WO2019131809A1 - Dispersion, metal laminate plate, and production method for printed board - Google Patents

Dispersion, metal laminate plate, and production method for printed board Download PDF

Info

Publication number
WO2019131809A1
WO2019131809A1 PCT/JP2018/047959 JP2018047959W WO2019131809A1 WO 2019131809 A1 WO2019131809 A1 WO 2019131809A1 JP 2018047959 W JP2018047959 W JP 2018047959W WO 2019131809 A1 WO2019131809 A1 WO 2019131809A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
dispersion
powder
resin
organic solvent
Prior art date
Application number
PCT/JP2018/047959
Other languages
French (fr)
Japanese (ja)
Inventor
達也 寺田
細田 朋也
敦美 山邊
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to KR1020207013755A priority Critical patent/KR20200103630A/en
Priority to CN201880081549.4A priority patent/CN111492006A/en
Priority to JP2019562132A priority patent/JPWO2019131809A1/en
Publication of WO2019131809A1 publication Critical patent/WO2019131809A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/06Ethers; Acetals; Ketals; Ortho-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process

Definitions

  • the present invention relates to a method for producing a dispersion, a metal laminate and a printed circuit board.
  • Fluoropolymers such as polytetrafluoroethylene (PTFE) are excellent in physical properties such as chemical resistance, water and oil repellency, heat resistance, electrical properties and the like, and various uses utilizing such physical properties, powders, films, etc.
  • PTFE polytetrafluoroethylene
  • Various usage forms have been proposed (see Patent Documents 1 to 3).
  • Patent Document 4 describes a method of manufacturing a printed circuit board in which a metal foil is etched to form a transmission line. Further, as a PTFE dispersion for forming such a varnish, a dispersion containing a PTFE powder is described in Patent Document 5.
  • JP 2012-162708 A Unexamined-Japanese-Patent No. 2005-142572 International Publication No. 2016/017801 JP-A-2015-509113 International Publication No. 2016/159102
  • An object of the present invention is to provide a dispersion containing a powder of a tetrafluoroethylene-based polymer, which is excellent in mixing properties with different resin materials and the varnish, and is excellent in coatability, dispersibility and dispersion stability.
  • a dispersion liquid comprising an organic solvent, a powder and a surfactant, wherein the powder is dispersed in the organic solvent, wherein the powder is a unit derived from tetrafluoroethylene, a carbonyl group-containing group, a hydroxy group, an epoxy group,
  • the viscosity is 100 to 10000 mPa ⁇ s, and the viscosity measured at 30 rpm is divided by the viscosity measured at 60 rpm for a thixo ratio of 1.4 to
  • the viscosity is 50 to 3000 mPa ⁇ s, and the viscosity measured at 30 rpm is divided by the viscosity measured at 60 rpm for a thixo ratio of 1.0 to The dispersion according to [1], which is 1.5.
  • the fluoropolymer is a polymer further having a unit derived from a monomer having at least one functional group selected from the group consisting of a carbonyl group-containing group, a hydroxy group, an epoxy group and an isocyanate group, [1] The dispersion according to any one of [8].
  • a method for producing a metal laminate comprising forming a resin layer on a metal film using the dispersion according to any one of the above [1] to [12] to obtain a metal film having a resin layer on the surface .
  • a dispersion liquid excellent in different resin materials and their mixing properties with the varnish, coatability, dispersibility and dispersion stability can be obtained, excellent in physical properties such as electrical properties and heat resistance, and high cycle.
  • a material of a metal laminate for producing a printed circuit board corresponding to a band frequency is provided.
  • the meanings of the following terms in the present specification are as follows.
  • the “volume based cumulative 50% diameter of powder” is determined by the laser diffraction / scattering method. That is, the particle size distribution is measured by the laser diffraction / scattering method, and the cumulative curve is obtained with the total volume of the particle group as 100%, and the particle diameter at the point where the cumulative volume is 50% on the cumulative curve.
  • the volume-based cumulative 50% diameter of powder is also referred to as "D50”.
  • the “volume based cumulative 90% diameter of powder” is determined by the laser diffraction / scattering method.
  • the particle size distribution is measured by the laser diffraction / scattering method, and the cumulative curve is obtained with the total volume of the particle group as 100%, and the particle diameter at the point where the cumulative volume is 90% on the cumulative curve.
  • the volume-based cumulative 90% diameter of powder is also referred to as "D90".
  • the “melting point” is the temperature corresponding to the maximum value of the melting peak of the polymer measured by differential scanning calorimetry (DSC).
  • DSC differential scanning calorimetry
  • the “viscosity of dispersion” is a value measured using a B-type viscometer under conditions of a rotation speed of 30 rpm at room temperature (25 ° C.). Repeat the measurement three times to obtain the average value of the three measurements.
  • the "thixotropic index of dispersion” is the viscosity eta 1 of rotational speed is measured under the conditions of 30rpm values rotational speed is calculated by dividing the viscosity eta 2 as measured under conditions of 60 rpm. Each viscosity measurement is repeated three times, and is taken as the average value of three measurements.
  • the "dielectric constant” is a dielectric breakdown test device that maintains the temperature in the range of 23 ° C ⁇ 2 ° C and the relative humidity in the range of 50% ⁇ 5% RH by the transformer bridge method according to ASTM D 150. The value obtained at 1 MHz was taken as the relative dielectric constant.
  • the “surface tension of the organic solvent” is a value measured at 25 ° C. using a surface tension meter.
  • the dispersion of the present invention is a dispersion comprising an organic solvent, a powder comprising tetrafluoroethylene units and a fluoropolymer having a specific functional group, and a specific surfactant.
  • the reason why the dispersion of the present invention is excellent in dispersibility, mixing properties with different resin materials and varnishes thereof, and coatability is not necessarily clear, but is considered as follows.
  • the fluoropolymer in the present invention is a fluoropolymer having a specific functional group (at least one functional group selected from the group consisting of a carbonyl group-containing group, a hydroxy group, an epoxy group and an isocyanate group), in other words, a polar group
  • a specific functional group at least one functional group selected from the group consisting of a carbonyl group-containing group, a hydroxy group, an epoxy group and an isocyanate group
  • a polar group it can be said that it is a fluoropolymer having It is considered that the powder containing the fluoropolymer having such a polar group tends to be prone to aggregation in the dispersion due to the interaction between particles also from the physical characteristic that the specific surface area is large. Furthermore, it is considered that this tendency is influenced by the strength of external force (shearing force etc.) applied to the dispersion and the kind of the organic solvent.
  • the dispersion of the present invention contains a surfactant (preferably having a fluorine-containing group and a hydrophilic group), the presence of the surfactant reduces the surface tension of the organic solvent, and the organic solvent and the fluoropolymer It is easy to get wet. It is believed that the fluoropolymer chain on the powder surface and the fluorine-containing group of the specific surfactant, as well as the hydrophilic group of the specific surfactant and the organic solvent form a highly interacted state.
  • a surfactant preferably having a fluorine-containing group and a hydrophilic group
  • the powder is dispersed in an organic solvent in a stable state, and it is considered that the polar groups of the fluoropolymer itself forming the powder exhibit different resins and their varnishes, and a good mixability and coatability thereof.
  • the viscosity of the dispersion of the present invention is preferably 100 to 10000 mPa ⁇ s, more preferably 130 to 7000 mPa ⁇ s, still more preferably 150 to 5000 mPa ⁇ s, and particularly preferably 170 to 3000 mPa ⁇ s.
  • the viscosity is 100 mPa ⁇ s or more, the dispersion stability of the dispersion is excellent, the resin layer formed from the dispersion is likely to be uniform, and the coatability of the dispersion is excellent.
  • the viscosity of the dispersion of the present invention is preferably 50 to 3000 mPa ⁇ s, more preferably 70 to 1500 mPa ⁇ s, still more preferably 80 to 1000 mPa ⁇ s, and particularly preferably 100 to 500 mPa ⁇ s. In this case, in particular, the dispersion stability of the dispersion is excellent, and the operability when mixing and applying the dispersion and the varnish is excellent.
  • the thixo ratio of the dispersion of the present invention is preferably 1.4 to 2.2, more preferably 1.45 to 2.10, and still more preferably 1.5 to 2.0.
  • the thixo ratio is 1.4 or more, the dispersion stability of the dispersion is excellent, the resin layer formed from the dispersion is likely to be uniform, and the coatability is also excellent.
  • the thixo ratio is 2.2 or less, the dispersibility of the dispersion and the coatability are excellent.
  • the thixo ratio of the dispersion is also preferably 1.0 to 1.5, more preferably 1.05 to 1.45, still more preferably 1.1 to 1.4, and particularly preferably 1.1 to 1.3. In this case, the mixing properties of the dispersion liquid and the varnish of different resin materials are excellent.
  • the dispersion of the present invention may contain a thixotropic agent, an inorganic filler, and an antifoaming agent, from the viewpoint of adjusting viscosity and thixotropy. Further, from the above viewpoint, the dispersion liquid of the present invention preferably contains no resin that dissolves in an organic solvent.
  • the powder in the present invention may contain components other than the fluoropolymer in the present invention as long as the effects of the present invention are not impaired, but preferably the fluoropolymer in the present invention is a main component. 80 mass% or more is preferable, as for content of the fluoropolymer in this invention in a powder, 90 mass% or more is more preferable, and 100 mass% is especially preferable.
  • the powder D50 is preferably 0.05 to 4 ⁇ m, and the D90 is preferably 8 ⁇ m or less.
  • the powder D50 is preferably 0.1 to 3 ⁇ m, and particularly preferably 0.2 to 3.0 ⁇ m. Within this range, the flowability and the dispersibility of the powder become good, and the coatability of the dispersion liquid and the mixability with the varnish of different resin materials are excellent.
  • the electrical properties (low dielectric constant, etc.) and heat resistance of the fluoropolymers of the present invention are most easily exhibited. In addition, it is easy to control the thickness of the film obtained from the dispersion of the present invention.
  • the powder D90 is preferably 6 ⁇ m or less, particularly preferably 1.5 to 5 ⁇ m. Within this range, the dispersibility of the powder is good, the coatability of the dispersion liquid and the mixing property with the varnish of different resin materials are excellent, and the uniformity of the film obtained from the dispersion liquid tends to be improved.
  • the loosely packed bulk density of the powder is preferably 0.05 g / mL or more, and particularly preferably 0.08 to 0.5 g / mL.
  • the densely packed bulk density of the powder is preferably 0.05 g / mL or more, and particularly preferably 0.1 to 0.8 g / mL.
  • the fluoropolymer (hereinafter referred to as "F polymer”) in the present invention is a unit derived from tetrafluoroethylene (hereinafter also referred to as "TFE”) (hereinafter referred to as “TFE unit”), and a carbonyl group. It has at least one type of functional group selected from the group consisting of containing groups, hydroxy groups, epoxy groups and isocyanate groups.
  • TFE tetrafluoroethylene
  • carbonyl group-containing group means a group containing a carbonyl group.
  • Examples of the carbonyl group-containing group include a carbonate group, a carboxy group, a haloformyl group, an alkoxycarbonyl group (such as a methoxycarbonyl group and an ethoxycarbonyl group), an acid anhydride residue, a fatty acid residue and an amide group.
  • the ratio of TFE units to the total of all units of the F polymer is preferably 90 mol% or more.
  • the upper limit is preferably 99.89 mol or less.
  • the ratio of the TFE unit to the total of all units of the F polymer is 90 to 99.% from the viewpoints of electrical properties (such as low dielectric constant) of the F polymer, heat resistance, chemical resistance, melt moldability, stress crack resistance, and the like.
  • 89 mol% is preferable, 95 to 99.47 mol% is more preferable, and 96 to 98.95 mol% is particularly preferable.
  • the functional group is preferably a carbonyl group-containing group from the viewpoint of physical properties of the F polymer (fusion and adhesion, etc.), and more preferably a carbonate group, a carboxy group, a haloformyl group, an alkoxycarbonyl group and an acid anhydride residue.
  • a carboxy group and an acid anhydride residue are particularly preferred.
  • the F polymer may have a unit derived from a monomer having a functional group (hereinafter, also referred to as a “functional monomer”) (hereinafter, also referred to as a “functional unit”), You may have.
  • the F polymer having a functional group at the main chain terminal can be produced by appropriately selecting the type of polymerization initiator, chain transfer agent, etc. used in the production (for example, in the production, a polymerization initiator having a functional group or a functional group Use a chain transfer agent having a group).
  • the functional group in this case includes an alkoxycarbonyl group, a carbonate group, a carboxy group, a fluoroformyl group, an acid anhydride residue and a hydroxy group.
  • the F polymer is produced by subjecting a polymer having TFE units to plasma irradiation, corona irradiation, electron beam irradiation or irradiation, or treating a powder of the polymer with a sodium metal-naphthalene solution. It may be an F polymer.
  • the functional group in this case includes an alkoxycarbonyl group, a carbonyl group, a carboxy group and a hydroxy group.
  • the F polymer preferably has functional units.
  • the functional monomer include monomers having a carbonyl group-containing group, monomers having a hydroxy group, monomers having an epoxy group, and monomers having an isocyanate group, and the physical properties of the F polymer (fusion, adhesion, etc.) Therefore, monomers having a carbonyl group-containing group are preferred.
  • the monomer having a carbonyl group-containing group includes a monomer having an acid anhydride residue, a monomer having a carboxy group, a monomer having an alkoxycarbonyl group, a monomer having an alkoxycarbonyl group, a monomer having an acid anhydride residue And monomers having a carboxy group are particularly preferred.
  • Examples of the monomer having an acid anhydride residue include acid anhydrides of unsaturated dicarboxylic acids, and itaconic anhydride (hereinafter also referred to as "IAH”) and citraconic anhydride (hereinafter also referred to as "CAH”).
  • IAH itaconic anhydride
  • CAH citraconic anhydride
  • NAH 5-norbornene-2,3-dicarboxylic acid anhydride
  • NAH hymic acid anhydride
  • maleic anhydride maleic anhydride. From the viewpoint of the physical properties (heat resistance, adhesiveness, etc.) of the F polymer, IAH, CAH and NAH are preferable, and NAH is particularly preferable.
  • the ratio of the functional unit to the total of all units of the F polymer is obtained from the dispersion which is easy to prepare a dispersion by obtaining a powder having high heat resistance, color and bulk density of the F polymer. From the viewpoint of interlayer adhesion of the resin layer, etc., it is preferably 0.01 to 3 mol%, more preferably 0.03 to 2 mol%, and particularly preferably 0.05 to 1 mol%.
  • a monomer having a carboxy group itaconic acid, citraconic acid, 5-norbornene-2,3-dicarboxylic acid, maleic acid, acrylic acid and methacrylic acid can be mentioned.
  • alkoxycarbonyl group CF 2 CCFO (CF 2 ) 3 COOCH 3
  • Examples of the monomer having a hydroxy group include 2-hydroxyethyl (meth) acrylate, 2-hydroxyethyl crotonate and allyl alcohol.
  • Examples of the monomer having an epoxy group include allyl glycidyl ether, 2-methyl allyl glycidyl ether, vinyl glycidyl ether, glycidyl acrylate and glycidyl methacrylate.
  • Examples of monomers having an isocyanate group include 2- (meth) acryloyloxyethyl isocyanate, 2- (2- (meth) acryloyloxyethoxy) ethyl isocyanate, and 1,1-bis ((meth) acryloyloxymethyl) ethyl isocyanate.
  • the F polymer is also referred to as perfluoro (alkyl vinyl ether) (hereinafter also referred to as “PAVE”), hexafluoropropylene (hereinafter referred to as “HFP”) from the viewpoint of physical properties (fusing property, processability etc.) of the F polymer. It is preferable to further have a unit derived from at least one monomer selected from the group consisting of fluoroalkylethylene (hereinafter also referred to as “FAE”) and particularly preferable to further have a unit derived from PAVE.
  • PAVE perfluoro (alkyl vinyl ether)
  • HFP hexafluoropropylene
  • the ratio of the unit to the total of all units of the F polymer is preferably 0.1 to 9.99 mol%, from the viewpoint of the moldability of the resin layer formed from the dispersion, 1 ⁇ 9.95 mol% is particularly preferred.
  • CF 2 CCFOCF 3 CF 2 (CFO (CF 2 ) 2 F, CF 2 CCFO (CF 2 ) 3 F (hereinafter also referred to as “PPVE”), CF 2 CCFO (CF 2 ) 4 F, CF 2 CCFO (CF 2 ) 8 F, etc. are mentioned, and PPVE is preferable.
  • PPVE CF 2 CCFO (CF 2 ) 4 F, CF 2 CCFO (CF 2 ) 8 F, etc.
  • the F polymer may further have units derived from other monomers.
  • the F polymer has TFE units, functional units, and units derived from at least one monomer selected from the group consisting of PAVE, HFP and FAE, and the ratio of units to the total of all units is 90 to 90 in this order
  • the F polymer which is 99.89 mol%, 0.01 to 3 mol%, 0.1 to 9.99 mol% is preferred.
  • the functional unit is preferably a unit derived from NAH, a unit derived from IAH and a unit derived from CAH, particularly preferably a unit derived from NAH.
  • HFP and PAVE are preferable, PAVE is more preferable, and PPVE is particularly preferable.
  • the F polymer in this case may have a functional group at the main chain terminus.
  • the functional group may be further introduced by subjecting the F polymer in this case to plasma irradiation, corona irradiation, electron beam irradiation or radiation, or treating the powder of the polymer with a metal sodium-naphthalene solution.
  • the proportion of each unit contained in the F polymer can be measured by melt nuclear magnetic resonance (NMR) analysis, fluorine content analysis, infrared absorption spectrum analysis or the like.
  • NMR melt nuclear magnetic resonance
  • the proportion (mol%) of functional units in all units constituting the F polymer can be measured using a method such as infrared absorption spectrum analysis.
  • the melting point of the F polymer is preferably 260 to 380 ° C., and particularly preferably 295 to 310 ° C.
  • the moldability of the resin layer formed from the dispersion is also excellent.
  • irregularities on the surface of the resin layer due to powder particles can be suppressed.
  • the F polymer is a melt-formable fluoropolymer having a temperature at which the melt flow rate is 0.1 to 1000 g / 10 min at a load of 49 N and at a temperature 20 ° C. or more higher than the melting point of the F polymer Is preferred.
  • the "melt flow rate” means a melt mass flow rate (MFR) defined in JIS K 7210: 1999 (ISO 1133: 1997).
  • the MFR is preferably 0.1 to 1000 g / 10 min, and particularly preferably 5 to 20 g / 10 min.
  • the resin layer formed from the dispersion is excellent not only in surface smoothness and appearance but also in mechanical strength.
  • the relative dielectric constant of the F polymer is preferably 2.5 or less, more preferably 2.4 or less, and particularly preferably 2.0 to 2.4, from the viewpoint of the electrical properties of the resin layer formed from the dispersion.
  • the organic solvent in the present invention is a dispersion medium.
  • the organic solvent is an inert component which is liquid at normal temperature (25 ° C.) and is a compound which does not react with the powder.
  • the organic solvent may be a mixture of two or more compatible organic solvents, or may be a mixed solvent of a water-soluble organic solvent and water.
  • an organic solvent the organic solvent which does not have a fluorine atom is preferable.
  • alcohol, ether, ester, ketone, glycol ether, cellosolve etc. are mentioned.
  • ⁇ -butyrolactone acetone, methyl ethyl ketone, hexane, heptane, octane, 2-heptanone, cycloheptanone, cyclohexanone, cyclohexane, methylcyclohexane, ethylcyclohexane, methyl n-pentyl ketone, methyl isobutyl ketone, methyl iso Pentyl ketone, ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, ethylene glycol monoacetate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monoacetate, diethylene glycol diethyl ether, propylene glycol monoacetate, dipropylene glycol mono Acetate, propylene glycol Diacetate, propylene glycol monomethyl ether, propylene glycol monomethyl ether, prop
  • the organic solvent in the present invention is preferably a compound having a boiling point lower than that of the other components contained in the dispersion of the present invention, and from the viewpoint of volatilization removability, the boiling point of the organic solvent is preferably 270.degree. Is particularly preferred.
  • the organic solvent in the present invention is preferably a compound having a boiling point of 70 to 260 ° C. selected from the group consisting of ketones, esters, amides and aromatic hydrocarbons, and aromatic hydrocarbons, chain ketones, cyclic ketones and lactones. Particularly preferred is a compound having a boiling point of 100 to 240 ° C. selected from the group consisting of
  • the organic solvent in the present invention is preferably an organic solvent having a surface tension of 30 dyn / cm or less in an embodiment in which the viscosity of the dispersion is 100 to 10000 mPa ⁇ s and the thixo ratio is 1.4 to 2.2.
  • the viscosity of the dispersion is balanced to form a resin layer formed from the dispersion as a uniform film without unevenness. It can be said that it is an aspect excellent in workability.
  • the surface tension of the organic solvent in this aspect is more preferably 29 dyn / cm or less, still more preferably 28.5 dyn / cm or less.
  • the upper limit thereof is not particularly limited, and is 1 dyn / cm or more.
  • the wettability of the organic solvent to the surface of the powder is improved, and not only the powder dispersibility is excellent, but also the thixo ratio of the dispersion can be easily controlled within a predetermined range. It is also excellent in mixing with Specific examples of such organic solvents include methyl ethyl ketone, toluene, xylene, cyclohexane and methyl cyclohexane.
  • the organic solvent in the present invention is preferably an organic solvent having a surface tension of more than 30 dyn / cm in an embodiment in which the viscosity of the dispersion is 50 to 3000 mPa ⁇ s and the thixo ratio is 1.0 to 1.5.
  • the viscosity of the dispersion is balanced low to improve the mixing property between the dispersion and the different kinds of resin and the varnish, and It can also be said that it is an aspect excellent in coatability which improves the uniform dispersibility of the powder.
  • the surface tension of the organic solvent in this aspect is more preferably 31 dyn / cm or more, and still more preferably 32 dyn / cm or more.
  • the upper limit thereof is not particularly limited, and is 100 dyn / cm or less. In this range, due to the polarity of the organic solvent, the surfactant is easily adsorbed on the particle surface of the powder, the powder is further easily dispersed in the organic solvent as a single particle, and the thixo ratio of the dispersion liquid is reduced. It is also excellent in the mixing property with the different resin of the liquid and the varnish.
  • Such organic solvents include cyclohexanone, cyclopentanone, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, preferably cyclopentanone, cyclohexanone and N-methyl-2-pyrrolidone, and cyclopentanone and Cyclohexanone is particularly preferred.
  • the surfactant in the present invention has a fluorine-containing group and a hydrophilic group.
  • the interaction between the powder and the organic solvent is likely to be strong under conditions where the external force such as shear applied to the dispersion is weak, and the interaction between the powder and the organic solvent under conditions such that the external force such as shear is applied to the dispersion. Is likely to decline.
  • the surfactant according to the present invention interacts with both the powder and the organic solvent, so that the thixo ratio of the dispersion can be controlled within a predetermined range, and the aggregation of the powder in a stationary state such as storage can be suppressed. It is considered that the dispersion stability of the dispersion is improved.
  • the surfactant in the present invention is easily adsorbed to the powder surface having a fluorine-containing group and a fluorine atom, and has a hydrophilic group and is easily extended in an organic solvent, so steric hindrance of the hydrophilic group
  • the dispersion stability of the dispersion is improved in order to suppress the aggregation of the powder.
  • the particles of the powder when the powder is directly dispersed in a polar organic solvent such as methyl ethyl ketone, in addition to the interaction between the particles of the powder, the particles of the powder also repel the organic solvent, and the particles of the powder tend to aggregate. Stability tends to decrease.
  • the dispersion of the present invention contains a surfactant, which is likely to interact between the particles of the powder. As a result, the interaction between particles of the powder is weakened, the aggregation of the powder is less likely to occur, and the dispersion stability of the dispersion is improved.
  • the powder is easily dispersed as single particles by the surfactant, aggregation of the powders when wetting the powder in the organic solvent is also suppressed, and the dispersibility of the dispersion in the dispersion is improved.
  • the dispersion of the present invention is excellent in the mixing properties with different resin materials and their varnishes.
  • fluorine-containing group groups having high hydrophobicity such as perfluoroalkyl group, perfluoroalkenyl group (hexafluoropropylene trimer group etc.) and the like can be mentioned.
  • the carbon number of the fluorine-containing group is preferably 2 or more, and more preferably 4 to 20.
  • the hydrophilic group is a group relatively hydrophilic to a fluorine-containing group, and may be a general hydrophilic group, or a group usually regarded as a hydrophobic group, also containing fluorine. It may be a group relatively hydrophilic to the group.
  • a polyoxypropylene group is relatively hydrophobic to a hydrophilic group, a polyoxyethylene group, and is usually a hydrophobic group, but is relatively hydrophobic to a fluorine-containing group.
  • hydrophilic group it is a hydrophilic group in the present invention because As a hydrophilic group, ethylene oxide (polyoxyethylene group), propylene oxide (polyoxypropylene group), butylene oxide (polyoxybutylene group), polyoxy tetramethylene group, amino group, ketone group, carboxyl group, sulfone group Can be mentioned.
  • the hydrophilic group is preferably a polyoxyalkylene group consisting of an oxyalkylene group having 2 to 4 carbon atoms, and a polyoxyethylene group is particularly preferable.
  • the surfactant may also be a copolymer of a monomer having a fluorine-containing group and a monomer having a hydrophilic group. As such surfactant, a copolymer of a monomer having a fluorine-containing group and a monomer having a polyoxyalkylene group is particularly preferable.
  • the weight average molecular weight of the surfactant is preferably 1000 to 150000, more preferably 5000 to 100000, and particularly preferably 5000 to 30000.
  • the surfactant is more easily adsorbed to the surface of the powder than the organic solvent, and the dispersibility and the dispersion stability of the dispersion are likely to be improved.
  • the dispersion liquid is excellent in the mixing property with different resin materials, the varnish thereof, and the coatability.
  • the mass average molecular weight of the surfactant is a value measured by gel permeation chromatography (GPC).
  • the surfactant in the present invention is preferably a nonionic surfactant.
  • an optimum compound is appropriately selected depending on the type of organic solvent, and one surfactant may be used alone, or two or more surfactants may be used in combination. In the latter case, a surfactant having at least one fluorine-containing group and a hydrophilic group may be selected, and a surfactant having no fluorine-containing group may be selected as the other surfactant.
  • the surfactant include perfluoroalkyl group-containing Ftergent M series, Ftergent F 209, Ftergent 222F, Ftergent 208G, Ftergent 218GL, Ftergent 710FL, Ftergent 710FM, Ftergent 710FS, Ftergent 730FL , Futuregent 730 LM (made by Neos), Megafuck F-553, Megafuck F-555, Megafuck F-556, Megafuck F-557, Megafuck F-559, Megafuck F-562, Megafuck F- Examples thereof include Megafuck Series (manufactured by DIC Corporation) such as 565, and Unidyne Series (manufactured by Daikin Industries, Ltd.) such as Unidyne DS-403N. Among them, surfactant 710FL, surfactant 710FM, and surfactant 710FS, which are surfactants having a branched structure and a steric bulk, are preferable.
  • the main chain consists of a carbon chain derived from an ethylenically unsaturated monomer, and the copolymer which has a fluorine-containing hydrocarbon group and a hydrophilic group in a side chain is mentioned.
  • the fluorine-containing hydrocarbon group is preferably a group having a tertiary carbon atom to which a plurality of (2 or 3) monovalent fluorine-containing hydrocarbon groups are bonded.
  • Specific examples of such surfactant include a copolymer (1) derived from a compound represented by the following formula (1) and a unit (2) derived from a compound represented by the following formula (2) However, F polymer is excluded.
  • CH 2 CR 1 C (O) O-X 1 -OC (-Y 1 ) (-Z 1 ) 2 (1)
  • CH 2 CR 2 C (O ) O-X 2 -Q 2 -OH (2)
  • R 1 and R 2 each independently represent a hydrogen atom or a methyl group.
  • X 1 and X 2 each independently represent an alkylene group having 1 to 6 carbon atoms which may contain a hetero atom group, and-(CH 2 ) 2 -,-(CH 2 ) 3 -,-(CH 2 ) 2 ) 4 -,-(CH 2 ) 2 NHC (O)-,-(CH 2 ) 3 NHC (O)-or -CH 2 CH (CH 3 ) NHC (O)-is preferable.
  • Y 1 represents a hydrogen atom or a fluorine atom.
  • Z 1 represents a fluoroalkyl group having 1 to 10 carbon atoms or a fluoroalkenyl group having 2 to 10 carbon atoms which may contain a hetero atom, and a trifluoromethyl group, a perfluoroalkenyl group having 2 to 10 carbon atoms or It is preferable that it is a C 4-10 fluoroalkyl group containing an etheric oxygen atom.
  • the two Z 1 may be identical or different.
  • Q 2 represents a polyoxyalkylene group having 4 to 60 carbon atoms, and is preferably a polyoxyethylene group having 4 to 30 carbon atoms or a polyoxypropylene group having 6 to 50 carbon atoms.
  • the unit (1) is preferably contained in an amount of 20 to 60% by mole or less, and more preferably 20 to 40% by mole, relative to the total units of the copolymer.
  • the unit (2) is preferably contained in an amount of 40 to 80 mol%, particularly preferably 60 to 80 mol%, based on all units of the copolymer.
  • the ratio of the content of the unit (2) to the content of the unit (1) in the copolymer is preferably 1 to 5, and particularly preferably 1 to 2.
  • the copolymer may be composed only of the unit (1) and the unit (2), and may further contain units other than the unit (1) and the unit (2).
  • the fluorine content of the copolymer is preferably 10 to 45% by weight, particularly preferably 15 to 40% by weight.
  • the copolymer is preferably nonionic.
  • the weight average molecular weight of the copolymer is preferably 2,000 to 80,000, and particularly preferably 6,000 to 20,000.
  • the content of the powder in the dispersion of the present invention is preferably 35 to 70% by mass, preferably 40 to 68% by mass, and more preferably 45 to 65% by mass, based on the total of the organic solvent, the powder and the surfactant. 47 to 60% by mass is more preferable.
  • a dispersion liquid is further excellent in dispersion stability as content of powder is 35 mass% or more, and it becomes easy to control thixo ratio of a dispersion liquid in a predetermined
  • the content of the organic solvent in the dispersion liquid of the present invention is preferably 25 to 60% by mass, more preferably 27 to 55% by mass, and more preferably 30 to 50% by mass, based on the total of the organic solvent, the powder and the surfactant. Particularly preferred.
  • a dispersion liquid is further excellent in coating property as content of an organic solvent is in the said range. When the content of the organic solvent is equal to or less than the upper limit value of the above range, appearance defects of a film or the like produced using the dispersion hardly occur. Such poor appearance often results from the operation of removing the organic solvent.
  • the content of the surfactant in the dispersion of the present invention is preferably 3.5 to 30% by mass, more preferably 4 to 15% by mass, based on the total of the organic solvent, the powder and the surfactant. -10% by weight is particularly preferred.
  • a dispersion liquid is further excellent in a dispersibility and dispersion stability as content of surfactant is more than the lower limit of the said range.
  • the content of the surfactant is less than or equal to the upper limit value of the above range, the properties of the powder are less affected by the properties of the surfactant, and the dielectric constant and the dielectric loss tangent of the resin layer containing the powder can be easily lowered.
  • the ratio of the content of surfactant to the content of powder in the dispersion of the present invention is preferably 1/99 to 30/70, more preferably 3/97 to 20/80, 5 / 95 to 17/83 is particularly preferred.
  • a dispersion liquid is further excellent in dispersibility and dispersion stability as ratio of content of surfactant to content of powder is more than a lower limit of the above-mentioned range.
  • the dispersion of the present invention may contain a thixotropic agent as an optional component.
  • a thixotropic agent for example, clay minerals such as clay, bentonite and hectorite, polyester emulsion resin, acrylic emulsion resin, polyurethane emulsion resin, emulsion such as blocked isocyanate, methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, Hydroxypropyl cellulose, cellulose derivatives of hydroxypropyl methylcellulose, polysaccharides such as xanthan gum and guar gum, metal soap, hydrogenated castor oil, polyamide wax, benzylidene sorbitol, amide wax, linseed oil, modified urea, modified urethane, modified polyether And modified polyesters.
  • the dispersion of the present invention may contain an inorganic filler.
  • the inorganic filler the filler described in [0089] of WO 2016/017801 can be mentioned.
  • the dispersion of the present invention may contain an antifoaming agent.
  • an antifoamer a silicone type antifoamer and a fluoro silicone type antifoamer are mentioned.
  • a type of antifoaming agent an emulsion type, a self emulsification type, an oil type, an oil compound type, a solution type, a powder type, a solid type, etc. are mentioned.
  • the content of the thixotropic agent is preferably 0.1 to 20% by mass with respect to the total of the organic solvent, the powder and the surfactant, and 3 to 10 % By weight is particularly preferred.
  • the content of the thixotropic agent is within the above range, the thixo ratio and viscosity of the dispersion can be easily controlled within a predetermined range.
  • the content of the inorganic filler is preferably 1 to 300% by mass, particularly preferably 30 to 60% by mass, based on the total of the organic solvent, the powder and the surfactant.
  • the linear expansion coefficient of the film obtained from the dispersion is low, and the thermal dimensionality and the molding stability of the film are excellent.
  • the content of the antifoaming agent varies depending on the content (concentration) of the powder, etc., but the content of the antifoaming agent is an active ingredient relative to the total amount of the dispersion. As 1 mass% or less is preferable.
  • the method for producing the dispersion liquid of the present invention is not particularly limited, and examples thereof include a method in which an organic solvent, a powder and a surfactant are mixed, stirred and dispersed.
  • a dispersing machine such as a homomixer, a high speed stirrer, an ultrasonic dispersing machine, a homogenizer, a wet ball mill, a bead mill, a wet jet mill and the like.
  • the dispersion of the present invention is, as described above, excellent in dispersibility, different kinds of resin materials, and the mixing property with the varnish thereof.
  • the dispersion of the present invention is further different in different kinds of resin materials (F polymer, in the present invention It is preferable to mix with a surfactant, a component not corresponding to the component contained in the above-mentioned dispersion liquid of the present invention), or the varnish.
  • a solution containing the dispersion liquid of the present invention, another resin material and another resin hereinafter also referred to as “other resin” which is soluble in the below-mentioned varnish solvent, and the varnish solvent It is also described as "coating liquid of the present invention”.
  • the coating liquid of the present invention is obtained by mixing the dispersion of the present invention and a varnish containing a varnish solvent and another resin.
  • the dispersion liquid of the present invention and the coating liquid of the present invention are collectively referred to as a powder liquid of the present invention.
  • the other resin may be a resin that dissolves in the organic solvent in the present invention, or may be a resin that does not dissolve in the organic solvent in the present invention.
  • the latter resin is preferably a resin that dissolves in an organic solvent other than the organic solvent in the present invention (hereinafter also referred to as "varnish solvent").
  • the varnish solvent include the same compounds as the organic solvent (hereinafter also referred to as "first organic solvent") in the dispersion liquid of the present invention.
  • the varnish solvent may be the same as or different from the first organic solvent. When the first organic solvent and the varnish solvent are different, the respective organic solvents may be compatible with each other.
  • the viscosity of the dispersion of the present invention is 50 to 3000 mPa ⁇ s and the thixo ratio is 1.0 to 1.5, and a varnish solvent different from the organic solvent in the present invention is selected, the organic solvent and the varnish solvent in the present invention It is preferable to select the varnish solvent so that the surface tension of the mixed solvent consisting of and is more than 30 dyn / cm. This makes it easy to disperse the powder uniformly in the coating liquid.
  • the other resin may be a curable resin or a non-curable resin.
  • the other resin may be a heat melting resin or a non-melting resin.
  • the curable resin is a resin which is cured by the reaction between the reactive groups which it itself has and the reaction with the curing agent.
  • a curable resin a polymer, an oligomer, a low molecular weight compound etc. are mentioned.
  • As a reactive group which a curable resin has, a carbonyl group containing group, a hydroxyl group, an amino group, an epoxy group etc. are mentioned.
  • a thermosetting resin is preferable as the curable resin.
