WO2024070415A1 - Dispersion composition, fluororesin film, metal-clad laminated board, and method for producing same - Google Patents

Dispersion composition, fluororesin film, metal-clad laminated board, and method for producing same Download PDF

Info

Publication number
WO2024070415A1
WO2024070415A1 PCT/JP2023/031255 JP2023031255W WO2024070415A1 WO 2024070415 A1 WO2024070415 A1 WO 2024070415A1 JP 2023031255 W JP2023031255 W JP 2023031255W WO 2024070415 A1 WO2024070415 A1 WO 2024070415A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
dispersion composition
range
fluororesin
weight
Prior art date
Application number
PCT/JP2023/031255
Other languages
French (fr)
Japanese (ja)
Inventor
智典 安藤
知弥 池田
Original Assignee
日鉄ケミカル&マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄ケミカル&マテリアル株式会社 filed Critical 日鉄ケミカル&マテリアル株式会社
Publication of WO2024070415A1 publication Critical patent/WO2024070415A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09D127/18Homopolymers or copolymers of tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • C09D201/02Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C09D201/04Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing halogen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to a dispersion composition, a fluororesin film, a metal-clad laminate, and a method for producing the same.
  • FPCs flexible printed circuits
  • FPCs are manufactured by etching and wiring the metal layer of metal-clad laminates such as copper-clad laminates (CCL).
  • metal-clad laminates such as copper-clad laminates (CCL).
  • CCL copper-clad laminates
  • metal-clad laminates that use highly heat-resistant polyimide for the insulating resin layer that contacts the metal foil are widely used.
  • circuit board materials are being investigated for millimeter wave radar boards and antenna boards that are compatible with high-speed communication standards.
  • fluororesins have attracted attention because of their low dielectric tangent and the potential for reducing signal transmission loss.
  • Patent Document 1 discloses a method (casting method) for producing a fluororesin film by using a dispersion composition in which a fluororesin powder is uniformly dispersed and applying the composition to a substrate.
  • inorganic fillers are blended into the dispersion composition to achieve low thermal expansion, a required characteristic for insulating materials for circuit boards, while taking advantage of the characteristic of low dielectric tangent.
  • CTE coefficient of thermal expansion
  • inorganic fillers are blended at high concentrations, voids are formed around the fillers due to the difference in the coefficient of thermal expansion with the matrix resin, which reduces the density of the film and is a concern for reducing peel strength and electrical properties.
  • many voids and cracks exist between the powder particles in the coating film are very low coefficient of thermal expansion (CTE)
  • Patent Document 1 also states that gas generated during the formation of the fluororesin layer by the casting method causes swelling and cracks, and proposes providing a heating and compression process to reduce voids in the film and form a dense film.
  • microbubbles to distinguish them from the relatively large gaps around the filler, gaps caused by solvent gas, cracks, etc.
  • the object of the present invention is therefore to provide a dispersion composition that can minimize voids such as microbubbles in a fluororesin film when the film is formed by a casting method, and further to provide a dense fluororesin film that is obtained using this dispersion composition and is almost free of not only large voids and cracks but also microbubbles, and a metal-clad laminate that uses the fluororesin film as an insulating resin layer, as well as methods for producing the same.
  • the present inventors have investigated the cause of the generation of microbubbles and have obtained the following findings (1) to (3).
  • the present inventors conducted intensive research to reduce microbubbles, and as a result, they found that the above-mentioned problems can be solved by using an inorganic filler with a controlled particle size distribution to be blended into the dispersion composition, and by carrying out a melt heat treatment under conditions that allow the decomposition products of the dispersant to be efficiently removed outside the film, thereby completing the present invention.
  • the dispersion composition of the present invention comprises the following components (A) to (D): (A) a fluorine-based resin powder, (B) an inorganic filler; (C) a dispersant, (D) A dispersion composition containing an organic solvent.
  • the dispersion composition of the present invention has a content of component (A) in the range of 15 to 40% by weight and a content of component (B) in the range of 60 to 85% by weight, based on the total amount of component (A) and component (B);
  • the particle size distribution of component (B) is measured on a volume basis by a laser diffraction/scattering method, the following conditions (i) and (ii) are satisfied: (i) having at least one peak top between 8 and 15 ⁇ m and at least one peak top between 0.1 and 5 ⁇ m; (ii) D10 is in the range of 0.1 to 3 ⁇ m, D50 is in the range of 5 to 15 ⁇ m, and the proportion of particles having a size of 5 ⁇ m or more is 60% by volume or more; It satisfies the following.
  • the dispersion composition of the present invention may have a content of component (C) in the range of 1 to 10% by weight based on the total amount of components (A) and (B).
  • the dispersion composition of the present invention may have a content of component (D) in the range of 25 to 50% by weight based on the total composition.
  • component (B) may be spherical amorphous silica.
  • component (A) may be a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA).
  • the fluorine-based resin film of the present invention comprises the following component (A1) and component (B); (A1) a fluorine-based resin, (B) an inorganic filler; Contains Based on the total amount of components (A1) and (B), the content of component (A1) is within the range of 15 to 40% by weight, and the content of component (B) is within the range of 60 to 85% by weight.
  • the fluororesin film of the present invention is characterized in that the component (B) satisfies the following conditions (i) and (ii) when the particle size distribution on a volume basis is measured by a laser diffraction/scattering method: (i) having at least one peak top between 8 and 15 ⁇ m and at least one peak top between 0.1 and 5 ⁇ m; (ii) D10 is in the range of 0.1 to 3 ⁇ m, D50 is in the range of 5 to 15 ⁇ m, and the proportion of particles having a size of 5 ⁇ m or more is 60% by volume or more;
  • the fluororesin film of the present invention has a weight loss rate of 0.3% by weight or less between 150° C. and 420° C. when heated in a nitrogen atmosphere from 30° C. to 550° C. at a rate of 10° C./min in thermogravimetric and differential thermal analyses.
  • the metal-clad laminate of the present invention is a metal-clad laminate comprising an insulating resin layer consisting of a single layer or multiple layers, and a metal layer laminated on one side or both sides of the insulating resin layer, At least one of the insulating resin layers is a fluororesin layer made of the above-mentioned fluororesin film.
  • the method for producing a single-sided metal-clad laminate of the present invention is a method for producing a single-sided metal-clad laminate consisting of a single layer or multiple layers, and including an insulating resin layer having at least one fluorine-based resin layer, and a metal layer laminated on one side of the insulating resin layer.
  • the method for producing a single-sided metal-clad laminate of the present invention comprises the following steps a and b: a) applying the dispersion composition onto a metal foil to form a coating film; b) a step of subjecting the obtained coating film to a heat treatment in a nitrogen atmosphere at a temperature within a range of 20 to 80° C. higher than the melting point of the fluororesin, thereby removing volatile components produced by thermal decomposition of component (C) and melting the fluororesin powder of component (A) to form a fluororesin layer on the metal foil; Contains:
  • the method for producing a double-sided metal-clad laminate of the present invention is a method for producing a double-sided metal-clad laminate in which metal layers are laminated on both sides of an insulating resin layer, comprising the steps of: a step of placing the insulating resin layers of two single-sided metal-clad laminates manufactured by the manufacturing method of the single-sided metal-clad laminate facing each other and performing thermocompression bonding; Contains:
  • the dispersion composition of the present invention contains, as the inorganic filler of component (B) which satisfies conditions (i) and (ii) in a predetermined blend ratio, the decomposition products of the dispersant of component (C) can be efficiently removed outside the film during the melt heat treatment process. Therefore, the fluororesin film obtained by using the dispersion composition of the present invention is a dense film that is free of not only large voids and cracks, but also microbubbles, and has ensured adhesion to the metal layer, achieving both excellent dielectric properties due to the fluororesin and low thermal expansion properties due to the addition of a high concentration of inorganic filler. Therefore, the metal-clad laminate obtained by using the dispersion composition of the present invention is useful as a material for, for example, circuit boards compatible with high-speed communication standards.
  • the dispersion composition according to one embodiment of the present invention comprises the following components (A) to (D): (A) a fluorine-based resin powder, (B) an inorganic filler; (C) a dispersant, In the dispersion composition, the components (A) and (B) are dispersed in the dispersion medium (D) by the dispersant (C).
  • Component (A) is a fluororesin powder.
  • "powder” means, for example, an aggregate of particles having an average particle size (D 50 ) in the range of 0.05 to 100 ⁇ m, preferably in the range of 0.5 to 50 ⁇ m, and more preferably in the range of 0.5 to 10 ⁇ m.
  • the average particle size (D 50 ) of the fluororesin powder can be determined, for example, by measuring the particle size distribution of the powder particles by a laser diffraction/scattering method, determining a cumulative curve with the total volume of the powder particles as 100%, and determining the particle size at the point on the cumulative curve where the cumulative volume is 50%.
  • the fluororesin is a polymer containing fluorine atoms, and the type is not particularly limited, but examples include polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), ethylene-tetrafluoroethylene copolymer (ETFE), ethylene-tetrafluoroethylene-hexafluoropropylene copolymer (EFEP), polyvinyl fluoride (PVF), polyvinylidene fluoride (PVDF), etc.
  • PTFE polytetrafluoroethylene
  • PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • EEP ethylene-tetrafluoroethylene copolymer
  • the fluororesin may contain a monomer unit based on a perfluoroolefin having a functional group as part of the fluororesin.
  • a functional group a carbonyl group-containing group, a hydroxyl group, an epoxy group, an amide group, an amino group, and an isocyanate group are preferred.
  • polytetrafluoroethylene PTFE
  • PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • Component (B) is an inorganic filler, and the type is not particularly limited, but from the viewpoint of reducing the thermal expansion coefficient of the resin film, for example, silicon dioxide (silica), aluminum oxide (alumina), magnesium oxide (magnesia), beryllium oxide, niobium oxide, titanium oxide, boron nitride, aluminum nitride, silicon nitride, aluminum fluoride, calcium fluoride, magnesium fluoride, potassium silicofluoride, talc, glass, barium titanate, etc. are preferable. These may be used in combination of two or more. Among these, silicon dioxide (silica), aluminum oxide, boron nitride, glass, etc. are more preferable as those having a low thermal expansion coefficient.
  • Component (B) satisfies the following conditions (i) and (ii) when the particle size distribution is measured on a volume basis by a laser diffraction/scattering method.
  • microbubbles are particularly likely to remain, so it is thought that microbubbles can be suppressed by lowering the amount of inorganic filler filled (i.e., increasing the ratio of fluorine-based resin to a certain level or more), but this narrows the range of thermal expansion coefficient control, which is the purpose of blending inorganic fillers, and is restricted.
  • inorganic filler with a particle size distribution that satisfies condition (i)
  • D10 is within the range of 0.1 to 3 ⁇ m
  • D50 is within the range of 5 to 15 ⁇ m
  • the proportion of particles having a particle size of 5 ⁇ m or more is 60 volume % or more.
  • the voids and cracks generated between the fillers at the coating stage are likely to be larger than those when only fine fillers are used.
  • such voids and cracks become a path (path) that promotes the gas of low molecular weight compounds to escape to the outside of the film in the melt heat treatment process. Therefore, by satisfying condition (ii), large voids and cracks are intentionally formed at the coating stage, and the coating density is deliberately kept low, so that the removal of low molecular weight compounds by volatilization is promoted in the melt heat treatment process even when the inorganic filler is mixed at a high density.
  • condition (ii) if the condition (ii) is not satisfied, for example, if the ratio of particles having a particle size of 5 ⁇ m or more is less than 60 vol %, then large voids and cracks will be reduced at the coating stage, and the gas of the low molecular weight compound generated in the melt heat treatment step will be more likely to remain in the film, causing microbubbles.
  • the particle size distribution of the inorganic filler can be measured, for example, by a laser diffraction/scattering method. It is possible to measure the particle size distribution, obtain a cumulative curve with the total volume of the powder particles set at 100%, and obtain the particle diameter (D 10 ) at the point where the cumulative volume is 10% on the cumulative curve, and the particle diameter (D 50 ) at the point where the cumulative volume is 50%.
  • the particle diameter means a value calculated as a sphere-equivalent diameter in the case of particles other than spherical.
  • the specific surface area of component (B) is not particularly limited, but from the viewpoint of suppressing deterioration of the dielectric loss tangent, it is preferably in the range of 0.1 to 20 m 2 /g, and more preferably in the range of 0.1 to 10 m 2 /g.
  • the specific surface area can be measured by the BET method.
  • component (B) is not particularly limited, but for example, a spherical shape, a crushed spherical shape, etc. are preferred because they can reduce the difference in thermal expansion coefficient between the thickness direction and the surface direction.
  • Component (B) may also be hollow.
  • silica when used as component (B), it may be either crystalline or amorphous silica, but amorphous silica is preferred from the viewpoint that it is possible to reduce the thermal expansion coefficient without impairing the dielectric properties in the film state, and in particular to reduce the difference in the thermal expansion coefficient between the thickness direction and the surface direction, and spherical amorphous silica is particularly preferred.
  • Component (B) is preferably surface-treated with a coupling agent or the like.
  • coupling agents used for surface treatment include 3-aminopropylethoxysilane, vinyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-methacryloxypropylethoxysilane, 3-isocyanatopropylethoxysilane, and hexamethyldisilazane.
  • Component (C) The dispersant for component (C) is not particularly limited as long as it has a dispersing effect on components (A) and (B), but from the viewpoint of efficiently dispersing the fluororesin, for example, a fluorosurfactant is preferred.
  • a fluorosurfactant for example, a nonionic fluorosurfactant having a perfluoroalkenyl structure having a double bond in the molecule is more preferred.
  • Component (D) The type of organic solvent of component (D) is not particularly limited, but an organic solvent that is liquid at 25° C. is preferred, such as N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAc), N,N-diethylacetamide, N-methyl-2-pyrrolidone (NMP), 2-butanone, dimethylsulfoxide (DMSO), hexamethylphosphoramide, N-methylcaprolactam, dimethyl sulfate, cyclohexanone, dioxane, tetrahydrofuran, diglyme, triglyme, cresol, methanol, ethanol, isopropanol, methyl ethyl ketone, cyclohexanone, ⁇ -butyrolactone, etc.
  • DMF N,N-dimethylformamide
  • DMAc N,N-dimethylacetamide
  • NMP N-diethylacetamide
  • NMP
  • high-boiling point solvents such as N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAc), N,N-diethylacetamide, N-methyl-2-pyrrolidone (NMP), etc. are more preferred.
  • the dispersion composition may contain optional components such as organic fillers, hardeners, plasticizers, elastomers, coupling agents, pigments, flame retardants, and resin components other than fluorine-based resins.
  • composition ratio The weight ratio of the fluororesin powder of component (A) in the dispersion composition is in the range of 15 to 40% by weight, preferably 20 to 35% by weight, based on the total amount of components (A) and (B) in order to reduce the dielectric tangent when the film is made and to correspond to high frequency signal transmission. If the content of component (A) is less than 15% by weight, the film will not have a sufficiently low dielectric tangent, and voids and cracks around the filler due to the difference in thermal expansion coefficient with the resin will be easily generated. On the other hand, if the content of component (A) exceeds 40% by weight, the amount of component (B) blended will be relatively small, and the range of thermal expansion coefficient control will be narrow when the film is made.
  • the total amount of component (A) and component (B) is preferably 50% by weight or more, more preferably in the range of 60 to 99% by weight, and most preferably in the range of 70 to 99% by weight, based on the total solid content in the dispersion composition.
  • the solid content in the dispersion composition means the total of the components excluding the solvent.
  • the weight ratio of the inorganic filler of component (B) in the dispersion composition is in the range of 60 to 85% by weight, preferably 65 to 80% by weight, based on the total amount of components (A) and (B), from the viewpoint of lowering the thermal expansion coefficient when made into a film and ensuring dimensional stability when applied to a circuit board. If the content of component (B) is less than 60% by weight, the range of thermal expansion coefficient control when made into a film becomes narrow, and if it exceeds 85% by weight, it becomes difficult to make the film have a low dielectric tangent, and voids and cracks around the filler due to the difference in thermal expansion coefficient with the resin are likely to occur. In this embodiment, by using a component (B) that satisfies conditions (i) and (ii), it is possible to achieve high-density filling while preventing relatively large voids and cracks, and also suppressing the generation of microbubbles.
  • the weight ratio of component (C) in the dispersant in the dispersion composition is preferably within the range of 1 to 10% by weight, and more preferably within the range of 1 to 5% by weight, based on the total amount of components (A) and (B), from the viewpoint of ensuring the dispersibility of components (A) and (B). If the weight ratio of component (C) is less than 1% by weight, a sufficient dispersion effect cannot be obtained, and if it exceeds 10% by weight, the amount of component (C) or its decomposition products remaining in the film increases, which is likely to cause the generation of microbubbles.
  • the amount of organic solvent in component (D) is not limited as long as the viscosity of the dispersion composition can be adjusted to the desired value, as described later. However, to obtain good dispersibility and good coatability, it is advisable to adjust and incorporate the organic solvent so that it is preferably in the range of 25 to 50% by weight, more preferably in the range of 30 to 40% by weight, based on the total composition.
  • the viscosity of the dispersion composition is not particularly limited, but for example, when the purpose is to coat a thick film of 30 ⁇ m or more, it is preferably in the range of 500 to 50,000 cP, more preferably in the range of 500 to 30,000 cP. If the viscosity is less than 500 cP, the fluidity becomes too high when the dispersion composition is cast onto any substrate, making it difficult to form a thick coating film. In particular, it becomes impossible to form a relatively thick coating film in the range of 30 to 150 ⁇ m for high frequency transmission applications. In addition, if the viscosity is less than 500 cP, sedimentation or aggregation of solids may occur.
  • the viscosity of the dispersion composition exceeds 50,000 cP, the viscosity is too high and it becomes difficult to form a coating film by casting.
  • the viscosity of the dispersion composition can be measured at a temperature of 25° C. using an E-type viscometer.
  • the dispersion composition can be produced by mixing components (A) to (D). Each component is preferably kneaded in the presence of the organic solvent of component (D) until it becomes homogeneous. During kneading, component (D) may be added in small amounts.
  • the fluororesin film of the present embodiment is obtained by processing the above-mentioned dispersion composition into a film shape. That is, the fluorine-based resin film comprises the following component (A1) and component (B); (A1) a fluorine-based resin, (B) an inorganic filler; Contains:
  • the fluororesin film of the present embodiment is in the form of a solid film substantially free of the organic solvent of component (D), and the fluororesin powder of component (A) in the dispersion composition becomes amorphous and becomes the fluororesin of component (A1) (the main component of the matrix resin).
  • the fluororesin film contains component (B) in the same manner as the dispersion composition.
