WO2021049371A1 - Resin composition for three-dimensional shaping - Google Patents

Resin composition for three-dimensional shaping Download PDF

Info

Publication number
WO2021049371A1
WO2021049371A1 PCT/JP2020/033037 JP2020033037W WO2021049371A1 WO 2021049371 A1 WO2021049371 A1 WO 2021049371A1 JP 2020033037 W JP2020033037 W JP 2020033037W WO 2021049371 A1 WO2021049371 A1 WO 2021049371A1
Authority
WO
WIPO (PCT)
Prior art keywords
particle size
inorganic filler
resin composition
particles
filler particles
Prior art date
Application number
PCT/JP2020/033037
Other languages
French (fr)
Japanese (ja)
Inventor
俣野 高宏
俊輔 藤田
良憲 山▲崎▼
容子 笛吹
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to JP2021545238A priority Critical patent/JPWO2021049371A1/ja
Publication of WO2021049371A1 publication Critical patent/WO2021049371A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/40Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • the present invention relates to a resin composition for three-dimensional modeling.
  • the stereolithography method is excellent in fine modeling and accurate size expression, and is widely used.
  • This method produces a three-dimensional model as follows. First, a modeling stage is provided in a tank filled with a liquid photocurable resin, and the photocurable resin on the modeling stage is irradiated with an ultraviolet laser to prepare a cured layer having a desired pattern. When one cured layer is formed in this way, the molding stage is lowered by one layer, an uncured resin is introduced onto the cured layer, and the photocurable resin is similarly irradiated with an ultraviolet laser to obtain the cured layer. Stack a new hardened layer on top. By repeating this operation, a predetermined three-dimensional model is obtained.
  • a modeling stage is provided in a tank filled with resin, metal, ceramics, and glass powder, and the powder on the modeling stage is irradiated with a laser such as a semiconductor to obtain a desired pattern by softening and deforming. It prepares a hardened layer.
  • Patent Document 1 It has been pointed out that resin-made three-dimensional objects produced by stereolithography, etc. are delicate and precise, but inferior in mechanical strength, etc. Therefore, as proposed in Patent Document 1, it has been proposed to add an inorganic filler to the photocurable resin. However, even if the inorganic filler particles are added, the mechanical strength of the three-dimensional model may not be sufficiently improved.
  • the resin composition for three-dimensional modeling of the present invention is a resin composition for three-dimensional modeling containing inorganic filler particles and a curable resin, and has a cumulative 10% particle diameter measured by laser diffraction / scattering particle size distribution measurement of the inorganic filler particles. It is characterized in that the ratio D 50 / D 10 of (D 10 ) and the cumulative 50% particle size (D 50) is 2.1 or more.
  • D 50 / D 10 means that there are a considerable number of particles having a particle size considerably smaller than the median in the particle size distribution (hereinafter, also referred to as “small particle size particles”).
  • the particle size distribution has a peak near the median and also has a peak near a value considerably smaller than the median (that is, has two or more peaks).
  • the inorganic filler particles since the inorganic filler particles have a higher specific gravity than the curable resin, the inorganic filler particles are likely to settle and separate in the resin composition. As a result, the dispersibility of the inorganic filler particles in the resin composition may decrease, and the mechanical strength of the three-dimensional model may not be sufficiently increased.
  • the resin composition of the present invention has a large D 50 / D 10 of the inorganic filler particles as described above, and contains a considerable number of small particle size particles.
  • the small particle size particles do not easily settle in the resin composition and play a role as a dispersant, the dispersibility of the inorganic filler particles in the resin composition is improved, and the mechanical strength of the three-dimensional structure is sufficiently increased. It becomes possible to increase.
  • the resin composition for three-dimensional modeling of the present invention preferably has a cumulative 50% particle diameter (D 50 ) of 3 to 25 ⁇ m as measured by laser diffraction / scattering particle size distribution measurement of the inorganic filler particles.
  • the resin composition for three-dimensional modeling of the present invention preferably has a cumulative 10% particle diameter (D 10 ) of 0.5 to 10 ⁇ m or more as measured by laser diffraction / scattering particle size distribution measurement.
  • D 10 cumulative 10% particle diameter
  • the resin composition for three-dimensional modeling of the present invention preferably has a plurality of peaks in the particle size distribution of the inorganic filler particles.
  • the inorganic filler particles are SiO 2 , MgO or Al 2 O 3.
  • the inorganic filler particles are glass fillers.
  • the glass filler is a glass composition including, in mass%, SiO 2 20 ⁇ 70% , B 2 O 3 0 ⁇ 50%, Nb 2 O 5 0 ⁇ 20%, WO 3 It preferably contains 0 to 20%.
  • the method for producing a resin composition for three-dimensional modeling of the present invention is characterized by mixing large particle size particles having different particle size distributions, inorganic filler particles containing small particle size particles, and a curable resin.
  • the small particle size particles serve as a dispersant, the dispersibility of the large particle size particles in the resin composition is improved. As a result, it is possible to sufficiently increase the mechanical strength of the three-dimensional model obtained from the resin composition.
  • the cumulative 10% particle size (D 10 ) and the cumulative 50% particle size (D 50) by the laser diffraction scattering type particle size distribution measurement of the large particle size particles and the small particle size particles. ) It is preferable that the following range is satisfied.
  • the large particle size D 10 is 5-9 ⁇ m and the D 50 is 8-15 ⁇ m.
  • D 10 of small particle size particles is 0.5 to 3 ⁇ m, and D 50 is 1 to 6 ⁇ m.
  • the mixing ratio of the large particle size particles and the small particle size particles is preferably 95: 5 to 30:70 in terms of mass ratio.
  • the three-dimensional model of the present invention is formed by dispersing inorganic filler particles in a resin, and has a cumulative 10% particle diameter (D 10 ) and a cumulative 50 by laser diffraction / scattering particle size distribution measurement of the inorganic filler particles. % The ratio D 50 / D 10 to the particle size (D 50 ) is 2.1 or more.
  • the resin composition for three-dimensional modeling of the present invention contains inorganic filler particles and a curable resin. Each component will be described below.
  • the ratio D 50 / D 10 of the cumulative 10% particle diameter (D 10 ) to the cumulative 50% particle diameter (D 50 ) measured by laser diffraction / scattering particle size distribution measurement of the inorganic filler particles is 2.1 or more. It is preferably 5 or more, 3 or more, and particularly preferably 3.3 or more. In this way, for example, the particle size distribution has a peak near the median value and also has a peak near a value considerably smaller than the median value (that is, has two or more peaks).
  • D 50 / D 10 is too small, the amount of small particle size particles contained in the inorganic filler particles is small, and the dispersibility of the inorganic filler particles tends to decrease, so that the mechanical strength of the three-dimensional structure is sufficiently increased. It becomes difficult to raise.
  • the upper limit of D 50 / D 10 is not particularly limited, but is actually 10 or less.
  • D 10 is preferably 0.5 to 10 ⁇ m, 1 to 8 ⁇ m, and particularly preferably 1.5 to 5 ⁇ m.
  • D 50 is preferably 3 to 25 ⁇ m, 3 to 20 ⁇ m, 3.5 to 15 ⁇ m, 4 to 12 ⁇ m, and particularly preferably 5 to 10 ⁇ m. If D10 or D50 is too small, light scattering between the inorganic filler particles and the curable resin increases, and it becomes difficult to obtain a highly transparent three-dimensional model. On the other hand, if D 10 or D 50 is too large, the dispersibility of the inorganic filler particles in the resin composition tends to decrease.
  • the inorganic filler particles in which D 50 / D 10 satisfies a predetermined range can be produced, for example, by mixing two types of particles (large particle size particles and small particle size particles) having different particle size distributions. ..
  • the particle size D 10 of the large particle size particles is preferably 5 to 9 ⁇ m, and the particle size D 50 is preferably 8 to 15 ⁇ m.
  • the particle size D 10 of the small particle size particles is preferably 0.5 to 3 ⁇ m, and the particle size D 50 is preferably 1 to 6 ⁇ m. In this way, it is possible to obtain a three-dimensional model having excellent dispersibility of the inorganic filler particles and, by extension, excellent mechanical strength.
  • the density of the inorganic filler particles is preferably 3.5 g / cm 3 or less, 3 g / cm 3 or less, 2.8 g / cm 3 or less, and particularly preferably 2.6 g / cm 3 or less. In this way, even when D 50 / D 10 is large, sedimentation separation is less likely to occur.
  • the lower limit of the density is not particularly limited, but in reality, it is 2 g / cm 3 or more.
  • the density difference between the large particle size particles and the small particle size particles constituting the inorganic filler particles is 0.3 g / cm 3 or less, 0.2 g / cm 3 or less, 0.1 g / cm 3 or less, and particularly 0.05 g. It is preferably / cm 3 or less. In this way, sedimentation separation due to the difference in particle size between the large particle size particles and the small particle size particles is less likely to occur.
  • the density of the large particle size particles and the density of the small particle size particles are different, it is advantageous that the density of the large particle size particles is smaller than the density of the small particle size particles from the viewpoint of suppressing sedimentation separation.
  • the specific surface area of the small particle size particles is preferably 0.5 m 2 / g or more, particularly preferably 1 m 2 / g or more.
  • the upper limit of the specific surface area of the small particle size particles is not particularly limited, but is practically 5 m 2 / g or less.
  • the large particle size particles are preferably substantially spherical (particularly true spherical) from the viewpoint of suppressing light scattering at the interface between the particles and the resin and obtaining a highly transparent three-dimensional model.
  • the sphericity represented by the minor axis / major axis of the large particle size particles is preferably 0.8 or more, 0.9 or more, and particularly preferably 0.95 or more.
  • the specific surface area of the large particle size particles is preferably 2 m 2 / g or less, 1 m 2 / g or less, and particularly preferably 0.5 m 2 / g or less.
  • the lower limit of the specific surface area of the large particle size particles is not particularly limited, but is practically 0.05 m 2 / g or more.
  • the mixing ratio (mass ratio) of the large particle size particles and the small particle size particles is preferably 95: 5 to 30:70, more preferably 90:10 to 40:60, and 80:20 to 50. : 50 is more preferable. If there are too many large particle size particles (too few small particle size particles), the D 50 / D 10 of the inorganic filler particles becomes small, and the dispersibility of the inorganic filler particles tends to decrease. It becomes difficult to sufficiently increase the mechanical strength. On the other hand, if the number of large particle size particles is too small (the number of small particle size particles is too large), the viscosity of the resin composition tends to be high and three-dimensional modeling tends to be difficult.
  • the inorganic filler particles are preferably SiO 2 , MgO, and Al 2 O 3 from the viewpoint that they can be easily formed into a desired shape.