  • thermosetting resin epoxy resin, thermosetting polyimide, polyamic acid which is a polyimide precursor, acrylic resin, phenol resin, polyester resin, polyolefin resin, modified polyphenylene ether resin, polyfunctional cyanate ester resin, polyfunctional maleimide Cyanate ester resins, multifunctional maleimide resins, vinyl ester resins, urea resins, diallyl phthalate resins, melanin resins, guanamine resins, melamine-urea cocondensation resins.
  • thermosetting polyimides polyimide precursors, epoxy resins, acrylic resins, bismaleimide resins and polyphenylene ether resins are preferable as thermosetting resins from the viewpoint of being useful for printed board applications, and epoxy resins and polyphenylene ether resins Is particularly preferred.
  • the epoxy resin examples include naphthalene type epoxy resin, cresol novolac type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, alicyclic epoxy resin, aliphatic chain epoxy resin, Cresol novolac epoxy resin, phenol novolac epoxy resin, alkylphenol novolac epoxy resin, aralkyl epoxy resin, biphenol epoxy resin, dicyclopentadiene epoxy resin, trishydroxyphenylmethane epoxy compound, phenol and phenolic hydroxyl group Epoxides of condensates with aromatic aldehydes, diglycidyl ether of bisphenol, diglycidyl ether of naphthalenediol, phenol Glycidyl ethers, diglycidyl ethers of alcohols, triglycidyl isocyanurate.
  • a bismaleimide resin a resin composition (BT resin) in which a bisphenol A type cyanate ester resin and a bismaleimide compound are used in combination as described in JP-A-7-70315, described in International Publication WO2013 / 008667 Inventions and those described in the background art.
  • the polyamic acid usually has a reactive group capable of reacting with the adhesive group.
  • diamines and polyvalent carboxylic acid dianhydrides that form polyamic acids include [0020] of Japanese Patent No. 5766125, [0019] of Japanese Patent No. 5766125, and [0055] of Japanese Patent Laid-Open No. 2012-145676. , And the like.
  • aromatic diamines such as 4,4'-diaminodiphenyl ether and 2,2-bis [4- (4-aminophenoxy) phenyl] propane
  • pyromellitic dianhydride 3,3 ', 4,4 Preferred is a combination with an aromatic polyvalent carboxylic acid dianhydride such as '-biphenyltetracarboxylic acid dianhydride, 3,3', 4,4'-benzophenonetetracarboxylic acid dianhydride.
  • thermoplastic resins such as thermoplastic polyimide, and heat melting cured products of curing resins.
  • thermoplastic resin polyester resin (polyethylene terephthalate etc.), polyolefin resin (polyethylene etc.), styrene resin (polystyrene etc.), polycarbonate, thermoplastic polyimide (aromatic polyimide etc.), polyarylate, polysulfone, polyallyl Sulfone (polyether sulfone etc.), aromatic polyamide, aromatic polyether amide, polyphenylene sulfide, polyallyl ether ketone, polyamide imide, liquid crystalline polyester, polyphenylene ether etc., thermoplastic polyimide, liquid crystalline polyester and polyphenylene Ether is preferred.
  • the melting point of the heat-meltable cured product of the heat-meltable resin and the curable resin is preferably 280 ° C. or more.
  • the coating liquid of the present invention may contain a curing agent.
  • a curing agent a thermosetting agent (melamine resin, urethane resin, etc.), an epoxy curing agent (novolak type phenol resin, isophthalic acid dihydrazide, etc.), etc. may be mentioned.
  • the content of the powder in the coating liquid of the present invention is preferably 1 to 80% by mass, and more preferably 10 to 30% by mass, based on the total of the organic solvent, powder, surfactant, other resin and varnish solvent in the present invention. Particularly preferred.
  • the resin layer obtained using a coating liquid as content of powder is more than the lower limit of the said range is excellent in an electrical property. It is easy to disperse
  • the total amount of the organic solvent in the coating liquid of the present invention is preferably 10 to 80% by mass, more preferably 20 to 60% by mass, based on the total of the organic solvent, powder, surfactant, other resin and varnish solvent in the present invention. More preferably, 30 to 50% by mass is particularly preferable.
  • the viscosity of a coating liquid is balanced without becoming high too much that the total amount of an organic solvent is more than the lower limit of the said range, and it is further excellent in coating property. When the total amount of the organic solvent is not more than the upper limit value of the above range, the viscosity of the coating liquid is balanced without becoming too low, the coating property is further excellent, and the appearance defect of the resin layer obtained using the coating liquid It is hard to happen.
  • the method for producing the coating liquid of the present invention is not particularly limited, and a varnish solvent and another resin are mixed beforehand to prepare a varnish containing another resin, and the varnish and the dispersion liquid of the present invention are mixed. Can be manufactured.
  • the powder liquid of the present invention can be used, for example, in the production of films, fiber reinforced films, prepregs, and laminates described later.
  • the powder solution according to the invention can also be used for the production of insulating layers of flat conductors.
  • dielectric constant of the insulating layer can be obtained by blending the powder liquid of the present invention with the insulating paint containing the resin. Can be reduced.
  • the reduction of the dielectric constant of the insulating layer can be achieved by adding the powder of the present invention to the insulating paint, but from the viewpoint of dispersibility, it is preferable to use the powder liquid of the present invention for the insulating paint.
  • an insulating film described in JP-A-2013-191356 can be mentioned.
  • the powder liquid according to the invention can also be used for the production of seamless belts.
  • a liquid composition containing a liquid containing a polyimide resin and a conductive filler and the powder liquid of the present invention is used, a seamless belt having excellent transportability and cleanability of a recording medium (paper) can be obtained.
  • the seamless belt having excellent transportability and cleanability can be achieved by adding the powder of the present invention to a liquid containing a polyimide resin and a conductive filler, but from the viewpoint of dispersibility, the powder of the present invention is used as the powder of the present invention. It is preferred to use a solution.
  • a seamless belt those described in JP-A-2011-240616 can be mentioned.
  • the present invention also provides a method for producing a film obtained by removing an organic solvent, which is obtained by forming a film using the powder liquid of the present invention.
  • the film forming method is preferably coating on the surface of the carrier, and coating on the carrier forms a film consisting of a powder solution.
  • the organic solvent is volatilized by heating the film of the powder liquid or the like, the solid film from which the organic solvent is removed, at least a portion of the liquid medium is removed. A fluid film is formed.
  • removal of the organic solvent is also referred to as "drying". In the drying, it is preferable to remove 50% by mass or more of the organic solvent contained in the powder solution of the present invention.
  • drying method the methods described in [0091] to [0094] of WO 2018/16644 can be mentioned.
  • the membrane provided on the carrier is separated from the carrier, a film is obtained.
  • the membrane can be easily separated from the carrier by using the carrier having a non-adhesive surface as the carrier. Moreover, in this case, it is preferable to apply a surface treatment or the like to reduce adhesion in advance to the carrier.
  • the carrier may be removed by means such as dissolving the carrier. For example, in the case of a metal carrier, the carrier can be removed by etching or the like.
  • the thickness of the film of the present invention is preferably 1 to 1000 ⁇ m, except for the fiber reinforced film and the prepreg described later.
  • the thickness of the film is more preferably 1 to 100 ⁇ m, and particularly preferably 1 to 15 ⁇ m.
  • the relative dielectric constant of the film of the present invention is preferably 2.0 to 3.5, and particularly preferably 2.0 to 3.0. When the relative dielectric constant is in the above range, it is excellent in both the electrical properties and the fusion bondability, and is particularly useful as a laminate such as a metal laminate and a printed board.
  • the film of this invention contains 80 mass% or more of F polymer with respect to the whole quantity of a film.
  • the thermal expansion change ratio and the thermal contraction change ratio of the film of the present invention are preferably 1.0 to 1.4, and more preferably 1.0 to 1.3, except for the fiber reinforced film and the prepreg described later.
  • the curvature of a laminated body is suppressed as thermal expansion change ratio or heat contraction change ratio is in the said range.
  • the thermal expansion change ratio and the thermal contraction change ratio are thermal mechanical analysis devices (thermal expansion coefficient or thermal contraction ratio in the longitudinal direction (MD) and continuous direction (TD) during continuous production of the film).
  • Measurement mode Temperature transition from 30 ° C to 100 ° C using tensile mode, measurement temperature: 30 ° C to 100 ° C, measurement load: 19.6mN, heating rate: 5 ° C / min, measurement atmosphere: nitrogen gas) It can be determined from the respective coefficient of thermal expansion and coefficient of thermal contraction. Specifically, it is determined as the ratio of the maximum value among the respective thermal expansion coefficient and the thermal contraction ratio to the respective minimum value among the thermal expansion coefficient and the thermal contraction ratio.
  • the present invention can provide a fiber-reinforced film by impregnating the powder liquid of the present invention on a reinforcing fiber base placed on a carrier to form a film, that is, drying and then heating.
  • the form of the reinforcing fiber base is preferably in the form of a sheet from the viewpoint of the mechanical properties of the fiber reinforcing film, and a cross base obtained by weaving a reinforcing fiber bundle consisting of a plurality of reinforcing fibers, a plurality of reinforcing fibers are drawn in one direction Aligned substrates, substrates on which they are stacked are preferred.
  • the reinforcing fiber is preferably a continuous long fiber having a length of 10 mm or more.
  • the reinforcing fibers may be divided in the middle.
  • inorganic fiber, metal fiber, organic fiber and the like can be mentioned.
  • inorganic fibers include carbon fibers, graphite fibers, glass fibers, silicon carbide fibers, silicon nitride fibers, alumina fibers, silicon carbide fibers, boron fibers and the like.
  • metal fibers include aluminum fibers, brass fibers, stainless steel fibers and the like.
  • organic fibers include aromatic polyamide fibers, polyaramid fibers, polyparaphenylene benzoxazole (PBO) fibers, polyphenylene sulfide fibers, polyester fibers, acrylic fibers, nylon fibers, polyethylene fibers and the like.
  • the fiber reinforced film of the present invention can also be used for the production of metal laminates and printed boards.
  • the thickness of the fiber reinforced film is preferably 1 to 3000 ⁇ m. In the case of printed circuit board applications, the thickness of the fiber reinforced film is more preferably 3 to 2000 ⁇ m, particularly preferably 6 to 500 ⁇ m.
  • the relative dielectric constant of the fiber reinforced film is preferably 2.0 to 3.5, and particularly preferably 2.0 to 3.0. When the relative dielectric constant is in the above-mentioned range, it is easy to achieve both electrical properties such as printed circuit board application and fusion bonding.
  • the present invention can also provide a prepreg if the powder liquid of the present invention is impregnated into a reinforcing fiber base disposed on a carrier and dried.
  • the production of the prepreg is the same as the production of the fiber reinforced film except that heating after drying is not performed or is performed without sufficient heating. That is, the prepreg may be said to be a film containing reinforcing fibers and powder not melted (or not sufficiently melted), and optionally containing an uncured curable resin.
  • the coating liquid in this case preferably contains an uncured curable resin.
  • the prepreg In the drying in the production of the prepreg, it is preferable to remove 70% by mass or more of the total amount of the organic solvent contained in the coating liquid of the present invention.
  • Prepregs can be used as molding materials and can be used in the manufacture of metal laminates and printed circuit boards.
  • the prepreg of the present invention is also used as a material for manufacturing various materials such as materials of sheet piles, which are required to be durable and lightweight in quay work, aircraft, automobiles, ships, windmills, sports equipment, etc. It can be used.
  • the specific dielectric constant of the prepreg is preferably 2.0 to 4.0, and particularly preferably 2.0 to 3.5. When the relative dielectric constant is in the above-mentioned range, it is easy to achieve both electrical properties such as printed circuit board application and fusion bonding.
  • the resin layer is formed on a substrate using the powder liquid of the present invention, the organic solvent is removed, and a resin layer containing F polymer is provided on the substrate.
  • the manufacturing method of the layered product which it has on the surface of a substrate can also be provided.
  • the method for producing a laminate of the present invention corresponds to a method for obtaining a laminate having a film and a carrier without separating the carrier and the film in the method for producing a film described above. That is, the substrate corresponds to the carrier, the resin layer corresponds to the film, and the substrate having the resin layer on the surface corresponds to the laminate.
  • the resin layer may be a fiber reinforced film or a prepreg.
  • a metal film, a heat resistant resin film, a metal vapor deposition heat resistant resin film etc. are mentioned, A metal film (metal foil) is preferable.
  • a metal film (metal foil) which comprises a metal film (metal foil), copper, its alloy, stainless steel, its alloy, titanium, its alloy etc. are mentioned.
  • a metal film (metal foil) copper films (copper foil), such as a rolled copper foil and an electrolytic copper foil, are preferable.
  • a rustproof layer for example, an oxide film such as chromate
  • a heat resistant layer may be provided on the surface of the metal film (metal foil).
  • the surface of the metal film (metal foil) may be treated with a silane coupling agent.
  • the thickness of the metal film (metal foil) is not particularly limited.
  • a metal vapor deposition heat resistant resin film the film which vapor-deposited metal by vapor deposition methods, such as a vacuum vapor deposition method, sputtering method, the ion plating method, is mentioned to single side
  • the heat resistant resin film is a film containing one or more kinds of heat resistant resins. However, the heat resistant resin film does not contain F polymer.
  • the heat resistant resin film may be a single layer film or a multilayer film.
  • the heat resistant resin means a polymer compound having a melting point of 280 ° C. or more, or a polymer compound having a maximum continuous use temperature of 121 ° C. or more as defined in JIS C 4003: 2010 (IEC 60085: 2007).
  • the heat resistant resin for example, polyimide (aromatic polyimide etc.), polyarylate, polysulfone, polyallyl sulfone (polyether sulfone etc.), aromatic polyamide, aromatic polyether amide, polyphenylene sulfide, polyallyl ether Ketone, polyamide imide, liquid crystal polyester and the like can be mentioned.
  • a heat resistant resin film a polyimide film and a liquid-crystal polyester film are preferable.
  • the polyimide film may contain an additive, as needed, insofar as the effects of the present invention are not impaired.
  • the heat resistant resin film may be subjected to surface treatment such as corona discharge treatment or plasma treatment on the surface on which the resin layer is provided.
  • a heat resistant resin film a liquid crystalline polyester film is more preferable from the point which is excellent in an electrical property.
  • the resin layer may be provided on only one side in the thickness direction of the substrate, or may be provided on both sides. It is preferable to provide a resin layer on both surfaces of a base material in that it is easy to suppress the warp of the laminate and to obtain a metal laminate excellent in electrical reliability. In this case, after applying and drying the powder solution of the present invention on one side of the substrate, it is preferable to apply and dry the powder solution of the present invention on the other side.
  • the coating liquid of the present invention has an arbitrary thickness such as a thick film resin layer (particularly, a film thickness of 1 ⁇ m or more) which is excellent in properties such as surface smoothness because the viscosity and the thixo ratio are within a predetermined range. Suitable for forming.
  • the thickness of the resin layer of the laminate of the present invention is preferably 0.5 to 30 ⁇ m when the filler contained in the resin layer is less than 10% by volume. In the case of printed circuit board use, the thickness of the resin layer is more preferably 0.5 to 25 ⁇ m, further preferably 1 to 20 ⁇ m, and particularly preferably 3 to 15 ⁇ m. In a preferable range, the warpage of the laminate is suppressed.
  • the filler contained in the resin layer is 10% by volume or more, 0.5 to 3000 ⁇ m is preferable.
  • the thickness of the resin layer is more preferably 1 to 1500 ⁇ m, particularly preferably 2 to 100 ⁇ m.
  • the composition and thickness of each resin layer be the same in terms of suppression of warpage of the laminate.
  • the curvature rate of the laminated body of this invention is especially preferable.
  • the handling property is excellent and the processed product is excellent in dielectric characteristics.
  • the powder liquid of the present invention contains an inorganic filler or contains polychlorotrifluoroethylene or the like, warpage of the laminate can be further suppressed.
  • the relative dielectric constant of the resin layer of the laminate of the present invention is preferably 2.0 to 3.5, and particularly preferably 2.0 to 3.0. It is useful for the use for which the low dielectric constant is calculated
  • a laminated body is excellent in an electrical property and fusing property as a dielectric constant is more than the lower limit of the said range.
  • the relative dielectric constant of the whole laminated body also has the preferable said range.
  • the object to be laminated may be laminated on the surface of the resin layer of the laminate of the present invention.
  • a film or a laminate produced by the production method of the present invention may be applied as a lamination target.
  • the substrate surface or the resin layer surface of the object to be laminated is laminated on the exposed surface of the resin layer.
  • an object of lamination such as a prepreg may be interposed between the resin layer surfaces to be laminated.
  • the resulting laminate When laminating an object to be laminated such as a film or sheet on the surface of the resin layer of the laminate, the resulting laminate has excellent bonding strength and bubbles and the like do not easily remain, so the exposed surface of the resin layer is smoothed. It is preferable to use a high-quality surface. In order to improve the smoothness of the exposed surface of the resin layer, it is preferable to laminate at a temperature at which the film after drying is sufficiently melted, and to press with a heating plate, a heating roll or the like.
  • Arithmetic mean roughness Ra of the surface of the exposed surface of the resin layer of the laminate is less than the resin layer thickness, and is preferably 2.0 ⁇ m or more. Thereby, when laminating
  • the Ra is less than the resin layer thickness, preferably 2.0 to 30 ⁇ m, and most preferably 2.2 to 8 ⁇ m. In this case, not only the adhesion between the resin layer and the object to be laminated is excellent, but it is difficult to form through holes in the resin layer. Also, in order to increase the bonding strength, the surface of the resin layer may be subjected to surface treatment such as corona discharge treatment or plasma treatment.
  • the film and laminate of the present invention can be used for applications of producing a new laminate by laminating with a lamination target in the form of a film or sheet made of a material other than metal.
  • a film or sheet of heat resistant resin, a fiber reinforced resin sheet, a prepreg, etc. may be mentioned.
  • the prepreg include those in which a sheet-like reinforcing fiber base material is impregnated with a matrix resin.
  • the matrix resin may be a thermoplastic resin or a thermosetting resin.
  • the present invention is particularly effective when using a thermoplastic resin having a melting point of 280 ° C. or less or a thermosetting resin having a thermosetting temperature of 280 ° C. or less as a matrix resin from the viewpoint of low temperature bonding.
  • a commercially available prepreg may be used as the prepreg.
  • the prepreg described in [0133] of WO 2018/16644 can be mentioned.
  • the temperature at which the film or laminate of the present invention and the prepreg are heat-pressed is preferably equal to or lower than the melting point of the F polymer, and more preferably 120 to 300 ° C. In this case, the film or the laminate and the prepreg can be attached with excellent adhesion while suppressing thermal deterioration of the prepreg.
  • the film and the laminate obtained by the production method of the present invention can also be used as a coated article such as a capture substrate of an organic EL display described in [0040] to [0044] of WO 2015/182702.
  • the prepreg of the present invention can also be used for FRP and CFRP described in [0046] of WO 2015/182702.
  • the powder liquid of the present invention can also be used as a solvent-based paint described in WO 2015/182702, and can also be used as an insulating paint that constitutes the insulating layer of the insulated wire described in Japanese Patent No. 2686148. .
  • the present invention can also provide a method for producing a metal laminate in which a film (including a fiber reinforced film and a film of a prepreg) is produced by the method for producing a film of the present invention and a metal layer is provided on the surface of the film.
  • a laminate may be produced by the method for producing a laminate of the present invention, and a metal layer may be provided on the surface of the resin layer of the laminate.
  • a method of providing a metal layer on one side or both sides of a film or a laminate for example, a method of laminating a film or a laminate and a metal foil, a method of depositing metal on the surface of a resin layer of a film or a laminate, etc.
  • a lamination method a thermal lamination etc. are mentioned, for example.
  • a metal vapor deposition method a vacuum vapor deposition method, a sputtering method, an ion plating method, etc. may be mentioned.
  • the layer configuration of the metal laminate includes the film / metal layer of the present invention, the metal layer / film of the present invention / metal layer, the laminate layer of the present invention / metal layer, the metal layer / the laminate of the present invention layer / metal layer And a laminate of
  • the layer in the laminate in contact with the metal layer is a resin layer.
  • film / metal layer shows that a film and a metal layer are laminated
  • the metal laminate obtained by the production method of the present invention has a resin layer on one side or both sides of the metal layer.
  • copper foil is preferable.
  • the resin layer may have reinforcing fibers, and may be a layer of prepreg (that is, a resin layer containing reinforcing fibers and uncured curable resin).
  • the metal laminate having a copper foil layer may be a metal laminate having a plurality of copper foil layers by laminating a plurality of sheets. When the metal laminated board which has these copper foil layers has a resin layer in the single side
  • the metal laminate having a copper foil layer obtained by the method for producing a metal laminate of the present invention and the laminate thereof can be used as a flexible copper-clad laminate or a rigid copper-clad laminate.
  • the manufacturing method of the metal laminated board of this invention is further demonstrated by making a metal laminated board which has a copper foil layer into an example.
  • a metal laminate having a copper foil layer uses a copper foil as a substrate, applies the powder solution of the present invention on one side of the copper foil to form a film thereof, and then removes the organic solvent by heat drying, Subsequently, it is preferably heated to melt the powder and then cooled to produce a metal laminate having a uniform resin layer free of unmelted particles. It may be manufactured by providing a resin layer on both sides of the copper foil.
  • Film formation from the powder solution of the present invention, heating and drying, and melting of the powder can be carried out under the same conditions as in the film production method.
  • heating after drying is performed by heating with a heat roll
  • a metal laminate having a dried unmelted resin layer and a copper foil layer is brought into contact with a heat-resistant roll and transported while being irradiated with far infrared rays.
  • the molten resin layer can be a molten resin layer.
  • the roll transport speed is preferably 4.7 to 0.31 m / min when using a 4.7 m heating furnace, and 4.7 to 4.7 when using a 2.45 m heating furnace. 2.45 m / min is preferable.
  • the heating temperature is preferably 330 to 380 ° C., and more preferably 350 to 370 ° C., where the residence time of the heating furnace is one minute.
  • the lower limit is not particularly limited, and is 1 ⁇ m.
  • the curvature can be suppressed even in the case of the asymmetrical layer constitution of the resin layer / copper foil as it is not more than the upper limit value of the above range.
  • the warp rate of the metal laminate is preferably 25% or less, and particularly preferably 7% or less. It is excellent in the handling property in the formation process at the time of processing into a printed circuit board as a curvature rate is 25% or less, and excellent in the dielectric characteristic as a printed circuit board.
  • the powder liquid of the present invention contains a thermosetting resin
  • a metal laminate having a resin layer containing a cured thermosetting resin and a copper foil layer can be produced.
  • the powder liquid of the present invention may contain a filler, and a fiber reinforced resin layer may be provided on the copper foil layer using reinforcing fibers. 200 micrometers or less are preferable and, as for the thickness of the resin layer in this case, 100 micrometers or less are more preferable.
  • the printed circuit board manufactured from the powder liquid of the present invention is excellent in the processability of hole processing, and an electronic circuit excellent in connection reliability can be formed.
  • the resin layer contains a filler, warpage can be further suppressed.
  • the annealing process can reduce the linear expansion coefficient in the thickness direction. As a result, it is possible to reduce variations in the electrical characteristics of the substrate due to peeling between the interface of the base material and the resin layer and thickness unevenness in the plane of the metal laminate.
  • the temperature is preferably 80 to 190 ° C., and particularly preferably 120 to 180 ° C.
  • the treatment time is preferably 10 to 300 minutes, and particularly preferably 30 to 120 minutes. In this case, the linear expansion coefficient can be easily reduced while suppressing the thermal deterioration of the resin layer.
  • the pressure for annealing is preferably 0.001 to 0.030 MPa, and particularly preferably 0.005 to 0.015 MPa. In this case, it is easy to reduce the linear expansion coefficient of the resin layer while suppressing the compression of the base material.
  • a resin layer may be provided on one side or both sides of titanium foil to produce a metal laminate having a titanium foil and a resin layer.
  • the thickness of the resin layer is preferably 10 ⁇ m or less.
  • a laminate of metal layer / resin layer / object to be laminated / resin layer / metal layer, metal layer / object to be laminated / resin layer / object to be laminated / Laminate of metal layer etc. may be mentioned.
  • the thickness of the resin layer is preferably 0.1 to 300 ⁇ m, and particularly preferably 2 to 40 ⁇ m. In this case, not only the hole forming processability as the metal laminate is good and the dielectric property is excellent, but the metal layer and the resin layer, and the lamination target object and the resin layer can be stuck with excellent adhesion. 5 N / cm or more is preferable and, as for the adhesiveness (peeling strength) of the film or laminated body manufactured by the manufacturing method of this invention, and a lamination
  • the present invention can also provide a method for producing a printed circuit board in which a metal laminate is produced by the method for producing a metal laminate of the present invention, and a metal layer of the metal laminate is etched to form a patterned circuit.
  • a manufacturing method of a printed circuit board the method of etching the metal layer of the metal laminated board obtained by the manufacturing method of this invention, for example, and forming a pattern circuit is mentioned.
  • the method of etching the metal layer is not particularly limited.
  • the interlayer insulating film may be formed on the pattern circuit, and the pattern circuit may be further formed on the interlayer insulating film.
  • the interlayer insulating film can also be formed by the powder solution of the present invention. For example, after etching a metal layer of a metal laminate plate of an arbitrary laminated structure to form a patterned circuit, the powder solution of the present invention is applied on the patterned circuit, dried and then heated to form an interlayer insulating film. Then, a metal layer may be provided on the interlayer insulating film by vapor deposition or the like and etched to form a further pattern circuit.
  • a solder resist may be laminated on a pattern circuit. Specifically, the dispersion liquid and the coating liquid of the present invention may be applied onto a pattern circuit, dried and then heated to form a solder resist.
  • a coverlay film may be laminated.
  • the coverlay film is typically composed of a base film and an adhesive layer provided on the surface thereof, and the surface on the adhesive layer side is bonded to the printed circuit board.
  • the film of the present invention can be used, for example.
  • an interlayer insulating film using a film obtained by the manufacturing method of the present invention is formed on a pattern circuit formed by etching a metal layer of a metal laminate, and a polyimide film as a coverlay film is formed on the interlayer insulating film. It may be stacked.
  • the printed circuit board of the present invention is useful as a radar, a network router, a backplane, an electronic device substrate such as a wireless infrastructure, a substrate for various sensors for automobiles, and a substrate for an engine management sensor, which require high frequency characteristics. It is suitable for the application aiming at transmission loss reduction of a millimeter wave band.
  • the insulated wire examples include an insulated wire in which an insulating coating layer having a thickness of 10 to 150 ⁇ m is provided on the outer periphery of a flat wire using the powder liquid of the present invention.
  • the dielectric constant of the insulating covering layer is preferably 2.8 or less.
  • the adhesion strength between the insulating coating layer and the metal used in the flat wire is preferably 10 N / cm or more.
  • the insulated wire is suitable as any device of an insulation amplifier, an insulation transformer, an alternator of a car, and a motor of a hybrid car.
  • TFE tetrafluoroethylene.
  • NAH anhydrous hymic acid.
  • PPVE Perfluoro (propyl vinyl ether).
  • a 1 the ratio of the powder to the total of the organic solvent, the powder and the surfactant.
  • a 2 ratio of the surfactant to the total of the organic solvent and the powder and surfactant.
  • a 3 the ratio of the organic solvent to the total of the organic solvent, the powder and the surfactant.
  • b 1 ratio of the ratio of surfactant to the ratio of powder (a 2 / a 1 ).
  • ⁇ 1 viscosity measured under the condition of 30 rpm.
  • ⁇ 2 Viscosity measured under the condition of 60 rpm.
  • ⁇ 1 / ⁇ 2 Thixo ratio.
  • Polymer 1 A copolymer comprising 97.9 mol%, 0.1 mol%, 2.0 mol% of a unit derived from TFE, a unit derived from NAH and a unit derived from PPVE in this order, having a melting point of 300 ° C. Fluoropolymer.
  • Polymer 2 A substantially TFE homopolymer containing 99.5 mol% or more of a TFE-derived unit having no functional group (manufactured by Asahi Glass Co., Ltd., L169J).
  • Compound 2: -OCF (CF 3) C ( C (CF 3) 2) (CF (CF 3) 2) having a (meth) acrylate and polyoxyethylene group having a group (meth) acrylate copolymer (nonionic Surfactant: Neos Co., Ltd., Phaser 710 FM).
  • MEK methyl ethyl ketone (surface tension 24 dyn / cm).
  • Tol toluene (surface tension 28.5 dyn / cm).
  • CHN cyclohexanone (surface tension 34 dyn / cm).
  • NMP N-methyl-pyrrolidone (surface tension 41 dyn / cm)
  • MEK & CHN A mixed solvent of 70% by mass of MEK and 30% by mass of CHN (surface tension 27 dyn / cm).
  • Powder X1 a powder of polymer 1 having a D50 of 1.7 ⁇ m, a D90 of 3.8 ⁇ m, a loosely packed bulk density of 0.269 g / mL and a closely packed bulk density of 0.315 g / mL.
  • the pellet of polymer 1 (particle diameter 1554 ⁇ m) is ground twice using a jet mill and further classified using a high efficiency precision air flow classifier.
  • Powder X2 a powder of polymer 2 having a D50 of 3.0 ⁇ m, a D90 of 8.5 ⁇ m, a loosely packed bulk density of 0.355 g / mL, a closely packed bulk density of 0.387 g / mL. It is obtained by crushing the pellet of polymer 2.
  • Powder D50 and D90 The powder of the polymer was dispersed in water, and measured using a laser diffraction / scattering type particle size distribution measuring apparatus (LA-920 measuring apparatus manufactured by Horiba, Ltd.).
  • ⁇ Viscosity of dispersion> The temperature was measured with a B-type viscometer (LVDV2T model, manufactured by Brookfield) under the conditions of 25 ° C. and 30 rpm.
  • ⁇ Dispersion stability of dispersion> The dispersion state of the dispersion after standing for 3 days was visually confirmed and evaluated according to the following criteria. 1: The powder settles and can not be redispersed even if shaken (hard caked). 2: Precipitation of powder is confirmed, but re-dispersion is possible if shaken. 3: A slight sedimentation of powder is confirmed, but it can be redispersed by shaking.
  • the dispersion was used to form a film on a copper foil and coated with a wire bar (No. 14 manufactured by Tester Sangyo Co., Ltd.). After coating, the organic solvent was dried and removed at a temperature 5 ° C. lower than the boiling point of the organic solvent to obtain a test piece in which a resin layer was provided on a copper foil.
  • the film thickness of the test piece is about 50 ⁇ m when applied uniformly.
  • the test piece after drying the organic solvent is laminated with a resin layer containing powder, and is visually a white layer.
  • the coatability was evaluated based on the following criteria. 1: The powder layer on the substrate is coated unevenly, and there is light and shade on the appearance of the powder layer or the color of the substrate is exposed. 2: The powder layer on the substrate was uniformly coated, and there was almost no light and shade on the appearance of the powder layer.
  • Example 1 A horizontal ball mill container was filled with 50 g of Compound 1 and 500 g of MEK with respect to 450 g of Powder X1, and a dispersion of Example 1 was obtained using zirconia balls of 15 mm in diameter.
  • the viscosity of the dispersion of Example 1 was ⁇ 1 of 250 mPa ⁇ s, ⁇ 2 of 150 mPa ⁇ s, and the thixo ratio of 1.7.
  • the dispersion stability and coatability of the dispersion of Example 1 were evaluated. The results are shown in Table 2.
  • Example 2 A dispersion was obtained in the same manner as in Example 1 except that the compositional ratio shown in Table 1 was changed. About the obtained dispersion liquid, (eta) 1 and (eta) 2 were measured, thixo ratio was calculated, and dispersion stability and coating property were evaluated. The results are shown in Table 2.
  • Example 8 A horizontal ball mill container was filled with 50 g of Compound 2 and 450 g of CHN relative to 500 g of Powder X1, and a dispersion of Example 8 was obtained using zirconia balls of 15 mm in diameter.
  • the viscosity of the dispersion was ⁇ 1 of 150 mPa ⁇ s, ⁇ 2 of 130 mPa ⁇ s, and the thixo ratio of 1.2.
  • the dispersion stability of the obtained dispersion was "3".
  • an epoxy resin main agent (DIC, EPICLON HP-7200H-75M, solvent: MEK, solid content: 75% by mass) and a curing agent for epoxy resin (DIC, Inc., Phenolite TD-2090-60M, solvent) : MEK, solid content: 60% by mass) were mixed so that solid content in the main agent: solid content in the curing agent was 26: 9 (mass ratio), to prepare an epoxy varnish containing an epoxy resin.
  • the solid content concentration of the epoxy varnish is 70% by mass.
  • the epoxy varnish and the dispersion liquid were mixed so that solid content: powder in the epoxy varnish was 70:30 (mass ratio). The mixing was stirred for 5 minutes under the condition of 1000 rpm with a stirrer.
  • the viscosity of the obtained powder-containing varnish (coating liquid) was 520 mPa ⁇ s. Moreover, the surface tension of the organic solvent in the coating liquid was 28 dyn / cm. Next, the dielectric constant of the film obtained using a coating liquid was measured, and the film physical property was evaluated.
  • Example 9-14 A dispersion was obtained in the same manner as in Example 8 except that the compositional ratio shown in Table 3 was changed. For each dispersion, ⁇ 1 and ⁇ 2 were measured, the thixo ratio was calculated, and the dispersion stability was evaluated. Next, in the same manner as in Example 8, the respective dispersions and the epoxy varnish were mixed to obtain a powder-containing varnish (coating liquid). Films were produced using each of the coating solutions, and the physical properties of the films were evaluated. The results are shown in Table 4.
  • Example 15 A dispersion is prepared in which powder X1 is uniformly dispersed in CHN, containing 50% by mass, 5% by mass and 45% by mass of powder X1, compound 1 and CHN in this order at 25 ° C., and allowed to stand at 5 ° C. for 7 days did.
  • the dispersion after standing was separated into two layers of a transparent layer and a white layer, and when shaken by hand, it was easily redispersed to form a uniform dispersion.
  • NMP is used instead of CHN, the dispersion after standing is separated into two layers of a yellow transparent layer and a white layer caused by the compound 1, and it is easy to be shaken again by hand. It did not disperse.
  • Films, fiber reinforced films, prepregs, metal laminates, printed boards, etc. obtained by the present invention are antenna parts, printed boards, parts for aircraft, parts for automobiles, sports equipment, food industry articles, saws, sliding bearings, etc. It can be used as an article etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided are: a dispersion that has excellent dispersion, excellent dispersion stability, excellent miscibility with varnish, and excellent coating properties; a metal laminate plate; and a production method for a printed board. A dispersion that includes an organic solvent, a powder, and a surfactant, the powder being dispersed in the organic solvent. The powder includes a fluoropolymer that has: a unit that is derived from tetrafluoroethylene; and at least one type of functional group selected from the group that consists of carbonyl-group-containing groups, hydroxyl groups, epoxy groups, and isocyanate groups.

