WO2016114031A1 - Resin composition for 3d modeling - Google Patents

Resin composition for 3d modeling Download PDF

Info

Publication number
WO2016114031A1
WO2016114031A1 PCT/JP2015/084189 JP2015084189W WO2016114031A1 WO 2016114031 A1 WO2016114031 A1 WO 2016114031A1 JP 2015084189 W JP2015084189 W JP 2015084189W WO 2016114031 A1 WO2016114031 A1 WO 2016114031A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
glass
particles
inorganic filler
resin
Prior art date
Application number
PCT/JP2015/084189
Other languages
French (fr)
Japanese (ja)
Inventor
俣野高宏
藤田俊輔
中根慎護
石田勇治
山▲崎▼良憲
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to JP2016569256A priority Critical patent/JP6686909B2/en
Publication of WO2016114031A1 publication Critical patent/WO2016114031A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing

Definitions

  • the columnar particles are preferably made of glass having a Knoop hardness of 200 or more.
  • the columnar particles are preferably made of glass having a Young's modulus of 50 GPa or more.
  • “Knoop hardness” is measured by the method of JIS B7734, and “Young's modulus” is measured by the method of resonance method.
  • thermoplastic resin such as polyacetal, polyethylene terephthalate, polybutylene terephthalate, modified polyphenylene ether, polyphenylene sulfide, polysulfone, or polyethersulfone may be used.
  • B 2 O 3 is a component that forms a glass skeleton. It is a component that can easily improve chemical durability and suppress devitrification. B 2 O 3 is preferably 0 to 50%, 2.5 to 40%, particularly preferably 5 to 30%. When B 2 O 3 is large, it tends to decrease the melting property, hardly softened when the columnar particles forming, manufacturing becomes difficult. Also, when the B 2 O 3 is small, or made chemically durability tends to decrease, it becomes easy glass devitrified, there is a possibility that the production becomes difficult.
  • stainless steel or iron adhering to the surface is 1000 ⁇ g / g or less, 500 ⁇ g / g or less, particularly 100 ⁇ g / g or less.
  • Stainless steel and iron adhering to the surface cause a coloring to blacken the modeled object, and remarkable coloring occurs when mixed with the resin.
  • Stainless steel and iron adhering to the surface are often mixed from the grinding process. Therefore, if columnar particles are produced using glass fiber, the pulverization step is almost unnecessary, so that the adhesion of stainless steel and iron can be greatly reduced.
  • the liquid layer is irradiated with an active energy ray, for example, an ultraviolet laser to cure the photocurable resin, thereby forming a cured layer having a predetermined pattern.
  • an active energy ray for example, an ultraviolet laser to cure the photocurable resin, thereby forming a cured layer having a predetermined pattern.
  • an active energy beam in addition to ultraviolet rays, laser beams such as visible rays and infrared rays can be used.
  • the obtained three-dimensional object can be subjected to mechanical processing such as polishing or grinding on at least a part of its surface to obtain a final object.

Abstract

Provided is a resin composition for optical modeling in which it is possible to raise the mechanical strength. A resin composition for 3D modeling containing a curable resin and inorganic filler particles, wherein the resin composition is characterized in that the inorganic filler particles are columnar particles having a diameter of 1-20 μm and an aspect ratio (length/diameter) of 0.01-1.

