the powder are preferably from 0.08 to 0.5 g / mL and from 0.1 to 0.8 g / mL in this order.
  • the powder in the present invention is a powder containing a TFE-based polymer as a main component.
  • the content of the TFE-based polymer in the powder is preferably 80% by mass or more, and particularly preferably 100% by mass.
  • Other resins that can be included in the powder include aromatic polyesters, polyamide imides, thermoplastic polyimides, polyphenylene ether, polyphenylene oxide, and the like.
  • the secondary or tertiary hydroxyl group of the predetermined dispersant is preferably —CH (CH 3 ) OH, —CH (CH 2 CH 3 ) OH or —C (CH 3 ) 2 OH, and —CH (CH 3 ) OH is particularly preferred.
  • the fluorine-containing site of the predetermined dispersant is preferably a polyfluoroalkyl group, a polyfluoroalkyl group containing an etheric oxygen atom, or a polyfluoroalkenyl group, and particularly preferably a polyfluoroalkyl group.
  • the number of carbon atoms in the fluorinated moiety is preferably from 4 to 16, particularly preferably from 4 to 12.
  • the secondary or tertiary hydroxyl group site and the fluorinated site of the given dispersant may be directly bonded, may be bonded via a linking group, or may be bonded via a linking group. Is preferred. In this case, not only the defoaming property of the dispersion liquid of the present invention is further improved, but also powder falling off when the F layer is formed is more easily suppressed.
  • the linking group is preferably a polyoxyalkylene group.
  • R F represents a polyfluoroalkyl group or a polyfluoroalkyl group containing an etheric oxygen atom, and includes F (CF 2 ) 4 CH 2 —, F (CF 2 ) 6 CH 2 —, and F (CF 2 ) 4 CH 2 CH 2 —, F (CF 2 ) 6 CH 2 CH 2 — or a group represented by the formula R F1 (CF 2 O) f1.
  • Q 1 is a methylene group (—CH 2 —), a dimethylene group (—CH 2 CH 2 —), a trimethylene group (—CH 2 CH 2 CH 2 —) or a tetramethylene group (—CH 2 CH 2 CH 2 CH 2) -), And a dimethylene group is preferred.
  • Q 2 represents a propylene group (—CH 2 CH (CH 3 ) —), a propylidene group (—CH (CH 2 CH 3 ) —) or an isopropylidene group (—C (CH 3 ) 2 —); Is preferred.
  • the hydroxyl group is bonded to a secondary carbon atom.
  • n is an integer of 1 to 3, preferably 1.
  • a given dispersant F (CF 2) 6 CH 2 (OCH 2 CH 2) 7 - (OCH 2 CH (CH 3)) OH, F (CF 2) 6 CH 2 (OCH 2 CH 2 ) 12 - (OCH 2 CH ( CH 3)) OH, F (CF 2) 6 CH 2 CH 2 (OCH 2 CH 2) 7 - (OCH 2 CH (CH 3)) OH, F (CF 2) 6 CH 2 CH 2 (OCH 2 CH 2 ) 12 - (OCH 2 CH (CH 3)) OH, F (CF 2) 4 CH 2 CH 2 (OCH 2 CH 2) 7 - (OCH 2 CH (CH 3)) OH , F (CF 2) 4 CH 2 CH 2 (OCH 2 CH 2) 12 - (OCH 2 CH (CH 3)) OH and the like.
  • Such a dispersant can be obtained as a commercial product ("Fluowet N083", “Fluowet N050", etc., manufactured by Achroma).
  • the liquid dispersion medium in the present invention is a compound that is liquid at 25 ° C. and has a function of dispersing the powder of the present invention, and may be an aqueous medium or a non-aqueous medium.
  • the compound of the liquid dispersion medium is preferably a polar compound such as water, a nitrogen-containing compound, a sulfur-containing compound, an ester, a ketone, or a glycol ether, and particularly preferably water.
  • the compound is a polar compound
  • the secondary hydroxyl group or the tertiary hydroxyl group contained in the predetermined dispersant decreases the interaction with the polar compound, while the interaction with the TFE-based polymer tends to be relatively strong.
  • the dispersion properties of the liquid and the properties of the resin layer formation can be further improved.
  • the compound of the liquid dispersion medium one type may be used alone, or two or more types may be used in combination.
  • the compound of the liquid dispersion medium include water, methanol, ethanol, isopropanol, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, diethyl ether, dioxane, and lactic acid.
  • the liquid dispersion medium is preferably an aqueous medium.
  • the aqueous medium is a dispersion medium containing water as a main component, and may be composed of only water, or may be a mixed medium of water and a water-soluble organic dispersion medium.
  • the TFE-based polymer in the present invention is a polymer containing a unit based on tetrafluoroethylene (TFE) (hereinafter also referred to as “TFE unit”).
  • TFE unit tetrafluoroethylene
  • the TFE-based polymer is a homopolymer substantially composed of TFE units (hereinafter, also referred to as “PTFE”), and a unit based on TFE units and perfluoro (alkyl vinyl ether) (hereinafter, also referred to as “PAVE”) (hereinafter, referred to as “PAVE”).
  • HFP unit a copolymer comprising a TFE unit and a unit based on hexafluoropropylene (hereinafter also referred to as” HFP unit ") or a TFE unit and fluoroalkylethylene (hereinafter” FAE ").
  • a copolymer containing a unit (hereinafter, also referred to as a “FAE unit”) based on the above-mentioned formula is preferable.
  • PTFE also includes polymers containing a trace amount of units other than TFE units and low molecular weight PTFE.
  • the polymer preferably contains more than 99.5 mol%, more preferably more than 99.9 mol%, of TFE units based on all units contained in the polymer.
  • the melt viscosity of the polymer at 380 ° C. is preferably 1 ⁇ 10 2 to 1 ⁇ 10 8 Pa ⁇ s, and particularly preferably 1 ⁇ 10 3 to 1 ⁇ 10 6 Pa ⁇ s.
  • the low-molecular-weight PTFE may be PTFE obtained by irradiating high-molecular-weight PTFE with radiation (polymers described in WO2018 / 02602, WO2018 / 026017, etc.), and TFE may be used.
  • PTFE obtained by using a chain transfer agent when polymerizing to produce PTFE polymers described in JP-A-2009-1745, WO 2010/114033, JP-A-2013-2322082, etc.
  • a polymer having a core-shell structure composed of a core portion and a shell portion, wherein only the shell portion has a low molecular weight PTFE Japanese Patent Application Laid-Open No.
  • the standard specific gravity of the low molecular weight PTFE (specific gravity measured in accordance with ASTM D4895-04) is preferably from 2.14 to 2.22, more preferably from 2.16 to 2.20.
  • the polymer containing TFE units includes polymers containing units other than TFE units.
  • the polymer preferably contains more than 0.5 mol% of units based on monomers other than TFE units, based on all units of the polymer.
  • the unit other than TFE is preferably a PAVE unit, an HFP unit, a FAE unit or a unit having a functional group described later.
  • the polymer containing TFE units preferably has at least one functional group selected from the group consisting of a carbonyl group-containing group, a hydroxy group, an epoxy group, an oxetanyl group, an amino group, a nitrile group and an isocyanate group.
  • a functional group selected from the group consisting of a carbonyl group-containing group, a hydroxy group, an epoxy group, an oxetanyl group, an amino group, a nitrile group and an isocyanate group.
  • the functional group may be contained in a unit constituting the TFE-based polymer, may be contained in a terminal group of the polymer main chain, or may be introduced into the TFE-based polymer by plasma treatment or the like.
  • the TFE-based polymer having the above functional group in the terminal group of the polymer main chain include a TFE-based polymer having a functional group as a terminal group derived from a polymerization initiator, a chain transfer agent and the like.
  • the functional group is preferably a hydroxy group or a carbonyl group-containing group, more preferably a carbonyl-containing group, particularly preferably a carbonate group, a carboxy group, a haloformyl group, an alkoxycarbonyl group or an acid anhydride residue, and a carboxy group or an acid anhydride residue. Residues are most preferred.
  • the TFE-based polymer is preferably a polymer containing a TFE unit, a PAVE unit, a HFP unit or a FAE unit, and more preferably a polymer containing a TFE unit, a PAVE unit, a HFP unit or a FAE unit, and a unit having a functional group.
  • the unit having a functional group is preferably a unit based on a monomer having a functional group.
  • a monomer having a hydroxy group or a carbonyl group-containing group is preferable, and a cyclic monomer having an acid anhydride residue is particularly preferable.
  • the cyclic monomer include itaconic anhydride, citraconic anhydride, 5-norbornene-2,3-dicarboxylic anhydride (also called hymic anhydride; hereinafter also referred to as “NAH”), and maleic anhydride. Is preferred.
  • PPVE CFOCF 2 CF 2 CF 3
  • CF 2 CFOCF 2 CF 2 CF 2 CF 3
  • CF 2 CFCFO (CF 2 ) 8 F and PPVE is preferred.
  • the TFE unit, the PAVE unit, the HFP unit or the FAE unit and the unit having a functional group are 90 to 99 mol% and 0.5 to 9.97 mol% in this order with respect to all units contained in the polymer. , 0.01 to 3 mol%.
  • the melting point of the TFE-based polymer is preferably from 250 to 380 ° C, particularly preferably from 280 to 350 ° C.
  • a polymer described in WO2018 / 16644 can be mentioned.
  • the content of the TFE-based polymer in the dispersion of the present invention is preferably from 20 to 70% by mass, and particularly preferably from 30 to 60% by mass.
  • the content of the predetermined dispersant in the dispersion of the present invention is preferably 0.1 to 10% by mass, and particularly preferably 1 to 5% by mass.
  • the content of the liquid dispersion medium in the dispersion of the present invention is preferably from 15 to 75% by mass, and particularly preferably from 25 to 60% by mass.
  • the content of water in the liquid dispersion medium is preferably 95% by mass or more, more preferably 99% by mass or more, and particularly preferably 100% by mass.
  • the dispersion of the present invention may contain other materials other than the liquid dispersion medium, the powder of the TFE-based polymer, and the predetermined dispersant.
  • Other materials include thixotropic agents, fillers, defoamers, dehydrating agents, plasticizers, weathering agents, antioxidants, heat stabilizers, lubricants, antistatic agents, brighteners, coloring agents, and conductive agents , A release agent, a surface treatment agent, a viscosity modifier, and a flame retardant.
  • Other materials may or may not dissolve in the dispersion.
  • Other materials include a thermosetting resin, a hot-melt resin, a reactive alkoxysilane, and carbon black.
  • thermosetting resin epoxy resin, thermosetting polyimide resin, polyamic acid, thermosetting acrylic resin, phenol resin, thermosetting polyester resin, thermosetting polyolefin resin, thermosetting modified polyphenylene ether resin, bismaleimide Resins, polyfunctional cyanate ester resins, polyfunctional maleimide-cyanate ester resins, polyfunctional maleimide resins, vinyl ester resins, urea resins, diallyl phthalate resins, melamine resins, guanamine resins, melamine-urea co-condensation resins. .
  • polyester resin polyolefin resin, styrene resin, polycarbonate, thermoplastic polyimide, polyarylate, polysulfone, polyarylsulfone, aromatic polyamide, aromatic polyetheramide, polyphenylene sulfide, polyaryletherketone, Examples thereof include polyamide imide, liquid crystalline polyester, and polyphenylene ether.
  • the glass microspheres preferably comprise silica glass or borosilicate glass.
  • the ceramic microspheres comprise barium titanate, particularly preferably barium titanate doped with neodymium or zinc oxide.
  • the hollow inorganic microspheres preferably have a dielectric constant of 4 or more at 20 to 50 ° C. and a thermal coefficient of dielectric constant of 150 ppm / ° C. or less.
  • the hollow inorganic microspheres may be non-porous or porous.
  • the hollow inorganic microspheres may be crystalline or non-crystalline.
  • the hollow inorganic microspheres preferably have a density of 0.1 to 0.8 g / cm 3 and an average particle size of 5 to 100 ⁇ m.
  • the hollow inorganic microspheres are preferably coated with a silane-based coupling agent, a zirconate-based coupling agent, or a titanate-based coupling agent to be hydrophobic.
  • silane coupling agents include phenyltrimethoxysilane, phenyltriethoxysilane, (3,3,3-trifluoropropyl) trimethoxysilane, (tridecafluoro-1,1,2,2-tetrahydrooctyl) Triethoxysilane and (heptadecafluoro-1,1,2,2-tetrahydrodecyl) triethoxysilane.
  • zirconate-based coupling agent examples include neopentyl (diallyl) oxytri (dioctyl) pyrophosphate zirconate and neopentyl (diallyl) oxytri (N-ethylenediamino) ethyl zirconate.
  • titanate coupling agent examples include neopentyl (diallyl) oxytrinedecanoyl titanate, neopentyl (diallyl) oxytri (dodecyl) benzene-sulfonyl titanate, and neopentyl (diallyl) oxytri (dioctyl) phosphate titanate.
  • a resin-coated metal foil in which a dispersion liquid of the present invention containing hollow inorganic microspheres is applied to the surface of a copper foil and a liquid dispersion medium is removed to form a resin layer is used as a printed circuit board material having a low dielectric constant heat coefficient. It is suitable.
  • the viscosity of the dispersion of the present invention is preferably 1 to 1000 mPa ⁇ s, more preferably 5 to 500 mPa ⁇ s, and particularly preferably 10 to 100 mPa ⁇ s. Within this range, the dispersibility of the dispersion and the coating properties are more easily balanced.
  • the thixo ratio ( ⁇ 1 / ⁇ 2 ) of the dispersion of the present invention is preferably from 1 to 2.2. Within this range, the dispersibility of the dispersion and the coating properties are more easily balanced.
  • the dispersion of the present invention can be produced by mixing a liquid dispersion medium, a powder of a TFE-based polymer and a predetermined dispersant, and is prepared by mixing a liquid dispersion medium, a predetermined dispersant, and a powder of a TFE-based polymer. Is preferred. At the time of mixing, it is preferable to perform a dispersion treatment using a homodisper or a homogenizer to improve the dispersion state. When using the dispersion of the present invention stored at 0 to 40 ° C., it is preferable to use the dispersion after these dispersion treatments.
  • the dispersion of the present invention has excellent dispersion properties and resin layer forming properties, and is useful as a coating agent for forming a layer (resin layer).
  • the dispersion liquid of the present invention is easily heated and decomposed by heating when a layer (resin layer) is formed, while suppressing powder falling of the powder.
  • Another feature is that a layer (resin layer) with a small amount of residue can be obtained.
  • the residual amount of the predetermined dispersant in the F layer is preferably 25% by mass or less, particularly preferably 5% by mass or less, based on the amount of the predetermined dispersant contained in the dispersion used.
  • the dispersion of the present invention is applied to the surface of a substrate and heated to form a resin layer (F layer) containing a TFE-based polymer, and the substrate and the resin layer are laminated in this order.
  • the resin layer may be formed on at least one surface of the surface of the substrate, the resin layer may be formed on only one surface of the substrate, or the resin layers may be formed on both surfaces of the substrate. You may.
  • Examples of the method of applying the dispersion include a spray method, a roll coating method, a spin coating method, a gravure coating method, a microgravure coating method, a gravure offset method, a knife coating method, a kiss coating method, a bar coating method, a die coating method, and a fountain Meyer bar method. And a slot die coating method.
  • the resin layer is formed by heating, the substrate on which the dispersion of the present invention is applied is heated to a temperature at which the liquid dispersion medium is volatilized (a temperature range of 100 to 300 ° C.), and the TFE polymer is melted or melted. It is particularly preferable to perform heating by heating to a temperature range for firing (300 to 400 ° C.).
  • Examples of the heating method include a method using an oven, a method using a ventilation drying oven, and a method of irradiating heat rays (infrared rays).
  • the atmosphere in the heating may be under normal pressure or under reduced pressure.
  • the atmosphere may be any of an oxidizing gas (oxygen gas or the like), a reducing gas (hydrogen gas or the like), or an inert gas (helium gas, neon gas, argon gas, nitrogen gas, or the like). Is also good.
  • the heating time of the substrate is usually 0.5 to 30 minutes.
  • the thickness of the resin layer is preferably 30 ⁇ m or less, more preferably 15 ⁇ m or less, and particularly preferably 10 ⁇ m or less.
  • the upper limit of the thickness of the resin layer is 0.1 ⁇ m, preferably 2 ⁇ m.
  • the peel strength between the substrate and the resin layer is preferably more than 12 N / cm, particularly preferably 15 N / cm or more.
  • the upper limit of the peel strength is usually 100 N / cm.
  • the substrate may be any one of a metal substrate such as copper, aluminum, and iron, a glass substrate, a resin substrate, a silicon substrate, and a ceramic substrate.
  • the shape of the base material may be any of a flat shape, a curved surface shape, and an uneven shape, and may be any of a foil shape, a plate shape, a film shape, and a fiber shape.
  • the laminate obtained by the production method of the present invention include a metal foil with a base material being a metal foil and having a metal foil and a resin layer in this order. Between the metal foil and the resin layer, an adhesive layer may be separately provided, but since the resin layer formed from the dispersion of the present invention has excellent adhesiveness, the adhesive layer may not be provided.
  • Preferred embodiments of the metal foil include copper foil such as rolled copper foil and electrolytic copper foil.
  • the thickness of the metal foil is preferably 3 to 18 ⁇ m, and the thickness of the resin layer is preferably 1 to 50 ⁇ m.
  • the metal foil with resin can be used as a printed wiring board having a resin layer as an insulating resin layer if a pattern circuit is formed on the metal foil.
  • NC drilling, carbon dioxide laser irradiation, or UV-YAG laser irradiation can also be used.
  • the third harmonic (wavelength: 355 nm) or the fourth harmonic (wavelength: 266 nm) can be used.
  • an ultraviolet absorber in the resin-attached metal foil, an ultraviolet absorber, a pigment (alumina, zinc oxide, titanium oxide, etc.), a curing agent (triallyl isocyanurate, etc.) and the like are further added to the dispersion of the present invention.
  • the heating temperature in forming the resin layer may be adjusted.
  • a plating layer may be formed on the inner wall surface of the formed through hole.
  • the plating layer can be formed by any of an etching treatment with metallic sodium, a treatment with a permanganate solution, and a plasma treatment, and the plating layer may be formed by a treatment with a permanganate solution or a plasma treatment.
  • the laminate obtained by the production method of the present invention include a polyimide film in which the substrate is a polyimide film and at least one of the polyimide film surfaces has a resin layer formed from the dispersion of the present invention. . Between the polyimide film and the resin layer, an adhesive layer may be separately provided, but since the resin layer formed from the dispersion of the present invention has excellent adhesiveness, the adhesive layer may not be provided. .
  • Preferred embodiments of the polyimide film include an acid dianhydride containing 2,2 ', 3,3'- or 3,3', 4,4'-biphenyltetracarboxylic dianhydride and paraphenylenediamine
  • a polymer film with a diamine is exemplified.
  • a specific example of the polyimide film is Apical Type AF (manufactured by Kaneka North America).
  • the mass of the laminate is preferably 23.5 g / m 2 or less, and its loop stiffness value is preferably 0.45 g / cm or more.
  • the thickness of the resin layer in the laminate is preferably from 1 to 200 ⁇ m, particularly preferably from 5 to 20 ⁇ m.
  • the thickness of the polyimide film in the laminate is preferably from 5 to 150 ⁇ m.
  • Such a laminate is excellent in electric insulation, abrasion resistance, hydrolysis resistance and the like, and can be used as a packaging material for an electric insulating tape or an electric cable or an electric wire, and is used for aerospace or electric vehicles. It is suitable as a material or a cable material.
  • the first base material (the base material in the method for producing a laminate of the present invention; the same applies hereinafter), the resin layer, and the second base material are used.
  • a composite laminate in which the materials are laminated in this order is obtained.
  • the second base include a metal base such as copper, aluminum, and iron, a glass base, a resin base, a silicon base, and a ceramic base.
  • the shape of the second base material may be any of a planar shape, a curved surface shape, and an uneven shape.
  • the property of the second base material may be any of a foil shape, a plate shape, a film shape, and a fiber shape.
  • the second substrate include a heat-resistant resin substrate and a prepreg that is a precursor of a fiber-reinforced resin plate.
  • the prepreg is a sheet-like base material in which a base material (tow, woven fabric, etc.) of a reinforcing fiber (glass fiber, carbon fiber, etc.) is impregnated with a resin (the above-mentioned thermosetting resin, thermoplastic resin, etc.). Material.
  • the heat-resistant resin substrate is preferably a film containing a heat-resistant resin.
  • the heat-resistant resin substrate may be a single layer or a multilayer.
  • heat-resistant resin examples include polyimide, polyarylate, polysulfone, polyallylsulfone, aromatic polyamide, aromatic polyetheramide, polyphenylene sulfide, polyallyletherketone, polyamideimide, liquid crystalline polyester, and PTFE.
  • thermocompression bonding method As a method for pressure-bonding the surface of the resin layer of the laminate to the second substrate, a thermocompression bonding method may be used.
  • the compression bonding temperature in the thermocompression bonding method is preferably 120 to 300 ° C.
  • the thermocompression bonding temperature is preferably 300 to 400 ° C.
  • the thermocompression bonding is particularly preferably performed at a degree of vacuum of 20 kPa or less.
  • the pressure in thermocompression bonding is preferably from 0.2 to 10 MPa.
  • the liquid layer forming material for forming the second resin layer is applied to the surface of the resin layer of the laminate obtained by the production method of the present invention to form the second resin layer, the first base material , A resin layer and a second resin layer are laminated in this order to obtain a composite laminate.
  • the liquid layer forming material is not particularly limited, and the dispersion of the present invention may be used.
  • the method for forming the second resin layer can also be appropriately determined depending on the properties of the liquid layer forming material used.
  • the layer-forming material is the dispersion of the present invention
  • the second resin layer can be formed according to the same conditions as in the method of forming a resin layer in the method of manufacturing a laminate of the present invention.
  • the resin layer can be multilayered to easily form a thicker resin layer.
  • the composite laminate obtained by such a production method include one embodiment of a metal foil with resin or an insulating cover.
  • a thin film containing a TFE-based polymer By removing the base material of the laminate obtained by the production method of the present invention, a thin film containing a TFE-based polymer can be obtained.
  • the method of removing the base material of the laminate includes a method of removing the base material from the laminate by removing the base material, and a method of dissolving and removing the base material from the laminate.
  • the substrate of the laminate is a copper foil
  • the thickness of the thin film of the present invention is preferably 30 ⁇ m or less, more preferably 15 ⁇ m or less, and particularly preferably 10 ⁇ m or less.
  • the lower limit of the thickness of the thin film is preferably 1 ⁇ m, particularly preferably 4 ⁇ m.
  • the present invention provides a method for producing a coated woven fabric, in which a woven fabric is impregnated with the dispersion of the present invention, and the woven fabric is further dried to obtain a woven fabric coated with a TFE-based resin layer.
  • the woven fabric is not particularly limited as long as it is a heat-resistant woven fabric that can withstand drying, and is preferably a glass fiber woven fabric, a carbon fiber woven fabric, an aramid fiber woven fabric or a metal fiber woven fabric, and is preferably a glass fiber woven fabric or a carbon fiber woven fabric. From the viewpoint of electrical insulation, a plain-woven glass fiber woven fabric composed of E-glass yarn for electrical insulation specified in JISR3410 is particularly preferred.
  • the woven fabric may be treated with a silane coupling agent from the viewpoint of increasing the adhesiveness to the resin layer.
  • the resin layer formed from the dispersion of the present invention has excellent adhesiveness, the woven fabric may not be treated with the silane coupling agent.
  • the total content of the TFE-based polymer in the coated woven fabric is preferably 30 to 80% by mass or more.
  • Examples of the method of impregnating the woven fabric with the dispersion of the present invention include a method of immersing the woven fabric in the dispersion and a method of applying the dispersion to the woven fabric.
  • the number of times of immersion in the former method and the number of times of application in the latter method may be one, or two or more.
  • the method of drying the woven fabric can be appropriately determined depending on the type of the compound of the liquid dispersion medium contained in the dispersion. For example, when the liquid dispersion medium is water, the woven fabric is kept in an atmosphere at 80 to 120 ° C. A method of passing through a ventilation drying oven may be used. In drying the woven fabric, the polymer may be calcined. The method of firing the polymer can be appropriately determined depending on the type of the TFE-based polymer, and includes, for example, a method of passing a woven fabric through a ventilation drying oven in an atmosphere of 300 to 400 ° C. The drying of the woven fabric and the firing of the polymer may be performed in one stage.
  • the coated woven fabric obtained by the production method of the present invention is excellent in properties such as high adhesion between the resin layer and the woven fabric, high surface smoothness, and little distortion.
  • a resin-coated metal foil obtained by thermocompression-bonding such a coated woven fabric and a metal foil can be suitably used as a printed circuit board material because it has high peel strength and is unlikely to be warped.
  • a woven fabric impregnated with the dispersion of the present invention including a woven fabric is applied to the surface of a substrate, and heated and dried to form a TFE-based polymer.
  • a coated woven fabric layer including a woven fabric may be formed, and a laminate in which the base material and the coated woven fabric layer are stacked in this order may be manufactured.
  • the form is also not particularly limited, and a woven fabric impregnated with the dispersion liquid is applied to a part of the inner wall surface of the molded article such as a tank, a pipe, and a container, and the molded article is heated while rotating.
  • a coated woven fabric layer can be formed on the entire inner wall. Therefore, the method for producing a coated woven fabric of the present invention is also useful as a lining method for the inner wall surface of a molded article such as a tank, a pipe, a container, and the like.
  • the physical properties of the resin layer of the aqueous dispersion can be improved.
  • a resin layer formed from a dispersion obtained by mixing the dispersion of the present invention and the aqueous dispersion is excellent in crack resistance as compared with a resin layer formed from the aqueous dispersion.
  • the TFE polymer in the dispersion of the present invention is a TFE polymer having at least one functional group selected from the group consisting of a carbonyl group-containing group, a hydroxy group, an epoxy group, an amide group, an amino group and an isocyanate group. Is preferred.
  • the mass ratio of the TFE-based polymer contained in the dispersion of the present invention to the TFE-based polymer contained in the conventional aqueous dispersion of TFE-based polymer is preferably 1.0 or more, more preferably 2.0 or more. Preferably, 4.0 or more is particularly preferable.
  • the upper limit of the mass ratio is usually 10.
  • ⁇ Laminate peel strength> Fix the position of 50 mm from one end in the longitudinal direction of the laminated body cut out into a rectangular shape (length 100 mm, width 10 mm), and peel off 90 ° from one end in the longitudinal direction to the laminated body at a pulling speed of 50 mm / min.
  • the maximum load applied at this time was defined as the peel strength (N / cm).
  • a transmission line was formed on the copper foil of the double-sided copper-clad laminate to form a printed circuit board, and the signal transmission loss was measured.
  • a 28 GHz signal was processed by a vector network analyzer and measured by a GSG high frequency contact probe (250 ⁇ m pitch).
  • a transmission line formed on a printed circuit board a coplanar waveguide with a back conductor was used. The characteristic impedance of the line was set to 50 ⁇ .
  • Gold flash plating was applied to the surface of copper, which is the conductor of the printed circuit board.
  • the calibration method used was TRL calibration (Thru-Reflect-Line calibration).
  • the length of the line was set to 50 mm, and the transmission loss per unit length was measured.
  • S-parameter (hereinafter also referred to as S value), which is one of the network parameters used to represent the characteristics of the high-frequency electronic circuit and the high-frequency electronic component, was used.
  • S value means that the closer the value is to 0, the smaller the transmission loss is.
  • S value is more than -1.6, the evaluation of the transmission loss is " ⁇ ", and when the S value is less than -1.6, the evaluation of the transmission loss is "x".
  • Dispersant 1 F (CF 2 ) 6 CH 2 CH 2 O (CH 2 CH 2 O) 7 CH 2 CH (CH 3 ) OH
  • Dispersant 2 F (CF 2 ) 6 CH 2 CH 2 O (CH 2 CH 2 O) 12 CH 2 CH (CH 3 ) OH
  • Dispersant 3 F (CF 2 ) 6 CH 2 CH 2 O (CH 2 CH 2 O) 7 CH 2 CH 2 OH
  • Example 1 Production example of dispersion liquid
  • Powder 1 of polymer 1 (D50: 2.6 ⁇ m, D90: 7.1 ⁇ m) was obtained by the method described in paragraph [0123] of WO 2016/017801.
  • 150 g of Powder 1, 5 g of Dispersant 1, and 335 g of water were put into a horizontal ball mill pot, and dispersed in a zirconia ball having a diameter of 15 mm to obtain a dispersion 1 in which Powder 1 as a powder of Polymer 1 was dispersed.
  • the viscosity of Dispersion 1 was 19 mPa ⁇ s.
  • the viscosities measured at a rotation speed of 6 rpm and 60 rpm were 13 mPa ⁇ s and 23 mPa ⁇ s in this order, and the thixo ratio was 1.2.
  • Dispersion liquid 2 was obtained in the same manner as in Example 1-1 except that dispersant 1 was changed to dispersant 2.
  • the viscosity of the dispersion 2 was 16 mPa ⁇ s.
  • the viscosities measured at a rotation speed of 6 rpm and 60 rpm were 13 mPa ⁇ s and 19 mPa ⁇ s in this order, and the thixo ratio was 1.2. Further, Dispersion 2 was easier to foam than Dispersion 1.
  • Example 1-3 A dispersion was prepared in the same manner as in Example 1-1 except that Dispersant 1 was changed to Dispersant 3, but the dispersion was remarkably thickened, and a dispersion that could withstand coating was not obtained. .
  • Example 2 Production example of laminate (No. 1) [Example 2-1]
  • the dispersion liquid 1 is applied to copper foil (electrolytic copper foil manufactured by Fukuda Metal Foil & Powder Co., Ltd., CF-T4X-SV, surface roughness of 10 ⁇ m specified by Rzjis) at 100 ° C. in a nitrogen atmosphere. After drying for 15 minutes, a dried film was formed on the copper foil surface. Powder powder was not visually observed on the dried film on the end face of the copper foil. Further, the laminate was heated at 350 ° C.
  • copper foil electrolytic copper foil manufactured by Fukuda Metal Foil & Powder Co., Ltd., CF-T4X-SV, surface roughness of 10 ⁇ m specified by Rzjis
  • RF output 300 W
  • gap between electrodes 2 inches
  • introduced gas argon gas
  • introduced gas amount 50 cm 3 / min
  • pressure 13 Pa
  • processing time using a plasma processing apparatus (AP-1000, manufactured by NORDSON MARCH).
  • the plasma treatment was performed on the layer side of the polymer 1 of the laminate under the condition of 1 minute. Ra on the surface of the polymer 1 layer after the plasma treatment was 8 nm.
  • a laminate was placed on each side of the FR-4 sheet so that a copper foil was formed as the outermost layer. Pressing was performed to obtain a double-sided copper-clad laminate. The evaluation of the transmission loss was “ ⁇ ”.
  • Example 2-2 In the same manner as in Example 2-1, except that Dispersion 1 was changed to Dispersion 2, Dispersion 2 was applied to copper foil, and dried at 100 ° C. for 15 minutes under a nitrogen atmosphere to form a dry film on the copper foil surface. Formed. At this time, powder powder was visually observed on the dried film at the end of the copper foil. Further, similarly, a copper foil with resin, a single-sided copper-clad laminate and a double-sided copper-clad laminate were obtained. The residual amount of the dispersant in the polymer 1 layer of the resin-coated copper foil was 23% by mass, the peel strength of the laminate was 7 N / cm, and the transmission loss of the double-sided copper-clad laminate was evaluated as “ ⁇ ”.
  • Dispersion 1 was changed to Dispersion 2
  • Dispersion 2 was applied to copper foil, and dried at 100 ° C. for 15 minutes under a nitrogen atmosphere to form a dry film on the copper foil surface. Formed. At this time, powder powder was visually observed on the dried film at
  • Example 3 Production example of laminate (No. 2) An aqueous dispersion of PTFE (product number: AD-916E, manufactured by Asahi Glass Co., Ltd.) containing 50% by mass of PTFE powder (D50: 0.3 ⁇ m) is mixed with Dispersion 1, and the PTFE powder and the polymer 1 powder are mixed. Was dispersed in water to obtain a dispersion having a ratio (mass ratio) of Polymer 1 to PTFE of 1.0. In addition, at the time of mixing, the dispersion liquid 1 was treated with a homodisper immediately under the condition of 3000 rpm, and further treated with a homogenizer under the condition of 3000 rpm.
  • PTFE product number: AD-916E, manufactured by Asahi Glass Co., Ltd.
  • the obtained dispersion is applied to the surface of a stainless steel plate (thickness: 0.5 mm) having a vinyl tape attached to one end, and a rod is slid along the end so that the dispersion is applied to the surface of the stainless steel plate.
  • I was distracted.
  • the stainless steel plate was dried three times at 100 ° C. for 3 minutes, and further heated at 380 ° C. for 10 minutes.
  • the surface of the stainless steel plate contained Polymer 1 and PTFE, and the thickness of the vinyl tape adhered to the edge was reduced. For this reason, a stainless steel plate on which a polymer layer having an inclined thickness was formed was obtained. The stainless steel plate was visually observed, but no crack line was observed even in a region having a film thickness of 50 ⁇ m or more.
  • the dispersion of the present invention can easily form a layer of a tetrafluoroethylene-based polymer and can be suitably used for the production of a resin-coated copper foil or a metal laminate used for the production of a printed wiring board. Further, the dispersion of the present invention can be used for the production of molded products such as films and impregnated products (prepregs and the like), and has release properties, electrical properties, water and oil repellency, chemical resistance, weather resistance, heat resistance, It can also be used for the production of molded products for applications requiring slipperiness, wear resistance and the like.
  • Molded articles obtained from the dispersion of the present invention are useful as antenna parts, printed circuit boards, aircraft parts, automobile parts, sporting goods, food industry products, paints, cosmetics, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Laminated Bodies (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