Description

分散液、金属積層板及びプリント基板の製造方法Dispersion liquid, metal laminated board and method of manufacturing printed circuit board
 本発明は、分散液、金属積層板及びプリント基板の製造方法に関する。 The present invention relates to a method for producing a dispersion, a metal laminate and a printed circuit board.
 ポリテトラフルオロエチレン(PTFE)等のフルオロポリマーは、耐薬品性、撥水撥油性、耐熱性、電気特性等の物性に優れており、その物性を活用した種々の用途や、パウダー,フィルム等の種々の使用形態が提案されている(特許文献1~3を参照。)。
 近年では、エレクトロニクス製品のプリント基板材料、特に、高周帯域の周波数に対応するプリント基板の絶縁材料として、低誘電率、低誘電正接等の電気特性や半田リフローに耐える耐熱性を有する絶縁材料として、フルオロポリマーが注目されている。
 かかる絶縁材料として、PTFEとポリイミド等の他の絶縁樹脂を含むワニスとの混合物を金属箔の表面に塗布乾燥して、絶縁樹脂層が形成された金属積層板を製造し、さらに金属積層板の金属箔をエッチング処理して伝送回線を形成するプリント基板の製造方法が特許文献4に記載されている。また、かかるワニスを形成するためのPTFE分散液として、PTFEパウダーを含む分散液が特許文献5に記載されている。
Fluoropolymers such as polytetrafluoroethylene (PTFE) are excellent in physical properties such as chemical resistance, water and oil repellency, heat resistance, electrical properties and the like, and various uses utilizing such physical properties, powders, films, etc. Various usage forms have been proposed (see Patent Documents 1 to 3).
In recent years, as an insulating material for printed circuit board materials of electronic products, especially for printed circuit boards corresponding to the frequency in the high frequency band, as an insulating material having electrical properties such as low dielectric constant and low dielectric loss tangent and heat resistance to withstand solder reflow , Fluoropolymers have attracted attention.
As such an insulating material, a mixture of PTFE and a varnish containing another insulating resin such as polyimide is applied to the surface of a metal foil and dried to manufacture a metal laminate plate having an insulating resin layer formed thereon, and further, a metal laminate plate Patent Document 4 describes a method of manufacturing a printed circuit board in which a metal foil is etched to form a transmission line. Further, as a PTFE dispersion for forming such a varnish, a dispersion containing a PTFE powder is described in Patent Document 5.
特開2012-162708号公報JP 2012-162708 A 特開2005-142572号公報Unexamined-Japanese-Patent No. 2005-142572 国際公開第2016/017801号International Publication No. 2016/017801 特表2015-509113号公報JP-A-2015-509113 国際公開第2016/159102号International Publication No. 2016/159102
 特許文献4に記載の態様においては、得られるプリント基板の電気特性の観点から、他の絶縁樹脂とフルオロポリマーとが良好な状態で混合していることが求められるが、その制御は容易ではない。たとえば、他の絶縁樹脂を含むワニスとフルオロポリマーのパウダーとを混合調製するに際しては、増粘により、混合自体が困難となるだけでなく、調製後のフルオロポリマーの分散性も著しく低下する。
 特許文献5に記載の態様においても、分散液中のフルオロポリマーの分散性と分散安定性が未だ充分ではなく、その塗工性は低い。特に、分散液の分散性を向上させるためにフルオロポリマーのパウダーの含有量を少なくすると、その塗工性が低下するだけではなく、形成される絶縁層の物性も低下する。
 本発明は、異種の樹脂材料、そのワニスとの混合性に優れ、塗工性、分散性及び分散安定性に優れた、テトラフルオロエチレン系ポリマーのパウダーを含む分散液の提供を目的とする。
In the aspect described in Patent Document 4, from the viewpoint of the electrical properties of the resulting printed circuit board, it is required that the other insulating resin and the fluoropolymer are mixed in a good state, but the control thereof is not easy. . For example, when mixing and preparing a varnish containing another insulating resin and a powder of a fluoropolymer, thickening not only makes mixing difficult but also significantly reduces the dispersibility of the fluoropolymer after preparation.
Also in the embodiment described in Patent Document 5, the dispersibility and dispersion stability of the fluoropolymer in the dispersion are not sufficient yet, and the coatability is low. In particular, when the content of the fluoropolymer powder is reduced to improve the dispersibility of the dispersion, not only the coatability thereof is reduced, but also the physical properties of the formed insulating layer are reduced.
An object of the present invention is to provide a dispersion containing a powder of a tetrafluoroethylene-based polymer, which is excellent in mixing properties with different resin materials and the varnish, and is excellent in coatability, dispersibility and dispersion stability.
 本発明は、下記の態様を有する。
 [1]有機溶媒とパウダーと界面活性剤とを含む、パウダーが有機溶媒に分散した分散液であって、前記パウダーがテトラフルオロエチレンに由来する単位とカルボニル基含有基、ヒドロキシ基、エポキシ基及びイソシアネート基からなる群から選ばれる少なくとも1種の官能基とを有するフルオロポリマーを含むパウダーである、分散液。
 [2]粘度が100~10000mPa・sであり、回転数が30rpmの条件で測定される粘度を回転数が60rpmの条件で測定される粘度で除して算出されるチキソ比が1.4~2.2である、[1]に記載の分散液。
 [3]前記有機溶媒が、メチルエチルケトン、トルエン、キシレン、シクロヘキサン又はメチルシクロヘキサンである、[1]又は[2]に記載の分散液。
 [4]粘度が50~3000mPa・sであり、回転数が30rpmの条件で測定される粘度を回転数が60rpmの条件で測定される粘度で除して算出されるチキソ比が1.0~1.5である、[1]に記載の分散液。
 [5]前記有機溶媒が、シクロヘキサノン、シクロペンタノン、N,N-ジメチルアセトアミド又はN-メチル-2-ピロリドンである、[1]又は[4]に記載の分散液。
The present invention has the following aspects.
[1] A dispersion liquid comprising an organic solvent, a powder and a surfactant, wherein the powder is dispersed in the organic solvent, wherein the powder is a unit derived from tetrafluoroethylene, a carbonyl group-containing group, a hydroxy group, an epoxy group, A dispersion, which is a powder comprising a fluoropolymer having at least one functional group selected from the group consisting of isocyanate groups.
[2] The viscosity is 100 to 10000 mPa · s, and the viscosity measured at 30 rpm is divided by the viscosity measured at 60 rpm for a thixo ratio of 1.4 to The dispersion according to [1], which is 2.2.
[3] The dispersion according to [1] or [2], wherein the organic solvent is methyl ethyl ketone, toluene, xylene, cyclohexane or methyl cyclohexane.
[4] The viscosity is 50 to 3000 mPa · s, and the viscosity measured at 30 rpm is divided by the viscosity measured at 60 rpm for a thixo ratio of 1.0 to The dispersion according to [1], which is 1.5.
[5] The dispersion according to [1] or [4], wherein the organic solvent is cyclohexanone, cyclopentanone, N, N-dimethylacetamide or N-methyl-2-pyrrolidone.
 [6]前記パウダーが、体積基準累積50%径が0.05~4μmかつ体積基準累積90%径が8μm以下のパウダーである、[1]~[5]のいずれかに記載の分散液。
 [7]前記フルオロポリマーが、全単位の合計に対するテトラフルオロエチレンに由来する単位の割合が90~99.89mol%のフルオロポリマーである、[1]~[6]のいずれかに記載の分散液。
 [8]前記フルオロポリマーが、ペルフルオロ(アルキルビニルエーテル)、ヘキサフルオロプロピレン及びフルオロアルキルエチレンからなる群から選ばれる少なくとも1種のモノマーに由来する単位をさらに有するポリマーである、[1]~[7]のいずれかに記載の分散液。
 [9]前記フルオロポリマーが、カルボニル基含有基、ヒドロキシ基、エポキシ基及びイソシアネート基からなる群から選ばれる少なくとも1種の官能基を有するモノマーに由来する単位をさらに有するポリマーである、[1]~[8]のいずれかに記載の分散液。
[6] The dispersion according to any one of [1] to [5], wherein the powder is a powder having a volume-based cumulative 50% diameter of 0.05 to 4 μm and a volume-based cumulative 90% diameter of 8 μm or less.
[7] The dispersion according to any one of [1] to [6], wherein the fluoropolymer is a fluoropolymer having a ratio of 90 to 99.89 mol% of units derived from tetrafluoroethylene to the total of all units. .
[8] The fluoropolymer according to any one of [1] to [7], which further has a unit derived from at least one monomer selected from the group consisting of perfluoro (alkyl vinyl ether), hexafluoropropylene and fluoroalkylethylene. Dispersion according to any one of the above.
[9] The fluoropolymer is a polymer further having a unit derived from a monomer having at least one functional group selected from the group consisting of a carbonyl group-containing group, a hydroxy group, an epoxy group and an isocyanate group, [1] The dispersion according to any one of [8].
 [10]前記界面活性剤が、ペルフルオロアルキル基又はペルフルオロアルケニル基を有する、[1]~[9]のいずれかに記載の分散液。
 [11]前記界面活性剤が、ポリオキシエチレン基、ポリオキシプロピレン基、ポリオキシテトラメチレン基、アミノ基、ケトン基、カルボキシル基又はスルホン基を有する、[1]~[10]のいずれかに記載の分散液。
 [12]前記パウダーの含有量が、有機溶媒とパウダーと界面活性剤との合計に対して35~70質量%である、[1]~[11]のいずれかに記載の分散液。
[10] The dispersion according to any one of [1] to [9], wherein the surfactant has a perfluoroalkyl group or a perfluoroalkenyl group.
[11] The surfactant according to any one of [1] to [10], having a polyoxyethylene group, a polyoxypropylene group, a polyoxytetramethylene group, an amino group, a ketone group, a carboxyl group or a sulfone group. Dispersion as described.
[12] The dispersion according to any one of [1] to [11], wherein the content of the powder is 35 to 70% by mass with respect to the total of the organic solvent, the powder and the surfactant.
 [13]前記[1]~[12]のいずれかに記載の分散液を用いて金属フィルム上で樹脂層に製膜し、表面に樹脂層を有する金属フィルムを得る、金属積層板の製造方法。
 [14]前記樹脂層の厚さが1~20μmである、[13]に記載の金属積層板の製造方法。
 [15]前記[13]又は[14]に記載の製造方法で金属積層板を製造し、前記金属フィルムをエッチングしてパターン回路を形成する、プリント基板の製造方法。
[13] A method for producing a metal laminate, comprising forming a resin layer on a metal film using the dispersion according to any one of the above [1] to [12] to obtain a metal film having a resin layer on the surface .
[14] The method for producing a metal laminate plate according to [13], wherein the thickness of the resin layer is 1 to 20 μm.
[15] A method for producing a printed circuit board, wherein a metal laminate is produced by the production method according to [13] or [14], and the metal film is etched to form a patterned circuit.
 本発明によれば、異種の樹脂材料、そのワニスとの混合性、塗工性、分散性及び分散安定性に優れた分散液が得られ、電気特性や耐熱性等の物性に優れ、高周帯域の周波数に対応するプリント基板を製造するための金属積層板の材料が提供される。 According to the present invention, a dispersion liquid excellent in different resin materials and their mixing properties with the varnish, coatability, dispersibility and dispersion stability can be obtained, excellent in physical properties such as electrical properties and heat resistance, and high cycle. Provided is a material of a metal laminate for producing a printed circuit board corresponding to a band frequency.
 本明細書における下記の用語の意味は以下の通りである。
 「パウダーの体積基準累積50%径」は、レーザー回折・散乱法により求められる。すなわち、レーザー回折・散乱法によって粒度分布を測定し、粒子の集団の全体積を100%として累積カーブを求め、その累積カーブ上で累積体積が50%となる点の粒子径である。本明細書ではパウダーの体積基準累積50%径を「D50」とも記す。
 「パウダーの体積基準累積90%径」は、レーザー回折・散乱法により求められる。すなわち、レーザー回折・散乱法によって粒度分布を測定し、粒子の集団の全体積を100%として累積カーブを求め、その累積カーブ上で累積体積が90%となる点の粒子径である。本明細書ではパウダーの体積基準累積90%径を「D90」とも記す。
 「融点」は、示差走査熱量測定(DSC)法で測定したポリマーの融解ピークの最大値に対応する温度である。
 「分散液の粘度」とは、B型粘度計を用いて、室温下(25℃)で回転数が30rpmの条件下で測定される値である。測定を3回繰り返し、3回分の測定値の平均値とする。
 「分散液のチキソ比」とは、回転数が30rpmの条件で測定される粘度ηを回転数が60rpmの条件で測定される粘度ηで除して算出される値である。それぞれの粘度の測定は、3回繰り返し、3回分の測定値の平均値とする。
 「比誘電率」は、ASTM D 150準拠の変成器ブリッジ法にて、温度を23℃±2℃の範囲内、相対湿度を50%±5%RHの範囲内に保持した、絶縁破壊試験装置にて、1MHzで求めた値を比誘電率とした。
 「有機溶媒の表面張力」とは、表面張力計を用いて、25℃にて測定される値である。
The meanings of the following terms in the present specification are as follows.
The “volume based cumulative 50% diameter of powder” is determined by the laser diffraction / scattering method. That is, the particle size distribution is measured by the laser diffraction / scattering method, and the cumulative curve is obtained with the total volume of the particle group as 100%, and the particle diameter at the point where the cumulative volume is 50% on the cumulative curve. In the present specification, the volume-based cumulative 50% diameter of powder is also referred to as "D50".
The “volume based cumulative 90% diameter of powder” is determined by the laser diffraction / scattering method. That is, the particle size distribution is measured by the laser diffraction / scattering method, and the cumulative curve is obtained with the total volume of the particle group as 100%, and the particle diameter at the point where the cumulative volume is 90% on the cumulative curve. In the present specification, the volume-based cumulative 90% diameter of powder is also referred to as "D90".
The "melting point" is the temperature corresponding to the maximum value of the melting peak of the polymer measured by differential scanning calorimetry (DSC).
The “viscosity of dispersion” is a value measured using a B-type viscometer under conditions of a rotation speed of 30 rpm at room temperature (25 ° C.). Repeat the measurement three times to obtain the average value of the three measurements.
The "thixotropic index of dispersion", is the viscosity eta 1 of rotational speed is measured under the conditions of 30rpm values rotational speed is calculated by dividing the viscosity eta 2 as measured under conditions of 60 rpm. Each viscosity measurement is repeated three times, and is taken as the average value of three measurements.
The "dielectric constant" is a dielectric breakdown test device that maintains the temperature in the range of 23 ° C ± 2 ° C and the relative humidity in the range of 50% ± 5% RH by the transformer bridge method according to ASTM D 150. The value obtained at 1 MHz was taken as the relative dielectric constant.
The “surface tension of the organic solvent” is a value measured at 25 ° C. using a surface tension meter.
 本発明の分散液は、有機溶媒と、テトラフルオロエチレン単位及び特定官能基を有するフルオロポリマーを含むパウダーと、特定の界面活性剤とを含む、分散液である。
 本発明の分散液が、分散性と、異種の樹脂材料及びそのワニスとの混合性と、塗工性とに優れている理由は、必ずしも明確ではないが、以下の様に考えられる。
 本発明におけるフルオロポリマーは、特定官能基(カルボニル基含有基、ヒドロキシ基、エポキシ基及びイソシアネート基からなる群から選ばれる少なくとも1種の官能基。)を有するフルオロポリマーであり、言い換えれば、極性基を有するフルオロポリマーであるとも言える。かかる極性基を有するフルオロポリマーを含むパウダーは、その比表面積が大きいという物理的な特徴からも、粒子間の相互作用により分散液中で凝集しやすい傾向にあると考えられる。さらに、この傾向は分散液にかかる外力(せん断力等)の強弱や有機溶媒の種類によって影響されるとも考えられる。このように、極性基を有するフルオロポリマーは、ユニークな物性(融着性、接着性等。)を有する反面、その分散液の調製は容易ではなかった。
 本発明の分散液は、界面活性剤(好ましくは、フッ素含有基と親水基とを有する。)を含み、該界面活性剤の存在により有機溶媒の表面張力が低下し、有機溶媒とフルオロポリマーが濡れ易い状態になっている。パウダー表面のフルオロポリマー鎖と特定の界面活性剤のフッ素含有基、並びに、特定の界面活性剤の親水基と有機溶媒は高度に相互作用した状態を形成すると考えられる。その結果、パウダーは安定した状態で有機溶媒中に分散し、パウダーを形成するフルオロポリマー自体の極性基により、異種の樹脂及びそのワニスと良好な混合性、その塗工性を発現すると考えられる。
The dispersion of the present invention is a dispersion comprising an organic solvent, a powder comprising tetrafluoroethylene units and a fluoropolymer having a specific functional group, and a specific surfactant.
The reason why the dispersion of the present invention is excellent in dispersibility, mixing properties with different resin materials and varnishes thereof, and coatability is not necessarily clear, but is considered as follows.
The fluoropolymer in the present invention is a fluoropolymer having a specific functional group (at least one functional group selected from the group consisting of a carbonyl group-containing group, a hydroxy group, an epoxy group and an isocyanate group), in other words, a polar group It can be said that it is a fluoropolymer having It is considered that the powder containing the fluoropolymer having such a polar group tends to be prone to aggregation in the dispersion due to the interaction between particles also from the physical characteristic that the specific surface area is large. Furthermore, it is considered that this tendency is influenced by the strength of external force (shearing force etc.) applied to the dispersion and the kind of the organic solvent. Thus, while the fluoropolymer having a polar group has unique physical properties (fusion, adhesion, etc.), preparation of the dispersion was not easy.
The dispersion of the present invention contains a surfactant (preferably having a fluorine-containing group and a hydrophilic group), the presence of the surfactant reduces the surface tension of the organic solvent, and the organic solvent and the fluoropolymer It is easy to get wet. It is believed that the fluoropolymer chain on the powder surface and the fluorine-containing group of the specific surfactant, as well as the hydrophilic group of the specific surfactant and the organic solvent form a highly interacted state. As a result, the powder is dispersed in an organic solvent in a stable state, and it is considered that the polar groups of the fluoropolymer itself forming the powder exhibit different resins and their varnishes, and a good mixability and coatability thereof.
 本発明の分散液の粘度は、100~10000mPa・sが好ましく、130~7000mPa・sがより好ましく、150~5000mPa・sがさらに好ましく、170~3000mPa・sが特に好ましい。粘度が100mPa・s以上であると、分散液の分散安定性が優れ、分散液から形成される樹脂層が均一になりやすく、分散液の塗工性に優れる。粘度が10000mPa・s以下であると、分散液の分散安定性が優れ、分散液から樹脂層を形成する際の操作性(分散液の塗工性)に優れる。
 本発明の分散液の粘度は、50~3000mPa・sが好ましく、70~1500mPa・sがより好ましく、80~1000mPa・sがさらに好ましく、100~500mPa・sが特に好ましい。この場合、特に、分散液の分散安定性に優れ、分散液とワニスを混合して塗工する際の操作性に優れる。
The viscosity of the dispersion of the present invention is preferably 100 to 10000 mPa · s, more preferably 130 to 7000 mPa · s, still more preferably 150 to 5000 mPa · s, and particularly preferably 170 to 3000 mPa · s. When the viscosity is 100 mPa · s or more, the dispersion stability of the dispersion is excellent, the resin layer formed from the dispersion is likely to be uniform, and the coatability of the dispersion is excellent. When the viscosity is 10000 mPa · s or less, the dispersion stability of the dispersion is excellent, and the operability (the coatability of the dispersion) at the time of forming the resin layer from the dispersion is excellent.
The viscosity of the dispersion of the present invention is preferably 50 to 3000 mPa · s, more preferably 70 to 1500 mPa · s, still more preferably 80 to 1000 mPa · s, and particularly preferably 100 to 500 mPa · s. In this case, in particular, the dispersion stability of the dispersion is excellent, and the operability when mixing and applying the dispersion and the varnish is excellent.
 本発明の分散液のチキソ比は、1.4~2.2が好ましく、1.45~2.10がより好ましく、1.5~2.0がさらに好ましい。チキソ比が1.4以上であると、分散液の分散安定性が優れ、分散液から形成される樹脂層が均一になりやすく、塗工性にも優れる。チキソ比が2.2以下であると、分散液の分散性と、塗工性とに優れる。
 分散液のチキソ比は、1.0~1.5も好ましく、1.05~1.45もより好ましく、1.1~1.4もさらに好ましく、1.1~1.3も特に好ましい。この場合、分散液と異種の樹脂材料のワニスの混合性に優れる。
 本発明の分散液は、粘度とチキソ性を調製する観点から、チキソ性付与剤、無機質フィラー、消泡剤を含んでもよい。また、上記観点から、本発明の分散液は、有機溶媒に溶解する樹脂を含まないことが好ましい。
The thixo ratio of the dispersion of the present invention is preferably 1.4 to 2.2, more preferably 1.45 to 2.10, and still more preferably 1.5 to 2.0. When the thixo ratio is 1.4 or more, the dispersion stability of the dispersion is excellent, the resin layer formed from the dispersion is likely to be uniform, and the coatability is also excellent. When the thixo ratio is 2.2 or less, the dispersibility of the dispersion and the coatability are excellent.
The thixo ratio of the dispersion is also preferably 1.0 to 1.5, more preferably 1.05 to 1.45, still more preferably 1.1 to 1.4, and particularly preferably 1.1 to 1.3. In this case, the mixing properties of the dispersion liquid and the varnish of different resin materials are excellent.
The dispersion of the present invention may contain a thixotropic agent, an inorganic filler, and an antifoaming agent, from the viewpoint of adjusting viscosity and thixotropy. Further, from the above viewpoint, the dispersion liquid of the present invention preferably contains no resin that dissolves in an organic solvent.
 本発明におけるパウダーは、本発明の効果を損なわない範囲において、本発明におけるフルオロポリマー以外の成分を含んでいてもよいが、本発明におけるフルオロポリマーを主成分とするのが好ましい。パウダーにおける本発明におけるフルオロポリマーの含有量は、80質量%以上が好ましく、90質量%以上がより好ましく、100質量%が特に好ましい。 The powder in the present invention may contain components other than the fluoropolymer in the present invention as long as the effects of the present invention are not impaired, but preferably the fluoropolymer in the present invention is a main component. 80 mass% or more is preferable, as for content of the fluoropolymer in this invention in a powder, 90 mass% or more is more preferable, and 100 mass% is especially preferable.
 パウダーのD50は0.05~4μmであり、かつ、D90は8μm以下であるのが好ましい。
 パウダーのD50は、0.1~3μmが好ましく、0.2~3.0μmが特に好ましい。この範囲において、パウダーの流動性と分散性が良好となり、分散液の塗工性や異種の樹脂材料のワニスとの混合性が優れる。また、本発明の分散液から得られる物品(金属積層板、プリント基板等。)における、本発明におけるフルオロポリマーの電気特性(低誘電率等)や耐熱性が最も発現しやすい。また、本発明の分散液から得られる膜の厚さも制御しやすい。
 パウダーのD90は、6μm以下が好ましく、1.5~5μmが特に好ましい。この範囲において、パウダーの分散性が良好となり、分散液の塗工性や異種の樹脂材料のワニスとの混合性が優れ、分散液から得られる膜の均一性が向上しやすい。
The powder D50 is preferably 0.05 to 4 μm, and the D90 is preferably 8 μm or less.
The powder D50 is preferably 0.1 to 3 μm, and particularly preferably 0.2 to 3.0 μm. Within this range, the flowability and the dispersibility of the powder become good, and the coatability of the dispersion liquid and the mixability with the varnish of different resin materials are excellent. Moreover, in the articles (metal laminates, printed circuit boards, etc.) obtained from the dispersion of the present invention, the electrical properties (low dielectric constant, etc.) and heat resistance of the fluoropolymers of the present invention are most easily exhibited. In addition, it is easy to control the thickness of the film obtained from the dispersion of the present invention.
The powder D90 is preferably 6 μm or less, particularly preferably 1.5 to 5 μm. Within this range, the dispersibility of the powder is good, the coatability of the dispersion liquid and the mixing property with the varnish of different resin materials are excellent, and the uniformity of the film obtained from the dispersion liquid tends to be improved.
 パウダーの疎充填嵩密度は、0.05g/mL以上が好ましく、0.08~0.5g/mLが特に好ましい。
 パウダーの密充填嵩密度は、0.05g/mL以上が好ましく、0.1~0.8g/mLが特に好ましい。
 パウダーの製造方法としては、国際公開第2016/017801号の[0065]~[0069]に記載の方法を採用できる。
The loosely packed bulk density of the powder is preferably 0.05 g / mL or more, and particularly preferably 0.08 to 0.5 g / mL.
The densely packed bulk density of the powder is preferably 0.05 g / mL or more, and particularly preferably 0.1 to 0.8 g / mL.
As a method of producing a powder, the methods described in [0065] to [0069] of WO 2016/017801 can be adopted.
 本発明におけるフルオロポリマー(以下、「Fポリマー」とも記す。)は、テトラフルオロエチレン(以下、「TFE」とも記す。)に由来する単位(以下、「TFE単位」とも記す。)と、カルボニル基含有基、ヒドロキシ基、エポキシ基及びイソシアネート基からなる群から選ばれる少なくとも1種の官能基を有する。
 「カルボニル基含有基」とはカルボニル基を含む基を意味する。カルボニル基含有基としては、カーボネート基、カルボキシ基、ハロホルミル基、アルコキシカルボニル基(メトキシカルボニル基、エトキシカルボニル基等。)、酸無水物残基、脂肪酸残基、アミド基が挙げられる。「酸無水物残基」とは-C(=O)OC(=O)-を意味する。
The fluoropolymer (hereinafter referred to as "F polymer") in the present invention is a unit derived from tetrafluoroethylene (hereinafter also referred to as "TFE") (hereinafter referred to as "TFE unit"), and a carbonyl group. It has at least one type of functional group selected from the group consisting of containing groups, hydroxy groups, epoxy groups and isocyanate groups.
The "carbonyl group-containing group" means a group containing a carbonyl group. Examples of the carbonyl group-containing group include a carbonate group, a carboxy group, a haloformyl group, an alkoxycarbonyl group (such as a methoxycarbonyl group and an ethoxycarbonyl group), an acid anhydride residue, a fatty acid residue and an amide group. The "acid anhydride residue" means -C (= O) OC (= O)-.
 Fポリマーの全単位の合計に対するTFE単位の割合は、90mol%以上が好ましい。上限は、99.89mol以下が好ましい。
 Fポリマーの全単位の合計に対するTFE単位の割合は、Fポリマーの電気特性(低誘電率等)、耐熱性、耐薬品性、溶融成形性、耐ストレスクラック性等の観点から、90~99.89モル%が好ましく、95~99.47モル%がより好ましく、96~98.95モル%が特に好ましい。
 官能基としては、Fポリマーの物性(融着性、接着性等。)の観点から、カルボニル基含有基が好ましく、カーボネート基、カルボキシ基、ハロホルミル基、アルコキシカルボニル基及び酸無水物残基がより好ましく、カルボキシ基及び酸無水物残基が特に好ましい。
The ratio of TFE units to the total of all units of the F polymer is preferably 90 mol% or more. The upper limit is preferably 99.89 mol or less.
The ratio of the TFE unit to the total of all units of the F polymer is 90 to 99.% from the viewpoints of electrical properties (such as low dielectric constant) of the F polymer, heat resistance, chemical resistance, melt moldability, stress crack resistance, and the like. 89 mol% is preferable, 95 to 99.47 mol% is more preferable, and 96 to 98.95 mol% is particularly preferable.
The functional group is preferably a carbonyl group-containing group from the viewpoint of physical properties of the F polymer (fusion and adhesion, etc.), and more preferably a carbonate group, a carboxy group, a haloformyl group, an alkoxycarbonyl group and an acid anhydride residue. Preferably, a carboxy group and an acid anhydride residue are particularly preferred.
 Fポリマーは、官能基を有するモノマー(以下、「官能モノマー」とも記す。)に由来する単位(以下、「官能単位」とも記す。)を有していてもよく、官能基を主鎖末端に有していてもよい。
 官能基を主鎖末端に有するFポリマーは、その製造に際して使用する重合開始剤、連鎖移動剤等の種類を適宜選択して製造できる(例えば、その製造において、官能基を有する重合開始剤又は官能基を有する連鎖移動剤を使用する。)。この場合の官能基としては、アルコキシカルボニル基、カーボネート基、カルボキシ基、フルオロホルミル基、酸無水物残基、ヒドロキシ基が挙げられる。
The F polymer may have a unit derived from a monomer having a functional group (hereinafter, also referred to as a “functional monomer”) (hereinafter, also referred to as a “functional unit”), You may have.
The F polymer having a functional group at the main chain terminal can be produced by appropriately selecting the type of polymerization initiator, chain transfer agent, etc. used in the production (for example, in the production, a polymerization initiator having a functional group or a functional group Use a chain transfer agent having a group). The functional group in this case includes an alkoxycarbonyl group, a carbonate group, a carboxy group, a fluoroformyl group, an acid anhydride residue and a hydroxy group.
 また、Fポリマーは、TFE単位を有するポリマーにプラズマ照射、コロナ照射、電子線照射又は放射線照射するか、前記ポリマーのパウダーを金属ナトリウム-ナフタレン溶液で処理するかして製造される、官能基を有するFポリマーであってもよい。この場合の官能基としては、アルコキシカルボニル基、カルボニル基、カルボキシ基、ヒドロキシ基が挙げられる。 In addition, the F polymer is produced by subjecting a polymer having TFE units to plasma irradiation, corona irradiation, electron beam irradiation or irradiation, or treating a powder of the polymer with a sodium metal-naphthalene solution. It may be an F polymer. The functional group in this case includes an alkoxycarbonyl group, a carbonyl group, a carboxy group and a hydroxy group.
 Fポリマーは、官能単位を有するのが好ましい。
 官能モノマーとしては、カルボニル基含有基を有するモノマー、ヒドロキシ基を有するモノマー、エポキシ基を有するモノマー、イソシアネート基を有するモノマーが挙げられ、Fポリマーの物性(融着性、接着性等。)の観点から、カルボニル基含有基を有するモノマーが好ましい。
 カルボニル基含有基を有するモノマーとしては、酸無水物残基を有するモノマー、カルボキシ基を有するモノマー、アルコキシカルボニル基を有するモノマーが挙げられ、アルコキシカルボニル基を有するモノマー、酸無水物残基を有するモノマー及びカルボキシ基を有するモノマーが特に好ましい。
The F polymer preferably has functional units.
Examples of the functional monomer include monomers having a carbonyl group-containing group, monomers having a hydroxy group, monomers having an epoxy group, and monomers having an isocyanate group, and the physical properties of the F polymer (fusion, adhesion, etc.) Therefore, monomers having a carbonyl group-containing group are preferred.
The monomer having a carbonyl group-containing group includes a monomer having an acid anhydride residue, a monomer having a carboxy group, a monomer having an alkoxycarbonyl group, a monomer having an alkoxycarbonyl group, a monomer having an acid anhydride residue And monomers having a carboxy group are particularly preferred.
 酸無水物残基を有するモノマーとしては、不飽和ジカルボン酸の酸無水物が挙げられ、無水イタコン酸(以下、「IAH」とも記す。)、無水シトラコン酸(以下、「CAH」とも記す。)、5-ノルボルネン-2,3-ジカルボン酸無水物(別称:無水ハイミック酸。以下、「NAH」とも記す。)、無水マレイン酸が挙げられる。Fポリマーの物性(耐熱性、接着性等。)の観点から、IAH、CAH及びNAHが好ましく、NAHが特に好ましい。Fポリマーが官能単位を有する場合、Fポリマーの全単位の合計に対する官能単位の割合は、Fポリマーの耐熱性や色目、嵩密度が大きなパウダーが得られ分散液を調製しやすい、分散液から得られる樹脂層の層間密着性等の観点から、0.01~3mol%が好ましく、0.03~2モル%がより好ましく、0.05~1モル%が特に好ましい。 Examples of the monomer having an acid anhydride residue include acid anhydrides of unsaturated dicarboxylic acids, and itaconic anhydride (hereinafter also referred to as "IAH") and citraconic anhydride (hereinafter also referred to as "CAH"). 5-norbornene-2,3-dicarboxylic acid anhydride (also referred to as hymic acid anhydride, hereinafter also referred to as "NAH"), and maleic anhydride. From the viewpoint of the physical properties (heat resistance, adhesiveness, etc.) of the F polymer, IAH, CAH and NAH are preferable, and NAH is particularly preferable. When the F polymer has a functional unit, the ratio of the functional unit to the total of all units of the F polymer is obtained from the dispersion which is easy to prepare a dispersion by obtaining a powder having high heat resistance, color and bulk density of the F polymer. From the viewpoint of interlayer adhesion of the resin layer, etc., it is preferably 0.01 to 3 mol%, more preferably 0.03 to 2 mol%, and particularly preferably 0.05 to 1 mol%.
 カルボキシ基を有するモノマーとしては、イタコン酸、シトラコン酸、5-ノルボルネン-2,3-ジカルボン酸、マレイン酸、アクリル酸、メタクリル酸が挙げられる。
 アルコキシカルボニル基としては、CF=CFO(CFCOOCH、酢酸ビニル、クロロ酢酸ビニル、ブタン酸ビニル、ピバル酸ビニル、安息香酸ビニル、(ポリフルオロアルキル)アクリレート、(ポリフルオロアルキル)メタクリレートが挙げられる。
 ヒドロキシ基を有するモノマーとしては、2-ヒドロキシエチル(メタ)アクリレート、クロトン酸2-ヒドロキシエチル、アリルアルコールが挙げられる。
 エポキシ基を有するモノマーとしては、アリルグリシジルエーテル、2-メチルアリルグリシジルエーテル、ビニルグリシジルエーテル、アクリル酸グリシジル、メタクリル酸グリシジルが挙げられる。
 イソシアネート基を有するモノマーとしては、2-(メタ)アクリロイルオキシエチルイソシアネート、2-(2-(メタ)アクリロイルオキシエトキシ)エチルイソシアネート、1,1-ビス((メタ)アクリロイルオキシメチル)エチルイソシアネートが挙げられる。
As a monomer having a carboxy group, itaconic acid, citraconic acid, 5-norbornene-2,3-dicarboxylic acid, maleic acid, acrylic acid and methacrylic acid can be mentioned.
As the alkoxycarbonyl group, CF 2 CCFO (CF 2 ) 3 COOCH 3 , vinyl acetate, vinyl chloroacetate, vinyl butanoate, vinyl pivalate, vinyl benzoate, (polyfluoroalkyl) acrylate, (polyfluoroalkyl) methacrylate Can be mentioned.
Examples of the monomer having a hydroxy group include 2-hydroxyethyl (meth) acrylate, 2-hydroxyethyl crotonate and allyl alcohol.
Examples of the monomer having an epoxy group include allyl glycidyl ether, 2-methyl allyl glycidyl ether, vinyl glycidyl ether, glycidyl acrylate and glycidyl methacrylate.
Examples of monomers having an isocyanate group include 2- (meth) acryloyloxyethyl isocyanate, 2- (2- (meth) acryloyloxyethoxy) ethyl isocyanate, and 1,1-bis ((meth) acryloyloxymethyl) ethyl isocyanate. Be
 Fポリマーは、Fポリマーの物性(融着性、加工性等。)の観点から、ペルフルオロ(アルキルビニルエーテル)(以下、「PAVE」とも記す。)、ヘキサフルオロプロピレン(以下、「HFP」とも記す。)及びフルオロアルキルエチレン(以下、「FAE」とも記す。)からなる群から選ばれる少なくとも一種のモノマーに由来する単位をさらに有するのが好ましく、PAVEに由来する単位をさらに有するのが特に好ましい。Fポリマーが前記単位を有する場合、Fポリマーの全単位の合計に対する前記単位の割合は、分散液から形成される樹脂層の成形性の観点から、0.1~9.99mol%が好ましく、1~9.95モル%が特に好ましい。 The F polymer is also referred to as perfluoro (alkyl vinyl ether) (hereinafter also referred to as “PAVE”), hexafluoropropylene (hereinafter referred to as “HFP”) from the viewpoint of physical properties (fusing property, processability etc.) of the F polymer. It is preferable to further have a unit derived from at least one monomer selected from the group consisting of fluoroalkylethylene (hereinafter also referred to as “FAE”) and particularly preferable to further have a unit derived from PAVE. When the F polymer has the unit, the ratio of the unit to the total of all units of the F polymer is preferably 0.1 to 9.99 mol%, from the viewpoint of the moldability of the resin layer formed from the dispersion, 1 ~ 9.95 mol% is particularly preferred.
 PAVEとしては、CF=CFOCF、CF=CFO(CFF、CF=CFO(CFF(以下、「PPVE」とも記す。)、CF=CFO(CFF、CF=CFO(CFF等が挙げられ、PPVEが好ましい。
 FAEとしては、CH=CH(CFF、CH=CH(CFF、CH=CH(CFF、CH=CF(CFH、CH=CF(CFHが挙げられ、CH=CH(CFF及びCH=CH(CFFが好ましい。
As PAVE, CF 2 CCFOCF 3 , CF 2 (CFO (CF 2 ) 2 F, CF 2 CCFO (CF 2 ) 3 F (hereinafter also referred to as “PPVE”), CF 2 CCFO (CF 2 ) 4 F, CF 2 CCFO (CF 2 ) 8 F, etc. are mentioned, and PPVE is preferable.
As the FAE, CH 2 CHCH (CF 2 ) 2 F, CH 2 CHCH (CF 2 ) 3 F, CH 2 CHCH (CF 2 ) 4 F, CH 2 CFCF (CF 2 ) 3 H, CH 2 = CF (CF 2) 4 H can be mentioned, CH 2 = CH (CF 2 ) 4 F and CH 2 = CH (CF 2) 2 F are preferred.
 Fポリマーは、さらに他のモノマーに由来する単位を有していてもよい。かかる他のモノマーとしては、CH=CH、CH=CHF、CH=CF、CHF=CF、CF=CFCl、CH=CHCH、CH=CFCF、CHF=CHCF、CF=CFOCF(CF)CFOCFCFSOF、CF=CFCFCFOCF=CF、ペルフルオロ(2-メチレン-4-メチル-1、3-ジオキソラン)、ペルフルオロ(1,3-ジメチル-ジオキソール)が挙げられる。 The F polymer may further have units derived from other monomers. Such other monomers, CH 2 = CH 2, CH 2 = CHF, CH 2 = CF 2, CHF = CF 2, CF 2 = CFCl, CH 2 = CHCH 3, CH 2 = CFCF 3, CHF = CHCF 3 , CF 2 CCFOCF (CF 3 ) CF 2 OCF 2 CF 2 SO 2 F, CF 2 CFCFCF 2 CF 2 OCF = CF 2 , perfluoro (2-methylene-4-methyl-1,3-dioxolane), perfluoro ( And 1,3-dimethyl-dioxole).
 Fポリマーは、TFE単位と、官能単位と、PAVE、HFP及びFAEからなる群から選ばれる少なくとも一種のモノマーに由来する単位を有し、全単位の合計に対する単位の割合が、この順に、90~99.89モル%、0.01~3モル%、0.1~9.99モル%であるFポリマーが好ましい。
 官能単位は、NAHに由来する単位、IAHに由来する単位及びCAHに由来する単位が好ましく、NAHに由来する単位が特に好ましい。
 前記一種のモノマーは、HFP及びPAVEが好ましく、PAVEがより好ましく、PPVEが特に好ましい。
 さらに、この場合のFポリマーは、主鎖末端に官能基を有してもよい。また、この場合のFポリマーをプラズマ照射、コロナ照射、電子線照射又は放射線照射するか、前記ポリマーのパウダーを金属ナトリウム-ナフタレン溶液で処理するかして、官能基をさらに導入してもよい。
The F polymer has TFE units, functional units, and units derived from at least one monomer selected from the group consisting of PAVE, HFP and FAE, and the ratio of units to the total of all units is 90 to 90 in this order The F polymer which is 99.89 mol%, 0.01 to 3 mol%, 0.1 to 9.99 mol% is preferred.
The functional unit is preferably a unit derived from NAH, a unit derived from IAH and a unit derived from CAH, particularly preferably a unit derived from NAH.
HFP and PAVE are preferable, PAVE is more preferable, and PPVE is particularly preferable.
Furthermore, the F polymer in this case may have a functional group at the main chain terminus. In addition, the functional group may be further introduced by subjecting the F polymer in this case to plasma irradiation, corona irradiation, electron beam irradiation or radiation, or treating the powder of the polymer with a metal sodium-naphthalene solution.
 Fポリマーが有する各単位の割合は、溶融核磁気共鳴(NMR)分析、フッ素含有量分析、赤外吸収スペクトル分析等により測定できる。例えば、特開2007-314720号公報に記載のように、赤外吸収スペクトル分析等の方法を用いて、Fポリマーを構成する全単位中の官能単位の割合(モル%)を測定できる。 The proportion of each unit contained in the F polymer can be measured by melt nuclear magnetic resonance (NMR) analysis, fluorine content analysis, infrared absorption spectrum analysis or the like. For example, as described in JP-A-2007-314720, the proportion (mol%) of functional units in all units constituting the F polymer can be measured using a method such as infrared absorption spectrum analysis.