  • SiO 2 has a low density and is unlikely to undergo sedimentation separation after being mixed with a resin, and has a relatively dense structure, so that the specific surface area tends to be small, and when mixed with a resin, it has the effect of suppressing an increase in viscosity. high.
  • a glass filler is also preferable because it can be easily formed into a desired shape.
  • Glass filler a glass composition, in mass%, SiO 2 20 ⁇ 70% , B 2 O 3 0 ⁇ 50%, Nb 2 O 5 0 ⁇ 20%, include those containing WO 3 0 ⁇ 20% ..
  • the% indication means mass%.
  • SiO 2 is a component that forms a glass skeleton. It also has the effect of improving chemical durability and suppressing devitrification.
  • the content of SiO 2 is preferably 20 to 70%, 30 to 65%, and particularly preferably 40 to 60%. If the content of SiO 2 is too small, the chemical durability tends to decrease, and the glass tends to be devitrified, which may make manufacturing difficult. On the other hand, if the content of SiO 2 is too large, the meltability tends to decrease, and it becomes difficult to soften during molding, which may make manufacturing difficult.
  • B 2 O 3 is a component that forms a glass skeleton. It also has the effect of improving chemical durability and suppressing devitrification.
  • the content of B 2 O 3 is preferably 0 to 50%, 2.5 to 40%, and particularly preferably 5 to 30%. If the content of B 2 O 3 is too large, the meltability tends to decrease, and it becomes difficult to soften during molding, which may make manufacturing difficult.
  • Nb 2 O 5 is a component whose refractive index and Abbe number can be adjusted.
  • the content of Nb 2 O 5 is preferably 0 to 20%, 0.1 to 15%, 0.5 to 10%, and particularly preferably 1 to 5%. If the content of Nb 2 O 5 is too large, the refractive index tends to increase and the Abbe number tends to decrease. Furthermore, the glass is easily devitrified.
  • WO 3 is a component that can adjust the refractive index and Abbe number, and is a component that lowers the viscosity of glass.
  • the content of WO 3 is preferably 0 to 20%, 0.1 to 15%, 0.5 to 10%, and particularly preferably 1 to 5%. If the amount of WO 3 is too large, the refractive index tends to be large and the Abbe number tends to be small. Furthermore, the glass tends to be easily colored.
  • Al 2 O 3 is a vitrification stabilizing component. It also has the effect of improving chemical durability and suppressing devitrification.
  • the content of Al 2 O 3 is preferably 0 to 30%, 2.5 to 25%, and particularly preferably 5 to 20%. If the content of Al 2 O 3 is too large, the meltability tends to decrease. In addition, it may be difficult to soften during molding, which may make manufacturing difficult.
  • Li 2 O is a component that lowers the viscosity of glass and suppresses devitrification.
  • the content of Li 2 O is preferably 0 to 10%, 0.1 to 9%, 0.5 to 7%, and particularly preferably 1 to 5%. If the content of Li 2 O is too large, the chemical durability tends to decrease, and the glass tends to be devitrified, which may make manufacturing difficult.
  • Na 2 O is a component that lowers the viscosity of glass and suppresses devitrification.
  • the Na 2 O content is preferably 0 to 10%, 0.1 to 7.5%, 0.5 to 5%, and particularly preferably 1 to 2.5%. If the Na 2 O content is too high, the chemical durability tends to decrease, and the glass tends to be devitrified, which may make production difficult.
  • K 2 O is with lowering the viscosity of the glass is a component to suppress devitrification.
  • the content of K 2 O is 0-10% from 0.1 to 8 percent, from 0.5 to 6%, particularly preferably 1-4%. If the content of K 2 O is too large, the chemical durability tends to decrease, and the glass tends to be devitrified, which may make manufacturing difficult.
  • the total amount of Li 2 O, Na 2 O and K 2 O in the glass composition is preferably 10% or less, 6% or less, and particularly preferably 5% or less. If the total amount of these components is limited as described above, it becomes easy to suppress the evaporation of the alkaline components in the glass generated during resin curing. Further, since the decrease in chemical durability can be suppressed, the deterioration of the resin due to alkali elution can be suppressed, for example. Therefore, a colorless and transparent three-dimensional model can be easily obtained, and deterioration of the obtained model over time can be prevented. Furthermore, since the coefficient of thermal expansion of glass can be reduced, thermal shock and heat shrinkage during curing can be suppressed.
  • MgO, CaO, SrO, BaO and ZnO are components that act as intermediate substances in glass and enhance the stability of vitrification.
  • the contents of these components are preferably 0 to 25%, 0.5 to 20%, and particularly preferably 1 to 15%, respectively. If the content of each component is too large, the chemical durability tends to decrease, and the glass tends to be devitrified, which may make manufacturing difficult.
  • TiO 2 is a component that can adjust the refractive index and Abbe number, and is a component that lowers the viscosity of glass.
  • the content of TiO 2 is preferably 0 to 15%, 0.1 to 12%, 0.5 to 10%, and particularly preferably 1 to 5%. If the content of TiO 2 is too large, the refractive index tends to be large and the Abbe number tends to be small. In addition, the glass is easily colored.
  • the total amount of TiO 2 , Nb 2 O 5 and WO 3 in the glass composition is preferably 0 to 30%, 0.1 to 25%, 1 to 20%, and particularly preferably 3 to 15. In this way, the refractive index and the Abbe number can be easily adjusted, and the devitrification of the glass can be easily suppressed. Furthermore, it becomes easier to obtain glass with high chemical durability.
  • the total amount of Nb 2 O 5 and WO 3 in the glass composition is preferably 0 to 30%, 0.1 to 25%, 1 to 20%, and particularly preferably 2 to 15%.
  • the refractive index and the Abbe number can be easily adjusted, and coloring becomes difficult.
  • the surface of the inorganic filler particles is treated with a silane coupling agent.
  • a silane coupling agent By treating with a silane coupling agent, the bonding force between the inorganic filler particles and the curable resin can be enhanced, and a three-dimensional model having higher mechanical strength can be obtained. Further, the inorganic filler particles and the curable resin become more familiar with each other, and bubbles and voids at the interface can be reduced. As a result, light scattering can be suppressed and the light transmittance can be increased.
  • the silane coupling agent for example, aminosilane, epoxysilane, acrylicsilane and the like are preferable.
  • the silane coupling agent may be appropriately selected depending on the curable resin used.
  • the content of the inorganic filler particles is preferably 1 to 300 parts by mass, 10 to 200 parts by mass, 20 to 150 parts by mass, and particularly preferably 30 to 100 parts by mass with respect to 100 parts by mass of the curable resin. If the amount of inorganic filler particles is too small, the mechanical strength of the three-dimensional model tends to decrease. On the other hand, if the amount of the inorganic filler particles is too large, the viscosity of the resin composition becomes too high, the fluidity of the resin decreases, and three-dimensional modeling tends to be difficult.
  • the curable resin may be either a photocurable resin or a thermosetting resin, and can be appropriately selected depending on the molding method to be adopted. For example, when the stereolithography method is used, a liquid photocurable resin may be selected.
  • photocurable resin examples include polyamide resins, polyamideimide resins, polyacetal resins, (meth) acrylic resins, melamine resins, (meth) acrylic-styrene copolymers, polycarbonate resins, and styrene resins.
  • thermosetting resin examples include epoxy resins, thermosetting modified polyphenylene ether resins, thermosetting polyimide resins, urea resins, allyl resins, silicon resins, benzoxazine resins, phenol resins, and non-thermosetting resins.
  • examples thereof include saturated polyester-based resins, bismaleimide triazine resins, alkyd-based resins, furan-based resins, melamine-based resins, polyurethane-based resins, and aniline-based resins.
  • the content of the inorganic filler powder with respect to the total amount of the thermoplastic resin powder and the inorganic filler powder is 1 to 70% by volume, 1 to more than 60%, 5 to 50%, 10 to 40%, and particularly 15 to. It is preferably 30%. If the content of the inorganic filler powder is too small, the mechanical strength of the three-dimensional model tends to decrease. On the other hand, if the content of the inorganic filler powder is too large, the adhesion between the thermoplastic resin and the inorganic filler powder is inferior, and the mechanical strength of the three-dimensional model tends to decrease.
  • a single liquid layer made of a photocurable resin composition is prepared.
  • a modeling stage is provided in a tank filled with a liquid photocurable resin composition, and the upper surface of the stage is positioned so as to have a desired depth (for example, about 0.2 mm) from the liquid surface.
  • a liquid layer can be prepared on the stage.
  • the liquid layer is irradiated with an active energy ray, for example, an ultraviolet laser to cure the photocurable resin to form a cured layer having a predetermined pattern.
  • an active energy ray for example, an ultraviolet laser to cure the photocurable resin to form a cured layer having a predetermined pattern.
  • laser light such as visible light or infrared light can be used in addition to ultraviolet light.
  • a new liquid layer made of a photocurable resin composition is prepared on the formed cured layer.
  • the photocurable resin composition can be introduced onto the cured layer, and a new liquid layer can be prepared.
  • the new liquid layer prepared on the cured layer is irradiated with active energy rays to form a new cured layer continuous with the cured layer.
  • the cured layers are continuously laminated to obtain a predetermined three-dimensional model.
  • Table 1 shows the glass powders A and B used in Examples and Comparative Examples of the present invention.
  • Table 2 shows Examples (No. 2 to 4) and Comparative Examples (No. 1) of the present invention.
  • Raw material powders were mixed to prepare raw material batches so as to have the glass compositions shown in Table 1.
  • the obtained raw material batch was melted at 1580 to 1600 ° C. until it became homogeneous, and then poured between a pair of rollers to form a film.
  • the obtained film-shaped glass was crushed using a bead mill, the obtained glass powder was supplied into a furnace with a table feeder, and heated and melted at 1400 to 2000 ° C. with an air burner to form spheroids.
  • Glass powder A was obtained by classifying the spheroidized glass powder with an air flow type classifier.
  • the film-like glass obtained above was pulverized using a ball mill, and the obtained glass powder was classified by an air flow type classifier to obtain a crushed glass powder B.
  • the glass powders A and B were surface-treated with aminosilane.
  • FIG. 1 shows a graph showing the particle size distribution of the inorganic filler particles in each sample by laser diffraction scattering type particle size distribution measurement.
  • No. The resin compositions of Nos. 2 to 4 had a precipitation amount of 0.3 to 1.0 mm, whereas No. 2 to No. 4 was a comparative example.
  • the resin composition of No. 1 had a sedimentation amount of 3.0 mm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is a resin composition for three-dimensional shaping which enables a three-dimensionally shaped object containing inorganic filler particles to have sufficiently heightened mechanical strength. The resin composition for three-dimensional shaping comprises inorganic filler particles and a curable resin, and is characterized in that the inorganic filler particles, in a particle size distribution examination by the laser diffraction/scattering method, have a ratio of the 50%-cumulative particle diameter (D50) to the 10%-cumulative particle diameter (D10), D50/D10, of 2.1 or greater.

