WO2021235252A1 - Method for producing laminate which has layer containing thermofusible tetrafluoroethylene polymer - Google Patents

Method for producing laminate which has layer containing thermofusible tetrafluoroethylene polymer Download PDF

Info

Publication number
WO2021235252A1
WO2021235252A1 PCT/JP2021/017605 JP2021017605W WO2021235252A1 WO 2021235252 A1 WO2021235252 A1 WO 2021235252A1 JP 2021017605 W JP2021017605 W JP 2021017605W WO 2021235252 A1 WO2021235252 A1 WO 2021235252A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
polymer
heat
coating film
producing
Prior art date
Application number
PCT/JP2021/017605
Other languages
French (fr)
Japanese (ja)
Inventor
敦美 山邊
文 伊藤
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to JP2022524385A priority Critical patent/JPWO2021235252A1/ja
Priority to CN202180036508.5A priority patent/CN115666942A/en
Priority to KR1020227031248A priority patent/KR20230010621A/en
Publication of WO2021235252A1 publication Critical patent/WO2021235252A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/12Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers

Definitions

  • the present invention relates to a method for producing a laminate having a layer containing a heat-meltable tetrafluoroethylene polymer.
  • Tetrafluoroethylene-based polymers have excellent physical properties such as electrical insulation, water and oil repellency, chemical resistance, and heat resistance, and are widely used in electronic device parts, automobile parts, and the like.
  • tetrafluoroethylene polymers are excellent in low dielectric property and low dielectric loss tangent property, their use in the field of electronic devices is attracting attention by taking advantage of their characteristics.
  • a laminate in which a tetrafluoroethylene polymer and a metal substrate such as copper are laminated, or a laminate in which a tetrafluoroethylene polymer and a polyimide resin having excellent heat resistance are laminated is used as a printed circuit substrate.
  • a laminate in which a tetrafluoroethylene polymer and a metal substrate such as copper are laminated or a laminate in which a tetrafluoroethylene polymer and a polyimide resin having excellent heat resistance are laminated is used as a printed circuit substrate.
  • the tetrafluoroethylene polymer is inferior in adhesiveness to other resins and metals, various attempts have been made to improve the adhesiveness.
  • Patent Document 1 describes a method for producing a laminate in which a dispersion liquid containing a powder of a tetrafluoroethylene polymer is applied onto a substrate and heated to form a layer containing the tetrafluoroethylene polymer. ..
  • the layer formed by such a manufacturing method may swell or crack due to gas or the like generated during heating. As a result, it is known that uneven thickness of the layer and variation in electrical characteristics occur (Patent Document 2).
  • a layer containing a tetrafluoroethylene polymer is included in the laminate in which a dispersion containing the tetrafluoroethylene polymer is applied onto a substrate of another resin or metal and heated to form a layer containing the tetrafluoroethylene polymer. It has been required to improve the adhesiveness between the substrate and the substrate, the water resistance of the laminate and the peel strength, suppress the deterioration of the peel strength during use, that is, improve the reliability of the laminate in use.
  • the present inventors have produced a laminate having the layer and the substrate for the purpose of providing a laminate having excellent peel strength and water resistance, in which the adhesiveness between the layer containing the tetrafluoroethylene polymer and the substrate is improved.
  • the method was examined and the present invention was completed.
  • the present invention provides a manufacturing method for improving the adhesiveness between a layer containing a tetrafluoroethylene polymer and a substrate to give a laminate having excellent peel strength and water resistance.
  • the present invention has the following aspects.
  • a dispersion containing a powder of a heat-meltable tetrafluoroethylene polymer is applied onto a substrate and dried to form a coating film, and the obtained coating film is further heated to further heat the heat-meltable tetrafluoroethylene polymer.
  • a method for producing a laminate having.
  • the heat-meltable tetrafluoroethylene polymer contains units based on perfluoro (alkyl vinyl ether) and has polar functional groups, or contains 2 to 5 mol% of units based on perfluoro (alkyl vinyl ether) with respect to all units.
  • the temperature of the heat compression is not more than the glass transition temperature of the heat-meltable tetrafluoroethylene polymer and 100 ° C.
  • the dispersion further contains an inorganic filler.
  • the dispersion liquid further contains an inorganic filler surface-treated with a silane coupling agent.
  • the present invention it is possible to improve the adhesiveness between the layer containing the tetrafluoroethylene polymer and various substrates, and to produce a laminate having excellent peel strength and water resistance.
  • the "heat-meltable tetrafluoroethylene-based polymer” is a polymer containing a unit (hereinafter, also referred to as TFE unit) based on tetrafluoroethylene (hereinafter, also referred to as TFE), and has a melt flow rate under the condition of a load of 49N. It means a melt-fluid polymer having a temperature of 1 to 1000 g / 10 minutes.
  • Tg glass transition point of the polymer
  • DMA dynamic viscoelasticity measurement
  • the “polymer melting temperature (melting point)” is the temperature corresponding to the maximum value of the melting peak measured by the differential scanning calorimetry (DSC) method.
  • DSC differential scanning calorimetry
  • “D50” is the average particle size of the object (powder or inorganic filler), and is the volume-based cumulative 50% diameter of the object obtained by the laser diffraction / scattering method. That is, the particle size distribution of the object is measured by the laser diffraction / scattering method, the cumulative curve is obtained with the total volume of the group of objects as 100%, and the particle size at the point where the cumulative volume is 50% on the cumulative curve.
  • D90 is the cumulative volume particle size of the object, and is the volume-based cumulative 90% diameter of the object obtained in the same manner as “D50”.
  • the "viscosity of the dispersion liquid” is a value measured for the dispersion liquid at room temperature (25 ° C.) and a rotation speed of 30 rpm using a B-type viscometer. The measurement is repeated 3 times, and the average value of the measured values for 3 times is used.
  • the "thixotropic ratio of the dispersion liquid” is a value calculated by dividing the viscosity obtained by measuring the dispersion liquid under the condition of a rotation speed of 30 rpm by the viscosity obtained by measuring the dispersion liquid under the condition of a rotation speed of 60 rpm. ..
  • the "monomer-based unit” means an atomic group based on the monomer formed by polymerization of the monomer.
  • the unit may be a unit directly formed by a polymerization reaction, or may be a unit in which a part of the unit is converted into another structure by processing a polymer.
  • the unit based on the monomer a is also simply referred to as “monomer a unit”.
  • the production method of the present invention (hereinafter, also referred to as this method) is a dispersion liquid (hereinafter, this dispersion liquid) containing a powder (hereinafter, also referred to as this powder) of a heat-meltable tetrafluoroethylene polymer (hereinafter, also referred to as F polymer).
  • a powder hereinafter, also referred to as this powder
  • a heat-meltable tetrafluoroethylene polymer hereinafter, also referred to as F polymer.
  • This is a method for obtaining a laminated body (hereinafter, also referred to as the present laminated body) by heating and compressing the coating film or the layer and the substrate at any stage from the formation of the above layer to the formation of the layer.
  • the melting temperature of the F polymer contained in this powder is preferably 200 ° C. or higher, and the melting temperature of the F polymer is more preferably 250 ° C. or higher, further preferably 280 ° C. or higher.
  • the melting temperature of the F polymer is preferably 325 ° C. or lower from the viewpoint of moldability.
  • the glass transition point of the F polymer is preferably 30 to 150 ° C, more preferably 75 to 125 ° C.
  • the F polymer includes a polymer (hereinafter also referred to as PFA) containing a TFE unit and a unit based on perfluoro (alkyl vinyl ether) (hereinafter also referred to as PAVE) (hereinafter also referred to as PAVE unit) or a unit based on TFE and hexafluoropropylene.
  • PFA polymer
  • a copolymer containing hereinafter, also referred to as FEP
  • FEP is preferable
  • PFA is particularly preferable.
  • These polymers may further contain units based on other comonomeres.
  • CF 2 CFOCF 3
  • CF 2 CFOCF 2 CF 3
  • CF 2 CFOCF 2 CF 3
  • PPVE CFOCF 2 CF 2 CF 3
  • the F polymer preferably has a polar functional group.
  • the F polymer having a polar functional group tends to further improve reliability such as adhesiveness to a substrate, which will be described later, peel strength and water resistance of the laminate.
  • the polar functional group may be contained in the monomer unit in the F polymer, or may be contained in the terminal group of the main chain of the polymer. Examples of the latter embodiment include an F polymer having a polar functional group as a terminal group derived from a polymerization initiator, a chain transfer agent, etc., and an F polymer having a polar functional group obtained by subjecting the F polymer to plasma treatment or ionization line treatment. Be done.
  • the polar functional group is preferably a hydroxyl group-containing group or a carbonyl group-containing group, and a carbonyl group-containing group is particularly preferable.
  • the number of oxygen-containing polar groups in the F polymer is preferably 10 to 5000, more preferably 100 to 3000, per 1 ⁇ 10 6 carbon atoms in the main chain.
  • the number of oxygen-containing polar groups in the F polymer can be quantified by the composition of the polymer or the method described in International Publication No. 2020/145133.
  • the hydroxyl group-containing group is preferably a group containing an alcoholic hydroxyl group, more preferably -CF 2 CH 2 OH or C (CF 3 ) 2 OH.
  • the carbonyl group-containing group is a group containing a carbonyl group (> C (O)), a carboxyl group, an alkoxycarbonyl group, an amide group, an isocyanate group, a carbamate group (-OC (O) NH 2 ), and an acid anhydride residue.
  • Group (-C (O) OC (O)-), imide residue (-C (O) NHC (O)-etc.) or carbonate group (-OC (O) O-) is preferred, and acid anhydride residue. Is particularly preferable.
  • Suitable embodiments of the F polymer include a polymer (1) containing TFE and PAVE units and having polar functional groups, or 2 to 5 mol of PAVE units per total monomer unit, including TFE and PAVE units.
  • a polymer (2) containing% and having no polar functional group can be mentioned. Since these polymers form microspherulites in the product, the properties of the obtained product tend to be improved.
  • the polymer (1) is preferably a polymer containing a TFE unit, a PAVE unit, and a unit based on a monomer having a hydroxyl group-containing group or a carbonyl group-containing group.
  • the polymer (1) has 90 to 99 mol% of TFE units, 0.5 to 9.97 mol% of PAVE units, and 0.01 to 3 mol% of units based on the above-mentioned monomers, respectively, with respect to all the units. It is preferable to include it.
  • the monomer is preferably itaconic anhydride, citraconic anhydride or 5-norbornene-2,3-dicarboxylic acid anhydride (also known as hymic anhydride; hereinafter also referred to as "NAH").
  • specific examples of the polymer (1) include the polymers described in International Publication No. 2018/16644.
  • the polymer (2) is composed of only TFE units and PAVE units, and preferably contains 95 to 98 mol% of TFE units and 2 to 5 mol% of PAVE units with respect to all the monomer units.
  • the content of PAVE units in the polymer (2) is preferably 2.1 mol% or more, more preferably 2.2 mol% or more, based on all the monomer units.
  • the fact that the polymer (2) does not have polar functional groups means that the number of polar functional groups possessed by the polymer is less than 500 per 1 ⁇ 10 6 carbon atoms constituting the polymer main chain. Means that The number of polar functional groups is preferably 100 or less, more preferably less than 50. The lower limit of the number of polar functional groups is usually 0.
  • the polymer (2) may be produced by using a polymerization initiator, a chain transfer agent, or the like that does not generate a polar functional group as a terminal group of the polymer chain, and the F polymer having a polar functional group is fluorinated. May be manufactured.
  • the fluorination treatment method include a method using fluorine gas (see JP-A-2019-194314).
  • This powder is a powder containing an F polymer, and the amount of the heat-meltable F polymer in the powder is preferably 80% by mass or more, more preferably 100% by mass.
  • the D50 of this powder is preferably 50 ⁇ m or less, more preferably 20 ⁇ m or less, and even more preferably 8 ⁇ m or less.
  • the D50 of this powder is preferably 0.1 ⁇ m or more, more preferably 0.3 ⁇ m or more, and even more preferably 1 ⁇ m or more.
  • the D90 of this powder is preferably less than 100 ⁇ m, more preferably 90 ⁇ m or less. If D50 and D90 of the present powder are in such a range, the surface area thereof becomes large, and the dispersibility of the present powder is likely to be further improved.
  • This powder may contain other resins or inorganic substances different from the F polymer.
  • resins include aromatic polymers such as aromatic polyimides, aromatic maleimides, styrene elastomers, and aromatic polyamic acids.
  • inorganic substances include silica.
  • This powder may form a core-shell structure having an F polymer as a core and a resin or an inorganic compound other than the F polymer as a shell, and the F polymer as a shell and a resin or an inorganic compound other than the F polymer as a core. It may form a core-shell structure.
  • the content of F powder in this dispersion is preferably 5% by mass or more, more preferably 10% by mass or more.
  • the content of the F powder is preferably 60% by mass or less, more preferably 40% by mass or less.
  • the dispersion liquid in which the powder is dispersed in a dispersion medium is applied onto the substrate.
  • the dispersion medium is preferably degassed from the viewpoint of reducing the uniformity of the component distribution of the molded product and suppressing voids.
  • the dispersion medium is a liquid, preferably a low-viscosity liquid or a high-viscosity liquid, and more preferably a low-viscosity liquid.
  • the dispersion medium may consist of one liquid or may be a mixture of a plurality of liquids.
  • the low-viscosity liquid is a liquid compound having a viscosity at 25 ° C. of more than 0 mPa ⁇ s and 10 mPa ⁇ s or less and does not react with an F polymer and a different resin.
  • the boiling point of the low-viscosity liquid is preferably 75 ° C. or higher, more preferably 100 ° C. or higher.
  • the boiling point of the low-viscosity liquid is preferably 300 ° C. or lower, more preferably 250 ° C. or lower.
  • the low-viscosity liquid may be water or a non-aqueous dispersion medium.
  • non-aqueous dispersion medium amides, ketones or esters are preferable, and N-methyl-2-pyrrolidone, ⁇ -butyrolactone, cyclohexanone or cyclopentanone are more preferable.
  • Highly viscous liquids are liquid compounds having a viscosity at 25 ° C. of more than 10 mPa ⁇ s and do not react with F-polymers and different resins.
  • the viscosity of the highly viscous liquid is preferably 200 mPa ⁇ s or less.
  • the boiling point of the highly viscous liquid is preferably 100 ° C. or higher.
  • the boiling point of the highly viscous liquid is preferably 350 ° C. or lower, more preferably 300 ° C. or lower.
  • the highly viscous liquid is preferably glycol, glycol ether or glycol acetate, more preferably glycol monoalkyl ether, glycol monoaryl ether, glycol monoalkyl ether acetate or glycol monoaryl ether acetate, and even more preferably glycol monoalkyl ether.
  • Specific examples of the highly viscous liquid include ethylene glycol mono-2-ethylhexyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, dipropylene glycol monobutyl ether, triethylene glycol monomethyl ether, tripropylene glycol monobutyl ether, and propylene.
  • Glycol monophenyl ether, diethylene glycol monoethyl ether acetate or diethylene glycol monobutyl ether acetate can be mentioned.
  • the content of the dispersion medium in the dispersion is preferably 30% by mass or more.
  • the content of the dispersion medium is preferably 90% by mass or less, more preferably 80% by mass or less.
  • the solid content in the dispersion is preferably 20% by mass or more, more preferably 30% by mass or more, with the total mass of the dispersion as 100%. Further, from the viewpoint of dispersibility of the dispersion liquid, the solid content is preferably 60% by mass or less, more preferably 50% by mass or less.
  • the amount of solid content in the dispersion liquid means the total amount of substances that form solid content in the molded product formed from the dispersion liquid. For example, when the dispersion liquid contains an F polymer and an inorganic filler and an aromatic polymer described later, the total content of these components is the solid content in the dispersion liquid.
  • the dispersion liquid is a liquid containing the present powder, and is a liquid composition in which the present powder is dispersed.
  • the dispersion liquid may contain a third component other than the present powder.
  • the inorganic filler is used from the viewpoint of improving the electric properties of the laminate and the low linear expansion property of the layer containing the F polymer in the laminate, and the surface activity is selected from the viewpoint of improving the dispersion stability and the handleability.
  • the agent include aromatic polymers from the viewpoint of improving the peel strength and processability of the laminate.
  • the inorganic filler is preferably a nitride filler or an inorganic oxide filler, and is preferably a boron nitride filler, a beryllia filler (a filler of an oxide of beryllium), a silicate filler (silica filler, a wollastonite filler, a talc filler, or a steatite filler).
  • Metal oxide fillers such as cerium oxide, aluminum oxide, magnesium oxide, zinc oxide or titanium oxide are more preferable, silica fillers, steatite fillers and boron nitride fillers are more preferable, and silica fillers are particularly preferable.
  • the silica content in the silica filler is preferably 50% by mass or more, more preferably 75% by mass or more.
  • the silica content is preferably 100% by mass or less, more preferably 90% by mass or less.
  • the surface of the inorganic filler is surface-treated.
  • the surface treatment agent used for such surface treatment include polyhydric alcohols such as trimethylolethane, pentaeristol or propylene glycol, saturated fatty acids such as stearic acid and lauric acid, esters thereof, alkanolamines, trimethylamines and amines such as triethylamine. , Paraffin wax, silane coupling agent, silicone, polysiloxane and the like.
  • the silane coupling agent is 3-aminopropyltriethoxysilane, vinyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane or 3-isocyanate.
  • a silane coupling agent having a functional group such as propyltriethoxysilane is preferable.
  • the average particle size of the inorganic filler, D50 is preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less.
  • the average particle size is preferably 0.1 ⁇ m or more, more preferably 1 ⁇ m or more.
  • the D50 of the inorganic filler is preferably 10 ⁇ m or more. In this case, voids are less likely to occur in the layer containing the F polymer in the present laminate, and the present laminate tends to have excellent water resistance. Further, since the surface area of the inorganic filler is small, resistance at the interface with the F polymer is unlikely to occur, and the laminated body tends to have excellent electrical characteristics.
  • the shape of the inorganic filler may be granular, needle-shaped (fibrous), or plate-shaped.
  • Specific shapes of the inorganic filler include spherical, scaly, layered, leafy, apricot kernel, columnar, chicken crown, equiaxed, leafy, mica, block, flat plate, wedge, rosette, and mesh.
  • the shape and the prismatic shape are mentioned, and a spherical shape or a scaly shape is preferable.
  • the above-mentioned inorganic filler may have various shapes such as a plate shape, a hollow shape, and a honeycomb shape.
  • the hollow ratio (average value of the volume ratio of the voids per particle) is preferably 40 to 80%.
  • the particle strength of the hollow filler is preferably 20 MPa or more.
  • the particle strength is the particle strength when the residual ratio of the hollow filler after pressure pressing is 50%.
  • the particle strength can be calculated from the apparent density of the hollow filler and the apparent density of the pellets obtained by pressure-pressing the hollow filler.
  • the inorganic filler one kind of inorganic filler may be used alone, or two or more kinds of inorganic fillers may be used in combination. In the latter case, it is preferable to use at least a silica filler. Further, in the latter case, it is preferable to use a hollow filler and a non-hollow filler in combination.
  • Suitable specific examples of the inorganic filler are silica filler ("Admafine” series manufactured by Admatex Co., Ltd.) and zinc oxide surface-treated with an ester such as propylene glycol dicaprate ("FINEX” manufactured by Sakai Chemical Industry Co., Ltd.).
  • the content thereof is preferably 1% by mass or more, preferably 5% by mass or more.
  • the content is preferably 40% by mass or less, and preferably 30% by mass or less.
  • the mass ratio of the content of the inorganic filler to the content of the F polymer in this dispersion is preferably 0.5 or more, more preferably 0.7 or more.
  • the mass ratio is preferably 1.5 or less, more preferably 1.2 or less. In this case, the dispersion stability of the present dispersion is more likely to be improved, and the electrical characteristics of the present laminate are more likely to be improved.
  • the surfactant is preferably a nonionic surfactant.
  • the hydrophilic moiety of the surfactant preferably has an oxyalkylene group or an alcoholic hydroxyl group.
  • the oxyalkylene group may be composed of one kind or two or more kinds. In the latter case, different types of oxyalkylene groups may be randomly arranged or may be arranged in blocks.
  • the oxyalkylene group is preferably an oxyethylene group.
  • the hydrophobic moiety of the surfactant preferably has an acetylene group, a polysiloxane group, a perfluoroalkyl group or a perfluoroalkenyl group.
  • a glycol-based surfactant, an acetylene-based surfactant, a silicone-based surfactant or a fluorine-based surfactant is preferable, and a silicone-based surfactant is more preferable.
  • the nonionic surfactant one kind may be used, or two or more kinds may be used. When two kinds of nonionic surfactants are used, the nonionic surfactants are preferably a silicone-based surfactant and a glycol-based surfactant.
  • the fluorine-based surfactant is preferably a fluorine-based surfactant having a hydroxyl group, particularly an alcoholic hydroxyl group or an oxyalkylene group, and a perfluoroalkyl group or a perfluoroalkenyl group.
  • Specific examples of such surfactants include the "Futergent” series (Futtergent manufactured by Neos Co., Ltd. is a registered trademark), the “Surflon” series (Surflon manufactured by AGC Seimi Chemical Co., Ltd. is a registered trademark), and the "Mega Fuck” series ( DIC Co., Ltd. Mega Fvck is a registered trademark), "Unidyne” series (Daikin Kogyo Co., Ltd.
  • aromatic polyimide aromatic polyimide, aromatic polyamideimide, aromatic maleimide, aromatic elastomer (styrene elastomer and the like), aromatic polyamic acid or polyphenylene ether are preferable, and aromatic polyimide or aromatic polyamic acid is more preferable.
  • aromatic polyimide may be thermoplastic or thermosetting.
  • the thermoplastic polyimide means a polyimide that has been imidized and does not undergo a further imidization reaction.
  • aromatic polyimides include "Neoprim (registered trademark)” series (manufactured by Mitsubishi Gas Chemical Company), “Spixeria (registered trademark)” series (manufactured by Somar), and “Q-PILON (registered trademark)” series ( PI Technology Research Institute), “WINGO” series (Wingo Technology), “Toamide (registered trademark)” series (T & K TOKA), “KPI-MX” series (Kawamura Sangyo), “Yupia (" Registered trademark) -AT “series (manufactured by Ube Industries, Ltd.) can be mentioned.
  • aromatic polyamide-imide examples include "HPC-1000” and “HPC-2100D” (both manufactured by Showa Denko Materials Co., Ltd.).
  • the content thereof is preferably 1 to 30% by mass, more preferably 5 to 20% by mass. In this case, the peel strength and UV processability of the laminated body are likely to be improved.
  • the dispersion liquid may contain non-heat-meltable polytetrafluoroethylene (hereinafter, also referred to as PTFE) in addition to the third component.
  • PTFE non-heat-meltable polytetrafluoroethylene
  • the physical properties based on the non-heat-meltable PTFE are well developed, and the present laminate tends to have excellent electrical characteristics.
  • the layer containing the F polymer in the present laminate further contains the inorganic filler and the non-heat-meltable PTFE, the non-heat-meltable PTFE is partially fibrillated when the layer containing the F polymer and the substrate are heated and compressed. It is preferable that the inorganic filler is highly supported and the powder falling is easily suppressed.
  • the non-thermally meltable PTFE means a PTFE that does not have a temperature at which the melting flow rate is 1 to 1000 g / 10 minutes under the condition of a load of 49 N.
  • the non-heat-meltable PTFE may be a homopolymer of TFE, and in addition to the TFE unit, a trace amount of PAVE, hexafluoropropylene (hereinafter, also referred to as “HFP”) or fluoroalkyl ether (hereinafter, hereinafter, “HFP”) may be used. It may be a modified PTFE such as a copolymer having a unit based on (also referred to as “FAE”).
  • This dispersion preferably contains non-heat-meltable PTFE as a non-heat-meltable PTFE powder.
  • the D50 of such powder is preferably 0.1 to 1 ⁇ m.
  • the content of the non-heat-meltable PTFE powder is preferably 1% by mass or more, more preferably 10% by mass or more.
  • the content is preferably 60% by mass or less, more preferably 40% by mass or less.
  • the ratio of the content of the non-heat-meltable PTFE powder in the present dispersion is preferably 1 or more, more preferably 3 or more, with the content of the F powder being 1.
  • the ratio is preferably 100 or less.
  • the laminated body tends to have excellent electrical characteristics and water resistance.
  • the present dispersion may also contain a silane coupling agent separately from the viewpoint of the adhesiveness of the layer containing the F polymer.
  • the present dispersion tends to be excellent in dispersion stability and film forming property.
  • the silane coupling agent include compounds similar to the silane coupling agent used for the surface treatment of the inorganic filler.
  • the content thereof is preferably 0.1% by mass or more, more preferably 1% by mass or more.
  • the content is preferably 20% by mass or less, more preferably 10% by mass or less.
  • the ratio of the content of the silane coupling agent is preferably 0.01 or more, more preferably 0.05 or more, with the content of the F powder being 1.
  • the ratio of the content of the silane coupling agent is preferably 0.3 or less, more preferably 0.1 or less, with the content of the F powder being 1.
  • the present dispersion tends to have excellent dispersion stability.
  • Preferred silane coupling agents include the silane coupling agent used for the surface treatment of the above-mentioned inorganic filler.
  • the dispersion liquid is applied onto a substrate and dried to form a coating film.
  • the substrate include a metal substrate and a resin substrate.
  • the metal substrate is preferably a metal foil. If the metal foil is processed, the molded product of the present invention can be suitably used as a printed circuit board.
  • the metal constituting the metal foil include copper, copper alloy, stainless steel, nickel, nickel alloy, aluminum, aluminum alloy, titanium, and titanium alloy.
  • a copper foil is preferable, a rolled copper foil having no distinction between the front and back sides or an electrolytic copper foil having a distinction between the front and back sides is more preferable, and a rolled copper foil is further preferable.
  • the rolled copper foil has a small surface roughness, transmission loss can be reduced even when the laminated body is processed into a printed circuit board. Further, the rolled copper foil is preferably used after being immersed in a hydrocarbon-based organic solvent to remove rolling oil.
  • the ten-point average roughness of the surface of the metal foil is preferably 0.01 to 0.05 ⁇ m.
  • the metal substrate may be a metal foil with a carrier including two or more layers of metal foil.
  • the metal foil with a carrier include a copper foil with a carrier having a thickness of 10 to 35 ⁇ m and an ultrathin copper foil having a thickness of 2 to 5 ⁇ m laminated on the carrier copper foil via a release layer. Be done. By peeling off only the carrier copper foil of the copper foil with a carrier, a laminate having an ultrathin copper foil can be easily formed. By using this laminate, it is possible to form a fine pattern by using an ultrathin copper foil layer as a plating seed layer by an MSAP (modified semi-additive) process.
  • MSAP modified semi-additive
  • the release layer a metal layer containing nickel or chromium or a multilayer metal layer in which the metal layers are laminated is preferable from the viewpoint of heat resistance.
  • the carrier metal foil can be easily peeled from the ultrathin metal foil even after a step of 300 ° C. or higher.
  • Specific examples of the metal foil with a carrier include the trade name "FUTF-5DAF-2" manufactured by Fukuda Metal Foil Powder Industry Co., Ltd.
  • a layer containing polyimide is preferable, and a polyimide film is more preferable.
  • a polyimide a polyimide obtained by reacting a diamine with a carboxylic acid dianhydride to synthesize a polyamic acid and imidizing the polyamic acid by a thermal imidization method or a chemical imidization method is preferable.
  • aromatic polyimide is particularly preferable.
  • the surface of the substrate may be surface-treated with a silane coupling agent or the like.
  • This dispersion is applied onto the substrate and dried to remove the dispersion medium to form a coating film containing an F polymer.
  • the coating film may be formed on at least one side of the surface of the base material, the coating film may be formed on only one side of the base material, or the coating film may be formed on both sides of the base material. Further, drying may be carried out until the dispersion medium is completely removed to form a coating film containing no dispersion medium, or drying may be carried out until most of the dispersion medium is removed to form a coating film containing a trace amount of the dispersion medium. You may. In the latter coating film formation, it is preferable to remove 90% by mass or more of the dispersion medium contained in the present dispersion liquid.
  • the coating film preferably contains an unmelted F polymer, and more preferably formed by packing the unmelted present powder.
  • the spray method roll coat method, spin coat method, gravure coat method, micro gravure coat method, gravure offset method, knife coat method, kiss coat method, bar coat method, die coat method, fountain Mayer bar method.
  • the application method of the slot die coating method can be used.
  • the temperature for removing the dispersion medium is preferably a temperature below the melting temperature of the F polymer and below the boiling point of the dispersion medium, preferably 100 ° C. or less below the melting temperature of the F polymer and 10 ° C. to 100 ° C. below the boiling point of the dispersion medium. More preferred.
  • the temperature for removing the dispersion medium is preferably 150 ° C. or lower, more preferably 100 to 100 ° C. It is 120 ° C. From the viewpoint of forming a coating film having excellent smoothness, it is preferable to blow air onto the surface of the formed coating film when removing the dispersion medium.
  • the formed coating film is further heated, and the F polymer is melt-fired to form a layer containing the F polymer (hereinafter, also referred to as an F layer).
  • the F polymer in the F layer may be completely melt-fired or partially melt-fired.
  • the thickness of the F layer is preferably 1 ⁇ m or more, more preferably 10 ⁇ m or more, still more preferably 50 ⁇ m or more.
  • the upper limit of the thickness is preferably 300 ⁇ m or less, more preferably 100 ⁇ m or less, still more preferably 50 ⁇ m or less. In this range, the F layer having excellent crack resistance can be easily formed.
  • the peel strength between the F layer and the base material is preferably 10 N / cm or more, more preferably 15 N / cm or more. The peel strength is preferably 100 N / cm or less.
  • the F layer is formed through the steps of applying the dispersion liquid and heating as described above, but these steps may be repeated twice or more.
  • the present dispersion may be applied to the surface of the base material and heated to form the F layer, and the present dispersion may be further applied to the surface of the F layer and heated to form the second F layer. .. Further, at the stage where the present dispersion is applied to the surface of the base material and heated to remove the liquid dispersion medium, the present dispersion may be further applied to the surface and heated to form the F layer.
  • the coating film or the F layer and the substrate are heat-compressed at least in any process from the formation of the coating film to the formation of the F layer.
  • the heat compression is preferably performed after the formation of the coating film or the formation of the F layer.
  • the formation of the coating film is to dry the dispersion liquid applied on the substrate to remove the dispersion medium and form the coating film containing the F polymer.
  • the formation of the F layer is, as described above, further heating the coating film to melt-fire the F polymer to form the F layer, until the cooling after the firing is completed.
  • Cooling after melt firing may be either forced cooling with cold air or cold water, or natural cooling left at around room temperature, but the stage when the temperature of the laminate having the F layer drops to the ambient temperature is regarded as the completion of cooling.
  • the heat compression is preferably performed when the F layer is formed, preferably after the F layer is formed, and preferably before the cooling is completed, and more preferably immediately after the F polymer is fired.
  • heat compression may be performed after the first application, or after the second application and heating. It may be performed after any of the steps. Further, heat compression may be performed sequentially after each step, or several steps may be performed without heat compression. Heat compression may be performed after all the steps of applying and heating the dispersion liquid.
  • the heat compression is, for example, (1) The stage immediately after the dispersion liquid is dried and the coating film is formed (2) The stage after the coating film is formed and before the coating film is further heated to form the F layer. (3) At the stage where the coating film is further heated and the F polymer is melt-fired to form the F layer. (4) The stage until the F layer formed by melting and firing the F polymer is cooled. It is preferable to carry out at any stage of.
  • the temperature of the coating film in (1) above is preferably the temperature at which the dispersion medium is removed.
  • the coating film may be cooled once, or after the coating film is formed, it may be further heated without being cooled.
  • the heat compression is more preferably performed at the step (3) or (4) above, and further preferably at the step (4).
  • the heat compression may be performed in a plurality of the above steps.
  • the temperature of heat compression is preferably higher than the glass transition temperature of the F polymer, and more preferably 30 ° C. or higher than the glass transition temperature.
  • the temperature of heat compression is preferably 100 ° C. higher than the melting temperature of the F polymer, more preferably lower than the melting temperature, and even more preferably 100 ° C. or lower than the melting temperature.
  • the temperature of heat compression is preferably a temperature higher than the glass transition temperature of the F polymer and 100 ° C. or more lower than the melting temperature of the F polymer.
  • the heat compression is preferably performed in an atmosphere of atmospheric pressure to reduced pressure, and more preferably performed in an atmosphere of atmospheric pressure.
  • the pressure for heat compression is preferably 0.2 MPa or more, more preferably 0.5 MPa or more.
  • the pressure is preferably 10 MPa or less, more preferably 5 MPa or less.
  • the heat compression method is a method of passing the coating film or the F layer and the substrate between a pair of heated rolls at any stage from the formation of the coating film to the formation of the F layer, the coating film or the F layer.
  • a method of passing between a pair of rolls it is preferable to use a roll press machine.
  • a pair of rolls a pair of metal rolls may be used, or a metal roll and a rubber roll may be used.
  • the linear pressure applied between the pair of rolls is preferably 1 to 20 tf / m, more preferably 2 to 10 tf / m.
  • the temperature of the roll is preferably 70 ° C. or higher than the melting point of the F polymer, and more preferably 50 ° C. or higher than the melting point of the F polymer.
  • the temperature of the roll is preferably 70 ° C. or higher, which is 70 ° C. lower than the melting point of the F polymer, and more preferably 50 ° C. or higher, which is 50 ° C. lower than the melting point of the F polymer.
  • the temperature of the roll is preferably 250 ° C. or higher, more preferably 300 ° C. or higher.
  • the temperature of the roll is preferably 370 ° C or lower, more preferably 350 ° C or lower.
  • a release film is placed between the surface of the F layer and the roll, or the roll is placed, from the viewpoint of suppressing the adhesion of the F layer to the roll. It is preferable to surface-treat the surface with a mold release agent. It is preferable that the release film is in contact with the F layer only on the pressurized surface of the roll and is peeled off when the F layer is separated from the roll.
  • the thickness of the release film is preferably 50 to 150 ⁇ m.
  • release film examples include a polyimide film, and specific examples thereof include “Apical NPI” (manufactured by Kaneka Corporation), “Kapton EN” (Toray DuPont), and “UPIREX S (Ube Industries, Ltd.)".
  • the thickness of the coating film or F layer after heat compression is preferably 5 to 200 ⁇ m.
  • the ratio of the thickness of the coating film or the F layer after the heat compression to the thickness of the coating film or the F layer before the heat compression is preferably 0.1 to 0.8.
  • the ratio of the thickness of the coating film after heat compression to the thickness of the coating film before heat compression is 0.1 to 0.8, or the thickness of the F layer before heat compression is after heat compression.
  • the thickness ratio of the F layer is preferably 0.1 to 0.8.
  • the thickness of the F layer after heat compression is preferably 40 ⁇ m or more.
  • the thickness of the F layer after heat compression is usually 200 ⁇ m or less.
  • the present laminated body is obtained by the above-mentioned method.
  • the porosity of the F layer in this laminated body is preferably 5% or less, more preferably 4% or less.
  • the porosity is preferably 0.01% or more, more preferably 0.1% or more.
  • the void ratio is determined by image processing to determine the void portion of the F layer from the SEM photograph of the cross section of the molded product observed using a scanning electron microscope (SEM), and the area occupied by the void portion is the area occupied by the F layer. It is the ratio (%) divided by the area.
  • the area occupied by the void portion is obtained by approximating the void portion to a circle.
  • the present laminated body may be a laminated body having an F layer on one side of the substrate and the substrate, or may be a laminated body having an F layer on both sides of the substrate and the substrate.
  • the surface of the F layer of the present laminate may be further surface-treated to improve its adhesiveness.
  • Surface treatment includes corona discharge treatment, plasma treatment such as atmospheric pressure plasma discharge treatment or vacuum plasma discharge treatment, plasma graft polymerization treatment, electron beam irradiation, light beam irradiation treatment such as Exima UV light irradiation, itro treatment using flame, metallic sodium. Wet etching treatment using the above can be mentioned, and vacuum plasma discharge treatment is preferable.
  • the vacuum plasma discharge treatment can be carried out using a known device. From the viewpoint of processing efficiency, the vacuum plasma discharge treatment is preferably a glow discharge treatment in which continuous discharge is performed at a gas pressure of 0.1 to 1330 Pa, preferably 1 to 266 Pa, that is, a so-called low temperature plasma treatment.
  • Stable glow discharge can be performed by applying a power of 10 W to 100 kW at a frequency of 10 kHz to 2 GHz between the discharge electrodes under such gas pressure.
  • the discharge power density of the vacuum plasma discharge process is preferably 5 to 400 W ⁇ min / m 2.
  • the gas used for the vacuum plasma discharge treatment include helium gas, neon gas, argon gas, nitrogen gas, oxygen gas, carbon dioxide gas, hydrogen gas, air, and water vapor. These gases may be used as a mixture of two or more.
  • an argon gas, a carbon dioxide gas, an oxygen gas or a mixed gas of nitrogen gas and hydrogen gas is preferable, and a mixed gas of argon gas and hydrogen gas is more preferable, from the viewpoint of improving the adhesion strength.
  • the gas flow rate during the treatment is preferably 500 to 10,000 sccm.
  • this laminated body is further laminated with another layer
  • the configuration thereof is, for example, a metal substrate / F layer / another base material layer / F layer / metal substrate, a metal substrate layer / another base material layer / F layer. / Other base material layer / Metal substrate layer and the like.
  • Each layer may further contain a glass cloth or filler.
  • This laminate is useful as antenna parts, printed substrates, aircraft parts, automobile parts, sports equipment, food industry supplies, paints, cosmetics, etc. Specifically, wire covering materials such as aircraft electric wires, electricity.
  • Insulating tape Insulating tape, insulating tape for oil drilling, materials for printed substrates, precision filtration membranes, ultrafiltration membranes, reverse osmosis membranes, ion exchange membranes, separation membranes such as dialysis membranes or gas separation membranes, lithium secondary batteries or fuels.
  • the present invention is not limited to the configuration of the above-described embodiment.
  • this method may additionally have any other step in the configuration of the above embodiment, or may be replaced with any step that produces the same action.
  • the present laminated body may be added with any other configuration or may be replaced with any configuration exhibiting the same function.
  • Powder 1 F-polymer 1 containing 98.0 mol%, 0.1 mol%, 1.9 mol% of TFE units, NAH units and PPVE units in this order and having an oxygen-containing polar group (melting temperature: 300 ° C., Powder consisting of glass transition point: 85 ° C. (D50: 2.0 ⁇ m, 98% particle size: 4.9 ⁇ m)
  • Powder 2 Powder made of non-heat-meltable PTFE (D50: 0.3 ⁇ m)
  • [Inorganic filler] Filler 1: Approximately spherical silica filler (D50: 0.4 ⁇ m, 98% granules) surface-treated with vinyltrimethoxysilane (hereinafter, also referred to as vinylsilane), which is composed of silicon oxide and has a specific surface area of 7 m 2 / g. Diameter: 1.0 ⁇ m)
  • Filler 2 A substantially spherical silica filler (D50: 0.4 ⁇ m, 98% particle size: 1.0 ⁇ m) which is composed of silicon oxide and has a specific surface area of 7 m 2 / g and is not surface-treated.
  • Filler 3 A substantially spherical silica filler (D50: 16 ⁇ m, 98% particle size: 20 ⁇ m) surface-treated with vinylsilane, which is composed of silicon oxide and has a specific surface area of 3 m 2 / g.
  • NMP N-methyl-2-pyrrolidone
  • Surfactant 1 Copolymer of (meth) acrylate having perfluoroalkenyl group and (meth) acrylate having hydroxyl group and oxyethylene group
  • Varnish 1 Varnish in which thermoplastic polyimide (PI1) is dissolved in NMP
  • Example 2 Production example of dispersion liquid (Example 1) First, powder 1, varnish 1, surfactant 1 and NMP were put into a pot, and then zirconia balls were put into the pot. Then, the pot was rolled at 150 rpm for 1 hour to prepare a liquid composition. Next, after the filler 1, the surfactant 1 and the NMP were put into the pot, the zirconia balls were put into the pot. Then, the pot was rolled at 150 rpm for 1 hour to prepare a liquid composition. Then, after putting both liquid compositions into the pot, zirconia balls were put into the pot.
  • the pot is rolled at 150 rpm for 1 hour to powder 1 (11 parts by mass), filler 1 (11 parts by mass), PI1 (7 parts by mass), surfactant 1 (4 parts by mass) and NMP (67 parts by mass).
  • a dispersion liquid 1 having a viscosity of 400 mPa containing the part) was obtained.
  • Example 2 Powder 1 (11 parts by mass), filler 1 (11 parts by mass), surfactant 1 (4 parts by mass) and NMP (4 parts by mass) in the same manner as in Example 1 except that the amount of NMP was changed without using varnish 1. A dispersion liquid 2 having a viscosity of 400 mPa containing 74 parts by mass) was obtained.
  • Example 3 Powder 1 (11 parts by mass), filler 2 (11 parts by mass), PI1 (7 parts by mass), surfactant 1 (4 parts by mass) in the same manner as in Example 1 except that the filler 1 was changed to the filler 2. And NMP (67 parts by mass) and a dispersion liquid 3 having a viscosity of 700 mPa ⁇ s were obtained.
  • Example 4 Powder 1 (11 parts by mass), filler 3 (11 parts by mass), PI1 (7 parts by mass), surfactant 1 (4 parts by mass) in the same manner as in Example 1 except that the filler 1 was changed to the filler 3. And NMP (67 parts by mass) and a dispersion liquid 4 having a viscosity of 400 mPa were obtained.
  • Example 5 Powder 1 (2 parts by mass), powder 2 (9 parts by mass), in the same manner as in Example 1 except that 11 parts by mass of powder 1 was changed to 2 parts by mass of powder 1 and 9 parts by mass of powder 2.
  • a dispersion 5 having a viscosity of 500 mPa containing filler 3 (11 parts by mass), PI1 (7 parts by mass), surfactant 1 (4 parts by mass) and NMP (67 parts by mass) was obtained.
  • the coating film was heated at 380 ° C. for 3 minutes in a nitrogen oven.
  • a laminate 1 having a copper foil and an F layer having a thickness of 7 ⁇ m as a molded product containing a melt-fired product of powder 1 and filler 1 and PI1 on the surface thereof was produced. It was confirmed that the voids in the coating film decreased before and after heat compression.
  • a coating film was obtained on the surface of the copper foil in the same manner as in the laminated body 1.
  • the thickness of the formed coating film was 15 ⁇ m.
  • the coating film was heated at 380 ° C. for 3 minutes in a nitrogen oven to obtain an F layer having a thickness of 12 ⁇ m, which contained a copper foil and a melt-fired product of powder 1 and filler 1 and PI1 on the surface thereof. ..
  • the F layer is hot-pressed in a vacuum atmosphere at a temperature of 330 ° C. and a pressure of 0.2 MPa using a vacuum press machine to reach 8 ⁇ m. It was heated and compressed to obtain a laminated body 2. Before and after heat compression, a decrease in the voids in the F layer was confirmed.
  • the laminate 3 was manufactured in the same manner as the laminate 2 except that the dispersion 1 was changed to the dispersion 2 and the hot press conditions were changed to a temperature of 330 ° C. and 0.6 MPa. It was confirmed that the voids in the F layer decreased before and after the heat compression.
  • the laminate 4 was manufactured in the same manner as the laminate 3 except that the conditions of the hot press were changed to a temperature of 330 ° C. and 1.0 MPa and the F layer was heated and compressed until the temperature became 5 ⁇ m. It was confirmed that the voids in the F layer decreased before and after the heat compression.
  • the laminate 5 was manufactured in the same manner as the laminate 3 except that the conditions of the hot press were changed to a temperature of 380 ° C. and 0.6 MPa. It was confirmed that the voids in the F layer decreased before and after the heat compression.
  • the laminate 6 was manufactured in the same manner as the laminate 3 except that the heat press was not performed.
  • the laminated body 7 was manufactured in the same manner as the laminated body 1 except that the dispersion liquid 1 was changed to the dispersion liquid 3. Before and after heat compression, a decrease in the voids in the F layer was confirmed.
  • the laminated body 8 was manufactured in the same manner as the laminated body 1 except that the dispersion liquid 1 was changed to the dispersion liquid 4. Before and after heat compression, a decrease in the voids in the F layer was confirmed.
  • the laminated body 8 was manufactured in the same manner as the laminated body 1 except that the dispersion liquid 1 was changed to the dispersion liquid 5. Before and after heat compression, a decrease in the voids in the F layer was confirmed.
  • the laminated body 10 was manufactured in the same manner as the laminated body 1 except that the thickness of the F layer was changed to 100 ⁇ m.
  • the laminated body 11 was manufactured in the same manner as the laminated body 1 except that the thickness of the F layer was changed to 100 ⁇ m and no heat pressing was performed.
  • a coating film was obtained on the surface of the copper foil in the same manner as in the laminated body 1.
  • the thickness of the formed coating film was 15 ⁇ m.
  • the coating film is heated at 380 ° C. for 3 minutes to have a copper foil and an F layer having a thickness of 12 ⁇ m containing a melt-fired product of powder 1 and filler 1 and PI1 on the surface thereof.
  • a laminate was obtained.
  • the obtained laminate was passed between a pair of metal rolls at 330 ° C. in an atmosphere of atmospheric pressure.
  • the polyimide film was sandwiched between the surface of the F layer and the metal roll as a release film and passed through the laminate.
  • the F layer was heated and compressed to obtain a laminated body 12.
  • a decrease in the porosity of the F layer was confirmed, and the porosity of the F layer was 0.1% or more and 4% or less.
  • the laminates 1 to 12 were evaluated for peel strength, water resistance, electrical characteristics and warpage based on the following criteria.
  • each of the laminated bodies 8 to 10 was more excellent in physical properties of the laminated body in the following points as compared with the laminated body 1.
  • the laminate 8 had a lower dielectric loss tangent itself and was excellent in electrical characteristics.
  • the inorganic filler did not easily come off and was easy to handle, and the surface smoothness of the layer was also high.
  • the laminated body 12 had a lower water absorption rate in the evaluation of water resistance and was excellent in water resistance as compared with the laminated body 2.
  • the cross section of the laminated body prepared by this method has no voids and is dense, has low water absorption, has excellent peel strength and electrical characteristics, and has little warpage. .. Therefore, the laminate obtained by this method has excellent adhesiveness to various substrates, and has excellent peel strength and water resistance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Laminated Bodies (AREA)