Provided is a dispersion that contains a liquid dispersion medium, a tetrafluoroethylene-based polymer powder, and a prescribed fluorine-based dispersant; that has excellent dispersion properties such as dispersion stability, viscosity, and color tone; and that has excellent resin-layer forming properties such as the thixotropic ratio, adhesiveness, transparency, defoaming properties, and less powder fall-off. A dispersion according to the present invention contains a liquid dispersion medium, a tetrafluoroethylene-based polymer powder, and a dispersant, and the powder is dispersed in the liquid dispersion medium. The dispersant is a compound having a fluorine-containing moiety and a secondary hydroxyl group or a tertiary hydroxyl group.

Description

分散液Dispersion
 本発明は、液状分散媒とテトラフルオロエチレン系ポリマーのパウダーと所定のフッ素系分散剤とを含む、分散液、かかる分散液を用いる積層体の製造方法、および、被覆織布の製造方法に関する。 The present invention relates to a dispersion containing a liquid dispersion medium, a powder of tetrafluoroethylene-based polymer, and a predetermined fluorine-based dispersant, a method for producing a laminate using the dispersion, and a method for producing a coated woven fabric.
 ポリテトラフルオロエチレン、テトラフルオロエチレンとペルフルオロ(アルキルビニルエーテル)のコポリマー、テトラフルオロエチレンとヘキサフルオロプロピレンのコポリマー等のテトラフルオロエチレン系ポリマーは、離型性、電気特性、撥水撥油性、耐薬品性、耐候性、耐熱性等の物性に優れており、種々の産業用途に利用されている。
 なかでも、テトラフルオロエチレン系ポリマーのパウダーの分散液は、基材の表面に塗布すれば、その表面にテトラフルオロエチレン系ポリマーの層(樹脂層)を形成でき、基材に上記物性を付与できるため、コーティング剤として有用である。
Tetrafluoroethylene polymers such as polytetrafluoroethylene, copolymers of tetrafluoroethylene and perfluoro (alkyl vinyl ether), and copolymers of tetrafluoroethylene and hexafluoropropylene, have releasability, electrical properties, water and oil repellency, and chemical resistance. It has excellent physical properties such as weather resistance and heat resistance, and is used for various industrial applications.
Above all, if the dispersion of the powder of the tetrafluoroethylene-based polymer is applied to the surface of the substrate, a layer (resin layer) of the tetrafluoroethylene-based polymer can be formed on the surface, and the above-mentioned properties can be imparted to the substrate. Therefore, it is useful as a coating agent.
 特許文献1には、非水媒体と、テトラフルオロエチレン系ポリマーのパウダーと、式Rpf-(OQp1(OQp2-OHで表される化合物(式中、Rpfは炭素数1~12のフルオロアルキル基を、Qp1及びQp1は炭素数2~4のアルキレン基を、qは1~12の整数を、rは0~12の整数を、示す。)を含む、非水系分散液が記載されている。 Patent Document 1 discloses a non-aqueous medium, a powder of a tetrafluoroethylene-based polymer, and a compound represented by the formula R pf- (OQ p1 ) q (OQ p2 ) r -OH (where R pf is a carbon number). A fluoroalkyl group of 1 to 12, Q p1 and Q p1 represent an alkylene group having 2 to 4 carbon atoms, q represents an integer of 1 to 12, and r represents an integer of 0 to 12.) Aqueous dispersions are described.
特開2011-225710号公報JP 2011-225710 A
 テトラフルオロエチレン系ポリマーは、本質的に表面張力が低く他の材料との相互作用が低い。このため、そのパウダーが有機分散媒に分散した分散液は、分散性が低く、パウダーがケーキ状に沈殿しやすい。また、沈殿したパウダーを再分散させるのが容易ではない。特許文献1に記載の非水系分散液は、上記化合物を分散剤として含み、かかる分散性と再分散性に優れているとされている。 Tetrafluoroethylene-based polymers have inherently low surface tension and low interaction with other materials. For this reason, the dispersion in which the powder is dispersed in the organic dispersion medium has low dispersibility, and the powder tends to precipitate in a cake form. Further, it is not easy to re-disperse the precipitated powder. The non-aqueous dispersion described in Patent Document 1 contains the above compound as a dispersant, and is said to be excellent in such dispersibility and redispersibility.
 一方、近年では、分散液の用途と使用形態とが拡大し、使用されるテトラフルオロエチレン系ポリマーのパウダーの種類(ポリマーの分子構造、パウダーの性状等。)と分散媒の種類も多様化している。そのため、分散液には、パウダーの分散性と再分散性に限らず、化学的に不活性であり、粘度、色調等の他の分散物性と、チキソ比、接着性、透明性、消泡性、粉落ちしにくい等の樹脂層形成物性にも優れていることが求められている。 On the other hand, in recent years, the use and form of use of the dispersion liquid have expanded, and the types of powders of the tetrafluoroethylene-based polymer (the molecular structure of the polymer, the properties of the powder, etc.) and the types of the dispersion medium have been diversified. I have. Therefore, the dispersion liquid is not limited to the dispersibility and redispersibility of the powder, but is chemically inert, and has other dispersive properties such as viscosity, color tone, and thixotropic ratio, adhesiveness, transparency, and defoaming property. It is also required to be excellent in resin layer forming properties such as hardly falling off powder.
 本発明者らは鋭意検討の結果、2級水酸基部位又は3級水酸基部位を有する所定のフッ素系化合物は、テトラフルオロエチレン系ポリマーの分散液の分散剤として、その分散性と再分散性に加えて、前記他の分散物性と前記樹脂層形成物性を向上させることを知見した。 As a result of intensive studies, the present inventors have found that a given fluorine compound having a secondary hydroxyl group or a tertiary hydroxyl group can be used as a dispersant for a dispersion of a tetrafluoroethylene polymer in addition to its dispersibility and redispersibility. Thus, it was found that the other dispersion properties and the resin layer formation properties were improved.
 本発明は、下記の態様を有する。
[1] 液状分散媒とテトラフルオロエチレン系ポリマーのパウダーと分散剤とを含み、前記パウダーが前記液状分散媒に分散した分散液であって、前記分散剤が含フッ素部位と2級水酸基部位又は3級水酸基部位とを有する化合物である、分散液。
[2] 前記パウダーが、体積基準累積50%径が0.05~6μmのパウダーである、[1]に記載の分散液。
[3] 前記2級水酸基部位又は3級水酸基部位が、-CH(CH)OH、-CH(CHCH)OH又は-C(CHOHである、[1]又は[2]に記載の分散液。
[4] 前記含フッ素部位が、ポリフルオロアルキル基、エーテル性酸素原子を含むポリフルオロアルキル基又はポリフルオロアルケニル基である、[1]~[3]のいずれか一項に記載の分散液。
[5] 前記分散剤が、式R(OQ-(OQOHで表される化合物である、[1]~[4]のいずれか一項に記載の分散液。
 (式中、Rは、ポリフルオロアルキル基又はエーテル性酸素原子を含むポリフルオロアルキル基を示し、Qは、メチレン基、ジメチレン基、トリメチレン基又はテトラメチレン基を示し、Qは、プロピレン基、プロピリデン基又はイソプロピリデン基を示し、mは、4~16の整数であり、nは、1~3の整数である。)
[6] mは、4~10の整数である、[5]に記載の分散液。
[7] nは、1である、[5]又は[6]に記載の分散液。
[8] 前記液状分散媒が、水性媒体である、[1]~[7]のいずれか一項に記載の分散液。
[9] テトラフルオロエチレン系ポリマーが、テトラフルオロエチレンに基づく単位と、ペルフルオロ(アルキルビニルエーテル)に基づく単位、ヘキサフルオロプロピレンに基づく単位、又はフルオロアルキルエチレンに基づく単位を含むポリマーである、[1]~[8]のいずれか一項に記載の分散液。
[10] テトラフルオロエチレン系ポリマーが、さらに、官能基を有する単位を含む、[9]に記載の分散液。
[11] 前記テトラフルオロエチレン系ポリマーが、該ポリマーに含まれる全単位に対して、テトラフルオロエチレンに基づく単位を99.5モル%以上含む、[1]~[10]のいずれか一項に記載の分散液。
[12] 前記テトラフルオロエチレン系ポリマーが、該ポリマーに含まれる全単位に対して、テトラフルオロエチレン以外のコモノマーに基づく単位を0.5モル%超含む、[1]~[11]のいずれか一項に記載の分散液。
[13] 前記テトラフルオロエチレン系ポリマーが、カルボニル基含有基、ヒドロキシ基、エポキシ基、アミド基、アミノ基及びイソシアネート基からなる群から選ばれる少なくとも1種の官能基を有する、[1]~[12]のいずれか一項に記載の分散液。
[14] [1]~[13]のいずれか一項に記載の分散液を、基材の表面に塗布し加熱してテトラフルオロエチレン系ポリマーを含む樹脂層を形成させて、前記基材と前記樹脂層とが、この順に積層された積層体を得る、積層体の製造方法。
[15] [1]~[13]のいずれか一項に記載の分散液を、織布に含浸させ、さらに織布を乾燥させて、テトラフルオロエチレン系ポリマーを含む樹脂層で被覆された織布を得る、被覆織布の製造方法。
The present invention has the following aspects.
[1] A dispersion comprising a liquid dispersion medium, a powder of a tetrafluoroethylene-based polymer and a dispersant, wherein the powder is dispersed in the liquid dispersion medium, wherein the dispersant is a fluorine-containing site and a secondary hydroxyl group site or A dispersion, which is a compound having a tertiary hydroxyl group.
[2] The dispersion according to [1], wherein the powder is a powder having a volume-based cumulative 50% diameter of 0.05 to 6 μm.
[3] The above-mentioned [1] or [2], wherein the secondary or tertiary hydroxyl group is —CH (CH 3 ) OH, —CH (CH 2 CH 3 ) OH or —C (CH 3 ) 2 OH. ] The dispersion described in [1].
[4] The dispersion according to any one of [1] to [3], wherein the fluorinated site is a polyfluoroalkyl group, a polyfluoroalkyl group containing an etheric oxygen atom, or a polyfluoroalkenyl group.
[5] The dispersion according to any one of [1] to [4], wherein the dispersant is a compound represented by a formula R F (OQ 1 ) m- (OQ 2 ) n OH.
(In the formula, R F represents a polyfluoroalkyl group or a polyfluoroalkyl group containing an etheric oxygen atom, Q 1 represents a methylene group, a dimethylene group, a trimethylene group, or a tetramethylene group, and Q 2 represents propylene. Represents a group, a propylidene group or an isopropylidene group, m is an integer of 4 to 16, and n is an integer of 1 to 3.)
[6] The dispersion according to [5], wherein m is an integer of 4 to 10.
[7] The dispersion according to [5] or [6], wherein n is 1.
[8] The dispersion according to any one of [1] to [7], wherein the liquid dispersion medium is an aqueous medium.
[9] The tetrafluoroethylene-based polymer is a polymer including a unit based on tetrafluoroethylene and a unit based on perfluoro (alkyl vinyl ether), a unit based on hexafluoropropylene, or a unit based on fluoroalkylethylene. [1] The dispersion according to any one of [8] to [8].
[10] The dispersion according to [9], wherein the tetrafluoroethylene-based polymer further includes a unit having a functional group.
[11] The method according to any one of [1] to [10], wherein the tetrafluoroethylene-based polymer contains at least 99.5 mol% of a unit based on tetrafluoroethylene, based on all units contained in the polymer. A dispersion as described.
[12] Any of [1] to [11], wherein the tetrafluoroethylene-based polymer contains more than 0.5 mol% of a unit based on a comonomer other than tetrafluoroethylene, based on all units contained in the polymer. A dispersion according to claim 1.
[13] The above [1] to [1], wherein the tetrafluoroethylene-based polymer has at least one functional group selected from the group consisting of a carbonyl group-containing group, a hydroxy group, an epoxy group, an amide group, an amino group, and an isocyanate group. 12] The dispersion according to any one of the above.
[14] The dispersion according to any one of [1] to [13] is applied to a surface of a substrate and heated to form a resin layer containing a tetrafluoroethylene-based polymer, and the dispersion is applied to the substrate. A method for manufacturing a laminate, wherein a laminate in which the resin layers are laminated in this order is obtained.
[15] A woven fabric coated with a resin layer containing a tetrafluoroethylene-based polymer by impregnating a woven fabric with the dispersion according to any one of [1] to [13], and further drying the woven fabric. A method for producing a coated woven fabric for obtaining a fabric.
 本発明によれば、分散性と再分散性に加えて、他の分散物性と樹脂層形成物性にも優れ、各種基材の表面にテトラフルオロエチレン系ポリマーの層を形成できる、分散液が提供される。 ADVANTAGE OF THE INVENTION According to this invention, in addition to dispersibility and re-dispersibility, it is excellent also in other dispersing properties and resin layer forming properties, and can provide a tetrafluoroethylene-based polymer layer on the surface of various base materials. Is done.
 以下の用語は、以下の意味を有する。
 「パウダーのD50」は、レーザー回折・散乱法によってパウダーの粒度分布を測定し、パウダー粒子の集団の全体積を100%として累積カーブを求め、その累積カーブ上で累積体積が50%となる点の粒子径(体積基準累積50%径)である。
 「パウダーのD90」は、レーザー回折・散乱法によってパウダーの粒度分布を測定し、パウダー粒子の集団の全体積を100%として累積カーブを求め、その累積カーブ上で累積体積が90%となる点の粒子径(体積基準累積90%径)である。
 「ポリマーの溶融粘度」は、ASTM D 1238に準拠し、フローテスターおよび2Φ-8Lのダイを用い、予め測定温度にて5分間加熱しておいたポリマーの試料(2g)を0.7MPaの荷重にて測定温度に保持して測定した値である。
 「ポリマーの融点(溶融温度)」は、示差走査熱量測定(DSC)法で測定した融解ピークの最大値に対応する温度である。
 「粘度」は、B型粘度計を用いて、室温下(25℃)で回転数が30rpmの条件下で測定される値である。測定を3回繰り返し、3回分の測定値の平均値とする。
 「チキソ比」は、回転数が30rpmの条件で測定される液状組成物の粘度ηを回転数が60rpmの条件で測定される液状組成物の粘度ηで除して算出される値(η/η)である。
 「十点平均粗さ(RzJIS)」は、JIS B 0601:2013の附属書JAで規定される値である。
 ポリマーにおける「単位」とは、モノマーの重合により形成された前記モノマー1分子に由来する原子団と、該原子団の一部を化学変換することで得られる原子団との総称である。ポリマーにおける「単位」は、重合反応によってモノマーから直接形成された原子団であってもよく、重合反応によって得られたポリマーを所定の方法で処理して、構造の一部が変換された原子団であってもよい。
The following terms have the following meanings:
"D50 of powder" is a point where the particle size distribution of a powder is measured by a laser diffraction / scattering method, a cumulative curve is obtained with the total volume of a group of powder particles being 100%, and the cumulative volume is 50% on the cumulative curve. (A cumulative 50% diameter based on volume).
"D90 of powder" is a point where the particle size distribution of a powder is measured by a laser diffraction / scattering method, a cumulative curve is determined with the total volume of a group of powder particles being 100%, and the cumulative volume on the cumulative curve is 90%. (90% diameter based on volume).
The “melt viscosity of polymer” was measured according to ASTM D 1238 by using a flow tester and a 2Φ-8L die and applying a 0.7 MPa load to a polymer sample (2 g) that had been heated at a measurement temperature for 5 minutes in advance. Is a value measured at a measurement temperature.
"The melting point (melting temperature) of a polymer" is the temperature corresponding to the maximum value of the melting peak measured by differential scanning calorimetry (DSC).
“Viscosity” is a value measured using a B-type viscometer at room temperature (25 ° C.) and at a rotation speed of 30 rpm. The measurement is repeated three times, and the average value of the three measured values is used.
The “thixo ratio” is a value calculated by dividing the viscosity η 1 of the liquid composition measured at a rotation speed of 30 rpm by the viscosity η 2 of the liquid composition measured at a rotation speed of 60 rpm ( η 1 / η 2 ).
“Ten-point average roughness (Rz JIS )” is a value defined in Annex JA of JIS B 0601: 2013.
The “unit” in the polymer is a general term for an atomic group derived from one molecule of the monomer formed by polymerization of the monomer, and an atomic group obtained by chemically converting a part of the atomic group. The `` unit '' in the polymer may be an atomic group directly formed from a monomer by a polymerization reaction, or an atomic group obtained by treating a polymer obtained by a polymerization reaction by a predetermined method and converting a part of the structure. It may be.
 本発明の分散液は、液状分散媒とテトラフルオロエチレン系ポリマー(以下、「TFE系ポリマー」とも記す。)のパウダーと分散剤とを含み、前記パウダーが前記液状分散媒に分散した分散液である。前記分散剤は、含フッ素部位と2級水酸基部位又は3級水酸基部位とを有する化合物(以下、「所定の分散剤」とも記す。)である。 The dispersion of the present invention includes a liquid dispersion medium, a powder of a tetrafluoroethylene-based polymer (hereinafter, also referred to as “TFE-based polymer”) and a dispersant, and is a dispersion in which the powder is dispersed in the liquid dispersion medium. is there. The dispersant is a compound having a fluorine-containing site and a secondary hydroxyl group site or a tertiary hydroxyl group site (hereinafter, also referred to as “predetermined dispersant”).
 本発明の分散液は、分散性と再分散性に加えて、化学的な活性も低く、粘度、色調等の分散物性に優れ、チキソ比、接着性、透明性、消泡性、粉落ちしにくい等の樹脂層形成物性に優れている。その理由としては、所定の分散剤の2級水酸基又は3級水酸基は、1級水酸基を有する分散剤に比較して、活性(反応活性、酸性度等。)及び極性が低く、親水性が低い点が挙げられる。つまり、所定の分散剤は、従来の分散剤に比較して、親水性成分との相互作用が低下する一方、TFE系ポリマーとの相互作用が相対的に強まると考えられる。その結果、化学的な活性が低く、分散物性と樹脂層形成物性に優れた分散液が得られたと考えられる。なお、この効果は、後述する本発明の好ましい態様において、顕著に発現する。 Dispersion of the present invention, in addition to dispersibility and redispersibility, low chemical activity, excellent viscosity, excellent dispersive properties such as color tone, thixotropic ratio, adhesiveness, transparency, defoaming, powder falling Excellent resin layer forming properties such as difficulty. The reason for this is that the secondary or tertiary hydroxyl group of a given dispersant has lower activity (reaction activity, acidity, etc.) and polarity, and lower hydrophilicity than a dispersant having a primary hydroxyl group. Points. That is, it is considered that the predetermined dispersant has a lower interaction with the hydrophilic component than the conventional dispersant, but has a relatively stronger interaction with the TFE-based polymer. As a result, it is considered that a dispersion having low chemical activity and excellent in the properties of the dispersion and the resin layer was obtained. This effect is remarkably exhibited in a preferred embodiment of the present invention described later.