 Fポリマーの融点は、260~380℃が好ましく、295~310℃が特に好ましい。この場合、分散液から形成される樹脂層の成形性にも優れる。特にパウダー粒子に起因する樹脂層表面の凹凸を抑制できる。
 また、Fポリマーは、荷重49Nの条件下、Fポリマーの融点よりも20℃以上高い温度において、溶融流れ速度が0.1~1000g/10分となる温度が存在する、溶融成形可能なフルオロポリマーが好ましい。「溶融流れ速度」とは、JIS K 7210:1999(ISO 1133:1997)に規定されるメルトマスフローレート(MFR)を意味する。MFRは、0.1~1000g/10分が好ましく、5~20g/10分が特に好ましい。この場合、分散液から形成される樹脂層が、表面平滑性と外観に優れるだけでなく、機械強度にも優れる。
 Fポリマーの比誘電率は、分散液から形成される樹脂層の電気特性の観点から、2.5以下が好ましく、2.4以下がより好ましく、2.0~2.4が特に好ましい。
The melting point of the F polymer is preferably 260 to 380 ° C., and particularly preferably 295 to 310 ° C. In this case, the moldability of the resin layer formed from the dispersion is also excellent. In particular, irregularities on the surface of the resin layer due to powder particles can be suppressed.
In addition, the F polymer is a melt-formable fluoropolymer having a temperature at which the melt flow rate is 0.1 to 1000 g / 10 min at a load of 49 N and at a temperature 20 ° C. or more higher than the melting point of the F polymer Is preferred. The "melt flow rate" means a melt mass flow rate (MFR) defined in JIS K 7210: 1999 (ISO 1133: 1997). The MFR is preferably 0.1 to 1000 g / 10 min, and particularly preferably 5 to 20 g / 10 min. In this case, the resin layer formed from the dispersion is excellent not only in surface smoothness and appearance but also in mechanical strength.
The relative dielectric constant of the F polymer is preferably 2.5 or less, more preferably 2.4 or less, and particularly preferably 2.0 to 2.4, from the viewpoint of the electrical properties of the resin layer formed from the dispersion.
 本発明における有機溶媒は、分散媒である。有機溶媒は、常温(25℃)で液状の不活性な成分であり、パウダーと反応しない化合物である。有機溶媒は、相溶性の2種以上の有機溶媒の混合物であってもよく、水溶性有機溶媒と水との混合溶媒であってもよい。有機溶媒としては、フッ素原子を有しない有機溶媒が好ましい。
 有機溶媒としては、アルコール、エーテル、エステル、ケトン、グリコールエーテル、セロソルブ等が挙げられる。具体的には、γ-ブチロラクトン、アセトン、メチルエチルケトン、ヘキサン、ヘプタン、オクタン、2-ヘプタノン、シクロヘプタノン、シクロヘキサノン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、メチル-n-ペンチルケトン、メチルイソブチルケトン、メチルイソペンチルケトン、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、エチレングリコールモノアセテート、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノアセテート、ジエチレングリコールジエチルエーテル、プロピレングリコールモノアセテート、ジプロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、シクロヘキシルアセテート、3-エトキシプロピオン酸エチル、ジオキサン、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸ブチル、ピルビン酸メチル、ピルビン酸エチル、メトキシプロピオン酸メチル、エトキシプロピオン酸エチル、アニソール、エチルベンジルエーテル、クレジルメチルエーテル、ジフェニルエーテル、ジベンジルエーテル、フェネトール、ブチルフェニルエーテル、ベンゼン、エチルベンゼン、ジエチルベンゼン、ペンチルベンゼン、イソプロピルベンゼン、トルエン、キシレン、シメン、メシチレン、メタノール、エタノール、イソプロパノール、ブタノール、メチルモノグリシジルエーテル、エチルモノグリシジルエーテル、ジメチルホルムアミド、ミネラルスピリット、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、各種シリコーンオイルが挙げられる。
The organic solvent in the present invention is a dispersion medium. The organic solvent is an inert component which is liquid at normal temperature (25 ° C.) and is a compound which does not react with the powder. The organic solvent may be a mixture of two or more compatible organic solvents, or may be a mixed solvent of a water-soluble organic solvent and water. As an organic solvent, the organic solvent which does not have a fluorine atom is preferable.
As an organic solvent, alcohol, ether, ester, ketone, glycol ether, cellosolve etc. are mentioned. Specifically, γ-butyrolactone, acetone, methyl ethyl ketone, hexane, heptane, octane, 2-heptanone, cycloheptanone, cyclohexanone, cyclohexane, methylcyclohexane, ethylcyclohexane, methyl n-pentyl ketone, methyl isobutyl ketone, methyl iso Pentyl ketone, ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, ethylene glycol monoacetate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monoacetate, diethylene glycol diethyl ether, propylene glycol monoacetate, dipropylene glycol mono Acetate, propylene glycol Diacetate, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, cyclohexyl acetate, ethyl 3-ethoxypropionate, dioxane, methyl lactate, ethyl lactate, methyl acetate, methyl acetate, ethyl acetate, butyl acetate, pyruvate Methyl, ethyl pyruvate, methyl methoxypropionate, ethyl ethoxypropionate, anisole, ethyl benzyl ether, cresyl methyl ether, diphenyl ether, dibenzyl ether, phenetole, butylphenyl ether, benzene, ethylbenzene, diethylbenzene, pentylbenzene, isopropylbenzene , Toluene, xylene, cymene, mesitylene, methanol, ethanol, iso Propanol, butanol, methyl monoglycidyl ether, ethyl monoglycidyl ether, dimethylformamide, mineral spirits, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, and various silicone oils.
 本発明における有機溶媒は、本発明の分散液に含まれる他の成分よりも沸点が低い化合物が好ましく、揮発除去性の観点から、有機溶媒の沸点は、270℃以下が好ましく、70~260℃が特に好ましい。
 本発明における有機溶媒は、ケトン、エステル、アミド及び芳香族炭化水素からなる群から選ばれる、沸点70~260℃の化合物であることが好ましく、芳香族炭化水素、鎖状ケトン、環状ケトン、ラクトン及びラクタムからなる群から選ばれる、沸点100~240℃の化合物であることが特に好ましい。
The organic solvent in the present invention is preferably a compound having a boiling point lower than that of the other components contained in the dispersion of the present invention, and from the viewpoint of volatilization removability, the boiling point of the organic solvent is preferably 270.degree. Is particularly preferred.
The organic solvent in the present invention is preferably a compound having a boiling point of 70 to 260 ° C. selected from the group consisting of ketones, esters, amides and aromatic hydrocarbons, and aromatic hydrocarbons, chain ketones, cyclic ketones and lactones. Particularly preferred is a compound having a boiling point of 100 to 240 ° C. selected from the group consisting of
 本発明における有機溶媒は、分散液の粘度が100~10000mPa・sでありチキソ比が1.4~2.2である態様においては、表面張力が30dyn/cm以下の有機溶媒が好ましい。なお、この態様は、言い換えれば、分散液にかかる外力が比較的弱い場合において、分散液の粘度を高くバランスさせて、分散液から形成される樹脂層を斑なく均一な膜として形成させる、塗工性に優れた態様とも言える。
 この態様における有機溶媒の表面張力は、29dyn/cm以下がより好ましく、28.5dyn/cm以下がさらに好ましい。その上限は、特に限定されず、1dyn/cm以上である。この範囲において、パウダーの表面に対する有機溶媒の濡れ性が向上して、パウダーの分散性が優れるだけでなく、分散液のチキソ比を所定の範囲に制御しやすく、分散液の異種樹脂、そのワニスとの混合性にも優れる。
 かかる有機溶媒の具体例としては、メチルエチルケトン、トルエン、キシレン、シクロヘキサン、メチルシクロヘキサンが挙げられる。
The organic solvent in the present invention is preferably an organic solvent having a surface tension of 30 dyn / cm or less in an embodiment in which the viscosity of the dispersion is 100 to 10000 mPa · s and the thixo ratio is 1.4 to 2.2. In this embodiment, in other words, when the external force applied to the dispersion is relatively weak, the viscosity of the dispersion is balanced to form a resin layer formed from the dispersion as a uniform film without unevenness. It can be said that it is an aspect excellent in workability.
The surface tension of the organic solvent in this aspect is more preferably 29 dyn / cm or less, still more preferably 28.5 dyn / cm or less. The upper limit thereof is not particularly limited, and is 1 dyn / cm or more. In this range, the wettability of the organic solvent to the surface of the powder is improved, and not only the powder dispersibility is excellent, but also the thixo ratio of the dispersion can be easily controlled within a predetermined range. It is also excellent in mixing with
Specific examples of such organic solvents include methyl ethyl ketone, toluene, xylene, cyclohexane and methyl cyclohexane.
 本発明における有機溶媒は、分散液の粘度が50~3000mPa・sでありチキソ比が1.0~1.5である態様においては、表面張力が30dyn/cm超の有機溶媒が好ましい。なお、この態様は、言い換えれば、分散液にかかる外力が比較的強い場合において、分散液の粘度を低くバランスさせて、分散液と異種の樹脂、そのワニスとの混合性を向上させ、混合物におけるパウダーの均一分散性を向上させる、塗工性に優れた態様とも言える。
 この態様における有機溶媒の表面張力は、31dyn/cm超がより好ましく、32dyn/cm超がさらに好ましい。その上限は、特に限定されず、100dyn/cm以下である。この範囲において、有機溶媒の極性から、パウダーの粒子表面に界面活性剤が吸着しやすくなり、有機溶媒にパウダーが単一粒子でさらに分散しやすくなり、分散液のチキソ比が低下して、分散液の異種樹脂、そのワニスとの混合性にも優れる。
 かかる有機溶媒としては、シクロヘキサノン、シクロペンタノン、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドンが挙げられ、シクロペンタノン、シクロヘキサノン及びN-メチル-2-ピロリドンが好ましく、シクロペンタノン及びシクロヘキサノンが特に好ましい。
The organic solvent in the present invention is preferably an organic solvent having a surface tension of more than 30 dyn / cm in an embodiment in which the viscosity of the dispersion is 50 to 3000 mPa · s and the thixo ratio is 1.0 to 1.5. In this embodiment, in other words, when the external force applied to the dispersion is relatively strong, the viscosity of the dispersion is balanced low to improve the mixing property between the dispersion and the different kinds of resin and the varnish, and It can also be said that it is an aspect excellent in coatability which improves the uniform dispersibility of the powder.
The surface tension of the organic solvent in this aspect is more preferably 31 dyn / cm or more, and still more preferably 32 dyn / cm or more. The upper limit thereof is not particularly limited, and is 100 dyn / cm or less. In this range, due to the polarity of the organic solvent, the surfactant is easily adsorbed on the particle surface of the powder, the powder is further easily dispersed in the organic solvent as a single particle, and the thixo ratio of the dispersion liquid is reduced. It is also excellent in the mixing property with the different resin of the liquid and the varnish.
Such organic solvents include cyclohexanone, cyclopentanone, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, preferably cyclopentanone, cyclohexanone and N-methyl-2-pyrrolidone, and cyclopentanone and Cyclohexanone is particularly preferred.
 本発明における界面活性剤は、フッ素含有基と親水基とを有する。
 本発明において、分散液にかかるせん断力等の外力が弱い条件下ではパウダーと有機溶媒の相互作用が強まりやすく、分散液にかかるせん断力等の外力が強い条件下ではパウダーと有機溶媒の相互作用が低下しやすい。本発明における界面活性剤は、パウダーと有機溶媒の双方と相互作用するため、分散液のチキソ比を所定の範囲に制御可能になるとともに、貯蔵時等の静置状態におけるパウダーの凝集を抑制して分散液の分散安定性を向上させると考えられる。
 また、本発明における界面活性剤は、フッ素含有基を有しフッ素原子を有するパウダー表面に吸着しやすく、かつ、親水性基を有し有機溶媒中に伸長しやすいため、親水性基の立体障害によりパウダーの凝集を抑制するため、分散液の分散安定性を向上させる。
The surfactant in the present invention has a fluorine-containing group and a hydrophilic group.
In the present invention, the interaction between the powder and the organic solvent is likely to be strong under conditions where the external force such as shear applied to the dispersion is weak, and the interaction between the powder and the organic solvent under conditions such that the external force such as shear is applied to the dispersion. Is likely to decline. The surfactant according to the present invention interacts with both the powder and the organic solvent, so that the thixo ratio of the dispersion can be controlled within a predetermined range, and the aggregation of the powder in a stationary state such as storage can be suppressed. It is considered that the dispersion stability of the dispersion is improved.
Further, the surfactant in the present invention is easily adsorbed to the powder surface having a fluorine-containing group and a fluorine atom, and has a hydrophilic group and is easily extended in an organic solvent, so steric hindrance of the hydrophilic group The dispersion stability of the dispersion is improved in order to suppress the aggregation of the powder.
 たとえば、パウダーをメチルエチルケトン等の極性の有機溶媒にそのまま分散させると、パウダーの粒子同士の相互作用に加えて、パウダーの粒子が有機溶媒とも反発して、パウダーの粒子同士が凝集しやすく、分散液の安定性が低下する傾向がある。これに対し、本発明の分散液は界面活性剤を含み、界面活性剤がパウダーの粒子の間に相互作用しやすい。その結果、パウダーの粒子同士の相互作用を弱まり、パウダーの凝集が起きにくくなり、分散液の分散性安定性が向上する。また、界面活性剤により、パウダーが単一粒子で分散しやすくなり、有機溶媒にパウダーを濡らす際のパウダー同士の凝集も抑制され、分散液における分散液の分散性が向上する。本発明の分散液は、異種の樹脂材料、そのワニスとの混合性に優れる。 For example, when the powder is directly dispersed in a polar organic solvent such as methyl ethyl ketone, in addition to the interaction between the particles of the powder, the particles of the powder also repel the organic solvent, and the particles of the powder tend to aggregate. Stability tends to decrease. In contrast, the dispersion of the present invention contains a surfactant, which is likely to interact between the particles of the powder. As a result, the interaction between particles of the powder is weakened, the aggregation of the powder is less likely to occur, and the dispersion stability of the dispersion is improved. In addition, the powder is easily dispersed as single particles by the surfactant, aggregation of the powders when wetting the powder in the organic solvent is also suppressed, and the dispersibility of the dispersion in the dispersion is improved. The dispersion of the present invention is excellent in the mixing properties with different resin materials and their varnishes.
 フッ素含有基としては、ペルフルオロアルキル基、ペルフルオロアルケニル基(ヘキサフルオロプロピレントリマー基等。)等の高い疎水性を有する基が挙げられる。フッ素含有基の炭素数は2以上が好ましく、4~20がより好ましい。フッ素含有基が嵩高く吸着能に優れる点から、-CF(CF)C(=C(CF)(CF(CF)が好ましい。
 親水基は、フッ素含有基に対して相対的に親水性の基であり、一般的な親水性基であってもよく、また、通常は疎水性基とみなされる基であっても、フッ素含有基に対して相対的に親水性の基であればよい。例えば、ポリオキシプロピレン基は、親水性基であるポリオキシエチレン基に対して相対的に疎水性であり、通常疎水性基とされているが、フッ素含有基に対しては相対的に疎水性が低いことより、本発明における親水基である。
 親水基としては、エチレンオキサイド(ポリオキシエチレン基)、プロピレンキサイド(ポリオキシプロピレン基)、ブチレンオキサイド(ポリオキシブチレン基)、ポリオキシテトラメチレン基、アミノ基、ケトン基、カルボキシル基、スルホン基が挙げられる。親水基としては、炭素数2~4のオキシアルキレン基からなるポリオキシアルキレン基が好ましく、ポリオキシエチレン基が特に好ましい。
 界面活性剤は、また、フッ素含有基を有するモノマーと親水基を有するモノマーとのコポリマーであってもよい。このような界面活性剤としては、特に、フッ素含有基を有するモノマーとポリオキシアルキレン基を有するモノマーとのコポリマーが好ましい。
As the fluorine-containing group, groups having high hydrophobicity such as perfluoroalkyl group, perfluoroalkenyl group (hexafluoropropylene trimer group etc.) and the like can be mentioned. The carbon number of the fluorine-containing group is preferably 2 or more, and more preferably 4 to 20. -CF (CF 3 ) C (= C (CF 3 ) 2 ) (CF (CF 3 ) 2 ) is preferable in that the fluorine-containing group is bulky and excellent in adsorption ability.
The hydrophilic group is a group relatively hydrophilic to a fluorine-containing group, and may be a general hydrophilic group, or a group usually regarded as a hydrophobic group, also containing fluorine. It may be a group relatively hydrophilic to the group. For example, a polyoxypropylene group is relatively hydrophobic to a hydrophilic group, a polyoxyethylene group, and is usually a hydrophobic group, but is relatively hydrophobic to a fluorine-containing group. It is a hydrophilic group in the present invention because
As a hydrophilic group, ethylene oxide (polyoxyethylene group), propylene oxide (polyoxypropylene group), butylene oxide (polyoxybutylene group), polyoxy tetramethylene group, amino group, ketone group, carboxyl group, sulfone group Can be mentioned. The hydrophilic group is preferably a polyoxyalkylene group consisting of an oxyalkylene group having 2 to 4 carbon atoms, and a polyoxyethylene group is particularly preferable.
The surfactant may also be a copolymer of a monomer having a fluorine-containing group and a monomer having a hydrophilic group. As such surfactant, a copolymer of a monomer having a fluorine-containing group and a monomer having a polyoxyalkylene group is particularly preferable.
 界面活性剤の質量平均分子量は、1000~150000が好ましく、5000~100000がより好ましく、5000~30000が特に好ましい。この場合、界面活性剤が有機溶媒よりもパウダーの表面に対して吸着しやすくなり、分散液が分散性及び分散安定性が向上しやすい。また、分散液は、異種の樹脂材料、そのワニスとの混合性、塗工性に優れる。界面活性剤の質量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により測定される値である。 The weight average molecular weight of the surfactant is preferably 1000 to 150000, more preferably 5000 to 100000, and particularly preferably 5000 to 30000. In this case, the surfactant is more easily adsorbed to the surface of the powder than the organic solvent, and the dispersibility and the dispersion stability of the dispersion are likely to be improved. In addition, the dispersion liquid is excellent in the mixing property with different resin materials, the varnish thereof, and the coatability. The mass average molecular weight of the surfactant is a value measured by gel permeation chromatography (GPC).
 本発明における界面活性剤は、ノニオン性界面活性剤が好ましい。
 界面活性剤は、有機溶媒の種類によって、適宜最適な化合物が選択され、界面活性剤は1種を単独で用いても、2種以上を併用してもよい。後者の場合、少なくとも1種のフッ素含有基と親水性基を有する界面活性剤が選択すればよく、他方の界面活性剤としてフッ素含有基を有さない界面活性剤を選択してもよい。
The surfactant in the present invention is preferably a nonionic surfactant.
As the surfactant, an optimum compound is appropriately selected depending on the type of organic solvent, and one surfactant may be used alone, or two or more surfactants may be used in combination. In the latter case, a surfactant having at least one fluorine-containing group and a hydrophilic group may be selected, and a surfactant having no fluorine-containing group may be selected as the other surfactant.
 界面活性剤の具体例としては、ペルフルオロアルキル基含有のフタージェントMシリーズ、フタージェントF209、フタージェント222F、フタージェント208G、フタージェント218GL、フタージェント710FL、フタージェント710FM、フタージェント710FS、フタージェント730FL、フタージェント730LM(ネオス社製)、メガファックF-553、メガファックF-555、メガファックF-556、メガファックF-557、メガファックF-559、メガファックF-562、メガファックF-565等のメガファックシリーズ(DIC社製)、ユニダインDS-403N等のユニダインシリーズ(ダイキン工業社製)等が挙げられる。なかでも、フッ素含有基が分岐構造を示し立体的な嵩高さを有する界面活性剤である、フタージェント710FL、フタージェント710FM及びフタージェント710FSが好ましい。 Specific examples of the surfactant include perfluoroalkyl group-containing Ftergent M series, Ftergent F 209, Ftergent 222F, Ftergent 208G, Ftergent 218GL, Ftergent 710FL, Ftergent 710FM, Ftergent 710FS, Ftergent 730FL , Futuregent 730 LM (made by Neos), Megafuck F-553, Megafuck F-555, Megafuck F-556, Megafuck F-557, Megafuck F-559, Megafuck F-562, Megafuck F- Examples thereof include Megafuck Series (manufactured by DIC Corporation) such as 565, and Unidyne Series (manufactured by Daikin Industries, Ltd.) such as Unidyne DS-403N. Among them, surfactant 710FL, surfactant 710FM, and surfactant 710FS, which are surfactants having a branched structure and a steric bulk, are preferable.
 本発明における界面活性剤の好適な態様としては、主鎖がエチレン性不飽和モノマーに由来する炭素鎖からなり、側鎖に含フッ素炭化水素基と親水性基とを有するコポリマーが挙げられる。前記含フッ素炭化水素基は、複数(2又は3)の1価含フッ素炭化水素基が結合した3級炭素原子を有する基であるのが好ましい。
 かかる界面活性剤の具体例としては、下式(1)に表される化合物に由来する単位(1)と下式(2)に表される化合物に由来する単位(2)とを含むコポリマー(ただし、Fポリマーを除く。)が挙げられる。
  CH=CRC(O)O-X-OC(-Y)(-Z  (1)
  CH=CRC(O)O-X-Q-OH  (2)
 R及びRは、それぞれ独立に、水素原子又はメチル基を示す。
 X及びXは、それぞれ独立に、ヘテロ原子団を含んでいてもよい炭素数1~6のアルキレン基を示し、-(CH-、-(CH-、-(CH-、-(CHNHC(O)-、-(CHNHC(O)-又は-CHCH(CH)NHC(O)-であることが好ましい。
 Yは、水素原子又はフッ素原子を示す。
 Zは、ヘテロ原子を含んでいてもよい、炭素数1~10のフルオロアルキル基又は炭素数2~10のフルオロアルケニル基を示し、トリフルオロメチル基、炭素数2~10のペルフルオロアルケニル基又はエーテル性酸素原子を含む炭素数4~10のフルオロアルキル基であることが好ましい。2個のZは、同一であってもよく、異なっていてもよい。
 Qは、炭素数4~60のポリオキシアルキレン基を示し、炭素数4~30のポリオキシエチレン基又は炭素数6~50のポリオキシプロピレン基であることが好ましい。
As a suitable aspect of surfactant in this invention, the main chain consists of a carbon chain derived from an ethylenically unsaturated monomer, and the copolymer which has a fluorine-containing hydrocarbon group and a hydrophilic group in a side chain is mentioned. The fluorine-containing hydrocarbon group is preferably a group having a tertiary carbon atom to which a plurality of (2 or 3) monovalent fluorine-containing hydrocarbon groups are bonded.
Specific examples of such surfactant include a copolymer (1) derived from a compound represented by the following formula (1) and a unit (2) derived from a compound represented by the following formula (2) However, F polymer is excluded.
CH 2 = CR 1 C (O) O-X 1 -OC (-Y 1 ) (-Z 1 ) 2 (1)
CH 2 = CR 2 C (O ) O-X 2 -Q 2 -OH (2)
R 1 and R 2 each independently represent a hydrogen atom or a methyl group.
X 1 and X 2 each independently represent an alkylene group having 1 to 6 carbon atoms which may contain a hetero atom group, and-(CH 2 ) 2 -,-(CH 2 ) 3 -,-(CH 2 ) 2 ) 4 -,-(CH 2 ) 2 NHC (O)-,-(CH 2 ) 3 NHC (O)-or -CH 2 CH (CH 3 ) NHC (O)-is preferable.
Y 1 represents a hydrogen atom or a fluorine atom.
Z 1 represents a fluoroalkyl group having 1 to 10 carbon atoms or a fluoroalkenyl group having 2 to 10 carbon atoms which may contain a hetero atom, and a trifluoromethyl group, a perfluoroalkenyl group having 2 to 10 carbon atoms or It is preferable that it is a C 4-10 fluoroalkyl group containing an etheric oxygen atom. The two Z 1 may be identical or different.
Q 2 represents a polyoxyalkylene group having 4 to 60 carbon atoms, and is preferably a polyoxyethylene group having 4 to 30 carbon atoms or a polyoxypropylene group having 6 to 50 carbon atoms.
 単位(1)は、コポリマーの全単位に対して、20~60モル%以下含まれるのが好ましく、20~40モル%含まれるのが好ましい。
 単位(2)は、コポリマーの全単位に対して、40~80モル%含まれるのが好ましく、60~80モル%含まれるのが特に好ましい。
 コポリマーにおける単位(1)の含有量に対する単位(2)の含有量の比率は、1~5が好ましく、1~2が特に好ましい。
 コポリマーは、単位(1)と単位(2)のみからなっていてもよく、単位(1)と単位(2)以外の単位をさらに含んでいてもよい。
 コポリマーのフッ素含有量は、10~45質量%が好ましく、15~40質量%が特に好ましい。
 コポリマーは、ノニオン性であるのが好ましい。
 コポリマーの重量平均分子量は、2000~80000が好ましく、6000~20000が特に好ましい。
The unit (1) is preferably contained in an amount of 20 to 60% by mole or less, and more preferably 20 to 40% by mole, relative to the total units of the copolymer.
The unit (2) is preferably contained in an amount of 40 to 80 mol%, particularly preferably 60 to 80 mol%, based on all units of the copolymer.
The ratio of the content of the unit (2) to the content of the unit (1) in the copolymer is preferably 1 to 5, and particularly preferably 1 to 2.
The copolymer may be composed only of the unit (1) and the unit (2), and may further contain units other than the unit (1) and the unit (2).
The fluorine content of the copolymer is preferably 10 to 45% by weight, particularly preferably 15 to 40% by weight.
The copolymer is preferably nonionic.
The weight average molecular weight of the copolymer is preferably 2,000 to 80,000, and particularly preferably 6,000 to 20,000.
 化合物(1)の具体例としては、CH=CHCOO(CHOCF(CF)(C(CF(CF)(=C(CF)、CH=CHCOO(CHOC(CF)(=C(CF(CF)(CF(CF)、CH=C(CH)COO(CHNHCOOCH(CHOCHCH(CFF)、CH=C(CH)COO(CHNHCOOCH(CHOCHCH(CFF)、CH=C(CH)COO(CHNHCOOCH(CHOCH(CFF)、CH=C(CH)COO(CHNHCOOCH(CHOCH(CFF)、CH=C(CH)COO(CHNHCOOCH(CHOCH(CFF)、CH=C(CH)COO(CHNHCOOCH(CHOCH(CFF)が挙げられる。 Specific examples of the compound (1) is, CH 2 = CHCOO (CH 2 ) 4 OCF (CF 3) (C (CF (CF 3) 2) (= C (CF 3) 2), CH 2 = CHCOO (CH 2) 4 OC (CF 3) (= C (CF (CF 3) 2) (CF (CF 3) 2), CH 2 = C (CH 3) COO (CH 2) 2 NHCOOCH (CH 2 OCH 2 CH 2 (CF 2 ) 6 F) 2 , CH 2 CC (CH 3 ) COO (CH 2 ) 2 NHCOOCH (CH 2 OCH 2 CH 2 (CF 2 ) 4 F) 2 , CH 2 CC (CH 3 ) COO ( CH 2 ) 2 NHCOOCH (CH 2 OCH 2 (CF 2 ) 6 F) 2 , CH 2 CC (CH 3 ) COO (CH 2 ) 2 NHCOOCH (CH 2 OCH 2 (CF 2 ) 4 F) 2 , CH 2 = C (C 3) COO (CH 2) 3 NHCOOCH (CH 2 OCH 2 (CF 2) 6 F) 2, CH 2 = C (CH 3) COO (CH 2) 3 NHCOOCH (CH 2 OCH 2 (CF 2) 4 F) 2 is mentioned.
 化合物(2)の具体例としては、CH=CHCOO(CHCHO)OH、CH=CHCOO(CHCHO)10OH、CH=CHCOO(CHCHO)12OH、CH=C(CH)COO(CHCH(CH)O)OH、CH=C(CH)COO(CHCH(CH)O)12OH、CH=C(CH)COO(CHCH(CH)O)16OHが挙げられる。 Specific examples of the compound (2) is, CH 2 = CHCOO (CH 2 CH 2 O) 8 OH, CH 2 = CHCOO (CH 2 CH 2 O) 10 OH, CH 2 = CHCOO (CH 2 CH 2 O) 12 OH, CH 2 = C (CH 3) COO (CH 2 CH (CH 3) O) 8 OH, CH 2 = C (CH 3) COO (CH 2 CH (CH 3) O) 12 OH, CH 2 = C (CH 3) COO (CH 2 CH (CH 3) O) 16 OH and the like.
 本発明の分散液におけるパウダーの含有量は、有機溶媒とパウダーと界面活性剤との合計に対し、35~70質量%が好ましく、40~68質量%が好ましく、45~65質量%がより好ましく、47~60質量%がさらに好ましい。パウダーの含有量が35質量%以上であると、分散液が分散安定性にさらに優れ、分散液のチキソ比を所定の範囲に制御しやすくなる。パウダーの含有量が70質量%以下であると、分散液の粘度を所定の範囲に制御しやすくなる。 The content of the powder in the dispersion of the present invention is preferably 35 to 70% by mass, preferably 40 to 68% by mass, and more preferably 45 to 65% by mass, based on the total of the organic solvent, the powder and the surfactant. 47 to 60% by mass is more preferable. A dispersion liquid is further excellent in dispersion stability as content of powder is 35 mass% or more, and it becomes easy to control thixo ratio of a dispersion liquid in a predetermined | prescribed range. It becomes easy to control the viscosity of a dispersion liquid to a predetermined | prescribed range as content of powder is 70 mass% or less.
 本発明の分散液における有機溶媒の含有量は、有機溶媒とパウダーと界面活性剤との合計に対し、25~60質量%が好ましく、27~55質量%がより好ましく、30~50質量%が特に好ましい。有機溶媒の含有量が前記範囲内であると、分散液が塗工性にさらに優れる。有機溶媒の含有量が前記範囲の上限値以下であると、分散液を用いて製造されるフィルム等の外観不良が起こりにくい。なお、かかる外観不良は有機溶媒を除去する操作に由来する場合が多い。 The content of the organic solvent in the dispersion liquid of the present invention is preferably 25 to 60% by mass, more preferably 27 to 55% by mass, and more preferably 30 to 50% by mass, based on the total of the organic solvent, the powder and the surfactant. Particularly preferred. A dispersion liquid is further excellent in coating property as content of an organic solvent is in the said range. When the content of the organic solvent is equal to or less than the upper limit value of the above range, appearance defects of a film or the like produced using the dispersion hardly occur. Such poor appearance often results from the operation of removing the organic solvent.
 本発明の分散液における界面活性剤の含有量は、有機溶媒とパウダーと界面活性剤との合計に対し、3.5~30質量%が好ましく、4~15質量%がより好ましく、4.5~10質量%が特に好ましい。界面活性剤の含有量が前記範囲の下限値以上であると、分散液が分散性及び分散安定性にさらに優れる。界面活性剤の含有量が前記範囲の上限値以下であると、パウダーの特性が界面活性剤の特性に影響されにくくなり、パウダーを含む樹脂層の誘電率、誘電正接を低くしやすくなる。 The content of the surfactant in the dispersion of the present invention is preferably 3.5 to 30% by mass, more preferably 4 to 15% by mass, based on the total of the organic solvent, the powder and the surfactant. -10% by weight is particularly preferred. A dispersion liquid is further excellent in a dispersibility and dispersion stability as content of surfactant is more than the lower limit of the said range. When the content of the surfactant is less than or equal to the upper limit value of the above range, the properties of the powder are less affected by the properties of the surfactant, and the dielectric constant and the dielectric loss tangent of the resin layer containing the powder can be easily lowered.
 本発明の分散液におけるパウダーの含有量に対する界面活性剤の含有量の比(界面活性剤/パウダー)は、1/99~30/70が好ましく、3/97~20/80がより好ましく、5/95~17/83が特に好ましい。パウダーの含有量に対する界面活性剤の含有量の比が前記範囲の下限値以上であると、分散液が分散性及び分散安定性にさらに優れる。パウダーの含有量に対する界面活性剤の含有量の比が前記範囲の上限値以下であると、パウダーの特性が界面活性剤の特性に影響されにくくなり、パウダーを含む樹脂層の誘電率、誘電正接を低くしやすくなる。 The ratio of the content of surfactant to the content of powder in the dispersion of the present invention (surfactant / powder) is preferably 1/99 to 30/70, more preferably 3/97 to 20/80, 5 / 95 to 17/83 is particularly preferred. A dispersion liquid is further excellent in dispersibility and dispersion stability as ratio of content of surfactant to content of powder is more than a lower limit of the above-mentioned range. When the ratio of the content of the surfactant to the content of the powder is below the upper limit value of the above range, the characteristics of the powder are less likely to be affected by the characteristics of the surfactant, and the dielectric constant and dielectric tangent of the resin layer containing the powder Makes it easy to lower
 本発明の分散液は、任意成分としてチキソ性付与剤を含んでいてもよい。チキソ性付与剤としては、例えば、クレイ、ベントナイト、ヘクトライト等の粘土鉱物、ポリエステル系エマルジョン樹脂、アクリル系エマルジョン樹脂、ポリウレタン系エマルジョン樹脂、ブロックドイソシアネート等のエマルジョン、メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロースのセルロース誘導体、キサンタンガム、グアーガム等の多糖類、金属石鹸、水添ヒマシ油、ポリアマイドワックス、ベンジリデンソルビトール、アマイドワックス、アマニ重合油、変性ウレア、変性ウレタン、変性ポリエーテル、変性ポリエステル等が挙げられる。 The dispersion of the present invention may contain a thixotropic agent as an optional component. As the thixotropic agent, for example, clay minerals such as clay, bentonite and hectorite, polyester emulsion resin, acrylic emulsion resin, polyurethane emulsion resin, emulsion such as blocked isocyanate, methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, Hydroxypropyl cellulose, cellulose derivatives of hydroxypropyl methylcellulose, polysaccharides such as xanthan gum and guar gum, metal soap, hydrogenated castor oil, polyamide wax, benzylidene sorbitol, amide wax, linseed oil, modified urea, modified urethane, modified polyether And modified polyesters.
 本発明の分散液は、無機質フィラーを含んでいてもよい。無機質フィラーとしては、国際公開第2016/017801号の[0089]に記載のフィラーが挙げられる。分散液が無機質フィラーを含むと、パウダーを含む樹脂層の誘電率、誘電正接を低くし易い。
 本発明の分散液は、消泡剤を含んでいてもよい。消泡剤としては、シリコーン系消泡剤及びフルオロシリコーン系消泡剤が挙げられる。消泡剤のタイプとしては、エマルジョン型、自己乳化型、オイル型、オイルコンパウンド型、溶液型、粉末型、固形型等が挙げられる。
The dispersion of the present invention may contain an inorganic filler. As the inorganic filler, the filler described in [0089] of WO 2016/017801 can be mentioned. When the dispersion contains an inorganic filler, it is easy to lower the dielectric constant and the dielectric loss tangent of the resin layer containing powder.
The dispersion of the present invention may contain an antifoaming agent. As an antifoamer, a silicone type antifoamer and a fluoro silicone type antifoamer are mentioned. As a type of antifoaming agent, an emulsion type, a self emulsification type, an oil type, an oil compound type, a solution type, a powder type, a solid type, etc. are mentioned.
 本発明の分散液がチキソ性付与剤を含む場合、チキソ性付与剤の含有量は、有機溶媒とパウダーと界面活性剤との合計に対し、0.1~20質量%が好ましく、3~10質量%が特に好ましい。チキソ性付与剤の含有量が前記範囲内にあると、分散液のチキソ比及び粘度を所定の範囲に制御しやすくなる。
 本発明の分散液が無機質フィラーを含む場合、無機質フィラーの含有量は、有機溶媒とパウダーと界面活性剤との合計に対し、1~300質量%が好ましく、30~60質量%が特に好ましい。この場合、分散液から得られるフィルムの線膨張係数が低くなり、フィルムの熱寸法性と成形安定性に優れる。
 本発明の分散液が消泡剤を含む場合、消泡剤の含有量はパウダーの含有量(濃度)等により変動するが、消泡剤の含有量は分散液の全量に対して、有効成分として1質量%以下が好ましい。
When the dispersion liquid of the present invention contains a thixotropic agent, the content of the thixotropic agent is preferably 0.1 to 20% by mass with respect to the total of the organic solvent, the powder and the surfactant, and 3 to 10 % By weight is particularly preferred. When the content of the thixotropic agent is within the above range, the thixo ratio and viscosity of the dispersion can be easily controlled within a predetermined range.
When the dispersion of the present invention contains an inorganic filler, the content of the inorganic filler is preferably 1 to 300% by mass, particularly preferably 30 to 60% by mass, based on the total of the organic solvent, the powder and the surfactant. In this case, the linear expansion coefficient of the film obtained from the dispersion is low, and the thermal dimensionality and the molding stability of the film are excellent.
When the dispersion of the present invention contains an antifoaming agent, the content of the antifoaming agent varies depending on the content (concentration) of the powder, etc., but the content of the antifoaming agent is an active ingredient relative to the total amount of the dispersion. As 1 mass% or less is preferable.
 本発明の分散液の製造方法は、特に限定されず、有機溶媒とパウダーと界面活性剤とを混合して撹拌し、分散させる方法が挙げられる。混合撹拌の手段としては、ホモミキサー、高速攪拌機、超音波分散機、ホモジナイザー、湿式ボールミル、ビーズミル、湿式ジェットミル等の分散機の使用が好ましい。 The method for producing the dispersion liquid of the present invention is not particularly limited, and examples thereof include a method in which an organic solvent, a powder and a surfactant are mixed, stirred and dispersed. As means for mixing and stirring, it is preferable to use a dispersing machine such as a homomixer, a high speed stirrer, an ultrasonic dispersing machine, a homogenizer, a wet ball mill, a bead mill, a wet jet mill and the like.
 本発明の分散液は、上述したとおり、分散性、異種の樹脂材料、そのワニスとの混合性に優れている、本発明の分散液は、さらに、異種の樹脂材料(Fポリマー、本発明における界面活性剤、上述した本発明の分散液に含まれる成分に該当しない成分。)、又は、そのワニスと混合するのが好ましい。
 以下、本発明の分散液と、異種の樹脂材料であって、後述のワニス溶媒に溶解する他の樹脂(以下、「他の樹脂」とも記す。)と、ワニス溶媒とを含む溶液を、「本発明の塗工液」とも記す。本発明の塗工液は、本発明の分散液と、ワニス溶媒及び他の樹脂を含むワニスとを混合して得られる。また、本発明の分散液と、本発明の塗工液とをまとめて、本発明のパウダー液とも記す。
The dispersion of the present invention is, as described above, excellent in dispersibility, different kinds of resin materials, and the mixing property with the varnish thereof. The dispersion of the present invention is further different in different kinds of resin materials (F polymer, in the present invention It is preferable to mix with a surfactant, a component not corresponding to the component contained in the above-mentioned dispersion liquid of the present invention), or the varnish.
Hereinafter, a solution containing the dispersion liquid of the present invention, another resin material and another resin (hereinafter also referred to as “other resin”) which is soluble in the below-mentioned varnish solvent, and the varnish solvent It is also described as "coating liquid of the present invention". The coating liquid of the present invention is obtained by mixing the dispersion of the present invention and a varnish containing a varnish solvent and another resin. In addition, the dispersion liquid of the present invention and the coating liquid of the present invention are collectively referred to as a powder liquid of the present invention.
 他の樹脂は、本発明における有機溶媒に溶解する樹脂であってもよく、本発明における有機溶媒に溶解しない樹脂であってもよい。後者の樹脂は、本発明における有機溶媒以外の有機溶媒(以下、「ワニス溶媒」とも記す。)に溶解する樹脂が好ましい。
 本発明の塗工液の態様としては、本発明の分散液と、ワニス溶媒及び他の樹脂を含むワニスとを混合した態様が挙げられる。
 ワニス溶媒は、本発明の分散液における有機溶媒(以下、「第1の有機溶媒」とも記す)と同様の化合物が挙げられる。ワニス溶媒は、第1の有機溶媒と同じでも、異なってもよい。第1の有機溶媒とワニス溶媒とが異なる場合は、それぞれの有機溶媒が互いに相溶性であればよい。
The other resin may be a resin that dissolves in the organic solvent in the present invention, or may be a resin that does not dissolve in the organic solvent in the present invention. The latter resin is preferably a resin that dissolves in an organic solvent other than the organic solvent in the present invention (hereinafter also referred to as "varnish solvent").