Abstract

[Problem] To provide a production method for providing a laminate which exhibits excellent peeling strength and reliability such as water resistance, and improves adhesion between a substrate and a layer which has a tetrafluoroethylene polymer. [Solution] A method for producing a laminate which has a layer containing a thermofusible tetrafluoroethylene polymer, said method involving the formation of a layer containing a thermofusible tetrafluoroethylene polymer by coating a substrate with a dispersion containing a powder of a thermofusible tetrafluoroethylene polymer, forming a coating film by drying the same, and heating the obtained coating film, wherein the steps from at least forming the coating film until after the layer has been formed involve heating and compressing the substrate and the coating film or layer.

Description

熱溶融性テトラフルオロエチレン系ポリマーを含む層を有する積層体の製造方法A method for producing a laminate having a layer containing a heat-meltable tetrafluoroethylene polymer.
 本発明は、熱溶融性テトラフルオロエチレン系ポリマーを含む層を有する積層体の製造方法に関する。 The present invention relates to a method for producing a laminate having a layer containing a heat-meltable tetrafluoroethylene polymer.
 テトラフルオロエチレン系ポリマーは、電気絶縁性、撥水撥油性、耐薬品性、耐熱性等の物性に優れており、電子機器用部品、自動車用部品等に広く利用されている。特にテトラフルオロエチレン系ポリマーは低誘電性や低誘電正接性に優れるため、その特性を生かして電子機器分野への利用が注目を集めている。 Tetrafluoroethylene-based polymers have excellent physical properties such as electrical insulation, water and oil repellency, chemical resistance, and heat resistance, and are widely used in electronic device parts, automobile parts, and the like. In particular, since tetrafluoroethylene polymers are excellent in low dielectric property and low dielectric loss tangent property, their use in the field of electronic devices is attracting attention by taking advantage of their characteristics.
 例えば、テトラフルオロエチレン系ポリマーと銅などの金属基板とを積層した積層体や、テトラフルオロエチレン系ポリマーと耐熱性に優れるポリイミド樹脂とを積層した積層体はプリント回路基板として用いられている。しかしながらテトラフルオロエチレン系ポリマーは他の樹脂や金属との接着性に劣るため、その接着性の改良が種々、試みられている。 For example, a laminate in which a tetrafluoroethylene polymer and a metal substrate such as copper are laminated, or a laminate in which a tetrafluoroethylene polymer and a polyimide resin having excellent heat resistance are laminated is used as a printed circuit substrate. However, since the tetrafluoroethylene polymer is inferior in adhesiveness to other resins and metals, various attempts have been made to improve the adhesiveness.
 例えば、特許文献1にはテトラフルオロエチレン系ポリマーのパウダーを含む分散液を基材の上に塗布し加熱してテトラフルオロエチレン系ポリマーを含む層を形成する積層体の製造方法が記載されている。しかし、かかる製造方法で形成される層は、加熱中に発生するガス等により、膨れやクラックが発生する場合がある。その結果、層の厚さムラや電気的特性のバラつきが生じることが知られている(特許文献2)。 For example, Patent Document 1 describes a method for producing a laminate in which a dispersion liquid containing a powder of a tetrafluoroethylene polymer is applied onto a substrate and heated to form a layer containing the tetrafluoroethylene polymer. .. However, the layer formed by such a manufacturing method may swell or crack due to gas or the like generated during heating. As a result, it is known that uneven thickness of the layer and variation in electrical characteristics occur (Patent Document 2).
国際公開2016/159102号International Publication 2016/159102 特開2013-222899号公報Japanese Unexamined Patent Publication No. 2013-22899
 したがって、テトラフルオロエチレン系ポリマーを含む分散液を他の樹脂や金属の基板上に塗布し加熱してテトラフルオロエチレン系ポリマーを含む層を形成する積層体には、テトラフルオロエチレン系ポリマーを含む層と基板との接着性、積層体の耐水性および剥離強度の向上、使用に際する剥離強度等の劣化の抑制、即ち使用における積層体の信頼性の向上、が求められていた。 Therefore, a layer containing a tetrafluoroethylene polymer is included in the laminate in which a dispersion containing the tetrafluoroethylene polymer is applied onto a substrate of another resin or metal and heated to form a layer containing the tetrafluoroethylene polymer. It has been required to improve the adhesiveness between the substrate and the substrate, the water resistance of the laminate and the peel strength, suppress the deterioration of the peel strength during use, that is, improve the reliability of the laminate in use.
 本発明者らはテトラフルオロエチレン系ポリマーを含む層と基板との接着性を改良した、剥離強度と耐水性に優れた積層体の提供を目的とし、前記層と基板とを有する積層体の製造方法について検討し、本発明の完成に至った。 The present inventors have produced a laminate having the layer and the substrate for the purpose of providing a laminate having excellent peel strength and water resistance, in which the adhesiveness between the layer containing the tetrafluoroethylene polymer and the substrate is improved. The method was examined and the present invention was completed.
 本発明は、テトラフルオロエチレン系ポリマーを含む層と基板との接着性を改良し、剥離強度と耐水性に優れた積層体を与える製造方法を提供する。 The present invention provides a manufacturing method for improving the adhesiveness between a layer containing a tetrafluoroethylene polymer and a substrate to give a laminate having excellent peel strength and water resistance.
 本発明は、下記の態様を有する。
 熱溶融性テトラフルオロエチレン系ポリマーのパウダーを含む分散液を基板上に塗布、乾燥して塗膜を形成し、得られた前記塗膜をさらに加熱して、前記熱溶融性テトラフルオロエチレン系ポリマーを含む層を形成し、少なくとも前記塗膜の形成から前記層の形成後までの過程で、前記塗膜または前記層と前記基板とを加熱圧縮する、熱溶融性テトラフルオロエチレン系ポリマーを含む層を有する積層体の製造方法。
[2]
 記熱溶融性テトラフルオロエチレン系ポリマーが、ペルフルオロ(アルキルビニルエーテル)に基づく単位を含み極性官能基を有するポリマー、または、全単位に対してペルフルオロ(アルキルビニルエーテル)に基づく単位を2から5モル%含み極性官能基を有さないポリマーである、前記[1]に記載の積層体の製造方法。
[3]
 前記基板が銅箔またはポリイミドフィルムである前記[1]または[2]に記載の積層体の製造方法。
[4]
 前記加熱圧縮の温度が前記熱溶融性テトラフルオロエチレン系ポリマーのガラス転移温度以上かつ前記熱溶融性テトラフルオロエチレン系ポリマーの溶融温度より100℃高い温度以下である前記[1]から[3]のいずれかに記載の積層体の製造方法。
[5]
 前記加熱圧縮の圧力が0.2MPa以上10MPa以下である前記[1]から[4]のいずれかに記載の積層体の製造方法。
[6]
 前記加熱圧縮を前記層の形成に際して行う前記[1]から[5]のいずれかに記載の積層体の製造方法。
[7]
 前記加熱圧縮前の前記塗膜の厚さに対する、前記加熱圧縮後の塗膜の厚さの比、または、前記加熱圧縮前の前記層の厚さに対する、前記加熱圧縮後の層の厚さの比が、0.1から0.8である、前記[1]から[6]のいずれかに記載の積層体の製造方法。
[8]
 前記加熱圧縮後の層の厚さが、40μm以上である前記[1]から[7]のいずれかに記載の積層体の製造方法。
[9]
 前記分散液が、さらに無機フィラーを含む前記[1]から[8]のいずれかに記載の積層体の製造方法。
[10]
 前記分散液が、さらにシランカップリング剤で表面処理されている無機フィラーを含む前記[1]から[9]のいずれかに記載の積層体の製造方法。
[11]
 前記分散液が、平均粒子径が10μm以上である無機フィラーを含む前記[1]から[10]のいずれかに記載の積層体の製造方法。
[12]
 前記分散液中の、前記熱溶融性テトラフルオロエチレン系ポリマーに対する、前記無機フィラーの質量比が、0.5から1.5である、前記[9]から[11]のいずれかに記載の積層体の製造方法。
[13]
 前記分散液が、さらに非熱溶融性のポリテトラフルオロエチレンのパウダーを含む前記[1]から[12]のいずれかに記載の積層体の製造方法。
[14]
 前記分散液が、さらに芳香族ポリマーを含む前記[1]から[13]のいずれかに記載の積層体の製造方法。
[15]
 前記分散液が、さらにシランカップリング剤を含む前記[1]から[14]のいずれかに記載の積層体の製造方法。
The present invention has the following aspects.
A dispersion containing a powder of a heat-meltable tetrafluoroethylene polymer is applied onto a substrate and dried to form a coating film, and the obtained coating film is further heated to further heat the heat-meltable tetrafluoroethylene polymer. A layer containing a heat-meltable tetrafluoroethylene-based polymer that heats and compresses the coating film or the layer and the substrate in the process from the formation of the coating film to the formation of the layer. A method for producing a laminate having.
[2]
The heat-meltable tetrafluoroethylene polymer contains units based on perfluoro (alkyl vinyl ether) and has polar functional groups, or contains 2 to 5 mol% of units based on perfluoro (alkyl vinyl ether) with respect to all units. The method for producing a laminate according to the above [1], which is a polymer having no polar functional group.
[3]
The method for producing a laminate according to the above [1] or [2], wherein the substrate is a copper foil or a polyimide film.
[4]
The temperature of the heat compression is not more than the glass transition temperature of the heat-meltable tetrafluoroethylene polymer and 100 ° C. or less higher than the melting temperature of the heat-meltable tetrafluoroethylene polymer, according to the above [1] to [3]. The method for producing a laminate according to any one.
[5]
The method for producing a laminate according to any one of the above [1] to [4], wherein the heat compression pressure is 0.2 MPa or more and 10 MPa or less.
[6]
The method for producing a laminate according to any one of [1] to [5], wherein the heat compression is performed when the layer is formed.
[7]
The ratio of the thickness of the coating film after heat compression to the thickness of the coating film before heat compression, or the thickness of the layer after heat compression to the thickness of the layer before heat compression. The method for producing a laminate according to any one of the above [1] to [6], wherein the ratio is 0.1 to 0.8.
[8]
The method for producing a laminate according to any one of the above [1] to [7], wherein the thickness of the layer after heat compression is 40 μm or more.
[9]
The method for producing a laminate according to any one of the above [1] to [8], wherein the dispersion further contains an inorganic filler.
[10]
The method for producing a laminate according to any one of the above [1] to [9], wherein the dispersion liquid further contains an inorganic filler surface-treated with a silane coupling agent.
[11]
The method for producing a laminate according to any one of the above [1] to [10], wherein the dispersion liquid contains an inorganic filler having an average particle size of 10 μm or more.
[12]
The laminate according to any one of [9] to [11], wherein the mass ratio of the inorganic filler to the heat-meltable tetrafluoroethylene polymer in the dispersion is 0.5 to 1.5. How to make a body.
[13]
The method for producing a laminate according to any one of the above [1] to [12], wherein the dispersion further contains a non-heat-meltable polytetrafluoroethylene powder.
[14]
The method for producing a laminate according to any one of the above [1] to [13], wherein the dispersion further contains an aromatic polymer.
[15]
The method for producing a laminate according to any one of the above [1] to [14], wherein the dispersion further contains a silane coupling agent.
 本発明によれば、テトラフルオロエチレン系ポリマーを含む層と各種基板との接着性を改良し、剥離強度と耐水性に優れた積層体が製造できる。 According to the present invention, it is possible to improve the adhesiveness between the layer containing the tetrafluoroethylene polymer and various substrates, and to produce a laminate having excellent peel strength and water resistance.
 以下の用語は、以下の意味を有する。
「熱溶融性テトラフルオロエチレン系ポリマー」とは、テトラフルオロエチレン(以下、TFEとも記す)に基づく単位(以下、TFE単位とも記す)を含むポリマーであり、荷重49Nの条件下、溶融流れ速度が1から1000g/10分となる温度が存在する溶融流動性のポリマーを意味する。
 「ポリマーのガラス転移点(Tg)」は、動的粘弾性測定(DMA)法でポリマーを分析して測定される値である。
 「ポリマーの溶融温度(融点)」は、示差走査熱量測定(DSC)法で測定した融解ピークの最大値に対応する温度である。
 「D50」は、対象物(パウダーまたは無機フィラー)の平均粒子径であり、レーザー回折・散乱法によって求められる対象物の体積基準累積50%径である。すなわち、レーザー回折・散乱法によって対象物の粒度分布を測定し、対象物の集団の全体積を100%として累積カーブを求め、その累積カーブ上で累積体積が50%となる点の粒子径である。
 「D90」は、対象物の累積体積粒径であり、「D50」と同様にして求められる対象物の体積基準累積90%径である。
 「分散液の粘度」は、B型粘度計を用いて、室温下(25℃)で回転数が30rpmの条件下で分散液について測定される値である。測定を3回繰り返し、3回分の測定値の平均値とする。
 「分散液のチキソ比」とは、分散液を回転数が30rpmの条件で測定して求められる粘度を回転数が60rpmの条件で測定して求められる粘度で除して算出される値である。
 「モノマーに基づく単位」とは、モノマーの重合により形成された前記モノマーに基づく原子団を意味する。単位は、重合反応によって直接形成された単位であってもよく、ポリマーを処理することによって前記単位の一部が別の構造に変換された単位であってもよい。以下、モノマーaに基づく単位を、単に「モノマーa単位」とも記す。
The following terms have the following meanings.
The "heat-meltable tetrafluoroethylene-based polymer" is a polymer containing a unit (hereinafter, also referred to as TFE unit) based on tetrafluoroethylene (hereinafter, also referred to as TFE), and has a melt flow rate under the condition of a load of 49N. It means a melt-fluid polymer having a temperature of 1 to 1000 g / 10 minutes.
The "glass transition point (Tg) of the polymer" is a value measured by analyzing the polymer by the dynamic viscoelasticity measurement (DMA) method.
The “polymer melting temperature (melting point)” is the temperature corresponding to the maximum value of the melting peak measured by the differential scanning calorimetry (DSC) method.
“D50” is the average particle size of the object (powder or inorganic filler), and is the volume-based cumulative 50% diameter of the object obtained by the laser diffraction / scattering method. That is, the particle size distribution of the object is measured by the laser diffraction / scattering method, the cumulative curve is obtained with the total volume of the group of objects as 100%, and the particle size at the point where the cumulative volume is 50% on the cumulative curve. be.
“D90” is the cumulative volume particle size of the object, and is the volume-based cumulative 90% diameter of the object obtained in the same manner as “D50”.
The "viscosity of the dispersion liquid" is a value measured for the dispersion liquid at room temperature (25 ° C.) and a rotation speed of 30 rpm using a B-type viscometer. The measurement is repeated 3 times, and the average value of the measured values for 3 times is used.
The "thixotropic ratio of the dispersion liquid" is a value calculated by dividing the viscosity obtained by measuring the dispersion liquid under the condition of a rotation speed of 30 rpm by the viscosity obtained by measuring the dispersion liquid under the condition of a rotation speed of 60 rpm. ..
The "monomer-based unit" means an atomic group based on the monomer formed by polymerization of the monomer. The unit may be a unit directly formed by a polymerization reaction, or may be a unit in which a part of the unit is converted into another structure by processing a polymer. Hereinafter, the unit based on the monomer a is also simply referred to as “monomer a unit”.
 本発明の製造方法(以下、本法とも記す)は熱溶融性テトラフルオロエチレン系ポリマー(以下、Fポリマーとも記す)のパウダー(以下、本パウダーとも記す)を含む分散液(以下、本分散液とも記す)を基板上に塗布、乾燥して塗膜を形成し、得られた前記塗膜をさらに加熱して、前記熱溶融性テトラフルオロエチレン系ポリマーを含む層を形成し、少なくとも前記塗膜の形成から前記層の形成後のいずれかの段階で、前記塗膜または前記層と前記基板とを加熱圧縮して積層体(以下、本積層体とも記す)を得る方法である。 The production method of the present invention (hereinafter, also referred to as this method) is a dispersion liquid (hereinafter, this dispersion liquid) containing a powder (hereinafter, also referred to as this powder) of a heat-meltable tetrafluoroethylene polymer (hereinafter, also referred to as F polymer). (Also referred to as) is applied onto a substrate and dried to form a coating film, and the obtained coating film is further heated to form a layer containing the heat-meltable tetrafluoroethylene polymer, and at least the coating film is formed. This is a method for obtaining a laminated body (hereinafter, also referred to as the present laminated body) by heating and compressing the coating film or the layer and the substrate at any stage from the formation of the above layer to the formation of the layer.
 本パウダーに含まれるFポリマーの溶融温度は200℃以上が好ましく、Fポリマーの溶融温度は250℃以上がより好ましく、280℃以上がさらに好ましい。Fポリマーの溶融温度は成形性の観点から325℃以下が好ましい。 The melting temperature of the F polymer contained in this powder is preferably 200 ° C. or higher, and the melting temperature of the F polymer is more preferably 250 ° C. or higher, further preferably 280 ° C. or higher. The melting temperature of the F polymer is preferably 325 ° C. or lower from the viewpoint of moldability.
 Fポリマーのガラス転移点は、30から150℃が好ましく、75から125℃がより好ましい。
 Fポリマーとしては、TFE単位とペルフルオロ(アルキルビニルエーテル)(以下、PAVEとも記す)に基づく単位(以下、PAVE単位とも記す)を含むポリマー(以下、PFAとも記す)またはTFEとヘキサフルオロプロピレンに基づく単位を含むコポリマー(以下、FEPとも記す)が好ましく、PFAが特に好ましい。これらのポリマーには、さらに他のコモノマーに基づく単位が含まれていてもよい。
The glass transition point of the F polymer is preferably 30 to 150 ° C, more preferably 75 to 125 ° C.
The F polymer includes a polymer (hereinafter also referred to as PFA) containing a TFE unit and a unit based on perfluoro (alkyl vinyl ether) (hereinafter also referred to as PAVE) (hereinafter also referred to as PAVE unit) or a unit based on TFE and hexafluoropropylene. A copolymer containing (hereinafter, also referred to as FEP) is preferable, and PFA is particularly preferable. These polymers may further contain units based on other comonomeres.
 PAVEとしては、CF=CFOCF、CF=CFOCFCFまたはCF=CFOCFCFCF(以下、PPVEとも記す)が好ましく、PPVEがより好ましい。
 Fポリマーは、極性官能基を有するのが好ましい。極性官能基を有するFポリマーは後述する基板との接着性や、積層体の剥離強度や耐水性等の信頼性を一層向上させやすい。
As the PAVE, CF 2 = CFOCF 3 , CF 2 = CFOCF 2 CF 3 or CF 2 = CFOCF 2 CF 2 CF 3 (hereinafter, also referred to as PPVE) is preferable, and PPVE is more preferable.
The F polymer preferably has a polar functional group. The F polymer having a polar functional group tends to further improve reliability such as adhesiveness to a substrate, which will be described later, peel strength and water resistance of the laminate.
 極性官能基は、Fポリマー中のモノマー単位に含まれていてもよく、ポリマーの主鎖の末端基に含まれていてもよい。後者の態様としては、重合開始剤、連鎖移動剤等に由来する末端基として極性官能基を有するFポリマー、Fポリマーをプラズマ処理や電離線処理して得られる極性官能基を有するFポリマーが挙げられる。
 極性官能基は、水酸基含有基またはカルボニル基含有基が好ましく、カルボニル基含有基が特に好ましい。
 Fポリマーが酸素含有極性基を有する場合、Fポリマーにおける酸素含有極性基の数は、主鎖の炭素数1×10個あたり、10から5000個が好ましく、100から3000個がより好ましい。なお、Fポリマーにおける酸素含有極性基の数は、ポリマーの組成または国際公開第2020/145133号に記載の方法によって定量できる。
The polar functional group may be contained in the monomer unit in the F polymer, or may be contained in the terminal group of the main chain of the polymer. Examples of the latter embodiment include an F polymer having a polar functional group as a terminal group derived from a polymerization initiator, a chain transfer agent, etc., and an F polymer having a polar functional group obtained by subjecting the F polymer to plasma treatment or ionization line treatment. Be done.
The polar functional group is preferably a hydroxyl group-containing group or a carbonyl group-containing group, and a carbonyl group-containing group is particularly preferable.
When the F polymer has an oxygen-containing polar group, the number of oxygen-containing polar groups in the F polymer is preferably 10 to 5000, more preferably 100 to 3000, per 1 × 10 6 carbon atoms in the main chain. The number of oxygen-containing polar groups in the F polymer can be quantified by the composition of the polymer or the method described in International Publication No. 2020/145133.
 水酸基含有基は、アルコール性水酸基を含有する基が好ましく、-CFCHOHまたはC(CFOHがより好ましい。
 カルボニル基含有基は、カルボニル基(>C(O))を含む基であり、カルボキシル基、アルコキシカルボニル基、アミド基、イソシアネート基、カルバメート基(-OC(O)NH)、酸無水物残基(-C(O)OC(O)-)、イミド残基(-C(O)NHC(O)-等)またはカーボネート基(-OC(O)O-)が好ましく、酸無水物残基が特に好ましい。
The hydroxyl group-containing group is preferably a group containing an alcoholic hydroxyl group, more preferably -CF 2 CH 2 OH or C (CF 3 ) 2 OH.