Description

立体造形用樹脂組成物Resin composition for three-dimensional modeling
 本発明は、立体造形用樹脂組成物に関する。 The present invention relates to a resin composition for three-dimensional modeling.
 従来、樹脂材料等を積層させて立体造形物を得る方法が知られている。例えば光造形法、粉末焼結法、熱溶解積層(FDM)法等種々の方法が提案され実用化されている。 Conventionally, a method of laminating resin materials and the like to obtain a three-dimensional model is known. For example, various methods such as a stereolithography method, a powder sintering method, and a fused deposition modeling (FDM) method have been proposed and put into practical use.
 例えば光造形法は、細やかな造形や正確なサイズ表現に優れており、広く普及している。この方法は以下のようにして立体造形物を作製するものである。まず液状の光硬化性樹脂を満たした槽内に造形ステージを設け、造形ステージ上の光硬化性樹脂に紫外線レーザーを照射して所望のパターンの硬化層を作製する。このようにして硬化層を1層造ると造形ステージを1層分だけ下げて、硬化層上に未硬化の樹脂を導入し、同様にして紫外線レーザーを光硬化性樹脂に照射して前記硬化層上に新たな硬化層を積み上げる。この操作を繰り返すことにより、所定の立体造形物を得る。また、粉末焼結法は、樹脂、金属、セラミックス、ガラスの粉末を満たした槽内に造形ステージを設け、造形ステージ上の粉末に半導体等のレーザーを照射し、軟化変形にて所望のパターンの硬化層を作製するものである。 For example, the stereolithography method is excellent in fine modeling and accurate size expression, and is widely used. This method produces a three-dimensional model as follows. First, a modeling stage is provided in a tank filled with a liquid photocurable resin, and the photocurable resin on the modeling stage is irradiated with an ultraviolet laser to prepare a cured layer having a desired pattern. When one cured layer is formed in this way, the molding stage is lowered by one layer, an uncured resin is introduced onto the cured layer, and the photocurable resin is similarly irradiated with an ultraviolet laser to obtain the cured layer. Stack a new hardened layer on top. By repeating this operation, a predetermined three-dimensional model is obtained. Further, in the powder sintering method, a modeling stage is provided in a tank filled with resin, metal, ceramics, and glass powder, and the powder on the modeling stage is irradiated with a laser such as a semiconductor to obtain a desired pattern by softening and deforming. It prepares a hardened layer.
特開平7-26060号公報Japanese Unexamined Patent Publication No. 7-26060
 光造形法等で作製される樹脂製の立体造形物は、細やかで精密であるが、機械的強度等に劣ることが指摘されている。そこで特許文献1で提案されているように、光硬化性樹脂に、無機充填材を添加することが提案されている。しかしながら、無機充填材粒子を添加しても、立体造形物の機械的強度が十分に向上しない場合がある。 It has been pointed out that resin-made three-dimensional objects produced by stereolithography, etc. are delicate and precise, but inferior in mechanical strength, etc. Therefore, as proposed in Patent Document 1, it has been proposed to add an inorganic filler to the photocurable resin. However, even if the inorganic filler particles are added, the mechanical strength of the three-dimensional model may not be sufficiently improved.
 以上に鑑み、本発明は、無機充填材粒子を含有する立体造形物の機械的強度を十分に高めることが可能な立体造形用樹脂組成物を提供することを目的とする。 In view of the above, it is an object of the present invention to provide a resin composition for three-dimensional modeling capable of sufficiently increasing the mechanical strength of the three-dimensional modeling object containing the inorganic filler particles.
 本発明の立体造形用樹脂組成物は、無機充填材粒子及び硬化性樹脂を含有する立体造形用樹脂組成物であって、無機充填材粒子のレーザー回折散乱式粒度分布測定による累積10%粒子径(D10)と累積50%粒子径(D50)との比D50/D10が2.1以上であることを特徴とする。D50/D10が大きい値であることは、粒子径分布において中央値よりもかなり小さい粒子径の粒子(以下、「小粒径粒子」ともいう)が相当数存在することを意味する。例えば、粒子径分布において中央値付近にピークを有するとともに、中央値よりもかなり小さい値付近にもピークを有する(即ち、2つ以上のピークを有する)場合が挙げられる。一般に、無機充填材粒子は硬化性樹脂よりも比重が大きいため、樹脂組成物中において無機充填材粒子が沈降分離しやすい。その結果、樹脂組成物中における無機充填材粒子の分散性が低下して、立体造形物の機械的強度を十分に高めることができない場合がある。一方、本発明の樹脂組成物は、上記の通り無機充填材粒子のD50/D10が大きく、小粒径粒子を相当数含有する。当該小粒径粒子は樹脂組成物中で沈降しにくく、分散材としての役割を果たすため、樹脂組成物中における無機充填材粒子の分散性が向上し、立体造形物の機械的強度を十分に高めることが可能となる。 The resin composition for three-dimensional modeling of the present invention is a resin composition for three-dimensional modeling containing inorganic filler particles and a curable resin, and has a cumulative 10% particle diameter measured by laser diffraction / scattering particle size distribution measurement of the inorganic filler particles. It is characterized in that the ratio D 50 / D 10 of (D 10 ) and the cumulative 50% particle size (D 50) is 2.1 or more. A large value of D 50 / D 10 means that there are a considerable number of particles having a particle size considerably smaller than the median in the particle size distribution (hereinafter, also referred to as “small particle size particles”). For example, there is a case where the particle size distribution has a peak near the median and also has a peak near a value considerably smaller than the median (that is, has two or more peaks). In general, since the inorganic filler particles have a higher specific gravity than the curable resin, the inorganic filler particles are likely to settle and separate in the resin composition. As a result, the dispersibility of the inorganic filler particles in the resin composition may decrease, and the mechanical strength of the three-dimensional model may not be sufficiently increased. On the other hand, the resin composition of the present invention has a large D 50 / D 10 of the inorganic filler particles as described above, and contains a considerable number of small particle size particles. Since the small particle size particles do not easily settle in the resin composition and play a role as a dispersant, the dispersibility of the inorganic filler particles in the resin composition is improved, and the mechanical strength of the three-dimensional structure is sufficiently increased. It becomes possible to increase.
 本発明の立体造形用樹脂組成物は、無機充填材粒子のレーザー回折散乱式粒度分布測定による累積50%粒子径(D50)が3~25μmであることが好ましい。 The resin composition for three-dimensional modeling of the present invention preferably has a cumulative 50% particle diameter (D 50 ) of 3 to 25 μm as measured by laser diffraction / scattering particle size distribution measurement of the inorganic filler particles.
 本発明の立体造形用樹脂組成物は、レーザー回折散乱式粒度分布測定による累積10%粒子径(D10)が0.5~10μm以上であることが好ましい。このようにすれば、粒子径の小さなガラスフィラーの割合が少なくなるため、ガラスフィラーと硬化性樹脂の接触面積が減少し、両者の界面での光散乱が抑制され、立体造形物の透明性を高めることができる。 The resin composition for three-dimensional modeling of the present invention preferably has a cumulative 10% particle diameter (D 10 ) of 0.5 to 10 μm or more as measured by laser diffraction / scattering particle size distribution measurement. By doing so, the proportion of the glass filler having a small particle size is reduced, so that the contact area between the glass filler and the curable resin is reduced, light scattering at the interface between the two is suppressed, and the transparency of the three-dimensional model is improved. Can be enhanced.
 本発明の立体造形用樹脂組成物は、無機充填材粒子の粒度分布において、複数のピークを有することが好ましい。 The resin composition for three-dimensional modeling of the present invention preferably has a plurality of peaks in the particle size distribution of the inorganic filler particles.
 本発明の立体造形用樹脂組成物は、無機充填材粒子がSiO、MgOまたはAlであることが好ましい。 In the resin composition for three-dimensional modeling of the present invention, it is preferable that the inorganic filler particles are SiO 2 , MgO or Al 2 O 3.
 本発明の立体造形用樹脂組成物は、無機充填材粒子がガラスフィラーであることが好ましい。 In the resin composition for three-dimensional modeling of the present invention, it is preferable that the inorganic filler particles are glass fillers.
 本発明の立体造形用樹脂組成物は、ガラスフィラーが、ガラス組成として、質量%で、SiO 20~70%、B 0~50%、Nb 0~20%、WO 0~20%を含有することが好ましい。 Stereolithography resin composition of the present invention, the glass filler is a glass composition including, in mass%, SiO 2 20 ~ 70% , B 2 O 3 0 ~ 50%, Nb 2 O 5 0 ~ 20%, WO 3 It preferably contains 0 to 20%.
 本発明の立体造形用樹脂組成物の製造方法は、異なる粒度分布を有する大粒径粒子と小粒径粒子を含む無機充填材粒子、及び、硬化性樹脂を混合することを特徴とする。このようにすれば、小粒径粒子が分散材としての役割を果たすため、樹脂組成物中における大粒子径粒子の分散性が向上する。結果として、樹脂組成物から得られる立体造形物の機械的強度を十分に高めることが可能となる。 The method for producing a resin composition for three-dimensional modeling of the present invention is characterized by mixing large particle size particles having different particle size distributions, inorganic filler particles containing small particle size particles, and a curable resin. In this way, since the small particle size particles serve as a dispersant, the dispersibility of the large particle size particles in the resin composition is improved. As a result, it is possible to sufficiently increase the mechanical strength of the three-dimensional model obtained from the resin composition.
 本発明の立体造形用樹脂組成物の製造方法において、大粒径粒子及び小粒径粒子のレーザー回折散乱式粒度分布測定による累積10%粒子径(D10)及び累積50%粒子径(D50)が、以下の範囲を満たすことが好ましい。
 大粒径粒子のD10が5~9μmであり、D50が8~15μm
 小粒径粒子のD10が0.5~3μmであり、D50が1~6μm
In the method for producing the resin composition for three-dimensional modeling of the present invention, the cumulative 10% particle size (D 10 ) and the cumulative 50% particle size (D 50) by the laser diffraction scattering type particle size distribution measurement of the large particle size particles and the small particle size particles. ), It is preferable that the following range is satisfied.
The large particle size D 10 is 5-9 μm and the D 50 is 8-15 μm.
D 10 of small particle size particles is 0.5 to 3 μm, and D 50 is 1 to 6 μm.
 本発明の立体造形用樹脂組成物の製造方法において、大粒径粒子と小粒径粒子の混合割合が、質量比で、95:5~30:70であることが好ましい。 In the method for producing the resin composition for three-dimensional modeling of the present invention, the mixing ratio of the large particle size particles and the small particle size particles is preferably 95: 5 to 30:70 in terms of mass ratio.