 本発明におけるパウダーのD50は、0.05~6μmが好ましく、0.1~3μmが特に好ましい。この場合、パウダーの流動性と分散性がより高まり、本発明の分散液から形成される樹脂層又は層(以下、「F層」とも記す。)の表面平滑性がより優れる。パウダーのD90は、8μm以下が好ましく、1.5~5μmが特に好ましい。この場合、パウダーの分散性とF層の均質性が優れる。
 パウダーの疎充填嵩密度と密充填嵩密度は、この順に、0.08~0.5g/mL、0.1~0.8g/mLであるのが好ましい。
 本発明におけるパウダーは、TFE系ポリマーを主成分とするパウダーである。パウダーにおけるTFE系ポリマーの含有量は、80質量%以上が好ましく、100質量%が特に好ましい。パウダーに含まれ得る他の樹脂としては、芳香族ポリエステル、ポリアミドイミド、熱可塑性ポリイミド、ポリフェニレンエーテル、ポリフェニレンオキシド等が挙げられる。
The D50 of the powder in the present invention is preferably from 0.05 to 6 μm, particularly preferably from 0.1 to 3 μm. In this case, the fluidity and dispersibility of the powder are further enhanced, and the resin layer or layer (hereinafter, also referred to as “F layer”) formed from the dispersion of the present invention has more excellent surface smoothness. D90 of the powder is preferably 8 μm or less, particularly preferably 1.5 to 5 μm. In this case, the dispersibility of the powder and the homogeneity of the F layer are excellent.
The loosely packed bulk density and the densely packed bulk density of the powder are preferably from 0.08 to 0.5 g / mL and from 0.1 to 0.8 g / mL in this order.
The powder in the present invention is a powder containing a TFE-based polymer as a main component. The content of the TFE-based polymer in the powder is preferably 80% by mass or more, and particularly preferably 100% by mass. Other resins that can be included in the powder include aromatic polyesters, polyamide imides, thermoplastic polyimides, polyphenylene ether, polyphenylene oxide, and the like.
 所定の分散剤が有する2級水酸基部位又は3級水酸基部位は、-CH(CH)OH、-CH(CHCH)OH又は-C(CHOHが好ましく、-CH(CH)OHが特に好ましい。
 所定の分散剤が有する含フッ素部位は、ポリフルオロアルキル基、エーテル性酸素原子を含むポリフルオロアルキル基又はポリフルオロアルケニル基が好ましく、ポリフルオロアルキル基が特に好ましい。含フッ素部位の炭素数は、4~16が好ましく、4~12が特に好ましい。
 所定の分散剤の、2級水酸基部位又は3級水酸基部位と含フッ素部位とは、直接結合していてもよく、連結基を介して結合していてもよく、連結基を介して結合しているのが好ましい。この場合、本発明の分散液の消泡性がより向上するだけでなく、F層を形成する際のパウダーの粉落ちが一層抑制されやすい。
 連結基は、ポリオキシアルキレン基が好ましい。
The secondary or tertiary hydroxyl group of the predetermined dispersant is preferably —CH (CH 3 ) OH, —CH (CH 2 CH 3 ) OH or —C (CH 3 ) 2 OH, and —CH (CH 3 ) OH is particularly preferred.
The fluorine-containing site of the predetermined dispersant is preferably a polyfluoroalkyl group, a polyfluoroalkyl group containing an etheric oxygen atom, or a polyfluoroalkenyl group, and particularly preferably a polyfluoroalkyl group. The number of carbon atoms in the fluorinated moiety is preferably from 4 to 16, particularly preferably from 4 to 12.
The secondary or tertiary hydroxyl group site and the fluorinated site of the given dispersant may be directly bonded, may be bonded via a linking group, or may be bonded via a linking group. Is preferred. In this case, not only the defoaming property of the dispersion liquid of the present invention is further improved, but also powder falling off when the F layer is formed is more easily suppressed.
The linking group is preferably a polyoxyalkylene group.
 所定の分散剤は、式R(OQ-(OQOHで表される化合物が好ましい。
 Rは、ポリフルオロアルキル基又はエーテル性酸素原子を含むポリフルオロアルキル基を示し、F(CFCH-、F(CFCH-、F(CFCHCH-、F(CFCHCH-又は式RF1(CFO)f1・(CFCFO)f2CFCHO-で表される基(RF1はCF-又はCFCF-であり、f1及びf2はそれぞれ独立に0~8の整数でありf1とf2の和は4~8である。)が好ましく、F(CFCH-、F(CFCH-、F(CFCHCH-又はF(CFCHCH-が特に好ましい。
 Qは、メチレン基(-CH-)、ジメチレン基(-CHCH-)、トリメチレン基(-CHCHCH-)又はテトラメチレン基(-CHCHCHCH-)を示し、ジメチレン基が好ましい。
 Qは、プロピレン基(-CHCH(CH)-)、プロピリデン基(-CH(CHCH)-)又はイソプロピリデン基(-C(CH-)を示し、プロピレン基が好ましい。但し、プロピレン基の場合、水酸基は2級炭素原子に結合する。
 mは、4~16の整数であり、4~10の整数が好ましい。
 nは、1~3の整数であり、1が好ましい。
 前記化合物におけるR、Q、Q、m及びnが、それぞれの好ましい範囲にある場合には、分散液の消泡性が特に向上するだけでなく、本発明の分散液から、後述する積層体又は被覆織布を製造する際のパウダーの粉落ちが一層抑制されやすい。
As the predetermined dispersant, a compound represented by the formula R F (OQ 1 ) m- (OQ 2 ) n OH is preferable.
R F represents a polyfluoroalkyl group or a polyfluoroalkyl group containing an etheric oxygen atom, and includes F (CF 2 ) 4 CH 2 —, F (CF 2 ) 6 CH 2 —, and F (CF 2 ) 4 CH 2 CH 2 —, F (CF 2 ) 6 CH 2 CH 2 — or a group represented by the formula R F1 (CF 2 O) f1. (CF 2 CF 2 O) f2 CF 2 CH 2 O— (R F1 is CF 3- or CF 3 CF 2- , wherein f1 and f2 are each independently an integer of 0 to 8, and the sum of f1 and f2 is 4 to 8.), and F (CF 2 ) 4 CH 2- , F (CF 2 ) 6 CH 2- , F (CF 2 ) 4 CH 2 CH 2 -or F (CF 2 ) 6 CH 2 CH 2 -are particularly preferred.
Q 1 is a methylene group (—CH 2 —), a dimethylene group (—CH 2 CH 2 —), a trimethylene group (—CH 2 CH 2 CH 2 —) or a tetramethylene group (—CH 2 CH 2 CH 2 CH 2) -), And a dimethylene group is preferred.
Q 2 represents a propylene group (—CH 2 CH (CH 3 ) —), a propylidene group (—CH (CH 2 CH 3 ) —) or an isopropylidene group (—C (CH 3 ) 2 —); Is preferred. However, in the case of a propylene group, the hydroxyl group is bonded to a secondary carbon atom.
m is an integer of 4 to 16, preferably an integer of 4 to 10.
n is an integer of 1 to 3, preferably 1.
When R F , Q 1 , Q 2 , m and n in the compound are in the respective preferable ranges, not only the defoaming property of the dispersion is particularly improved, but also the following from the dispersion of the present invention. Powder dropping during production of the laminate or the coated woven fabric is more easily suppressed.
 所定の分散剤の具体例としては、F(CFCH(OCHCH-(OCHCH(CH))OH、F(CFCH(OCHCH12-(OCHCH(CH))OH、F(CFCHCH(OCHCH-(OCHCH(CH))OH、F(CFCHCH(OCHCH12-(OCHCH(CH))OH、F(CFCHCH(OCHCH-(OCHCH(CH))OH、F(CFCHCH(OCHCH12-(OCHCH(CH))OHが挙げられる。
 かかる分散剤は、市販品(アークロマ社製「Fluowet N083」、「Fluowet N050」等。)として入手できる。
Specific examples of a given dispersant, F (CF 2) 6 CH 2 (OCH 2 CH 2) 7 - (OCH 2 CH (CH 3)) OH, F (CF 2) 6 CH 2 (OCH 2 CH 2 ) 12 - (OCH 2 CH ( CH 3)) OH, F (CF 2) 6 CH 2 CH 2 (OCH 2 CH 2) 7 - (OCH 2 CH (CH 3)) OH, F (CF 2) 6 CH 2 CH 2 (OCH 2 CH 2 ) 12 - (OCH 2 CH (CH 3)) OH, F (CF 2) 4 CH 2 CH 2 (OCH 2 CH 2) 7 - (OCH 2 CH (CH 3)) OH , F (CF 2) 4 CH 2 CH 2 (OCH 2 CH 2) 12 - (OCH 2 CH (CH 3)) OH and the like.
Such a dispersant can be obtained as a commercial product ("Fluowet N083", "Fluowet N050", etc., manufactured by Achroma).
 本発明における液状分散媒は、本発明のパウダーを分散させる機能を有する25℃で液体の化合物であり、水性媒体であってもよく、非水媒体であってもよい。
 液状分散媒の化合物は、水、含窒素化合物、含硫黄化合物、エステル、ケトン、グリコールエーテル等の極性化合物が好ましく、水が特に好ましい。極性化合物である場合、所定の分散剤に含まれる2級水酸基部位又は3級水酸基部位は、極性化合物との相互作用が低下する一方、TFE系ポリマーとの相互作用が相対的に強まり易く、分散液の分散物性と樹脂層形成物性が更に向上し易い。液状分散媒の化合物は、1種を単独で使用してもよく、2種以上を併用してもよい。
The liquid dispersion medium in the present invention is a compound that is liquid at 25 ° C. and has a function of dispersing the powder of the present invention, and may be an aqueous medium or a non-aqueous medium.
The compound of the liquid dispersion medium is preferably a polar compound such as water, a nitrogen-containing compound, a sulfur-containing compound, an ester, a ketone, or a glycol ether, and particularly preferably water. When the compound is a polar compound, the secondary hydroxyl group or the tertiary hydroxyl group contained in the predetermined dispersant decreases the interaction with the polar compound, while the interaction with the TFE-based polymer tends to be relatively strong. The dispersion properties of the liquid and the properties of the resin layer formation can be further improved. As the compound of the liquid dispersion medium, one type may be used alone, or two or more types may be used in combination.
 液状分散媒の化合物の具体例としては、水、メタノール、エタノール、イソプロパノール、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、ジメチルスルホキシド、ジエチルエーテル、ジオキサン、乳酸エチル、酢酸エチル、酢酸ブチル、メチルエチルケトン、メチルイソプロピルケトン、シクロペンタノン、シクロヘキサノン、エチレングリコールモノイソプロピルエーテル、セロソルブ(メチルセロソルブ、エチルセロソルブ等。)が挙げられる。
 液状分散媒は、水性媒体が好ましい。水性媒体は、水を主成分とする分散媒であり、水のみからなっていてもよく、水と水溶性の有機分散媒との混合媒体であってもよい。
Specific examples of the compound of the liquid dispersion medium include water, methanol, ethanol, isopropanol, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, diethyl ether, dioxane, and lactic acid. Ethyl, ethyl acetate, butyl acetate, methyl ethyl ketone, methyl isopropyl ketone, cyclopentanone, cyclohexanone, ethylene glycol monoisopropyl ether, and cellosolve (eg, methyl cellosolve, ethyl cellosolve).
The liquid dispersion medium is preferably an aqueous medium. The aqueous medium is a dispersion medium containing water as a main component, and may be composed of only water, or may be a mixed medium of water and a water-soluble organic dispersion medium.
 本発明におけるTFE系ポリマーは、テトラフルオロエチレン(TFE)に基づく単位(以下、「TFE単位」とも記す。)を含むポリマーである。
 TFE系ポリマーは、TFE単位から実質的になるホモポリマー(以下、「PTFE」とも記す。)、TFE単位とペルフルオロ(アルキルビニルエーテル)(以下、「PAVE」とも記す。)に基づく単位(以下、「PAVE単位」とも記す。)を含むコポリマー、TFE単位とヘキサフルオロプロピレン(HFP)に基づく単位(以下、「HFP単位」とも記す。)を含むコポリマー又はTFE単位とフルオロアルキルエチレン(以下、「FAE」とも記す。)に基づく単位(以下、「FAE単位」とも記す。)を含むコポリマーが好ましい。
The TFE-based polymer in the present invention is a polymer containing a unit based on tetrafluoroethylene (TFE) (hereinafter also referred to as “TFE unit”).
The TFE-based polymer is a homopolymer substantially composed of TFE units (hereinafter, also referred to as “PTFE”), and a unit based on TFE units and perfluoro (alkyl vinyl ether) (hereinafter, also referred to as “PAVE”) (hereinafter, referred to as “PAVE”). PAVE unit "), a copolymer comprising a TFE unit and a unit based on hexafluoropropylene (HFP) (hereinafter also referred to as" HFP unit ") or a TFE unit and fluoroalkylethylene (hereinafter" FAE "). A copolymer containing a unit (hereinafter, also referred to as a “FAE unit”) based on the above-mentioned formula is preferable.
 PTFEは、TFE単位以外の単位を極微量含むポリマーや低分子量のPTFEも包含される。前記ポリマーは、ポリマーに含まれる全単位に対して、TFE単位を、99.5モル%超含むのが好ましく、99.9モル%以上含むのが特に好ましい。前記ポリマーの380℃における溶融粘度は、1×10~1×10Pa・sが好ましく、1×10~1×10Pa・sが特に好ましい。 PTFE also includes polymers containing a trace amount of units other than TFE units and low molecular weight PTFE. The polymer preferably contains more than 99.5 mol%, more preferably more than 99.9 mol%, of TFE units based on all units contained in the polymer. The melt viscosity of the polymer at 380 ° C. is preferably 1 × 10 2 to 1 × 10 8 Pa · s, and particularly preferably 1 × 10 3 to 1 × 10 6 Pa · s.
 低分子量のPTFEは、高分子量のPTFEに放射線を照射して得られるPTFE(国際公開第2018/026012号、国際公開第2018/026017号等に記載のポリマー。)であってもよく、TFEを重合してPTFEを製造する際に連鎖移動剤を用いて得られるPTFE(特開2009-1745号公報、国際公開第2010/114033号、特開2015-232082号公報等に記載のポリマー。)であってよく、コア部分とシェル部分からなるコア-シェル構造を有するポリマーであって、シェル部分のみが低分子量のPTFE(特表2005-527652号公報、国際公開第2016/170918号、特開平09-087334号公報等に記載のポリマー。)であってもよい。
 低分子量のPTFEの標準比重(ASTM D4895-04に準拠して測定される比重である。)は、2.14~2.22が好ましく、2.16~2.20がより好ましい。
The low-molecular-weight PTFE may be PTFE obtained by irradiating high-molecular-weight PTFE with radiation (polymers described in WO2018 / 02602, WO2018 / 026017, etc.), and TFE may be used. PTFE obtained by using a chain transfer agent when polymerizing to produce PTFE (polymers described in JP-A-2009-1745, WO 2010/114033, JP-A-2013-2322082, etc.). A polymer having a core-shell structure composed of a core portion and a shell portion, wherein only the shell portion has a low molecular weight PTFE (Japanese Patent Application Laid-Open No. 2005-527652, WO 2016/170918, JP-A-09-0909) Polymer described in JP-A-087334).
The standard specific gravity of the low molecular weight PTFE (specific gravity measured in accordance with ASTM D4895-04) is preferably from 2.14 to 2.22, more preferably from 2.16 to 2.20.
 TFE単位を含むポリマーは、TFE単位以外の単位を含むポリマーも包含される。前記ポリマーは、ポリマーの全単位に対して、TFE単位以外のモノマーに基づく単位を0.5mol%超含むのが好ましい。TFE以外の単位は、PAVE単位、HFP単位、FAE単位又は後述する官能基を有する単位が好ましい。 ポ リ マ ー The polymer containing TFE units includes polymers containing units other than TFE units. The polymer preferably contains more than 0.5 mol% of units based on monomers other than TFE units, based on all units of the polymer. The unit other than TFE is preferably a PAVE unit, an HFP unit, a FAE unit or a unit having a functional group described later.
 TFE単位を含むポリマーは、カルボニル基含有基、ヒドロキシ基、エポキシ基、オキセタニル基、アミノ基、ニトリル基及びイソシアネート基からなる群から選択される少なくとも1種の官能基を有するのが好ましい。TFE系ポリマーが前記官能基を有する場合、所定の分散剤に含まれる2級水酸基部位又は3級水酸基部位のTFE系ポリマーとの相互作用が強まり易く、分散液の分散物性と樹脂層形成物が更に向上し易い。
 上記官能基は、TFE系ポリマーを構成する単位に含まれてもよく、ポリマー主鎖の末端基に含まれてもよく、プラズマ処理等によりTFE系ポリマーに導入してもよい。ポリマー主鎖の末端基に上記官能基が含まれるTFE系ポリマーとしては、重合開始剤、連鎖移動剤等に由来する末端基として官能基を有するTFE系ポリマーが挙げられる。
The polymer containing TFE units preferably has at least one functional group selected from the group consisting of a carbonyl group-containing group, a hydroxy group, an epoxy group, an oxetanyl group, an amino group, a nitrile group and an isocyanate group. When the TFE-based polymer has the functional group, the interaction with the TFE-based polymer at the secondary hydroxyl group or the tertiary hydroxyl group contained in the predetermined dispersant tends to increase, and the dispersibility of the dispersion and the resin layer-forming product are reduced. It is even easier to improve.
The functional group may be contained in a unit constituting the TFE-based polymer, may be contained in a terminal group of the polymer main chain, or may be introduced into the TFE-based polymer by plasma treatment or the like. Examples of the TFE-based polymer having the above functional group in the terminal group of the polymer main chain include a TFE-based polymer having a functional group as a terminal group derived from a polymerization initiator, a chain transfer agent and the like.
 上記官能基は、ヒドロキシ基又はカルボニル基含有基が好ましく、カルボニル含有基がより好ましく、カーボネート基、カルボキシ基、ハロホルミル基、アルコキシカルボニル基又は酸無水物残基が特に好ましく、カルボキシ基又は酸無水物残基が最も好ましい。
 TFE系ポリマーは、TFE単位と、PAVE単位、HFP単位又はFAE単位を含むポリマーが好ましく、TFE単位と、PAVE単位、HFP単位又はFAE単位と、官能基を有する単位とを含むポリマーがより好ましい。
 官能基を有する単位は、官能基を有するモノマーに基づく単位が好ましい。
 官能基を有するモノマーとしては、ヒドロキシ基又はカルボニル基含有基を有するモノマーが好ましく、酸無水物残基を有する環状モノマーが特に好ましい。
 環状モノマーとしては、無水イタコン酸、無水シトラコン酸、5-ノルボルネン-2,3-ジカルボン酸無水物(別称:無水ハイミック酸;以下、「NAH」とも記す。)、無水マレイン酸が挙げられ、NAHが好ましい。
The functional group is preferably a hydroxy group or a carbonyl group-containing group, more preferably a carbonyl-containing group, particularly preferably a carbonate group, a carboxy group, a haloformyl group, an alkoxycarbonyl group or an acid anhydride residue, and a carboxy group or an acid anhydride residue. Residues are most preferred.
The TFE-based polymer is preferably a polymer containing a TFE unit, a PAVE unit, a HFP unit or a FAE unit, and more preferably a polymer containing a TFE unit, a PAVE unit, a HFP unit or a FAE unit, and a unit having a functional group.
The unit having a functional group is preferably a unit based on a monomer having a functional group.
As the monomer having a functional group, a monomer having a hydroxy group or a carbonyl group-containing group is preferable, and a cyclic monomer having an acid anhydride residue is particularly preferable.