The carbonyl group-containing group is a group containing a carbonyl group (> C (O)), a carboxyl group, an alkoxycarbonyl group, an amide group, an isocyanate group, a carbamate group (-OC (O) NH 2 ), and an acid anhydride residue. Group (-C (O) OC (O)-), imide residue (-C (O) NHC (O)-etc.) or carbonate group (-OC (O) O-) is preferred, and acid anhydride residue. Is particularly preferable.
 Fポリマーの好適な態様としては、TFE単位およびPAVE単位を含み、極性官能基を有するポリマー(1)、または、TFE単位およびPAVE単位を含み、全モノマー単位に対してPAVE単位を2から5モル%含み、極性官能基を有さないポリマー(2)が挙げられる。これらのポリマーは、製品中において微小球晶を形成するため、得られる製品の特性が向上しやすい。 Suitable embodiments of the F polymer include a polymer (1) containing TFE and PAVE units and having polar functional groups, or 2 to 5 mol of PAVE units per total monomer unit, including TFE and PAVE units. A polymer (2) containing% and having no polar functional group can be mentioned. Since these polymers form microspherulites in the product, the properties of the obtained product tend to be improved.
 ポリマー(1)は、TFE単位と、PAVE単位と、水酸基含有基またはカルボニル基含有基を有するモノマーに基づく単位とを含むポリマーが好ましい。ポリマー(1)は、全単位に対して、TFE単位を90から99モル%、PAVE単位を0.5から9.97モル%、および前記モノマーに基づく単位を0.01から3モル%、それぞれ含むのが好ましい。
 また、前記モノマーは、無水イタコン酸、無水シトラコン酸または5-ノルボルネン-2,3-ジカルボン酸無水物(別称:無水ハイミック酸;以下、「NAH」とも記す。)が好ましい。
 ポリマー(1)の具体例としては、国際公開第2018/16644号に記載されるポリマーが挙げられる。
The polymer (1) is preferably a polymer containing a TFE unit, a PAVE unit, and a unit based on a monomer having a hydroxyl group-containing group or a carbonyl group-containing group. The polymer (1) has 90 to 99 mol% of TFE units, 0.5 to 9.97 mol% of PAVE units, and 0.01 to 3 mol% of units based on the above-mentioned monomers, respectively, with respect to all the units. It is preferable to include it.
Further, the monomer is preferably itaconic anhydride, citraconic anhydride or 5-norbornene-2,3-dicarboxylic acid anhydride (also known as hymic anhydride; hereinafter also referred to as "NAH").
Specific examples of the polymer (1) include the polymers described in International Publication No. 2018/16644.
 ポリマー(2)は、TFE単位およびPAVE単位のみからなり、全モノマー単位に対して、TFE単位を95から98モル%、PAVE単位を2から5モル%含有するのが好ましい。
 ポリマー(2)におけるPAVE単位の含有量は、全モノマー単位に対して、2.1モル%以上が好ましく、2.2モル%以上がより好ましい。
 なお、ポリマー(2)が極性官能基を有さないとは、ポリマー主鎖を構成する炭素原子数の1×10個あたりに対して、ポリマーが有する極性官能基の数が、500個未満であることを意味する。極性官能基の数は、100個以下が好ましく、50個未満がより好ましい。極性官能基の数の下限は、通常、0個である。
The polymer (2) is composed of only TFE units and PAVE units, and preferably contains 95 to 98 mol% of TFE units and 2 to 5 mol% of PAVE units with respect to all the monomer units.
The content of PAVE units in the polymer (2) is preferably 2.1 mol% or more, more preferably 2.2 mol% or more, based on all the monomer units.
The fact that the polymer (2) does not have polar functional groups means that the number of polar functional groups possessed by the polymer is less than 500 per 1 × 10 6 carbon atoms constituting the polymer main chain. Means that The number of polar functional groups is preferably 100 or less, more preferably less than 50. The lower limit of the number of polar functional groups is usually 0.
 ポリマー(2)は、ポリマー鎖の末端基として極性官能基を生じない、重合開始剤や連鎖移動剤等を使用して製造してもよく、極性官能基を有するFポリマーをフッ素化処理して製造してもよい。フッ素化処理の方法としては、フッ素ガスを使用する方法(特開2019-194314号公報等を参照)が挙げられる。 The polymer (2) may be produced by using a polymerization initiator, a chain transfer agent, or the like that does not generate a polar functional group as a terminal group of the polymer chain, and the F polymer having a polar functional group is fluorinated. May be manufactured. Examples of the fluorination treatment method include a method using fluorine gas (see JP-A-2019-194314).
 本パウダーは、Fポリマーを含有するパウダーであり、パウダー中の熱溶融性Fポリマーの量は、80質量%以上であることが好ましく、100質量%であることがより好ましい。
 本パウダーのD50は、50μm以下であるのが好ましく、20μm以下であるのがより好ましく、8μm以下であるのがさらに好ましい。本パウダーのD50は、0.1μm以上が好ましく、0.3μm以上がより好ましく、1μm以上がさらに好ましい。また、本パウダーのD90は、100μm未満であるのが好ましく、90μm以下であるのがより好ましい。本パウダーのD50およびD90が、かかる範囲にあれば、その表面積が大きくなり、本パウダーの分散性が一層改良されやすい。
This powder is a powder containing an F polymer, and the amount of the heat-meltable F polymer in the powder is preferably 80% by mass or more, more preferably 100% by mass.
The D50 of this powder is preferably 50 μm or less, more preferably 20 μm or less, and even more preferably 8 μm or less. The D50 of this powder is preferably 0.1 μm or more, more preferably 0.3 μm or more, and even more preferably 1 μm or more. The D90 of this powder is preferably less than 100 μm, more preferably 90 μm or less. If D50 and D90 of the present powder are in such a range, the surface area thereof becomes large, and the dispersibility of the present powder is likely to be further improved.
 本パウダーは、Fポリマーと異なる他の樹脂または無機物を含有してもよい。
 他の樹脂の具体例としては、芳香族ポリイミド、芳香族マレイミド、スチレンエラストマー、芳香族ポリアミック酸等の芳香族ポリマーが挙げられる。
 無機物の具体例としては、シリカが挙げられる。
 本パウダーは、FポリマーをコアとしFポリマー以外の樹脂又は無機化合物をシェルとするコア-シェル構造を形成していてもよく、FポリマーをシェルとしFポリマー以外の樹脂又は無機化合物をコアとするコア-シェル構造を形成していてもよい。
 本分散液におけるFパウダーの含有量は、5質量%以上が好ましく、10質量%以上がより好ましい。Fパウダーの含有量は、60質量%以下が好ましく、40質量%以下がより好ましい。
This powder may contain other resins or inorganic substances different from the F polymer.
Specific examples of other resins include aromatic polymers such as aromatic polyimides, aromatic maleimides, styrene elastomers, and aromatic polyamic acids.
Specific examples of inorganic substances include silica.
This powder may form a core-shell structure having an F polymer as a core and a resin or an inorganic compound other than the F polymer as a shell, and the F polymer as a shell and a resin or an inorganic compound other than the F polymer as a core. It may form a core-shell structure.
The content of F powder in this dispersion is preferably 5% by mass or more, more preferably 10% by mass or more. The content of the F powder is preferably 60% by mass or less, more preferably 40% by mass or less.
 本法においては、本パウダーを分散媒に分散させた本分散液を基材上に塗布する。分散媒は、成形物の成分分布の均一性の低下や空隙の抑制の観点から、脱気されているのが好ましい。
 分散媒は、液状であり、低粘性液体または高粘性液体であるのが好ましく、低粘性液体であるのがより好ましい。分散媒は、1種の液体からなってもよく、複数の液体の混合物であってもよい。
In this method, the dispersion liquid in which the powder is dispersed in a dispersion medium is applied onto the substrate. The dispersion medium is preferably degassed from the viewpoint of reducing the uniformity of the component distribution of the molded product and suppressing voids.
The dispersion medium is a liquid, preferably a low-viscosity liquid or a high-viscosity liquid, and more preferably a low-viscosity liquid. The dispersion medium may consist of one liquid or may be a mixture of a plurality of liquids.
 低粘性液体は、25℃における粘度が0mPa・s超10mPa・s以下であり、Fポリマーおよび異なる樹脂と反応しない液状化合物である。低粘性液体の沸点は、75℃以上が好ましく、100℃以上がより好ましい。低粘性液体の沸点は、300℃以下が好ましく、250℃以下がより好ましい。
 低粘性液体は、水であってもよく、非水系分散媒であってもよい。非水系分散媒としては、アミド、ケトンまたはエステルが好ましく、N-メチル-2-ピロリドン、γ-ブチロラクトン、シクロヘキサノンまたはシクロペンタノンがより好ましい。
The low-viscosity liquid is a liquid compound having a viscosity at 25 ° C. of more than 0 mPa · s and 10 mPa · s or less and does not react with an F polymer and a different resin. The boiling point of the low-viscosity liquid is preferably 75 ° C. or higher, more preferably 100 ° C. or higher. The boiling point of the low-viscosity liquid is preferably 300 ° C. or lower, more preferably 250 ° C. or lower.
The low-viscosity liquid may be water or a non-aqueous dispersion medium. As the non-aqueous dispersion medium, amides, ketones or esters are preferable, and N-methyl-2-pyrrolidone, γ-butyrolactone, cyclohexanone or cyclopentanone are more preferable.
 高粘性液体は、25℃における粘度が10mPa・s超であり、Fポリマーおよび異なる樹脂と反応しない液状化合物である。高粘性液体の粘度は、200mPa・s以下であるのが好ましい。高粘性液体の沸点は、100℃以上が好ましい。高粘性液体の沸点は、350℃以下が好ましく、300℃以下がより好ましい。
 高粘性液体は、グリコール、グリコールエーテルまたはグリコールアセテートが好ましく、グリコールモノアルキルエーテル、グリコールモノアリールエーテル、グリコールモノアルキルエーテルアセテートまたはグリコールモノアリールエーテルアセテートがより好ましく、グリコールモノアルキルエーテルがさらに好ましい。
 高粘性液体の具体例としては、エチレングリコールモノ-2-エチルヘキシルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジプロピレングリコールモノブチルエーテル、トリエチレングリコールモノメチルエーテル、トリプロピレングリコールモノブチルエーテル、プロピレングリコールモノフェニルエーテル、ジエチレングリコールモノエチルエーテルアセテートまたはジエチレングリコールモノブチルエーテルアセテートが挙げられる。
Highly viscous liquids are liquid compounds having a viscosity at 25 ° C. of more than 10 mPa · s and do not react with F-polymers and different resins. The viscosity of the highly viscous liquid is preferably 200 mPa · s or less. The boiling point of the highly viscous liquid is preferably 100 ° C. or higher. The boiling point of the highly viscous liquid is preferably 350 ° C. or lower, more preferably 300 ° C. or lower.
The highly viscous liquid is preferably glycol, glycol ether or glycol acetate, more preferably glycol monoalkyl ether, glycol monoaryl ether, glycol monoalkyl ether acetate or glycol monoaryl ether acetate, and even more preferably glycol monoalkyl ether.
Specific examples of the highly viscous liquid include ethylene glycol mono-2-ethylhexyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, dipropylene glycol monobutyl ether, triethylene glycol monomethyl ether, tripropylene glycol monobutyl ether, and propylene. Glycol monophenyl ether, diethylene glycol monoethyl ether acetate or diethylene glycol monobutyl ether acetate can be mentioned.
 分散液中の分散媒の含有量は、30質量%以上が好ましい。分散媒の含有量は、90質量%以下が好ましく、80質量%以下がより好ましい。
 分散液中の固形分量は、分散液の全質量を100%として、固形分濃度は20質量%以上が好ましく30質量%以上がより好ましい。また分散液の分散性の観点から、固形分量は60質量%以下が好ましく、50質量%以下がより好ましい。
 なお、分散液における固形分量とは、分散液から形成される成形物において固形分を形成する物質の総量を意味する。例えば、分散液が、Fポリマーと、後述する無機フィラーおよび芳香族ポリマーとを含む場合には、これらの成分の総含有量が分散液における固形分量となる。
The content of the dispersion medium in the dispersion is preferably 30% by mass or more. The content of the dispersion medium is preferably 90% by mass or less, more preferably 80% by mass or less.
The solid content in the dispersion is preferably 20% by mass or more, more preferably 30% by mass or more, with the total mass of the dispersion as 100%. Further, from the viewpoint of dispersibility of the dispersion liquid, the solid content is preferably 60% by mass or less, more preferably 50% by mass or less.
The amount of solid content in the dispersion liquid means the total amount of substances that form solid content in the molded product formed from the dispersion liquid. For example, when the dispersion liquid contains an F polymer and an inorganic filler and an aromatic polymer described later, the total content of these components is the solid content in the dispersion liquid.
 分散液は本パウダーを含有した液状であり、本パウダーが分散した液状組成物である。
 分散液は本パウダー以外の第三成分を含んでいてもよい。第三成分の例として、積層体の電気特性と積層体中のFポリマーを含む層の低線膨張性を向上する観点から無機フィラーが、分散安定性とハンドリング性とを向上させる観点から界面活性剤が、積層体の剥離強度と加工性を向上する観点から芳香族ポリマーが、挙げられる。
The dispersion liquid is a liquid containing the present powder, and is a liquid composition in which the present powder is dispersed.
The dispersion liquid may contain a third component other than the present powder. As an example of the third component, the inorganic filler is used from the viewpoint of improving the electric properties of the laminate and the low linear expansion property of the layer containing the F polymer in the laminate, and the surface activity is selected from the viewpoint of improving the dispersion stability and the handleability. Examples of the agent include aromatic polymers from the viewpoint of improving the peel strength and processability of the laminate.
 無機フィラーは、窒化物フィラーまたは無機酸化物フィラーが好ましく、窒化ホウ素フィラー、ベリリアフィラー(ベリリウムの酸化物のフィラー)、ケイ酸塩フィラー(シリカフィラー、ウォラストナイトフィラー、タルクフィラー、ステアタイトフィラー)、酸化セリウム、酸化アルミニウム、酸化マグネシウム、酸化亜鉛または酸化チタン等の金属酸化物フィラーがより好ましく、シリカフィラー、ステアタイトフィラー、窒化ホウ素フィラーがさらに好ましく、シリカフィラーが特に好ましい。
 シリカフィラーにおける、シリカの含有量は、50質量%以上が好ましく、75質量%以上がより好ましい。シリカの含有量は、100質量%以下が好ましく、90質量%以下がより好ましい。
The inorganic filler is preferably a nitride filler or an inorganic oxide filler, and is preferably a boron nitride filler, a beryllia filler (a filler of an oxide of beryllium), a silicate filler (silica filler, a wollastonite filler, a talc filler, or a steatite filler). ), Metal oxide fillers such as cerium oxide, aluminum oxide, magnesium oxide, zinc oxide or titanium oxide are more preferable, silica fillers, steatite fillers and boron nitride fillers are more preferable, and silica fillers are particularly preferable.
The silica content in the silica filler is preferably 50% by mass or more, more preferably 75% by mass or more. The silica content is preferably 100% by mass or less, more preferably 90% by mass or less.
 無機フィラーは、その表面の少なくとも一部が、表面処理されているのが好ましい。かかる表面処理に用いられる表面処理剤としては、トリメチロールエタン、ペンタエリストールまたはプロピレングリコール等の多価アルコール、ステアリン酸、ラウリン酸等の飽和脂肪酸、そのエステル、アルカノールアミン、トリメチルアミンまたはトリエチルアミン等のアミン、パラフィンワックス、シランカップリング剤、シリコーン、ポリシロキサンが挙げられる。
 シランカップリング剤は、3-アミノプロピルトリエトキシシラン、ビニルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシランまたは3-イソシアネートプロピルトリエトキシシラン等の官能基を有するシランカップリング剤が好ましい。
 無機フィラーが官能基を有するシランカップリング剤で表面処理されている場合、本積層体におけるFポリマーを含む層に空隙が生じにくく、本積層体が耐水性に優れやすい。また、Fポリマーを含む層から無機フィラーが剥落しにくい。
It is preferable that at least a part of the surface of the inorganic filler is surface-treated. Examples of the surface treatment agent used for such surface treatment include polyhydric alcohols such as trimethylolethane, pentaeristol or propylene glycol, saturated fatty acids such as stearic acid and lauric acid, esters thereof, alkanolamines, trimethylamines and amines such as triethylamine. , Paraffin wax, silane coupling agent, silicone, polysiloxane and the like.
The silane coupling agent is 3-aminopropyltriethoxysilane, vinyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane or 3-isocyanate. A silane coupling agent having a functional group such as propyltriethoxysilane is preferable.
When the inorganic filler is surface-treated with a silane coupling agent having a functional group, voids are less likely to occur in the layer containing the F polymer in the present laminate, and the present laminate tends to have excellent water resistance. In addition, the inorganic filler is not easily peeled off from the layer containing the F polymer.
 無機フィラーの平均粒子径であるD50は、30μm以下が好ましく、20μm以下がより好ましい。平均粒子径は、0.1μm以上が好ましく、1μm以上がより好ましい。
 本分散液が無機フィラーを含有する場合、無機フィラーのD50は10μm以上が好ましい。この場合、本積層体におけるFポリマーを含む層に空隙が生じにくく、本積層体が耐水性に優れやすい。また、無機フィラーの表面積が小さいためFポリマーとの界面における抵抗が生じにくく、本積層体が電気特性に優れやすい。
 無機フィラーの形状は、粒状、針状(繊維状)、板状のいずれであってもよい。無機フィラーの具体的な形状としては、球状、鱗片状、層状、葉片状、杏仁状、柱状、鶏冠状、等軸状、葉状、雲母状、ブロック状、平板状、楔状、ロゼット状、網目状、角柱状が挙げられ、球状または鱗片状が好ましい。
 また上記形状に加えて上記無機フィラーは板状、中空状、ハニカム状等の種々の形状を有してもよい。
 中空状フィラーを用いる場合、その中空率(粒子1個当たりの空隙の体積割合の平均値)は、40から80%が好ましい。
 中空状フィラーの粒子強度は、20MPa以上が好ましい。粒子強度は、加圧プレスした際の中空状フィラーの残存率が50%時の粒子強度である。粒子強度は、中空状フィラーの見掛け密度と、中空状フィラーを加圧プレスして得られるペレットの見掛け密度とから算出できる。
The average particle size of the inorganic filler, D50, is preferably 30 μm or less, more preferably 20 μm or less. The average particle size is preferably 0.1 μm or more, more preferably 1 μm or more.
When the present dispersion contains an inorganic filler, the D50 of the inorganic filler is preferably 10 μm or more. In this case, voids are less likely to occur in the layer containing the F polymer in the present laminate, and the present laminate tends to have excellent water resistance. Further, since the surface area of the inorganic filler is small, resistance at the interface with the F polymer is unlikely to occur, and the laminated body tends to have excellent electrical characteristics.
The shape of the inorganic filler may be granular, needle-shaped (fibrous), or plate-shaped. Specific shapes of the inorganic filler include spherical, scaly, layered, leafy, apricot kernel, columnar, chicken crown, equiaxed, leafy, mica, block, flat plate, wedge, rosette, and mesh. The shape and the prismatic shape are mentioned, and a spherical shape or a scaly shape is preferable.
Further, in addition to the above-mentioned shape, the above-mentioned inorganic filler may have various shapes such as a plate shape, a hollow shape, and a honeycomb shape.
When a hollow filler is used, the hollow ratio (average value of the volume ratio of the voids per particle) is preferably 40 to 80%.
The particle strength of the hollow filler is preferably 20 MPa or more. The particle strength is the particle strength when the residual ratio of the hollow filler after pressure pressing is 50%. The particle strength can be calculated from the apparent density of the hollow filler and the apparent density of the pellets obtained by pressure-pressing the hollow filler.
 無機フィラーは、1種の無機フィラーを単独で用いてもよく、2種以上の無機フィラーを併用してもよい。後者の場合、シリカフィラーを少なくとも用いるのが好ましい。また、後者の場合、中空状フィラーと非中空状フィラーとを併用するのが好ましい。
 無機フィラーの好適な具体例としては、シリカフィラー(アドマテックス社製の「アドマファイン」シリーズ等)、ジカプリン酸プロピレングリコール等のエステルで表面処理された酸化亜鉛(堺化学工業株式会社製の「FINEX」シリーズ等)、球状溶融シリカフィラー(デンカ社製の「SFP」シリーズ等)、多価アルコールおよび無機物で被覆処理されたルチル型酸化チタンフィラー(石原産業社製の「タイペーク」シリーズ等)、アルキルシランで表面処理されたルチル型酸化チタンフィラー(テイカ社製の「JMT」シリーズ等)、ステアタイトフィラー(日本タルク社製の「BST」シリーズ等)、窒化ホウ素フィラー(昭和電工社製の「UHP」シリーズ、デンカ製の「HGP」シリーズ、「GP」シリーズ等)が挙げられる。
As the inorganic filler, one kind of inorganic filler may be used alone, or two or more kinds of inorganic fillers may be used in combination. In the latter case, it is preferable to use at least a silica filler. Further, in the latter case, it is preferable to use a hollow filler and a non-hollow filler in combination.
Suitable specific examples of the inorganic filler are silica filler ("Admafine" series manufactured by Admatex Co., Ltd.) and zinc oxide surface-treated with an ester such as propylene glycol dicaprate ("FINEX" manufactured by Sakai Chemical Industry Co., Ltd.). Series, etc.), Spherical molten silica filler (Denka's "SFP" series, etc.), Rutyl-type titanium oxide filler coated with polyhydric alcohol and inorganic substances (Ishihara Sangyo's "Typake" series, etc.), Alkyl Rutyl-type titanium oxide filler surface-treated with silane ("JMT" series manufactured by Teika Co., Ltd.), steatite filler ("BST" series manufactured by Nippon Tarku Co., Ltd.), boron nitride filler ("UHP" manufactured by Showa Denko Co., Ltd.) Series, Denka's "HGP" series, "GP" series, etc.).