  • Component (B) satisfies the following conditions (i) and (ii) when the particle size distribution is measured on a volume basis by a laser diffraction/scattering method: (i) having at least one peak top between 8 and 15 ⁇ m and at least one peak top between 0.1 and 5 ⁇ m; (ii) D10 is in the range of 0.1 to 3 ⁇ m, D50 is in the range of 5 to 15 ⁇ m, and the proportion of particles having a size of 5 ⁇ m or more is 60% by volume or more;
  • substantially free of organic solvent of component (D) means that the content of component (D) in the film is 0.1% by weight or less.
  • the content of component (A1) is within the range of 15 to 40% by weight, preferably within the range of 20 to 35% by weight, and the content of component (B) is within the range of 60 to 85% by weight, preferably within the range of 65 to 80% by weight, based on the total amount of components (A1) and (B). If the content of component (A1) is less than 15% by weight, the dielectric loss tangent of the film becomes insufficient, and if the weight ratio of component (B) is less than 60% by weight, it becomes difficult to control the thermal expansion coefficient.
  • the total amount of component (A1) and component (B) is preferably 50% by weight or more, more preferably in the range of 60 to 100% by weight, and most preferably in the range of 70 to 100% by weight, based on the total weight of the fluororesin film.
  • the fluororesin film does not substantially contain the dispersant of component (C). This is because most of the component (C) is thermally decomposed in the melt heat treatment process as described below.
  • the phrase "substantially does not contain the dispersant of component (C)” means that the content of component (C) in the film is 0.3% by weight or less.
  • the thermal decomposition products of component (C) low molecular weight compounds such as volatile hydrocarbons are mostly volatilized and removed in the melt heat treatment process, and decomposition products having high affinity for fluororesins remain in the film.
  • the fluororesin film of the present embodiment has the characteristic of not substantially containing low molecular weight compounds generated by thermal decomposition.
  • the fluororesin film of the present embodiment is characterized in that, when heated in a nitrogen atmosphere from 30° C. to 550° C. at a rate of 10° C./min, the weight loss rate between 150° C. and 420° C. is 0.3% by weight or less, preferably 0.1% by weight or less, in thermogravimetric and differential thermal analysis. If component (C) remains in the film as is or if a large amount of low molecular weight compounds generated by thermal decomposition remains, a weight loss of more than 0.3% by weight is confirmed in thermogravimetric and differential thermal analysis. This state is not preferable because it generates microbubbles in a subsequent process involving heating.
  • component (B) satisfies condition (i)
  • small diameter fillers are inserted between large diameter fillers, the intervals between the fillers are reduced, and the film is densely packed.
  • component (B) satisfies condition (ii)
  • the porosity of the fluororesin film of this embodiment is preferably less than 3 vol.%, more preferably 1 vol.% or less.
  • the porosity can be calculated by the following formula after binarizing the void parts and other parts in a cross-sectional observation image in the thickness direction of the fluororesin film (inorganic filler-containing fluororesin layer) at a magnification of 350 times using a scanning electron microscope (SEM).
  • Porosity (vol.%) X/Y (Here, X means the volume of the void portion in the image, and Y means the volume of the inorganic filler-containing fluorine-based resin layer in the image.)
  • the porosity in the examples is the average value of the porosity calculated based on the above formula for any five images (each image is about 300 ⁇ m ⁇ 100 ⁇ m).
  • the fluororesin film of the present embodiment is a dense film that is almost free of not only large voids and cracks but also microbubbles, ensures adhesion to the metal layer, and achieves a balance between the excellent dielectric properties of the fluororesin and the low thermal expansion properties achieved by the addition of a high concentration of inorganic filler.
  • the fluororesin film After conditioning for 24 hours at a temperature of 24-26°C and a humidity of 45-55%, the fluororesin film has a dielectric loss tangent (Df) at 60 GHz or less, measured using a split cylinder resonator, of preferably 0.0025 or less, more preferably 0.0020 or less, and even more preferably 0.0015 or less.
  • Df dielectric loss tangent
  • Dk relative dielectric constant measured under the same conditions is preferably 4.0 or less, more preferably 3.5 or less, and even more preferably 3.0 or less.
  • dielectric loss tangent (Df) and relative dielectric constant (Dk) exceed the above values, this leads to an increase in dielectric loss when applied to a circuit board, and is likely to cause inconveniences such as electrical signal loss on the transmission path of high-frequency signals in the GHz range (e.g., 1-80 GHz).
  • the thermal expansion coefficient of the fluororesin film is preferably within the range of 10 to 40 ppm/K, and more preferably within the range of 15 to 30 ppm/K.
  • the thickness of the fluororesin film is not particularly limited, but when used as an insulating resin layer for a circuit board, taking into consideration its application to high-frequency signal transmission, it is preferably within the range of 30 to 150 ⁇ m, and more preferably within the range of 75 to 150 ⁇ m.
  • any resin layer may be laminated on the fluororesin film of this embodiment.
  • the metal-clad laminate of the present embodiment includes an insulating resin layer consisting of a single layer or multiple layers, and a metal layer laminated on one or both sides of the insulating resin layer, and at least one layer of the insulating resin layer is a fluororesin layer consisting of the above-mentioned fluororesin film.
  • the metal-clad laminate of the present embodiment may be a single-sided metal-clad laminate or a double-sided metal-clad laminate.
  • the material of the metal layer is not particularly limited, but examples include copper, stainless steel, iron, nickel, beryllium, aluminum, zinc, indium, silver, gold, tin, zirconium, tantalum, titanium, lead, magnesium, manganese, and alloys thereof. Among these, copper or copper alloys are particularly preferred.
  • the surface roughness of the metal layer is not particularly limited, but from the viewpoint of ensuring adhesion to the fluororesin layer while reducing conductor loss, it is preferable for the metal layer to have a roughened surface with a ten-point average roughness (Rzjis) in the range of 0.3 ⁇ m to 1.5 ⁇ m.
  • the thickness of the metal layer is not particularly limited, but when a metal foil such as a copper foil is used, the thickness is preferably 35 ⁇ m or less, and more preferably in the range of 5 to 25 ⁇ m. From the viewpoints of production stability and handling, the lower limit of the thickness of the metal foil is preferably 5 ⁇ m.
  • a copper foil When a copper foil is used as the metal foil, it may be a rolled copper foil or an electrolytic copper foil, and may be, for example, a peelable copper foil having a release layer formed between a copper foil having a thickness of 5 ⁇ m or less and a carrier foil. In addition, a commercially available copper foil may be used as the copper foil.
  • the metal foil may be surface-treated with, for example, siding, aluminum alcoholate, aluminum chelate, silane coupling agent, etc., for the purpose of, for example, rust prevention or improving adhesion.
  • the configuration and thickness of the fluororesin layer in the metal-clad laminate are the same as those of the fluororesin film. Note that the metal-clad laminate of this embodiment may include any resin layer other than the fluororesin layer.
  • the metal-clad laminate of this embodiment is preferably used as a circuit board material. That is, by processing the metal layers on one or both sides of the metal-clad laminate into wiring circuits by etching or the like, circuit boards such as single-sided circuit boards or double-sided circuit boards can be manufactured.
  • the method for producing a fluorine-based resin film using the dispersion composition of the present invention is not particularly limited, but the following method can be exemplified.
  • the dispersion composition of the present invention is applied to any substrate to form a coating film. That is, the dispersion composition is applied to an arbitrary substrate so as to have a desired thickness after the melt heat treatment step, and then dried to form a coating film on the substrate.
  • component (B) satisfies condition (ii)
  • large voids and cracks can be intentionally formed at the coating stage, and the coating density can be kept low.
  • the substrate used for coating is not particularly limited, but it is preferable to use a heat-resistant material such as a metal foil such as copper foil, a copper foil with an adhesive layer, or a polyimide film.
  • the method for coating the dispersion composition on the substrate is not particularly limited, and it is possible to coat it with a coater such as a comma, die, knife, or lip.
  • the coating film obtained in the coating film forming step is heat-treated to form a fluororesin layer. That is, the coating film is heat-treated together with the substrate to remove the solvent remaining in the film, and the fluororesin powder of component (A) is melted to form a film, thereby forming a fluororesin layer on the substrate.
  • the heat treatment temperature for melting the fluororesin powder may be equal to or higher than the melting point of the fluororesin, and is preferably in a temperature range of 20°C to 80°C higher than the melting point.
  • the purpose of this process is also to remove the decomposition products of component (C)
  • the thermal decomposition temperature of component (C) when comparing the thermal decomposition temperature of component (C) with the temperature at which the generated volatile components volatilize and are removed from the coating film, the latter temperature may be higher. Therefore, when the thermal decomposition onset temperature (Td5: 5 wt% weight loss temperature) of component (C) is used as the standard for the heat treatment temperature, it is preferable to set the temperature range to be 50°C to 150°C higher than the thermal decomposition onset temperature. In the melt heat treatment process, component (B) satisfies condition (ii), which promotes the release of volatile components outside the film.
  • the melt heat treatment process is preferably carried out in an inert gas atmosphere, and more preferably in a nitrogen atmosphere, to prevent oxidation.
  • the melt heat treatment may be performed each time the dispersion composition is applied and dried, or the process of applying and drying the dispersion composition may be repeated multiple times and then the melt heat treatment may be performed all at once.
  • the film After the melt heat treatment, the film is cooled and solidified, and the substrate is peeled off as necessary to obtain a fluororesin film. Since component (B) satisfies condition (i), the fluororesin film obtained in this manner has small-diameter fillers between the large-diameter fillers, reducing the spaces between the fillers and resulting in a densely packed state.
  • a metal-clad laminate having a fluororesin layer and a metal layer can be manufactured.
  • metal foil when metal foil is used as the substrate, it becomes a single-sided metal-clad laminate having a fluororesin layer on one side of the metal layer. It is also possible to use metal foil as the substrate and form another metal layer on the side of the fluororesin film opposite the substrate to produce a double-sided metal-clad laminate.
  • thermocompression bonding conditions are preferably, for example, a temperature in the range of 10°C to 80°C higher than the melting point of the fluororesin.
  • the pressure is preferably, for example, in the range of 2MPa to 30MPa.
  • the fluororesin layer of the single-sided metal-clad laminate uses the dispersion composition of the present invention, and the melt heat treatment process is carried out under the above conditions, so that volatile components caused by the thermal decomposition of component (C) are sufficiently removed. Therefore, even during thermocompression bonding, where gas is difficult to escape due to the metal foils present on both sides, the generation of microbubbles is almost suppressed.
  • the obtained double-sided metal-clad laminate has almost no voids or cracks, including microbubbles, in the fluororesin layer, and the adhesion with the metal layer is ensured, and both excellent dielectric properties due to the fluororesin and low thermal expansion properties due to the addition of a high concentration of inorganic filler are achieved.
  • the metal-clad laminate of this embodiment is useful primarily as a circuit board material for FPCs, rigid-flex circuit boards, and the like.
  • Circuit board By subjecting the metal layer of the metal-clad laminate of the present embodiment thus obtained to wiring circuit processing such as etching, a circuit board such as a single-sided circuit board or a double-sided circuit board can be manufactured.
  • the surface roughness of the copper foil was measured in a tapping mode using an AFM (manufactured by Bruker AXS, product name: Dimension Icon type SPM) and a probe (manufactured by Bruker AXS, product name: TESPA (NCHV), tip curvature radius 10 nm, spring constant 42 N/m) in an area of 80 ⁇ m ⁇ 80 ⁇ m on the copper foil surface, and the ten-point average roughness (Rzjis) was calculated.
  • Viscosity measurement The viscosity at 25° C. was measured using an E-type viscometer (manufactured by Brookfield, trade name: DV-II+Pro).
  • CTE coefficient of thermal expansion
  • the copper foil on one side of the double-sided copper-clad laminate was circuit-processed to a width of 1 mm at 10 mm intervals in the coating direction of the fluororesin, and then cut to a width of 8 cm and a length of 4 cm. At this time, the copper foil on the other side was left entirely without circuit processing.
  • the peel strength was measured using a Tensilon tester (manufactured by Toyo Seiki Seisakusho, product name: Strograph VE-1D), with the copper foil of the cut measurement sample left entirely fixed to an aluminum plate with double-sided tape, and the circuit-processed copper foil was peeled off in the 180° direction at a speed of 50 mm/min, and the median strength when 10 mm was peeled off from the fluororesin layer was obtained, which was taken as the peel strength.
  • a Tensilon tester manufactured by Toyo Seiki Seisakusho, product name: Strograph VE-1D
  • Weight reduction rate (1) Weight loss rate of a fluororesin film obtained from a single-sided copper-clad laminate between 150°C and 420°C [ ⁇ TG'(150-420)]: A fluororesin film weighing 10 to 20 mg obtained from a single-sided copper-clad laminate was measured for its weight change when the film was heated from 30° C. to 550° C. at a rate of 10° C./min under a nitrogen atmosphere using a Hitachi High-Tech Science differential thermal/thermogravimetric analyzer (TG/DTA6200). At this time, the weight reduction rate [100 ⁇ (weight at 150° C. ⁇ weight at 420° C.)/weight at 150° C.] (unit: weight %) calculated from the weight reduction from 150° C.
  • the weight reduction rate [100 ⁇ (weight at 150° C. ⁇ weight at 420° C.)/weight at 150° C.] (unit: weight %) calculated from the weight reduction from 150° C. to 420° C. was calculated based on the weight at 150° C., and this was designated as ⁇ TG(150-420).
  • the double-sided copper-clad laminate thus produced was polished to produce a precise cross section perpendicular to the double-sided copper-clad laminate using a cross-section polisher, and five random images of the inorganic filler-containing fluororesin layer were obtained at a magnification of 2000 times using a scanning electron microscope (SEM). Next, the void portion and the other portion of the obtained images were binarized to calculate the volume ratio of the voids in the inorganic filler-containing fluororesin layer.
  • SEM scanning electron microscope
  • Porosity (vol.%) X/Y (Here, X means the volume of the void portion in the image, and Y means the volume of the inorganic filler-containing fluorine-based resin layer in the image.)
  • the porosity is the average value of the porosities calculated based on the above formula for any 5 images (each image is about 300 ⁇ m ⁇ 100 ⁇ m). In this case, the case where there were no voids with a diameter of more than 1 ⁇ m and the porosity was less than 3 vol.% was rated as ⁇ (good), and the case where the porosity was 3 vol.% or more or the case where there were voids with a diameter of more than 1 ⁇ m was rated as ⁇ (bad).
  • Fluorine-based resin powder (1) Fluon+ (Fluon is a registered trademark)
  • EA-2000PW 10 Fluorine-based resin powder manufactured by AGC, average particle size: 2 to 3 ⁇ m, melting point: 300° C.
  • Silica filler (2) SPH507-05: Amorphous silica filler manufactured by Nippon Steel Chemical & Material Co., Ltd., with a specific surface area of 9.4 m 2 /g, which was treated with 1.03% by weight of silica with hexamethyldisilazane.
  • Silica filler (5) Silica filler (1) and silica filler (2) mixed in a volume ratio of 95:5.
  • Silica filler (6) A mixture of silica filler (1), silica filler (2), and silica filler (3) in a volume ratio of 80:10:10.
  • Silica filler (7) Silica filler (1) and silica filler (2) mixed in a volume ratio of 45:55.
  • Dispersant (1) Futergent 710FL: nonionic fluorine-containing dispersant manufactured by Neos (dispersant component: 50% by weight, ethyl acetate: 50% by weight)
  • DMAc N,N-dimethylacetamide
  • Table 1 shows the presence or absence of peaks of 0.1 to 5 ⁇ m and 8 to 15 ⁇ m for silica filler (1) to silica filler (7) measured using a laser diffraction particle size distribution analyzer, D 10 , D 50 calculated on a volume basis, and the proportion of particles having a particle size of 5 ⁇ m or more.
  • Dispersion composition 1-1 had no fluidity and viscosity could not be measured, so it was determined to be a "solid".
  • dispersion composition 1-1 was gradually diluted and stirred with DMAc so that the combined ratio of fluororesin powder (1) and silica filler (4) was 67.5% by weight, and dispersion composition 1-2 was obtained, with a viscosity of 890 cP when measured at 100 rpm.
  • Dispersion composition 2-1 had no fluidity and viscosity could not be measured, so it was determined to be a "solid".
  • dispersion composition 2-1 was gradually diluted and stirred with DMAc so that the total ratio of the fluororesin powder (1) and the silica filler (5) was 67.5% by weight, and dispersion composition 2-2 was obtained with a viscosity of 1020 cP when measured at 100 rpm.
  • Dispersion composition 3-1 had no fluidity and viscosity could not be measured, so it was determined to be a "solid".
  • dispersion composition 3-1 was gradually diluted and stirred with DMAc so that the total ratio of the fluororesin powder (1) and the silica filler (6) was 67.5% by weight, and dispersion composition 3-2 was obtained, with a viscosity of 840 cP when measured at 100 rpm.
  • Dispersion composition 4-1 had no fluidity and viscosity could not be measured, so it was determined to be a "solid".
  • dispersion composition 4-1 was gradually diluted and stirred with DMAc so that the total ratio of fluororesin powder (1) and silica filler (4) was 70.0% by weight, and dispersion composition 4-2 was obtained, with a viscosity of 1210 cP when measured at 100 rpm.
  • Dispersion composition 5-1 had no fluidity and viscosity could not be measured, so it was determined to be a "solid".
  • dispersion composition 5-1 was gradually diluted and stirred with DMAc so that the total ratio of fluororesin powder (1) and silica filler (7) was 67.5% by weight, and dispersion composition 5-2 was obtained, with a viscosity of 1060 cP when measured at 100 rpm.
  • Dispersion composition 6-1 had no fluidity and viscosity could not be measured, so it was determined to be a "solid".
  • dispersion composition 6-1 was gradually diluted and stirred with DMAc so that the total ratio of fluororesin powder (1) and silica filler (1) was 67.5% by weight, and dispersion composition 6-2 was obtained, with a viscosity of 810 cP when measured at 100 rpm.
  • Dispersion composition 7-1 had no fluidity and the viscosity could not be measured, so it was determined to be a "solid".
  • dispersion composition 7-1 was gradually diluted and stirred with DMAc so that the total ratio of fluororesin powder (1) and silica filler (2) was 67.5% by weight, and dispersion composition 7-2 was obtained, with a viscosity of 970 cP when measured at 100 rpm.
  • Example 1 Dispersion composition 1-2 was applied onto copper foil (electrolytic copper foil, thickness: 12 ⁇ m, ten-point average roughness (Rzjis) of the resin layer side: 0.6 ⁇ m), and then dried at 80 ° C. for 1 minute and 120 ° C. for 3 minutes using a hot air oven in an air atmosphere.
  • a nitrogen heat treatment was performed by increasing the temperature from 40 ° C. to 240 ° C. at 10 ° C./min and from 240 ° C. to 360 ° C. at 5 ° C./min using a hot air oven in a nitrogen atmosphere (oxygen concentration 0.1 vol.% or less), holding at 360 ° C. for 5 minutes, and then cooling to 40 ° C.
  • the copper foil of the single-sided copper-clad laminate 1 was etched away using an aqueous solution of ferric chloride to prepare a fluororesin film 1'.
  • the weight loss rate of the fluororesin film 1' was measured, and the weight loss rate ⁇ TG' (150-420) between 150°C and 420°C was 0.24% by weight.
  • two single-sided copper-clad laminates 1 were prepared, and the resin surfaces were placed together in a batch press machine, where they were heated to 360°C under vacuum. After reaching 360°C, they were pressed at a pressure of 8 MPa for 5 minutes to obtain a double-sided copper-clad laminate 1 with a dielectric thickness of 100 ⁇ m.
  • the copper foil on one side of the obtained double-sided copper-clad laminate 1 was processed into a 1 mm wiring shape, and the peel strength was measured, resulting in a value of 0.49 kN/m.
  • the copper foil of the double-sided copper-clad laminate 1 was etched away using an aqueous solution of ferric chloride to prepare a fluororesin film 1.
  • the weight loss rate was measured, and the weight loss rate ⁇ TG (150-420) between 150°C and 420°C was 0.21% by weight, and the voids confirmed from the cross section of the fluororesin film were less than 3 vol.% ( ⁇ ).
  • Examples 2 to 4 and Comparative Examples 1 to 3 Single-sided copper-clad laminates 2 to 7, fluororesin films 2' to 7', double-sided copper-clad laminates 2 to 7, and fluororesin films 2 to 7 were produced in the same manner as in Example 1, except that the type of dispersant composition was changed. The evaluation results of the obtained materials are shown in Table 2.