 本発明の立体造形物は、樹脂中に無機充填材粒子が分散してなるものであって、無機充填材粒子のレーザー回折散乱式粒度分布測定による累積10%粒子径(D10)と累積50%粒子径(D50)との比D50/D10が2.1以上であることを特徴とする。 The three-dimensional model of the present invention is formed by dispersing inorganic filler particles in a resin, and has a cumulative 10% particle diameter (D 10 ) and a cumulative 50 by laser diffraction / scattering particle size distribution measurement of the inorganic filler particles. % The ratio D 50 / D 10 to the particle size (D 50 ) is 2.1 or more.
 本発明によれば、無機充填材粒子を含有する立体造形物の機械的強度を十分に高めることが可能な立体造形用樹脂組成物を提供することが可能になる。 According to the present invention, it is possible to provide a resin composition for three-dimensional modeling capable of sufficiently increasing the mechanical strength of the three-dimensional modeling object containing inorganic filler particles.
実施例の各試料における無機充填材粒子のレーザー回折散乱式粒度分布測定による粒度分布を示すグラフである。It is a graph which shows the particle size distribution by the laser diffraction scattering type particle size distribution measurement of the inorganic filler particle in each sample of an Example.
 本発明の立体造形用樹脂組成物は、無機充填材粒子及び硬化性樹脂を含有する。各成分について以下に説明する。 The resin composition for three-dimensional modeling of the present invention contains inorganic filler particles and a curable resin. Each component will be described below.
 (無機充填材粒子)
 無機充填材粒子のレーザー回折散乱式粒度分布測定による累積10%粒子径(D10)と累積50%粒子径(D50)との比D50/D10は2.1以上であり、2.5以上、3以上、特に3.3以上であることが好ましい。このようにすれば、例えば粒子径分布において中央値付近にピークを有するとともに、中央値よりもかなり小さい値付近にもピークを有する(即ち、2つ以上のピークを有する)状態となる。D50/D10が小さすぎると、無機充填材粒子に含まれる小粒径粒子の量が少なく、無機充填材粒子の分散性が低下しやすくなるため、立体造形物の機械的強度を十分に高めにくくなる。なお、D50/D10の上限は特に限定されないが、現実的には10以下である。
(Inorganic filler particles)
2. The ratio D 50 / D 10 of the cumulative 10% particle diameter (D 10 ) to the cumulative 50% particle diameter (D 50 ) measured by laser diffraction / scattering particle size distribution measurement of the inorganic filler particles is 2.1 or more. It is preferably 5 or more, 3 or more, and particularly preferably 3.3 or more. In this way, for example, the particle size distribution has a peak near the median value and also has a peak near a value considerably smaller than the median value (that is, has two or more peaks). If D 50 / D 10 is too small, the amount of small particle size particles contained in the inorganic filler particles is small, and the dispersibility of the inorganic filler particles tends to decrease, so that the mechanical strength of the three-dimensional structure is sufficiently increased. It becomes difficult to raise. The upper limit of D 50 / D 10 is not particularly limited, but is actually 10 or less.
 なお、D10は0.5~10μm、1~8μm、特に1.5~5μmであることが好ましい。また、D50は3~25μm、3~20μm、3.5~15μm、4~12μm、特に5~10μmであることが好ましい。D10またはD50が小さすぎると、無機充填材粒子と硬化性樹脂との光散乱が増大し、透明性の高い立体造形物を得にくくなる。一方、D10またはD50が大きすぎると、樹脂組成物中における無機充填材粒子の分散性が低下しやすくなる。 D 10 is preferably 0.5 to 10 μm, 1 to 8 μm, and particularly preferably 1.5 to 5 μm. Further, D 50 is preferably 3 to 25 μm, 3 to 20 μm, 3.5 to 15 μm, 4 to 12 μm, and particularly preferably 5 to 10 μm. If D10 or D50 is too small, light scattering between the inorganic filler particles and the curable resin increases, and it becomes difficult to obtain a highly transparent three-dimensional model. On the other hand, if D 10 or D 50 is too large, the dispersibility of the inorganic filler particles in the resin composition tends to decrease.
 なお、D50/D10が所定の範囲を満たす無機充填材粒子は、例えば異なる粒度分布を有する2種類の粒子(大粒径粒子と小粒径粒子)を混合することにより作製することができる。例えば、大粒径粒子の粒子径D10は5~9μm、粒子径D50は8~15μmであることが好ましい。一方、小粒径粒子の粒子径D10は0.5~3μm、粒子径D50は1~6μmであることが好ましい。このようにすれば、無機充填材粒子の分散性に優れ、ひいては機械的強度に優れた立体造形物を得ることが可能となる。 The inorganic filler particles in which D 50 / D 10 satisfies a predetermined range can be produced, for example, by mixing two types of particles (large particle size particles and small particle size particles) having different particle size distributions. .. For example, the particle size D 10 of the large particle size particles is preferably 5 to 9 μm, and the particle size D 50 is preferably 8 to 15 μm. On the other hand, the particle size D 10 of the small particle size particles is preferably 0.5 to 3 μm, and the particle size D 50 is preferably 1 to 6 μm. In this way, it is possible to obtain a three-dimensional model having excellent dispersibility of the inorganic filler particles and, by extension, excellent mechanical strength.
 無機充填材粒子の密度は3.5g/cm以下、3g/cm以下、2.8g/cm以下、特に2.6g/cm以下であることが好ましい。このようにすれば、D50/D10が大きい場合であっても、沈降分離が生じにくくなる。なお、密度の下限は特に限定されないが、現実的には2g/cm以上である。 The density of the inorganic filler particles is preferably 3.5 g / cm 3 or less, 3 g / cm 3 or less, 2.8 g / cm 3 or less, and particularly preferably 2.6 g / cm 3 or less. In this way, even when D 50 / D 10 is large, sedimentation separation is less likely to occur. The lower limit of the density is not particularly limited, but in reality, it is 2 g / cm 3 or more.
 なお、無機充填材粒子を構成する大粒径粒子と小粒径粒子の密度差は0.3g/cm以下、0.2g/cm以下、0.1g/cm以下、特に0.05g/cm以下であることが好ましい。このようにすれば、大粒径粒子と小粒径粒子の粒径の違い起因する沈降分離が生じにくくなる。なお、大粒径粒子の密度と小粒径粒子の密度が異なる場合は、大粒径粒子の密度が小粒径粒子の密度より小さいほうが、沈降分離抑制の観点からは有利である。 The density difference between the large particle size particles and the small particle size particles constituting the inorganic filler particles is 0.3 g / cm 3 or less, 0.2 g / cm 3 or less, 0.1 g / cm 3 or less, and particularly 0.05 g. It is preferably / cm 3 or less. In this way, sedimentation separation due to the difference in particle size between the large particle size particles and the small particle size particles is less likely to occur. When the density of the large particle size particles and the density of the small particle size particles are different, it is advantageous that the density of the large particle size particles is smaller than the density of the small particle size particles from the viewpoint of suppressing sedimentation separation.
 ここで、小粒径粒子が破砕状であると分散材としての機能が高まり、本発明の効果を得やすくなる。その観点から、小粒径粒子の比表面積は0.5m/g以上、特に1m/g以上であることが好ましい。小粒径粒子の比表面積の上限は特に限定されないが、現実的には5m/g以下である。 Here, when the small particle size particles are in a crushed state, the function as a dispersant is enhanced, and the effect of the present invention can be easily obtained. From this point of view, the specific surface area of the small particle size particles is preferably 0.5 m 2 / g or more, particularly preferably 1 m 2 / g or more. The upper limit of the specific surface area of the small particle size particles is not particularly limited, but is practically 5 m 2 / g or less.
 一方、大粒径粒子については、粒子と樹脂との界面での光散乱を抑制し、透明性の高い立体造形物を得る観点から、略球状(特に真球状)であることが好ましい。その観点から、大粒径粒子の短径/長径で表される真球度は0.8以上、0.9以上、特に0.95以上であることが好ましい。また、大粒径粒子の比表面積は2m/g以下、1m/g以下、特に0.5m/g以下であることが好ましい。大粒径粒子の比表面積の下限は特に限定されないが、現実的には0.05m/g以上である。 On the other hand, the large particle size particles are preferably substantially spherical (particularly true spherical) from the viewpoint of suppressing light scattering at the interface between the particles and the resin and obtaining a highly transparent three-dimensional model. From this point of view, the sphericity represented by the minor axis / major axis of the large particle size particles is preferably 0.8 or more, 0.9 or more, and particularly preferably 0.95 or more. The specific surface area of the large particle size particles is preferably 2 m 2 / g or less, 1 m 2 / g or less, and particularly preferably 0.5 m 2 / g or less. The lower limit of the specific surface area of the large particle size particles is not particularly limited, but is practically 0.05 m 2 / g or more.
 大粒径粒子と小粒径粒子の混合割合(質量比)は、95:5~30:70であることが好ましく、90:10~40:60であることがより好ましく、80:20~50:50であることがさらに好ましい。大粒径粒子が多すぎる(小粒径粒子が少なすぎる)と、無機充填材粒子のD50/D10が小さくなり、無機充填材粒子の分散性が低下しやすくなるため、立体造形物の機械的強度を十分に高めにくくなる。一方、大粒径粒子が少なすぎる(小粒径粒子が多すぎる)と、樹脂組成物の粘度が高くなって立体造形が困難になる傾向がある。 The mixing ratio (mass ratio) of the large particle size particles and the small particle size particles is preferably 95: 5 to 30:70, more preferably 90:10 to 40:60, and 80:20 to 50. : 50 is more preferable. If there are too many large particle size particles (too few small particle size particles), the D 50 / D 10 of the inorganic filler particles becomes small, and the dispersibility of the inorganic filler particles tends to decrease. It becomes difficult to sufficiently increase the mechanical strength. On the other hand, if the number of large particle size particles is too small (the number of small particle size particles is too large), the viscosity of the resin composition tends to be high and three-dimensional modeling tends to be difficult.
 無機充填材粒子としては、所望の形状に成形しやすいという観点からSiO、MgO、Alであることが好ましい。特にSiOは、密度が低く樹脂と混合した後に沈降分離が起こりにくいことや、比較的緻密な構造を有することから比表面積が小さくなりやすく、樹脂と混合した際に粘度上昇を抑制する効果が高い。 The inorganic filler particles are preferably SiO 2 , MgO, and Al 2 O 3 from the viewpoint that they can be easily formed into a desired shape. In particular, SiO 2 has a low density and is unlikely to undergo sedimentation separation after being mixed with a resin, and has a relatively dense structure, so that the specific surface area tends to be small, and when mixed with a resin, it has the effect of suppressing an increase in viscosity. high.
 無機充填材粒子として、ガラスフィラーも所望の形状に成形しやすいため好ましい。ガラスフィラーは、ガラス組成として、質量%で、SiO 20~70%、B 0~50%、Nb 0~20%、WO 0~20%を含有するものが挙げられる。以下、上記のように各成分を限定した理由を説明する。なお、各成分の含有範囲の説明において、%表示は、質量%を意味する。 As the inorganic filler particles, a glass filler is also preferable because it can be easily formed into a desired shape. Glass filler, a glass composition, in mass%, SiO 2 20 ~ 70% , B 2 O 3 0 ~ 50%, Nb 2 O 5 0 ~ 20%, include those containing WO 3 0 ~ 20% .. Hereinafter, the reason for limiting each component as described above will be described. In the description of the content range of each component, the% indication means mass%.