 本分散液が無機フィラーを含有する場合、その含有量は、1質量%以上が好ましく、5質量%以上が好ましい。含有量は、40質量%以下が好ましく、30質量%以下が好ましい。本分散液におけるFポリマーの含有量に対する無機フィラーの含有量の質量比は、0.5以上が好ましく、0.7以上がより好ましい。質量比は、1.5以下が好ましく、1.2以下がより好ましい。この場合、本分散液の分散安定性がより向上しやすく、また、本積層体の電気特性がより向上しやすい。 When the dispersion liquid contains an inorganic filler, the content thereof is preferably 1% by mass or more, preferably 5% by mass or more. The content is preferably 40% by mass or less, and preferably 30% by mass or less. The mass ratio of the content of the inorganic filler to the content of the F polymer in this dispersion is preferably 0.5 or more, more preferably 0.7 or more. The mass ratio is preferably 1.5 or less, more preferably 1.2 or less. In this case, the dispersion stability of the present dispersion is more likely to be improved, and the electrical characteristics of the present laminate are more likely to be improved.
 界面活性剤は、ノニオン性界面活性剤が好ましい。
 界面活性剤の親水部位は、オキシアルキレン基またはアルコール性水酸基を有するのが好ましい。
 オキシアルキレン基は、1種から構成されていてもよく、2種以上から構成されていてもよい。後者の場合、種類の違うオキシアルキレン基は、ランダム状に配置されていてもよく、ブロック状に配置されていてもよい。
 オキシアルキレン基は、オキシエチレン基が好ましい。
The surfactant is preferably a nonionic surfactant.
The hydrophilic moiety of the surfactant preferably has an oxyalkylene group or an alcoholic hydroxyl group.
The oxyalkylene group may be composed of one kind or two or more kinds. In the latter case, different types of oxyalkylene groups may be randomly arranged or may be arranged in blocks.
The oxyalkylene group is preferably an oxyethylene group.
 界面活性剤の疎水部位は、アセチレン基、ポリシロキサン基、ペルフルオロアルキル基またはペルフルオロアルケニル基を有するのが好ましい。
 界面活性剤は、グリコール系界面活性剤、アセチレン系界面活性剤、シリコーン系界面活性剤またはフッ素系界面活性剤が好ましく、シリコーン系界面活性剤がより好ましい。
 ノニオン性界面活性剤は、1種を用いてもよく、2種以上を用いてもよい。2種のノニオン性界面活性剤を用いる場合のノニオン性界面活性剤は、シリコーン系界面活性剤とグリコール系界面活性剤とであるのが好ましい。
 フッ素系界面活性剤は、水酸基、特に、アルコール性水酸基またはオキシアルキレン基と、ペルフルオロアルキル基またはペルフルオロアルケニル基とを有するフッ素系界面活性剤が好ましい。
 かかる界面活性剤の具体例としては、「フタージェント」シリーズ(株式会社ネオス社製 フタージェントは登録商標)、「サーフロン」シリーズ(AGCセイミケミカル社製 サーフロンは登録商標)、「メガファック」シリーズ(DIC株式会社製 メガファックは登録商標)、「ユニダイン」シリーズ(ダイキン工業株式会社製 ユニダインは登録商標)、「BYK-347」、「BYK-349」、「BYK-378」、「BYK-3450」、「BYK-3451」、「BYK-3455」、「BYK-3456」(ビックケミー・ジャパン社製)、「KF-6011」、「KF-6043」(信越化学工業社製)、「Tergitol」シリーズ(ダウケミカル社製、「Tergitol TMN-100X」等 Tergitolは登録商標)が挙げられる。
 本分散液が界面活性剤を含有する場合、その含有量は、1から15質量%が好ましい。この場合、成分間の親和性が増し、本分散液の分散安定性がより向上しやすい。
The hydrophobic moiety of the surfactant preferably has an acetylene group, a polysiloxane group, a perfluoroalkyl group or a perfluoroalkenyl group.
As the surfactant, a glycol-based surfactant, an acetylene-based surfactant, a silicone-based surfactant or a fluorine-based surfactant is preferable, and a silicone-based surfactant is more preferable.
As the nonionic surfactant, one kind may be used, or two or more kinds may be used. When two kinds of nonionic surfactants are used, the nonionic surfactants are preferably a silicone-based surfactant and a glycol-based surfactant.
The fluorine-based surfactant is preferably a fluorine-based surfactant having a hydroxyl group, particularly an alcoholic hydroxyl group or an oxyalkylene group, and a perfluoroalkyl group or a perfluoroalkenyl group.
Specific examples of such surfactants include the "Futergent" series (Futtergent manufactured by Neos Co., Ltd. is a registered trademark), the "Surflon" series (Surflon manufactured by AGC Seimi Chemical Co., Ltd. is a registered trademark), and the "Mega Fuck" series ( DIC Co., Ltd. Mega Fvck is a registered trademark), "Unidyne" series (Daikin Kogyo Co., Ltd. Unidyne is a registered trademark), "BYK-347", "BYK-349", "BYK-378", "BYK-3450" , "BYK-3451", "BYK-3455", "BYK-3456" (manufactured by Big Chemie Japan), "KF-6011", "KF-6043" (manufactured by Shin-Etsu Chemical Co., Ltd.), "Tergitol" series (manufactured by Shin-Etsu Chemical Co., Ltd.) "Tergitol TMN-100X" manufactured by Dow Chemical Co., Ltd., etc. Tergitol is a registered trademark).
When the present dispersion contains a surfactant, the content thereof is preferably 1 to 15% by mass. In this case, the affinity between the components is increased, and the dispersion stability of the present dispersion is more likely to be improved.
 芳香族ポリマーとしては、芳香族ポリイミド、芳香族ポリアミドイミド、芳香族マレイミド、芳香族エラストマー(スチレンエラストマー等)、芳香族ポリアミック酸またはポリフェニレンエーテルが好ましく、芳香族ポリイミドまたは芳香族ポリアミック酸がより好ましい。芳香族ポリイミドは、熱可塑性であってもよく、熱硬化性であってもよい。熱可塑性のポリイミドとは、イミド化が完了した、イミド化反応がさらに生じないポリイミドを意味する。 As the aromatic polymer, aromatic polyimide, aromatic polyamideimide, aromatic maleimide, aromatic elastomer (styrene elastomer and the like), aromatic polyamic acid or polyphenylene ether are preferable, and aromatic polyimide or aromatic polyamic acid is more preferable. The aromatic polyimide may be thermoplastic or thermosetting. The thermoplastic polyimide means a polyimide that has been imidized and does not undergo a further imidization reaction.
 芳香族ポリイミドの具体例としては、「ネオプリム(登録商標)」シリーズ(三菱ガス化学社製)、「スピクセリア(登録商標)」シリーズ(ソマール社製)、「Q-PILON(登録商標)」シリーズ(ピーアイ技術研究所製)、「WINGO」シリーズ(ウィンゴーテクノロジー社製)、「トーマイド(登録商標)」シリーズ(T&K TOKA社製)、「KPI-MX」シリーズ(河村産業社製)、「ユピア(登録商標)-AT」シリーズ(宇部興産社製)が挙げられる。
 芳香族ポリアミドイミドの具体例としては、「HPC-1000」、「HPC-2100D」(いずれも昭和電工マテリアルズ社製)が挙げられる。
 本分散液が芳香族性ポリマーを含有する場合、その含有量は、1から30質量%が好ましく、5から20質量%がより好ましい。この場合、本積層体の剥離強度とUV加工性とが向上しやすい。
Specific examples of aromatic polyimides include "Neoprim (registered trademark)" series (manufactured by Mitsubishi Gas Chemical Company), "Spixeria (registered trademark)" series (manufactured by Somar), and "Q-PILON (registered trademark)" series ( PI Technology Research Institute), "WINGO" series (Wingo Technology), "Toamide (registered trademark)" series (T & K TOKA), "KPI-MX" series (Kawamura Sangyo), "Yupia (" Registered trademark) -AT "series (manufactured by Ube Industries, Ltd.) can be mentioned.
Specific examples of the aromatic polyamide-imide include "HPC-1000" and "HPC-2100D" (both manufactured by Showa Denko Materials Co., Ltd.).
When the present dispersion contains an aromatic polymer, the content thereof is preferably 1 to 30% by mass, more preferably 5 to 20% by mass. In this case, the peel strength and UV processability of the laminated body are likely to be improved.
 分散液は、前記第三成分以外に、非熱溶融性のポリテトラフルオロエチレン(以下、PTFEとも記す。)を含んでもよい。この場合、非熱溶融性PTFEに基づく物性が良好に発現し、本積層体が電気特性に優れやすい。また、本積層体におけるFポリマーを含む層がさらに無機フィラーと非熱溶融性PTFEとを含む場合、Fポリマーを含む層と基板とを加熱圧縮する際に非熱溶融性PTFEが部分的にフィブリル化して、無機フィラーが高度に担持され、粉落ちが抑制されやすく好ましい。
 なお、非熱溶融性のPTFEとは、荷重49Nの条件下、溶融流れ速度が1から1000g/10分となる温度が存在しないPTFEを意味する。非熱溶融性のPTFEとしては、TFEのホモポリマーであってもよく、TFE単位に加えて、極微量のPAVE、ヘキサフルオロプロピレン(以下、「HFP」とも記す。)またはフルオロアルキルエーテル(以下、「FAE」とも記す。)に基づく単位を有するコポリマー等の変性PTFEであってもよい。
 本分散液は、非熱溶融性のPTFEを、非熱溶融性のPTFEのパウダーとして含むのが好ましい。かかるパウダーのD50は、0.1から1μmが好ましい。
 本分散液が非熱溶融性のPTFEを含む場合、非熱溶融性のPTFEのパウダーの含有量は1質量%以上が好ましく、10質量%以上がより好ましい。かかる含有量は、60質量%以下が好ましく40質量%以下がより好ましい。本分散液における非熱溶融性のPTFEパウダーの含有量の比は、Fパウダーの含有量を1として、1以上が好ましく、3以上がより好ましい。かかる比は、100以下が好ましい。この場合、本積層体が電気特性と耐水性に優れやすい。
The dispersion liquid may contain non-heat-meltable polytetrafluoroethylene (hereinafter, also referred to as PTFE) in addition to the third component. In this case, the physical properties based on the non-heat-meltable PTFE are well developed, and the present laminate tends to have excellent electrical characteristics. Further, when the layer containing the F polymer in the present laminate further contains the inorganic filler and the non-heat-meltable PTFE, the non-heat-meltable PTFE is partially fibrillated when the layer containing the F polymer and the substrate are heated and compressed. It is preferable that the inorganic filler is highly supported and the powder falling is easily suppressed.
The non-thermally meltable PTFE means a PTFE that does not have a temperature at which the melting flow rate is 1 to 1000 g / 10 minutes under the condition of a load of 49 N. The non-heat-meltable PTFE may be a homopolymer of TFE, and in addition to the TFE unit, a trace amount of PAVE, hexafluoropropylene (hereinafter, also referred to as “HFP”) or fluoroalkyl ether (hereinafter, hereinafter, “HFP”) may be used. It may be a modified PTFE such as a copolymer having a unit based on (also referred to as “FAE”).
This dispersion preferably contains non-heat-meltable PTFE as a non-heat-meltable PTFE powder. The D50 of such powder is preferably 0.1 to 1 μm.
When the present dispersion contains non-heat-meltable PTFE, the content of the non-heat-meltable PTFE powder is preferably 1% by mass or more, more preferably 10% by mass or more. The content is preferably 60% by mass or less, more preferably 40% by mass or less. The ratio of the content of the non-heat-meltable PTFE powder in the present dispersion is preferably 1 or more, more preferably 3 or more, with the content of the F powder being 1. The ratio is preferably 100 or less. In this case, the laminated body tends to have excellent electrical characteristics and water resistance.
 本分散液はまた、Fポリマーを含む層の接着性の観点から、別途、シランカップリング剤を含んでもよい。この場合、本分散液が分散安定性と成膜性に優れやすい。また、本分散液が無機フィラーを含む場合、Fパウダーと無機フィラーとがより強固に合着し、その結果、本積層体から無機フィラーが粉落ちしにくい。シランカップリング剤としては、無機フィラーの表面処理に用いる前記シランカップリング剤と同様の化合物が挙げられる。 The present dispersion may also contain a silane coupling agent separately from the viewpoint of the adhesiveness of the layer containing the F polymer. In this case, the present dispersion tends to be excellent in dispersion stability and film forming property. Further, when the dispersion liquid contains the inorganic filler, the F powder and the inorganic filler are more firmly bonded to each other, and as a result, the inorganic filler is less likely to fall off from the laminate. Examples of the silane coupling agent include compounds similar to the silane coupling agent used for the surface treatment of the inorganic filler.
 本分散液がシランカップリング剤を含む場合、その含有量は0.1質量%以上が好ましく、1質量%以上がより好ましい。前記含有量は、20質量%以下が好ましく、10質量%以下がより好ましい。
 また、本分散液がシランカップリング剤を含む場合、シランカップリング剤の含有量の比は、Fパウダーの含有量を1として、0.01以上が好ましく、0.05以上がより好ましい。シランカップリング剤の含有量の比は、Fパウダーの含有量を1として、0.3以下が好ましく、0.1以下がさらに好ましい。
 シランカップリング剤の含有量が前記範囲にあれば、本分散液が分散安定性に優れやすい。
 好ましいシランカップリング剤は前記の無機フィラーの表面処理に用いたシランカップリング剤が挙げられる。
When the present dispersion contains a silane coupling agent, the content thereof is preferably 0.1% by mass or more, more preferably 1% by mass or more. The content is preferably 20% by mass or less, more preferably 10% by mass or less.
When the present dispersion contains a silane coupling agent, the ratio of the content of the silane coupling agent is preferably 0.01 or more, more preferably 0.05 or more, with the content of the F powder being 1. The ratio of the content of the silane coupling agent is preferably 0.3 or less, more preferably 0.1 or less, with the content of the F powder being 1.
When the content of the silane coupling agent is within the above range, the present dispersion tends to have excellent dispersion stability.
Preferred silane coupling agents include the silane coupling agent used for the surface treatment of the above-mentioned inorganic filler.
 本法においては、上記分散液を基材上に塗布し、乾燥して塗膜を形成する。
 基板としては金属基板または樹脂基板が挙げられる。
 金属基板は、金属箔が好ましい。金属箔を加工すれば、本発明の成形品をプリント回路基板として好適に使用できる。金属箔を構成する金属としては、銅、銅合金、ステンレス鋼、ニッケル、ニッケル合金、アルミニウム、アルミニウム合金、チタン、チタン合金が挙げられる。
 金属箔としては、銅箔が好ましく、表裏の区別のない圧延銅箔または表裏の区別のある電解銅箔がより好ましく、圧延銅箔がさらに好ましい。圧延銅箔は、表面粗さが小さいため、積層体をプリント回路基板に加工した場合でも、伝送損失を低減できる。また、圧延銅箔は、炭化水素系有機溶剤に浸漬し圧延油を除去してから使用するのが好ましい。
 金属箔の表面の十点平均粗さは、0.01から0.05μmが好ましい。
In this method, the dispersion liquid is applied onto a substrate and dried to form a coating film.
Examples of the substrate include a metal substrate and a resin substrate.
The metal substrate is preferably a metal foil. If the metal foil is processed, the molded product of the present invention can be suitably used as a printed circuit board. Examples of the metal constituting the metal foil include copper, copper alloy, stainless steel, nickel, nickel alloy, aluminum, aluminum alloy, titanium, and titanium alloy.
As the metal foil, a copper foil is preferable, a rolled copper foil having no distinction between the front and back sides or an electrolytic copper foil having a distinction between the front and back sides is more preferable, and a rolled copper foil is further preferable. Since the rolled copper foil has a small surface roughness, transmission loss can be reduced even when the laminated body is processed into a printed circuit board. Further, the rolled copper foil is preferably used after being immersed in a hydrocarbon-based organic solvent to remove rolling oil.
The ten-point average roughness of the surface of the metal foil is preferably 0.01 to 0.05 μm.
 また、金属基板は、2層以上の金属箔を含むキャリア付金属箔でもよい。キャリア付金属箔としては、厚さ10から35μmのキャリア銅箔と、剥離層を介してキャリア銅箔上に積層された厚さ2から5μmの極薄銅箔とからなるキャリア付銅箔が挙げられる。
 かかるキャリア付銅箔のキャリア銅箔のみを剥離すれば、極薄銅箔を有する積層体を容易に形成できる。この積層体を使用すれば、MSAP(モディファイドセミアディティブ)プロセスによる、極薄銅箔層をめっきシード層として利用する、ファインパターンの形成が可能である。
 上記剥離層としては、耐熱性の観点から、ニッケルまたはクロムを含む金属層、または、この金属層を積層した多層金属層が好ましい。かかる剥離層であれば、300℃以上の工程を経ても、キャリア金属箔を容易に極薄金属箔から剥離できる。
 キャリア付金属箔の具体例としては、福田金属箔粉工業株式会社製の商品名「FUTF-5DAF-2」が挙げられる。
Further, the metal substrate may be a metal foil with a carrier including two or more layers of metal foil. Examples of the metal foil with a carrier include a copper foil with a carrier having a thickness of 10 to 35 μm and an ultrathin copper foil having a thickness of 2 to 5 μm laminated on the carrier copper foil via a release layer. Be done.
By peeling off only the carrier copper foil of the copper foil with a carrier, a laminate having an ultrathin copper foil can be easily formed. By using this laminate, it is possible to form a fine pattern by using an ultrathin copper foil layer as a plating seed layer by an MSAP (modified semi-additive) process.
As the release layer, a metal layer containing nickel or chromium or a multilayer metal layer in which the metal layers are laminated is preferable from the viewpoint of heat resistance. With such a peeling layer, the carrier metal foil can be easily peeled from the ultrathin metal foil even after a step of 300 ° C. or higher.
Specific examples of the metal foil with a carrier include the trade name "FUTF-5DAF-2" manufactured by Fukuda Metal Foil Powder Industry Co., Ltd.
 樹脂基板としては、ポリイミドを含む層が好ましく、ポリイミドフィルムがより好ましい。
 ポリイミドはジアミンとカルボン酸二無水物とを反応させてポリアミック酸を合成し、このポリアミック酸を熱イミド化法または化学イミド化法によりイミド化して得られるポリイミドが好ましい。ポリイミドは、特に、芳香族性ポリイミドが好ましい。
上記基板の表面は、シランカップリング剤等により表面処理されていてもよい。
As the resin substrate, a layer containing polyimide is preferable, and a polyimide film is more preferable.
As the polyimide, a polyimide obtained by reacting a diamine with a carboxylic acid dianhydride to synthesize a polyamic acid and imidizing the polyamic acid by a thermal imidization method or a chemical imidization method is preferable. As the polyimide, aromatic polyimide is particularly preferable.
The surface of the substrate may be surface-treated with a silane coupling agent or the like.
 本分散液を、上記基板上に塗布し、乾燥して分散媒を除去し、Fポリマーを含む塗膜を形成する。基材の表面の少なくとも片面に塗膜が形成されればよく、基材の片面のみに塗膜が形成されてもよく、基材の両面に塗膜が形成されてもよい。また、乾燥を分散媒が完全に除去されるまで行い分散媒を含まない塗膜を形成してもよく、乾燥を分散媒の大部分を除去するまで行い微量の分散媒を含む塗膜を形成してもよい。後者の塗膜形成においては、本分散液に含まれる分散媒の90質量%以上を除去するのが好ましい。
 塗膜は、未溶融状態のFポリマーを含むのが好ましく、未溶融状態の本パウダーがパッキングして形成されているのがより好ましい。
This dispersion is applied onto the substrate and dried to remove the dispersion medium to form a coating film containing an F polymer. The coating film may be formed on at least one side of the surface of the base material, the coating film may be formed on only one side of the base material, or the coating film may be formed on both sides of the base material. Further, drying may be carried out until the dispersion medium is completely removed to form a coating film containing no dispersion medium, or drying may be carried out until most of the dispersion medium is removed to form a coating film containing a trace amount of the dispersion medium. You may. In the latter coating film formation, it is preferable to remove 90% by mass or more of the dispersion medium contained in the present dispersion liquid.
The coating film preferably contains an unmelted F polymer, and more preferably formed by packing the unmelted present powder.
 本分散液の塗布に際しては、スプレー法、ロールコート法、スピンコート法、グラビアコート法、マイクログラビアコート法、グラビアオフセット法、ナイフコート法、キスコート法、バーコート法、ダイコート法、ファウンテンメイヤーバー法、スロットダイコート法の塗布方法を使用できる。 When applying this dispersion, the spray method, roll coat method, spin coat method, gravure coat method, micro gravure coat method, gravure offset method, knife coat method, kiss coat method, bar coat method, die coat method, fountain Mayer bar method. , The application method of the slot die coating method can be used.
 分散媒の除去の温度は、Fポリマーの溶融温度以下かつ分散媒の沸点以下の温度が好ましく、Fポリマーの溶融温度より100℃低い温度以下かつ分散媒の沸点より10℃から100℃低い温度がより好ましい。例えば、溶融温度が300℃のFポリマーと沸点が約200℃のN-メチル-2-ピロリドンを用いた場合の分散媒の除去の温度は、好ましくは150℃以下であり、より好ましくは100から120℃である。平滑性に優れた塗膜を形成する観点から、分散媒の除去に際して、形成される塗膜の表面に空気を吹き付けるのが好ましい。 The temperature for removing the dispersion medium is preferably a temperature below the melting temperature of the F polymer and below the boiling point of the dispersion medium, preferably 100 ° C. or less below the melting temperature of the F polymer and 10 ° C. to 100 ° C. below the boiling point of the dispersion medium. More preferred. For example, when an F polymer having a melting temperature of 300 ° C. and N-methyl-2-pyrrolidone having a boiling point of about 200 ° C. are used, the temperature for removing the dispersion medium is preferably 150 ° C. or lower, more preferably 100 to 100 ° C. It is 120 ° C. From the viewpoint of forming a coating film having excellent smoothness, it is preferable to blow air onto the surface of the formed coating film when removing the dispersion medium.
 形成した塗膜をさらに加熱し、Fポリマーを溶融焼成してFポリマーを含む層(以下、F層とも記す)を形成する。F層におけるFポリマーは、完全に溶融焼成されていてもよく、部分的に溶融焼成されていてもよい。
 F層の厚さは、1μm以上が好ましく、10μm以上がより好ましく、50μm以上が更に好ましい。厚さの上限は、300μm以下が好ましく、100μm以下がより好ましく、50μm以下がさらに好ましい。
 この範囲において、耐クラック性に優れたF層を容易に形成できる。F層と基材との剥離強度は、10N/cm以上が好ましく、15N/cm以上がより好ましい。上記剥離強度は、100N/cm以下が好ましい。
The formed coating film is further heated, and the F polymer is melt-fired to form a layer containing the F polymer (hereinafter, also referred to as an F layer). The F polymer in the F layer may be completely melt-fired or partially melt-fired.
The thickness of the F layer is preferably 1 μm or more, more preferably 10 μm or more, still more preferably 50 μm or more. The upper limit of the thickness is preferably 300 μm or less, more preferably 100 μm or less, still more preferably 50 μm or less.