Abstract

A dispersion composition containing (A) a fluororesin powder, (B) an inorganic filler, (C) a dispersant, and (D) an organic solvent, wherein the dispersion composition satisfies that the content of component (A) is 15-40 wt% and the content of component (B) is 60-85 wt% relative to the total weight of component (A) and component (B), and, when the volume-based particle size distribution is measured by a laser diffraction/scattering method, component (B) has (i) at least one or more peak tops each between 8-15 μm and 0.1-5 μm and (ii) D10 is within the 0.1-3 μm range, D50 is within the 5-15 μm range, and the proportion of particles having a particle size of 5 μm or more is 60 vol% or more.

Description

分散組成物、フッ素系樹脂フィルム、金属張積層板及びその製造方法Dispersion composition, fluororesin film, metal-clad laminate, and method for producing same
 本発明は、分散組成物、フッ素系樹脂フィルム、金属張積層板及びその製造方法に関する。 The present invention relates to a dispersion composition, a fluororesin film, a metal-clad laminate, and a method for producing the same.
 近年、電子機器の小型化、軽量化、省スペース化の進展に伴い、薄く軽量で、可撓性を有し、屈曲を繰り返しても優れた耐久性を持つフレキシブルプリント配線板(FPC;Flexible Printed Circuits)の需要が増大している。FPCは、限られたスペースでも立体的かつ高密度の実装が可能であるため、例えば、HDD、DVD、スマートフォン等の電子機器の配線や、ケーブル、コネクター等の部品にその用途が拡大しつつある。 In recent years, with the progress of miniaturization, weight saving, and space saving of electronic devices, there is an increasing demand for flexible printed circuits (FPCs) that are thin, lightweight, flexible, and have excellent durability even when repeatedly bent. Because FPCs allow three-dimensional and high-density mounting even in a limited space, their applications are expanding to include wiring for electronic devices such as HDDs, DVDs, and smartphones, as well as components such as cables and connectors.
 FPCは、材料となる銅張積層板(CCL)などの金属張積層板の金属層をエッチングして配線加工することによって製造される。現在は、金属張積層板として、金属箔と接する絶縁樹脂層に耐熱性の高いポリイミドを用いたものが汎用されている。しかし、近年の通信機器の高速化に伴い、5G通信、更には6G通信の開発が進んでおり、回路基板材料についても、高速通信規格に対応可能なミリ波レーダー用基板、アンテナ基板などに向けて材料の検討が行われている。そのような材料の中でフッ素系樹脂は、低い誘電正接を有し、信号の伝送損失の低減が期待できることから注目を浴びている。 FPCs are manufactured by etching and wiring the metal layer of metal-clad laminates such as copper-clad laminates (CCL). Currently, metal-clad laminates that use highly heat-resistant polyimide for the insulating resin layer that contacts the metal foil are widely used. However, with the increasing speed of communication devices in recent years, development of 5G and even 6G communications is progressing, and circuit board materials are being investigated for millimeter wave radar boards and antenna boards that are compatible with high-speed communication standards. Among such materials, fluororesins have attracted attention because of their low dielectric tangent and the potential for reducing signal transmission loss.
 例えば、特許文献1は、フッ素系樹脂のパウダーを均一分散させた分散組成物を用い、これを基材上に塗工してフッ素系樹脂フィルムを製膜する方法(キャスト法)を開示している。 For example, Patent Document 1 discloses a method (casting method) for producing a fluororesin film by using a dispersion composition in which a fluororesin powder is uniformly dispersed and applying the composition to a substrate.
国際公開WO2021/235252号International Publication No. WO2021/235252
 フッ素系樹脂は熱膨張係数(CTE)が大きいため、低誘電正接という特性を活かしながら回路基板用絶縁材料としての要求特性である低熱膨張化を図るため、分散組成物に無機フィラーを配合することが行われている。しかし、無機フィラーを高濃度に配合すると、マトリックス樹脂との熱膨張係数の違いによってフィラーの周囲に空隙が形成され、フィルムの緻密性が低下するとともに、ピール強度や電気的特性が低下することが懸念されている。また、フッ素系樹脂のパウダーを含有する分散組成物を塗工した段階では、塗膜中でパウダー粒子間に多数の空隙やクラックが存在している。フッ素系樹脂パウダーを溶融させる熱処理を実施することにより、これらの空隙の大部分を埋めることが可能であるが、加熱後においても揮発性の溶媒や分散剤、分散剤の分解物が滞留すると、その後の工程において、フィルム中に滞留した揮発性の溶媒や分散剤の分解物がガス化し新たな空隙が生成する。特に微細な無機フィラーを高濃度かつ均質に配合していると、無機フィラー間の距離が小さいため、ガス化した成分が膜外へ抜けにくくなり、膜中にとどまり易くなる。上記特許文献1でも、キャスト法でフッ素系樹脂層を形成する際に発生するガスによって膨れやクラックが生じると述べられており、膜中の空隙を低減し、緻密な膜を形成するために加熱圧縮工程を設けることが提案されている。 Since fluororesins have a large coefficient of thermal expansion (CTE), inorganic fillers are blended into the dispersion composition to achieve low thermal expansion, a required characteristic for insulating materials for circuit boards, while taking advantage of the characteristic of low dielectric tangent. However, when inorganic fillers are blended at high concentrations, voids are formed around the fillers due to the difference in the coefficient of thermal expansion with the matrix resin, which reduces the density of the film and is a concern for reducing peel strength and electrical properties. In addition, at the stage when a dispersion composition containing fluororesin powder is applied, many voids and cracks exist between the powder particles in the coating film. It is possible to fill most of these voids by performing a heat treatment to melt the fluororesin powder, but if volatile solvents, dispersants, or decomposition products of dispersants remain even after heating, the volatile solvents and decomposition products of dispersants remaining in the film will gasify in the subsequent process, generating new voids. In particular, when fine inorganic fillers are blended at high concentrations and uniformly, the distance between the inorganic fillers is small, making it difficult for the gasified components to escape outside the film and easier for them to remain in the film. Patent Document 1 also states that gas generated during the formation of the fluororesin layer by the casting method causes swelling and cracks, and proposes providing a heating and compression process to reduce voids in the film and form a dense film.
 しかし、熱膨張係数の差でフィラー周囲に生じる空隙や溶媒ガスにより生じる空隙については、加熱圧縮によって低減できるものの、これらに比して相対的に小さく、例えば直径が1μm以下の微小な空隙が依然として膜中に残留する、という問題が判明した。以下、このような微小な空隙のことを「微小気泡」として、相対的に大きなフィラー周囲の空隙や溶媒ガスによる空隙、クラックなどと区別する。 However, although the gaps that occur around the filler due to differences in thermal expansion coefficients and gaps caused by solvent gas can be reduced by heating and compression, it has become clear that relatively small gaps, for example microscopic gaps with diameters of 1 μm or less, still remain in the film. Hereinafter, such microscopic gaps will be referred to as "microbubbles" to distinguish them from the relatively large gaps around the filler, gaps caused by solvent gas, cracks, etc.
 従って、本発明の目的は、キャスト法でフッ素系樹脂フィルムを形成する場合に該フィルム中の微小気泡などの空隙を極力低減することが可能な分散組成物を提供することであり、さらに、この分散組成物を用いて得られる、大きな空隙やクラックだけでなく微小気泡もほとんど存在しない緻密なフッ素系樹脂フィルム及び該フッ素系樹脂フィルムを絶縁樹脂層とする金属張積層板、それらの製造方法を提供することである。 The object of the present invention is therefore to provide a dispersion composition that can minimize voids such as microbubbles in a fluororesin film when the film is formed by a casting method, and further to provide a dense fluororesin film that is obtained using this dispersion composition and is almost free of not only large voids and cracks but also microbubbles, and a metal-clad laminate that uses the fluororesin film as an insulating resin layer, as well as methods for producing the same.
 本発明者らは、微小気泡の発生原因について検討を行った結果、以下の(1)~(3)の知見を得た。
(1)塗膜中の分散剤が加熱によって低分子化合物に分解し、ガス化することで、微小気泡の原因となる。
(2)微細な無機フィラーを均質かつ高濃度に含有する膜中では、微小気泡が特に発生しやすくなる。
(3)塗膜をフッ素系樹脂の融点以上の温度で溶融熱処理してフィルム化した後に、分散剤が残存することで、加熱加圧処理工程で微小気泡が発生する。
 これらの知見に基づき、微小気泡を低減するために鋭意検討を行った結果、分散組成物に配合する無機フィラーとして粒度分布が制御されたものを用いるとともに、分散剤の分解物が効率よく膜外に除去できるような条件で溶融熱処理を実施することによって上記課題を解決できることを見出し、本発明を完成するに至った。
The present inventors have investigated the cause of the generation of microbubbles and have obtained the following findings (1) to (3).
(1) When heated, the dispersant in the coating film decomposes into low molecular weight compounds and gasifies, causing microbubbles.
(2) In a film that contains fine inorganic fillers uniformly and at a high concentration, microbubbles are particularly likely to be generated.
(3) After the coating is melt-heat-treated at a temperature equal to or higher than the melting point of the fluororesin to form a film, the dispersant remains, generating microscopic air bubbles during the heating and pressurizing process.
Based on these findings, the present inventors conducted intensive research to reduce microbubbles, and as a result, they found that the above-mentioned problems can be solved by using an inorganic filler with a controlled particle size distribution to be blended into the dispersion composition, and by carrying out a melt heat treatment under conditions that allow the decomposition products of the dispersant to be efficiently removed outside the film, thereby completing the present invention.
 すなわち、本発明の分散組成物は、下記の成分(A)~(D);
 (A)フッ素系樹脂パウダー、
 (B)無機フィラー、
 (C)分散剤、
 (D)有機溶媒
を含有する分散組成物である。
 そして、本発明の分散組成物は、成分(A)と成分(B)の合計量に対して、成分(A)の含有量が15~40重量%の範囲内、成分(B)の含有量が60~85重量%の範囲内であり、
 成分(B)が、レーザー回折・散乱法によって体積基準で粒度分布を測定したときに、以下の条件(i)、(ii);
(i)少なくとも8~15μm及び0.1~5μmの間にそれぞれ1つ以上のピークトップを有していること;
(ii)D10が0.1~3μmの範囲内であり、D50が5~15μmの範囲内であるとともに、5μm以上の粒径を有する粒子の占める割合が60体積%以上であること;
を満たすものである。
That is, the dispersion composition of the present invention comprises the following components (A) to (D):
(A) a fluorine-based resin powder,
(B) an inorganic filler;
(C) a dispersant,
(D) A dispersion composition containing an organic solvent.
The dispersion composition of the present invention has a content of component (A) in the range of 15 to 40% by weight and a content of component (B) in the range of 60 to 85% by weight, based on the total amount of component (A) and component (B);
When the particle size distribution of component (B) is measured on a volume basis by a laser diffraction/scattering method, the following conditions (i) and (ii) are satisfied:
(i) having at least one peak top between 8 and 15 μm and at least one peak top between 0.1 and 5 μm;
(ii) D10 is in the range of 0.1 to 3 μm, D50 is in the range of 5 to 15 μm, and the proportion of particles having a size of 5 μm or more is 60% by volume or more;
It satisfies the following.
 本発明の分散組成物は、成分(C)の含有量が、成分(A)と成分(B)の合計量に対して、1~10重量%の範囲内であってもよい。 The dispersion composition of the present invention may have a content of component (C) in the range of 1 to 10% by weight based on the total amount of components (A) and (B).
 本発明の分散組成物は、成分(D)の含有量が、組成物全体に対して25~50重量%の範囲内であってもよい。 The dispersion composition of the present invention may have a content of component (D) in the range of 25 to 50% by weight based on the total composition.
 本発明の分散組成物は、成分(B)が、球状非晶質シリカであってもよい。 In the dispersion composition of the present invention, component (B) may be spherical amorphous silica.
 本発明の分散組成物は、成分(A)が、テトラフルオロエチレン―パーフルオロアルキルビニルエーテル共重合体(PFA)であってもよい。 In the dispersion composition of the present invention, component (A) may be a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA).
 本発明のフッ素系樹脂フィルムは、下記の成分(A1)及び成分(B);
 (A1)フッ素系樹脂、
 (B)無機フィラー、
を含有し、
 成分(A1)と成分(B)の合計量に対して、成分(A1)の含有量が15~40重量%の範囲内、成分(B)の含有量が60~85重量%の範囲内である。
The fluorine-based resin film of the present invention comprises the following component (A1) and component (B);
(A1) a fluorine-based resin,
(B) an inorganic filler;
Contains
Based on the total amount of components (A1) and (B), the content of component (A1) is within the range of 15 to 40% by weight, and the content of component (B) is within the range of 60 to 85% by weight.
 そして、本発明のフッ素系樹脂フィルムは、成分(B)が、レーザー回折・散乱法によって体積基準で粒度分布を測定したときに、以下の条件(i)、(ii);
(i)少なくとも8~15μm及び0.1~5μmの間にそれぞれ1つ以上のピークトップを有していること;
(ii)D10が0.1~3μmの範囲内であり、D50が5~15μmの範囲内であるとともに、5μm以上の粒径を有する粒子の占める割合が60体積%以上であること;
を満たすものである。また、本発明のフッ素系樹脂フィルムは、熱重量・示差熱分析において、窒素雰囲気で30℃から550℃まで10℃/minの速度で加熱したときの150℃から420℃の間の重量減少率が0.3重量%以下である。
The fluororesin film of the present invention is characterized in that the component (B) satisfies the following conditions (i) and (ii) when the particle size distribution on a volume basis is measured by a laser diffraction/scattering method:
(i) having at least one peak top between 8 and 15 μm and at least one peak top between 0.1 and 5 μm;
(ii) D10 is in the range of 0.1 to 3 μm, D50 is in the range of 5 to 15 μm, and the proportion of particles having a size of 5 μm or more is 60% by volume or more;
In addition, the fluororesin film of the present invention has a weight loss rate of 0.3% by weight or less between 150° C. and 420° C. when heated in a nitrogen atmosphere from 30° C. to 550° C. at a rate of 10° C./min in thermogravimetric and differential thermal analyses.
 本発明の金属張積層板は、単層又は複数層からなる絶縁樹脂層と、前記絶縁樹脂層の片面もしくは両面に積層されている金属層と、を備えている金属張積層板であって、
 前記絶縁樹脂層の少なくとも1層が、上記フッ素系樹脂フィルムからなるフッ素系樹脂層である。
The metal-clad laminate of the present invention is a metal-clad laminate comprising an insulating resin layer consisting of a single layer or multiple layers, and a metal layer laminated on one side or both sides of the insulating resin layer,
At least one of the insulating resin layers is a fluororesin layer made of the above-mentioned fluororesin film.
 本発明の片面金属張積層板の製造方法は、単層又は複数層からなり、少なくとも1層のフッ素系樹脂層を有する絶縁樹脂層と、前記絶縁樹脂層の片面に金属層が積層されている片面金属張積層板を製造する方法である。
 そして、本発明の片面金属張積層板の製造方法は、以下の工程a及びb;
a)上記分散組成物を金属箔上に塗工して塗膜を形成する工程、
b)得られた塗膜に対し、窒素雰囲気下、フッ素系樹脂の融点よりも20~80℃の範囲内で高い温度にて熱処理を行うことによって、成分(C)の熱分解により生じた揮発性成分を除去するとともに、成分(A)のフッ素系樹脂パウダーを溶融させて金属箔上にフッ素系樹脂層を形成する工程、
を含んでいる。
The method for producing a single-sided metal-clad laminate of the present invention is a method for producing a single-sided metal-clad laminate consisting of a single layer or multiple layers, and including an insulating resin layer having at least one fluorine-based resin layer, and a metal layer laminated on one side of the insulating resin layer.
The method for producing a single-sided metal-clad laminate of the present invention comprises the following steps a and b:
a) applying the dispersion composition onto a metal foil to form a coating film;
b) a step of subjecting the obtained coating film to a heat treatment in a nitrogen atmosphere at a temperature within a range of 20 to 80° C. higher than the melting point of the fluororesin, thereby removing volatile components produced by thermal decomposition of component (C) and melting the fluororesin powder of component (A) to form a fluororesin layer on the metal foil;
Contains:
 本発明の両面金属張積層板の製造方法は、絶縁樹脂層の両面に金属層が積層されている両面金属張積層板を製造する方法であって、
 上記片面金属張積層板の製造方法によって製造された2つの片面金属張積層板の前記絶縁樹脂層どうしを向かい合わせに配置して熱圧着を行う工程、
を含んでいる。
The method for producing a double-sided metal-clad laminate of the present invention is a method for producing a double-sided metal-clad laminate in which metal layers are laminated on both sides of an insulating resin layer, comprising the steps of:
a step of placing the insulating resin layers of two single-sided metal-clad laminates manufactured by the manufacturing method of the single-sided metal-clad laminate facing each other and performing thermocompression bonding;
Contains:
 本発明の分散組成物は、成分(B)の無機フィラーとして条件(i)、(ii)を満たすものを所定の配合比率で含有させているため、溶融熱処理工程において成分(C)の分散剤の分解物を効率よく膜外に除去することができる。
 そのため、本発明の分散組成物を使用して得られるフッ素系樹脂フィルムは、大きな空隙やクラックだけでなく、微小気泡もほとんど存在しない緻密なフィルムであり、金属層との密着性が確保され、フッ素系樹脂による優れた誘電特性と、無機フィラーの高濃度添加による低熱膨張性との両立が図られている。
 したがって、本発明の分散組成物を使用して得られる金属張積層板は、例えば高速通信規格に対応可能な回路基板等の材料として有用である。
The dispersion composition of the present invention contains, as the inorganic filler of component (B) which satisfies conditions (i) and (ii) in a predetermined blend ratio, the decomposition products of the dispersant of component (C) can be efficiently removed outside the film during the melt heat treatment process.
Therefore, the fluororesin film obtained by using the dispersion composition of the present invention is a dense film that is free of not only large voids and cracks, but also microbubbles, and has ensured adhesion to the metal layer, achieving both excellent dielectric properties due to the fluororesin and low thermal expansion properties due to the addition of a high concentration of inorganic filler.
Therefore, the metal-clad laminate obtained by using the dispersion composition of the present invention is useful as a material for, for example, circuit boards compatible with high-speed communication standards.
 本発明の一実施の形態に係る分散組成物は、下記の成分(A)~(D);
 (A)フッ素系樹脂パウダー、
 (B)無機フィラー、
 (C)分散剤、
 (D)有機溶媒
を含有している。この分散組成物中では、成分(A)及び成分(B)が分散剤(C)によって分散媒である成分(D)中に分散している。
The dispersion composition according to one embodiment of the present invention comprises the following components (A) to (D):
(A) a fluorine-based resin powder,
(B) an inorganic filler;
(C) a dispersant,
In the dispersion composition, the components (A) and (B) are dispersed in the dispersion medium (D) by the dispersant (C).
成分(A):
 成分(A)はフッ素系樹脂パウダーである。ここで、「パウダー」とは、例えば、平均粒子径(D50)が0.05~100μmの範囲内、好ましくは0.5~50μmの範囲内、より好ましくは0.5~10μmの範囲内の粒子の集合体を意味する。なお、フッ素系樹脂パウダーの平均粒子径(D50)は、例えばレーザー回折・散乱法によって粉粒の粒度分布を測定し、その粉粒の全体積を100%として累積カーブを求め、その累積カーブ上で累積体積が50%となる点の粒子径として求めることが可能である。
Component (A):
Component (A) is a fluororesin powder. Here, "powder" means, for example, an aggregate of particles having an average particle size (D 50 ) in the range of 0.05 to 100 μm, preferably in the range of 0.5 to 50 μm, and more preferably in the range of 0.5 to 10 μm. The average particle size (D 50 ) of the fluororesin powder can be determined, for example, by measuring the particle size distribution of the powder particles by a laser diffraction/scattering method, determining a cumulative curve with the total volume of the powder particles as 100%, and determining the particle size at the point on the cumulative curve where the cumulative volume is 50%.
 フッ素系樹脂は、フッ素原子を含むポリマーであり、その種類は特に限定されないが、例えば、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン―パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、エチレン-テトラフルオロエチレン共重合体(ETFE)、エチレン-テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(EFEP)、ポリフッ化ビニル(PVF)、ポリフッ化ビニリデン(PVDF)等が挙げられる。これらは、2種以上を組み合わせて用いてもよく、また、フッ素系樹脂の一部に官能基を有するパーフルオロオレフィンに基づくモノマー単位を含んでいてもよい。官能基としては、カルボニル基含有基、ヒドロキシ基、エポキシ基、アミド基、アミノ基及びイソシアネート基が好ましい。 The fluororesin is a polymer containing fluorine atoms, and the type is not particularly limited, but examples include polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), ethylene-tetrafluoroethylene copolymer (ETFE), ethylene-tetrafluoroethylene-hexafluoropropylene copolymer (EFEP), polyvinyl fluoride (PVF), polyvinylidene fluoride (PVDF), etc. Two or more of these may be used in combination, and the fluororesin may contain a monomer unit based on a perfluoroolefin having a functional group as part of the fluororesin. As the functional group, a carbonyl group-containing group, a hydroxyl group, an epoxy group, an amide group, an amino group, and an isocyanate group are preferred.