As an aspect of the coating liquid of this invention, the aspect which mixed the dispersion liquid of this invention, and a varnish solvent and the varnish containing other resin is mentioned.
Examples of the varnish solvent include the same compounds as the organic solvent (hereinafter also referred to as "first organic solvent") in the dispersion liquid of the present invention. The varnish solvent may be the same as or different from the first organic solvent. When the first organic solvent and the varnish solvent are different, the respective organic solvents may be compatible with each other.
 本発明の分散液の粘度が50~3000mPa・sでありチキソ比が1.0~1.5であり、本発明における有機溶媒と異なるワニス溶媒を選択する場合、本発明における有機溶媒とワニス溶媒とからなる混合溶媒の表面張力が30dyn/cm超となるように、ワニス溶媒を選択することが好ましい。これにより塗工液においてパウダーが均一に分散しやすくなる。 When the viscosity of the dispersion of the present invention is 50 to 3000 mPa · s and the thixo ratio is 1.0 to 1.5, and a varnish solvent different from the organic solvent in the present invention is selected, the organic solvent and the varnish solvent in the present invention It is preferable to select the varnish solvent so that the surface tension of the mixed solvent consisting of and is more than 30 dyn / cm. This makes it easy to disperse the powder uniformly in the coating liquid.
 他の樹脂は、硬化性の樹脂でもよく、非硬化性の樹脂でもよい。他の樹脂は熱溶融性の樹脂でも、非溶融性の樹脂でもよい。
 硬化性の樹脂とは、それ自身が有する反応性基間の反応、硬化剤との反応により硬化する樹脂である。硬化性の樹脂としては、ポリマー、オリゴマー、低分子化合物等が挙げられる。硬化性の樹脂が有する反応性基としては、カルボニル基含有基、ヒドロキシ基、アミノ基、エポキシ基等が挙げられる。硬化性の樹脂としては熱硬化性樹脂が好ましい。
The other resin may be a curable resin or a non-curable resin. The other resin may be a heat melting resin or a non-melting resin.
The curable resin is a resin which is cured by the reaction between the reactive groups which it itself has and the reaction with the curing agent. As a curable resin, a polymer, an oligomer, a low molecular weight compound etc. are mentioned. As a reactive group which a curable resin has, a carbonyl group containing group, a hydroxyl group, an amino group, an epoxy group etc. are mentioned. A thermosetting resin is preferable as the curable resin.
 熱硬化性樹脂としては、エポキシ樹脂、熱硬化性ポリイミド、ポリイミド前駆体であるポリアミック酸、アクリル樹脂、フェノール樹脂、ポリエステル樹脂、ポリオレフィン樹脂、変性ポリフェニレンエーテル樹脂、多官能シアン酸エステル樹脂、多官能マレイミド-シアン酸エステル樹脂、多官能性マレイミド樹脂、ビニルエステル樹脂、尿素樹脂、ジアリルフタレート樹脂、メラニン樹脂、グアナミン樹脂、メラミン-尿素共縮合樹脂が挙げられる。なかでも、プリント基板用途に有用な点から、熱硬化性樹脂としては、熱硬化性ポリイミド、ポリイミド前駆体、エポキシ樹脂、アクリル樹脂、ビスマレイミド樹脂及びポリフェニレンエーテル樹脂が好ましく、エポキシ樹脂及びポリフェニレンエーテル樹脂が特に好ましい。 As a thermosetting resin, epoxy resin, thermosetting polyimide, polyamic acid which is a polyimide precursor, acrylic resin, phenol resin, polyester resin, polyolefin resin, modified polyphenylene ether resin, polyfunctional cyanate ester resin, polyfunctional maleimide Cyanate ester resins, multifunctional maleimide resins, vinyl ester resins, urea resins, diallyl phthalate resins, melanin resins, guanamine resins, melamine-urea cocondensation resins. Among them, thermosetting polyimides, polyimide precursors, epoxy resins, acrylic resins, bismaleimide resins and polyphenylene ether resins are preferable as thermosetting resins from the viewpoint of being useful for printed board applications, and epoxy resins and polyphenylene ether resins Is particularly preferred.
 エポキシ樹脂の具体例としては、ナフタレン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族鎖状エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、アルキルフェノールノボラック型エポキシ樹脂、アラルキル型エポキシ樹脂、ビフェノール型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリスヒドロキシフェニルメタン型エポキシ化合物、フェノールとフェノール性水酸基を有する芳香族アルデヒドとの縮合物のエポキシ化物、ビスフェノールのジグリシジルエーテル化物、ナフタレンジオールのジグリシジルエーテル化物、フェノールのグリシジルエーテル化物、アルコールのジグリシジルエーテル化物、トリグリシジルイソシアヌレート等が挙げられる。 Specific examples of the epoxy resin include naphthalene type epoxy resin, cresol novolac type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, alicyclic epoxy resin, aliphatic chain epoxy resin, Cresol novolac epoxy resin, phenol novolac epoxy resin, alkylphenol novolac epoxy resin, aralkyl epoxy resin, biphenol epoxy resin, dicyclopentadiene epoxy resin, trishydroxyphenylmethane epoxy compound, phenol and phenolic hydroxyl group Epoxides of condensates with aromatic aldehydes, diglycidyl ether of bisphenol, diglycidyl ether of naphthalenediol, phenol Glycidyl ethers, diglycidyl ethers of alcohols, triglycidyl isocyanurate.
 ビスマレイミド樹脂としては、特開平7-70315号公報に記載される、ビスフェノールA型シアン酸エステル樹脂とビスマレイミド化合物とを併用した樹脂組成物(BTレジン)、国際公開第2013/008667号に記載の発明、その背景技術に記載のものが挙げられる。
 ポリアミック酸は、通常、接着性基と反応しうる反応性基を有している。
 ポリアミック酸を形成するジアミン、多価カルボン酸二無水物としては、例えば、特許第5766125号公報の[0020]、特許第5766125号公報の[0019]、特開2012-145676号公報の[0055]、[0057]等に記載のものが挙げられる。なかでも、4,4’-ジアミノジフェニルエーテル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン等の芳香族ジアミンと、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物等の芳香族多価カルボン酸二無水物との組合せが好ましい。
As a bismaleimide resin, a resin composition (BT resin) in which a bisphenol A type cyanate ester resin and a bismaleimide compound are used in combination as described in JP-A-7-70315, described in International Publication WO2013 / 008667 Inventions and those described in the background art.
The polyamic acid usually has a reactive group capable of reacting with the adhesive group.
Examples of diamines and polyvalent carboxylic acid dianhydrides that form polyamic acids include [0020] of Japanese Patent No. 5766125, [0019] of Japanese Patent No. 5766125, and [0055] of Japanese Patent Laid-Open No. 2012-145676. , And the like. Among them, aromatic diamines such as 4,4'-diaminodiphenyl ether and 2,2-bis [4- (4-aminophenoxy) phenyl] propane, and pyromellitic dianhydride, 3,3 ', 4,4 Preferred is a combination with an aromatic polyvalent carboxylic acid dianhydride such as '-biphenyltetracarboxylic acid dianhydride, 3,3', 4,4'-benzophenonetetracarboxylic acid dianhydride.
 熱溶融性の樹脂としては、熱可塑性ポリイミド等の熱可塑性樹脂、硬化性の樹脂の熱溶融性の硬化物が挙げられる。
 熱可塑性樹脂としては、ポリエステル系樹脂(ポリエチレンテレフタレート等)、ポリオレフィン系樹脂(ポリエチレン等)、スチレン系樹脂(ポリスチレン等)、ポリカーボネート、熱可塑性ポリイミド(芳香族ポリイミド等)、ポリアリレート、ポリスルホン、ポリアリルスルホン(ポリエーテルスルホン等)、芳香族ポリアミド、芳香族ポリエーテルアミド、ポリフェニレンスルファイド、ポリアリルエーテルケトン、ポリアミドイミド、液晶性ポリエステル、ポリフェニレンエーテル等が挙げられ、熱可塑性ポリイミド、液晶性ポリエステル及びポリフェニレンエーテルが好ましい。
 熱溶融性の樹脂及び硬化性の樹脂の熱溶融性の硬化物の融点は280℃以上が好ましい。これにより、塗工液から製造されたフィルム等の樹脂層において、はんだリフローに相当する雰囲気に曝されたときの熱による膨れ(発泡)が抑制されやすくなる。
Examples of the heat melting resin include thermoplastic resins such as thermoplastic polyimide, and heat melting cured products of curing resins.
As a thermoplastic resin, polyester resin (polyethylene terephthalate etc.), polyolefin resin (polyethylene etc.), styrene resin (polystyrene etc.), polycarbonate, thermoplastic polyimide (aromatic polyimide etc.), polyarylate, polysulfone, polyallyl Sulfone (polyether sulfone etc.), aromatic polyamide, aromatic polyether amide, polyphenylene sulfide, polyallyl ether ketone, polyamide imide, liquid crystalline polyester, polyphenylene ether etc., thermoplastic polyimide, liquid crystalline polyester and polyphenylene Ether is preferred.
The melting point of the heat-meltable cured product of the heat-meltable resin and the curable resin is preferably 280 ° C. or more. Thereby, in a resin layer such as a film manufactured from a coating liquid, swelling (foaming) due to heat when exposed to an atmosphere corresponding to solder reflow is easily suppressed.
 本発明の塗工液は硬化剤を含んでもよい。硬化剤としては、熱硬化剤(メラミン樹脂、ウレタン樹脂等)、エポキシ硬化剤(ノボラック型フェノール樹脂、イソフタル酸ジヒドラジド、アジピン酸ジヒドラジド等)等が挙げられる。 The coating liquid of the present invention may contain a curing agent. As a curing agent, a thermosetting agent (melamine resin, urethane resin, etc.), an epoxy curing agent (novolak type phenol resin, isophthalic acid dihydrazide, etc.), etc. may be mentioned.
 本発明の塗工液におけるパウダーの含有量は、本発明における有機溶媒とパウダーと界面活性剤と他の樹脂とワニス溶媒の合計に対し、1~80質量%が好ましく、10~30質量%が特に好ましい。パウダーの含有量が前記範囲の下限値以上であると、塗工液を用いて得られる樹脂層が電気特性に優れる。パウダーの含有量が前記範囲の上限値以下であると、塗工液においてパウダーが均一に分散しやすく、また塗工液を用いて得られる樹脂層が機械的強度に優れる。 The content of the powder in the coating liquid of the present invention is preferably 1 to 80% by mass, and more preferably 10 to 30% by mass, based on the total of the organic solvent, powder, surfactant, other resin and varnish solvent in the present invention. Particularly preferred. The resin layer obtained using a coating liquid as content of powder is more than the lower limit of the said range is excellent in an electrical property. It is easy to disperse | distribute powder uniformly in a coating liquid as content of powder is below the upper limit of the said range, and the resin layer obtained using a coating liquid is excellent in mechanical strength.
 本発明の塗工液における有機溶媒の総量は、本発明における有機溶媒とパウダーと界面活性剤と他の樹脂とワニス溶媒の合計に対し、10~80質量%が好ましく、20~60質量%がより好ましく、30~50質量%が特に好ましい。有機溶媒の総量が前記範囲の下限値以上であると、塗工液の粘度が高くなりすぎずにバランスし、塗工性にさらに優れる。有機溶媒の総量が前記範囲の上限値以下であると、塗工液の粘度が低くなりすぎずにバランスし、塗工性がさらに優れ、塗工液を用いて得られる樹脂層の外観不良が起こりにくい。
 本発明の塗工液の製造方法は、特に限定されず、あらかじめワニス溶媒と他の樹脂とを混合して他の樹脂を含むワニスを調製し、前記ワニスと本発明の分散液とを混合して製造できる。
The total amount of the organic solvent in the coating liquid of the present invention is preferably 10 to 80% by mass, more preferably 20 to 60% by mass, based on the total of the organic solvent, powder, surfactant, other resin and varnish solvent in the present invention. More preferably, 30 to 50% by mass is particularly preferable. The viscosity of a coating liquid is balanced without becoming high too much that the total amount of an organic solvent is more than the lower limit of the said range, and it is further excellent in coating property. When the total amount of the organic solvent is not more than the upper limit value of the above range, the viscosity of the coating liquid is balanced without becoming too low, the coating property is further excellent, and the appearance defect of the resin layer obtained using the coating liquid It is hard to happen.
The method for producing the coating liquid of the present invention is not particularly limited, and a varnish solvent and another resin are mixed beforehand to prepare a varnish containing another resin, and the varnish and the dispersion liquid of the present invention are mixed. Can be manufactured.
 本発明のパウダー液は、例えば、後述のフィルム、繊維強化フィルム、プリプレグ、積層体の製造に使用できる。
 本発明のパウダー液は、平角導体の絶縁層の製造にも使用できる。例えば、ポリアミドイミド、ポリイミド、ポリエステルイミドのうちいずれかの樹脂を主成分とする絶縁層を製造する際に、前記樹脂を含む絶縁塗料に本発明のパウダー液を配合すれば、絶縁層の誘電率を低減できる。絶縁層の誘電率の低下は、絶縁塗料に本発明におけるパウダーを添加しても達成できるが、分散性の点から、絶縁塗料に本発明のパウダー液を使用するのが好ましい。絶縁層の具体例としては、特開2013-191356号公報に記載された絶縁皮膜が挙げられる。
The powder liquid of the present invention can be used, for example, in the production of films, fiber reinforced films, prepregs, and laminates described later.
The powder solution according to the invention can also be used for the production of insulating layers of flat conductors. For example, when producing an insulating layer containing any one of polyamide imide, polyimide, and polyester imide as a main component, dielectric constant of the insulating layer can be obtained by blending the powder liquid of the present invention with the insulating paint containing the resin. Can be reduced. The reduction of the dielectric constant of the insulating layer can be achieved by adding the powder of the present invention to the insulating paint, but from the viewpoint of dispersibility, it is preferable to use the powder liquid of the present invention for the insulating paint. As a specific example of the insulating layer, an insulating film described in JP-A-2013-191356 can be mentioned.
 本発明のパウダー液は、シームレスベルトの製造にも使用できる。例えば、ポリイミド系樹脂及び導電性フィラーを含む液と本発明のパウダー液とを配合した液状組成物を使用すれば、記録媒体(紙)の搬送性と清掃性とに優れるシームレスベルトが得られる。搬送性と清掃性に優れるシームレスベルトは、ポリイミド系樹脂及び導電性フィラーを含む液に本発明におけるパウダーを添加しても達成できるが、分散性の点から、前記液状組成物に本発明のパウダー液を使用するのが好ましい。シームレスベルトとしては、特開2011-240616号公報に記載されたものが挙げられる。 The powder liquid according to the invention can also be used for the production of seamless belts. For example, if a liquid composition containing a liquid containing a polyimide resin and a conductive filler and the powder liquid of the present invention is used, a seamless belt having excellent transportability and cleanability of a recording medium (paper) can be obtained. The seamless belt having excellent transportability and cleanability can be achieved by adding the powder of the present invention to a liquid containing a polyimide resin and a conductive filler, but from the viewpoint of dispersibility, the powder of the present invention is used as the powder of the present invention. It is preferred to use a solution. As a seamless belt, those described in JP-A-2011-240616 can be mentioned.
 本発明は、本発明のパウダー液を用いて製膜して得られる、有機溶媒を除去して得られる、フィルムの製造方法も提供する。製膜する方法は、担体表面上への塗布が好ましく、担体上の塗布によりパウダー液からなる膜が形成される。パウダー液の膜が形成された後、パウダー液の膜を加熱する等の方法で有機溶媒を揮発させると、有機溶媒が除去された固体状の膜、少なくとも液状媒体の一部が除去された非流動性の膜が形成される。なお、有機溶媒の除去を「乾燥」とも記す。
 乾燥では、本発明のパウダー液に含まれていた有機溶媒のうち、50質量%以上を除去することが好ましい。乾燥方法としては、国際公開第2018/16644号の[0091]~[0094]に記載された方法が挙げられる。
The present invention also provides a method for producing a film obtained by removing an organic solvent, which is obtained by forming a film using the powder liquid of the present invention. The film forming method is preferably coating on the surface of the carrier, and coating on the carrier forms a film consisting of a powder solution. After the film of the powder liquid is formed, the organic solvent is volatilized by heating the film of the powder liquid or the like, the solid film from which the organic solvent is removed, at least a portion of the liquid medium is removed. A fluid film is formed. Note that removal of the organic solvent is also referred to as "drying".
In the drying, it is preferable to remove 50% by mass or more of the organic solvent contained in the powder solution of the present invention. As the drying method, the methods described in [0091] to [0094] of WO 2018/16644 can be mentioned.
 担体上に設けられた膜を担体から分離すると、フィルムが得られる。担体として、非付着性の表面を有する担体を用いると、容易に膜を担体から分離できる。また、この場合、付着性を低減させる表面処理等をあらかじめ担体に施すことが好ましい。また、付着性の高い表面を有する担体の場合は、担体を溶解させる等の手段で担体を除去してもよい。例えば、金属製担体の場合は、エッチング等で担体を除去できる。 When the membrane provided on the carrier is separated from the carrier, a film is obtained. The membrane can be easily separated from the carrier by using the carrier having a non-adhesive surface as the carrier. Moreover, in this case, it is preferable to apply a surface treatment or the like to reduce adhesion in advance to the carrier. In addition, in the case of a carrier having a highly adhesive surface, the carrier may be removed by means such as dissolving the carrier. For example, in the case of a metal carrier, the carrier can be removed by etching or the like.
 後述の繊維強化フィルム及びプリプレグを除き、本発明のフィルムの厚さは、1~1000μmが好ましい。プリント基板用途の場合、フィルムの厚さは、1~100μmがより好ましく、1~15μmが特に好ましい。
 本発明のフィルムの比誘電率は、2.0~3.5が好ましく、2.0~3.0が特に好ましい。比誘電率が前記範囲にあれば、電気特性と融着性との双方に優れ、金属積層板等の積層体及びプリント基板として特に有用である。
The thickness of the film of the present invention is preferably 1 to 1000 μm, except for the fiber reinforced film and the prepreg described later. For printed circuit board applications, the thickness of the film is more preferably 1 to 100 μm, and particularly preferably 1 to 15 μm.
The relative dielectric constant of the film of the present invention is preferably 2.0 to 3.5, and particularly preferably 2.0 to 3.0. When the relative dielectric constant is in the above range, it is excellent in both the electrical properties and the fusion bondability, and is particularly useful as a laminate such as a metal laminate and a printed board.
 本発明のフィルムは、Fポリマーをフィルムの全量に対して80質量%以上含むことが好ましい。この場合、後述の繊維強化フィルム及びプリプレグを除き、本発明のフィルムの熱膨張変化比及び熱収縮変化比は、1.0~1.4が好ましく、1.0~1.3がより好ましい。熱膨張変化比又は熱収縮変化比が前記範囲内であると、積層体の反りが抑えられる。
 なお、熱膨張変化比及び熱収縮変化比は、フィルムの連続製造時の長さ方向(MD)、及びMDに直交する方向(TD)の熱膨張率又は熱収縮率を、熱機械分析装置(測定モード:引張モード、測定温度:30℃から100℃、測定荷重:19.6mN、昇温速度:5℃/分、測定雰囲気:窒素ガス)を用いて、30℃から100℃に温度推移する際の、それぞれの熱膨張率と熱収縮率から決定できる。具体的には、それぞれの熱膨張率と熱収縮率の内の最小値に対する、それぞれの熱膨張率と熱収縮率の内の最大値の比として求められる。
It is preferable that the film of this invention contains 80 mass% or more of F polymer with respect to the whole quantity of a film. In this case, the thermal expansion change ratio and the thermal contraction change ratio of the film of the present invention are preferably 1.0 to 1.4, and more preferably 1.0 to 1.3, except for the fiber reinforced film and the prepreg described later. The curvature of a laminated body is suppressed as thermal expansion change ratio or heat contraction change ratio is in the said range.
The thermal expansion change ratio and the thermal contraction change ratio are thermal mechanical analysis devices (thermal expansion coefficient or thermal contraction ratio in the longitudinal direction (MD) and continuous direction (TD) during continuous production of the film). Measurement mode: Temperature transition from 30 ° C to 100 ° C using tensile mode, measurement temperature: 30 ° C to 100 ° C, measurement load: 19.6mN, heating rate: 5 ° C / min, measurement atmosphere: nitrogen gas) It can be determined from the respective coefficient of thermal expansion and coefficient of thermal contraction. Specifically, it is determined as the ratio of the maximum value among the respective thermal expansion coefficient and the thermal contraction ratio to the respective minimum value among the thermal expansion coefficient and the thermal contraction ratio.
 本発明は、本発明のパウダー液を担体上に配置した強化繊維基材に含浸させて製膜する、すなわち乾燥した後に加熱することにより、繊維強化フィルムを提供できる。
 強化繊維基材の形態は、繊維強化フィルムの機械的特性の点から、シート状が好ましく、複数の強化繊維からなる強化繊維束を織成してなるクロス基材、複数の強化繊維が一方向に引き揃えられた基材、それらを積み重ねた基材が好ましい。
 強化繊維は、長さが10mm以上の連続した長繊維が好ましい。強化繊維は、途中で分断されていてもよい。
 強化繊維としては、無機繊維、金属繊維、有機繊維等が挙げられる。
 無機繊維としては、炭素繊維、黒鉛繊維、ガラス繊維、シリコンカーバイト繊維、シリコンナイトライド繊維、アルミナ繊維、炭化珪素繊維、ボロン繊維等が挙げられる。
 金属繊維としては、アルミニウム繊維、黄銅繊維、ステンレス繊維等が挙げられる。
 有機繊維としては、芳香族ポリアミド繊維、ポリアラミド繊維、ポリパラフェニレンベンズオキサゾール(PBO)繊維、ポリフェニレンスルフィド繊維、ポリエステル繊維、アクリル繊維、ナイロン繊維、ポリエチレン繊維等が挙げられる。
The present invention can provide a fiber-reinforced film by impregnating the powder liquid of the present invention on a reinforcing fiber base placed on a carrier to form a film, that is, drying and then heating.
The form of the reinforcing fiber base is preferably in the form of a sheet from the viewpoint of the mechanical properties of the fiber reinforcing film, and a cross base obtained by weaving a reinforcing fiber bundle consisting of a plurality of reinforcing fibers, a plurality of reinforcing fibers are drawn in one direction Aligned substrates, substrates on which they are stacked are preferred.
The reinforcing fiber is preferably a continuous long fiber having a length of 10 mm or more. The reinforcing fibers may be divided in the middle.
As the reinforcing fiber, inorganic fiber, metal fiber, organic fiber and the like can be mentioned.
Examples of inorganic fibers include carbon fibers, graphite fibers, glass fibers, silicon carbide fibers, silicon nitride fibers, alumina fibers, silicon carbide fibers, boron fibers and the like.
Examples of metal fibers include aluminum fibers, brass fibers, stainless steel fibers and the like.
Examples of organic fibers include aromatic polyamide fibers, polyaramid fibers, polyparaphenylene benzoxazole (PBO) fibers, polyphenylene sulfide fibers, polyester fibers, acrylic fibers, nylon fibers, polyethylene fibers and the like.
 本発明の繊維強化フィルムは、金属積層板及びプリント基板の製造にも使用できる。
 繊維強化フィルムの厚さは、1~3000μmが好ましい。プリント基板用途の場合、繊維強化フィルムの厚さは、3~2000μmがより好ましく、6~500μmが特に好ましい。
 繊維強化フィルムの比誘電率は、2.0~3.5が好ましく、2.0~3.0が特に好ましい。比誘電率が前記範囲にあると、プリント基板用途等の電気特性と融着性が両立しやすい。
The fiber reinforced film of the present invention can also be used for the production of metal laminates and printed boards.
The thickness of the fiber reinforced film is preferably 1 to 3000 μm. In the case of printed circuit board applications, the thickness of the fiber reinforced film is more preferably 3 to 2000 μm, particularly preferably 6 to 500 μm.
The relative dielectric constant of the fiber reinforced film is preferably 2.0 to 3.5, and particularly preferably 2.0 to 3.0. When the relative dielectric constant is in the above-mentioned range, it is easy to achieve both electrical properties such as printed circuit board application and fusion bonding.
 本発明は、本発明のパウダー液を担体上に配置した強化繊維基材に含浸させ、乾燥させればプリプレグも提供できる。プリプレグの製造は、乾燥後の加熱を行わないこと又は充分に加熱せずに行うこと以外は、繊維強化フィルムの製造と同様である。すなわち、プリプレグは、強化繊維と溶融されていない(又は充分溶融されていない)パウダーを含み、必要に応じて未硬化の硬化性の樹脂を含むフィルムとも言える。
 プリプレグの製造では、本発明の塗工液を強化繊維基材に含浸させることが好ましい。この場合の塗工液は、未硬化の硬化性の樹脂を含むことが好ましい。
The present invention can also provide a prepreg if the powder liquid of the present invention is impregnated into a reinforcing fiber base disposed on a carrier and dried. The production of the prepreg is the same as the production of the fiber reinforced film except that heating after drying is not performed or is performed without sufficient heating. That is, the prepreg may be said to be a film containing reinforcing fibers and powder not melted (or not sufficiently melted), and optionally containing an uncured curable resin.
In the production of a prepreg, it is preferable to impregnate the coating fluid of the present invention into a reinforcing fiber substrate. The coating liquid in this case preferably contains an uncured curable resin.
 プリプレグの製造における乾燥では、本発明の塗工液に含まれる有機溶媒の総量のうち、70質量%以上を除去することが好ましい。
 プリプレグは成形材料として使用でき、金属積層板及びプリント基板の製造に使用できる。また、本発明のプレプリグは、岸壁工事において耐久性と軽量性が必要とされる矢板の材料、航空機、自動車、船舶、風車、スポーツ用具等の様々な用途に向けた部材を製造する材料としても使用できる。
 プリプレグの比誘電率は2.0~4.0が好ましく、2.0~3.5が特に好ましい。比誘電率が前記範囲にあると、プリント基板用途等の電気特性と融着性が両立しやすい。
In the drying in the production of the prepreg, it is preferable to remove 70% by mass or more of the total amount of the organic solvent contained in the coating liquid of the present invention.
Prepregs can be used as molding materials and can be used in the manufacture of metal laminates and printed circuit boards. In addition, the prepreg of the present invention is also used as a material for manufacturing various materials such as materials of sheet piles, which are required to be durable and lightweight in quay work, aircraft, automobiles, ships, windmills, sports equipment, etc. It can be used.
The specific dielectric constant of the prepreg is preferably 2.0 to 4.0, and particularly preferably 2.0 to 3.5. When the relative dielectric constant is in the above-mentioned range, it is easy to achieve both electrical properties such as printed circuit board application and fusion bonding.
 本発明の積層体の製造方法においては、本発明のパウダー液を用いて基材上で製膜し、有機溶媒を除去して前記基材にFポリマーを含む樹脂層を設ける、前記樹脂層を基材の表面に有する積層体の製造方法も提供できる。言い換えれば、本発明の積層体の製造方法は、上述したフィルムの製造方法において、担体とフィルムを分離することなく、フィルムと担体とを有する積層体を得る方法に相当する。つまり、基材が担体に相当し、樹脂層がフィルムに相当し、表面に樹脂層を有する基材が積層体に相当する。樹脂層は、繊維強化フィルムでもよく、プリプレグでもよい。 In the method for producing a laminate of the present invention, the resin layer is formed on a substrate using the powder liquid of the present invention, the organic solvent is removed, and a resin layer containing F polymer is provided on the substrate. The manufacturing method of the layered product which it has on the surface of a substrate can also be provided. In other words, the method for producing a laminate of the present invention corresponds to a method for obtaining a laminate having a film and a carrier without separating the carrier and the film in the method for producing a film described above. That is, the substrate corresponds to the carrier, the resin layer corresponds to the film, and the substrate having the resin layer on the surface corresponds to the laminate. The resin layer may be a fiber reinforced film or a prepreg.
 基材としては、特に限定されず、金属フィルム、耐熱性樹脂フィルム、金属蒸着耐熱性樹脂フィルム等が挙げられ、金属フィルム(金属箔)が好ましい。
 金属フィルム(金属箔)を構成する金属としては、銅、その合金、ステンレス鋼、その合金、チタン、その合金等が挙げられる。金属フィルム(金属箔)としては、圧延銅箔、電解銅箔といった銅フィルム(銅箔)が好ましい。金属フィルム(金属箔)の表面には、防錆層(例えばクロメート等の酸化物皮膜)や耐熱層を設けてもよい。また、樹脂層との密着性を向上させるために、金属フィルム(金属箔)の表面をシランカップリング剤処理してもよい。金属フィルム(金属箔)の厚さは、特に限定されない。
 金属蒸着耐熱性樹脂フィルムとしては、下記耐熱性樹脂フィルムの片面又は両面に、真空蒸着法、スパッタリング法、イオンプレーティング法等の蒸着法で金属を蒸着したフィルムが挙げられる。
It does not specifically limit as a base material, A metal film, a heat resistant resin film, a metal vapor deposition heat resistant resin film etc. are mentioned, A metal film (metal foil) is preferable.
As a metal which comprises a metal film (metal foil), copper, its alloy, stainless steel, its alloy, titanium, its alloy etc. are mentioned. As a metal film (metal foil), copper films (copper foil), such as a rolled copper foil and an electrolytic copper foil, are preferable. A rustproof layer (for example, an oxide film such as chromate) or a heat resistant layer may be provided on the surface of the metal film (metal foil). In addition, in order to improve the adhesion to the resin layer, the surface of the metal film (metal foil) may be treated with a silane coupling agent. The thickness of the metal film (metal foil) is not particularly limited.
As a metal vapor deposition heat resistant resin film, the film which vapor-deposited metal by vapor deposition methods, such as a vacuum vapor deposition method, sputtering method, the ion plating method, is mentioned to single side | surface or both surfaces of the following heat resistant resin film.
 耐熱性樹脂フィルムは耐熱性樹脂の1種以上を含むフィルムである。ただし、耐熱性樹脂フィルムは、Fポリマーを含まない。耐熱性樹脂フィルムは、単層フィルムであってもよく、多層フィルムでもよい。なお、耐熱性樹脂とは、融点が280℃以上の高分子化合物、又はJIS C 4003:2010(IEC 60085:2007)で規定される最高連続使用温度が121℃以上の高分子化合物を意味する。耐熱性樹脂としては、例えば、ポリイミド(芳香族ポリイミド等。)、ポリアリレート、ポリスルホン、ポリアリルスルホン(ポリエーテルスルホン等。)、芳香族ポリアミド、芳香族ポリエーテルアミド、ポリフェニレンスルファイド、ポリアリルエーテルケトン、ポリアミドイミド、液晶ポリエステル等が挙げられる。
 耐熱性樹脂フィルムとしては、ポリイミドフィルム及び液晶ポリエステルフィルムが好ましい。ポリイミドフィルムは、必要に応じて、本発明の効果を損なわない範囲で、添加剤を含んでもよい。耐熱性樹脂フィルムには、樹脂層を設ける面にコロナ放電処理、プラズマ処理等の表面処理を施してもよい。耐熱性樹脂フィルムとしては、電気特性に優れる点から液晶ポリエステルフィルムがより好ましい。
The heat resistant resin film is a film containing one or more kinds of heat resistant resins. However, the heat resistant resin film does not contain F polymer. The heat resistant resin film may be a single layer film or a multilayer film. The heat resistant resin means a polymer compound having a melting point of 280 ° C. or more, or a polymer compound having a maximum continuous use temperature of 121 ° C. or more as defined in JIS C 4003: 2010 (IEC 60085: 2007). As the heat resistant resin, for example, polyimide (aromatic polyimide etc.), polyarylate, polysulfone, polyallyl sulfone (polyether sulfone etc.), aromatic polyamide, aromatic polyether amide, polyphenylene sulfide, polyallyl ether Ketone, polyamide imide, liquid crystal polyester and the like can be mentioned.
As a heat resistant resin film, a polyimide film and a liquid-crystal polyester film are preferable. The polyimide film may contain an additive, as needed, insofar as the effects of the present invention are not impaired. The heat resistant resin film may be subjected to surface treatment such as corona discharge treatment or plasma treatment on the surface on which the resin layer is provided. As a heat resistant resin film, a liquid crystalline polyester film is more preferable from the point which is excellent in an electrical property.
 本発明の積層体の製造方法では、基材の厚さ方向の片面のみに樹脂層を設けてもよく、両面に設けてもよい。積層体の反りを抑制しやすく、電気的信頼性に優れる金属積層板を得やすい点では、基材の両面に樹脂層を設けることが好ましい。この場合、基材の一方の面に対して、本発明のパウダー液を塗布し乾燥した後に、他方の面に対して、本発明のパウダー液を塗布し乾燥するが好ましい。 In the method for producing a laminate of the present invention, the resin layer may be provided on only one side in the thickness direction of the substrate, or may be provided on both sides. It is preferable to provide a resin layer on both surfaces of a base material in that it is easy to suppress the warp of the laminate and to obtain a metal laminate excellent in electrical reliability. In this case, after applying and drying the powder solution of the present invention on one side of the substrate, it is preferable to apply and dry the powder solution of the present invention on the other side.
 本発明の塗工液は、粘度とチキソ比が所定の範囲にあるため、表面平滑性等の性状に優れた、任意の膜厚、特に厚膜の樹脂層(特に、1μm以上の膜厚)を形成するに適している。
 本発明の積層体の樹脂層の厚さは、樹脂層に含まれるフィラーが10体積%未満の場合、0.5~30μmが好ましい。プリント基板用途の場合、樹脂層の厚さは、0.5~25μmがより好ましく、1~20μmがさらに好ましく、3~15μmが特に好ましい。好ましい範囲において、積層体の反りが抑制される。樹脂層に含まれるフィラーが10体積%以上の場合、0.5~3000μmが好ましい。プリント基板用途の場合、樹脂層の厚さは、1~1500μmがより好ましく、2~100μmが特に好ましい。
 基材の両面に樹脂層を有する積層体の場合、積層体の反りの抑制の点では、それぞれの樹脂層の組成及び厚さが同じなるようにすることが好ましい。
The coating liquid of the present invention has an arbitrary thickness such as a thick film resin layer (particularly, a film thickness of 1 μm or more) which is excellent in properties such as surface smoothness because the viscosity and the thixo ratio are within a predetermined range. Suitable for forming.
The thickness of the resin layer of the laminate of the present invention is preferably 0.5 to 30 μm when the filler contained in the resin layer is less than 10% by volume. In the case of printed circuit board use, the thickness of the resin layer is more preferably 0.5 to 25 μm, further preferably 1 to 20 μm, and particularly preferably 3 to 15 μm. In a preferable range, the warpage of the laminate is suppressed. When the filler contained in the resin layer is 10% by volume or more, 0.5 to 3000 μm is preferable. In the case of printed circuit board use, the thickness of the resin layer is more preferably 1 to 1500 μm, particularly preferably 2 to 100 μm.
In the case of a laminate having a resin layer on both sides of the substrate, it is preferable that the composition and thickness of each resin layer be the same in terms of suppression of warpage of the laminate.
 本発明の積層体の反り率は、25%以下が好ましく、15%以下がより好ましく、10%以下がさらに好ましく、7%以下が特に好ましい。この場合、加工する際の成形プロセスにおいてハンドリング性に優れかつ加工品が誘電特性に優れる。
 本発明のパウダー液が、無機質フィラーを含むか、ポリクロロトリフルオロエチレン等を含む場合には、積層体の反りをより一層抑制できる。
25% or less is preferable, 15% or less is more preferable, 10% or less is further more preferable, and the curvature rate of the laminated body of this invention is especially preferable. In this case, in the molding process at the time of processing, the handling property is excellent and the processed product is excellent in dielectric characteristics.
When the powder liquid of the present invention contains an inorganic filler or contains polychlorotrifluoroethylene or the like, warpage of the laminate can be further suppressed.
 本発明の積層体の樹脂層の比誘電率は、2.0~3.5が好ましく、2.0~3.0が特に好ましい。比誘電率が前記範囲の上限値以下であると、プリント基板用途等の低誘電率が求められる用途に有用である。比誘電率が前記範囲の下限値以上であると、積層体が電気特性及び融着性に優れる。なお、基材が耐熱性樹脂等の非導電材料からなる場合、積層体全体の比誘電率も前記範囲が好ましい。 The relative dielectric constant of the resin layer of the laminate of the present invention is preferably 2.0 to 3.5, and particularly preferably 2.0 to 3.0. It is useful for the use for which the low dielectric constant is calculated | required, such as a printed circuit board use as a relative dielectric constant is below the upper limit of the said range. A laminated body is excellent in an electrical property and fusing property as a dielectric constant is more than the lower limit of the said range. In addition, when a base material consists of nonelectroconductive materials, such as heat resistant resin, the relative dielectric constant of the whole laminated body also has the preferable said range.
 本発明の積層体が有する樹脂層の表面に積層対象物を積層してもよい。この場合、積層対象物として本発明の製造方法で製造されたフィルム又は積層体を適用してもよい。
 樹脂層の表面に積層対象物を積層する際には、樹脂層の露出面に積層対象物が有する基材面又は樹脂層面が積層される。樹脂層同士を積層する場合は、樹脂層面の間にプリプレグ等の積層対象物を介在させて積層してもよい。
The object to be laminated may be laminated on the surface of the resin layer of the laminate of the present invention. In this case, a film or a laminate produced by the production method of the present invention may be applied as a lamination target.
When laminating an object to be laminated on the surface of the resin layer, the substrate surface or the resin layer surface of the object to be laminated is laminated on the exposed surface of the resin layer. When laminating the resin layers, an object of lamination such as a prepreg may be interposed between the resin layer surfaces to be laminated.
 積層体の樹脂層の表面にフィルム、シート等の積層対象物を積層する際には、得られる積層体が接合強度に優れ、気泡等が残存しにくくなることから、樹脂層の露出面を平滑性の高い面とすることが好ましい。樹脂層の露出面の平滑性を高めるためには、乾燥後の膜が充分溶融する温度で積層するとともに、加熱板、加熱ロール等で加圧することが好ましい。 When laminating an object to be laminated such as a film or sheet on the surface of the resin layer of the laminate, the resulting laminate has excellent bonding strength and bubbles and the like do not easily remain, so the exposed surface of the resin layer is smoothed. It is preferable to use a high-quality surface. In order to improve the smoothness of the exposed surface of the resin layer, it is preferable to laminate at a temperature at which the film after drying is sufficiently melted, and to press with a heating plate, a heating roll or the like.
 積層体の樹脂層の露出面の表面の算術平均粗さRaは樹脂層厚さ未満であり、2.0μm以上であると好ましい。これにより、積層対象物を熱プレス等により積層した場合に、樹脂層と積層対象物との間の密着性がさらに優れる。