In this range, the F layer having excellent crack resistance can be easily formed. The peel strength between the F layer and the base material is preferably 10 N / cm or more, more preferably 15 N / cm or more. The peel strength is preferably 100 N / cm or less.
 F層は、前記のとおり本分散液の塗付、加熱の工程を経て形成されるが、これら工程は2回以上繰り返してもよい。例えば、基材の表面に本分散液を塗布し加熱してF層を形成し、さらに前記F層の表面に本分散液を塗布し加熱して2層目のF層を形成してもよい。また、基材の表面に本分散液を塗布し加熱して液状分散媒を除去した段階で、さらにその表面に本分散液を塗布し加熱してF層を形成してもよい。 The F layer is formed through the steps of applying the dispersion liquid and heating as described above, but these steps may be repeated twice or more. For example, the present dispersion may be applied to the surface of the base material and heated to form the F layer, and the present dispersion may be further applied to the surface of the F layer and heated to form the second F layer. .. Further, at the stage where the present dispersion is applied to the surface of the base material and heated to remove the liquid dispersion medium, the present dispersion may be further applied to the surface and heated to form the F layer.
 本法において、少なくとも上記塗膜の形成から上記F層の形成後までのいずれかの過程で、上記塗膜または上記F層と上記基板とを加熱圧縮する。加熱圧縮は、上記塗膜の形成後または上記F層の形成後に行うのが好ましい。
 塗膜の形成とは、上述のとおり、基板上に塗布された分散液を乾燥して分散媒を除去し、Fポリマーを含む塗膜を形成することである。
 また、F層の形成とは、上述のとおり、塗膜をさらに加熱してFポリマーを溶融焼成し、F層を形成することであり、焼成後の冷却が完了するまでである。溶融焼成後の冷却は冷風や冷水等による強制冷却でも、室温付近に放置する自然冷却のいずれでもよいが、F層を有する積層体の温度が雰囲気温度まで下がった段階を冷却の完了とみなす。
 上記加熱圧縮は、F層の形成に際して行うのが好ましく、F層を形成した後、好ましくは上記冷却が完了するまでに行うのが好ましく、Fポリマーの焼成直後に行うのがより好ましい。
 F層を前記のとおり本分散液の塗付、加熱の工程を2回以上繰り返して形成した場合、加熱圧縮は1回目の塗付後に行ってもよいし、2回目以降の塗付、加熱のいずれかの工程後に行ってもよい。また加熱圧縮は各工程後に逐次行なってもよいし、加熱圧縮をせずにいくつかの工程を行ってもよい。全ての本分散液の塗付、加熱の工程の後に加熱圧縮を行なってもよい。
In this method, the coating film or the F layer and the substrate are heat-compressed at least in any process from the formation of the coating film to the formation of the F layer. The heat compression is preferably performed after the formation of the coating film or the formation of the F layer.
As described above, the formation of the coating film is to dry the dispersion liquid applied on the substrate to remove the dispersion medium and form the coating film containing the F polymer.
Further, the formation of the F layer is, as described above, further heating the coating film to melt-fire the F polymer to form the F layer, until the cooling after the firing is completed. Cooling after melt firing may be either forced cooling with cold air or cold water, or natural cooling left at around room temperature, but the stage when the temperature of the laminate having the F layer drops to the ambient temperature is regarded as the completion of cooling.
The heat compression is preferably performed when the F layer is formed, preferably after the F layer is formed, and preferably before the cooling is completed, and more preferably immediately after the F polymer is fired.
When the F layer is formed by repeating the steps of applying the dispersion liquid and heating twice or more as described above, heat compression may be performed after the first application, or after the second application and heating. It may be performed after any of the steps. Further, heat compression may be performed sequentially after each step, or several steps may be performed without heat compression. Heat compression may be performed after all the steps of applying and heating the dispersion liquid.
 上記加熱圧縮は、例えば、
(1)本分散液を乾燥し、塗膜が形成された直後の段階
(2)塗膜が形成されてから、塗膜をさらに加熱してF層を形成する前の段階、
(3)塗膜がさらに加熱されて、Fポリマーが溶融焼成されF層が形成している段階、
(4)Fポリマーが溶融焼成され形成されたF層が冷却されるまでの段階、
のいずれかの段階で行うのが好ましい。上記(1)での塗膜の温度は、上述した分散媒の除去の温度であるのが好ましい。また上記(2)の段階では塗膜を形成後、一旦塗膜を冷却してもよいし、塗膜形成後、冷却せずにさらに加熱してもよい。加熱圧縮は、上記(3)または(4)の段階で行うのがより好ましく、(4)の段階で行うのがさらに好ましい。加熱圧縮は複数の上記段階で行ってもよい。
The heat compression is, for example,
(1) The stage immediately after the dispersion liquid is dried and the coating film is formed (2) The stage after the coating film is formed and before the coating film is further heated to form the F layer.
(3) At the stage where the coating film is further heated and the F polymer is melt-fired to form the F layer.
(4) The stage until the F layer formed by melting and firing the F polymer is cooled.
It is preferable to carry out at any stage of. The temperature of the coating film in (1) above is preferably the temperature at which the dispersion medium is removed. Further, in the step (2) above, after the coating film is formed, the coating film may be cooled once, or after the coating film is formed, it may be further heated without being cooled. The heat compression is more preferably performed at the step (3) or (4) above, and further preferably at the step (4). The heat compression may be performed in a plurality of the above steps.
 加熱圧縮の温度は、Fポリマーのガラス転移温度より高い温度が好ましく、ガラス転移温度より30℃以上高い温度がより好ましい。また加熱圧縮の温度は、Fポリマーの溶融温度より100℃高い温度以下が好ましく、溶融温度より低い温度がより好ましく、溶融温度より100℃低い温度以下がさらに好ましい。加熱圧縮の温度はFポリマーのガラス転移温度より高い温度、かつ、Fポリマーの溶融温度より100℃以上低い温度が好ましい。 The temperature of heat compression is preferably higher than the glass transition temperature of the F polymer, and more preferably 30 ° C. or higher than the glass transition temperature. The temperature of heat compression is preferably 100 ° C. higher than the melting temperature of the F polymer, more preferably lower than the melting temperature, and even more preferably 100 ° C. or lower than the melting temperature. The temperature of heat compression is preferably a temperature higher than the glass transition temperature of the F polymer and 100 ° C. or more lower than the melting temperature of the F polymer.
 加熱圧縮は、大気圧から減圧の雰囲気で行うのが好ましく、大気圧の雰囲気で行うのがより好ましい。
 加熱圧縮の圧力は、0.2MPa以上が好ましく、0.5MPa以上がより好ましい。圧力は、10MPa以下が好ましく、5MPa以下がより好ましい。
The heat compression is preferably performed in an atmosphere of atmospheric pressure to reduced pressure, and more preferably performed in an atmosphere of atmospheric pressure.
The pressure for heat compression is preferably 0.2 MPa or more, more preferably 0.5 MPa or more. The pressure is preferably 10 MPa or less, more preferably 5 MPa or less.
 上記加熱圧縮の方法は、塗膜の形成からF層の形成に際するいずれかの段階で、塗膜またはF層と基板を加熱された一対のロール間を通過させる方法、塗膜またはF層と基板を一対のロール間を通過させながら熱風を吹き付ける方法、塗膜またはF層と基板を加熱されたプレスにより加圧する方法、が挙げられる。
 一対のロール間を通過させる方法としては、ロールプレス機を用いるのが好ましい。一対のロールは、一対の金属ロールを用いてもよく、金属ロールとゴムロールとを用いてもよい。一対のロール間にかかる線圧は1から20tf/mが好ましく、2から10tf/mがより好ましい。ロールの温度は、Fポリマーの融点より70℃高い温度以下が好ましく、Fポリマーの融点より50℃高い温度以下がより好ましい。ロールの温度は、Fポリマーの融点より70℃低い温度以上が好ましく、Fポリマーの融点より50℃低い温度以上がより好ましい。ロールの温度は250℃以上が好ましく、300℃以上がより好ましい。ロールの温度は370℃以下が好ましく350℃以下がより好ましい。
F層と基板とを一対のロール間を通過させる際には、F層のロールへの付着を抑制する観点から、F層の表面とロールとの間に離型フィルムを配置する、またはロールの表面を離型剤によって表面処理するのが好ましい。離型フィルムは、ロールの加圧面でのみF層と接触し、F層がロールから離れる際は剥離されているのが好ましい。
 離型フィルムの厚さは50から150μmであるのが好ましい。
 離型フィルムとしてはポリイミドフィルムが挙げられ、具体例としては、「アピカルNPI」(カネカ社製)、「カプトンEN」(東レ・デュポン社)、「ユーピレックスS(宇部興産社)」が挙げられる。
The heat compression method is a method of passing the coating film or the F layer and the substrate between a pair of heated rolls at any stage from the formation of the coating film to the formation of the F layer, the coating film or the F layer. A method of blowing hot air while passing the substrate through a pair of rolls, and a method of pressurizing the coating film or the F layer and the substrate by a heated press.
As a method of passing between a pair of rolls, it is preferable to use a roll press machine. As the pair of rolls, a pair of metal rolls may be used, or a metal roll and a rubber roll may be used. The linear pressure applied between the pair of rolls is preferably 1 to 20 tf / m, more preferably 2 to 10 tf / m. The temperature of the roll is preferably 70 ° C. or higher than the melting point of the F polymer, and more preferably 50 ° C. or higher than the melting point of the F polymer. The temperature of the roll is preferably 70 ° C. or higher, which is 70 ° C. lower than the melting point of the F polymer, and more preferably 50 ° C. or higher, which is 50 ° C. lower than the melting point of the F polymer. The temperature of the roll is preferably 250 ° C. or higher, more preferably 300 ° C. or higher. The temperature of the roll is preferably 370 ° C or lower, more preferably 350 ° C or lower.
When the F layer and the substrate are passed between the pair of rolls, a release film is placed between the surface of the F layer and the roll, or the roll is placed, from the viewpoint of suppressing the adhesion of the F layer to the roll. It is preferable to surface-treat the surface with a mold release agent. It is preferable that the release film is in contact with the F layer only on the pressurized surface of the roll and is peeled off when the F layer is separated from the roll.
The thickness of the release film is preferably 50 to 150 μm.
Examples of the release film include a polyimide film, and specific examples thereof include "Apical NPI" (manufactured by Kaneka Corporation), "Kapton EN" (Toray DuPont), and "UPIREX S (Ube Industries, Ltd.)".
 上記加熱圧縮前の塗膜またはF層の厚さが10から300μmである場合、上記加熱圧縮後の塗膜またはF層の厚さは5から200μmであるのが好ましい。
 上記加熱圧縮により、加熱圧縮前の塗膜またはF層の厚さに対する、加熱圧縮後の塗膜またはF層の厚さの比が、0.1から0.8となるのが好ましい。例えば、加熱圧縮前の塗膜の厚さに対する、加熱圧縮後の塗膜の厚さの比が、0.1から0.8、または加熱圧縮前のF層の厚さに対する、加熱圧縮後のF層の厚さの比が、0.1から0.8が好ましい。
 また、本法によれば、F層の厚さを厚くしても、得られる積層体において本パウダーまたは前記無機フィラーの粉落ちが抑制されることから、加熱圧縮後のF層の厚さを厚くすることができる。F層の厚さが厚い積層体は電気特性や耐水性が向上する。かかる観点から加熱圧縮後のF層の厚さは40μm以上が好ましい。加熱圧縮後のF層の厚さは通常、200μm以下である。
When the thickness of the coating film or F layer before heat compression is 10 to 300 μm, the thickness of the coating film or F layer after heat compression is preferably 5 to 200 μm.
By the above heat compression, the ratio of the thickness of the coating film or the F layer after the heat compression to the thickness of the coating film or the F layer before the heat compression is preferably 0.1 to 0.8. For example, the ratio of the thickness of the coating film after heat compression to the thickness of the coating film before heat compression is 0.1 to 0.8, or the thickness of the F layer before heat compression is after heat compression. The thickness ratio of the F layer is preferably 0.1 to 0.8.
Further, according to this method, even if the thickness of the F layer is increased, the powder of the present powder or the inorganic filler is suppressed from falling off in the obtained laminate, so that the thickness of the F layer after heat compression can be adjusted. Can be thickened. A laminate with a thick F layer has improved electrical characteristics and water resistance. From this point of view, the thickness of the F layer after heat compression is preferably 40 μm or more. The thickness of the F layer after heat compression is usually 200 μm or less.
 Fポリマーのパウダーを含む分散液の塗布、乾燥、加熱によりFポリマーを含む層を有する積層体を製造する場合、塗膜の状態ではパウダーが一旦、集積するため、パウダー間に空隙が生じる。塗膜をさらに加熱してパウダーを溶融させ、層を形成させるがこの際、完全に空隙を埋めることは困難であった。しかしながら上記方法のように、加熱圧縮の工程を有する製造方法により得られる積層体は、空隙が圧潰され層中の空隙が減少すると考えられる。 When a laminate having a layer containing an F polymer is produced by applying, drying, and heating a dispersion liquid containing the powder of the F polymer, the powder once accumulates in the state of the coating film, so that voids are generated between the powders. The coating film was further heated to melt the powder and form a layer, but at this time, it was difficult to completely fill the voids. However, it is considered that the voids in the laminate obtained by the production method having the heat compression step as in the above method are crushed and the voids in the layer are reduced.
 上述の方法により本積層体が得られる。
 本積層体におけるF層の空隙率は、5%以下が好ましく、4%以下がより好ましい。空隙率は、0.01%以上が好ましく、0.1%以上がより好ましい。なお、空隙率は、走査型電子顕微鏡(SEM)を用いて観察される成形物の断面におけるSEM写真から、画像処理にてF層の空隙部分を判定し、空隙部分が占める面積をF層の面積で除した割合(%)である。空隙部分が占める面積は空隙部分を円形と近似して求められる。
 本積層体は、基板と基板の片面にF層とを有する積層体であってもよく、基板と基板の両面にF層とを有する積層体であってもよい。
The present laminated body is obtained by the above-mentioned method.
The porosity of the F layer in this laminated body is preferably 5% or less, more preferably 4% or less. The porosity is preferably 0.01% or more, more preferably 0.1% or more. The void ratio is determined by image processing to determine the void portion of the F layer from the SEM photograph of the cross section of the molded product observed using a scanning electron microscope (SEM), and the area occupied by the void portion is the area occupied by the F layer. It is the ratio (%) divided by the area. The area occupied by the void portion is obtained by approximating the void portion to a circle.
The present laminated body may be a laminated body having an F layer on one side of the substrate and the substrate, or may be a laminated body having an F layer on both sides of the substrate and the substrate.
 本積層体のF層の表面に、さらに表面処理をして、その接着性を向上してもよい。表面処理はコロナ放電処理、大気圧プラズマ放電処理または真空プラズマ放電処理等のプラズマ処理、プラズマグラフト重合処理、電子線照射、エキシマUV光照射等の光線照射処理、火炎を用いたイトロ処理、金属ナトリウムを用いた湿式エッチング処理等が挙げられ、真空プラズマ放電処理が好ましい。
 真空プラズマ放電処理は、公知の装置を用いて実施できる。真空プラズマ放電処理は、処理効率の点から、0.1から1330Pa、好ましくは1から266Paのガス圧力で持続放電するグロー放電処理、いわゆる低温プラズマ処理が好ましい。このようなガス圧力下で放電電極間に10kHzから2GHzの周波数で10Wから100kWの電力を与えることによって安定なグロー放電を行うことができる。真空プラズマ放電処理の放電電力密度は、5から400W・min/mが好ましい。真空プラズマ放電処理に用いるガスとしては、ヘリウムガス、ネオンガス、アルゴンガス、窒素ガス、酸素ガス、炭酸ガス、水素ガス、空気、水蒸気等が挙げられる。これらガスは、2種以上を混合して用いてもよい。ガスとしては、密着強度向上の点から、アルゴンガス、炭酸ガス、酸素ガスまたは窒素ガスと水素ガスとの混合ガスが好ましく、アルゴンガスと水素ガスの混合ガスがより好ましい。処理時のガス流量としては500から10,000sccmが好ましい。
The surface of the F layer of the present laminate may be further surface-treated to improve its adhesiveness. Surface treatment includes corona discharge treatment, plasma treatment such as atmospheric pressure plasma discharge treatment or vacuum plasma discharge treatment, plasma graft polymerization treatment, electron beam irradiation, light beam irradiation treatment such as Exima UV light irradiation, itro treatment using flame, metallic sodium. Wet etching treatment using the above can be mentioned, and vacuum plasma discharge treatment is preferable.
The vacuum plasma discharge treatment can be carried out using a known device. From the viewpoint of processing efficiency, the vacuum plasma discharge treatment is preferably a glow discharge treatment in which continuous discharge is performed at a gas pressure of 0.1 to 1330 Pa, preferably 1 to 266 Pa, that is, a so-called low temperature plasma treatment. Stable glow discharge can be performed by applying a power of 10 W to 100 kW at a frequency of 10 kHz to 2 GHz between the discharge electrodes under such gas pressure. The discharge power density of the vacuum plasma discharge process is preferably 5 to 400 W · min / m 2. Examples of the gas used for the vacuum plasma discharge treatment include helium gas, neon gas, argon gas, nitrogen gas, oxygen gas, carbon dioxide gas, hydrogen gas, air, and water vapor. These gases may be used as a mixture of two or more. As the gas, an argon gas, a carbon dioxide gas, an oxygen gas or a mixed gas of nitrogen gas and hydrogen gas is preferable, and a mixed gas of argon gas and hydrogen gas is more preferable, from the viewpoint of improving the adhesion strength. The gas flow rate during the treatment is preferably 500 to 10,000 sccm.
 本積層体をさらに他の層と積層する場合、その構成としては、例えば、金属基板/F層/他の基材層/F層/金属基板、金属基板層/他の基材層/F層/他の基材層/金属基板層等が挙げられる。それぞれの層には、さらに、ガラスクロスやフィラーが含まれていてもよい。
 本積層体は、アンテナ部品、プリント基板、航空機用部品、自動車用部品、スポーツ用具、食品工業用品、塗料、化粧品等として有用であり、具体的には、航空機用電線等の電線被覆材、電気絶縁性テープ、石油掘削用絶縁テープ、プリント基板用材料、精密濾過膜、限外濾過膜、逆浸透膜、イオン交換膜、透析膜または気体分離膜等の分離膜、リチウム二次電池用または燃料電池用等の電極バインダー、コピーロール、家具、自動車ダッシュボート、家電製品等のカバー、荷重軸受、すべり軸、バルブ、ベアリング、歯車、カム、ベルトコンベアまたは食品搬送用ベルト等の摺動部材、シャベル、やすり、きり、のこぎり等の工具、ボイラー、ホッパー、パイプ、オーブン、焼き型、シュート、ダイス、便器、コンテナ被覆材として有用である。
When this laminated body is further laminated with another layer, the configuration thereof is, for example, a metal substrate / F layer / another base material layer / F layer / metal substrate, a metal substrate layer / another base material layer / F layer. / Other base material layer / Metal substrate layer and the like. Each layer may further contain a glass cloth or filler.
This laminate is useful as antenna parts, printed substrates, aircraft parts, automobile parts, sports equipment, food industry supplies, paints, cosmetics, etc. Specifically, wire covering materials such as aircraft electric wires, electricity. Insulating tape, insulating tape for oil drilling, materials for printed substrates, precision filtration membranes, ultrafiltration membranes, reverse osmosis membranes, ion exchange membranes, separation membranes such as dialysis membranes or gas separation membranes, lithium secondary batteries or fuels. Electrode binders for batteries, copy rolls, furniture, automobile dash boats, covers for home appliances, load bearings, sliding shafts, valves, bearings, gears, cams, sliding members such as belt conveyors or food transport belts, shovels. It is useful as a tool for shavings, cuttings, saws, boilers, hoppers, pipes, ovens, baking molds, chutes, dies, toilet bowls, and container covering materials.
 上述のとおり本法によればF層と基板との接着性を改良し、耐水性や剥離強度等に優れ、劣化し難い、言い換えれば、信頼性の高い積層体が製造できる。 As described above, according to this method, it is possible to improve the adhesiveness between the F layer and the substrate, to have excellent water resistance, peel strength, etc., and to be resistant to deterioration, in other words, to produce a highly reliable laminated body.
 以上、本法について説明したが、本発明は、上述した実施形態の構成に限定されない。
 例えば、本法は、上記実施形態の構成において、他の任意の工程を追加で有してもよいし、同様の作用を生じる任意の工程と置換されていてもよい。また本積層体は上記実施形態の構成において、他の任意の構成を追加してもよいし、同様の機能を発揮する任意の構成と置換されていてもよい。
Although the present method has been described above, the present invention is not limited to the configuration of the above-described embodiment.
For example, this method may additionally have any other step in the configuration of the above embodiment, or may be replaced with any step that produces the same action. Further, in the configuration of the above embodiment, the present laminated body may be added with any other configuration or may be replaced with any configuration exhibiting the same function.
 以下、実施例によって本発明を詳細に説明するが、本発明はこれらに限定されない。