 これらのフッ素系樹脂の中でも、低い誘電正接を示すものとして、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン―パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)がより好ましい。 Among these fluorine-based resins, polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), and tetrafluoroethylene-hexafluoropropylene copolymer (FEP) are more preferable as they exhibit low dielectric tangents.
成分(B):
 成分(B)は、無機フィラーであり、その種類は特に限定されないが、樹脂フィルムの熱膨張係数を低下させる観点から、例えば、二酸化ケイ素(シリカ)、酸化アルミニウム(アルミナ)、酸化マグネシウム(マグネシア)、酸化ベリリウム、酸化ニオブ、酸化チタン、窒化ホウ素、窒化アルミニウム、窒化ケイ素、フッ化アルミニウム、フッ化カルシウム、フッ化マグネシウム、ケイフッ化カリウム、タルク、ガラス、チタン酸バリウム等が好ましい。これらは、2種以上を組み合わせて用いてもよい。これらの中でも、熱膨張係数が低いものとして、二酸化ケイ素(シリカ)、酸化アルミニウム、窒化ホウ素、ガラス等がより好ましい。
Component (B):
Component (B) is an inorganic filler, and the type is not particularly limited, but from the viewpoint of reducing the thermal expansion coefficient of the resin film, for example, silicon dioxide (silica), aluminum oxide (alumina), magnesium oxide (magnesia), beryllium oxide, niobium oxide, titanium oxide, boron nitride, aluminum nitride, silicon nitride, aluminum fluoride, calcium fluoride, magnesium fluoride, potassium silicofluoride, talc, glass, barium titanate, etc. are preferable. These may be used in combination of two or more. Among these, silicon dioxide (silica), aluminum oxide, boron nitride, glass, etc. are more preferable as those having a low thermal expansion coefficient.
 成分(B)は、レーザー回折・散乱法によって体積基準で粒度分布を測定したときに、以下の条件(i)、(ii)を満たすものである。 Component (B) satisfies the following conditions (i) and (ii) when the particle size distribution is measured on a volume basis by a laser diffraction/scattering method.
条件(i):
 少なくとも8~15μm及び0.1~5μmの間にそれぞれ1つ以上のピークトップを有していること。
 上記範囲内に粒度分布のピークを有することによって、フィルムの状態で大径フィラーの間に小径フィラーが入り込みやすく、フィラー同士の間隔が小さくなり、高密度充填が可能となる。なお、「大径」、「小径」は相対的な意味で用いている(以下、同様である)。上記(2)の知見のとおり、微細な無機フィラーを均質かつ高濃度に含有する膜中では、微小気泡が特に残留しやすくなるため、無機フィラーの充填量を下げる(つまり、フッ素系樹脂の比率を一定以上に高める)ことによって微小気泡を抑制できると考えられるが、それでは無機フィラー配合の目的である熱膨張係数制御の幅が狭まり、制約を受けることになる。本発明では、条件(i)を満たす粒度分布の無機フィラーを用いることによって、フッ素系樹脂の配合比率を上げる必要がなく、無機フィラーの高密度充填が可能になり、熱膨張係数制御の自由度を維持できる。
Condition (i):
It has at least one peak top between 8 and 15 μm and at least one peak top between 0.1 and 5 μm.
By having a peak of the particle size distribution within the above range, small diameter fillers can easily enter between large diameter fillers in the film state, the intervals between the fillers become smaller, and high density packing is possible. Note that "large diameter" and "small diameter" are used in a relative sense (hereinafter the same). As the above knowledge (2) shows, in a film containing fine inorganic fillers homogeneously and at a high concentration, microbubbles are particularly likely to remain, so it is thought that microbubbles can be suppressed by lowering the amount of inorganic filler filled (i.e., increasing the ratio of fluorine-based resin to a certain level or more), but this narrows the range of thermal expansion coefficient control, which is the purpose of blending inorganic fillers, and is restricted. In the present invention, by using an inorganic filler with a particle size distribution that satisfies condition (i), it is not necessary to increase the blending ratio of fluorine-based resin, and high density packing of inorganic fillers is possible, and the degree of freedom in thermal expansion coefficient control can be maintained.
条件(ii):
 D10が0.1~3μmの範囲内であり、D50が5~15μmの範囲内であるとともに、5μm以上の粒径を有する粒子の占める割合が60体積%以上であること。
 上記(1)、(2)の知見のとおり、微小気泡の原因は、成分(C)の分散剤が分解して生成した低分子化合物のガスであり、微細な無機フィラーを均質かつ高濃度に含有する膜中では該低分子化合物のガスが膜外へ抜けにくくなるため、微小気泡の発生が特に多くなると考えられる。一方、樹脂組成物を塗工した塗膜中に粒径が5μm以上の比較的大きなフィラーが多量に存在すると、塗膜段階でフィラー間に生じる空隙やクラックは、微細なフィラーのみを用いた場合に比べて大きなものが形成されやすくなる。このような空隙やクラックは、後述するように溶融熱処理工程において低分子化合物のガスが膜外へ抜け出ることを促す経路(パス)となる。そのため、条件(ii)を満たすことにより、塗膜段階では意図的に大きな空隙やクラックを形成しておき、敢えて塗膜密度を低くしておくことによって、無機フィラーを高密度に配合した場合でも溶融熱処理工程において低分子化合物の揮発による除去が促される。それに対して、条件(ii)を満たさず、例えば5μm以上の粒径を有する粒子の占める割合が60体積%未満である場合は、塗膜段階で大きな空隙やクラックが少なくなり、溶融熱処理工程において生成した低分子化合物のガスがそのまま膜中にとどまりやすくなることから、微小気泡の原因となる。
Condition (ii):
D10 is within the range of 0.1 to 3 μm, D50 is within the range of 5 to 15 μm, and the proportion of particles having a particle size of 5 μm or more is 60 volume % or more.
As the findings of (1) and (2) above show, the cause of microbubbles is the gas of low molecular weight compounds generated by the decomposition of the dispersant of component (C), and it is considered that the gas of low molecular weight compounds is difficult to escape to the outside of the film in a film containing fine inorganic fillers homogeneously and at a high concentration, so that the generation of microbubbles is particularly frequent. On the other hand, if a large amount of relatively large fillers with a particle size of 5 μm or more are present in the coating film coated with the resin composition, the voids and cracks generated between the fillers at the coating stage are likely to be larger than those when only fine fillers are used. As described below, such voids and cracks become a path (path) that promotes the gas of low molecular weight compounds to escape to the outside of the film in the melt heat treatment process. Therefore, by satisfying condition (ii), large voids and cracks are intentionally formed at the coating stage, and the coating density is deliberately kept low, so that the removal of low molecular weight compounds by volatilization is promoted in the melt heat treatment process even when the inorganic filler is mixed at a high density. On the other hand, if the condition (ii) is not satisfied, for example, if the ratio of particles having a particle size of 5 μm or more is less than 60 vol %, then large voids and cracks will be reduced at the coating stage, and the gas of the low molecular weight compound generated in the melt heat treatment step will be more likely to remain in the film, causing microbubbles.
 なお、無機フィラーの粒度分布は、例えばレーザー回折・散乱法によって測定可能である。粒度分布を測定し、粉粒の全体積を100%として累積カーブを求め、その累積カーブ上で累積体積が10%となる点の粒子径(D10)、及び、50%となる点の粒子径(D50)を求めることが可能である。また、粒子径とは、球状以外の場合は、球相当径として算出された値を意味する。 The particle size distribution of the inorganic filler can be measured, for example, by a laser diffraction/scattering method. It is possible to measure the particle size distribution, obtain a cumulative curve with the total volume of the powder particles set at 100%, and obtain the particle diameter (D 10 ) at the point where the cumulative volume is 10% on the cumulative curve, and the particle diameter (D 50 ) at the point where the cumulative volume is 50%. In addition, the particle diameter means a value calculated as a sphere-equivalent diameter in the case of particles other than spherical.
 条件(i)、(ii)を満たすためには、例えば、粒度分布の測定においてピークトップが8~15μmの範囲内にある大径フィラーと、ピークトップが0.1~5μmの範囲内にある小径フィラーとを70:30~98:2の体積比率で配合することが好ましく、80:20~95:5の体積比率で配合することが好ましい。 In order to satisfy conditions (i) and (ii), for example, it is preferable to mix large-diameter fillers whose peak top is in the range of 8 to 15 μm in particle size distribution measurement with small-diameter fillers whose peak top is in the range of 0.1 to 5 μm in a volume ratio of 70:30 to 98:2, and more preferably a volume ratio of 80:20 to 95:5.
 成分(B)の比表面積は、特に限定されないが、誘電正接の悪化を抑制する観点から0.1~20m/gの範囲内、好ましくは0.1~10m/gの範囲内がよい。なお、比表面積についてはBET法によって測定することが可能である。 The specific surface area of component (B) is not particularly limited, but from the viewpoint of suppressing deterioration of the dielectric loss tangent, it is preferably in the range of 0.1 to 20 m 2 /g, and more preferably in the range of 0.1 to 10 m 2 /g. The specific surface area can be measured by the BET method.
 成分(B)の形状は、特に限定されないが、厚み方向と面方向の熱膨張係数の差を小さくできることから、例えば、球状、破砕球状等が好ましい。また、成分(B)は中空状であってもよい。 The shape of component (B) is not particularly limited, but for example, a spherical shape, a crushed spherical shape, etc. are preferred because they can reduce the difference in thermal expansion coefficient between the thickness direction and the surface direction. Component (B) may also be hollow.
 成分(B)としてシリカを用いる場合、結晶性シリカでも非晶質シリカでもよいが、フィルム化した状態で誘電特性を損なわずに熱膨張係数を低減可能であり、特に厚み方向と面方向の熱膨張係数の差を小さくできるという観点から、非晶質シリカが好ましく、球状の非晶質シリカが特に好ましい。 When silica is used as component (B), it may be either crystalline or amorphous silica, but amorphous silica is preferred from the viewpoint that it is possible to reduce the thermal expansion coefficient without impairing the dielectric properties in the film state, and in particular to reduce the difference in the thermal expansion coefficient between the thickness direction and the surface direction, and spherical amorphous silica is particularly preferred.
 成分(B)は、カップリング剤等により表面処理されていることが好ましい。表面処理に用いるカップリング剤としては、例えば3-アミノプロピルエトキシシラン、ビニルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルエトキシシラン、3-イソシアネートプロピルエトキシシランまたはヘキサメチルジシラザン等が挙げられる。 Component (B) is preferably surface-treated with a coupling agent or the like. Examples of coupling agents used for surface treatment include 3-aminopropylethoxysilane, vinyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-methacryloxypropylethoxysilane, 3-isocyanatopropylethoxysilane, and hexamethyldisilazane.
成分(C):
 成分(C)の分散剤は、成分(A)及び成分(B)に対する分散作用を有するものであれば種類は特に限定されないが、フッ素系樹脂を効率的に分散する観点から、例えば、フッ素系界面活性剤が好ましい。フッ素系界面活性剤としては、例えば、分子内に二重結合を有するパーフルオロアルケニル構造のノニオン系のフッ素系界面活性剤がより好ましい。
Component (C):
The dispersant for component (C) is not particularly limited as long as it has a dispersing effect on components (A) and (B), but from the viewpoint of efficiently dispersing the fluororesin, for example, a fluorosurfactant is preferred. As the fluorosurfactant, for example, a nonionic fluorosurfactant having a perfluoroalkenyl structure having a double bond in the molecule is more preferred.
成分(D):
 成分(D)の有機溶媒の種類は特に限定されないが、25℃で液状である有機溶媒が好ましく、例えば、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)、N,N-ジエチルアセトアミド、N-メチル-2-ピロリドン(NMP)、2-ブタノン、ジメチルスルホキシド(DMSO)、ヘキサメチルホスホルアミド、N-メチルカプロラクタム、硫酸ジメチル、シクロヘキサノン、ジオキサン、テトラヒドロフラン、ジグライム、トリグライム、クレゾール、メタノール、エタノール、イソプロパノール、メチルエチルケトン、シクロヘキサノン、γ-ブチロラクトン等が好ましい。これらの中でも、例えば、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)、N,N-ジエチルアセトアミド、N-メチル-2-ピロリドン(NMP)等の高沸点溶媒がより好ましい。
Component (D):
The type of organic solvent of component (D) is not particularly limited, but an organic solvent that is liquid at 25° C. is preferred, such as N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAc), N,N-diethylacetamide, N-methyl-2-pyrrolidone (NMP), 2-butanone, dimethylsulfoxide (DMSO), hexamethylphosphoramide, N-methylcaprolactam, dimethyl sulfate, cyclohexanone, dioxane, tetrahydrofuran, diglyme, triglyme, cresol, methanol, ethanol, isopropanol, methyl ethyl ketone, cyclohexanone, γ-butyrolactone, etc. Among these, high-boiling point solvents such as N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAc), N,N-diethylacetamide, N-methyl-2-pyrrolidone (NMP), etc. are more preferred.
 分散組成物は、任意成分として、例えば、有機フィラー、硬化剤、可塑剤、エラストマー、カップリング剤、顔料、難燃剤、フッ素系樹脂以外の樹脂成分等を含有することができる。 The dispersion composition may contain optional components such as organic fillers, hardeners, plasticizers, elastomers, coupling agents, pigments, flame retardants, and resin components other than fluorine-based resins.
(組成比)
 分散組成物中の成分(A)のフッ素系樹脂パウダーの重量割合は、フィルム化したときの誘電正接を下げ、高周波信号伝送への対応を図る観点から、成分(A)と成分(B)の合計量に対して15~40重量%の範囲内であり、20~35重量%の範囲内であることが好ましい。成分(A)の含有量が15重量%を下回ると、フィルムの低誘電正接化が不十分となり、また、樹脂との熱膨張係数差に起因するフィラー周囲の空隙やクラックが生じやすくなる。一方、成分(A)の含有量が40重量%を超えると、相対的に成分(B)の配合量が少なくなるためにフィルム化したときの熱膨張係数制御の幅が狭くなる。
 なお、所望の誘電特性と低熱膨張性との両立を図る観点から、成分(A)と成分(B)の合計量は、分散組成物中の全固形分量に対して50重量%以上であることが好ましく、60~99重量%の範囲内がより好ましく、70~99重量%の範囲内が最も好ましい。ここで、分散組成物中の固形分とは、溶媒を除いた成分の合計を意味する。
(Composition ratio)
The weight ratio of the fluororesin powder of component (A) in the dispersion composition is in the range of 15 to 40% by weight, preferably 20 to 35% by weight, based on the total amount of components (A) and (B) in order to reduce the dielectric tangent when the film is made and to correspond to high frequency signal transmission. If the content of component (A) is less than 15% by weight, the film will not have a sufficiently low dielectric tangent, and voids and cracks around the filler due to the difference in thermal expansion coefficient with the resin will be easily generated. On the other hand, if the content of component (A) exceeds 40% by weight, the amount of component (B) blended will be relatively small, and the range of thermal expansion coefficient control will be narrow when the film is made.
From the viewpoint of achieving both the desired dielectric properties and low thermal expansion, the total amount of component (A) and component (B) is preferably 50% by weight or more, more preferably in the range of 60 to 99% by weight, and most preferably in the range of 70 to 99% by weight, based on the total solid content in the dispersion composition. Here, the solid content in the dispersion composition means the total of the components excluding the solvent.
 また、分散組成物中の成分(B)の無機フィラーの重量割合は、フィルム化したときの熱膨張係数を下げ、回路基板へ適用したときの寸法安定性を担保する観点から、成分(A)と成分(B)の合計量に対して60~85重量%の範囲内であり、65~80重量%の範囲内であることが好ましい。成分(B)の含有量が60重量%未満であるとフィルム化したときの熱膨張係数制御の幅が狭くなり、85重量%を超えるとフィルムの低誘電正接化が困難になるとともに、樹脂との熱膨張係数差に起因するフィラー周囲の空隙やクラックが生じやすくなる。本実施の形態では、成分(B)として条件(i)、(ii)を具備するものを使用することによって、高密度充填を可能としながら、比較的大きな空隙やクラックの防止だけにとどまらず、微小気泡の発生についても抑制している。 The weight ratio of the inorganic filler of component (B) in the dispersion composition is in the range of 60 to 85% by weight, preferably 65 to 80% by weight, based on the total amount of components (A) and (B), from the viewpoint of lowering the thermal expansion coefficient when made into a film and ensuring dimensional stability when applied to a circuit board. If the content of component (B) is less than 60% by weight, the range of thermal expansion coefficient control when made into a film becomes narrow, and if it exceeds 85% by weight, it becomes difficult to make the film have a low dielectric tangent, and voids and cracks around the filler due to the difference in thermal expansion coefficient with the resin are likely to occur. In this embodiment, by using a component (B) that satisfies conditions (i) and (ii), it is possible to achieve high-density filling while preventing relatively large voids and cracks, and also suppressing the generation of microbubbles.
 また、分散組成物中の成分(C)の分散剤中の重量割合は、成分(A)及び成分(B)の分散性を確保する観点から、成分(A)と成分(B)の合計量に対して、1~10重量%の範囲内であることが好ましく、1~5重量%の範囲内であることがより好ましい。成分(C)の重量割合が1重量%未満では十分な分散効果が得られなくなり、10重量%を超えると、フィルム中に残留する成分(C)又はその分解物の量が多くなるため、微小気泡の発生原因になりやすくなる。 In addition, the weight ratio of component (C) in the dispersant in the dispersion composition is preferably within the range of 1 to 10% by weight, and more preferably within the range of 1 to 5% by weight, based on the total amount of components (A) and (B), from the viewpoint of ensuring the dispersibility of components (A) and (B). If the weight ratio of component (C) is less than 1% by weight, a sufficient dispersion effect cannot be obtained, and if it exceeds 10% by weight, the amount of component (C) or its decomposition products remaining in the film increases, which is likely to cause the generation of microbubbles.
 また、成分(D)の有機溶媒の配合量は、後で述べるように分散組成物の粘度を所望の値に調整できれば制限はないが、良好な分散性や良好な塗工性を得るために、組成物全体に対して、好ましくは25~50重量%の範囲内、より好ましくは30~40重量%の範囲内となるように調節して配合することがよい。 The amount of organic solvent in component (D) is not limited as long as the viscosity of the dispersion composition can be adjusted to the desired value, as described later. However, to obtain good dispersibility and good coatability, it is advisable to adjust and incorporate the organic solvent so that it is preferably in the range of 25 to 50% by weight, more preferably in the range of 30 to 40% by weight, based on the total composition.
(粘度)
 分散組成物の粘度は特に限定されないが、例えば30μm以上の厚膜塗工を目的とする場合は、500~50000cPの範囲内であることが好ましく、500~30000cPの範囲内がより好ましい。粘度が500cP未満では、分散組成物を任意の基材上にキャストするときに、流動性が高くなりすぎるため、厚膜での塗膜形成が困難となる。特に、高周波伝送用途向けに30~150μmの範囲内の比較的厚い塗膜の形成が不可能となる。また、粘度が500cP未満では、固形分の沈降や凝集が生じることがある。一方、分散組成物の粘度が50000cPを超える場合は、粘性が高すぎてキャストによる塗膜形成が困難となる。
 なお、分散組成物の粘度は、E型粘度計を用い、温度25℃で測定することができる。
(viscosity)
The viscosity of the dispersion composition is not particularly limited, but for example, when the purpose is to coat a thick film of 30 μm or more, it is preferably in the range of 500 to 50,000 cP, more preferably in the range of 500 to 30,000 cP. If the viscosity is less than 500 cP, the fluidity becomes too high when the dispersion composition is cast onto any substrate, making it difficult to form a thick coating film. In particular, it becomes impossible to form a relatively thick coating film in the range of 30 to 150 μm for high frequency transmission applications. In addition, if the viscosity is less than 500 cP, sedimentation or aggregation of solids may occur. On the other hand, if the viscosity of the dispersion composition exceeds 50,000 cP, the viscosity is too high and it becomes difficult to form a coating film by casting.
The viscosity of the dispersion composition can be measured at a temperature of 25° C. using an E-type viscometer.
(分散組成物の調製)
 分散組成物は、成分(A)~(D)を混合することによって製造できる。各成分は、成分(D)の有機溶媒の存在下で均一な状態になるまで混練することが好ましい。混練に際しては、成分(D)を少量ずつ添加してもよい。
(Preparation of Dispersion Composition)
The dispersion composition can be produced by mixing components (A) to (D). Each component is preferably kneaded in the presence of the organic solvent of component (D) until it becomes homogeneous. During kneading, component (D) may be added in small amounts.
[フッ素系樹脂フィルム]
 本実施の形態のフッ素系樹脂フィルムは、上記分散組成物をフィルム状に加工したものである。
 すなわち、フッ素系樹脂フィルムは、下記の成分(A1)及び成分(B);
 (A1)フッ素系樹脂、
 (B)無機フィラー、
を含有する。
[Fluoroplastic film]
The fluororesin film of the present embodiment is obtained by processing the above-mentioned dispersion composition into a film shape.
That is, the fluorine-based resin film comprises the following component (A1) and component (B);
(A1) a fluorine-based resin,
(B) an inorganic filler;
Contains:
 本実施の形態のフッ素系樹脂フィルムは、成分(D)の有機溶媒を実質的に含まない固形のフィルム状をなしており、分散組成物中の成分(A)のフッ素系樹脂パウダーが無定形となって成分(A1)のフッ素系樹脂(マトリックス樹脂の主成分)となっている。フッ素系樹脂フィルムは、分散組成物と同様に成分(B)を含有する。成分(B)は、レーザー回折・散乱法によって体積基準で粒度分布を測定したときに、以下の条件(i)、(ii);
(i)少なくとも8~15μm及び0.1~5μmの間にそれぞれ1つ以上のピークトップを有していること;
(ii)D10が0.1~3μmの範囲内であり、D50が5~15μmの範囲内であるとともに、5μm以上の粒径を有する粒子の占める割合が60体積%以上であること;
を満たしている。なお、「成分(D)の有機溶媒を実質的に含まない」とは、フィルム中の成分(D)の含有量が0.1重量%以下であることを意味する。