Examples of the cyclic monomer include itaconic anhydride, citraconic anhydride, 5-norbornene-2,3-dicarboxylic anhydride (also called hymic anhydride; hereinafter also referred to as “NAH”), and maleic anhydride. Is preferred.
 PAVEとしては、CF=CFOCF、CF=CFOCFCF、CF=CFOCFCFCF(以下、「PPVE」とも記す。)、CF=CFOCFCFCFCF、CF=CFO(CFFが挙げられ、PPVEが好ましい。
 FAEとしては、CH=CH(CFF、CH=CH(CFF、CH=CH(CFF、CH=CF(CFH、CH=CF(CFHが挙げられる。
 この場合、ポリマーに含まれる全単位に対して、TFE単位、PAVE単位、HFP単位又はFAE単位及び官能基を有する単位は、この順に、90~99モル%、0.5~9.97モル%、0.01~3モル%含まれるのが好ましい。
 この場合、TFE系ポリマーの融点は、250~380℃が好ましく、280~350℃が特に好ましい。
 かかるTFE系ポリマーの具体例としては、国際公開第2018/16644号に記載のポリマーが挙げられる。
PAVE includes CF 2 = CFOCF 3 , CF 2 = CFOCF 2 CF 3 , CF 2 = CFOCF 2 CF 2 CF 3 (hereinafter also referred to as “PPVE”), CF 2 = CFOCF 2 CF 2 CF 2 CF 3 , CF 2 CFCFO (CF 2 ) 8 F, and PPVE is preferred.
As FAE, CH 2 CHCH (CF 2 ) 2 F, CH 2 CHCH (CF 2 ) 3 F, CH 2 CHCH (CF 2 ) 4 F, CH 2 CFCF (CF 2 ) 3 H, CH 2 CFCF (CF 2 ) 4 H.
In this case, the TFE unit, the PAVE unit, the HFP unit or the FAE unit and the unit having a functional group are 90 to 99 mol% and 0.5 to 9.97 mol% in this order with respect to all units contained in the polymer. , 0.01 to 3 mol%.
In this case, the melting point of the TFE-based polymer is preferably from 250 to 380 ° C, particularly preferably from 280 to 350 ° C.
As a specific example of such a TFE-based polymer, a polymer described in WO2018 / 16644 can be mentioned.
 本発明の分散液におけるTFE系ポリマーの含有量は、20~70質量%が好ましく、30~60質量%が特に好ましい。
 本発明の分散液における所定の分散剤の含有量は、0.1~10質量%が好ましく、1~5質量%が特に好ましい。
 本発明の分散液における液状分散媒の含有量は、15~75質量%が好ましく、25~60質量部が特に好ましい。
 液状分散媒が水性媒体である場合、液状分散媒における水の含有量は、95質量%以上が好ましく、99質量%以上がより好ましく、100質量%が特に好ましい。
The content of the TFE-based polymer in the dispersion of the present invention is preferably from 20 to 70% by mass, and particularly preferably from 30 to 60% by mass.
The content of the predetermined dispersant in the dispersion of the present invention is preferably 0.1 to 10% by mass, and particularly preferably 1 to 5% by mass.
The content of the liquid dispersion medium in the dispersion of the present invention is preferably from 15 to 75% by mass, and particularly preferably from 25 to 60% by mass.
When the liquid dispersion medium is an aqueous medium, the content of water in the liquid dispersion medium is preferably 95% by mass or more, more preferably 99% by mass or more, and particularly preferably 100% by mass.
 本発明の分散液は、液状分散媒、TFE系ポリマーのパウダー及び所定の分散剤以外の他の材料を含んでいてもよい。
 他の材料としては、チキソ性付与剤、充填剤、消泡剤、脱水剤、可塑剤、耐候剤、酸化防止剤、熱安定剤、滑剤、帯電防止剤、増白剤、着色剤、導電剤、離型剤、表面処理剤、粘度調節剤、難燃剤が挙げられる。
 他の材料は、分散液に溶解してもよく、溶解しなくてもよい。
 他の材料としては、熱硬化性樹脂、熱溶融性樹脂、反応性アルコキシシラン、カーボンブラックも挙げられる。
The dispersion of the present invention may contain other materials other than the liquid dispersion medium, the powder of the TFE-based polymer, and the predetermined dispersant.
Other materials include thixotropic agents, fillers, defoamers, dehydrating agents, plasticizers, weathering agents, antioxidants, heat stabilizers, lubricants, antistatic agents, brighteners, coloring agents, and conductive agents , A release agent, a surface treatment agent, a viscosity modifier, and a flame retardant.
Other materials may or may not dissolve in the dispersion.
Other materials include a thermosetting resin, a hot-melt resin, a reactive alkoxysilane, and carbon black.
 熱硬化性樹脂としては、エポキシ樹脂、熱硬化性ポリイミド樹脂、ポリアミック酸、熱硬化性アクリル樹脂、フェノール樹脂、熱硬化性ポリエステル樹脂、熱硬化性ポリオレフィン樹脂、熱硬化性変性ポリフェニレンエーテル樹脂、ビスマレイミド樹脂、多官能シアン酸エステル樹脂、多官能マレイミド-シアン酸エステル樹脂、多官能性マレイミド樹脂、ビニルエステル樹脂、尿素樹脂、ジアリルフタレート樹脂、メラミン樹脂、グアナミン樹脂、メラミン-尿素共縮合樹脂が挙げられる。
 熱溶融性樹脂としては、ポリエステル樹脂、ポリオレフィン樹脂、スチレン樹脂、ポリカーボネート、熱可塑性ポリイミド、ポリアリレート、ポリスルホン、ポリアリールスルホン、芳香族ポリアミド、芳香族ポリエーテルアミド、ポリフェニレンスルファイド、ポリアリールエーテルケトン、ポリアミドイミド、液晶性ポリエステル、ポリフェニレンエーテルが挙げられる。
As the thermosetting resin, epoxy resin, thermosetting polyimide resin, polyamic acid, thermosetting acrylic resin, phenol resin, thermosetting polyester resin, thermosetting polyolefin resin, thermosetting modified polyphenylene ether resin, bismaleimide Resins, polyfunctional cyanate ester resins, polyfunctional maleimide-cyanate ester resins, polyfunctional maleimide resins, vinyl ester resins, urea resins, diallyl phthalate resins, melamine resins, guanamine resins, melamine-urea co-condensation resins. .
As the hot-melt resin, polyester resin, polyolefin resin, styrene resin, polycarbonate, thermoplastic polyimide, polyarylate, polysulfone, polyarylsulfone, aromatic polyamide, aromatic polyetheramide, polyphenylene sulfide, polyaryletherketone, Examples thereof include polyamide imide, liquid crystalline polyester, and polyphenylene ether.
 他の材料としては、無機フィラーも挙げられ、より具体的にはガラス微小球、セラミック微小球等の中空無機微小球も挙げられる。
 ガラス微小球は、シリカガラス又はボロシリケートガラスを含むのが好ましい。
 セラミック微小球は、チタン酸バリウムを含むのが好ましく、ネオジウム又は酸化亜鉛がドープされたチタン酸バリウムを含むのが特に好ましい。
 中空無機微小球は、20~50℃において、誘電率が4以上であり、かつ誘電率熱係数が150ppm/℃以下である球が好ましい。
 中空無機微小球は、非多孔質であってもよく、多孔質であってもよい。
 中空無機微小球は、結晶性であってもよく、非結晶性であってもよい。
 中空無機微小球は、密度が0.1~0.8g/cmであり、平均粒子径が5~100μmであるのが好ましい。
Other materials include inorganic fillers, and more specifically, hollow inorganic microspheres such as glass microspheres and ceramic microspheres.
The glass microspheres preferably comprise silica glass or borosilicate glass.
Preferably, the ceramic microspheres comprise barium titanate, particularly preferably barium titanate doped with neodymium or zinc oxide.
The hollow inorganic microspheres preferably have a dielectric constant of 4 or more at 20 to 50 ° C. and a thermal coefficient of dielectric constant of 150 ppm / ° C. or less.
The hollow inorganic microspheres may be non-porous or porous.
The hollow inorganic microspheres may be crystalline or non-crystalline.
The hollow inorganic microspheres preferably have a density of 0.1 to 0.8 g / cm 3 and an average particle size of 5 to 100 μm.
 中空無機微小球は、シラン系カップリング剤、ジルコネート系カップリング剤又はチタネート系カップリング剤によって被覆処理されて疎水性であるのが好ましい。
 シラン系カップリング剤としては、フエニルトリメトキシシラン、フェニルトリエトキシシラン、(3,3,3-トリフルオロプロピル)トリメトキシシラン、(トリデカフルオロ-1,1,2,2-テトラヒドロオクチル)トリエトキシシラン、(ヘプタデカフルオロ-1,1,2,2-テトラヒドロデシル)トリエトキシシランが挙げられる。
 ジルコネート系カップリング剤としては、ネオペンチル(ジアリル)オキシトリ(ジオクチル)ピロフォスフェートジルコネート、ネオペンチル(ジアリル)オキシトリ(N-エチレンジアミノ)エチルジルコネートが挙げられる。
 チタネート系カップリング剤としては、ネオペンチル(ジアリル)オキシトリネオデカノイルチタネート、ネオペンチル(ジアリル)オキシトリ(ドデシル)ベンゼン-スルホニルチタネート、ネオペンチル(ジアリル)オキシトリ(ジオクチル)ホスフェートチタネートが挙げられる。
 中空無機微小球を含む本発明の分散液を銅箔の表面に塗布し、液状分散媒を除去して樹脂層を形成させた樹脂付金属箔は、低誘電率熱係数を示すプリント基板材料として好適である。
The hollow inorganic microspheres are preferably coated with a silane-based coupling agent, a zirconate-based coupling agent, or a titanate-based coupling agent to be hydrophobic.
Examples of silane coupling agents include phenyltrimethoxysilane, phenyltriethoxysilane, (3,3,3-trifluoropropyl) trimethoxysilane, (tridecafluoro-1,1,2,2-tetrahydrooctyl) Triethoxysilane and (heptadecafluoro-1,1,2,2-tetrahydrodecyl) triethoxysilane.
Examples of the zirconate-based coupling agent include neopentyl (diallyl) oxytri (dioctyl) pyrophosphate zirconate and neopentyl (diallyl) oxytri (N-ethylenediamino) ethyl zirconate.
Examples of the titanate coupling agent include neopentyl (diallyl) oxytrinedecanoyl titanate, neopentyl (diallyl) oxytri (dodecyl) benzene-sulfonyl titanate, and neopentyl (diallyl) oxytri (dioctyl) phosphate titanate.
A resin-coated metal foil in which a dispersion liquid of the present invention containing hollow inorganic microspheres is applied to the surface of a copper foil and a liquid dispersion medium is removed to form a resin layer is used as a printed circuit board material having a low dielectric constant heat coefficient. It is suitable.
 本発明の分散液の粘度は、1~1000mPa・sが好ましく、5~500mPa・sがより好ましく、10~100mPa・sが特に好ましい。この範囲において、分散液の分散性と塗工性が一層バランスしやすい。
 本発明の分散液のチキソ比(η/η)は、1~2.2が好ましい。この範囲において、分散液の分散性と塗工性が一層バランスしやすい。
The viscosity of the dispersion of the present invention is preferably 1 to 1000 mPa · s, more preferably 5 to 500 mPa · s, and particularly preferably 10 to 100 mPa · s. Within this range, the dispersibility of the dispersion and the coating properties are more easily balanced.
The thixo ratio (η 1 / η 2 ) of the dispersion of the present invention is preferably from 1 to 2.2. Within this range, the dispersibility of the dispersion and the coating properties are more easily balanced.
 本発明の分散液は、液状分散媒とTFE系ポリマーのパウダーと所定の分散剤を混合して製造でき、液状分散媒及び所定の分散剤と、TFE系ポリマーのパウダーとを混合して製造するのが好ましい。
 混合に際しては、ホモディスパーやホモジナイザーを用いて分散処理して、分散状態を向上させるのが好ましい。また、0~40℃で貯蔵した本発明の分散液を使用する際は、これらの分散処理をしてから使用するのが好ましい。
The dispersion of the present invention can be produced by mixing a liquid dispersion medium, a powder of a TFE-based polymer and a predetermined dispersant, and is prepared by mixing a liquid dispersion medium, a predetermined dispersant, and a powder of a TFE-based polymer. Is preferred.
At the time of mixing, it is preferable to perform a dispersion treatment using a homodisper or a homogenizer to improve the dispersion state. When using the dispersion of the present invention stored at 0 to 40 ° C., it is preferable to use the dispersion after these dispersion treatments.
 本発明の分散液は、分散物性と樹脂層形成物性とに優れており、層(樹脂層)形成用のコーティング剤として有用である。
 また、本発明の分散液は、層(樹脂層)が形成される際の加熱によって、所定の分散剤がパウダーの粉落ちを抑制しつつ、熱分解して消失しやすく、所定の分散剤の残渣量が少ない層(樹脂層)が得られる点も特徴である。
 F層における所定の分散剤の残渣量は、使用される分散液に含まれる所定の分散剤の量を基準にして、25質量%以下が好ましく、5質量%以下が特に好ましい。
The dispersion of the present invention has excellent dispersion properties and resin layer forming properties, and is useful as a coating agent for forming a layer (resin layer).
In addition, the dispersion liquid of the present invention is easily heated and decomposed by heating when a layer (resin layer) is formed, while suppressing powder falling of the powder. Another feature is that a layer (resin layer) with a small amount of residue can be obtained.
The residual amount of the predetermined dispersant in the F layer is preferably 25% by mass or less, particularly preferably 5% by mass or less, based on the amount of the predetermined dispersant contained in the dispersion used.
 本発明は、本発明の分散液を、基材の表面に塗布し、加熱してTFE系ポリマーを含む樹脂層(F層)を形成させて、基材と樹脂層とが、この順に積層された積層体の製造方法を提供する。
 本発明の製造方法においては、基材の表面の少なくとも片面に樹脂層が形成されればよく、基材の片面のみに樹脂層が形成されてもよく、基材の両面に樹脂層が形成されてもよい。
 分散液の塗布方法としては、スプレー法、ロールコート法、スピンコート法、グラビアコート法、マイクログラビアコート法、グラビアオフセット法、ナイフコート法、キスコート法、バーコート法、ダイコート法、ファウンテンメイヤーバー法、スロットダイコート法が挙げられる。
 樹脂層の形成は加熱によりおこなわれ、本発明の分散液が塗布された基材を、液状分散媒が揮発する温度(100~300℃の温度領域)に加熱し、更にTFE系ポリマーが溶融又は焼成する温度領域(300~400℃)に加熱しておこなうのが特に好ましい。
In the present invention, the dispersion of the present invention is applied to the surface of a substrate and heated to form a resin layer (F layer) containing a TFE-based polymer, and the substrate and the resin layer are laminated in this order. To provide a method for producing a laminated body.
In the manufacturing method of the present invention, the resin layer may be formed on at least one surface of the surface of the substrate, the resin layer may be formed on only one surface of the substrate, or the resin layers may be formed on both surfaces of the substrate. You may.
Examples of the method of applying the dispersion include a spray method, a roll coating method, a spin coating method, a gravure coating method, a microgravure coating method, a gravure offset method, a knife coating method, a kiss coating method, a bar coating method, a die coating method, and a fountain Meyer bar method. And a slot die coating method.
The resin layer is formed by heating, the substrate on which the dispersion of the present invention is applied is heated to a temperature at which the liquid dispersion medium is volatilized (a temperature range of 100 to 300 ° C.), and the TFE polymer is melted or melted. It is particularly preferable to perform heating by heating to a temperature range for firing (300 to 400 ° C.).
 加熱の方法としては、オーブンを用いる方法、通風乾燥炉を用いる方法、熱線(赤外線)を照射する方法等が挙げられる。
 加熱における雰囲気は、常圧下、減圧下のいずれの状態であってよい。また、前記雰囲気は、酸化性ガス(酸素ガス等。)、還元性ガス(水素ガス等。)、不活性ガス(ヘリウムガス、ネオンガス、アルゴンガス、窒素ガス等。)のいずれの雰囲気であってもよい。
 基材の加熱時間は、通常は、0.5分~30分である。
Examples of the heating method include a method using an oven, a method using a ventilation drying oven, and a method of irradiating heat rays (infrared rays).
The atmosphere in the heating may be under normal pressure or under reduced pressure. The atmosphere may be any of an oxidizing gas (oxygen gas or the like), a reducing gas (hydrogen gas or the like), or an inert gas (helium gas, neon gas, argon gas, nitrogen gas, or the like). Is also good.
The heating time of the substrate is usually 0.5 to 30 minutes.
 樹脂層の厚さは、30μm以下が好ましく、15μm以下がより好ましく、10μm以下が特に好ましい。樹脂層の厚さの上限は、0.1μmであり、2μmが好ましい。
 基材と樹脂層の剥離強度は、12N/cm超が好ましく、15N/cm以上が特に好ましい。前記剥離強度の上限は、通常、100N/cmである。
 基材は、銅、アルミ、鉄等の金属基材、ガラス基材、樹脂基材、シリコン基材、セラミックス基材のいずれであってもよい。
 基材の形状は、平面状、曲面状、凹凸状のいずれであってもよく、箔状、板状、膜状、繊維状のいずれであってもよい。
The thickness of the resin layer is preferably 30 μm or less, more preferably 15 μm or less, and particularly preferably 10 μm or less. The upper limit of the thickness of the resin layer is 0.1 μm, preferably 2 μm.
The peel strength between the substrate and the resin layer is preferably more than 12 N / cm, particularly preferably 15 N / cm or more. The upper limit of the peel strength is usually 100 N / cm.
The substrate may be any one of a metal substrate such as copper, aluminum, and iron, a glass substrate, a resin substrate, a silicon substrate, and a ceramic substrate.
The shape of the base material may be any of a flat shape, a curved surface shape, and an uneven shape, and may be any of a foil shape, a plate shape, a film shape, and a fiber shape.
 本発明の製造方法で得られる積層体の具体例としては、基材が金属箔であり、金属箔及び樹脂層を、この順に有する樹脂付金属箔が挙げられる。
 金属箔と樹脂層の間には、接着層が別に設けられていてもよいが、本発明の分散液から形成される樹脂層は接着性に優れるため、接着層は設けられていなくてもよい。
 金属箔の好適な態様としては、圧延銅箔、電解銅箔等の銅箔が挙げられる。樹脂付金属箔における、金属箔の厚さは3~18μmが好ましく、樹脂層の厚さは1~50μmが好ましい。
Specific examples of the laminate obtained by the production method of the present invention include a metal foil with a base material being a metal foil and having a metal foil and a resin layer in this order.
Between the metal foil and the resin layer, an adhesive layer may be separately provided, but since the resin layer formed from the dispersion of the present invention has excellent adhesiveness, the adhesive layer may not be provided. .
Preferred embodiments of the metal foil include copper foil such as rolled copper foil and electrolytic copper foil. In the metal foil with resin, the thickness of the metal foil is preferably 3 to 18 μm, and the thickness of the resin layer is preferably 1 to 50 μm.
 樹脂付金属箔は、金属箔にパターン回路を形成すれば、樹脂層を絶縁樹脂層とするプリント配線板として使用できる。
 また、電気絶縁層の両側にパターン回路が設けられたプリント配線板に貫通穴を形成する際には、NCドリリング、炭酸ガスレーザー照射又はUV-YAGレーザー照射も使用できる。UV-YAGレーザー照射に際しては、第3高調波(波長355nm)又は第4高調波(波長266nm)を使用できる。
 この際の樹脂付金属箔においては、本発明の分散液に紫外線吸収剤、顔料(アルミナ、酸化亜鉛、酸化チタン等。)、硬化剤(トリアリルイソシアヌレート等。)等を更に配合するか、樹脂層の形成における加熱温度を調整してもよい。
 また、形成された貫通穴の内壁面には、メッキ層を形成してもよい。メッキ層の形成は、金属ナトリウムによるエッチング処理、過マンガン酸溶液による処理、プラズマ処理のいずれの方法でも形成でき、過マンガン酸溶液による処理又はプラズマ処理によって、メッキ層を形成してもよい。