 1.各成分の準備
 [パウダー]
 パウダー1:TFE単位、NAH単位およびPPVE単位を、この順に98.0モル%、0.1モル%、1.9モル%含み、酸素含有極性基を有するFポリマー1(溶融温度:300℃、ガラス転移点:85℃)からなるパウダー(D50:2.0μm、98%粒径:4.9μm)
 パウダー2:非熱溶融性のPTFEからなるパウダー(D50:0.3μm)
Hereinafter, the present invention will be described in detail by way of examples, but the present invention is not limited thereto.
1. 1. Preparation of each ingredient [Powder]
Powder 1: F-polymer 1 containing 98.0 mol%, 0.1 mol%, 1.9 mol% of TFE units, NAH units and PPVE units in this order and having an oxygen-containing polar group (melting temperature: 300 ° C., Powder consisting of glass transition point: 85 ° C. (D50: 2.0 μm, 98% particle size: 4.9 μm)
Powder 2: Powder made of non-heat-meltable PTFE (D50: 0.3 μm)
 [無機フィラー]
 フィラー1:酸化ケイ素からなり、比表面積7m/gである、ビニルトリメトキシシラン(以下、ビニルシランとも記す。)で表面処理された略真球状のシリカフィラー(D50:0.4μm、98%粒径:1.0μm)
 フィラー2:酸化ケイ素からなり、比表面積7m/gである、表面処理されていない略真球状のシリカフィラー(D50:0.4μm、98%粒径:1.0μm)
 フィラー3:酸化ケイ素からなり、比表面積が3m/gである、ビニルシランで表面処理された略真球状のシリカフィラー(D50:16μm、98%粒径:20μm)
[Inorganic filler]
Filler 1: Approximately spherical silica filler (D50: 0.4 μm, 98% granules) surface-treated with vinyltrimethoxysilane (hereinafter, also referred to as vinylsilane), which is composed of silicon oxide and has a specific surface area of 7 m 2 / g. Diameter: 1.0 μm)
Filler 2: A substantially spherical silica filler (D50: 0.4 μm, 98% particle size: 1.0 μm) which is composed of silicon oxide and has a specific surface area of 7 m 2 / g and is not surface-treated.
Filler 3: A substantially spherical silica filler (D50: 16 μm, 98% particle size: 20 μm) surface-treated with vinylsilane, which is composed of silicon oxide and has a specific surface area of 3 m 2 / g.
 [非水系溶媒]
 NMP:N-メチル-2-ピロリドン
 [界面活性剤]
 界面活性剤1:ペルフルオロアルケニル基を有する(メタ)アクリレートと、水酸基とオキシエチレン基を有する(メタ)アクリレートのコポリマー
 [他のポリマーのワニス]
 ワニス1:熱可塑性ポリイミド(PI1)がNMPに溶解したワニス
[Non-aqueous solvent]
NMP: N-methyl-2-pyrrolidone [surfactant]
Surfactant 1: Copolymer of (meth) acrylate having perfluoroalkenyl group and (meth) acrylate having hydroxyl group and oxyethylene group [varnish of other polymer]
Varnish 1: Varnish in which thermoplastic polyimide (PI1) is dissolved in NMP
 2.分散液の製造例
 (例1)
 まず、パウダー1とワニス1と界面活性剤1とNMPとをポットに投入した後、ポット内にジルコニアボールを投入した。その後、150rpmにて1時間、ポットをころがして、液状組成物を調製した。
 次に、フィラー1と界面活性剤1とNMPとをポットに投入した後、ポット内にジルコニアボールを投入した。その後、150rpmにて1時間、ポットをころがして、液状組成物を調製した。
 その後、両者の液状組成物をポットに投入した後、ポット内にジルコニアボールを投入した。その後、150rpmにて1時間、ポットをころがして、パウダー1(11質量部)、フィラー1(11質量部)、PI1(7質量部)、界面活性剤1(4質量部)およびNMP(67質量部)を含む粘度が400mPaの分散液1を得た。
2. 2. Production example of dispersion liquid (Example 1)
First, powder 1, varnish 1, surfactant 1 and NMP were put into a pot, and then zirconia balls were put into the pot. Then, the pot was rolled at 150 rpm for 1 hour to prepare a liquid composition.
Next, after the filler 1, the surfactant 1 and the NMP were put into the pot, the zirconia balls were put into the pot. Then, the pot was rolled at 150 rpm for 1 hour to prepare a liquid composition.
Then, after putting both liquid compositions into the pot, zirconia balls were put into the pot. Then, the pot is rolled at 150 rpm for 1 hour to powder 1 (11 parts by mass), filler 1 (11 parts by mass), PI1 (7 parts by mass), surfactant 1 (4 parts by mass) and NMP (67 parts by mass). A dispersion liquid 1 having a viscosity of 400 mPa containing the part) was obtained.
 (例2)
 ワニス1を用いず、NMPの量を変更した以外は、例1と同様にして、パウダー1(11質量部)、フィラー1(11質量部)、界面活性剤1(4質量部)およびNMP(74質量部)を含む粘度が400mPaの分散液2を得た。
 (例3)
 フィラー1をフィラー2に変更した以外は、例1と同様にして、パウダー1(11質量部)、フィラー2(11質量部)、PI1(7質量部)、界面活性剤1(4質量部)およびNMP(67質量部)を含む粘度が700mPa・sの分散液3を得た。
(Example 2)
Powder 1 (11 parts by mass), filler 1 (11 parts by mass), surfactant 1 (4 parts by mass) and NMP (4 parts by mass) in the same manner as in Example 1 except that the amount of NMP was changed without using varnish 1. A dispersion liquid 2 having a viscosity of 400 mPa containing 74 parts by mass) was obtained.
(Example 3)
Powder 1 (11 parts by mass), filler 2 (11 parts by mass), PI1 (7 parts by mass), surfactant 1 (4 parts by mass) in the same manner as in Example 1 except that the filler 1 was changed to the filler 2. And NMP (67 parts by mass) and a dispersion liquid 3 having a viscosity of 700 mPa · s were obtained.
 (例4)
 フィラー1をフィラー3に変更した以外は、例1と同様にして、パウダー1(11質量部)、フィラー3(11質量部)、PI1(7質量部)、界面活性剤1(4質量部)およびNMP(67質量部)を含む粘度が400mPaの分散液4を得た。
(Example 4)
Powder 1 (11 parts by mass), filler 3 (11 parts by mass), PI1 (7 parts by mass), surfactant 1 (4 parts by mass) in the same manner as in Example 1 except that the filler 1 was changed to the filler 3. And NMP (67 parts by mass) and a dispersion liquid 4 having a viscosity of 400 mPa were obtained.
 (例5)
 パウダー1の11質量部を、パウダー1の2質量部とパウダー2の9質量部に変更した以外は、例1と同様にして、パウダー1(2質量部)、パウダー2(9質量部)、フィラー3(11質量部)、PI1(7質量部)、界面活性剤1(4質量部)およびNMP(67質量部)を含む粘度が500mPaの分散液5を得た。
(Example 5)
Powder 1 (2 parts by mass), powder 2 (9 parts by mass), in the same manner as in Example 1 except that 11 parts by mass of powder 1 was changed to 2 parts by mass of powder 1 and 9 parts by mass of powder 2. A dispersion 5 having a viscosity of 500 mPa containing filler 3 (11 parts by mass), PI1 (7 parts by mass), surfactant 1 (4 parts by mass) and NMP (67 parts by mass) was obtained.
 3.積層体の製造例
 (積層体1の製造)
 厚さが18μmの長尺の銅箔の表面に、バーコーターを用いて分散液1を塗布した。次いで、分散液1が塗布された銅箔を、120℃にて5分間、乾燥炉に通し、加熱により乾燥させて、塗膜を得た。形成された塗膜の厚みは12μmであった。乾燥直後、塗膜が25℃に冷却されるまでの間に、塗膜を、大気圧の雰囲気でローラ押圧による熱プレスにより温度150℃、圧力0.6MPaで塗膜の厚さが8μmとなるまで加熱圧縮した。その後、窒素オーブン中で、塗膜を380℃にて3分間、加熱した。これにより、銅箔と、その表面にパウダー1の溶融焼成物、フィラー1およびPI1を含む、成形物として厚さが7μmのF層とを有する積層体1を製造した。加熱圧縮の前後で、塗膜の空隙の減少が確認された。
3. 3. Example of manufacturing of laminated body (manufacturing of laminated body 1)
The dispersion liquid 1 was applied to the surface of a long copper foil having a thickness of 18 μm using a bar coater. Next, the copper foil coated with the dispersion liquid 1 was passed through a drying oven at 120 ° C. for 5 minutes and dried by heating to obtain a coating film. The thickness of the formed coating film was 12 μm. Immediately after drying, until the coating film is cooled to 25 ° C., the coating film is heated to a temperature of 150 ° C. and a pressure of 0.6 MPa by hot pressing by roller pressing in an atmosphere of atmospheric pressure, and the thickness of the coating film becomes 8 μm. Heat compressed to. Then, the coating film was heated at 380 ° C. for 3 minutes in a nitrogen oven. As a result, a laminate 1 having a copper foil and an F layer having a thickness of 7 μm as a molded product containing a melt-fired product of powder 1 and filler 1 and PI1 on the surface thereof was produced. It was confirmed that the voids in the coating film decreased before and after heat compression.
 (積層体2の製造)
 積層体1と同様にして、銅箔の表面に塗膜を得た。形成された塗膜の厚さは15μmであった。その後、窒素オーブン中で、塗膜を380℃にて3分間加熱し、銅箔と、その表面にパウダー1の溶融焼成物、フィラー1およびPI1を含む、厚さが12μmのF層を得た。その後、加熱直後、F層が25℃に冷却されるまでの間に、真空プレス機を用いて真空の雰囲気で温度330℃、圧力0.2MPaの条件で熱プレスしてF層が8μmとなるまで加熱圧縮し、積層体2を得た。加熱圧縮の前後で、F層の空隙の減少が確認された。
(Manufacturing of laminated body 2)
A coating film was obtained on the surface of the copper foil in the same manner as in the laminated body 1. The thickness of the formed coating film was 15 μm. Then, the coating film was heated at 380 ° C. for 3 minutes in a nitrogen oven to obtain an F layer having a thickness of 12 μm, which contained a copper foil and a melt-fired product of powder 1 and filler 1 and PI1 on the surface thereof. .. Then, immediately after heating, until the F layer is cooled to 25 ° C., the F layer is hot-pressed in a vacuum atmosphere at a temperature of 330 ° C. and a pressure of 0.2 MPa using a vacuum press machine to reach 8 μm. It was heated and compressed to obtain a laminated body 2. Before and after heat compression, a decrease in the voids in the F layer was confirmed.
 (積層体3の製造)
 分散液1を分散液2に変更し、熱プレスの条件を温度330℃、0.6MPaに変更した以外は、積層体2の製造と同様にして、積層体3を製造した。加熱圧縮の前後でF層の空隙の減少が確認された。
(Manufacturing of laminated body 3)
The laminate 3 was manufactured in the same manner as the laminate 2 except that the dispersion 1 was changed to the dispersion 2 and the hot press conditions were changed to a temperature of 330 ° C. and 0.6 MPa. It was confirmed that the voids in the F layer decreased before and after the heat compression.
 (積層体4の製造)
 熱プレスの条件を温度330℃、1.0MPaに変更し、F層が5μmとなるまで加熱圧縮した以外は、積層体3の製造と同様にして、積層体4を製造した。加熱圧縮の前後でF層の空隙の減少が確認された。
(Manufacturing of laminated body 4)
The laminate 4 was manufactured in the same manner as the laminate 3 except that the conditions of the hot press were changed to a temperature of 330 ° C. and 1.0 MPa and the F layer was heated and compressed until the temperature became 5 μm. It was confirmed that the voids in the F layer decreased before and after the heat compression.
 (積層体5の製造)
 熱プレスの条件を温度380℃、0.6MPaに変更した以外は、積層体3の製造と同様にして積層体5を製造した。加熱圧縮の前後でF層の空隙の減少が確認された。
(Manufacturing of laminated body 5)
The laminate 5 was manufactured in the same manner as the laminate 3 except that the conditions of the hot press were changed to a temperature of 380 ° C. and 0.6 MPa. It was confirmed that the voids in the F layer decreased before and after the heat compression.
 (積層体6の製造)
 熱プレスを行わなかった以外は、積層体3の製造と同様にして積層体6を製造した。
(Manufacturing of laminated body 6)
The laminate 6 was manufactured in the same manner as the laminate 3 except that the heat press was not performed.
 (積層体7の製造)
 分散液1を分散液3に変更した以外は、積層体1と同様にして、積層体7を製造した。加熱圧縮の前後で、F層の空隙の減少が確認された。
(Manufacturing of laminated body 7)
The laminated body 7 was manufactured in the same manner as the laminated body 1 except that the dispersion liquid 1 was changed to the dispersion liquid 3. Before and after heat compression, a decrease in the voids in the F layer was confirmed.
 (積層体8の製造)
 分散液1を分散液4に変更した以外は、積層体1と同様にして、積層体8を製造した。加熱圧縮の前後で、F層の空隙の減少が確認された。
(Manufacturing of laminated body 8)
The laminated body 8 was manufactured in the same manner as the laminated body 1 except that the dispersion liquid 1 was changed to the dispersion liquid 4. Before and after heat compression, a decrease in the voids in the F layer was confirmed.
 (積層体9の製造)
 分散液1を分散液5に変更した以外は、積層体1と同様にして、積層体8を製造した。加熱圧縮の前後で、F層の空隙の減少が確認された。
(Manufacturing of laminated body 9)
The laminated body 8 was manufactured in the same manner as the laminated body 1 except that the dispersion liquid 1 was changed to the dispersion liquid 5. Before and after heat compression, a decrease in the voids in the F layer was confirmed.
 (積層体10の製造)
 F層の厚さを、100μmに変更した以外は、積層体1と同様にして、積層体10を製造した。
(Manufacturing of laminated body 10)
The laminated body 10 was manufactured in the same manner as the laminated body 1 except that the thickness of the F layer was changed to 100 μm.
 (積層体11の製造)
 F層の厚さを、100μmに変更し、熱プレスを行わなかった以外は、積層体1と同様にして、積層体11を製造した。
(Manufacturing of laminated body 11)
The laminated body 11 was manufactured in the same manner as the laminated body 1 except that the thickness of the F layer was changed to 100 μm and no heat pressing was performed.
 (積層体12の製造)
 積層体1と同様にして、銅箔の表面に塗膜を得た。形成された塗膜の厚さは15μmであった。その後、窒素オーブン中で、塗膜を380℃にて3分間加熱し、銅箔と、その表面にパウダー1の溶融焼成物、フィラー1およびPI1を含む、厚さが12μmのF層とを有する積層体を得た。その後、加熱直後、F層が25℃に冷却されるまでの間に、得られた積層体を、大気圧の雰囲気で330℃の一対の金属ロールの間を通過させた。この際、F層の表面と金属ロールとの間に離型フィルムとしてポリイミドフィルムを挟みつつ積層体を通過させた。これによりF層を加熱圧縮して積層体12を得た。
 加熱圧縮の前後で、F層の空隙の減少が確認され、F層の空隙率は0.1%以上4%以下であった。
 上記積層体1から12を剥離強度、耐水性、電気特性および反りについて以下の基準に基づき評価した。
(Manufacturing of laminated body 12)
A coating film was obtained on the surface of the copper foil in the same manner as in the laminated body 1. The thickness of the formed coating film was 15 μm. Then, in a nitrogen oven, the coating film is heated at 380 ° C. for 3 minutes to have a copper foil and an F layer having a thickness of 12 μm containing a melt-fired product of powder 1 and filler 1 and PI1 on the surface thereof. A laminate was obtained. Then, immediately after heating and before the F layer was cooled to 25 ° C., the obtained laminate was passed between a pair of metal rolls at 330 ° C. in an atmosphere of atmospheric pressure. At this time, the polyimide film was sandwiched between the surface of the F layer and the metal roll as a release film and passed through the laminate. As a result, the F layer was heated and compressed to obtain a laminated body 12.
Before and after heat compression, a decrease in the porosity of the F layer was confirmed, and the porosity of the F layer was 0.1% or more and 4% or less.
The laminates 1 to 12 were evaluated for peel strength, water resistance, electrical characteristics and warpage based on the following criteria.
 3.測定および評価
 3-1.耐水性の評価
 それぞれの積層体を、塩化第二鉄水溶液でエッチングし、銅箔を除去して、F層単体を得た。
 このF層を、ASTM D570に準拠して、50℃×48時間で予備乾燥した後、23℃の純水に24時間浸漬した。純水に浸漬する前後のF層の質量を測定し、以下の式に基づき、吸水率を求め、以下の基準に従って評価した。
 吸水率(%)=(水浸漬後質量-予備乾燥後質量)/予備乾燥後質量×100
 〇:吸水率が0.05%以下である。
 △:吸水率が0.05%超0.1%以下である。
 ×:吸水率が0.1%超である。
3. 3. Measurement and evaluation 3-1. Evaluation of Water Resistance Each laminate was etched with an aqueous solution of ferric chloride to remove the copper foil to obtain a simple substance F layer.
This F layer was pre-dried at 50 ° C. for 48 hours according to ASTM D570, and then immersed in pure water at 23 ° C. for 24 hours. The mass of the F layer before and after immersion in pure water was measured, the water absorption rate was determined based on the following formula, and the evaluation was made according to the following criteria.
Water absorption rate (%) = (mass after immersion in water-mass after pre-drying) / mass after pre-drying x 100
〇: The water absorption rate is 0.05% or less.
Δ: The water absorption rate is more than 0.05% and 0.1% or less.
X: The water absorption rate is more than 0.1%.
 3-2.高温高湿処理後の剥離強度の評価
 それぞれの積層体から、長さ100mm、幅10mmの矩形状の試験片を切り出し、85℃かつ相対湿度85%の雰囲気下にて72時間保持した後、試験片の長さ方向の一端から50mmの位置まで、銅箔とF層とを剥離し、引張り試験機(オリエンテック社製)のそれぞれのチャックに剥離した銅箔とF層の一端を装着した。次いで、この試験片の未剥離部分の銅箔とF層の剥離強度(N/cm)を引張り試験機により測定し、以下の基準に従って評価した。
 〇:剥離強度≧10N/cm
 ×:剥離強度≦10N/cm
3-2. Evaluation of peeling strength after high-temperature and high-humidity treatment A rectangular test piece with a length of 100 mm and a width of 10 mm was cut out from each laminate and held at 85 ° C. and a relative humidity of 85% for 72 hours before testing. The copper foil and the F layer were peeled off from one end in the length direction of the piece to a position of 50 mm, and the peeled copper foil and one end of the F layer were attached to each chuck of a tensile tester (manufactured by Orientec). Next, the peel strength (N / cm) of the copper foil and the F layer in the unpeeled portion of this test piece was measured by a tensile tester and evaluated according to the following criteria.
〇: Peeling strength ≧ 10 N / cm
X: Peeling strength ≤ 10 N / cm
 3-3.高温高湿処理後の誘電正接の評価
 それぞれの積層体から、長さ100mm、幅50mmの矩形状の試験片を切り出し、塩化第二鉄水溶液でエッチングして銅箔を除去し、F層単体を得た。F層単体を85℃かつ相対湿度85%の雰囲気下にて72時間保持した後、SPDR(スプリットポスト誘電体共振)法にて、多層フィルムの誘電正接(測定周波数:10GHz)を測定し、以下の基準に従って評価した。
 〇:その誘電正接が0.0020未満である。
 △:その誘電正接が0.0020以上0.0040以下である。
 ×:その誘電正接が0.0040超である。
3-3. Evaluation of Dissipation Factor after High Temperature and High Humidity Treatment A rectangular test piece with a length of 100 mm and a width of 50 mm was cut out from each laminate and etched with an aqueous ferric chloride solution to remove the copper foil, and the F layer alone was removed. Obtained. After holding the F layer alone in an atmosphere of 85 ° C. and 85% relative humidity for 72 hours, the dielectric loss tangent (measurement frequency: 10 GHz) of the multilayer film was measured by the SPDR (split post dielectric resonance) method. It was evaluated according to the criteria of.
〇: The dielectric loss tangent is less than 0.0020.
Δ: The dielectric loss tangent is 0.0020 or more and 0.0040 or less.
X: The dielectric loss tangent is more than 0.0040.
 3-4.高温高湿処理後の反りの評価
 それぞれの積層体から180mm角の四角い試験片を切り出し、相対湿度85%の雰囲気下にて72時間保持した後、試験片を平滑なガラスの表面に静置し、目視して、以下の基準にて評価した。
 〇:試験片に反り(うねり)が確認されない。
 △:試験片に反り(うねり)が確認されるが、試験片が丸まっていない。
 ×:試験片に反り(うねり)が確認され、試験片が丸まっている。
 以上の結果を、以下の表1に示す。
3-4. Evaluation of Warpage after High Temperature and High Humidity Treatment A 180 mm square test piece was cut out from each laminate and held in an atmosphere of 85% relative humidity for 72 hours, and then the test piece was placed on a smooth glass surface. It was allowed to stand still and visually evaluated, and evaluated according to the following criteria.
〇: No warpage is confirmed on the test piece.
Δ: Warpage (waviness) is confirmed on the test piece, but the test piece is not curled.
X: Warpage (waviness) was confirmed on the test piece, and the test piece was curled.
The above results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、積層体8から10のそれぞれは、積層体1に比較して、以下の点でより積層体物性に優れていた。
 積層体8は、誘電正接自体がより低く、電気特性に優れていた。
 積層体9および10は、無機フィラーが粉落ちしにくく取り扱いやすく、その層の表面平滑性も高かった。
 積層体12は、積層体2に比較して、耐水性の評価における吸水率が低く、耐水性に優れていた。
It should be noted that each of the laminated bodies 8 to 10 was more excellent in physical properties of the laminated body in the following points as compared with the laminated body 1.
The laminate 8 had a lower dielectric loss tangent itself and was excellent in electrical characteristics.
In the laminated bodies 9 and 10, the inorganic filler did not easily come off and was easy to handle, and the surface smoothness of the layer was also high.
The laminated body 12 had a lower water absorption rate in the evaluation of water resistance and was excellent in water resistance as compared with the laminated body 2.
 上記結果から明らかなように、本法で作成した積層体の積層体断面には空隙がなく緻密であり、吸水性が低く、剥離強度、電気特性に優れ、反りが少ない積層体が得られた。したがって本法により得られた積層体は各種基板との接着性に優れ、剥離強度と耐水性に優れる。 As is clear from the above results, the cross section of the laminated body prepared by this method has no voids and is dense, has low water absorption, has excellent peel strength and electrical characteristics, and has little warpage. .. Therefore, the laminate obtained by this method has excellent adhesiveness to various substrates, and has excellent peel strength and water resistance.