The fluororesin film of the present embodiment is in the form of a solid film substantially free of the organic solvent of component (D), and the fluororesin powder of component (A) in the dispersion composition becomes amorphous and becomes the fluororesin of component (A1) (the main component of the matrix resin). The fluororesin film contains component (B) in the same manner as the dispersion composition. Component (B) satisfies the following conditions (i) and (ii) when the particle size distribution is measured on a volume basis by a laser diffraction/scattering method:
(i) having at least one peak top between 8 and 15 μm and at least one peak top between 0.1 and 5 μm;
(ii) D10 is in the range of 0.1 to 3 μm, D50 is in the range of 5 to 15 μm, and the proportion of particles having a size of 5 μm or more is 60% by volume or more;
The phrase "substantially free of organic solvent of component (D)" means that the content of component (D) in the film is 0.1% by weight or less.
 本実施の形態のフッ素系樹脂フィルムは、成分(A1)と成分(B)の合計量に対して、成分(A1)の含有量が15~40重量%の範囲内であり、20~35重量%の範囲内であることが好ましく、成分(B)の含有量が60~85重量%の範囲内であり、65~80重量%の範囲内であることが好ましい。成分(A1)の含有量が15重量%を下回るとフィルムの低誘電正接化が不十分となり、成分(B)の重量割合が、60重量%未満であると熱膨張係数の制御が困難となる。
 また、所望の誘電特性と低熱膨張性との両立を図る観点から、成分(A1)と成分(B)の合計量は、フッ素系樹脂フィルム全体に対して50重量%以上であることが好ましく、60~100重量%の範囲内がより好ましく、70~100重量%の範囲内が最も好ましい。
In the fluororesin film of the present embodiment, the content of component (A1) is within the range of 15 to 40% by weight, preferably within the range of 20 to 35% by weight, and the content of component (B) is within the range of 60 to 85% by weight, preferably within the range of 65 to 80% by weight, based on the total amount of components (A1) and (B). If the content of component (A1) is less than 15% by weight, the dielectric loss tangent of the film becomes insufficient, and if the weight ratio of component (B) is less than 60% by weight, it becomes difficult to control the thermal expansion coefficient.
From the viewpoint of achieving both the desired dielectric properties and low thermal expansion, the total amount of component (A1) and component (B) is preferably 50% by weight or more, more preferably in the range of 60 to 100% by weight, and most preferably in the range of 70 to 100% by weight, based on the total weight of the fluororesin film.
 また、フッ素系樹脂フィルムは、成分(C)の分散剤を実質的に含まない。これは、後述するように溶融熱処理工程で成分(C)の大部分が熱分解してしまうためである。なお、「成分(C)の分散剤を実質的に含まない」とは、フィルム中の成分(C)の含有量が0.3重量%以下であることを意味する。成分(C)の加熱分解物の中で、揮発性の炭化水素などの低分子化合物は溶融熱処理工程で大部分が揮発して除去され、フッ素系樹脂に親和性が高い分解物はフィルム中に残留することになる。このように、本実施の形態のフッ素系樹脂フィルムは、加熱分解によって生じた低分子化合物を実質的に含有しないという特徴を有している。
 すなわち、本実施の形態のフッ素系樹脂フィルムは、熱重量・示差熱分析において、窒素雰囲気で30℃から550℃まで10℃/minの速度で加熱したときの150℃から420℃の間の重量減少率が0.3重量%以下、好ましくは0.1重量%以下であるという特徴を有する。フィルム中に成分(C)がそのまま残留したり、加熱分解によって生じた低分子化合物の残留量が多い場合は、熱重量・示差熱分析において0.3重量%を超える重量減少が確認されるが、このような状態は、後に別の加熱を伴う工程で微小気泡を発生させることから好ましくない。
In addition, the fluororesin film does not substantially contain the dispersant of component (C). This is because most of the component (C) is thermally decomposed in the melt heat treatment process as described below. The phrase "substantially does not contain the dispersant of component (C)" means that the content of component (C) in the film is 0.3% by weight or less. Among the thermal decomposition products of component (C), low molecular weight compounds such as volatile hydrocarbons are mostly volatilized and removed in the melt heat treatment process, and decomposition products having high affinity for fluororesins remain in the film. Thus, the fluororesin film of the present embodiment has the characteristic of not substantially containing low molecular weight compounds generated by thermal decomposition.
That is, the fluororesin film of the present embodiment is characterized in that, when heated in a nitrogen atmosphere from 30° C. to 550° C. at a rate of 10° C./min, the weight loss rate between 150° C. and 420° C. is 0.3% by weight or less, preferably 0.1% by weight or less, in thermogravimetric and differential thermal analysis. If component (C) remains in the film as is or if a large amount of low molecular weight compounds generated by thermal decomposition remains, a weight loss of more than 0.3% by weight is confirmed in thermogravimetric and differential thermal analysis. This state is not preferable because it generates microbubbles in a subsequent process involving heating.
 また、本実施の形態のフッ素系樹脂フィルムは、成分(B)が条件(i)を満たしていることによって、大径フィラーの間に小径フィラーが入り込み、フィラー同士の間隔が小さくなり、高密度充填されている。また、成分(B)が条件(ii)を満たすことによって、成分(C)自体やその加熱分解によって生じた揮発性の低分子化合物の残留がほとんどなく、大きな空隙やクラックだけでなく微小気泡も極めて少ない緻密なフィルムとなる。そのため、本実施の形態のフッ素系樹脂フィルムを、例えば、両面に金属箔が積層されている場合などのように揮発性成分が抜けにくい状態で加熱加圧処理しても微小気泡の生成が抑制されている。
 以上のことは、本実施の形態のフッ素系樹脂フィルムの空隙率の低さに現れる。すなわち、本実施の形態のフッ素系樹脂フィルムの空隙率は、好ましくは3vol.%未満、より好ましくは1vol.%以下である。ここで、空隙率は、後記実施例に示すように、走査型電子顕微鏡(SEM)を用い、倍率350倍でのフッ素系樹脂フィルム(無機フィラー含有フッ素系樹脂層)の厚み方向の断面観察画像において、空隙部分とそれ以外の部分について二値化処理を行った後、下式により算出できる。
 空隙率(vol.%)=X/Y
(ここで、Xは画像中の空隙部分の体積を意味し、Yは画像中の無機フィラー含有フッ素系樹脂層の体積を意味する)
 なお、実施例の空隙率は、任意の5画像(1画像あたり約300μm×100μm)について上式に基づき算出した空隙率の平均値である。
 このように、本実施の形態のフッ素系樹脂フィルムは、大きな空隙やクラックだけでなく微小気泡もほとんど存在しない緻密なフィルムであり、金属層との密着性が確保され、フッ素系樹脂による優れた誘電特性と、無機フィラーの高濃度添加による低熱膨張性との両立が図られている。
In addition, in the fluororesin film of the present embodiment, since component (B) satisfies condition (i), small diameter fillers are inserted between large diameter fillers, the intervals between the fillers are reduced, and the film is densely packed. Since component (B) satisfies condition (ii), there is almost no residue of component (C) itself or volatile low molecular weight compounds generated by its thermal decomposition, and the film is dense with very few large voids, cracks, and microbubbles. Therefore, even if the fluororesin film of the present embodiment is heated and pressurized in a state where volatile components are difficult to remove, such as when metal foils are laminated on both sides, the generation of microbubbles is suppressed.
The above is reflected in the low porosity of the fluororesin film of this embodiment. That is, the porosity of the fluororesin film of this embodiment is preferably less than 3 vol.%, more preferably 1 vol.% or less. Here, as shown in the examples described later, the porosity can be calculated by the following formula after binarizing the void parts and other parts in a cross-sectional observation image in the thickness direction of the fluororesin film (inorganic filler-containing fluororesin layer) at a magnification of 350 times using a scanning electron microscope (SEM).
Porosity (vol.%) = X/Y
(Here, X means the volume of the void portion in the image, and Y means the volume of the inorganic filler-containing fluorine-based resin layer in the image.)
The porosity in the examples is the average value of the porosity calculated based on the above formula for any five images (each image is about 300 μm×100 μm).
As described above, the fluororesin film of the present embodiment is a dense film that is almost free of not only large voids and cracks but also microbubbles, ensures adhesion to the metal layer, and achieves a balance between the excellent dielectric properties of the fluororesin and the low thermal expansion properties achieved by the addition of a high concentration of inorganic filler.
 フッ素系樹脂フィルムは、温度24~26℃、湿度45~55%の条件のもと24時間調湿後に、スプリットシリンダ共振器により測定される60GHz以下における誘電正接(Df)が好ましくは0.0025以下であり、より好ましくは0.0020以下、さらに好ましくは0.0015以下である。また、同条件で測定される比誘電率(Dk)が好ましくは4.0以下、より好ましくは3.5以下、更に好ましくは3.0以下であることがよい。誘電正接(Df)及び比誘電率(Dk)が上記数値を超えると、回路基板に適用した際に、誘電損失の増大に繋がり、周波数がGHz帯域(例えば1~80GHz)の高周波信号の伝送経路上で電気信号のロスなどの不都合が生じやすくなる。 After conditioning for 24 hours at a temperature of 24-26°C and a humidity of 45-55%, the fluororesin film has a dielectric loss tangent (Df) at 60 GHz or less, measured using a split cylinder resonator, of preferably 0.0025 or less, more preferably 0.0020 or less, and even more preferably 0.0015 or less. In addition, the relative dielectric constant (Dk) measured under the same conditions is preferably 4.0 or less, more preferably 3.5 or less, and even more preferably 3.0 or less. If the dielectric loss tangent (Df) and relative dielectric constant (Dk) exceed the above values, this leads to an increase in dielectric loss when applied to a circuit board, and is likely to cause inconveniences such as electrical signal loss on the transmission path of high-frequency signals in the GHz range (e.g., 1-80 GHz).
 また、フッ素系樹脂フィルムの熱膨張係数は、寸法安定性を確保するため、10~40ppm/Kの範囲内が好ましく、15~30ppm/Kの範囲内であることがより好ましい。 In addition, to ensure dimensional stability, the thermal expansion coefficient of the fluororesin film is preferably within the range of 10 to 40 ppm/K, and more preferably within the range of 15 to 30 ppm/K.
 フッ素系樹脂フィルムの厚みは、特に限定されるものではないが、回路基板の絶縁樹脂層として用いる場合は、高周波信号伝送への適用を考慮して、好ましくは30~150μmの範囲内、より好ましくは75~150μmの範囲内がよい。 The thickness of the fluororesin film is not particularly limited, but when used as an insulating resin layer for a circuit board, taking into consideration its application to high-frequency signal transmission, it is preferably within the range of 30 to 150 μm, and more preferably within the range of 75 to 150 μm.
 なお、本実施の形態のフッ素系樹脂フィルムには、任意の樹脂層が積層されていてもよい。 In addition, any resin layer may be laminated on the fluororesin film of this embodiment.
<金属張積層板>
 本実施の形態の金属張積層板は、単層又は複数層からなる絶縁樹脂層と、この絶縁樹脂層の片面もしくは両面に積層されている金属層と、を備えており、絶縁樹脂層の少なくとも1層が、上記フッ素系樹脂フィルムからなるフッ素系樹脂層である。本実施の形態の金属張積層板は、片面金属張積層板でもよいし、両面金属張積層板でもよい。
<Metal-clad laminate>
The metal-clad laminate of the present embodiment includes an insulating resin layer consisting of a single layer or multiple layers, and a metal layer laminated on one or both sides of the insulating resin layer, and at least one layer of the insulating resin layer is a fluororesin layer consisting of the above-mentioned fluororesin film. The metal-clad laminate of the present embodiment may be a single-sided metal-clad laminate or a double-sided metal-clad laminate.
 金属層の材質としては、特に制限はないが、例えば、銅、ステンレス、鉄、ニッケル、ベリリウム、アルミニウム、亜鉛、インジウム、銀、金、スズ、ジルコニウム、タンタル、チタン、鉛、マグネシウム、マンガン及びこれらの合金等が挙げられる。この中でも、特に銅又は銅合金が好ましい。 The material of the metal layer is not particularly limited, but examples include copper, stainless steel, iron, nickel, beryllium, aluminum, zinc, indium, silver, gold, tin, zirconium, tantalum, titanium, lead, magnesium, manganese, and alloys thereof. Among these, copper or copper alloys are particularly preferred.
 金属層の表面粗度は、特に限定されるものではないが、フッ素系樹脂層との密着性の担保と導体損失の低減とを両立させる観点から、十点平均粗さ(Rzjis)が0.3μm~1.5μmの範囲内である粗化表面を有することが好ましい。 The surface roughness of the metal layer is not particularly limited, but from the viewpoint of ensuring adhesion to the fluororesin layer while reducing conductor loss, it is preferable for the metal layer to have a roughened surface with a ten-point average roughness (Rzjis) in the range of 0.3 μm to 1.5 μm.
 金属層の厚みは特に限定されるものではないが、例えば銅箔等の金属箔を用いる場合、好ましくは35μm以下であり、より好ましくは5~25μmの範囲内がよい。生産安定性及びハンドリング性の観点から金属箔の厚みの下限値は5μmとすることが好ましい。
 金属箔として銅箔を用いる場合は、圧延銅箔でも電解銅箔でもよく、例えば厚みが5μm以下の銅箔とキャリア箔の間に離形層を形成したピーラブル銅箔でもよい。また、銅箔としては、市販されている銅箔を用いることができる。
The thickness of the metal layer is not particularly limited, but when a metal foil such as a copper foil is used, the thickness is preferably 35 μm or less, and more preferably in the range of 5 to 25 μm. From the viewpoints of production stability and handling, the lower limit of the thickness of the metal foil is preferably 5 μm.
When a copper foil is used as the metal foil, it may be a rolled copper foil or an electrolytic copper foil, and may be, for example, a peelable copper foil having a release layer formed between a copper foil having a thickness of 5 μm or less and a carrier foil. In addition, a commercially available copper foil may be used as the copper foil.
 金属箔は、例えば、防錆処理や、接着力の向上を目的として、例えばサイディング、アルミニウムアルコラート、アルミニウムキレート、シランカップリング剤等による表面処理を施してもよい。 The metal foil may be surface-treated with, for example, siding, aluminum alcoholate, aluminum chelate, silane coupling agent, etc., for the purpose of, for example, rust prevention or improving adhesion.
 金属張積層板におけるフッ素系樹脂層の構成及び厚みは、上記フッ素系樹脂フィルムと同様である。なお、本実施の形態の金属張積層板は、フッ素系樹脂層以外の任意の樹脂層を含むことができる。 The configuration and thickness of the fluororesin layer in the metal-clad laminate are the same as those of the fluororesin film. Note that the metal-clad laminate of this embodiment may include any resin layer other than the fluororesin layer.
 本実施の形態の金属張積層板は、回路基板材料として好ましく用いられる。すなわち、金属張積層板の片側または両側の金属層をエッチングなどにより配線回路加工することによって、片面回路基板又は両面回路基板などの回路基板を製造することができる。 The metal-clad laminate of this embodiment is preferably used as a circuit board material. That is, by processing the metal layers on one or both sides of the metal-clad laminate into wiring circuits by etching or the like, circuit boards such as single-sided circuit boards or double-sided circuit boards can be manufactured.
[フッ素系樹脂フィルム及び金属張積層板の製造方法]
 本発明の分散組成物を使用してフッ素系樹脂フィルムを製造する方法は特に限定されないが、以下の方法を例示できる。
[Method of manufacturing fluororesin film and metal-clad laminate]
The method for producing a fluorine-based resin film using the dispersion composition of the present invention is not particularly limited, but the following method can be exemplified.
(塗膜形成工程)
 本工程では、本発明の分散組成物を任意の基材に塗布して塗膜を形成する。
 すなわち、任意の基材の上に、溶融熱処理工程後に所望の厚みとなるように、分散組成物を塗工し、乾燥させることによって、基材上に塗膜を形成する。成分(B)が条件(ii)を満たすことによって、塗膜段階では、意図的に大きな空隙やクラックを形成せしめ、塗膜密度を低くしておくことができる。
 塗布に使用する基材としては、特に限定されないが、耐熱性を有する素材として、例えば銅箔などの金属箔、接着層付き銅箔やポリイミドフィルムを用いることが好ましい。分散組成物を基材上に塗布する方法としては特に制限されず、例えばコンマ、ダイ、ナイフ、リップ等のコーターにて塗布することが可能である。
(Coating film forming process)
In this step, the dispersion composition of the present invention is applied to any substrate to form a coating film.
That is, the dispersion composition is applied to an arbitrary substrate so as to have a desired thickness after the melt heat treatment step, and then dried to form a coating film on the substrate. When component (B) satisfies condition (ii), large voids and cracks can be intentionally formed at the coating stage, and the coating density can be kept low.
The substrate used for coating is not particularly limited, but it is preferable to use a heat-resistant material such as a metal foil such as copper foil, a copper foil with an adhesive layer, or a polyimide film. The method for coating the dispersion composition on the substrate is not particularly limited, and it is possible to coat it with a coater such as a comma, die, knife, or lip.
(溶融熱処理工程)
 本工程では、塗膜形成工程で得た塗膜を熱処理することによりフッ素系樹脂層を形成する。
 すなわち、塗膜を基材とともに熱処理し、膜中に残存している溶媒を除去するとともに、成分(A)のフッ素系樹脂パウダーを溶融させてフィルム化し、基材上にフッ素系樹脂層を形成する。フッ素系樹脂パウダーを溶融させるための熱処理温度としては、フッ素系樹脂の融点以上であればよく、融点よりも20℃~80℃の範囲内で高い温度域とすることが好ましい。
 また、本工程では、成分(C)の分解物の除去も目的としているため、成分(C)が熱分解され、かつ、分解で生じた揮発性成分(低分子化合物)を除去できる温度で熱処理を行うことが好ましい。ここで、成分(C)の熱分解温度と、生じた揮発性成分が揮発して塗膜中から除去される温度を比べると、後者の温度の方が高くなる可能性があることから、熱処理温度として成分(C)の熱分解開始温度(Td5:5重量%重量減少温度)を基準とする場合は、該熱分解開始温度よりも50℃~150℃の範囲内で高い温度域とすることが好ましい。溶融熱処理工程では、成分(B)が条件(ii)を満たすことによって、揮発性成分の膜外への放出が促される。
(Melting heat treatment process)
In this step, the coating film obtained in the coating film forming step is heat-treated to form a fluororesin layer.
That is, the coating film is heat-treated together with the substrate to remove the solvent remaining in the film, and the fluororesin powder of component (A) is melted to form a film, thereby forming a fluororesin layer on the substrate. The heat treatment temperature for melting the fluororesin powder may be equal to or higher than the melting point of the fluororesin, and is preferably in a temperature range of 20°C to 80°C higher than the melting point.
In addition, since the purpose of this process is also to remove the decomposition products of component (C), it is preferable to perform heat treatment at a temperature at which component (C) is thermally decomposed and the volatile components (low molecular weight compounds) generated by the decomposition can be removed. Here, when comparing the thermal decomposition temperature of component (C) with the temperature at which the generated volatile components volatilize and are removed from the coating film, the latter temperature may be higher. Therefore, when the thermal decomposition onset temperature (Td5: 5 wt% weight loss temperature) of component (C) is used as the standard for the heat treatment temperature, it is preferable to set the temperature range to be 50°C to 150°C higher than the thermal decomposition onset temperature. In the melt heat treatment process, component (B) satisfies condition (ii), which promotes the release of volatile components outside the film.
 また、溶融熱処理工程は、基材として金属箔を使用する場合に酸化を防止するため、不活性ガス雰囲気下で行うことが好ましく、窒素雰囲気下で行うことがより好ましい。 In addition, when using metal foil as the substrate, the melt heat treatment process is preferably carried out in an inert gas atmosphere, and more preferably in a nitrogen atmosphere, to prevent oxidation.
 複数のフッ素系樹脂層を形成する場合は、分散組成物を塗布、乾燥する毎に溶融熱処理を行ってもよいし、分散組成物を塗布、乾燥する工程を複数回繰り返した後、一括して溶融熱処理を行ってもよい。 When forming multiple fluororesin layers, the melt heat treatment may be performed each time the dispersion composition is applied and dried, or the process of applying and drying the dispersion composition may be repeated multiple times and then the melt heat treatment may be performed all at once.
 溶融熱処理の後、冷却固化させ、必要に応じて基材を剥離することによってフッ素系樹脂フィルムを得ることができる。このようにして得られるフッ素系樹脂フィルムは、成分(B)が条件(i)を満たしていることによって、大径フィラーの間に小径フィラーが入り込み、フィラー同士の間隔が小さくなり、高密度充填された状態となる。 After the melt heat treatment, the film is cooled and solidified, and the substrate is peeled off as necessary to obtain a fluororesin film. Since component (B) satisfies condition (i), the fluororesin film obtained in this manner has small-diameter fillers between the large-diameter fillers, reducing the spaces between the fillers and resulting in a densely packed state.
 本製法では、基材として金属箔を用いることによって、フッ素系樹脂層と金属層とを備えた金属張積層板を製造できる。例えば、基材として金属箔を用いる場合、そのまま金属層の片面にフッ素系樹脂層を有する片面金属張積層板となる。また、基材として金属箔を用いるとともに、フッ素系樹脂フィルムの基材とは反対側の面に別の金属層を形成することによって、両面金属張積層板とすることも可能である。 In this manufacturing method, by using metal foil as the substrate, a metal-clad laminate having a fluororesin layer and a metal layer can be manufactured. For example, when metal foil is used as the substrate, it becomes a single-sided metal-clad laminate having a fluororesin layer on one side of the metal layer. It is also possible to use metal foil as the substrate and form another metal layer on the side of the fluororesin film opposite the substrate to produce a double-sided metal-clad laminate.