 SiOはガラス骨格を形成する成分である。また化学耐久性向上や失透抑制の効果がある。SiOの含有量は20~70%、30~65%、特に40~60%であることが好ましい。SiOの含有量が少なすぎると化学耐久性が低下しやすくなり、またガラスが失透しやすくなって製造が困難になる恐れがある。一方、SiOの含有量が多すぎると溶融性が低下しやすくなり、また成形時に軟化しにくくなって製造が困難になる恐れがある。 SiO 2 is a component that forms a glass skeleton. It also has the effect of improving chemical durability and suppressing devitrification. The content of SiO 2 is preferably 20 to 70%, 30 to 65%, and particularly preferably 40 to 60%. If the content of SiO 2 is too small, the chemical durability tends to decrease, and the glass tends to be devitrified, which may make manufacturing difficult. On the other hand, if the content of SiO 2 is too large, the meltability tends to decrease, and it becomes difficult to soften during molding, which may make manufacturing difficult.
 Bはガラス骨格を形成する成分である。また化学耐久性向上や失透抑制の効果がある。Bの含有量は0~50%、2.5~40%、特に5~30%であることが好ましい。Bの含有量が多すぎると、溶融性が低下しやすくなり、また成形時に軟化しにくくなって製造が困難になる恐れがある。 B 2 O 3 is a component that forms a glass skeleton. It also has the effect of improving chemical durability and suppressing devitrification. The content of B 2 O 3 is preferably 0 to 50%, 2.5 to 40%, and particularly preferably 5 to 30%. If the content of B 2 O 3 is too large, the meltability tends to decrease, and it becomes difficult to soften during molding, which may make manufacturing difficult.
 Nbは屈折率やアッベ数を調整できる成分である。Nbの含有量は0~20%、0.1~15%、0.5~10%、特に1~5%であることが好ましい。Nbの含有量が多すぎると屈折率が大きくなり、またアッベ数が小さくなる傾向がある。さらにガラスが失透しやすくなる。 Nb 2 O 5 is a component whose refractive index and Abbe number can be adjusted. The content of Nb 2 O 5 is preferably 0 to 20%, 0.1 to 15%, 0.5 to 10%, and particularly preferably 1 to 5%. If the content of Nb 2 O 5 is too large, the refractive index tends to increase and the Abbe number tends to decrease. Furthermore, the glass is easily devitrified.
 WOは屈折率やアッベ数を調整できる成分であり、またガラスの粘度を低下させる成分である。WOの含有量は0~20%、0.1~15%、0.5~10%、特に1~5%であることが好ましい。WOが多すぎると屈折率が大きくなり、またアッベ数が小さくなる傾向がある。さらにガラスが着色しやすくなる傾向がある。 WO 3 is a component that can adjust the refractive index and Abbe number, and is a component that lowers the viscosity of glass. The content of WO 3 is preferably 0 to 20%, 0.1 to 15%, 0.5 to 10%, and particularly preferably 1 to 5%. If the amount of WO 3 is too large, the refractive index tends to be large and the Abbe number tends to be small. Furthermore, the glass tends to be easily colored.
 上記成分以外にも、例えば、以下の成分を含有させることができる。 In addition to the above components, for example, the following components can be contained.
 Alはガラス化安定成分である。また化学耐久性向上や失透抑制の効果がある。Alの含有量は0~30%、2.5~25%、特に5~20%であることが好ましい。Alの含有量が多すぎると溶融性が低下しやすくなる。また成形時に軟化しにくくなって製造が困難になる恐れがある。 Al 2 O 3 is a vitrification stabilizing component. It also has the effect of improving chemical durability and suppressing devitrification. The content of Al 2 O 3 is preferably 0 to 30%, 2.5 to 25%, and particularly preferably 5 to 20%. If the content of Al 2 O 3 is too large, the meltability tends to decrease. In addition, it may be difficult to soften during molding, which may make manufacturing difficult.
 LiOはガラスの粘度を低下させるとともに、失透を抑制する成分である。LiOの含有量は0~10%、0.1~9%、0.5~7%、特に1~5%であることが好ましい。LiOの含有量が多すぎると化学耐久性が低下しやすくなり、またガラスが失透しやすくなって製造が困難になる恐れがある。 Li 2 O is a component that lowers the viscosity of glass and suppresses devitrification. The content of Li 2 O is preferably 0 to 10%, 0.1 to 9%, 0.5 to 7%, and particularly preferably 1 to 5%. If the content of Li 2 O is too large, the chemical durability tends to decrease, and the glass tends to be devitrified, which may make manufacturing difficult.
 NaOはガラスの粘度を低下させるとともに、失透を抑制する成分である。NaOの含有量は0~10%、0.1~7.5%、0.5~5%、特に1~2.5%であることが好ましい。NaOの含有量が多すぎると化学耐久性が低下しやすくなり、またガラスが失透しやすくなって製造が困難になる恐れがある。 Na 2 O is a component that lowers the viscosity of glass and suppresses devitrification. The Na 2 O content is preferably 0 to 10%, 0.1 to 7.5%, 0.5 to 5%, and particularly preferably 1 to 2.5%. If the Na 2 O content is too high, the chemical durability tends to decrease, and the glass tends to be devitrified, which may make production difficult.
 KOはガラスの粘度を低下させるとともに、失透を抑制する成分である。KOの含有量は0~10%、0.1~8%、0.5~6%、特に1~4%であることが好ましい。KOの含有量が多すぎると化学耐久性が低下しやすくなり、またガラスが失透しやすくなって製造が困難になる恐れがある。 K 2 O is with lowering the viscosity of the glass is a component to suppress devitrification. The content of K 2 O is 0-10% from 0.1 to 8 percent, from 0.5 to 6%, particularly preferably 1-4%. If the content of K 2 O is too large, the chemical durability tends to decrease, and the glass tends to be devitrified, which may make manufacturing difficult.
 またガラス組成中のLiO、NaO及びKOの合量は10%以下、6%以下、特に5%以下とすることが好ましい。これらの成分の合量を上記のように限定すれば、樹脂硬化時に発生するガラス中のアルカリ成分の蒸発を抑制しやすくなる。また化学耐久性の低下を抑制できることから、例えばアルカリ溶出による樹脂の劣化が抑制できる。それゆえ無色透明な立体造形物を容易に得ることができ、また得られた造形物の経時的な劣化を防止することができる。さらにガラスの熱膨張係数を小さくできることから、サーマルショックや硬化時の熱収縮が抑制できる。 The total amount of Li 2 O, Na 2 O and K 2 O in the glass composition is preferably 10% or less, 6% or less, and particularly preferably 5% or less. If the total amount of these components is limited as described above, it becomes easy to suppress the evaporation of the alkaline components in the glass generated during resin curing. Further, since the decrease in chemical durability can be suppressed, the deterioration of the resin due to alkali elution can be suppressed, for example. Therefore, a colorless and transparent three-dimensional model can be easily obtained, and deterioration of the obtained model over time can be prevented. Furthermore, since the coefficient of thermal expansion of glass can be reduced, thermal shock and heat shrinkage during curing can be suppressed.
 MgO、CaO、SrO、BaO、ZnOはガラス中で中間物質として働き、ガラス化の安定性を高める成分である。これらの成分の含有量は、各々0~25%、0.5~20%、特に1~15%であることが好ましい。各成分の含有量が多すぎると化学耐久性が低下しやすくなり、またガラスが失透しやすくなって製造が困難になる恐れがある。 MgO, CaO, SrO, BaO and ZnO are components that act as intermediate substances in glass and enhance the stability of vitrification. The contents of these components are preferably 0 to 25%, 0.5 to 20%, and particularly preferably 1 to 15%, respectively. If the content of each component is too large, the chemical durability tends to decrease, and the glass tends to be devitrified, which may make manufacturing difficult.
 TiOは、屈折率やアッベ数を調整できる成分であり、またガラスの粘度を低下させる成分である。TiOの含有量は0~15%、0.1~12%、0.5~10%、特に1~5%であることが好ましい。TiOの含有量が多すぎると屈折率が大きくなり、またアッベ数が小さくなる傾向がある。またガラスが着色しやすくなる。 TiO 2 is a component that can adjust the refractive index and Abbe number, and is a component that lowers the viscosity of glass. The content of TiO 2 is preferably 0 to 15%, 0.1 to 12%, 0.5 to 10%, and particularly preferably 1 to 5%. If the content of TiO 2 is too large, the refractive index tends to be large and the Abbe number tends to be small. In addition, the glass is easily colored.
 ガラス組成中のTiO、Nb及びWOの合量は0~30%、0.1~25%、1~20%、特に3~15とすることが好ましい。このようにすれば、屈折率やアッベ数の調整がしやすく、またガラスの失透の抑制が容易になる。さらに化学耐久性の高いガラスを得やすくなる。 The total amount of TiO 2 , Nb 2 O 5 and WO 3 in the glass composition is preferably 0 to 30%, 0.1 to 25%, 1 to 20%, and particularly preferably 3 to 15. In this way, the refractive index and the Abbe number can be easily adjusted, and the devitrification of the glass can be easily suppressed. Furthermore, it becomes easier to obtain glass with high chemical durability.
 またガラス組成中のNb及びWOの合量は0~30%、0.1~25%、1~20%、特に2~15%とすることが好ましい。このようにすれば、屈折率やアッベ数の調整がしやすくなるとともに、着色しにくくなる。またガラスの失透の抑制が容易になる。さらに化学耐久性の高いガラスを得やすくなる。 The total amount of Nb 2 O 5 and WO 3 in the glass composition is preferably 0 to 30%, 0.1 to 25%, 1 to 20%, and particularly preferably 2 to 15%. In this way, the refractive index and the Abbe number can be easily adjusted, and coloring becomes difficult. In addition, it becomes easy to suppress devitrification of glass. Furthermore, it becomes easier to obtain glass with high chemical durability.
 無機充填材粒子は、その表面がシランカップリング剤によって処理されていることが好ましい。シランカップリング剤で処理すれば、無機充填材粒子と硬化性樹脂の結合力を高めることができ、より機械的強度の高い立体造形物を得ることが可能になる。さらに、無機充填材粒子と硬化性樹脂のなじみがよくなり、界面の泡や空隙が減少できる。その結果、光散乱を抑制でき、光透過率を高めることができる。シランカップリング剤としては、例えばアミノシラン、エポキシシラン、アクリルシラン等が好ましい。なおシランカップリング剤は、用いる硬化性樹脂によって適宜選択すればよい。 It is preferable that the surface of the inorganic filler particles is treated with a silane coupling agent. By treating with a silane coupling agent, the bonding force between the inorganic filler particles and the curable resin can be enhanced, and a three-dimensional model having higher mechanical strength can be obtained. Further, the inorganic filler particles and the curable resin become more familiar with each other, and bubbles and voids at the interface can be reduced. As a result, light scattering can be suppressed and the light transmittance can be increased. As the silane coupling agent, for example, aminosilane, epoxysilane, acrylicsilane and the like are preferable. The silane coupling agent may be appropriately selected depending on the curable resin used.