 前記Raは、樹脂層厚さ未満であり、かつ、2.0~30μmが好ましく、2.2~8μmが最も好ましい。この場合、樹脂層と積層対象物との密着性に優れるだけでなく、樹脂層に貫通穴ができにくい。また、接合強度を高めるために、樹脂層の表面にコロナ放電処理、プラズマ処理等の表面処理を施してもよい。
Arithmetic mean roughness Ra of the surface of the exposed surface of the resin layer of the laminate is less than the resin layer thickness, and is preferably 2.0 μm or more. Thereby, when laminating | stacking a lamination | stacking target object by heat press etc., the adhesiveness between a resin layer and a lamination | stacking target object is further excellent.
The Ra is less than the resin layer thickness, preferably 2.0 to 30 μm, and most preferably 2.2 to 8 μm. In this case, not only the adhesion between the resin layer and the object to be laminated is excellent, but it is difficult to form through holes in the resin layer. Also, in order to increase the bonding strength, the surface of the resin layer may be subjected to surface treatment such as corona discharge treatment or plasma treatment.
 本発明のフィルム及び積層体は、金属以外の材料からなるフィルム又はシート等の形状の積層対象物と積層して新たな積層体を製造する用途に使用できる。積層対象物としては、耐熱性樹脂のフィルム又はシート、繊維強化樹脂シート、プリプレグ等が挙げられる。
 プリプレグとしては、シート状の強化繊維基材にマトリックス樹脂が含浸されたものが挙げられる。
 マトリックス樹脂は、熱可塑性樹脂でもよく、熱硬化性樹脂でもよい。本発明は、低温接合の点からマトリックス樹脂として、融点が280℃以下の熱可塑性樹脂又は熱硬化温度が280℃以下の熱硬化性樹脂を用いる場合に特に有効である。
 プリプレグとしては、市販のプリプレグを使用してもよい。
 市販のプリプレグとしては、国際公開2018/16644号の[0133]に記載されたプリプレグが挙げられる。
The film and laminate of the present invention can be used for applications of producing a new laminate by laminating with a lamination target in the form of a film or sheet made of a material other than metal. As an object to be laminated, a film or sheet of heat resistant resin, a fiber reinforced resin sheet, a prepreg, etc. may be mentioned.
Examples of the prepreg include those in which a sheet-like reinforcing fiber base material is impregnated with a matrix resin.
The matrix resin may be a thermoplastic resin or a thermosetting resin. The present invention is particularly effective when using a thermoplastic resin having a melting point of 280 ° C. or less or a thermosetting resin having a thermosetting temperature of 280 ° C. or less as a matrix resin from the viewpoint of low temperature bonding.
A commercially available prepreg may be used as the prepreg.
As a commercially available prepreg, the prepreg described in [0133] of WO 2018/16644 can be mentioned.
 本発明のフィルム又は積層体とプリプレグとを熱プレスする際の温度は、Fポリマーの融点以下が好ましく、120~300℃がより好ましい。この場合、プリプレグの熱劣化を抑制しつつ、フィルム又は積層体とプリプレグとを優れた密着性で貼り付けられる。 The temperature at which the film or laminate of the present invention and the prepreg are heat-pressed is preferably equal to or lower than the melting point of the F polymer, and more preferably 120 to 300 ° C. In this case, the film or the laminate and the prepreg can be attached with excellent adhesion while suppressing thermal deterioration of the prepreg.
 本発明の製造方法で得られるフィルム及び積層体は、国際公開第2015/182702号の[0040]~[0044]に記載の、有機ELディスプレイのキャプチャー基材等の被覆物品としても使用できる。本発明のプリプレグは、国際公開第2015/182702号の[0046]に記載のFRP、CFRPにも使用できる。また、本発明のパウダー液は、国際公開第2015/182702号に記載の、溶剤型塗料としても使用でき、特許第2686148号公報に記載の絶縁電線の絶縁層を構成する絶縁塗料としても使用できる。 The film and the laminate obtained by the production method of the present invention can also be used as a coated article such as a capture substrate of an organic EL display described in [0040] to [0044] of WO 2015/182702. The prepreg of the present invention can also be used for FRP and CFRP described in [0046] of WO 2015/182702. The powder liquid of the present invention can also be used as a solvent-based paint described in WO 2015/182702, and can also be used as an insulating paint that constitutes the insulating layer of the insulated wire described in Japanese Patent No. 2686148. .
 本発明は、本発明のフィルムの製造方法でフィルム(繊維強化フィルム及びプリプレグのフィルムを含む。)を製造し、フィルムの表面に金属層を設ける、金属積層板の製造方法も提供できる。また、本発明の金属積層板の製造方法では、本発明の積層体の製造方法で積層体を製造し、積層体の樹脂層の表面に金属層を設けてもよい。
 フィルム又は積層体の片面又は両面に金属層を設ける方法としては、例えば、フィルム又は積層体と金属箔とを積層する方法、フィルム又は積層体の樹脂層の表面に金属を蒸着する方法等が挙げられる。積層方法としては、例えば、熱ラミネート等が挙げられる。金属の蒸着方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法等が挙げられる。
The present invention can also provide a method for producing a metal laminate in which a film (including a fiber reinforced film and a film of a prepreg) is produced by the method for producing a film of the present invention and a metal layer is provided on the surface of the film. Moreover, in the method for producing a metal laminate of the present invention, a laminate may be produced by the method for producing a laminate of the present invention, and a metal layer may be provided on the surface of the resin layer of the laminate.
As a method of providing a metal layer on one side or both sides of a film or a laminate, for example, a method of laminating a film or a laminate and a metal foil, a method of depositing metal on the surface of a resin layer of a film or a laminate, etc. Be As a lamination method, a thermal lamination etc. are mentioned, for example. As a metal vapor deposition method, a vacuum vapor deposition method, a sputtering method, an ion plating method, etc. may be mentioned.
 金属積層板の層構成としては、本発明のフィルム/金属層、金属層/本発明のフィルム/金属層、本発明の積層体層/金属層、金属層/本発明の積層体層/金属層の積層体が挙げられる。ただし、金属層に接する積層体中の層は樹脂層である。なお、「フィルム/金属層」とはフィルム、金属層がこの順に積層されていることを示し、他の層構成も同様である。 The layer configuration of the metal laminate includes the film / metal layer of the present invention, the metal layer / film of the present invention / metal layer, the laminate layer of the present invention / metal layer, the metal layer / the laminate of the present invention layer / metal layer And a laminate of However, the layer in the laminate in contact with the metal layer is a resin layer. In addition, "film / metal layer" shows that a film and a metal layer are laminated | stacked in this order, and the other layer structure is also the same.
 本発明の製造方法で得られる金属積層板は、金属層の片面又は両面に樹脂層を有する。金属層としては、特に、銅箔が好ましい。樹脂層は、強化繊維を有してもよく、プリプレグの層(すなわち、強化繊維と未硬化の硬化性樹脂を含む樹脂層)でもよい。
 銅箔層を有する金属積層板は、その複数枚を積層して銅箔層を複数有する金属積層板としてもよい。これら銅箔層を有する金属積層板がその片面又は両面に樹脂層を有する場合はその樹脂層表面に銅箔層を積層することが好ましい。本発明の金属積層板の製造方法で得られる銅箔層を有する金属積層板及びその積層物は、フレキシブル銅張積層板、リジッド銅張積層板として使用できる。
 以下、銅箔層を有する金属積層板を例に、本発明の金属積板の製造方法をさらに説明する。
The metal laminate obtained by the production method of the present invention has a resin layer on one side or both sides of the metal layer. Especially as a metal layer, copper foil is preferable. The resin layer may have reinforcing fibers, and may be a layer of prepreg (that is, a resin layer containing reinforcing fibers and uncured curable resin).
The metal laminate having a copper foil layer may be a metal laminate having a plurality of copper foil layers by laminating a plurality of sheets. When the metal laminated board which has these copper foil layers has a resin layer in the single side | surface or both surfaces, it is preferable to laminate a copper foil layer on the resin layer surface. The metal laminate having a copper foil layer obtained by the method for producing a metal laminate of the present invention and the laminate thereof can be used as a flexible copper-clad laminate or a rigid copper-clad laminate.
Hereinafter, the manufacturing method of the metal laminated board of this invention is further demonstrated by making a metal laminated board which has a copper foil layer into an example.
 銅箔層を有する金属積層板は、基材として銅箔を使用し、銅箔の片面に本発明のパウダー液を塗布して、その膜を形成し、次いで加熱乾燥により有機溶媒を除去し、引き続き加熱してパウダーを溶融し、その後冷却して製造され、未溶融粒子のない均一な樹脂層を有する金属積層板として製造されるのが好ましい。銅箔の両面に樹脂層を設けて製造されてもよい。 A metal laminate having a copper foil layer uses a copper foil as a substrate, applies the powder solution of the present invention on one side of the copper foil to form a film thereof, and then removes the organic solvent by heat drying, Subsequently, it is preferably heated to melt the powder and then cooled to produce a metal laminate having a uniform resin layer free of unmelted particles. It may be manufactured by providing a resin layer on both sides of the copper foil.
 本発明のパウダー液からの膜形成、加熱乾燥、パウダーの溶融はフィルムの製造方法における条件と同様にできる。例えば、乾燥後の加熱を熱ロールによる加熱で行う場合、乾燥後の未溶融樹脂層と銅箔層とを有する金属積層板を耐熱ロールに接触させ、遠赤外線を照射しながら搬送して、未溶融樹脂層を溶融した樹脂層とできる。ロールの搬送速度は、4.7mの長さの加熱炉を用いた場合は4.7~0.31m/minが好ましく、2.45mの長さの加熱炉を用いた場合は4.7~2.45m/minが好ましい。加熱温度は、加熱炉の滞在時間を1分とすると330~380℃が好ましく、さらには350~370℃が好ましい。 Film formation from the powder solution of the present invention, heating and drying, and melting of the powder can be carried out under the same conditions as in the film production method. For example, when heating after drying is performed by heating with a heat roll, a metal laminate having a dried unmelted resin layer and a copper foil layer is brought into contact with a heat-resistant roll and transported while being irradiated with far infrared rays. The molten resin layer can be a molten resin layer. The roll transport speed is preferably 4.7 to 0.31 m / min when using a 4.7 m heating furnace, and 4.7 to 4.7 when using a 2.45 m heating furnace. 2.45 m / min is preferable. The heating temperature is preferably 330 to 380 ° C., and more preferably 350 to 370 ° C., where the residence time of the heating furnace is one minute.
 金属積層板の樹脂層の厚さは15μm以下が好ましく、10μm以下がより好ましく、8μm以下が特に好ましい。下限は、特に限定されず、1μmである。前記範囲の上限値以下であると樹脂層/銅箔の非対称な層構成の場合でも、反りを抑制できる。金属積層板の反り率は25%以下が好ましく、7%以下が特に好ましい。反り率が25%以下であると、プリント基板に加工する際の成形プロセスにおいてハンドリング性に優れかつプリント基板としての誘電特性に優れる。 15 micrometers or less are preferable, as for the thickness of the resin layer of a metal laminated board, 10 micrometers or less are more preferable, and 8 micrometers or less are especially preferable. The lower limit is not particularly limited, and is 1 μm. The curvature can be suppressed even in the case of the asymmetrical layer constitution of the resin layer / copper foil as it is not more than the upper limit value of the above range. The warp rate of the metal laminate is preferably 25% or less, and particularly preferably 7% or less. It is excellent in the handling property in the formation process at the time of processing into a printed circuit board as a curvature rate is 25% or less, and excellent in the dielectric characteristic as a printed circuit board.
 本発明のパウダー液が熱硬化性樹脂を含む場合、硬化した熱硬化性樹脂を含む樹脂層と銅箔層を有する金属積層板を製造できる。この場合、本発明のパウダー液はフィラーを含んでもよく、強化繊維を用いて繊維強化樹脂層を銅箔層に設けてもよい。この場合の樹脂層の厚さは200μm以下が好ましく、100μm以下がより好ましい。この場合、本発明のパウダー液から製造されたプリント基板が穴加工の加工性に優れ、接続信頼性に優れた電子回路を形成できる。また樹脂層にフィラーを含めば反りをより一層抑制できる。 When the powder liquid of the present invention contains a thermosetting resin, a metal laminate having a resin layer containing a cured thermosetting resin and a copper foil layer can be produced. In this case, the powder liquid of the present invention may contain a filler, and a fiber reinforced resin layer may be provided on the copper foil layer using reinforcing fibers. 200 micrometers or less are preferable and, as for the thickness of the resin layer in this case, 100 micrometers or less are more preferable. In this case, the printed circuit board manufactured from the powder liquid of the present invention is excellent in the processability of hole processing, and an electronic circuit excellent in connection reliability can be formed. In addition, if the resin layer contains a filler, warpage can be further suppressed.
 金属積層板の製造では、アニール処理によって厚さ方向の線膨張係数を低減できる。これにより基材と樹脂層の界面間での剥離及び金属積層板の面内での厚さムラによる基板の電気特性のばらつきを低減できる。
 アニール条件としては、温度は80~190℃が好ましく、120~180℃が特に好ましい。処理時間は10~300minが好ましく、30~120minが特に好ましい。この場合、樹脂層の熱劣化を抑制しながら、その線膨張係数を低減しやすい。
 アニールの圧力は、0.001~0.030MPaが好ましく、0.005~0.015MPaが特に好ましい。この場合、基材の圧縮を抑制しながら、樹脂層の線膨張係数を低減しやすい。
In the manufacture of a metal laminate, the annealing process can reduce the linear expansion coefficient in the thickness direction. As a result, it is possible to reduce variations in the electrical characteristics of the substrate due to peeling between the interface of the base material and the resin layer and thickness unevenness in the plane of the metal laminate.
As the annealing conditions, the temperature is preferably 80 to 190 ° C., and particularly preferably 120 to 180 ° C. The treatment time is preferably 10 to 300 minutes, and particularly preferably 30 to 120 minutes. In this case, the linear expansion coefficient can be easily reduced while suppressing the thermal deterioration of the resin layer.
The pressure for annealing is preferably 0.001 to 0.030 MPa, and particularly preferably 0.005 to 0.015 MPa. In this case, it is easy to reduce the linear expansion coefficient of the resin layer while suppressing the compression of the base material.
 本発明の金属積層板の製造方法では、例えば、チタン箔の片面又は両面に樹脂層を設けて、チタン箔と樹脂層を有する金属積層板を製造できる。樹脂層の厚さは10μm以下が好ましい。このような金属積層板の樹脂層側に繊維強化複合材料を積層することで、例えばチタン箔/樹脂層/繊維強化複合材料の金属積層板が得られる。繊維強化複合材料としては、炭素繊維強化複合材料が特に好ましい。 In the method for producing a metal laminate of the present invention, for example, a resin layer may be provided on one side or both sides of titanium foil to produce a metal laminate having a titanium foil and a resin layer. The thickness of the resin layer is preferably 10 μm or less. By laminating the fiber reinforced composite material on the resin layer side of such a metal laminate, for example, a metal laminate of titanium foil / resin layer / fiber reinforced composite can be obtained. As a fiber reinforced composite material, a carbon fiber reinforced composite material is particularly preferable.
 樹脂層と積層対象物とを有する金属積層板の層構成としては、金属層/樹脂層/積層対象物/樹脂層/金属層の積層体、金属層/積層対象物/樹脂層/積層対象物/金属層の積層体等が挙げられる。樹脂層の厚さは0.1~300μmが好ましく、2~40μmが特に好ましい。この場合、金属積層板としての穴開け加工性が良好であり誘電特性が優れるだけでなく、金属層と樹脂層及び積層対象物と樹脂層とを優れた密着性で貼り付けられる。本発明の製造方法で製造されたフィルム又は積層体と積層対象物との密着性(剥離強度)は、5N/cm以上が好ましく、7N/cm以上が特に好ましい。 As a layer configuration of a metal laminate having a resin layer and an object to be laminated, a laminate of metal layer / resin layer / object to be laminated / resin layer / metal layer, metal layer / object to be laminated / resin layer / object to be laminated / Laminate of metal layer etc. may be mentioned. The thickness of the resin layer is preferably 0.1 to 300 μm, and particularly preferably 2 to 40 μm. In this case, not only the hole forming processability as the metal laminate is good and the dielectric property is excellent, but the metal layer and the resin layer, and the lamination target object and the resin layer can be stuck with excellent adhesion. 5 N / cm or more is preferable and, as for the adhesiveness (peeling strength) of the film or laminated body manufactured by the manufacturing method of this invention, and a lamination | stacking target object, 7 N / cm or more is especially preferable.
 本発明は、本発明の金属積層板の製造方法で金属積層板を製造し、金属積層板の金属層をエッチングしてパターン回路を形成するプリント基板の製造方法も提供できる。プリント基板の製造方法としては、例えば、本発明の製造方法で得た金属積層板の金属層をエッチングしてパターン回路を形成する方法が挙げられる。金属層をエッチングする方法は、特に限定されない。 The present invention can also provide a method for producing a printed circuit board in which a metal laminate is produced by the method for producing a metal laminate of the present invention, and a metal layer of the metal laminate is etched to form a patterned circuit. As a manufacturing method of a printed circuit board, the method of etching the metal layer of the metal laminated board obtained by the manufacturing method of this invention, for example, and forming a pattern circuit is mentioned. The method of etching the metal layer is not particularly limited.
 本発明のプリント基板の製造方法では、金属層をエッチングしてパターン回路を形成した後に、パターン回路上に層間絶縁膜を形成し、層間絶縁膜上にさらにパターン回路を形成してもよい。層間絶縁膜は、本発明のパウダー液により形成することもできる。
 例えば、任意の積層構造の金属積層板の金属層をエッチングしてパターン回路を形成した後、本発明のパウダー液をパターン回路上に塗布し、乾燥した後に加熱して層間絶縁膜とする。次いで、前記層間絶縁膜上に蒸着等で金属層を設け、エッチングしてさらなるパターン回路を形成してもよい。
 プリント基板の製造では、パターン回路上にソルダーレジストを積層してもよい。具体的には、本発明の分散液、塗工液をパターン回路上に塗布し、乾燥した後に加熱してソルダーレジストを形成してもよい。
In the method of manufacturing a printed circuit board according to the present invention, after the metal layer is etched to form the pattern circuit, the interlayer insulating film may be formed on the pattern circuit, and the pattern circuit may be further formed on the interlayer insulating film. The interlayer insulating film can also be formed by the powder solution of the present invention.
For example, after etching a metal layer of a metal laminate plate of an arbitrary laminated structure to form a patterned circuit, the powder solution of the present invention is applied on the patterned circuit, dried and then heated to form an interlayer insulating film. Then, a metal layer may be provided on the interlayer insulating film by vapor deposition or the like and etched to form a further pattern circuit.
In the manufacture of a printed circuit board, a solder resist may be laminated on a pattern circuit. Specifically, the dispersion liquid and the coating liquid of the present invention may be applied onto a pattern circuit, dried and then heated to form a solder resist.
 プリント基板の製造では、カバーレイフィルムを積層してもよい。カバーレイフィルムは、典型的には、基材フィルムとその表面に設けられた接着剤層とから構成され、接着剤層側の面がプリント基板に貼り合わされる。カバーレイフィルムとしては、例えば、本発明のフィルムを使用できる。また、金属積層板の金属層をエッチングして形成したパターン回路上に、本発明の製造方法で得たフィルムを用いた層間絶縁膜を形成し、層間絶縁膜上にカバーレイフィルムとしてポリイミドフィルムを積層してもよい。 In the production of a printed circuit board, a coverlay film may be laminated. The coverlay film is typically composed of a base film and an adhesive layer provided on the surface thereof, and the surface on the adhesive layer side is bonded to the printed circuit board. As a cover lay film, the film of the present invention can be used, for example. In addition, an interlayer insulating film using a film obtained by the manufacturing method of the present invention is formed on a pattern circuit formed by etching a metal layer of a metal laminate, and a polyimide film as a coverlay film is formed on the interlayer insulating film. It may be stacked.
 本発明のプリント基板は、高周波特性が必要とされるレーダー、ネットワークのルーター、バックプレーン、無線インフラ等の電子機器用基板、自動車用各種センサ用基板、エンジンマネージメントセンサ用基板として有用であり、特にミリ波帯域の伝送損失低減を目的とする用途に好適である。 The printed circuit board of the present invention is useful as a radar, a network router, a backplane, an electronic device substrate such as a wireless infrastructure, a substrate for various sensors for automobiles, and a substrate for an engine management sensor, which require high frequency characteristics. It is suitable for the application aiming at transmission loss reduction of a millimeter wave band.
 絶縁電線としては、本発明のパウダー液を用いて、平角線の外周に厚さが10~150μmである絶縁被覆層を設けた絶縁電線が挙げられる。前記絶縁被覆層の比誘電率は2.8以下が好ましい。また、前記絶縁被覆層と平角線で使用する金属種との密着強度が10N/cm以上が好ましい。前記絶縁電線は、絶縁増幅器、絶縁トランス、自動車のオルタネータ、ハイブリッド車の電動機のいずれかの機器として好適である。 Examples of the insulated wire include an insulated wire in which an insulating coating layer having a thickness of 10 to 150 μm is provided on the outer periphery of a flat wire using the powder liquid of the present invention. The dielectric constant of the insulating covering layer is preferably 2.8 or less. Further, the adhesion strength between the insulating coating layer and the metal used in the flat wire is preferably 10 N / cm or more. The insulated wire is suitable as any device of an insulation amplifier, an insulation transformer, an alternator of a car, and a motor of a hybrid car.
 以下、実施例によって本発明を詳細に説明するが、本発明はこれらに限定されない。
 略号は、以下の意味を示す。
 TFE:テトラフルオロエチレン。
 NAH:無水ハイミック酸。
 PPVE:ペルフルオロ(プロピルビニルエーテル)。
 a:有機溶媒とパウダーと界面活性剤との合計に対するパウダーの割合。
 a:有機溶媒とパウダーと界面活性剤との合計に対する界面活性剤の割合。
 a:有機溶媒とパウダーと界面活性剤との合計に対する有機溶媒の割合。
 b:パウダーの割合に対する界面活性剤の割合の比(a/a)。
 η:回転数が30rpmの条件で測定される粘度。
 η:回転数が60rpmの条件で測定される粘度。
 η/η:チキソ比。
Hereinafter, the present invention will be described in detail by way of examples, but the present invention is not limited thereto.
The abbreviations have the following meanings.
TFE: tetrafluoroethylene.
NAH: anhydrous hymic acid.
PPVE: Perfluoro (propyl vinyl ether).
a 1 : the ratio of the powder to the total of the organic solvent, the powder and the surfactant.
a 2: ratio of the surfactant to the total of the organic solvent and the powder and surfactant.
a 3 : the ratio of the organic solvent to the total of the organic solvent, the powder and the surfactant.
b 1 : ratio of the ratio of surfactant to the ratio of powder (a 2 / a 1 ).
η 1 : viscosity measured under the condition of 30 rpm.
η 2 : Viscosity measured under the condition of 60 rpm.
η 1 / η 2 : Thixo ratio.
 使用材料を、以下に示す。 The materials used are shown below.
<フルオロポリマー>
 ポリマー1:TFEに由来する単位、NAHに由来する単位及びPPVEに由来する単位を、この順に97.9モル%、0.1モル%、2.0モル%含むコポリマーであり、融点300℃のフルオロポリマー。
 ポリマー2:官能基を有さない、TFEに由来する単位を99.5モル%以上含む、実質的にTFEのホモポリマー(旭硝子社製、L169J)。
<Fluoropolymer>
Polymer 1: A copolymer comprising 97.9 mol%, 0.1 mol%, 2.0 mol% of a unit derived from TFE, a unit derived from NAH and a unit derived from PPVE in this order, having a melting point of 300 ° C. Fluoropolymer.
Polymer 2: A substantially TFE homopolymer containing 99.5 mol% or more of a TFE-derived unit having no functional group (manufactured by Asahi Glass Co., Ltd., L169J).
<界面活性剤>
 化合物1:-OCF(CF)C(=C(CF)(CF(CF)基を有する(メタ)アクリレートとポリオキシエチレン基を有する(メタ)アクリレートのコポリマー(ノニオン性界面活性剤。ネオス社製、フタージェント710FL)。
 化合物2:-OCF(CF)C(=C(CF)(CF(CF)基を有する(メタ)アクリレートとポリオキシエチレン基を有する(メタ)アクリレートのコポリマー(ノニオン性界面活性剤。ネオス社製、フタージェント710FM)。
<Surfactant>
Compound 1: -OCF (CF 3) C (= C (CF 3) 2) (CF (CF 3) 2) having a (meth) acrylate and polyoxyethylene group having a group (meth) acrylate copolymer (nonionic Surfactant: Neos Co., Inc., Watergent 710 FL).
Compound 2: -OCF (CF 3) C (= C (CF 3) 2) (CF (CF 3) 2) having a (meth) acrylate and polyoxyethylene group having a group (meth) acrylate copolymer (nonionic Surfactant: Neos Co., Ltd., Phaser 710 FM).
<有機溶媒>
 MEK:メチルエチルケトン(表面張力 24dyn/cm)。
 Tol:トルエン(表面張力 28.5dyn/cm)。
 CHN:シクロヘキサノン(表面張力 34dyn/cm)。
 NMP:N-メチル-ピロリドン(表面張力 41dyn/cm)
 MEK&CHN:MEKの70質量%とCHNの30質量%の混合溶媒(表面張力 27dyn/cm)。
<Organic solvent>
MEK: methyl ethyl ketone (surface tension 24 dyn / cm).
Tol: toluene (surface tension 28.5 dyn / cm).
CHN: cyclohexanone (surface tension 34 dyn / cm).
NMP: N-methyl-pyrrolidone (surface tension 41 dyn / cm)
MEK & CHN: A mixed solvent of 70% by mass of MEK and 30% by mass of CHN (surface tension 27 dyn / cm).
<パウダー>
 パウダーX1:D50が1.7μm、D90が3.8μm、疎充填嵩密度が0.269g/mL、密充填嵩密度が0.315g/mLである、ポリマー1のパウダー。ジェットミルを用いてポリマー1のペレット(粒径1554μm)を2度粉砕し、さらに高効率精密気流分級機を用いて分級して得られる。
 パウダーX2:D50が3.0μm、D90が8.5μm、疎充填嵩密度が0.355g/mL、密充填嵩密度が0.387g/mLの、ポリマー2のパウダー。ポリマー2のペレットを粉砕して得られる。
<Powder>
Powder X1: a powder of polymer 1 having a D50 of 1.7 μm, a D90 of 3.8 μm, a loosely packed bulk density of 0.269 g / mL and a closely packed bulk density of 0.315 g / mL. The pellet of polymer 1 (particle diameter 1554 μm) is ground twice using a jet mill and further classified using a high efficiency precision air flow classifier.
Powder X2: a powder of polymer 2 having a D50 of 3.0 μm, a D90 of 8.5 μm, a loosely packed bulk density of 0.355 g / mL, a closely packed bulk density of 0.387 g / mL. It is obtained by crushing the pellet of polymer 2.
 分析条件を、以下に示す。 The analysis conditions are shown below.
<パウダーのD50及びD90>
 ポリマーのパウダーを水中に分散させ、レーザー回折・散乱式の粒度分布測定装置(堀場製作所社製、LA-920測定器)を用いて測定した。
Powder D50 and D90
The powder of the polymer was dispersed in water, and measured using a laser diffraction / scattering type particle size distribution measuring apparatus (LA-920 measuring apparatus manufactured by Horiba, Ltd.).
<分散液の粘度>
 B型粘度計(LVDV2Tモデル、ブルックフィールド社製)にて、温度が25℃、回転数が30rpmの条件下で測定した。
<Viscosity of dispersion>
The temperature was measured with a B-type viscometer (LVDV2T model, manufactured by Brookfield) under the conditions of 25 ° C. and 30 rpm.
<有機溶媒の表面張力>
 表面張力計(DY-200型、協和界面科学社製)にて、測定した。
<Surface tension of organic solvent>
It was measured with a surface tension meter (DY-200, manufactured by Kyowa Interface Science Co., Ltd.).
<分散液の分散安定性>
 分散液について、3日間静置した後の分散状態を目視にて確認し、下記基準にて評価した。
 1:パウダーが沈降し、振とうしても再分散できない(ハードケーキ化)。
 2:パウダーの沈降が確認されるが、振とうすると再分散が可能。
 3:パウダーの沈降が僅かに確認されるが、振とうすると再分散可能。
<Dispersion stability of dispersion>
The dispersion state of the dispersion after standing for 3 days was visually confirmed and evaluated according to the following criteria.
1: The powder settles and can not be redispersed even if shaken (hard caked).
2: Precipitation of powder is confirmed, but re-dispersion is possible if shaken.
3: A slight sedimentation of powder is confirmed, but it can be redispersed by shaking.
<分散液の塗工性>
 ワイヤーバー(テスター産業社製、No14)で分散液を用いて銅箔上に製膜して塗工した。塗工後、有機溶媒の沸点より5℃低い温度で有機溶媒を乾燥させて除去し、銅箔上に樹脂層が設けられた試験片を得た。試験片の膜厚は均一に塗った場合、約50μmである。有機溶媒を乾燥した後の試験片は、パウダーを含む樹脂層が積層されており、目視では白色の層になっている。ただし、塗工斑があり、膜厚が薄い場合には基材の銅箔の色が見えるため、白色度合いに濃淡が生じ、塗工斑の有無を目視で判断できる。目視にて試験片を確認し、下記基準にて塗工性を評価した。
 1:基材上のパウダー層が不均一に塗工されており、パウダー層の外観上の濃淡がある又は基材の色が露見している。
 2:基材上のパウダー層が均一に塗工できており、パウダー層の外観上の濃淡がほとんどない。
<Coatability of Dispersion>
The dispersion was used to form a film on a copper foil and coated with a wire bar (No. 14 manufactured by Tester Sangyo Co., Ltd.). After coating, the organic solvent was dried and removed at a temperature 5 ° C. lower than the boiling point of the organic solvent to obtain a test piece in which a resin layer was provided on a copper foil. The film thickness of the test piece is about 50 μm when applied uniformly. The test piece after drying the organic solvent is laminated with a resin layer containing powder, and is visually a white layer. However, when there is coating unevenness and the film thickness is thin, the color of the copper foil of the substrate is visible, so that the degree of whiteness is dark and light, and the presence or absence of the coating unevenness can be visually judged. The test piece was visually confirmed, and the coatability was evaluated based on the following criteria.
1: The powder layer on the substrate is coated unevenly, and there is light and shade on the appearance of the powder layer or the color of the substrate is exposed.
2: The powder layer on the substrate was uniformly coated, and there was almost no light and shade on the appearance of the powder layer.
<フィルム物性>
 ワイヤーバーで塗工液を用いて銅箔基材上に製膜し、180℃で7分間、オーブンで乾燥させた。得られたフィルムの誘電率を測定し、下記基準でフィルム物性を評価した。
 1:フィルムの誘電率が、基準値である3.2から変動した。
 2:フィルムの誘電率が、基準値である3.2から変動しない。
<Film physical properties>
It formed into a film on a copper foil base material using a coating liquid with a wire bar, and was made to dry by oven at 180 ° C for 7 minutes. The dielectric constant of the obtained film was measured, and the film physical properties were evaluated based on the following criteria.
1: The dielectric constant of the film fluctuated from 3.2 which is a reference value.
2: The dielectric constant of the film does not fluctuate from the reference value of 3.2.
<ポリマーの融点>
 セイコー電子社製の示差走査熱量計(DSC装置)を用い、含フッ素コポリマーを10℃/minの速度で昇温したときの融解ピークを記録し、極大値に対応する温度(℃)を融点とした。
Melting point of polymer
Using a differential scanning calorimeter (DSC apparatus) manufactured by Seiko Instruments Inc., record the melting peak when the temperature of the fluorine-containing copolymer is raised at a rate of 10 ° C./min, and the temperature (° C.) corresponding to the maximum value is the melting point did.
[例1]
 パウダーX1の450gに対し、化合物1の50g、MEKの500gを、横型のボールミル容器に充填し、15mm径のジルコニアボールを用いて、例1の分散液を得た。例1の分散液の粘度は、ηが250mPa・sであり、ηが150mPa・sであり、チキソ比が1.7であった。例1の分散液について分散安定性及び塗工性を評価した。結果を表2に示す。
[Example 1]
A horizontal ball mill container was filled with 50 g of Compound 1 and 500 g of MEK with respect to 450 g of Powder X1, and a dispersion of Example 1 was obtained using zirconia balls of 15 mm in diameter. The viscosity of the dispersion of Example 1 was η 1 of 250 mPa · s, η 2 of 150 mPa · s, and the thixo ratio of 1.7. The dispersion stability and coatability of the dispersion of Example 1 were evaluated. The results are shown in Table 2.
[実施例2~7]
 表1に示す組成比に変更した以外は、実施例1と同様にして分散液を得た。得られた分散液についてη及びηを測定し、チキソ比を算出し、分散安定性及び塗工性を評価した。結果を表2に示す。
[Examples 2 to 7]
A dispersion was obtained in the same manner as in Example 1 except that the compositional ratio shown in Table 1 was changed. About the obtained dispersion liquid, (eta) 1 and (eta) 2 were measured, thixo ratio was calculated, and dispersion stability and coating property were evaluated. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[例8]
 パウダーX1の500gに対し、化合物2の50g、CHNの450gを、横型のボールミル容器に充填し、15mm径のジルコニアボールを用いて、例8の分散液を得た。分散液の粘度は、ηは150mPa・sであり、ηは130mPa・sであり、チキソ比は1.2であった。得られた分散液の分散安定性は「3」であった。
 次にエポキシ樹脂の主剤(DIC社製、EPICLON HP-7200H-75M、溶媒:MEK、固形分:75質量%)と、エポキシ樹脂用硬化剤(DIC社製、フェノライト TD-2090-60M、溶媒:MEK、固形分:60質量%)とを主剤中の固形分:硬化剤中の固形分が26:9(質量比)となるように混合し、エポキシ樹脂を含むエポキシワニスを調製した。エポキシワニスの固形分濃度は70質量%である。次にエポキシワニスと分散液とを、エポキシワニス中の固形分:パウダーが70:30(質量比)となるように混合した。混合は、攪拌機で1000rpmの条件下で5分撹拌した。得られたパウダー含有ワニス(塗工液)の粘度は520mPa・sであった。また、塗工液における有機溶媒の表面張力は、28dyn/cmであった。
 次に塗工液を用いて得られるフィルムの誘電率を測定し、フィルム物性を評価した。
[Example 8]
A horizontal ball mill container was filled with 50 g of Compound 2 and 450 g of CHN relative to 500 g of Powder X1, and a dispersion of Example 8 was obtained using zirconia balls of 15 mm in diameter. The viscosity of the dispersion was η 1 of 150 mPa · s, η 2 of 130 mPa · s, and the thixo ratio of 1.2. The dispersion stability of the obtained dispersion was "3".
Next, an epoxy resin main agent (DIC, EPICLON HP-7200H-75M, solvent: MEK, solid content: 75% by mass) and a curing agent for epoxy resin (DIC, Inc., Phenolite TD-2090-60M, solvent) : MEK, solid content: 60% by mass) were mixed so that solid content in the main agent: solid content in the curing agent was 26: 9 (mass ratio), to prepare an epoxy varnish containing an epoxy resin. The solid content concentration of the epoxy varnish is 70% by mass. Next, the epoxy varnish and the dispersion liquid were mixed so that solid content: powder in the epoxy varnish was 70:30 (mass ratio). The mixing was stirred for 5 minutes under the condition of 1000 rpm with a stirrer. The viscosity of the obtained powder-containing varnish (coating liquid) was 520 mPa · s. Moreover, the surface tension of the organic solvent in the coating liquid was 28 dyn / cm.
Next, the dielectric constant of the film obtained using a coating liquid was measured, and the film physical property was evaluated.
[例9~14]
 表3に示す組成比に変更した以外は、例8と同様にして分散液を得た。それぞれの分散液についてη及びηを測定し、チキソ比を算出し、分散安定性を評価した。
 次に、例8と同様にして、それぞれの分散液とエポキシワニスを混合し、パウダー含有ワニス(塗工液)を得た。それぞれの塗工液を用いてフィルムを製造し、フィルム物性を評価した。結果を表4に示す。
[Examples 9-14]
A dispersion was obtained in the same manner as in Example 8 except that the compositional ratio shown in Table 3 was changed. For each dispersion, η 1 and 測定2 were measured, the thixo ratio was calculated, and the dispersion stability was evaluated.
Next, in the same manner as in Example 8, the respective dispersions and the epoxy varnish were mixed to obtain a powder-containing varnish (coating liquid). Films were produced using each of the coating solutions, and the physical properties of the films were evaluated. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
[例15]
 25℃にて、パウダーX1、化合物1及びCHNをこの順に50質量%、5質量%、45質量%含む、パウダーX1がCHNに均一分散した分散液を調製し、5℃にて7日間静置した。静置後の分散液は、透明層と白色層の2層に分離しており、手で振とうすると容易に再分散して均一な分散液を形成した。一方、CHNのかわりにNMPを使用した場合、静置後の分散液は、化合物1に起因する黄色透明層と白色層の2層に分離しており、手で振とうしても容易に再分散しなかった。
[Example 15]
A dispersion is prepared in which powder X1 is uniformly dispersed in CHN, containing 50% by mass, 5% by mass and 45% by mass of powder X1, compound 1 and CHN in this order at 25 ° C., and allowed to stand at 5 ° C. for 7 days did. The dispersion after standing was separated into two layers of a transparent layer and a white layer, and when shaken by hand, it was easily redispersed to form a uniform dispersion. On the other hand, when NMP is used instead of CHN, the dispersion after standing is separated into two layers of a yellow transparent layer and a white layer caused by the compound 1, and it is easy to be shaken again by hand. It did not disperse.
 本発明で得られるフィルム、繊維強化フィルム、プリプレグ、金属積層板、プリント基板等は、アンテナ部品、プリント基板、航空機用部品、自動車用部品、スポーツ用具、食品工業用品、のこぎり、すべり軸受け等の被覆物品等として使用できる。
 なお、2017年12月27日に出願された日本特許出願2017-250952号及び2018年05月16日に出願された日本特許出願2018-094782号の明細書、特許請求の範囲及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
Films, fiber reinforced films, prepregs, metal laminates, printed boards, etc. obtained by the present invention are antenna parts, printed boards, parts for aircraft, parts for automobiles, sports equipment, food industry articles, saws, sliding bearings, etc. It can be used as an article etc.
In addition, Japanese Patent Application Nos. 2017-250952 filed on Dec. 27, 2017 and Japanese Patent Application No. 2018-094782 filed on May 16, 2018, all claims, and abstracts thereof. The contents are incorporated herein by reference and incorporated as disclosure of the specification of the present invention.