 また、金属層とフッ素系樹脂層とを有する片面金属張積層板どうしを貼り合わせることによって、両面金属張積層板を製造することも可能である。例えば、基材として金属箔を用い、上記塗膜形成工程及び溶融熱処理工程を実施して片面金属張積層板を作製した後、さらに、このように作製した2つの片面金属張積層板の絶縁樹脂層どうしを向かい合わせに配置して熱圧着を行う工程を実施することによって、両面金属張積層板を製造することができる。
 熱圧着条件としては、例えばフッ素系樹脂の融点よりも10℃~80℃の範囲内で高い温度とすることが好ましい。圧力としては、例えば2MPa~30MPaの範囲内とすることが好ましい。片面金属張積層板のフッ素系樹脂層は、本発明の分散組成物を使用し、上記の条件で溶融熱処理工程を実施しているため、成分(C)の熱分解に起因する揮発性成分が十分に除去されている。そのため、両面に存在する金属箔によってガスが抜けにくくなる熱圧着時においても、微小気泡の生成がほぼ抑制されている。したがって、得られる両面金属張積層板は、フッ素系樹脂層中に微小気泡をはじめとする空隙やクラックがほとんど存在せず、金属層との密着性が確保され、フッ素系樹脂による優れた誘電特性と、無機フィラーの高濃度添加による低熱膨張性との両立が図られている。
It is also possible to manufacture a double-sided metal-clad laminate by bonding together single-sided metal-clad laminates having a metal layer and a fluororesin layer. For example, a double-sided metal-clad laminate can be manufactured by using a metal foil as a substrate, carrying out the above-mentioned coating film forming step and melt heat treatment step to manufacture a single-sided metal-clad laminate, and then further carrying out a step of placing the insulating resin layers of the two single-sided metal-clad laminates thus manufactured facing each other and performing thermocompression bonding.
The thermocompression bonding conditions are preferably, for example, a temperature in the range of 10°C to 80°C higher than the melting point of the fluororesin. The pressure is preferably, for example, in the range of 2MPa to 30MPa. The fluororesin layer of the single-sided metal-clad laminate uses the dispersion composition of the present invention, and the melt heat treatment process is carried out under the above conditions, so that volatile components caused by the thermal decomposition of component (C) are sufficiently removed. Therefore, even during thermocompression bonding, where gas is difficult to escape due to the metal foils present on both sides, the generation of microbubbles is almost suppressed. Therefore, the obtained double-sided metal-clad laminate has almost no voids or cracks, including microbubbles, in the fluororesin layer, and the adhesion with the metal layer is ensured, and both excellent dielectric properties due to the fluororesin and low thermal expansion properties due to the addition of a high concentration of inorganic filler are achieved.
 本実施の形態の金属張積層板は、主にFPC、リジッド・フレックス回路基板などの回路基板材料として有用である。 The metal-clad laminate of this embodiment is useful primarily as a circuit board material for FPCs, rigid-flex circuit boards, and the like.
[回路基板]
 以上のようにして得られる本実施の形態の金属張積層板の金属層をエッチングするなどして配線回路加工することによって、片面回路基板又は両面回路基板などの回路基板を製造することができる。
[Circuit board]
By subjecting the metal layer of the metal-clad laminate of the present embodiment thus obtained to wiring circuit processing such as etching, a circuit board such as a single-sided circuit board or a double-sided circuit board can be manufactured.
 以下に実施例を示し、本発明の特徴をより具体的に説明する。ただし、本発明の範囲は、実施例に限定されない。なお、以下の実施例において、特にことわりのない限り各種測定、評価は下記によるものである。 The following examples are provided to more specifically explain the features of the present invention. However, the scope of the present invention is not limited to the examples. In the following examples, unless otherwise specified, the various measurements and evaluations are as follows.
[非晶質シリカの粒度測定]
 レーザー回折式粒度分布測定装置(Malvern社製、商品名;Mastersizer3000)を用いて、水を分散媒とし粒子屈折率1.54の条件で、レーザー回折・散乱法による粒子径の測定を行った。
[銅箔の表面粗度の測定]
 銅箔の表面粗度は、AFM(ブルカー・エイエックスエス社製、商品名;Dimension Icon型SPM)、プローブ(ブルカー・エイエックスエス社製、商品名;TESPA(NCHV)、先端曲率半径10nm、ばね定数42N/m)を用いて、タッピングモードで、銅箔表面の80μm×80μmの範囲で測定し、十点平均粗さ(Rzjis)を求めた。
[Measurement of particle size of amorphous silica]
The particle size was measured by a laser diffraction/scattering method using a laser diffraction particle size distribution analyzer (Malvern, product name: Mastersizer3000) with water as the dispersion medium and a particle refractive index of 1.54.
[Measurement of copper foil surface roughness]
The surface roughness of the copper foil was measured in a tapping mode using an AFM (manufactured by Bruker AXS, product name: Dimension Icon type SPM) and a probe (manufactured by Bruker AXS, product name: TESPA (NCHV), tip curvature radius 10 nm, spring constant 42 N/m) in an area of 80 μm × 80 μm on the copper foil surface, and the ten-point average roughness (Rzjis) was calculated.
[粘度の測定]
 E型粘度計(ブルックフィールド社製、商品名;DV-II+Pro)を用いて、25℃における粘度を測定した。
[Viscosity measurement]
The viscosity at 25° C. was measured using an E-type viscometer (manufactured by Brookfield, trade name: DV-II+Pro).
[熱膨張係数(CTE)の測定]
 3mm×20mmのサイズにカットした両面銅張積層板より得られたフッ素系樹脂フィルムを、サーモメカニカルアナライザー(日立ハイテクテクノロジー社(旧セイコーインスツルメンツ社製)、商品名;TMA/SS7100)にセットした。この際、装置治具間の距離(測定有効長さ)は15mmとした。次に5.0gの荷重を加えながら一定の昇温速度で30℃から260℃まで昇温させ、更にその温度で10分保持した後、5℃/分の速度で冷却し、200℃から100℃までの平均熱膨張係数(熱膨張係数)を求めた。
[Measurement of coefficient of thermal expansion (CTE)]
The fluororesin film obtained from the double-sided copper-clad laminate cut to a size of 3 mm x 20 mm was set in a thermomechanical analyzer (Hitachi High-Technologies Corporation (formerly Seiko Instruments Inc.), product name: TMA/SS7100). At this time, the distance between the device jigs (effective measurement length) was 15 mm. Next, the temperature was raised from 30°C to 260°C at a constant heating rate while applying a load of 5.0 g, and then the temperature was held for 10 minutes, and then cooled at a rate of 5°C/min to determine the average thermal expansion coefficient (thermal expansion coefficient) from 200°C to 100°C.
[誘電特性の測定]
 スプリットシリンダ共振器(SCR共振器)を用いて60GHzにおける両面銅張積層板より得られたフッ素系樹脂フィルムの比誘電率(Dk)ならびに誘電正接(Df)を測定した。
 なお、測定に使用したフィルムを温度;24~26℃、湿度;45~55%の条件下で、24時間放置した後に測定したものである。
[Measurement of dielectric properties]
The relative dielectric constant (Dk) and dielectric loss tangent (Df) of the fluororesin film obtained from the double-sided copper-clad laminate at 60 GHz were measured using a split cylinder resonator (SCR resonator).
The film used for the measurement was left for 24 hours under conditions of temperature: 24 to 26° C. and humidity: 45 to 55%, and then the measurement was performed.
[ピール強度の測定]
 両面銅張積層板の一方の面の銅箔を10mm間隔でフッ素系樹脂の塗工方向に幅1mmに回路加工した後、幅;8cm×長さ;4cmに切断した。この際、もう一方の面の銅箔は回路加工等せずに全面に残した。ピール強度は、テンシロンテスター(東洋精機製作所社製、商品名;ストログラフVE-1D)を用いて、切断した測定サンプルの銅箔を全面に残した面を両面テープによりアルミ板に固定し、回路加工された銅箔を180°方向に50mm/分の速度で剥離していき、フッ素系樹脂層から10mm剥離したときの中央値強度を求め、ピール強度とした。
[Peel strength measurement]
The copper foil on one side of the double-sided copper-clad laminate was circuit-processed to a width of 1 mm at 10 mm intervals in the coating direction of the fluororesin, and then cut to a width of 8 cm and a length of 4 cm. At this time, the copper foil on the other side was left entirely without circuit processing. The peel strength was measured using a Tensilon tester (manufactured by Toyo Seiki Seisakusho, product name: Strograph VE-1D), with the copper foil of the cut measurement sample left entirely fixed to an aluminum plate with double-sided tape, and the circuit-processed copper foil was peeled off in the 180° direction at a speed of 50 mm/min, and the median strength when 10 mm was peeled off from the fluororesin layer was obtained, which was taken as the peel strength.
[重量減少率]
(1)片面銅張積層板より得られたフッ素系樹脂フィルムの150℃-420℃間の重量減少率[ΔTG’(150-420)]:
 窒素雰囲気下で、片面銅張積層板より得られた10~20mgの重さのフッ素系樹脂フィルムについて、日立ハイテクサイエンス製の示差熱・熱重量測定装置(TG/DTA6200)を用いて10℃/minの速度で30℃から550℃まで昇温させたときの重量変化を測定した。この際、150℃での重量を基準に、150℃から420℃までの重量減少分から求められる重量減少率〔100×(150℃の重量-420℃の重量)/150℃の重量〕(単位;重量%)を求め、ΔTG’(150-420)とした。
(2)両面銅張積層板より得られたフッ素系樹脂フィルムの150℃-420℃間の重量減少率[ΔTG(150-420)]:
 窒素雰囲気下で、両面銅張積層板より得られた10~20mgの重さのフッ素系樹脂フィルムについて、日立ハイテクサイエンス製の示差熱熱重量測定装置(TG/DTA6200)を用いて10℃/minの速度で30℃から550℃まで昇温させたときの重量変化を測定した。この際、150℃での重量を基準に、150℃から420℃までの重量減少分から求められる重量減少率〔100×(150℃の重量-420℃の重量)/150℃の重量〕(単位;重量%)を求め、ΔTG(150-420)とした。
[Weight reduction rate]
(1) Weight loss rate of a fluororesin film obtained from a single-sided copper-clad laminate between 150°C and 420°C [ΔTG'(150-420)]:
A fluororesin film weighing 10 to 20 mg obtained from a single-sided copper-clad laminate was measured for its weight change when the film was heated from 30° C. to 550° C. at a rate of 10° C./min under a nitrogen atmosphere using a Hitachi High-Tech Science differential thermal/thermogravimetric analyzer (TG/DTA6200). At this time, the weight reduction rate [100×(weight at 150° C.−weight at 420° C.)/weight at 150° C.] (unit: weight %) calculated from the weight reduction from 150° C. to 420° C. was calculated based on the weight at 150° C., and this was designated as ΔTG'(150-420).
(2) Weight loss rate of the fluororesin film obtained from the double-sided copper-clad laminate between 150 ° C. and 420 ° C. [ΔTG (150-420)]:
A fluororesin film weighing 10 to 20 mg obtained from a double-sided copper-clad laminate was measured for its weight change when it was heated from 30° C. to 550° C. at a rate of 10° C./min under a nitrogen atmosphere using a differential thermal thermogravimetry device (TG/DTA6200) manufactured by Hitachi High-Tech Science. At this time, the weight reduction rate [100×(weight at 150° C.−weight at 420° C.)/weight at 150° C.] (unit: weight %) calculated from the weight reduction from 150° C. to 420° C. was calculated based on the weight at 150° C., and this was designated as ΔTG(150-420).
[空隙評価]
 作製した両面銅張積層板について、クロスセクションポリッシャーを用いて、両面銅張積層板に対して垂直方向の精密な研磨断面を出し、この断面について走査型電子顕微鏡(SEM)を用いて倍率2000倍の無機フィラー含有フッ素系樹脂層の画像をランダムに5点取得した。次に得られた画像の空隙部分とそれ以外の部分について二値化処理を行い、無機フィラー含有フッ素系樹脂層中の空隙の体積割合を算出した。
 空隙率(vol.%)=X/Y
(ここで、Xは画像中の空隙部分の体積を意味し、Yは画像中の無機フィラー含有フッ素系樹脂層の体積を意味する。)
 なお、空隙率は任意の5画像(1画像あたり約300μm×100μm)について上式に基づき算出した空隙率の平均値である。この際、直径が1μmを超える空隙が存在せず、かつ、空隙率が3vol.%未満の場合を○(良好)、空隙率が3vol.%以上の場合、又は、直径が1μmを超える空隙が存在する場合を×(不良)とした。
[Void evaluation]
The double-sided copper-clad laminate thus produced was polished to produce a precise cross section perpendicular to the double-sided copper-clad laminate using a cross-section polisher, and five random images of the inorganic filler-containing fluororesin layer were obtained at a magnification of 2000 times using a scanning electron microscope (SEM). Next, the void portion and the other portion of the obtained images were binarized to calculate the volume ratio of the voids in the inorganic filler-containing fluororesin layer.
Porosity (vol.%) = X/Y
(Here, X means the volume of the void portion in the image, and Y means the volume of the inorganic filler-containing fluorine-based resin layer in the image.)
The porosity is the average value of the porosities calculated based on the above formula for any 5 images (each image is about 300 μm × 100 μm). In this case, the case where there were no voids with a diameter of more than 1 μm and the porosity was less than 3 vol.% was rated as ○ (good), and the case where the porosity was 3 vol.% or more or the case where there were voids with a diameter of more than 1 μm was rated as × (bad).
合成例及び分散組成物作製例に用いた化合物を以下に示す。
フッ素系樹脂パウダー(1):Fluon+(Fluonは登録商標) EA-2000PW 10:AGC製フッ素系樹脂パウダー、平均粒子径;2~3μm、融点;300℃
シリカフィラー(1):SC70-2:日鉄ケミカル&マテリアル製非晶質シリカフィラー、比表面積1.1m/gに対して、シリカ重量の0.12重量%のヘキサメチルジシラザン処理を実施したもの。
シリカフィラー(2):SPH507-05:日鉄ケミカル&マテリアル製非晶質シリカフィラー、比表面積9.4m/gに対して、シリカ重量の1.03重量%のヘキサメチルジシラザン処理を実施したもの。
シリカフィラー(3):SP60-05:日鉄ケミカル&マテリアル製非晶質シリカフィラー、比表面積9.0m/gに対して、シリカ重量の0.98重量%のヘキサメチルジシラザン処理を実施したもの。
シリカフィラー(4):シリカフィラー(1)とシリカフィラー(2)を体積割合で80:20の割合で混合したもの。 
シリカフィラー(5):シリカフィラー(1)とシリカフィラー(2)を体積割合で95:5の割合で混合したもの。 
シリカフィラー(6):シリカフィラー(1)とシリカフィラー(2)、シリカフィラー(3)を体積割合で80:10:10の割合で混合したもの。 
シリカフィラー(7):シリカフィラー(1)とシリカフィラー(2)を体積割合で45:55の割合で混合したもの。 
分散剤(1):フタージェント710FL:ネオス製ノニオン系フッ素含有分散剤(分散剤成分;50重量%、酢酸エチル;50重量%)
DMAc:N,N‐ジメチルアセトアミド
The compounds used in the synthesis examples and dispersion composition preparation examples are shown below.
Fluorine-based resin powder (1): Fluon+ (Fluon is a registered trademark) EA-2000PW 10: Fluorine-based resin powder manufactured by AGC, average particle size: 2 to 3 μm, melting point: 300° C.
Silica filler (1): SC70-2: Amorphous silica filler manufactured by Nippon Steel Chemical & Material Co., Ltd., with a specific surface area of 1.1 m 2 /g, which was treated with 0.12% by weight of silica with hexamethyldisilazane.
Silica filler (2): SPH507-05: Amorphous silica filler manufactured by Nippon Steel Chemical & Material Co., Ltd., with a specific surface area of 9.4 m 2 /g, which was treated with 1.03% by weight of silica with hexamethyldisilazane.
Silica filler (3): SP60-05: Amorphous silica filler manufactured by Nippon Steel Chemical & Material Co., Ltd., with a specific surface area of 9.0 m 2 /g, which was treated with 0.98% by weight of silica with hexamethyldisilazane.
Silica filler (4): Silica filler (1) and silica filler (2) mixed in a volume ratio of 80:20.
Silica filler (5): Silica filler (1) and silica filler (2) mixed in a volume ratio of 95:5.
Silica filler (6): A mixture of silica filler (1), silica filler (2), and silica filler (3) in a volume ratio of 80:10:10.
Silica filler (7): Silica filler (1) and silica filler (2) mixed in a volume ratio of 45:55.
Dispersant (1): Futergent 710FL: nonionic fluorine-containing dispersant manufactured by Neos (dispersant component: 50% by weight, ethyl acetate: 50% by weight)
DMAc: N,N-dimethylacetamide
(シリカフィラー評価)
 レーザー回折式粒度分布測定装置を用いて、シリカフィラー(1)~シリカフィラー(7)の0.1~5μm及び8~15μmのピーク有無、体積基準で求めたD10、D50、5μm以上の粒径を有する粒子の占める割合を表1に示す。
(Silica filler evaluation)
Table 1 shows the presence or absence of peaks of 0.1 to 5 μm and 8 to 15 μm for silica filler (1) to silica filler (7) measured using a laser diffraction particle size distribution analyzer, D 10 , D 50 calculated on a volume basis, and the proportion of particles having a particle size of 5 μm or more.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(分散組成物作製例1)
 プライミクス株式会社(旧社名:特殊機化工業株式会社)のT.K.HIVIS MIX(型式2P-03)の容器内に、フッ素系樹脂パウダー(1)を70.4g、シリカフィラー(4)を169.6g、分散剤(1)を12g(分散剤成分6g)及びDMAcを14.7g加え、20rpmで5分間撹拌した。その後装置を停止し、撹拌翼及び容器側壁の混練物のかき取りを実施した。前記の撹拌と装置停止後の撹拌翼及び容器側壁の混練物のかき取りを3回実施した。
(Dispersion Composition Preparation Example 1)
In a container of T.K.HIVIS MIX (model 2P-03) manufactured by Primix Corporation (formerly Tokushu Kika Kogyo Co., Ltd.), 70.4 g of fluororesin powder (1), 169.6 g of silica filler (4), 12 g of dispersant (1) (6 g of dispersant component), and 14.7 g of DMAc were added and stirred at 20 rpm for 5 minutes. The device was then stopped, and the kneaded material was scraped off from the stirring blades and the side walls of the container. The above stirring and scraping off of the kneaded material from the stirring blades and the side walls of the container after the device was stopped were carried out three times.
 次に、組成物全量に対するフッ素系樹脂パウダー(1)とシリカフィラー(4)の合計量の割合を微調整するため、DMAcを混練物に少量加え、30rpmで5分間撹拌し、混錬物の状態確認を行った。この作業を混練物に粉状部分がない塊状になるまで繰り返し実施した。なお本検討では、フッ素系樹脂パウダー(1)とシリカフィラー(4)の合計割合が全量に対して85重量%となった際に塊状となり、混錬物の塊内部にも粉状部分は観察されなかった。前記塊状になった状態から30rpmでの固練りを開始し、15分間隔で停止し、撹拌翼及び容器側壁の混練物のかき取りを実施した。この作業を計4回、合計60分間の固練りを行い、分散組成物1-1を得た。分散組成物1-1は、流動性がなく粘度の測定ができないため、「固体」と判断した。 Next, in order to finely adjust the ratio of the total amount of the fluororesin powder (1) and the silica filler (4) to the total amount of the composition, a small amount of DMAc was added to the kneaded product, which was then stirred at 30 rpm for 5 minutes, and the state of the kneaded product was confirmed. This operation was repeated until the kneaded product became lumpy with no powdery parts. In this study, the kneaded product became lumpy when the total ratio of the fluororesin powder (1) and the silica filler (4) to the total amount was 85% by weight, and no powdery parts were observed inside the kneaded product lumps. When the kneaded product became lumpy, kneading at 30 rpm was started, and the kneaded product was stopped at 15-minute intervals, and the kneaded product was scraped off from the stirring blades and the side wall of the container. This operation was performed four times for a total of 60 minutes, and dispersion composition 1-1 was obtained. Dispersion composition 1-1 had no fluidity and viscosity could not be measured, so it was determined to be a "solid".
 その後、分散組成物1-1について、フッ素系樹脂パウダー(1)とシリカフィラー(4)の合計割合が全量に対して67.5重量%となるようにDMAcで段階的な希釈及び撹拌を行い、100rpmで測定時の粘度が890cPの分散組成物1-2を得た。  Then, dispersion composition 1-1 was gradually diluted and stirred with DMAc so that the combined ratio of fluororesin powder (1) and silica filler (4) was 67.5% by weight, and dispersion composition 1-2 was obtained, with a viscosity of 890 cP when measured at 100 rpm.
(分散組成物作製例2)
 プライミクス株式会社(旧社名:特殊機化工業株式会社)のT.K.HIVIS MIX(型式2P-03)の容器内に、フッ素系樹脂パウダー(1)を70.4g、シリカフィラー(5)を169.6g、分散剤(1)を12g(分散剤成分6g)及びDMAcを14.7g加え、20rpmで5分間撹拌した。その後装置を停止し、撹拌翼及び容器側壁の混練物のかき取りを実施した。前記の撹拌と装置停止後の撹拌翼及び容器側壁の混練物のかき取りを3回実施した。
(Dispersion Composition Preparation Example 2)
In a container of T.K.HIVIS MIX (model 2P-03) manufactured by Primix Corporation (formerly Tokushu Kika Kogyo Co., Ltd.), 70.4 g of fluororesin powder (1), 169.6 g of silica filler (5), 12 g of dispersant (1) (6 g of dispersant component), and 14.7 g of DMAc were added and stirred at 20 rpm for 5 minutes. The device was then stopped, and the kneaded material was scraped off from the stirring blades and the side wall of the container. The above stirring and scraping off of the kneaded material from the stirring blades and the side wall of the container after the device was stopped were carried out three times.
 次に、組成物全量に対するフッ素系樹脂パウダー(1)とシリカフィラー(5)の合計量の割合を微調整するため、DMAcを混練物に少量加え、30rpmで5分間撹拌し、混錬物の状態確認を行った。この作業を混練物に粉状部分がない塊状になるまで繰り返し実施した。なお本検討では、フッ素系樹脂パウダー(1)とシリカフィラー(5)の合計割合が全量に対して86重量%となった際に塊状となり、混錬物の塊内部にも粉状部分は観察されなかった。前記塊状になった状態から30rpmでの固練りを開始し、15分間隔で停止し、撹拌翼及び容器側壁の混練物のかき取りを実施した。この作業を計4回、合計60分間の固練りを行い、分散組成物2-1を得た。分散組成物2-1は、流動性がなく粘度の測定ができないため、「固体」と判断した。 Next, in order to finely adjust the ratio of the total amount of the fluororesin powder (1) and the silica filler (5) to the total amount of the composition, a small amount of DMAc was added to the kneaded product, which was then stirred at 30 rpm for 5 minutes, and the state of the kneaded product was confirmed. This operation was repeated until the kneaded product became lumpy with no powdery parts. In this study, the kneaded product became lumpy when the total ratio of the fluororesin powder (1) and the silica filler (5) to the total amount was 86 wt %, and no powdery parts were observed inside the kneaded product lumps. When the kneaded product became lumpy, kneading at 30 rpm was started, and the kneaded product was stopped at 15-minute intervals, and the kneaded product was scraped off from the stirring blades and the side wall of the container. This operation was performed four times for a total of 60 minutes, and dispersion composition 2-1 was obtained. Dispersion composition 2-1 had no fluidity and viscosity could not be measured, so it was determined to be a "solid".