 無機充填材粒子の含有量は、硬化性樹脂100質量部に対して1~300質量部、10~200質量部、20~150質量部、特に30~100質量部であることが好ましい。無機充填材粒子の量が少なすぎると、立体造形物の機械的強度が低下する傾向がある。一方、無機充填材粒子の量が多すぎると、樹脂組成物の粘度が高くなりすぎ、樹脂の流動性が低下し、立体造形が困難となる傾向がある。 The content of the inorganic filler particles is preferably 1 to 300 parts by mass, 10 to 200 parts by mass, 20 to 150 parts by mass, and particularly preferably 30 to 100 parts by mass with respect to 100 parts by mass of the curable resin. If the amount of inorganic filler particles is too small, the mechanical strength of the three-dimensional model tends to decrease. On the other hand, if the amount of the inorganic filler particles is too large, the viscosity of the resin composition becomes too high, the fluidity of the resin decreases, and three-dimensional modeling tends to be difficult.
 (硬化性樹脂)
 硬化性樹脂は、光硬化性樹脂、熱硬化性樹脂の何れであってもよく、採用する造形法によって適宜選択することができる。例えば光造形法を使用する場合は液状の光硬化性樹脂を選択すればよい。
(Curable resin)
The curable resin may be either a photocurable resin or a thermosetting resin, and can be appropriately selected depending on the molding method to be adopted. For example, when the stereolithography method is used, a liquid photocurable resin may be selected.
 上記光硬化性樹脂としては、例えば、ポリアミド系樹脂、ポリアミドイミド系樹脂、ポリアセタール系樹脂、(メタ)アクリル系樹脂、メラミン樹脂、(メタ)アクリル-スチレン共重合体、ポリカーボネート系樹脂、スチレン系樹脂、ポリ塩化ビニル系樹脂、ベンゾグアナミン-メラミンホルムアルデヒド、シリコーン系樹脂、フッ素系樹脂、ポリエステル系樹脂、架橋(メタ)アクリル系樹脂、架橋ポリスチレン系樹脂、架橋ポリウレタン系樹脂、エポキシ系樹脂等が挙げられる。 Examples of the photocurable resin include polyamide resins, polyamideimide resins, polyacetal resins, (meth) acrylic resins, melamine resins, (meth) acrylic-styrene copolymers, polycarbonate resins, and styrene resins. , Polyvinyl chloride resin, benzoguanamine-melamine formaldehyde, silicone resin, fluorine resin, polyester resin, crosslinked (meth) acrylic resin, crosslinked polystyrene resin, crosslinked polyurethane resin, epoxy resin and the like.
 上記熱硬化性樹脂としては、例えば、エポキシ系樹脂、熱硬化型変性ポリフェニレンエーテル系樹脂、熱硬化型ポリイミド系樹脂、ユリア系樹脂、アリル樹脂、ケイ素樹脂、ベンゾオキサジン系樹脂、フェノール系樹脂、不飽和ポリエステル系樹脂、ビスマレイミドトリアジン樹脂、アルキド系樹脂、フラン系樹脂、メラミン系樹脂、ポリウレタン系樹脂、アニリン系樹脂等が挙げられる。 Examples of the thermosetting resin include epoxy resins, thermosetting modified polyphenylene ether resins, thermosetting polyimide resins, urea resins, allyl resins, silicon resins, benzoxazine resins, phenol resins, and non-thermosetting resins. Examples thereof include saturated polyester-based resins, bismaleimide triazine resins, alkyd-based resins, furan-based resins, melamine-based resins, polyurethane-based resins, and aniline-based resins.
 熱可塑性樹脂粉末及び無機充填材粉末の合量に対する無機充填材粉末の含有量は、体積%で、1~70%、1超~60%、5~50%、10~40%、特に15~30%であることが好ましい。無機充填材粉末の含有量が少なすぎると、立体造形物の機械的強度が低下しやすくなる。一方、無機充填材粉末の含有量が多すぎると、熱可塑性樹脂と無機充填材粉末の密着性に劣り、かえって立体造形物の機械的強度が低下する傾向がある。 The content of the inorganic filler powder with respect to the total amount of the thermoplastic resin powder and the inorganic filler powder is 1 to 70% by volume, 1 to more than 60%, 5 to 50%, 10 to 40%, and particularly 15 to. It is preferably 30%. If the content of the inorganic filler powder is too small, the mechanical strength of the three-dimensional model tends to decrease. On the other hand, if the content of the inorganic filler powder is too large, the adhesion between the thermoplastic resin and the inorganic filler powder is inferior, and the mechanical strength of the three-dimensional model tends to decrease.
 次に、立体造形物の製造方法の一例を説明する。具体的には、光硬化性樹脂を含む樹脂組成物を用いた立体造形物の製造方法について説明する。なお樹脂組成物は既述の通りであり、ここでは説明を省略する。 Next, an example of a method for manufacturing a three-dimensional model will be described. Specifically, a method for producing a three-dimensional model using a resin composition containing a photocurable resin will be described. The resin composition is as described above, and description thereof will be omitted here.
 まず光硬化性樹脂組成物からなる1層の液状層を準備する。例えば液状の光硬化性樹脂組成物を満たした槽内に造形用ステージを設け、ステージ上面が液面から所望の深さ(例えば0.2mm程度)となるように位置させる。このようにすることで、ステージ上に液状層を準備することができる。 First, a single liquid layer made of a photocurable resin composition is prepared. For example, a modeling stage is provided in a tank filled with a liquid photocurable resin composition, and the upper surface of the stage is positioned so as to have a desired depth (for example, about 0.2 mm) from the liquid surface. By doing so, a liquid layer can be prepared on the stage.
 次に、この液状層に活性エネルギー線、例えば紫外線レーザーを照射して光硬化性樹脂を硬化させ、所定のパターンを有する硬化層を形成する。なお活性エネルギー線としては、紫外線の他に、可視光線、赤外線等のレーザー光を用いることができる。 Next, the liquid layer is irradiated with an active energy ray, for example, an ultraviolet laser to cure the photocurable resin to form a cured layer having a predetermined pattern. As the active energy ray, laser light such as visible light or infrared light can be used in addition to ultraviolet light.
 続いて、形成した硬化層上に、光硬化性樹脂組成物からなる新たな液状層を準備する。例えば、前記した造形用ステージを1層分下降させることにより、硬化層上に光硬化性樹脂組成物を導入し、新たな液状層を準備することができる。 Subsequently, a new liquid layer made of a photocurable resin composition is prepared on the formed cured layer. For example, by lowering the modeling stage by one layer, the photocurable resin composition can be introduced onto the cured layer, and a new liquid layer can be prepared.
 その後、硬化層上に準備した新たな液状層に活性エネルギー線を照射して、前記硬化層と連続した新たな硬化層を形成する。 After that, the new liquid layer prepared on the cured layer is irradiated with active energy rays to form a new cured layer continuous with the cured layer.
 以上の操作を繰り返すことによって硬化層を連続的に積層し、所定の立体造形物を得る。 By repeating the above operation, the cured layers are continuously laminated to obtain a predetermined three-dimensional model.
 以下、実施例に基づき本発明を説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described based on examples, but the present invention is not limited to these examples.
 表1は、本発明の実施例及び比較例で使用するガラス粉末A及びBを示す。表2は、本発明の実施例(No.2~4)と比較例(No.1)を示す。 Table 1 shows the glass powders A and B used in Examples and Comparative Examples of the present invention. Table 2 shows Examples (No. 2 to 4) and Comparative Examples (No. 1) of the present invention.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 (無機充填材粒子の作製)
 表1に記載のガラス組成となるように、原料粉末を調合して原料バッチを作製した。得られた原料バッチを1580~1600℃で均質になるまで溶融した後、一対のローラー間に流し出してフィルム状に成形した。
(Preparation of inorganic filler particles)
Raw material powders were mixed to prepare raw material batches so as to have the glass compositions shown in Table 1. The obtained raw material batch was melted at 1580 to 1600 ° C. until it became homogeneous, and then poured between a pair of rollers to form a film.
 得られたフィルム状ガラスをビーズミルを用いて粉砕し、得られたガラス粉末をテーブルフィーダーで炉内へ供給し、空気バーナーで1400~2000℃に加熱溶融して、球状化した。球状化したガラス粉末を気流式分級装置で分級することにより、ガラス粉末Aを得た。一方、上記で得られたフィルム状ガラスをボールミルを用いて粉砕し、得られたガラス粉末を気流式分級装置で分級することにより、破砕状のガラス粉末Bを得た。ガラス粉末A及びBに対してアミノシランにより表面処理を行った。 The obtained film-shaped glass was crushed using a bead mill, the obtained glass powder was supplied into a furnace with a table feeder, and heated and melted at 1400 to 2000 ° C. with an air burner to form spheroids. Glass powder A was obtained by classifying the spheroidized glass powder with an air flow type classifier. On the other hand, the film-like glass obtained above was pulverized using a ball mill, and the obtained glass powder was classified by an air flow type classifier to obtain a crushed glass powder B. The glass powders A and B were surface-treated with aminosilane.
 得られたガラス粉末A及びガラス粉末Bを表2に示す割合で混合することにより無機充填材粒子を得た。各試料における無機充填材粒子のレーザー回折散乱式粒度分布測定による粒度分布を示すグラフを図1に示す。 Inorganic filler particles were obtained by mixing the obtained glass powder A and glass powder B at the ratios shown in Table 2. FIG. 1 shows a graph showing the particle size distribution of the inorganic filler particles in each sample by laser diffraction scattering type particle size distribution measurement.
 (樹脂組成物の作製)
 硬化性樹脂(デジタルワックス社製 DL360)100質量部に対して、無機充填材粒子30質量部となるように秤量し、自公転ミキサー(シンキー社製 ARE-310)を用いて混合することにより樹脂組成物を得た。
(Preparation of resin composition)
Weigh 100 parts by mass of curable resin (DL360 manufactured by Digital Wax Co., Ltd.) so that the amount of inorganic filler particles is 30 parts by mass, and mix the resin using a self-revolving mixer (ARE-310 manufactured by Shinky Co., Ltd.). The composition was obtained.
 (無機充填材粒子の分散性評価)
 上記で得られた樹脂組成物10gを縦5mm×横30mm×高さ50mmのガラス容器に入れ、100時間経過に容器底部に沈降した無機充填材粒子の深さ(沈降量)を測定した。結果を表2に示す。
(Evaluation of dispersibility of inorganic filler particles)
10 g of the resin composition obtained above was placed in a glass container having a length of 5 mm, a width of 30 mm, and a height of 50 mm, and the depth (precipitation amount) of the inorganic filler particles settled on the bottom of the container was measured after 100 hours. The results are shown in Table 2.
 表2に示すように、実施例であるNo.2~4の樹脂組成物は沈降量が0.3~1.0mmであったのに対し、比較例であるNo.1の樹脂組成物は沈降量が3.0mmであった。 As shown in Table 2, No. The resin compositions of Nos. 2 to 4 had a precipitation amount of 0.3 to 1.0 mm, whereas No. 2 to No. 4 was a comparative example. The resin composition of No. 1 had a sedimentation amount of 3.0 mm.
 (立体造形物の作製)
 樹脂組成物をテフロン(登録商標)製の内寸50mm□の型枠に流し入れた。その後、500mW、波長364nmの光を照射して、硬化させ、80℃にてキュアを行った。得られた立体造形物を3mm×4mm×50mmの棒状に加工し、曲げ強度を測定した。結果を表2に示す。曲げ強度は、JIS R1601の方法で測定した。
(Making a three-dimensional model)
The resin composition was poured into a Teflon (registered trademark) mold having an inner size of 50 mm □. Then, it was irradiated with light of 500 mW and a wavelength of 364 nm, cured, and cured at 80 ° C. The obtained three-dimensional model was processed into a rod shape of 3 mm × 4 mm × 50 mm, and the bending strength was measured. The results are shown in Table 2. Bending strength was measured by the method of JIS R1601.
 表2に示すように、実施例であるNo.2~4の立体造形物の曲げ強度は84~94MPaであるのに対し、比較例であるNo.1の立体造形物の曲げ強度は78MPaと低かった。 As shown in Table 2, No. While the bending strength of the three-dimensional model 2 to 4 is 84 to 94 MPa, No. 2 is a comparative example. The bending strength of the three-dimensional model No. 1 was as low as 78 MPa.