Claims (15)

  1.  有機溶媒とパウダーと界面活性剤とを含む、パウダーが有機溶媒に分散した分散液であって、前記パウダーがテトラフルオロエチレンに由来する単位とカルボニル基含有基、ヒドロキシ基、エポキシ基及びイソシアネート基からなる群から選ばれる少なくとも1種の官能基とを有するフルオロポリマーを含むパウダーである、分散液。 A dispersion comprising an organic solvent, a powder and a surfactant, wherein the powder is dispersed in the organic solvent, wherein the powder is derived from a unit derived from tetrafluoroethylene, a carbonyl group-containing group, a hydroxy group, an epoxy group and an isocyanate group A dispersion comprising a fluoropolymer having at least one functional group selected from the group consisting of
  2.  粘度が100~10000mPa・sであり、回転数が30rpmの条件で測定される粘度を回転数が60rpmの条件で測定される粘度で除して算出されるチキソ比が1.4~2.2である、請求項1に記載の分散液。 The viscosity is 100 to 10000 mPa · s, and the viscosity measured at 30 rpm is divided by the viscosity measured at 60 rpm for a thixo ratio of 1.4 to 2.2. The dispersion according to claim 1, which is
  3.  前記有機溶媒が、メチルエチルケトン、トルエン、キシレン、シクロヘキサン又はメチルシクロヘキサンである、請求項1又は2に記載の分散液。 The dispersion according to claim 1 or 2, wherein the organic solvent is methyl ethyl ketone, toluene, xylene, cyclohexane or methyl cyclohexane.
  4.  粘度が50~3000mPa・sであり、回転数が30rpmの条件で測定される粘度を回転数が60rpmの条件で測定される粘度で除して算出されるチキソ比が1.0~1.5である、請求項1に記載の分散液。 The viscosity is 50 to 3000 mPa · s, and the viscosity measured under the condition of 30 rpm is divided by the viscosity measured under the condition of 60 rpm and the thixo ratio is 1.0 to 1.5. The dispersion according to claim 1, which is
  5.  前記有機溶媒が、シクロヘキサノン、シクロペンタノン、N,N-ジメチルアセトアミド又はN-メチル-2-ピロリドンである、請求項1又は4に記載の分散液。 The dispersion according to claim 1 or 4, wherein the organic solvent is cyclohexanone, cyclopentanone, N, N-dimethylacetamide or N-methyl-2-pyrrolidone.
  6.  前記パウダーが、体積基準累積50%径が0.05~4μmかつ体積基準累積90%径が8μm以下のパウダーである、請求項1~5のいずれか一項に記載の分散液。 The dispersion according to any one of claims 1 to 5, wherein the powder is a powder having a 50% volume-based cumulative diameter of 0.05 to 4 μm and a 90% volume-based cumulative diameter of 8 μm or less.
  7.  前記フルオロポリマーが、全単位の合計に対するテトラフルオロエチレンに由来する単位の割合が90~99.89mol%のフルオロポリマーである、請求項1~6のいずれか一項に記載の分散液。 The dispersion according to any one of claims 1 to 6, wherein the fluoropolymer is a fluoropolymer having a ratio of a unit derived from tetrafluoroethylene to a total of all units of 90 to 99.89 mol%.
  8.  前記フルオロポリマーが、ペルフルオロ(アルキルビニルエーテル)、ヘキサフルオロプロピレン及びフルオロアルキルエチレンからなる群から選ばれる少なくとも1種のモノマーに由来する単位をさらに有するポリマーである、請求項1~7のいずれか一項に記載の分散液。 The polymer according to any one of claims 1 to 7, wherein the fluoropolymer further has a unit derived from at least one monomer selected from the group consisting of perfluoro (alkyl vinyl ether), hexafluoropropylene and fluoroalkylethylene. Dispersion as described in.
  9.  前記フルオロポリマーが、カルボニル基含有基、ヒドロキシ基、エポキシ基及びイソシアネート基からなる群から選ばれる少なくとも1種の官能基を有するモノマーに由来する単位をさらに有するポリマーである、請求項1~8のいずれか一項に記載の分散液。 9. The polymer according to claim 1, wherein the fluoropolymer further has a unit derived from a monomer having at least one functional group selected from the group consisting of a carbonyl group-containing group, a hydroxy group, an epoxy group and an isocyanate group. Dispersion according to any one of the preceding claims.
  10.  前記界面活性剤が、ペルフルオロアルキル基又はペルフルオロアルケニル基を有する、請求項1~9のいずれか一項に記載の分散液。 The dispersion according to any one of claims 1 to 9, wherein the surfactant has a perfluoroalkyl group or a perfluoroalkenyl group.
  11.  前記界面活性剤が、ポリオキシエチレン基、ポリオキシプロピレン基、ポリオキシテトラメチレン基、アミノ基、ケトン基、カルボキシル基又はスルホン基を有する、請求項1~10のいずれか一項に記載の分散液。 The dispersion according to any one of claims 1 to 10, wherein the surfactant has a polyoxyethylene group, a polyoxypropylene group, a polyoxytetramethylene group, an amino group, a ketone group, a carboxyl group or a sulfone group. liquid.
  12.  前記パウダーの含有量が、有機溶媒とパウダーと界面活性剤との合計に対して35~70質量%である、請求項1~11のいずれか一項に記載の分散液。 The dispersion according to any one of claims 1 to 11, wherein the content of the powder is 35 to 70% by mass based on the total of the organic solvent, the powder and the surfactant.
  13.  請求項1~12のいずれか一項に記載の分散液を用いて金属フィルム上で樹脂層に製膜し、表面に樹脂層を有する金属フィルムを得る、金属積層板の製造方法。 A method for producing a metal laminate, wherein a resin film is formed on a metal film using the dispersion according to any one of claims 1 to 12, to obtain a metal film having a resin layer on the surface.
  14.  前記樹脂層の厚さが1~20μmである、請求項13に記載の金属積層板の製造方法。 The method for producing a metal laminate plate according to claim 13, wherein the thickness of the resin layer is 1 to 20 μm.
  15.  請求項13又は14に記載の製造方法で金属積層板を製造し、前記金属フィルムをエッチングしてパターン回路を形成する、プリント基板の製造方法。 The manufacturing method of the printed circuit board which manufactures a metal laminated board with the manufacturing method of Claim 13 or 14, etches the said metal film, and forms a pattern circuit.
PCT/JP2018/047959 2017-12-27 2018-12-26 Dispersion, metal laminate plate, and production method for printed board WO2019131809A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207013755A KR20200103630A (en) 2017-12-27 2018-12-26 Dispersion, method of manufacturing metal laminates and printed boards
CN201880081549.4A CN111492006A (en) 2017-12-27 2018-12-26 Dispersion liquid, metal laminate, and method for producing printed board
JP2019562132A JPWO2019131809A1 (en) 2017-12-27 2018-12-26 Manufacturing method of dispersion liquid, metal laminate and printed circuit board