The metal foil with resin can be used as a printed wiring board having a resin layer as an insulating resin layer if a pattern circuit is formed on the metal foil.
When forming a through hole in a printed wiring board provided with a pattern circuit on both sides of an electric insulating layer, NC drilling, carbon dioxide laser irradiation, or UV-YAG laser irradiation can also be used. When irradiating the UV-YAG laser, the third harmonic (wavelength: 355 nm) or the fourth harmonic (wavelength: 266 nm) can be used.
In this case, in the resin-attached metal foil, an ultraviolet absorber, a pigment (alumina, zinc oxide, titanium oxide, etc.), a curing agent (triallyl isocyanurate, etc.) and the like are further added to the dispersion of the present invention. The heating temperature in forming the resin layer may be adjusted.
Further, a plating layer may be formed on the inner wall surface of the formed through hole. The plating layer can be formed by any of an etching treatment with metallic sodium, a treatment with a permanganate solution, and a plasma treatment, and the plating layer may be formed by a treatment with a permanganate solution or a plasma treatment.
 本発明の製造方法で得られる積層体の具体例としては、基材がポリイミドフィルムであり、ポリイミドフィルム表面の少なくとも一方に、本発明の分散液から形成された樹脂層を有するポリイミドフィルムも挙げられる。
 ポリイミドフィルムと樹脂層の間には、接着層が別に設けられていてもよいが、本発明の分散液から形成される樹脂層は接着性に優れるため、接着層は設けられていなくてもよい。
Specific examples of the laminate obtained by the production method of the present invention include a polyimide film in which the substrate is a polyimide film and at least one of the polyimide film surfaces has a resin layer formed from the dispersion of the present invention. .
Between the polyimide film and the resin layer, an adhesive layer may be separately provided, but since the resin layer formed from the dispersion of the present invention has excellent adhesiveness, the adhesive layer may not be provided. .
 ポリイミドフィルムの好適な態様としては、2,2’,3,3’-又は3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を含む酸二無水物と、パラフェニレンジアミンを含むジアミンとの重合体のフィルムが挙げられる。ポリイミドフィルムの具体例としては、Apical TypeAF(カネカノースアメリカ製)が挙げられる。
 積層体の質量は23.5g/m以下であり、かつ、そのループスティフネス値は0.45g/cm以上であるのが好ましい。
 積層体における、樹脂層の厚さは1~200μmが好ましく、5~20μmが特に好ましい。積層体における、ポリイミドフィルムの厚さは、5~150μmが好ましい。
 かかる積層体は、電気絶縁性、耐摩耗性、耐加水分解性等に優れており、電気絶縁性テープや電気ケーブル又は電気ワイヤーの包装材として使用でき、航空宇宙用又は電気自動車用の、電線材料又はケーブル材料として好適である。
Preferred embodiments of the polyimide film include an acid dianhydride containing 2,2 ', 3,3'- or 3,3', 4,4'-biphenyltetracarboxylic dianhydride and paraphenylenediamine A polymer film with a diamine is exemplified. A specific example of the polyimide film is Apical Type AF (manufactured by Kaneka North America).
The mass of the laminate is preferably 23.5 g / m 2 or less, and its loop stiffness value is preferably 0.45 g / cm or more.
The thickness of the resin layer in the laminate is preferably from 1 to 200 μm, particularly preferably from 5 to 20 μm. The thickness of the polyimide film in the laminate is preferably from 5 to 150 μm.
Such a laminate is excellent in electric insulation, abrasion resistance, hydrolysis resistance and the like, and can be used as a packaging material for an electric insulating tape or an electric cable or an electric wire, and is used for aerospace or electric vehicles. It is suitable as a material or a cable material.
 本発明の製造方法で得られる積層体の樹脂層には、更に他の材料を積層してもよい。
 前記樹脂層の表面と第2の基材とを圧着させれば、第1の基材(本発明の積層体の製造方法における基材を示す。以下同様。)、樹脂層、第2の基材が、この順に積層された複合積層体が得られる。
 第2の基材としては、銅、アルミ、鉄等の金属基材、ガラス基材、樹脂基材、シリコン基材、セラミックス基材が挙げられる。
 第2の基材の形状は、平面状、曲面状、凹凸状のいずれであってもよい。
 第2の基材の性状は、箔状、板状、膜状、繊維状のいずれであってもよい。
Other materials may be further laminated on the resin layer of the laminate obtained by the production method of the present invention.
When the surface of the resin layer and the second base material are pressed together, the first base material (the base material in the method for producing a laminate of the present invention; the same applies hereinafter), the resin layer, and the second base material are used. A composite laminate in which the materials are laminated in this order is obtained.
Examples of the second base include a metal base such as copper, aluminum, and iron, a glass base, a resin base, a silicon base, and a ceramic base.
The shape of the second base material may be any of a planar shape, a curved surface shape, and an uneven shape.
The property of the second base material may be any of a foil shape, a plate shape, a film shape, and a fiber shape.
 第2の基材の具体例としては、耐熱性樹脂基材、繊維強化樹脂板の前駆体であるプリプレグ等が挙げられる。
 プリプレグとは、強化繊維(ガラス繊維、炭素繊維等。)の基材(トウ、織布等。)に樹脂(上述した熱硬化性樹脂や熱可塑性樹脂等。)を含浸させたシート状の基材である。
 耐熱性樹脂基材は、耐熱性樹脂を含むフィルムが好ましい。耐熱性樹脂基材は、単層であってもよく多層であってもよい。耐熱性樹脂としては、ポリイミド、ポリアリレート、ポリスルホン、ポリアリルスルホン、芳香族ポリアミド、芳香族ポリエーテルアミド、ポリフェニレンスルフィド、ポリアリルエーテルケトン、ポリアミドイミド、液晶性ポリエステル、PTFE等が挙げられる。
Specific examples of the second substrate include a heat-resistant resin substrate and a prepreg that is a precursor of a fiber-reinforced resin plate.
The prepreg is a sheet-like base material in which a base material (tow, woven fabric, etc.) of a reinforcing fiber (glass fiber, carbon fiber, etc.) is impregnated with a resin (the above-mentioned thermosetting resin, thermoplastic resin, etc.). Material.
The heat-resistant resin substrate is preferably a film containing a heat-resistant resin. The heat-resistant resin substrate may be a single layer or a multilayer. Examples of the heat-resistant resin include polyimide, polyarylate, polysulfone, polyallylsulfone, aromatic polyamide, aromatic polyetheramide, polyphenylene sulfide, polyallyletherketone, polyamideimide, liquid crystalline polyester, and PTFE.
 積層体の樹脂層の表面と第2の基材とを圧着させる方法としては、熱圧着法が挙げられる。第2の基材がプリプレグである場合の熱圧着法における圧着温度は、120~300℃が好ましい。第2の基材が耐熱性樹脂基材である場合の熱圧着温度は、300~400℃が好ましい。
 熱圧着は、20kPa以下の真空度で行うのが特に好ましい。
 熱圧着における圧力は、0.2~10MPaが好ましい。
As a method for pressure-bonding the surface of the resin layer of the laminate to the second substrate, a thermocompression bonding method may be used. When the second substrate is a prepreg, the compression bonding temperature in the thermocompression bonding method is preferably 120 to 300 ° C. When the second substrate is a heat-resistant resin substrate, the thermocompression bonding temperature is preferably 300 to 400 ° C.
The thermocompression bonding is particularly preferably performed at a degree of vacuum of 20 kPa or less.
The pressure in thermocompression bonding is preferably from 0.2 to 10 MPa.
 本発明の製造方法で得られた積層体の樹脂層の表面に第2の樹脂層を形成する液状の層形成材料を塗布し、第2の樹脂層を形成させても、第1の基材、樹脂層、第2の樹脂層が、この順に積層された複合積層体が得られる。
 液状の層形成材料は、特に限定されず、本発明の分散液を使用してもよい。
 第2の樹脂層の形成方法も、使用する液状の層形成材料の性質によって適宜決定できる。例えば、前記層形成材料が、本発明の分散液である場合には、本発明の積層体の製造方法における樹脂層の形成方法と同様の条件にしたがって、第2の樹脂層を形成できる。つまり、前記層形成材料が本発明の分散液であれば、樹脂層を多層化して、より厚膜の樹脂層を容易に形成できる。
 かかる製造方法で得られる複合積層体としては、樹脂付金属箔又は絶縁被覆体の一態様が挙げられる。
Even if the liquid layer forming material for forming the second resin layer is applied to the surface of the resin layer of the laminate obtained by the production method of the present invention to form the second resin layer, the first base material , A resin layer and a second resin layer are laminated in this order to obtain a composite laminate.
The liquid layer forming material is not particularly limited, and the dispersion of the present invention may be used.
The method for forming the second resin layer can also be appropriately determined depending on the properties of the liquid layer forming material used. For example, when the layer-forming material is the dispersion of the present invention, the second resin layer can be formed according to the same conditions as in the method of forming a resin layer in the method of manufacturing a laminate of the present invention. That is, if the layer forming material is the dispersion of the present invention, the resin layer can be multilayered to easily form a thicker resin layer.
Examples of the composite laminate obtained by such a production method include one embodiment of a metal foil with resin or an insulating cover.
 本発明の製造方法で得られた積層体の基材を除去すれば、TFE系ポリマーを含む薄膜が得られる。
 積層体の基材を除去する方法は、積層体から基材を剥離させて除去する方法、積層体から基材を溶解させて除去する方法が挙げられる。例えば、積層体の基材が銅箔である場合には、積層体の基材面を塩酸に接触させれば、基材が溶解して除去されて、薄膜が容易に得られる。
 本発明の薄膜の膜厚は、30μm以下が好ましく、15μm以下がより好ましく、10μm以下が特に好ましい。薄膜の膜厚の下限は、1μmが好ましく、4μmが特に好ましい。
By removing the base material of the laminate obtained by the production method of the present invention, a thin film containing a TFE-based polymer can be obtained.
The method of removing the base material of the laminate includes a method of removing the base material from the laminate by removing the base material, and a method of dissolving and removing the base material from the laminate. For example, when the substrate of the laminate is a copper foil, if the substrate surface of the laminate is brought into contact with hydrochloric acid, the substrate is dissolved and removed, and a thin film can be easily obtained.
The thickness of the thin film of the present invention is preferably 30 μm or less, more preferably 15 μm or less, and particularly preferably 10 μm or less. The lower limit of the thickness of the thin film is preferably 1 μm, particularly preferably 4 μm.
 本発明は、本発明の分散液を、織布に含浸させ、さらに織布を乾燥させて、TFE系樹脂層で被覆された織布を得る、被覆織布の製造方法を提供する。
 織布は、乾燥に耐える耐熱性織布であれば特に限定されず、ガラス繊維織布、カーボン繊維織布、アラミド繊維織布又は金属繊維織布が好ましく、ガラス繊維織布又はカーボン繊維織布がより好ましく、電気絶縁性の観点からは、JISR3410で定められる電気絶縁用Eガラスヤーンより構成される平織のガラス繊維織布が特に好ましい。
 織布は、樹脂層との密着接着性を高める観点から、シランカップリング剤で処理されていてもよい。ただし、本発明の分散液から形成される樹脂層は接着性に優れるため、織布は、シランカップリング剤で処理されていなくてもよい。
 被覆織布における、TFE系ポリマーの総含有量は、30~80質量%以上が好ましい。
The present invention provides a method for producing a coated woven fabric, in which a woven fabric is impregnated with the dispersion of the present invention, and the woven fabric is further dried to obtain a woven fabric coated with a TFE-based resin layer.
The woven fabric is not particularly limited as long as it is a heat-resistant woven fabric that can withstand drying, and is preferably a glass fiber woven fabric, a carbon fiber woven fabric, an aramid fiber woven fabric or a metal fiber woven fabric, and is preferably a glass fiber woven fabric or a carbon fiber woven fabric. From the viewpoint of electrical insulation, a plain-woven glass fiber woven fabric composed of E-glass yarn for electrical insulation specified in JISR3410 is particularly preferred.
The woven fabric may be treated with a silane coupling agent from the viewpoint of increasing the adhesiveness to the resin layer. However, since the resin layer formed from the dispersion of the present invention has excellent adhesiveness, the woven fabric may not be treated with the silane coupling agent.
The total content of the TFE-based polymer in the coated woven fabric is preferably 30 to 80% by mass or more.
 本発明の分散液を織布に含浸させる方法としては、分散液中に織布を浸漬する方法や、分散液を織布に塗布する方法が挙げられる。
 前者の方法における浸漬回数、及び、後者の方法における塗布回数は、それぞれ、1回であってもよく、2回以上であってもよい。
 本発明の被覆織布の製造方法は、浸漬回数又は塗布回数が少なくとも、織布とポリマーが強固に接着した、ポリマー含有量が高い被覆織布が得られる。
Examples of the method of impregnating the woven fabric with the dispersion of the present invention include a method of immersing the woven fabric in the dispersion and a method of applying the dispersion to the woven fabric.
The number of times of immersion in the former method and the number of times of application in the latter method may be one, or two or more.
According to the method for producing a coated woven fabric of the present invention, a coated woven fabric having a high polymer content, in which the woven fabric and the polymer are firmly adhered to each other at least at the number of times of immersion or application, is obtained.
 織布を乾燥させる方法は、分散液に含まれる液状分散媒の化合物の種類によって、適宜決定でき、例えば、液状分散媒が水である場合には、織布を80~120℃の雰囲気にある通風乾燥炉に通す方法が挙げられる。
 織布を乾燥させるに際しては、ポリマーを焼成させてもよい。ポリマーを焼成させる方法は、TFE系ポリマーの種類によって適宜決定でき、例えば、織布を300~400℃の雰囲気にある通風乾燥炉に通す方法が挙げられる。なお、織布の乾燥とポリマーの焼成は、一段階で実施してもよい。
The method of drying the woven fabric can be appropriately determined depending on the type of the compound of the liquid dispersion medium contained in the dispersion. For example, when the liquid dispersion medium is water, the woven fabric is kept in an atmosphere at 80 to 120 ° C. A method of passing through a ventilation drying oven may be used.
In drying the woven fabric, the polymer may be calcined. The method of firing the polymer can be appropriately determined depending on the type of the TFE-based polymer, and includes, for example, a method of passing a woven fabric through a ventilation drying oven in an atmosphere of 300 to 400 ° C. The drying of the woven fabric and the firing of the polymer may be performed in one stage.
 本発明の製造方法で得られる被覆織布は、樹脂層と織布の密着接着性が高い、表面平滑性が高い、歪がすくない等の特性に優れている。例えば、かかる被覆織布と金属箔を熱圧着させることにより得られる樹脂付金属箔は、剥離強度が高く、反りにくいため、プリント基板材料として好適に使用できる。
 また、本発明の被覆織布の製造方法においては、織布を含む本発明の分散液を含浸させた織布を、基材の表面に塗布し、加熱させ乾燥させることにより、TFE系ポリマーと織布を含む被覆織布層を形成させ、基材と被覆織布層が、この順に積層された積層体を製造してもよい。
 その態様も、特に限定されず、槽、配管、容器等の成形品の内壁面の一部に分散液を含浸させた織布を塗布し、成形品を回転させながら加熱すれば、成形品の内壁全面に被覆織布層を形成できる。したがって、本発明の被覆織布の製造方法は、槽、配管、容器等の成形品の内壁面のライニング方法としても有用である。
The coated woven fabric obtained by the production method of the present invention is excellent in properties such as high adhesion between the resin layer and the woven fabric, high surface smoothness, and little distortion. For example, a resin-coated metal foil obtained by thermocompression-bonding such a coated woven fabric and a metal foil can be suitably used as a printed circuit board material because it has high peel strength and is unlikely to be warped.
Further, in the method for producing a coated woven fabric of the present invention, a woven fabric impregnated with the dispersion of the present invention including a woven fabric is applied to the surface of a substrate, and heated and dried to form a TFE-based polymer. A coated woven fabric layer including a woven fabric may be formed, and a laminate in which the base material and the coated woven fabric layer are stacked in this order may be manufactured.
The form is also not particularly limited, and a woven fabric impregnated with the dispersion liquid is applied to a part of the inner wall surface of the molded article such as a tank, a pipe, and a container, and the molded article is heated while rotating. A coated woven fabric layer can be formed on the entire inner wall. Therefore, the method for producing a coated woven fabric of the present invention is also useful as a lining method for the inner wall surface of a molded article such as a tank, a pipe, a container, and the like.
 さらに、本発明の分散液は、従来のTFE系ポリマーの水分散液に混合することにより、前記水分散液の樹脂層物性を向上させることもできる。たとえば、本発明の分散液と前記水分散液とを混合して得られる分散液から形成される樹脂層は、前記水分散液から形成される樹脂層に比較して、耐クラック性に優れている。
 この場合、本発明の分散液におけるTFE系ポリマーは、カルボニル基含有基、ヒドロキシ基、エポキシ基、アミド基、アミノ基及びイソシアネート基からなる群から選ばれる少なくとも1種の官能基を有するTFE系ポリマーが好ましい。また、混合における、従来のTFE系ポリマーの水分散液に含まれるTFE系ポリマーに対する、本発明の分散液に含まれるTFE系ポリマーの質量比は、1.0以上が好ましく、2.0以上が好ましく、4.0以上が特に好ましい。前記質量比の上限は、通常、10である。