Claims (11)

  1.  無機充填材粒子及び硬化性樹脂を含有する立体造形用樹脂組成物であって、無機充填材粒子のレーザー回折散乱式粒度分布測定による累積10%粒子径(D10)と累積50%粒子径(D50)との比D50/D10が2.1以上であることを特徴とする立体造形用樹脂組成物。 A resin composition for three-dimensional modeling containing inorganic filler particles and a curable resin, which has a cumulative 10% particle diameter (D 10 ) and a cumulative 50% particle diameter (D 10) and a cumulative 50% particle diameter (D 10) measured by laser diffraction / scattering particle size distribution measurement of the inorganic filler particles. A resin composition for three-dimensional modeling, characterized in that the ratio D 50 / D 10 to D 50) is 2.1 or more.
  2.  無機充填材粒子のレーザー回折散乱式粒度分布測定による累積50%粒子径(D50)が3~25μmであることを特徴とする請求項1に記載の立体造形用樹脂組成物。 The resin composition for three-dimensional modeling according to claim 1, wherein the cumulative 50% particle diameter (D 50 ) measured by laser diffraction / scattering particle size distribution measurement of the inorganic filler particles is 3 to 25 μm.
  3.  無機充填材粒子のレーザー回折散乱式粒度分布測定による累積10%粒子径(D10)が0.5~10μmであることを特徴とする請求項1または2に記載の立体造形用樹脂組成物。 The resin composition for three-dimensional modeling according to claim 1 or 2, wherein the cumulative 10% particle diameter (D 10 ) measured by laser diffraction / scattering particle size distribution measurement of the inorganic filler particles is 0.5 to 10 μm.
  4.  無機充填材粒子の粒度分布において、複数のピークを有することを特徴とする請求項1~3のいずれか一項に記載の立体造形用樹脂組成物。 The resin composition for three-dimensional modeling according to any one of claims 1 to 3, wherein the inorganic filler particles have a plurality of peaks in the particle size distribution.
  5.  無機充填材粒子がSiO、MgOまたはAlであることを特徴とする請求項1~4のいずれか一項に記載の立体造形用樹脂組成物。 The resin composition for three-dimensional modeling according to any one of claims 1 to 4, wherein the inorganic filler particles are SiO 2 , MgO or Al 2 O 3.
  6.  無機充填材粒子がガラスフィラーであることを特徴とする請求項1~5のいずれか一項に記載の立体造形用樹脂組成物。 The resin composition for three-dimensional modeling according to any one of claims 1 to 5, wherein the inorganic filler particles are glass fillers.
  7.  ガラスフィラーが、ガラス組成として、質量%で、SiO 20~70%、B 0~50%、Nb 0~20%、WO 0~20%を含有することを特徴とする請求項6に記載の立体造形用樹脂組成物。 Glass filler is a glass composition including, in mass%, and characterized in that it contains SiO 2 20 ~ 70%, B 2 O 3 0 ~ 50%, Nb 2 O 5 0 ~ 20%, a WO 3 0 ~ 20% The resin composition for three-dimensional modeling according to claim 6.
  8.  異なる粒度分布を有する大粒径粒子と小粒径粒子を含む無機充填材粒子、及び、硬化性樹脂を混合することを特徴とする立体造形用樹脂組成物の製造方法。 A method for producing a resin composition for three-dimensional modeling, which comprises mixing large particle size particles having different particle size distributions, inorganic filler particles containing small particle size particles, and a curable resin.
  9.  大粒径粒子及び小粒径粒子のレーザー回折散乱式粒度分布測定による累積10%粒子径(D10)及び累積50%粒子径(D50)が、以下の範囲を満たすことを特徴とする請求項8に記載の立体造形用樹脂組成物の製造方法。
     大粒径粒子のD10が5~9μmであり、D50が8~15μm
     小粒径粒子のD10が0.5~3μmであり、D50が1~6μm
    A claim characterized in that the cumulative 10% particle size (D 10 ) and the cumulative 50% particle size (D 50 ) by laser diffraction scattering type particle size distribution measurement of large particle size particles and small particle size particles satisfy the following ranges. Item 8. The method for producing a resin composition for three-dimensional modeling according to Item 8.
    The large particle size D 10 is 5-9 μm and the D 50 is 8-15 μm.
    D 10 of small particle size particles is 0.5 to 3 μm, and D 50 is 1 to 6 μm.
  10.  大粒径粒子と小粒径粒子の混合割合が、質量比で、95:5~30:70であることを特徴とする請求項8または9に記載の立体造形用樹脂組成物の製造方法。 The method for producing a resin composition for three-dimensional modeling according to claim 8 or 9, wherein the mixing ratio of the large particle size particles and the small particle size particles is 95: 5 to 30:70 in terms of mass ratio.
  11.  樹脂中に無機充填材粒子が分散してなる立体造形物であって、無機充填材粒子のレーザー回折散乱式粒度分布測定による累積10%粒子径(D10)と累積50%粒子径(D50)との比D50/D10が2.1以上であることを特徴とする立体造形物。 It is a three-dimensional model in which inorganic filler particles are dispersed in a resin, and has a cumulative 10% particle diameter (D 10 ) and a cumulative 50% particle diameter (D 50) measured by laser diffraction / scattering particle size distribution measurement of the inorganic filler particles. ) To D 50 / D 10 is 2.1 or more.
PCT/JP2020/033037 2019-09-12 2020-09-01 Resin composition for three-dimensional shaping WO2021049371A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021545238A JPWO2021049371A1 (en) 2019-09-12 2020-09-01