Claims (15)

  1.  熱溶融性テトラフルオロエチレン系ポリマーのパウダーを含む分散液を基板上に塗布、乾燥して塗膜を形成し、得られた前記塗膜をさらに加熱して、前記熱溶融性テトラフルオロエチレン系ポリマーを含む層を形成し、少なくとも前記塗膜の形成から前記層の形成後までの過程で、前記塗膜または前記層と前記基板とを加熱圧縮する、熱溶融性テトラフルオロエチレン系ポリマーを含む層を有する積層体の製造方法。 A dispersion containing a powder of a heat-meltable tetrafluoroethylene polymer is applied onto a substrate and dried to form a coating film, and the obtained coating film is further heated to further heat the heat-meltable tetrafluoroethylene polymer. A layer containing a heat-meltable tetrafluoroethylene-based polymer that heats and compresses the coating film or the layer and the substrate in the process from the formation of the coating film to the formation of the layer. A method for producing a laminate having.
  2.  前記熱溶融性テトラフルオロエチレン系ポリマーが、ペルフルオロ(アルキルビニルエーテル)に基づく単位を含み極性官能基を有するポリマー、または、全単位に対してペルフルオロ(アルキルビニルエーテル)に基づく単位を2から5モル%含み極性官能基を有さないポリマーである、請求項1に記載の積層体の製造方法。 The heat-meltable tetrafluoroethylene polymer contains units based on perfluoro (alkyl vinyl ether) and has a polar functional group, or contains 2 to 5 mol% of units based on perfluoro (alkyl vinyl ether) with respect to all units. The method for producing a laminate according to claim 1, which is a polymer having no polar functional group.
  3.  前記基板が銅箔またはポリイミドフィルムである請求項1または2に記載の積層体の製造方法。 The method for manufacturing a laminate according to claim 1 or 2, wherein the substrate is a copper foil or a polyimide film.
  4.  前記加熱圧縮の温度が前記熱溶融性テトラフルオロエチレン系ポリマーのガラス転移温度以上かつ前記熱溶融性テトラフルオロエチレン系ポリマーの溶融温度より100℃高い温度以下である請求項1から3のいずれか1項に記載の積層体の製造方法。 Any one of claims 1 to 3 in which the temperature of the heat compression is equal to or higher than the glass transition temperature of the heat-meltable tetrafluoroethylene-based polymer and 100 ° C. higher than the melting temperature of the heat-meltable tetrafluoroethylene-based polymer. The method for manufacturing a laminate according to the section.
  5.  前記加熱圧縮の圧力が0.2MPa以上10MPa以下である請求項1から4のいずれか1項に記載の積層体の製造方法。 The method for producing a laminate according to any one of claims 1 to 4, wherein the heat compression pressure is 0.2 MPa or more and 10 MPa or less.
  6.  前記加熱圧縮を前記層の形成に際して行う請求項1から5のいずれか1項に記載の積層体の製造方法。 The method for producing a laminate according to any one of claims 1 to 5, wherein the heat compression is performed when the layer is formed.
  7.  前記加熱圧縮前の前記塗膜の厚さに対する、前記加熱圧縮後の塗膜の厚さの比、または、前記加熱圧縮前の前記層の厚さに対する、前記加熱圧縮後の層の厚さの比が、0.1から0.8である、請求項1から6のいずれか1項に記載の積層体の製造方法。 The ratio of the thickness of the coating film after heat compression to the thickness of the coating film before heat compression, or the thickness of the layer after heat compression to the thickness of the layer before heat compression. The method for producing a laminate according to any one of claims 1 to 6, wherein the ratio is 0.1 to 0.8.
  8.  前記加熱圧縮後の層の厚さが、40μm以上である請求項1から7のいずれか1項に記載の積層体の製造方法。 The method for producing a laminate according to any one of claims 1 to 7, wherein the thickness of the layer after heat compression is 40 μm or more.
  9.  前記分散液が、さらに無機フィラーを含む請求項1から8のいずれか1項に記載の積層体の製造方法。 The method for producing a laminate according to any one of claims 1 to 8, wherein the dispersion further contains an inorganic filler.
  10.  前記分散液が、さらにシランカップリング剤で表面処理されている無機フィラーを含む請求項1から9のいずれか1項に記載の積層体の製造方法。 The method for producing a laminate according to any one of claims 1 to 9, wherein the dispersion further contains an inorganic filler surface-treated with a silane coupling agent.
  11.  前記分散液が、平均粒子径が10μm以上である無機フィラーを含む請求項1から10のいずれか1項に記載の積層体の製造方法。 The method for producing a laminate according to any one of claims 1 to 10, wherein the dispersion liquid contains an inorganic filler having an average particle size of 10 μm or more.
  12.  前記分散液中の、前記熱溶融性テトラフルオロエチレン系ポリマーに対する、前記無機フィラーの質量比が、0.5から1.5である、請求項9から11のいずれか1項に記載の積層体の製造方法。 The laminate according to any one of claims 9 to 11, wherein the mass ratio of the inorganic filler to the heat-meltable tetrafluoroethylene polymer in the dispersion is 0.5 to 1.5. Manufacturing method.
  13.  前記分散液が、さらに非熱溶融性のポリテトラフルオロエチレンのパウダーを含む請求項1から12のいずれか1項に記載の積層体の製造方法。 The method for producing a laminate according to any one of claims 1 to 12, wherein the dispersion further contains a non-heat-meltable polytetrafluoroethylene powder.
  14.  前記分散液が、さらに芳香族ポリマーを含む請求項1から13のいずれか1項に記載の積層体の製造方法。 The method for producing a laminate according to any one of claims 1 to 13, wherein the dispersion further contains an aromatic polymer.
  15.  前記分散液が、さらにシランカップリング剤を含む請求項1から14のいずれか1項に記載の積層体の製造方法。