Furthermore, by mixing the dispersion of the present invention with an aqueous dispersion of a conventional TFE-based polymer, the physical properties of the resin layer of the aqueous dispersion can be improved. For example, a resin layer formed from a dispersion obtained by mixing the dispersion of the present invention and the aqueous dispersion is excellent in crack resistance as compared with a resin layer formed from the aqueous dispersion. I have.
In this case, the TFE polymer in the dispersion of the present invention is a TFE polymer having at least one functional group selected from the group consisting of a carbonyl group-containing group, a hydroxy group, an epoxy group, an amide group, an amino group and an isocyanate group. Is preferred. Further, in mixing, the mass ratio of the TFE-based polymer contained in the dispersion of the present invention to the TFE-based polymer contained in the conventional aqueous dispersion of TFE-based polymer is preferably 1.0 or more, more preferably 2.0 or more. Preferably, 4.0 or more is particularly preferable. The upper limit of the mass ratio is usually 10.
 以下、実施例によって本発明を詳細に説明するが、本発明はこれらに限定されない。
 各種測定方法を以下に示す。
 <樹脂パウダーのD50及びD90>
 ポリマーのパウダーを水中に分散させ、レーザー回折・散乱式の粒度分布測定装置(堀場製作所社製、LA-920測定器)を用いて測定した。
Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto.
Various measurement methods are shown below.
<D50 and D90 of resin powder>
The polymer powder was dispersed in water and measured using a laser diffraction / scattering type particle size distribution analyzer (LA-920 measuring device manufactured by Horiba, Ltd.).
 <層表面の、算術平均粗さ(Ra)>
 Oxford Instruments社製の原子間力顕微鏡を用い、層の表面を下記の測定条件にて分析して、層表面1μm範囲のRaを求めた。
 (測定条件)
 プローブ:AC160TS-C3(先端R<7nm、バネ定数 26N/m)
 測定モード:AC-Air
 Scan Rate:1Hz
<Arithmetic average roughness (Ra) of layer surface>
Using an atomic force microscope manufactured by Oxford Instruments, the surface of the layer was analyzed under the following measurement conditions, and Ra in the range of 1 μm 2 of the layer surface was obtained.
(Measurement condition)
Probe: AC160TS-C3 (tip R <7 nm, spring constant 26 N / m)
Measurement mode: AC-Air
Scan Rate: 1Hz
 <積層体の剥離強度>
 矩形状(長さ100mm、幅10mm)に切り出した積層体の長さ方向の一端から50mmの位置を固定し、引張り速度50mm/分で、長さ方向の片端から積層体に対して90°剥離させた際にかかる、最大荷重を剥離強度(N/cm)とした。
<Laminate peel strength>
Fix the position of 50 mm from one end in the longitudinal direction of the laminated body cut out into a rectangular shape (length 100 mm, width 10 mm), and peel off 90 ° from one end in the longitudinal direction to the laminated body at a pulling speed of 50 mm / min. The maximum load applied at this time was defined as the peel strength (N / cm).
 <両面銅張積層体の伝送損失の評価>
 両面銅張積層体の銅箔に伝送線路を形成してプリント基板とし、その信号伝送損失を測定した。
 測定系としては、28GHzの信号をベクトルネットワークアナライザーで処理し、GSGの高周波コンタクトプローブ(250μmピッチ)によって測定した。プリント基板に形成する伝送線路は、背面導体付のコプレナー導波路を用いた。
 線路の特性インピーダンスは、50Ωとした。
 プリント基板の導体である銅の表面には金フラッシュめっきを施した。
 校正方法はTRL校正(Thru-Reflect-Line校正)を用いた。
 線路の長さは50mmとし、単位長さあたりの伝送損失を測定した。その尺度としては、高周波電子回路や高周波電子部品の特性を表すために使用される回路網パラメータの一つである「S-parameter」(以下、S値とも記す。)を使用した。S値は、その値が0に近い程、伝送損失が小さいことを意味する。S値が、-1.6超の場合の伝送損失の評価を「〇」とし、-1.6未満の場合の伝送損失の評価を「×」とした。
<Evaluation of transmission loss of double-sided copper-clad laminate>
A transmission line was formed on the copper foil of the double-sided copper-clad laminate to form a printed circuit board, and the signal transmission loss was measured.
As a measurement system, a 28 GHz signal was processed by a vector network analyzer and measured by a GSG high frequency contact probe (250 μm pitch). As a transmission line formed on a printed circuit board, a coplanar waveguide with a back conductor was used.
The characteristic impedance of the line was set to 50Ω.
Gold flash plating was applied to the surface of copper, which is the conductor of the printed circuit board.
The calibration method used was TRL calibration (Thru-Reflect-Line calibration).
The length of the line was set to 50 mm, and the transmission loss per unit length was measured. As the scale, “S-parameter” (hereinafter also referred to as S value), which is one of the network parameters used to represent the characteristics of the high-frequency electronic circuit and the high-frequency electronic component, was used. The S value means that the closer the value is to 0, the smaller the transmission loss is. When the S value is more than -1.6, the evaluation of the transmission loss is "〇", and when the S value is less than -1.6, the evaluation of the transmission loss is "x".
 使用材料を以下に示す。
 [TFE系ポリマー]
 ポリマー1:TFEに基づく単位、NAHに基づく単位及びPPVEに基づく単位を、この順に97.9モル%、0.1モル%、2.0モル%含むコポリマー(融点300℃)。
 [分散剤]
 分散剤1:F(CFCHCHO(CHCHO)CHCH(CH)OH
 分散剤2:F(CFCHCHO(CHCHO)12CHCH(CH)OH
 分散剤3:F(CFCHCHO(CHCHO)CHCHOH
The materials used are shown below.
[TFE-based polymer]
Polymer 1: copolymer containing 97.9 mol%, 0.1 mol%, and 2.0 mol% of units based on TFE, units based on NAH and units based on PPVE in this order (melting point: 300 ° C.).
[Dispersant]
Dispersant 1: F (CF 2 ) 6 CH 2 CH 2 O (CH 2 CH 2 O) 7 CH 2 CH (CH 3 ) OH
Dispersant 2: F (CF 2 ) 6 CH 2 CH 2 O (CH 2 CH 2 O) 12 CH 2 CH (CH 3 ) OH
Dispersant 3: F (CF 2 ) 6 CH 2 CH 2 O (CH 2 CH 2 O) 7 CH 2 CH 2 OH
 [例1]分散液の製造例
 [例1-1]
 国際公開第2016/017801号の段落[0123]に記載の方法でポリマー1のパウダー1(D50:2.6μm、D90:7.1μm)を得た。
 パウダー1の150g、分散剤1の5g、水の335gを横型ボールミルポットに投入し、15mm径のジルコニアボールにて分散させ、ポリマー1のパウダーであるパウダー1が分散した分散液1を得た。分散液1の粘度は19mPa・sであった。回転数6rpm、60rpmで測定される粘度は、この順に13mPa・s、23mPa・sであり、チキソ比は1.2であった。
[Example 1] Production example of dispersion liquid [Example 1-1]
Powder 1 of polymer 1 (D50: 2.6 μm, D90: 7.1 μm) was obtained by the method described in paragraph [0123] of WO 2016/017801.
150 g of Powder 1, 5 g of Dispersant 1, and 335 g of water were put into a horizontal ball mill pot, and dispersed in a zirconia ball having a diameter of 15 mm to obtain a dispersion 1 in which Powder 1 as a powder of Polymer 1 was dispersed. The viscosity of Dispersion 1 was 19 mPa · s. The viscosities measured at a rotation speed of 6 rpm and 60 rpm were 13 mPa · s and 23 mPa · s in this order, and the thixo ratio was 1.2.
 [例1-2]
 例1-1における分散剤1を分散剤2に変更する以外は同様にして、分散液2を得た。分散液2の粘度は16mPa・sであった。回転数6rpm、60rpmで測定される粘度は、この順に13mPa・s、19mPa・sであり、チキソ比は1.2であった。また、分散液2は分散液1に比較して、泡立ちやすかった。
 [例1-3]
 例1-1における分散剤1を分散剤3に変更する以外は同様にして、分散液の調製を試みたが、分散液が顕著に増粘し、塗工に耐える分散液が得られなかった。
[Example 1-2]
Dispersion liquid 2 was obtained in the same manner as in Example 1-1 except that dispersant 1 was changed to dispersant 2. The viscosity of the dispersion 2 was 16 mPa · s. The viscosities measured at a rotation speed of 6 rpm and 60 rpm were 13 mPa · s and 19 mPa · s in this order, and the thixo ratio was 1.2. Further, Dispersion 2 was easier to foam than Dispersion 1.
[Example 1-3]
A dispersion was prepared in the same manner as in Example 1-1 except that Dispersant 1 was changed to Dispersant 3, but the dispersion was remarkably thickened, and a dispersion that could withstand coating was not obtained. .
 [例2]積層体の製造例(その1)
 [例2-1]
 銅箔(福田金属箔粉工業製の電解銅箔、CF-T4X-SV。Rzjisで規定される表面十点粗さ1.2μm。)に分散液1を塗布し、窒素雰囲気下、100℃で15分乾燥して銅箔表面に乾燥被膜を形成した。なお、銅箔端面部の乾燥被膜にパウダーの粉落ちは視認されなかった。
 さらに350℃で15分間加熱し、徐冷して、ポリマー1の層(膜厚7μm)と銅箔とが接着積層された積層体(樹脂付銅箔)を得た。TG-MSにて定量した、ポリマー1の層における分散剤の残渣量は4質量%であった。
[Example 2] Production example of laminate (No. 1)
[Example 2-1]
The dispersion liquid 1 is applied to copper foil (electrolytic copper foil manufactured by Fukuda Metal Foil & Powder Co., Ltd., CF-T4X-SV, surface roughness of 10 μm specified by Rzjis) at 100 ° C. in a nitrogen atmosphere. After drying for 15 minutes, a dried film was formed on the copper foil surface. Powder powder was not visually observed on the dried film on the end face of the copper foil.
Further, the laminate was heated at 350 ° C. for 15 minutes and gradually cooled to obtain a laminate (copper foil with resin) in which a layer of polymer 1 (thickness: 7 μm) and a copper foil were bonded and laminated. The amount of the residue of the dispersant in the layer of Polymer 1 determined by TG-MS was 4% by mass.
 プラズマ処理装置(NORDSON MARCH社製、AP-1000)を用い、RF出力:300W、電極間ギャップ:2インチ、導入ガス:アルゴンガス、導入ガス量:50cm/分、圧力:13Pa、処理時間:1分間の条件で、積層体のポリマー1の層側をプラズマ処理した。プラズマ処理後のポリマー1層表面のRaは8nmであった。 RF output: 300 W, gap between electrodes: 2 inches, introduced gas: argon gas, introduced gas amount: 50 cm 3 / min, pressure: 13 Pa, processing time: using a plasma processing apparatus (AP-1000, manufactured by NORDSON MARCH). The plasma treatment was performed on the layer side of the polymer 1 of the laminate under the condition of 1 minute. Ra on the surface of the polymer 1 layer after the plasma treatment was 8 nm.
 次に、ポリマー1の層の表面に、プリプレグであるFR-4シート(日立化成社製、強化繊維:ガラス繊維、マトリックス樹脂:エポキシ樹脂、品名:GEA-67N) 0.2t(HAN)、厚さ:0.2mm)を重ねて設置し、真空熱プレス(温度:185℃、圧力:3.0MPa、時間:60分間)して、プリプレグ、ポリマー1の層、銅箔がこの順に積層された積層体(片面銅張積層体)を得た。積層体の剥離強度は9N/cmであった。 Next, on the surface of the layer of the polymer 1, an FR-4 sheet (prepared by Hitachi Chemical Co., Ltd., reinforcing fiber: glass fiber, matrix resin: epoxy resin, product name: GEA-67N) @ 0.2 t (HAN), thickness (Presence: 0.2 mm), and a vacuum hot press (temperature: 185 ° C., pressure: 3.0 MPa, time: 60 minutes) was performed, and the prepreg, the polymer 1 layer, and the copper foil were laminated in this order. A laminate (single-sided copper-clad laminate) was obtained. The peel strength of the laminate was 9 N / cm.
 FR-4シートの各面それぞれに、最外層に銅箔が構成されるように積層体を設置し、プレス温度:185℃、プレス圧:3.0MPa、プレス時間:60分間の条件で真空熱プレスして両面銅張積層体を得た。その伝送損失の評価は「〇」であった。 A laminate was placed on each side of the FR-4 sheet so that a copper foil was formed as the outermost layer. Pressing was performed to obtain a double-sided copper-clad laminate. The evaluation of the transmission loss was “〇”.
 [例2-2]
 例2-1における分散液1を分散液2に変更する以外は同様にして、銅箔に分散液2を塗布し、窒素雰囲気下、100℃で15分乾燥して銅箔表面に乾燥被膜を形成した。この際、銅箔端部の乾燥被膜にパウダーの粉落ちが視認された。さらに、同様にして、樹脂付銅箔、片面銅張積層体及び両面銅張積層体を得た。樹脂付銅箔のポリマー1の層における分散剤の残渣量は23質量%であり、積層体の剥離強度は7N/cmであり、両面銅張積層体の伝送損失の評価は「×」であった。
[Example 2-2]
In the same manner as in Example 2-1, except that Dispersion 1 was changed to Dispersion 2, Dispersion 2 was applied to copper foil, and dried at 100 ° C. for 15 minutes under a nitrogen atmosphere to form a dry film on the copper foil surface. Formed. At this time, powder powder was visually observed on the dried film at the end of the copper foil. Further, similarly, a copper foil with resin, a single-sided copper-clad laminate and a double-sided copper-clad laminate were obtained. The residual amount of the dispersant in the polymer 1 layer of the resin-coated copper foil was 23% by mass, the peel strength of the laminate was 7 N / cm, and the transmission loss of the double-sided copper-clad laminate was evaluated as “×”. Was.
 [例3]積層体の製造例(その2)
 PTFEのパウダー(D50:0.3μm)を50質量%含む、PTFEの水分散液(旭硝子社製、品番AD-916E。)と分散液1とを混合して、PTFEのパウダー及びポリマー1のパウダーが水中分散した、PTFEに対するポリマー1の比(質量比)が1.0の分散液を得た。なお、混合に際しては、直前に分散液1を3000rpmの条件にてホモディスパーで処理し、更に3000rpmの条件にてホモジナイザーで処理した。
[Example 3] Production example of laminate (No. 2)
An aqueous dispersion of PTFE (product number: AD-916E, manufactured by Asahi Glass Co., Ltd.) containing 50% by mass of PTFE powder (D50: 0.3 μm) is mixed with Dispersion 1, and the PTFE powder and the polymer 1 powder are mixed. Was dispersed in water to obtain a dispersion having a ratio (mass ratio) of Polymer 1 to PTFE of 1.0. In addition, at the time of mixing, the dispersion liquid 1 was treated with a homodisper immediately under the condition of 3000 rpm, and further treated with a homogenizer under the condition of 3000 rpm.
 得られた分散液を、一端辺にビニールテープが貼られたステンレス板(厚さ0.5mm)の表面に塗布し、その端辺に沿って棒をスライドさせて、分散液をステンレス板の表面にならした。ステンレス板を、100℃にて3分間、3回乾燥し、更に380℃にて10分間加熱し、ステンレス板の表面にポリマー1とPTFEを含み、端辺に貼られたビニールテープの厚さに起因して、厚さが傾斜したポリマー層が形成されたステンレス板を得た。該ステンレス板を目視で確認したが、膜厚50μm以上の領域においてもクラック線は確認されなかった。 The obtained dispersion is applied to the surface of a stainless steel plate (thickness: 0.5 mm) having a vinyl tape attached to one end, and a rod is slid along the end so that the dispersion is applied to the surface of the stainless steel plate. I was distracted. The stainless steel plate was dried three times at 100 ° C. for 3 minutes, and further heated at 380 ° C. for 10 minutes. The surface of the stainless steel plate contained Polymer 1 and PTFE, and the thickness of the vinyl tape adhered to the edge was reduced. For this reason, a stainless steel plate on which a polymer layer having an inclined thickness was formed was obtained. The stainless steel plate was visually observed, but no crack line was observed even in a region having a film thickness of 50 μm or more.
 本発明の分散液は、テトラフルオロエチレン系ポリマーの層を容易に形成でき、プリント配線基板の製造に用いられる、樹脂付銅箔や金属積層板の製造に好適に使用できる。また、本発明の分散液は、フィルム、含浸物(プリプレグ等。)等の成形品の製造に使用でき、離型性、電気特性、撥水撥油性、耐薬品性、耐候性、耐熱性、滑り性、耐摩耗性等が要求される用途の成形品の製造にも使用できる。本発明の分散液から得られる成形品は、アンテナ部品、プリント基板、航空機用部品、自動車用部品、スポーツ用具、食品工業用品、塗料、化粧品等として有用であり、具体的には、パワーモジュール絶縁層、電線被覆材(航空機用電線等。)、電気絶縁性テープ、石油掘削用絶縁テープ、プリント基板用材料、電極バインダー(リチウム二次電池用、燃料電池用等。)、コピーロール、家具、自動車ダッシュボート、家電製品のカバー、摺動部材(荷重軸受、すべり軸、バルブ、ベアリング、歯車、カム、ベルトコンベア、食品搬送用ベルト等。)、工具(シャベル、やすり、きり、のこぎり等。)、ボイラー、ホッパー、パイプ、オーブン、焼き型、シュート、ダイス、便器、コンテナ被覆材として有用である。 分散 The dispersion of the present invention can easily form a layer of a tetrafluoroethylene-based polymer and can be suitably used for the production of a resin-coated copper foil or a metal laminate used for the production of a printed wiring board. Further, the dispersion of the present invention can be used for the production of molded products such as films and impregnated products (prepregs and the like), and has release properties, electrical properties, water and oil repellency, chemical resistance, weather resistance, heat resistance, It can also be used for the production of molded products for applications requiring slipperiness, wear resistance and the like. Molded articles obtained from the dispersion of the present invention are useful as antenna parts, printed circuit boards, aircraft parts, automobile parts, sporting goods, food industry products, paints, cosmetics, and the like. Layers, wire covering materials (aircraft wires, etc.), electrical insulating tapes, oil drilling insulating tapes, materials for printed circuit boards, electrode binders (for lithium secondary batteries, fuel cells, etc.), copy rolls, furniture, Car dashboards, home appliance covers, sliding members (load bearings, slide shafts, valves, bearings, gears, cams, belt conveyors, food conveyor belts, etc.), tools (shovels, files, saws, saws, etc.) Useful as boilers, hoppers, pipes, ovens, baking dies, chutes, dies, toilet bowls and container coverings.
 なお、2018年10月3日に出願された日本特許出願2018-188252号の明細書、特許請求の範囲及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 The entire contents of the specification, claims and abstract of Japanese Patent Application No. 2018-188252 filed on October 3, 2018 are incorporated herein by reference as the disclosure of the specification of the present invention. It is.