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017250952 2017-12-27
JP2017-250952 2017-12-27
JP2018-094782 2018-05-16
JP2018094782 2018-05-16

Publications (1)

Publication Number Publication Date
WO2019131809A1 true WO2019131809A1 (en) 2019-07-04

Family

ID=67067576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047959 WO2019131809A1 (en) 2017-12-27 2018-12-26 Dispersion, metal laminate plate, and production method for printed board

Country Status (5)

Country Link
JP (1) JPWO2019131809A1 (en)
KR (1) KR20200103630A (en)
CN (1) CN111492006A (en)
TW (1) TW201934642A (en)
WO (1) WO2019131809A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020071381A1 (en) * 2018-10-03 2020-04-09 Agc株式会社 Dispersion
WO2021095662A1 (en) * 2019-11-11 2021-05-20 Agc株式会社 Nonaqueous dispersions, method for producing layered product, and molded object
KR102262126B1 (en) * 2019-12-13 2021-06-07 이원석 Preparing method of sliding material for bearing/bushing
WO2021132055A1 (en) * 2019-12-25 2021-07-01 Agc株式会社 Dispersion liquid
JP2021167367A (en) * 2020-04-09 2021-10-21 Agc株式会社 Liquid composition, impregnated substrate, method for producing polymer carrying substrate, and method for producing laminate
CN114085436A (en) * 2021-12-04 2022-02-25 浙江华正新材料股份有限公司 Glue solution, prepreg, circuit substrate and printed circuit board
WO2022050163A1 (en) * 2020-09-01 2022-03-10 Agc株式会社 Method for manufacturing multilayer film, and multilayer film
JP7443715B2 (en) 2019-10-03 2024-03-06 Agc株式会社 Non-aqueous dispersion and method for producing non-aqueous dispersion

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114292615B (en) * 2022-03-10 2022-06-03 武汉市三选科技有限公司 Composition, adhesive film and chip packaging structure
CN115449105B (en) * 2022-10-12 2023-08-18 嘉兴富瑞邦新材料科技有限公司 Preparation method and application of polytetrafluoroethylene stretched film

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01289896A (en) * 1988-05-16 1989-11-21 Central Glass Co Ltd Fluororesin dispersion
JP2014101521A (en) * 2014-01-16 2014-06-05 Daikin Ind Ltd Fluoropolymer non-aqueous dispersing liquid
JP2015199901A (en) * 2014-04-02 2015-11-12 三菱鉛筆株式会社 oily solvent-based dispersion of polytetrafluoroethylene
JP2015199902A (en) * 2014-04-02 2015-11-12 三菱鉛筆株式会社 Oily solvent-based dispersion of polytetrafluoroethylene for resist material additive
WO2016017801A1 (en) * 2014-08-01 2016-02-04 旭硝子株式会社 Resin powder, method for producing same, complex, molded article, method for producing ceramic molded article, metal laminated plate, print substrate, and prepreg
JP2017222762A (en) * 2016-06-14 2017-12-21 三菱鉛筆株式会社 Fluororesin nonaqueous dispersion, fluororesin-containing thermosetting resin composition prepared therewith and cured product thereof

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09157578A (en) * 1995-12-08 1997-06-17 Daikin Ind Ltd Fluorine-containing material for coating material and method for coating object therewith
IT1293515B1 (en) * 1997-07-31 1999-03-01 Ausimont Spa FLUOROPOLYMER DISPERSIONS
US20020107331A1 (en) * 2000-12-11 2002-08-08 Attar Amir James Powders of fluorine-containing polymers having a hydrophilic surface and a method for their preparation
JP2003213062A (en) * 2002-01-18 2003-07-30 Three M Innovative Properties Co Fluoropolymer particle-dispersed non-aqueous composition and article coated with the same
US7026032B2 (en) 2003-11-05 2006-04-11 E. I. Du Pont De Nemours And Company Polyimide based compositions useful as electronic substrates, derived in part from (micro-powder) fluoropolymer, and methods and compositions relating thereto
JP5176375B2 (en) * 2007-04-12 2013-04-03 ダイキン工業株式会社 Method for producing aqueous dispersion and aqueous dispersion
JP5459037B2 (en) * 2010-04-19 2014-04-02 ダイキン工業株式会社 Fluoropolymer non-aqueous dispersion
US8969432B2 (en) 2011-01-17 2015-03-03 Daikin Industries, Ltd. Modified polytetrafluoroethylene particles, method for producing the same, and modified polytetrafluoroethylene molded product
US9389525B2 (en) * 2011-03-09 2016-07-12 Fuji Xerox Co., Ltd. Fluorine-containing resin particle dispersion, method for preparing fluorine-containing resin particle dispersion, coating liquid which contains fluorine-containing resin particles, method for preparing coating film which contains fluorine-containing resin particles, coating film which contains fluorine-containing resin particles, molded body, electrophotographic photoreceptor, method for preparing electrophotographic photoreceptor, image forming apparatus, and process cartridge
CN104011163A (en) 2011-12-12 2014-08-27 株式会社Lg化学 Cyanate Ester Resin Composition For Manufacturing Circuit Board And Flexible Metal-Clad Laminates Including Same
WO2015152240A1 (en) * 2014-04-02 2015-10-08 三菱鉛筆株式会社 Polytetrafluoroethylene dispersion in oily solvent
KR102387084B1 (en) * 2014-04-02 2022-04-15 미쓰비시 엔피쯔 가부시키가이샤 Polytetrafluoroethylene dispersion in oily solvent
CN105837839B (en) * 2015-01-30 2021-02-02 三菱铅笔株式会社 Polytetrafluoroethylene oil-based solvent dispersion, polytetrafluoroethylene-containing epoxy resin composition, and cured product thereof
WO2016159102A1 (en) 2015-04-01 2016-10-06 三菱鉛筆株式会社 Nonaqueous dispersion containing fluorine-based resin; polyimide precursor solution composition containing fluorine-based resin; polyimide, polyimide film and adhesive composition for circuit boards, each using said polyimide precursor solution composition containing fluorine-based resin; and production methods thereof
TWI738778B (en) * 2016-05-25 2021-09-11 日商三菱鉛筆股份有限公司 Non-aqueous dispersion of fluorine-based resin, thermosetting resin composition and hardened product of fluorine-containing resin using it, polyimide precursor solution composition
CN109415571B (en) * 2016-06-23 2021-08-03 Agc株式会社 Method for producing fluororesin powder-containing liquid composition
CN109476897B (en) * 2016-07-22 2021-12-14 Agc株式会社 Liquid composition, and method for producing film and laminate using same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01289896A (en) * 1988-05-16 1989-11-21 Central Glass Co Ltd Fluororesin dispersion
JP2014101521A (en) * 2014-01-16 2014-06-05 Daikin Ind Ltd Fluoropolymer non-aqueous dispersing liquid
JP2015199901A (en) * 2014-04-02 2015-11-12 三菱鉛筆株式会社 oily solvent-based dispersion of polytetrafluoroethylene
JP2015199902A (en) * 2014-04-02 2015-11-12 三菱鉛筆株式会社 Oily solvent-based dispersion of polytetrafluoroethylene for resist material additive
WO2016017801A1 (en) * 2014-08-01 2016-02-04 旭硝子株式会社 Resin powder, method for producing same, complex, molded article, method for producing ceramic molded article, metal laminated plate, print substrate, and prepreg
JP2017222762A (en) * 2016-06-14 2017-12-21 三菱鉛筆株式会社 Fluororesin nonaqueous dispersion, fluororesin-containing thermosetting resin composition prepared therewith and cured product thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020071381A1 (en) * 2018-10-03 2020-04-09 Agc株式会社 Dispersion
JP7443715B2 (en) 2019-10-03 2024-03-06 Agc株式会社 Non-aqueous dispersion and method for producing non-aqueous dispersion
WO2021095662A1 (en) * 2019-11-11 2021-05-20 Agc株式会社 Nonaqueous dispersions, method for producing layered product, and molded object
KR102262126B1 (en) * 2019-12-13 2021-06-07 이원석 Preparing method of sliding material for bearing/bushing
WO2021132055A1 (en) * 2019-12-25 2021-07-01 Agc株式会社 Dispersion liquid
JP2021167367A (en) * 2020-04-09 2021-10-21 Agc株式会社 Liquid composition, impregnated substrate, method for producing polymer carrying substrate, and method for producing laminate
WO2022050163A1 (en) * 2020-09-01 2022-03-10 Agc株式会社 Method for manufacturing multilayer film, and multilayer film
CN114085436A (en) * 2021-12-04 2022-02-25 浙江华正新材料股份有限公司 Glue solution, prepreg, circuit substrate and printed circuit board

Also Published As

Publication number Publication date
KR20200103630A (en) 2020-09-02
JPWO2019131809A1 (en) 2021-01-14
TW201934642A (en) 2019-09-01
CN111492006A (en) 2020-08-04

Similar Documents

Publication Publication Date Title
JP7115589B2 (en) LIQUID COMPOSITIONS AND METHOD FOR MANUFACTURING FILM AND LAMINATES USING SAME LIQUID COMPOSITIONS
WO2019131809A1 (en) Dispersion, metal laminate plate, and production method for printed board
CN109415571B (en) Method for producing fluororesin powder-containing liquid composition
CN109661862B (en) Metal laminate, method for producing same, and method for producing printed board
JP7247896B2 (en) Method for producing dispersion, metal laminate and printed circuit board
TWI814836B (en) Dispersion liquid, method for manufacturing metal foil with resin, and method for manufacturing printed circuit board
JP7371681B2 (en) Liquid composition, powder, and method for producing powder
CN113631669B (en) Liquid composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18897445

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019562132

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18897445

Country of ref document: EP

Kind code of ref document: A1