     
    The method for producing a laminate according to any one of claims 1 to 14, wherein the dispersion further contains a silane coupling agent.

PCT/JP2021/017605 2020-05-21 2021-05-08 Method for producing laminate which has layer containing thermofusible tetrafluoroethylene polymer WO2021235252A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022524385A JPWO2021235252A1 (en) 2020-05-21 2021-05-08
CN202180036508.5A CN115666942A (en) 2020-05-21 2021-05-08 Method for producing laminate having layer comprising thermally fusible tetrafluoroethylene polymer
KR1020227031248A KR20230010621A (en) 2020-05-21 2021-05-08 Method for producing a laminate having a layer containing a thermally meltable tetrafluoroethylene-based polymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020088645 2020-05-21
JP2020-088645 2020-05-21

Publications (1)

Publication Number Publication Date
WO2021235252A1 true WO2021235252A1 (en) 2021-11-25

Family

ID=78707800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/017605 WO2021235252A1 (en) 2020-05-21 2021-05-08 Method for producing laminate which has layer containing thermofusible tetrafluoroethylene polymer

Country Status (5)

Country Link
JP (1) JPWO2021235252A1 (en)
KR (1) KR20230010621A (en)
CN (1) CN115666942A (en)
TW (1) TW202204507A (en)
WO (1) WO2021235252A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024070415A1 (en) * 2022-09-29 2024-04-04 日鉄ケミカル&マテリアル株式会社 Dispersion composition, fluororesin film, metal-clad laminated board, and method for producing same
WO2024122543A1 (en) * 2022-12-08 2024-06-13 Agc株式会社 Flat insulated electric wire

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003145690A (en) * 2001-11-13 2003-05-20 Toyobo Co Ltd Oxygen gas barrier film and method for manufacturing the same
WO2014104292A1 (en) * 2012-12-31 2014-07-03 株式会社Pat Fluororesin sheet and method for producing same
WO2019208276A1 (en) * 2018-04-26 2019-10-31 Agc株式会社 Method for producing multilayer body, and multilayer body

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013222899A (en) 2012-04-18 2013-10-28 Sumitomo Electric Fine Polymer Inc Fluororesin substrate and manufacturing method thereof
JP6582448B2 (en) 2015-03-05 2019-10-02 サミー株式会社 Bullet ball machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003145690A (en) * 2001-11-13 2003-05-20 Toyobo Co Ltd Oxygen gas barrier film and method for manufacturing the same
WO2014104292A1 (en) * 2012-12-31 2014-07-03 株式会社Pat Fluororesin sheet and method for producing same
WO2019208276A1 (en) * 2018-04-26 2019-10-31 Agc株式会社 Method for producing multilayer body, and multilayer body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024070415A1 (en) * 2022-09-29 2024-04-04 日鉄ケミカル&マテリアル株式会社 Dispersion composition, fluororesin film, metal-clad laminated board, and method for producing same
WO2024122543A1 (en) * 2022-12-08 2024-06-13 Agc株式会社 Flat insulated electric wire

Also Published As

Publication number Publication date
CN115666942A (en) 2023-01-31
KR20230010621A (en) 2023-01-19
TW202204507A (en) 2022-02-01
JPWO2021235252A1 (en) 2021-11-25

Similar Documents

Publication Publication Date Title
JP7234921B2 (en) HOT PRESS LAMINATED AND METHOD FOR MANUFACTURING HOT PRESS LAMINATED
JP7363797B2 (en) Method for producing dispersion liquid and resin-coated metal foil
CN112236302B (en) Method for producing resin-coated metal foil, laminate, and printed board
CN112236473B (en) Dispersion liquid, method for producing resin-containing metal foil, and method for producing printed board
WO2021235252A1 (en) Method for producing laminate which has layer containing thermofusible tetrafluoroethylene polymer
JP2022011017A (en) Powder dispersion and laminate manufacturing method
TW202106730A (en) Dispersion solution and molded product
WO2020090607A1 (en) Dispersion
TW202039676A (en) Powder-dispersed liquid, method for producing layered product, method for producing polymer film, and method for producing coated woven fabric
WO2021075504A1 (en) Non-aqueous dispersion liquid, and method for producing laminate
JP7400722B2 (en) Laminate, printed circuit board and manufacturing method thereof
WO2021015079A1 (en) Method for producing laminate, and laminate
JP2021075030A (en) Laminate, method for producing laminate, sheet and printed circuit board
JP7380690B2 (en) Film, film manufacturing method, metal clad laminate, and coated metal conductor
JP7468520B2 (en) Liquid Composition
JP2021167368A (en) Liquid composition, and production method of laminate
JP2020083990A (en) Manufacturing method of composite, and composite
TWI857104B (en) Method for manufacturing laminate and laminate
TW202136056A (en) Multilayer film and method for manufacturing same
WO2022050163A1 (en) Method for manufacturing multilayer film, and multilayer film
JP2023117863A (en) Film, method for producing surface-treated film, laminate, and method for producing surface-treated laminate
WO2023153485A1 (en) Composition, film, laminate, and method for manufacturing laminate
TW202041379A (en) Laminate, and method for producing laminate
JP2021146707A (en) Multilayer film
JP2023053792A (en) Production method of laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21807833

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022524385

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21807833

Country of ref document: EP

Kind code of ref document: A1