 その後、分散組成物2-1について、フッ素系樹脂パウダー(1)とシリカフィラー(5)の合計割合が全量に対して67.5重量%となるようにDMAcで段階的な希釈及び撹拌を行い、100rpmで測定時の粘度が1020cPの分散組成物2-2を得た。  Then, dispersion composition 2-1 was gradually diluted and stirred with DMAc so that the total ratio of the fluororesin powder (1) and the silica filler (5) was 67.5% by weight, and dispersion composition 2-2 was obtained with a viscosity of 1020 cP when measured at 100 rpm.
(分散組成物作製例3)
 プライミクス株式会社(旧社名:特殊機化工業株式会社)のT.K.HIVIS MIX(型式2P-03)の容器内に、フッ素系樹脂パウダー(1)を70.4g、シリカフィラー(6)を169.6g、分散剤(1)を12g(分散剤成分6g)及びDMAcを14.7g加え、20rpmで5分間撹拌した。その後装置を停止し、撹拌翼及び容器側壁の混練物のかき取りを実施した。前記の撹拌と装置停止後の撹拌翼及び容器側壁の混練物のかき取りを3回実施した。
(Dispersion Composition Preparation Example 3)
In a container of T.K.HIVIS MIX (model 2P-03) manufactured by Primix Corporation (formerly Tokushu Kika Kogyo Co., Ltd.), 70.4 g of fluororesin powder (1), 169.6 g of silica filler (6), 12 g of dispersant (1) (6 g of dispersant component), and 14.7 g of DMAc were added and stirred at 20 rpm for 5 minutes. The device was then stopped, and the kneaded material was scraped off from the stirring blades and the side walls of the container. The above stirring and scraping off of the kneaded material from the stirring blades and the side walls of the container after the device was stopped were carried out three times.
 次に、組成物全量に対するフッ素系樹脂パウダー(1)とシリカフィラー(6)の合計量の割合を微調整するため、DMAcを混練物に少量加え、30rpmで5分間撹拌し、混錬物の状態確認を行った。この作業を混練物に粉状部分がない塊状になるまで繰り返し実施した。なお本検討では、フッ素系樹脂パウダー(1)とシリカフィラー(6)の合計割合が全量に対して85重量%となった際に塊状となり、混錬物の塊内部にも粉状部分は観察されなかった。前記塊状になった状態から30rpmでの固練りを開始し、15分間隔で停止し、撹拌翼及び容器側壁の混練物のかき取りを実施した。この作業を計4回、合計60分間の固練りを行い、分散組成物3-1を得た。分散組成物3-1は、流動性がなく粘度の測定ができないため、「固体」と判断した。 Next, in order to finely adjust the ratio of the total amount of the fluororesin powder (1) and the silica filler (6) to the total amount of the composition, a small amount of DMAc was added to the kneaded product, which was then stirred at 30 rpm for 5 minutes, and the state of the kneaded product was checked. This operation was repeated until the kneaded product became lumpy with no powdery parts. In this study, the kneaded product became lumpy when the total ratio of the fluororesin powder (1) and the silica filler (6) to the total amount was 85 wt %, and no powdery parts were observed inside the kneaded product lumps. When the kneaded product became lumpy, kneading at 30 rpm was started, and the kneaded product was stopped at 15-minute intervals, and the kneaded product was scraped off from the stirring blades and the side wall of the container. This operation was performed four times for a total of 60 minutes, and dispersion composition 3-1 was obtained. Dispersion composition 3-1 had no fluidity and viscosity could not be measured, so it was determined to be a "solid".
 その後、分散組成物3-1について、フッ素系樹脂パウダー(1)とシリカフィラー(6)の合計割合が全量に対して67.5重量%となるようにDMAcで段階的な希釈及び撹拌を行い、100rpmで測定時の粘度が840cPの分散組成物3-2を得た。  Then, dispersion composition 3-1 was gradually diluted and stirred with DMAc so that the total ratio of the fluororesin powder (1) and the silica filler (6) was 67.5% by weight, and dispersion composition 3-2 was obtained, with a viscosity of 840 cP when measured at 100 rpm.
(分散組成物作製例4)
 プライミクス株式会社(旧社名:特殊機化工業株式会社)のT.K.HIVIS MIX(型式2P-03)の容器内に、フッ素系樹脂パウダー(1)を82.3g、シリカフィラー(4)を157.7g、分散剤(1)を12g(分散剤成分6g)及びDMAcを14.7g加え、20rpmで5分間撹拌した。その後装置を停止し、撹拌翼及び容器側壁の混練物のかき取りを実施した。前記の撹拌と装置停止後の撹拌翼及び容器側壁の混練物のかき取りを3回実施した。
(Dispersion Composition Preparation Example 4)
In a container of T.K.HIVIS MIX (model 2P-03) manufactured by Primix Corporation (formerly Tokushu Kika Kogyo Co., Ltd.), 82.3 g of fluororesin powder (1), 157.7 g of silica filler (4), 12 g of dispersant (1) (6 g of dispersant component), and 14.7 g of DMAc were added and stirred at 20 rpm for 5 minutes. The device was then stopped, and the kneaded material was scraped off from the stirring blades and the side walls of the container. The above stirring and scraping off of the kneaded material from the stirring blades and the side walls of the container after the device was stopped were carried out three times.
 次に、組成物全量に対するフッ素系樹脂パウダー(1)とシリカフィラー(4)の合計量の割合を微調整するため、DMAcを混練物に少量加え、30rpmで5分間撹拌し、混錬物の状態確認を行った。この作業を混練物に粉状部分がない塊状になるまで繰り返し実施した。なお本検討では、フッ素系樹脂パウダー(1)とシリカフィラー(4)の合計割合が全量に対して87重量%となった際に塊状となり、混錬物の塊内部にも粉状部分は観察されなかった。前記塊状になった状態から30rpmでの固練りを開始し、15分間隔で停止し、撹拌翼及び容器側壁の混練物のかき取りを実施した。この作業を計4回、合計60分間の固練りを行い、分散組成物4-1を得た。分散組成物4-1は、流動性がなく粘度の測定ができないため、「固体」と判断した。 Next, in order to finely adjust the ratio of the total amount of the fluororesin powder (1) and the silica filler (4) to the total amount of the composition, a small amount of DMAc was added to the kneaded product, which was then stirred at 30 rpm for 5 minutes, and the state of the kneaded product was confirmed. This operation was repeated until the kneaded product became lumpy with no powdery parts. In this study, the kneaded product became lumpy when the total ratio of the fluororesin powder (1) and the silica filler (4) to the total amount was 87% by weight, and no powdery parts were observed inside the kneaded product lumps. When the kneaded product became lumpy, kneading at 30 rpm was started, and the kneaded product was stopped at 15-minute intervals and the kneaded product was scraped off from the stirring blades and the side wall of the container. This operation was performed four times for a total of 60 minutes, and dispersion composition 4-1 was obtained. Dispersion composition 4-1 had no fluidity and viscosity could not be measured, so it was determined to be a "solid".
 その後、分散組成物4-1について、フッ素系樹脂パウダー(1)とシリカフィラー(4)の合計割合が全量に対して70.0重量%となるようにDMAcで段階的な希釈及び撹拌を行い、100rpmで測定時の粘度が1210cPの分散組成物4-2を得た。  Then, dispersion composition 4-1 was gradually diluted and stirred with DMAc so that the total ratio of fluororesin powder (1) and silica filler (4) was 70.0% by weight, and dispersion composition 4-2 was obtained, with a viscosity of 1210 cP when measured at 100 rpm.
(分散組成物作製例5)
 プライミクス株式会社(旧社名:特殊機化工業株式会社)のT.K.HIVIS MIX(型式2P-03)の容器内に、フッ素系樹脂パウダー(1)を70.4g、シリカフィラー(7)を169.6g、分散剤(1)を12g(分散剤成分6g)及びDMAcを14.7g加え、20rpmで5分間撹拌した。その後装置を停止し、撹拌翼及び容器側壁の混練物のかき取りを実施した。前記の撹拌と装置停止後の撹拌翼及び容器側壁の混練物のかき取りを3回実施した。
(Dispersion Composition Preparation Example 5)
In a container of T.K.HIVIS MIX (model 2P-03) manufactured by Primix Corporation (formerly Tokushu Kika Kogyo Co., Ltd.), 70.4 g of fluororesin powder (1), 169.6 g of silica filler (7), 12 g of dispersant (1) (6 g of dispersant component), and 14.7 g of DMAc were added and stirred at 20 rpm for 5 minutes. The device was then stopped, and the kneaded material was scraped off from the stirring blades and the side wall of the container. The above stirring and scraping off of the kneaded material from the stirring blades and the side wall of the container after the device was stopped were carried out three times.
 次に、組成物全量に対するフッ素系樹脂パウダー(1)とシリカフィラー(7)の合計量の割合を微調整するため、DMAcを混練物に少量加え、30rpmで5分間撹拌し、混錬物の状態確認を行った。この作業を混練物に粉状部分がない塊状になるまで繰り返し実施した。なお本検討では、フッ素系樹脂パウダー(1)とシリカフィラー(7)の合計割合が全量に対して86重量%となった際に塊状となり、混錬物の塊内部にも粉状部分は観察されなかった。前記塊状になった状態から30rpmでの固練りを開始し、15分間隔で停止し、撹拌翼及び容器側壁の混練物のかき取りを実施した。この作業を計4回、合計60分間の固練りを行い、分散組成物5-1を得た。分散組成物5-1は、流動性がなく粘度の測定ができないため、「固体」と判断した。 Next, in order to finely adjust the ratio of the total amount of the fluororesin powder (1) and the silica filler (7) to the total amount of the composition, a small amount of DMAc was added to the kneaded product, which was then stirred at 30 rpm for 5 minutes, and the state of the kneaded product was confirmed. This operation was repeated until the kneaded product became lumpy with no powdery parts. In this study, the kneaded product became lumpy when the total ratio of the fluororesin powder (1) and the silica filler (7) to the total amount was 86 wt %, and no powdery parts were observed inside the kneaded product lumps. When the kneaded product became lumpy, kneading at 30 rpm was started, and the kneaded product was stopped at 15-minute intervals, and the kneaded product was scraped off from the stirring blades and the side wall of the container. This operation was performed four times for a total of 60 minutes, and dispersion composition 5-1 was obtained. Dispersion composition 5-1 had no fluidity and viscosity could not be measured, so it was determined to be a "solid".
 その後、分散組成物5-1について、フッ素系樹脂パウダー(1)とシリカフィラー(7)の合計割合が全量に対して67.5重量%となるようにDMAcで段階的な希釈及び撹拌を行い、100rpmで測定時の粘度が1060cPの分散組成物5-2を得た。  Then, dispersion composition 5-1 was gradually diluted and stirred with DMAc so that the total ratio of fluororesin powder (1) and silica filler (7) was 67.5% by weight, and dispersion composition 5-2 was obtained, with a viscosity of 1060 cP when measured at 100 rpm.
(分散組成物作製例6)
 プライミクス株式会社(旧社名:特殊機化工業株式会社)のT.K.HIVIS MIX(型式2P-03)の容器内に、フッ素系樹脂パウダー(1)を70.4g、シリカフィラー(1)を169.6g、分散剤(1)を12g(分散剤成分6g)及びDMAcを14.7g加え、20rpmで5分間撹拌した。その後装置を停止し、撹拌翼及び容器側壁の混練物のかき取りを実施した。前記の撹拌と装置停止後の撹拌翼及び容器側壁の混練物のかき取りを3回実施した。
(Dispersion Composition Preparation Example 6)
In a container of T.K.HIVIS MIX (model 2P-03) manufactured by Primix Corporation (formerly Tokushu Kika Kogyo Co., Ltd.), 70.4 g of fluororesin powder (1), 169.6 g of silica filler (1), 12 g of dispersant (1) (6 g of dispersant component), and 14.7 g of DMAc were added and stirred at 20 rpm for 5 minutes. The device was then stopped, and the kneaded material was scraped off from the stirring blades and the side wall of the container. The above stirring and scraping off of the kneaded material from the stirring blades and the side wall of the container after the device was stopped were carried out three times.
 次に、組成物全量に対するフッ素系樹脂パウダー(1)とシリカフィラー(1)の合計量の割合を微調整するため、DMAcを混練物に少量加え、30rpmで5分間撹拌し、混錬物の状態確認を行った。この作業を混練物に粉状部分がない塊状になるまで繰り返し実施した。なお本検討では、フッ素系樹脂パウダー(1)とシリカフィラー(1)の合計割合が全量に対して86重量%となった際に塊状となり、混錬物の塊内部にも粉状部分は観察されなかった。前記塊状になった状態から30rpmでの固練りを開始し、15分間隔で停止し、撹拌翼及び容器側壁の混練物のかき取りを実施した。この作業を計4回、合計60分間の固練りを行い、分散組成物6-1を得た。分散組成物6-1は、流動性がなく粘度の測定ができないため、「固体」と判断した。 Next, in order to finely adjust the ratio of the total amount of fluororesin powder (1) and silica filler (1) to the total amount of the composition, a small amount of DMAc was added to the kneaded product, which was then stirred at 30 rpm for 5 minutes, and the state of the kneaded product was confirmed. This operation was repeated until the kneaded product became lumpy with no powdery parts. In this study, the kneaded product became lumpy when the total ratio of fluororesin powder (1) and silica filler (1) to the total amount was 86 wt %, and no powdery parts were observed inside the kneaded product lumps. When the kneaded product became lumpy, kneading at 30 rpm was started, and the kneaded product was stopped at 15-minute intervals, and the kneaded product was scraped off from the stirring blades and the side wall of the container. This operation was performed four times for a total of 60 minutes, and dispersion composition 6-1 was obtained. Dispersion composition 6-1 had no fluidity and viscosity could not be measured, so it was determined to be a "solid".
 その後、分散組成物6-1について、フッ素系樹脂パウダー(1)とシリカフィラー(1)の合計割合が全量に対して67.5重量%となるようにDMAcで段階的な希釈及び撹拌を行い、100rpmで測定時の粘度が810cPの分散組成物6-2を得た。  Then, dispersion composition 6-1 was gradually diluted and stirred with DMAc so that the total ratio of fluororesin powder (1) and silica filler (1) was 67.5% by weight, and dispersion composition 6-2 was obtained, with a viscosity of 810 cP when measured at 100 rpm.
(分散組成物作製例7)
 プライミクス株式会社(旧社名:特殊機化工業株式会社)のT.K.HIVIS MIX(型式2P-03)の容器内に、フッ素系樹脂パウダー(1)を70.4g、シリカフィラー(2)を169.6g、分散剤(1)を12g(分散剤成分6g)及びDMAcを14.7g加え、20rpmで5分間撹拌した。その後装置を停止し、撹拌翼及び容器側壁の混練物のかき取りを実施した。前記の撹拌と装置停止後の撹拌翼及び容器側壁の混練物のかき取りを3回実施した。
(Dispersion Composition Preparation Example 7)
In a container of T.K.HIVIS MIX (model 2P-03) manufactured by Primix Corporation (formerly Tokushu Kika Kogyo Co., Ltd.), 70.4 g of fluororesin powder (1), 169.6 g of silica filler (2), 12 g of dispersant (1) (6 g of dispersant component), and 14.7 g of DMAc were added and stirred at 20 rpm for 5 minutes. The device was then stopped, and the kneaded material was scraped off from the stirring blades and the side walls of the container. The above stirring and scraping off of the kneaded material from the stirring blades and the side walls of the container after the device was stopped were carried out three times.
 次に、組成物全量に対するフッ素系樹脂パウダー(1)とシリカフィラー(2)の合計量の割合を微調整するため、DMAcを混練物に少量加え、30rpmで5分間撹拌し、混錬物の状態確認を行った。この作業を混練物に粉状部分がない塊状になるまで繰り返し実施した。なお本検討では、フッ素系樹脂パウダー(1)とシリカフィラー(2)の合計割合が全量に対して86重量%となった際に塊状となり、混錬物の塊内部にも粉状部分は観察されなかった。前記塊状になった状態から30rpmでの固練りを開始し、15分間隔で停止し、撹拌翼及び容器側壁の混練物のかき取りを実施した。この作業を計4回、合計60分間の固練りを行い、分散組成物7-1を得た。分散組成物7-1は、流動性がなく粘度の測定ができないため、「固体」と判断した。 Next, in order to finely adjust the ratio of the total amount of the fluororesin powder (1) and the silica filler (2) to the total amount of the composition, a small amount of DMAc was added to the kneaded product, which was then stirred at 30 rpm for 5 minutes, and the state of the kneaded product was confirmed. This operation was repeated until the kneaded product became lumpy with no powdery parts. In this study, the kneaded product became lumpy when the total ratio of the fluororesin powder (1) and the silica filler (2) to the total amount was 86 wt %, and no powdery parts were observed inside the kneaded product lumps. When the kneaded product became lumpy, kneading at 30 rpm was started, and the kneaded product was stopped at 15-minute intervals, and the kneaded product was scraped off from the stirring blades and the side wall of the container. This operation was performed four times for a total of 60 minutes, and dispersion composition 7-1 was obtained. Dispersion composition 7-1 had no fluidity and the viscosity could not be measured, so it was determined to be a "solid".
 その後、分散組成物7-1について、フッ素系樹脂パウダー(1)とシリカフィラー(2)の合計割合が全量に対して67.5重量%となるようにDMAcで段階的な希釈及び撹拌を行い、100rpmで測定時の粘度が970cPの分散組成物7-2を得た。  Then, dispersion composition 7-1 was gradually diluted and stirred with DMAc so that the total ratio of fluororesin powder (1) and silica filler (2) was 67.5% by weight, and dispersion composition 7-2 was obtained, with a viscosity of 970 cP when measured at 100 rpm.
<実施例1>
 銅箔(電解銅箔、厚さ;12μm、樹脂層側の十点平均粗さ(Rzjis);0.6μm)の上に、分散組成物1-2を塗工後、大気雰囲気下の熱風オーブンを用いて80℃で1分、120℃で3分の乾燥処理を行った。次に窒素雰囲気下(酸素濃度0.1体積%以下)の熱風オーブンを用いて40℃から240℃までを10℃/分、240℃から360℃までを5℃/分で昇温し、360℃で5分間の保持を行った後、40℃まで冷却する窒素熱処理を行うことで、片面銅張積層板1を得た。
 次に、塩化第二鉄水溶液を用いて片面銅張積層板1の銅箔をエッチング除去して、フッ素系樹脂フィルム1’を調製した。フッ素系樹脂フィルム1’の重量減少率を測定した結果、150℃から420℃間の重量減少率ΔTG’(150-420)は0.24重量%であった。
Example 1
Dispersion composition 1-2 was applied onto copper foil (electrolytic copper foil, thickness: 12 μm, ten-point average roughness (Rzjis) of the resin layer side: 0.6 μm), and then dried at 80 ° C. for 1 minute and 120 ° C. for 3 minutes using a hot air oven in an air atmosphere. Next, a nitrogen heat treatment was performed by increasing the temperature from 40 ° C. to 240 ° C. at 10 ° C./min and from 240 ° C. to 360 ° C. at 5 ° C./min using a hot air oven in a nitrogen atmosphere (oxygen concentration 0.1 vol.% or less), holding at 360 ° C. for 5 minutes, and then cooling to 40 ° C. to obtain a single-sided copper-clad laminate 1.
Next, the copper foil of the single-sided copper-clad laminate 1 was etched away using an aqueous solution of ferric chloride to prepare a fluororesin film 1'. The weight loss rate of the fluororesin film 1' was measured, and the weight loss rate ΔTG' (150-420) between 150°C and 420°C was 0.24% by weight.
 次に片面銅張積層板1を2枚準備し、樹脂面同士を重ね合わせたものをバッチプレス機に投入後、真空下で360℃まで加熱し、360℃に到達後、5分間、8MPaの圧力でプレスを実施することで、誘電体厚み100μmの両面銅張積層板1を得た。得られた両面銅張積層板1について、片面の銅箔を1mm配線状に加工し、ピール強度の測定をした結果、0.49kN/mであった。 Next, two single-sided copper-clad laminates 1 were prepared, and the resin surfaces were placed together in a batch press machine, where they were heated to 360°C under vacuum. After reaching 360°C, they were pressed at a pressure of 8 MPa for 5 minutes to obtain a double-sided copper-clad laminate 1 with a dielectric thickness of 100 μm. The copper foil on one side of the obtained double-sided copper-clad laminate 1 was processed into a 1 mm wiring shape, and the peel strength was measured, resulting in a value of 0.49 kN/m.
 続いて、塩化第二鉄水溶液を用いて両面銅張積層板1の銅箔をエッチング除去して、フッ素系樹脂フィルム1を調製した。フッ素系樹脂フィルム1のCTEは33.3ppm/K、Dk=2.9、Df=0.0010であった。また、重量減少率を測定した結果、150℃から420℃間の重量減少率ΔTG(150-420)は0.21重量%であり、フッ素系樹脂フィルムの断面から確認した空隙は3vol.%未満(○)であった。 Then, the copper foil of the double-sided copper-clad laminate 1 was etched away using an aqueous solution of ferric chloride to prepare a fluororesin film 1. The CTE of the fluororesin film 1 was 33.3 ppm/K, Dk = 2.9, and Df = 0.0010. Furthermore, the weight loss rate was measured, and the weight loss rate ΔTG (150-420) between 150°C and 420°C was 0.21% by weight, and the voids confirmed from the cross section of the fluororesin film were less than 3 vol.% (○).
<実施例2~実施例4及び比較例1~比較例3>
 分散剤組成物の種類を変更した以外は実施例1と同様な方法を用いて、片面銅張積層板2~7、フッ素系樹脂フィルム2’~7’及び両面銅張積層板2~7、フッ素系樹脂フィルム2~7を作製した。得られた材料の各種評価結果を表2に示す。
<Examples 2 to 4 and Comparative Examples 1 to 3>
Single-sided copper-clad laminates 2 to 7, fluororesin films 2' to 7', double-sided copper-clad laminates 2 to 7, and fluororesin films 2 to 7 were produced in the same manner as in Example 1, except that the type of dispersant composition was changed. The evaluation results of the obtained materials are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 以上、本発明の実施の形態を例示の目的で詳細に説明したが、本発明は上記実施の形態に制約されることはなく、種々の変形が可能である。 The above describes in detail an embodiment of the present invention for illustrative purposes, but the present invention is not limited to the above embodiment and various modifications are possible.
 本出願は、2022年9月29日に日本国で出願された特願2022-156031号に基づく優先権を主張するものであり、当該出願の全内容をここに援用する。