Claims (15)

  1.  液状分散媒とテトラフルオロエチレン系ポリマーのパウダーと分散剤とを含み、前記パウダーが前記液状分散媒に分散した分散液であって、前記分散剤が含フッ素部位と2級水酸基部位又は3級水酸基部位とを有する化合物である、分散液。 A liquid dispersion comprising a liquid dispersion medium, a powder of a tetrafluoroethylene-based polymer and a dispersant, wherein the powder is dispersed in the liquid dispersion medium, wherein the dispersant is a fluorine-containing site and a secondary hydroxyl group site or a tertiary hydroxyl group. And a dispersion having a moiety.
  2.  前記パウダーが、体積基準累積50%径が0.05~6μmのパウダーである、請求項1に記載の分散液。 The dispersion according to claim 1, wherein the powder is a powder having a volume-based cumulative 50% diameter of 0.05 to 6 μm.
  3.  前記2級水酸基部位又は3級水酸基部位が、-CH(CH)OH、-CH(CHCH)OH又は-C(CHOHである、請求項1又は2に記載の分散液。 3. The dispersion according to claim 1, wherein the secondary hydroxyl group or the tertiary hydroxyl group is —CH (CH 3 ) OH, —CH (CH 2 CH 3 ) OH, or —C (CH 3 ) 2 OH. liquid.
  4.  前記含フッ素部位が、ポリフルオロアルキル基、エーテル性酸素原子を含むポリフルオロアルキル基又はポリフルオロアルケニル基である、請求項1~3のいずれか一項に記載の分散液。 The dispersion according to any one of claims 1 to 3, wherein the fluorinated site is a polyfluoroalkyl group, a polyfluoroalkyl group containing an etheric oxygen atom, or a polyfluoroalkenyl group.
  5.  前記分散剤が、式R(OQ-(OQOHで表される化合物である、請求項1~4のいずれか一項に記載の分散液。
     (式中、Rは、ポリフルオロアルキル基又はエーテル性酸素原子を含むポリフルオロアルキル基を示し、Qは、メチレン基、ジメチレン基、トリメチレン基又はテトラメチレン基を示し、Qは、プロピレン基、プロピリデン基又はイソプロピリデン基を示し、mは、4~16の整数であり、nは、1~3の整数である。)
    The dispersion according to any one of claims 1 to 4, wherein the dispersant is a compound represented by the formula R F (OQ 1 ) m- (OQ 2 ) n OH.
    (In the formula, R F represents a polyfluoroalkyl group or a polyfluoroalkyl group containing an etheric oxygen atom, Q 1 represents a methylene group, a dimethylene group, a trimethylene group, or a tetramethylene group, and Q 2 represents propylene. Represents a group, a propylidene group or an isopropylidene group, m is an integer of 4 to 16, and n is an integer of 1 to 3.)
  6.  mは、4~10の整数である、請求項5に記載の分散液。 The dispersion according to claim 5, wherein Δm is an integer of 4 to 10.
  7.  nは、1である、請求項5又は6に記載の分散液。 The dispersion according to claim 5 or 6, wherein Δn is 1.
  8.  前記液状分散媒が、水性媒体である、請求項1~7のいずれか一項に記載の分散液。 (8) The dispersion according to any one of (1) to (7), wherein the liquid dispersion medium is an aqueous medium.
  9.  テトラフルオロエチレン系ポリマーが、テトラフルオロエチレンに基づく単位と、ペルフルオロ(アルキルビニルエーテル)に基づく単位、ヘキサフルオロプロピレンに基づく単位、又はフルオロアルキルエチレンに基づく単位を含むポリマーである、請求項1~8のいずれか一項に記載の分散液。 9. The polymer according to claim 1, wherein the tetrafluoroethylene-based polymer is a polymer containing a unit based on tetrafluoroethylene and a unit based on perfluoro (alkyl vinyl ether), a unit based on hexafluoropropylene, or a unit based on fluoroalkylethylene. A dispersion according to any one of the preceding claims.
  10.  テトラフルオロエチレン系ポリマーが、さらに、官能基を有する単位を含む、請求項9に記載の分散液。 The dispersion according to claim 9, wherein the tetrafluoroethylene-based polymer further includes a unit having a functional group.
  11.  前記テトラフルオロエチレン系ポリマーが、該ポリマーに含まれる全単位に対して、テトラフルオロエチレンに基づく単位を99.5モル%以上含む、請求項1~10のいずれか一項に記載の分散液。 The dispersion according to any one of claims 1 to 10, wherein the tetrafluoroethylene-based polymer contains 99.5 mol% or more of units based on tetrafluoroethylene based on all units contained in the polymer.
  12.  前記テトラフルオロエチレン系ポリマーが、該ポリマーに含まれる全単位に対して、テトラフルオロエチレン以外のコモノマーに基づく単位を0.5モル%超含む、請求項1~11のいずれか一項に記載の分散液。 12. The method according to claim 1, wherein the tetrafluoroethylene-based polymer contains more than 0.5 mol% of a unit based on a comonomer other than tetrafluoroethylene, based on all units contained in the polymer. Dispersion.
  13.  前記テトラフルオロエチレン系ポリマーが、カルボニル基含有基、ヒドロキシ基、エポキシ基、アミド基、アミノ基及びイソシアネート基からなる群から選ばれる少なくとも1種の官能基を有する、請求項1~12のいずれか一項に記載の分散液。 13. The tetrafluoroethylene-based polymer according to claim 1, wherein the polymer has at least one functional group selected from the group consisting of a carbonyl group-containing group, a hydroxy group, an epoxy group, an amide group, an amino group, and an isocyanate group. A dispersion according to claim 1.
  14.  請求項1~13のいずれか一項に記載の分散液を、基材の表面に塗布し加熱してテトラフルオロエチレン系ポリマーを含む樹脂層を形成させて、前記基材と前記樹脂層とが、この順に積層された積層体を得る、積層体の製造方法。 The dispersion according to any one of claims 1 to 13, which is applied to a surface of a base material and heated to form a resin layer containing a tetrafluoroethylene-based polymer, whereby the base material and the resin layer are formed. And a method of manufacturing a laminated body to obtain a laminated body laminated in this order.
  15.  請求項1~13のいずれか一項に記載の分散液を、織布に含浸させ、さらに織布を乾燥させて、テトラフルオロエチレン系ポリマーを含む樹脂層で被覆された織布を得る、被覆織布の製造方法。 A woven fabric impregnated with the dispersion according to any one of claims 1 to 13, and the woven fabric is further dried to obtain a woven fabric coated with a resin layer containing a tetrafluoroethylene-based polymer. Manufacturing method of woven fabric.
PCT/JP2019/038791 2018-10-03 2019-10-01 Dispersion WO2020071381A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980065446.3A CN112805330B (en) 2018-10-03 2019-10-01 Dispersion liquid
JP2020550464A JPWO2020071381A1 (en) 2018-10-03 2019-10-01 Dispersion