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019165901 2019-09-12
JP2019-165901 2019-09-12

Publications (1)

Publication Number Publication Date
WO2021049371A1 true WO2021049371A1 (en) 2021-03-18

Family

ID=74866594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033037 WO2021049371A1 (en) 2019-09-12 2020-09-01 Resin composition for three-dimensional shaping

Country Status (2)

Country Link
JP (1) JPWO2021049371A1 (en)
WO (1) WO2021049371A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024070415A1 (en) * 2022-09-29 2024-04-04 日鉄ケミカル&マテリアル株式会社 Dispersion composition, fluororesin film, metal-clad laminated board, and method for producing same
WO2024070495A1 (en) * 2022-09-29 2024-04-04 日鉄ケミカル&マテリアル株式会社 Resin composition, fluororesin film using same, and fluororesin metal-clad laminate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019112512A (en) * 2017-12-22 2019-07-11 日本電気硝子株式会社 Resin composition for three-dimensional molding
JP2019112513A (en) * 2017-12-22 2019-07-11 日本電気硝子株式会社 Resin composition for three-dimensional molding

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019112512A (en) * 2017-12-22 2019-07-11 日本電気硝子株式会社 Resin composition for three-dimensional molding
JP2019112513A (en) * 2017-12-22 2019-07-11 日本電気硝子株式会社 Resin composition for three-dimensional molding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024070415A1 (en) * 2022-09-29 2024-04-04 日鉄ケミカル&マテリアル株式会社 Dispersion composition, fluororesin film, metal-clad laminated board, and method for producing same
WO2024070495A1 (en) * 2022-09-29 2024-04-04 日鉄ケミカル&マテリアル株式会社 Resin composition, fluororesin film using same, and fluororesin metal-clad laminate

Also Published As

Publication number Publication date
JPWO2021049371A1 (en) 2021-03-18

Similar Documents

Publication Publication Date Title
JP6993623B2 (en) Resin composition for three-dimensional modeling, manufacturing method of three-dimensional modeling and inorganic filler particles
WO2021049371A1 (en) Resin composition for three-dimensional shaping
JP2022022290A (en) Resin composition
JP2019112283A (en) Method for producing glass filler
US10954362B2 (en) Resin composition for three-dimensional forming
JP6891394B2 (en) Manufacturing method of three-dimensional model
JP6812093B2 (en) Inorganic filler particles and resin composition for three-dimensional modeling using them
JP7101937B2 (en) Resin composition for three-dimensional modeling
JP7094490B2 (en) Glass, glass filler, and resin mixture
WO2016114031A1 (en) Resin composition for 3d modeling
WO2017221599A1 (en) Glass filler and method for production of same
JP6883271B2 (en) Inorganic filler particles
JP6670478B2 (en) Three-dimensional modeling resin composition
JP6481850B2 (en) Three-dimensional modeling resin composition
JP2016097517A (en) Production method of three-dimensional molded object
WO2022070971A1 (en) Glass filler powder
JP2017114701A (en) Production method of inorganic filler material
JP2020073333A (en) Resin components for three-dimensional modeling
WO2021132217A1 (en) Resin composition, resin composition for three-dimensional models, and dental resin composition
JP2020180171A (en) Resin composition, resin cured body and method for producing three-dimensional molding
US20230406754A1 (en) Glass and manufacturing method thereof
JP2017165621A (en) Method for producing inorganic filler particle
JP2016108432A (en) Resin composition for stereolithography
JP2021017040A (en) Resin composition, three-dimensional modeling object, and method for manufacturing three-dimensional modeling object
JP2018062571A (en) Resin composition for three-dimensional molding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20863895

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021545238

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20863895

Country of ref document: EP

Kind code of ref document: A1