 
This application claims priority based on Japanese Patent Application No. 2022-156031 filed in Japan on September 29, 2022, the entire contents of which are incorporated herein by reference.

Claims (9)

  1.  下記の成分(A)~(D);
     (A)フッ素系樹脂パウダー、
     (B)無機フィラー、
     (C)分散剤、
     (D)有機溶媒
    を含有する分散組成物であって、
     成分(A)と成分(B)の合計量に対して、成分(A)の含有量が15~40重量%の範囲内、成分(B)の含有量が60~85重量%の範囲内であり、
     成分(B)が、レーザー回折・散乱法によって体積基準で粒度分布を測定したときに、以下の条件(i)、(ii);
    (i)少なくとも8~15μm及び0.1~5μmの間にそれぞれ1つ以上のピークトップを有していること;
    (ii)D10が0.1~3μmの範囲内であり、D50が5~15μmの範囲内であるとともに、5μm以上の粒径を有する粒子の占める割合が60体積%以上であること;
    を満たすことを特徴とする分散組成物。
    The following components (A) to (D):
    (A) a fluorine-based resin powder,
    (B) an inorganic filler;
    (C) a dispersant,
    (D) a dispersion composition containing an organic solvent,
    The content of component (A) is within the range of 15 to 40% by weight, and the content of component (B) is within the range of 60 to 85% by weight, based on the total amount of component (A) and component (B);
    When the particle size distribution of component (B) is measured on a volume basis by a laser diffraction/scattering method, the following conditions (i) and (ii) are satisfied:
    (i) having at least one peak top between 8 and 15 μm and at least one peak top between 0.1 and 5 μm;
    (ii) D10 is in the range of 0.1 to 3 μm, D50 is in the range of 5 to 15 μm, and the proportion of particles having a size of 5 μm or more is 60% by volume or more;
    A dispersion composition characterized by satisfying the above.
  2.  成分(C)の含有量が、成分(A)と成分(B)の合計量に対して、1~10重量%の範囲内である請求項1に記載の分散組成物。 The dispersion composition according to claim 1, wherein the content of component (C) is within the range of 1 to 10% by weight based on the total amount of components (A) and (B).
  3.  成分(D)の含有量が、組成物全体に対して25~50重量%の範囲内である請求項1に記載の分散組成物。 The dispersion composition according to claim 1, wherein the content of component (D) is within the range of 25 to 50% by weight of the entire composition.
  4.  成分(B)が、球状非晶質シリカである請求項1に記載の分散組成物。 The dispersion composition according to claim 1, wherein component (B) is spherical amorphous silica.
  5.  成分(A)が、テトラフルオロエチレン―パーフルオロアルキルビニルエーテル共重合体(PFA)である請求項1に記載の分散組成物。 The dispersion composition according to claim 1, wherein component (A) is a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA).
  6.  下記の成分(A1)及び成分(B);
     (A1)フッ素系樹脂、
     (B)無機フィラー、
    を含有し、
     成分(A1)と成分(B)の合計量に対して、成分(A1)の含有量が15~40重量%の範囲内、成分(B)の含有量が60~85重量%の範囲内であり、
     成分(B)が、レーザー回折・散乱法によって体積基準で粒度分布を測定したときに、以下の条件(i)、(ii);
    (i)少なくとも8~15μm及び0.1~5μmの間にそれぞれ1つ以上のピークトップを有していること;
    (ii)D10が0.1~3μmの範囲内であり、D50が5~15μmの範囲内であるとともに、5μm以上の粒径を有する粒子の占める割合が60体積%以上であること;
    を満たすものであり、
     熱重量・示差熱分析において、窒素雰囲気で30℃から550℃まで10℃/minの速度で加熱したときの150℃から420℃の間の重量減少率が0.3重量%以下であるフッ素系樹脂フィルム。
    The following components (A1) and (B):
    (A1) a fluorine-based resin,
    (B) an inorganic filler;
    Contains
    the content of component (A1) is within the range of 15 to 40% by weight, and the content of component (B) is within the range of 60 to 85% by weight, based on the total amount of component (A1) and component (B);
    When the particle size distribution of component (B) is measured on a volume basis by a laser diffraction/scattering method, the following conditions (i) and (ii) are satisfied:
    (i) having at least one peak top between 8 and 15 μm and at least one peak top between 0.1 and 5 μm;
    (ii) D10 is in the range of 0.1 to 3 μm, D50 is in the range of 5 to 15 μm, and the proportion of particles having a size of 5 μm or more is 60% by volume or more;
    and
    A fluororesin film that, when heated in a nitrogen atmosphere from 30°C to 550°C at a rate of 10°C/min in thermogravimetry and differential thermal analysis, exhibits a weight loss rate of 0.3% or less between 150°C and 420°C.
  7.  単層又は複数層からなる絶縁樹脂層と、前記絶縁樹脂層の片面もしくは両面に積層されている金属層と、を備えている金属張積層板であって、
     前記絶縁樹脂層の少なくとも1層が、請求項6に記載のフッ素系樹脂フィルムからなるフッ素系樹脂層であることを特徴とする金属張積層板。
    A metal-clad laminate comprising an insulating resin layer consisting of a single layer or multiple layers, and a metal layer laminated on one side or both sides of the insulating resin layer,
    7. A metal-clad laminate, wherein at least one of the insulating resin layers is a fluororesin layer made of the fluororesin film according to claim 6.
  8.  単層又は複数層からなり、少なくとも1層のフッ素系樹脂層を有する絶縁樹脂層と、前記絶縁樹脂層の片面に金属層が積層されている片面金属張積層板を製造する方法であって、
     以下の工程a及びb;
    a)請求項1から5のいずれか1項に記載の分散組成物を金属箔上に塗工して塗膜を形成する工程、
    b)得られた塗膜に対し、窒素雰囲気下、フッ素系樹脂の融点よりも20~80℃の範囲内で高い温度にて熱処理を行うことによって、成分(C)の熱分解により生じた揮発性成分を除去するとともに、成分(A)のフッ素系樹脂パウダーを溶融させて金属箔上にフッ素系樹脂層を形成する工程、
    を含むことを特徴とする片面金属張積層板の製造方法。
    A method for producing a single-sided metal-clad laminate comprising a single layer or multiple layers, an insulating resin layer having at least one fluorine-based resin layer, and a metal layer laminated on one side of the insulating resin layer, comprising the steps of:
    The following steps a and b:
    a) applying the dispersion composition according to any one of claims 1 to 5 onto a metal foil to form a coating film;
    b) a step of subjecting the obtained coating film to a heat treatment in a nitrogen atmosphere at a temperature within a range of 20 to 80° C. higher than the melting point of the fluororesin, thereby removing volatile components produced by thermal decomposition of component (C) and melting the fluororesin powder of component (A) to form a fluororesin layer on the metal foil;
    A method for producing a single-sided metal-clad laminate, comprising:
  9.  絶縁樹脂層の両面に金属層が積層されている両面金属張積層板を製造する方法であって、
     請求項8に記載の方法によって製造された2つの片面金属張積層板の前記絶縁樹脂層どうしを向かい合わせに配置して熱圧着を行う工程、
    を含むことを特徴とする両面金属張積層板の製造方法。

     
    A method for producing a double-sided metal-clad laminate in which metal layers are laminated on both sides of an insulating resin layer, comprising the steps of:
    A step of placing the insulating resin layers of two single-sided metal-clad laminates manufactured by the method according to claim 8 face to face with each other and performing thermocompression bonding;
    A method for producing a double-sided metal-clad laminate, comprising:

PCT/JP2023/031255 2022-09-29 2023-08-29 Dispersion composition, fluororesin film, metal-clad laminated board, and method for producing same WO2024070415A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022156031 2022-09-29
JP2022-156031 2022-09-29

Publications (1)

Publication Number Publication Date
WO2024070415A1 true WO2024070415A1 (en) 2024-04-04

Family

ID=90477148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031255 WO2024070415A1 (en) 2022-09-29 2023-08-29 Dispersion composition, fluororesin film, metal-clad laminated board, and method for producing same

Country Status (1)

Country Link
WO (1) WO2024070415A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108264712A (en) * 2016-12-30 2018-07-10 圣戈班高功能塑料(上海)有限公司 A kind of fluoropolymer composite material
WO2021049371A1 (en) * 2019-09-12 2021-03-18 日本電気硝子株式会社 Resin composition for three-dimensional shaping
WO2021235252A1 (en) * 2020-05-21 2021-11-25 Agc株式会社 Method for producing laminate which has layer containing thermofusible tetrafluoroethylene polymer
US20220033617A1 (en) * 2020-07-28 2022-02-03 Saint-Gobain Performance Plastics Corporation Dielectric substrate and method of forming the same
WO2022133402A1 (en) * 2020-12-16 2022-06-23 Saint-Gobain Performance Plastics Corporation Dielectric substrate and method of forming the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108264712A (en) * 2016-12-30 2018-07-10 圣戈班高功能塑料(上海)有限公司 A kind of fluoropolymer composite material
WO2021049371A1 (en) * 2019-09-12 2021-03-18 日本電気硝子株式会社 Resin composition for three-dimensional shaping
WO2021235252A1 (en) * 2020-05-21 2021-11-25 Agc株式会社 Method for producing laminate which has layer containing thermofusible tetrafluoroethylene polymer
US20220033617A1 (en) * 2020-07-28 2022-02-03 Saint-Gobain Performance Plastics Corporation Dielectric substrate and method of forming the same
WO2022133402A1 (en) * 2020-12-16 2022-06-23 Saint-Gobain Performance Plastics Corporation Dielectric substrate and method of forming the same

Similar Documents

Publication Publication Date Title
JP6408847B2 (en) Resin composition
JP7093608B2 (en) Fluorine-based resin-containing polyimide precursor solution composition, polyimide using the same, polyimide film, and a method for producing them.
CN104704027A (en) Soft metal laminate and method for manufacturing same
JP2022011017A (en) Powder dispersion and laminate manufacturing method
WO2021075504A1 (en) Non-aqueous dispersion liquid, and method for producing laminate
JP2016210886A (en) Fluorine-based resin-containing polyimide precursor solution composition, polyimide and polyimide film using the same, and methods for producing them
WO2021095662A1 (en) Nonaqueous dispersions, method for producing layered product, and molded object
JP2020180245A (en) Powder dispersion liquid, manufacturing method of laminate, laminate and manufacturing method of printed circuit board
WO2020235532A1 (en) Dispersion solution and molded product
WO2020158604A1 (en) Laminate, method for producing same, method for producing composite laminate, and method for producing polymer film
JP6470643B2 (en) Fluorine-based resin-containing polyimide precursor solution composition, polyimide using the same, polyimide film, and production method thereof
WO2024070415A1 (en) Dispersion composition, fluororesin film, metal-clad laminated board, and method for producing same
JP2007197715A (en) Heat resistant resin composition and print wiring board
JP3514340B2 (en) Adhesive sheet
WO2023189794A1 (en) Metal-clad laminated board and method for producing same
TW202413555A (en) Dispersed composition, fluorine-based resin film, metal-clad laminate and manufacturing method thereof
WO2021157507A1 (en) Method for producing multilayer body and liquid composition
WO2024070495A1 (en) Resin composition, fluororesin film using same, and fluororesin metal-clad laminate
TW202404808A (en) Metal-clad laminated board and manufacturing method thereof
JP2023051575A (en) Dispersion composition, method for producing the same, method for producing fluorine-based resin film, and method for manufacturing metal-clad laminate
JP2021059616A (en) Non-aqueous dispersion and method for producing non-aqueous dispersion
WO2023189795A1 (en) Dispersion composition, fluororesin film, metal-clad laminated board, and method for producing same
TW202413449A (en) Resin composition, fluorine-based resin film, fluorine-based resin metal-coated laminate, and printed wiring board
WO2022259981A1 (en) Composition, metal-clad laminate, and method for producing same
WO2023080113A1 (en) Dielectric sheet, substrate for high frequency printed circuit board, and high frequency printed circuit board