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-188252 2018-10-03
JP2018188252 2018-10-03

Publications (1)

Publication Number Publication Date
WO2020071381A1 true WO2020071381A1 (en) 2020-04-09

Family

ID=70054703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/038791 WO2020071381A1 (en) 2018-10-03 2019-10-01 Dispersion

Country Status (4)

Country Link
JP (1) JPWO2020071381A1 (en)
CN (1) CN112805330B (en)
TW (1) TWI826544B (en)
WO (1) WO2020071381A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021221038A1 (en) * 2020-04-30 2021-11-04 Agc株式会社 Method for producing dispersion, paste, and kneaded powder
WO2021241547A1 (en) * 2020-05-28 2021-12-02 Agc株式会社 Method for producing dispersion
WO2022009918A1 (en) * 2020-07-09 2022-01-13 Agc株式会社 Sizing agent, sized fibers, prepreg, and dispersion

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57136534A (en) * 1981-01-30 1982-08-23 Daikin Ind Ltd Compound containing fluorine, its preparation and use
JPS59217749A (en) * 1983-05-24 1984-12-07 Asahi Chem Ind Co Ltd Fluorine-containing elastomer composition
JPS60192769A (en) * 1984-02-09 1985-10-01 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Tetrafluoroethylene polymer dispersion
JPH05156029A (en) * 1991-11-29 1993-06-22 Nippon Saafuakutanto Kogyo Kk Aqueous dispersion of fluororesin
JPH11130927A (en) * 1997-07-31 1999-05-18 Ausimont Spa Fluoropolymer dispersion
JP2004075736A (en) * 2002-08-12 2004-03-11 Nikko Materials Co Ltd Water repellent and oil repellent agent and its manufacturing method
WO2007046482A1 (en) * 2005-10-20 2007-04-26 Asahi Glass Company, Limited Aqueous polytetrafluoroethylene dispersion and product made from same
JP2014101521A (en) * 2014-01-16 2014-06-05 Daikin Ind Ltd Fluoropolymer non-aqueous dispersing liquid
WO2018016644A1 (en) * 2016-07-22 2018-01-25 旭硝子株式会社 Liquid composition, and method for manufacturing film and layered body using same
WO2019131809A1 (en) * 2017-12-27 2019-07-04 Agc株式会社 Dispersion, metal laminate plate, and production method for printed board

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1275972B1 (en) * 1995-03-24 1997-10-24 Ausimont Spa DISPERSIONS OF POLYTETRAFLUOROETHYLENE IN AN ORGANIC SOLVENT AND DISPERSING AGENTS USED THEREIN
JPH10309455A (en) * 1997-05-13 1998-11-24 Dainippon Ink & Chem Inc Fluorine based surface-active agent and composition using the same
JP2001269564A (en) * 2000-03-27 2001-10-02 Dainippon Ink & Chem Inc Fluorine containing surfactant and its composition
JP5446202B2 (en) * 2008-10-10 2014-03-19 Dic株式会社 Dispersant for fluororesin particles, fluororesin particle dispersion and fluororesin paint
JP2018053142A (en) * 2016-09-29 2018-04-05 セントラル硝子株式会社 Lubricant coating and lubricant coated film

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57136534A (en) * 1981-01-30 1982-08-23 Daikin Ind Ltd Compound containing fluorine, its preparation and use
JPS59217749A (en) * 1983-05-24 1984-12-07 Asahi Chem Ind Co Ltd Fluorine-containing elastomer composition
JPS60192769A (en) * 1984-02-09 1985-10-01 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Tetrafluoroethylene polymer dispersion
JPH05156029A (en) * 1991-11-29 1993-06-22 Nippon Saafuakutanto Kogyo Kk Aqueous dispersion of fluororesin
JPH11130927A (en) * 1997-07-31 1999-05-18 Ausimont Spa Fluoropolymer dispersion
JP2004075736A (en) * 2002-08-12 2004-03-11 Nikko Materials Co Ltd Water repellent and oil repellent agent and its manufacturing method
WO2007046482A1 (en) * 2005-10-20 2007-04-26 Asahi Glass Company, Limited Aqueous polytetrafluoroethylene dispersion and product made from same
JP2014101521A (en) * 2014-01-16 2014-06-05 Daikin Ind Ltd Fluoropolymer non-aqueous dispersing liquid
WO2018016644A1 (en) * 2016-07-22 2018-01-25 旭硝子株式会社 Liquid composition, and method for manufacturing film and layered body using same
WO2019131809A1 (en) * 2017-12-27 2019-07-04 Agc株式会社 Dispersion, metal laminate plate, and production method for printed board

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021221038A1 (en) * 2020-04-30 2021-11-04 Agc株式会社 Method for producing dispersion, paste, and kneaded powder
WO2021241547A1 (en) * 2020-05-28 2021-12-02 Agc株式会社 Method for producing dispersion
WO2022009918A1 (en) * 2020-07-09 2022-01-13 Agc株式会社 Sizing agent, sized fibers, prepreg, and dispersion

Also Published As

Publication number Publication date
JPWO2020071381A1 (en) 2021-09-02
CN112805330B (en) 2023-03-10
CN112805330A (en) 2021-05-14
TWI826544B (en) 2023-12-21
TW202035594A (en) 2020-10-01

Similar Documents

Publication Publication Date Title
US11370200B2 (en) Fluororesin film and laminate, and method for producing hot pressed laminate
CN113348208B (en) Dispersion liquid
JP7363818B2 (en) Powder dispersion, laminate and printed circuit board
KR20210024996A (en) Powder dispersion, laminate, membrane and impregnated woven fabric
CN112236302B (en) Method for producing resin-coated metal foil, laminate, and printed board
WO2020071381A1 (en) Dispersion
CN112703107B (en) Laminate, printed board, and method for producing same
JPWO2019235439A1 (en) Dispersion liquid, method for manufacturing metal foil with resin, and method for manufacturing printed circuit board
WO2021075504A1 (en) Non-aqueous dispersion liquid, and method for producing laminate
JPWO2020137828A1 (en) Powder dispersion, method for manufacturing laminate, method for manufacturing polymer film, and method for manufacturing coated woven fabric
CN112334301A (en) Metal foil with resin
JP7248022B2 (en) LAMINATED PRODUCTION METHOD AND LAMINATED PRODUCT
JP2020070401A (en) Dispersion liquid
CN113631669B (en) Liquid composition
JP2020083990A (en) Manufacturing method of composite, and composite
WO2020171024A1 (en) Laminate, and method for producing laminate
JP2020093196A (en) Method of manufacturing treated metal substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19869351

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020550464

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19869351

Country of ref document: EP

Kind code of ref document: A1