Description

立体造形用樹脂組成物Three-dimensional modeling resin composition
 本発明は立体造形用樹脂組成物及びこれを用いた立体造形物の製造方法に関する。 The present invention relates to a resin composition for three-dimensional modeling and a method for manufacturing a three-dimensional model using the same.
 従来、樹脂材料等を積層させて立体造形物を得る方法が知られている。例えば光造形法、粉末焼結法、熱溶解積層(Fused deposition modeling:FDM)法等種々の方法が提案され実用化されている。 Conventionally, a method of obtaining a three-dimensional model by laminating resin materials or the like is known. For example, various methods such as an optical modeling method, a powder sintering method, and a hot-melt lamination (FDM) method have been proposed and put into practical use.
 例えば光造形法は、細やかな造形や正確なサイズ表現に優れており、広く普及している。この方法は以下のようにして立体造形物を作成するものである。まず液状の光硬化性樹脂を満たした槽内に造形ステージを設け、造形ステージ上の光硬化性樹脂に紫外線レーザーを照射して所望のパターンの硬化層を作成する。このようにして硬化層を1層造ると造形ステージを1層分だけ下げて、硬化層上に未硬化の樹脂を導入し、同様にして紫外線レーザーを光硬化性樹脂に照射して前記硬化層上に新たな硬化層を積み上げる。この操作を繰り返すことにより、所定の立体造形物を得る。また、粉末焼結法は、樹脂、金属、セラミックス、ガラスの粉末を満たした槽内に造形ステージを設け、造形ステージ上の粉末に半導体等のレーザーを照射し、軟化変形にて所望のパターンの硬化層を作製するものである。 For example, stereolithography is excellent in detailed modeling and accurate size expression, and is widely used. This method creates a three-dimensionally shaped object as follows. First, a modeling stage is provided in a tank filled with a liquid photocurable resin, and an ultraviolet laser is irradiated to the photocurable resin on the modeling stage to create a cured layer having a desired pattern. When one cured layer is formed in this way, the modeling stage is lowered by one layer, an uncured resin is introduced onto the cured layer, and similarly, the cured layer is irradiated with an ultraviolet laser. Stack a new hardened layer on top. By repeating this operation, a predetermined three-dimensional model is obtained. In addition, the powder sintering method has a modeling stage in a tank filled with resin, metal, ceramics, and glass powder, and the powder on the modeling stage is irradiated with a laser such as a semiconductor to form a desired pattern by softening deformation. A cured layer is produced.
特開平7-26060号公報Japanese Unexamined Patent Publication No. 7-26060
 光造形法等で作製される樹脂製の立体造形物は、細やかで精密であるが、機械的強度等に劣ることが指摘されている。そこで特許文献1で提案されているように、光硬化性樹脂に、ビーズ状粒子等を添加することが提案されている。 It has been pointed out that a resin-made three-dimensional model produced by an optical modeling method is fine and precise, but is inferior in mechanical strength or the like. Therefore, as proposed in Patent Document 1, it has been proposed to add bead-like particles or the like to the photocurable resin.
 本発明は、さらに機械的強度を高めることが可能な立体造形用樹脂組成物を提供することを目的とする。 An object of the present invention is to provide a resin composition for three-dimensional modeling that can further increase mechanical strength.
 本発明の立体造形用樹脂組成物は、硬化性樹脂と無機充填材粒子とを含む立体造形用樹脂組成物であって、無機充填材粒子が、直径1~20μm、アスペクト比(径/長さ)0.01~1の柱状粒子を含むことを特徴とする。ここで「柱状粒子」とは略円柱状又は略角柱状の粒子を意味する。「径」とは、柱状体の断面(長さ方向と直交する断面)の最大径と最小径の和を2で割った値を意味する。また断面の形状や大きさにバラつきがある場合は前記値の平均値とする。「アスペクト比」とは、柱状粒子の長さ(高さ)に対する径の比を意味する。 The resin composition for three-dimensional modeling of the present invention is a resin composition for three-dimensional modeling including a curable resin and inorganic filler particles, and the inorganic filler particles have a diameter of 1 to 20 μm and an aspect ratio (diameter / length). ) 0.01 to 1 columnar particles. Here, the “columnar particles” mean substantially columnar or prismatic particles. The “diameter” means a value obtained by dividing the sum of the maximum diameter and the minimum diameter of the cross section of the columnar body (cross section orthogonal to the length direction) by 2. If the cross-sectional shape and size vary, the average value is used. “Aspect ratio” means the ratio of the diameter to the length (height) of the columnar particles.
 上記構成を採用することによって、立体造形物の機械的強度を高めることができる。また樹脂組成物の粘度が上昇し過ぎて成形が困難になる事態を回避できる。 採用 By adopting the above configuration, the mechanical strength of the three-dimensional model can be increased. Further, it is possible to avoid a situation in which molding becomes difficult due to excessive increase in the viscosity of the resin composition.
 さらに適正なアスペクト比を有する柱状粒子を充填材として使用するため、立体造形物表面に充填材が多数突き出すことがない。また熱融解積層法では、造形時にワイヤー状樹脂から充填材が分離することなく造形ができる。 Furthermore, since columnar particles having an appropriate aspect ratio are used as the filler, a large number of fillers do not protrude from the surface of the three-dimensional structure. Moreover, in the hot melt lamination method, modeling can be performed without separating the filler from the wire-shaped resin during modeling.
 本発明においては、柱状粒子が、ガラスからなることが好ましい。 In the present invention, the columnar particles are preferably made of glass.
 上記構成を採用すれば、立体造形物に透明感や質感を付与し易くなり、審美性が向上する。また光造形法を使用する場合には、無機充填材粒子によって活性エネルギー線の照射が妨げられることがない。それゆえ無機充填材粒子を硬化性樹脂中に多量に導入することが可能となり、機械的強度の高い立体造形物を得ることが容易になる。 If the above configuration is adopted, it becomes easy to impart a sense of transparency and texture to the three-dimensional modeled object, and the aesthetics are improved. Moreover, when using an optical modeling method, irradiation of an active energy ray is not prevented by the inorganic filler particle. Therefore, it becomes possible to introduce a large amount of inorganic filler particles into the curable resin, and it becomes easy to obtain a three-dimensionally shaped article with high mechanical strength.
 本発明においては、柱状粒子が、ヌープ硬度が200以上のガラスからなることが好ましい。また柱状粒子が、ヤング率が50GPa以上のガラスからなることが好ましい。ここで「ヌープ硬度」はJIS B7734の方法で測定したものであり、「ヤング率」は共振法の方法で測定したものである。 In the present invention, the columnar particles are preferably made of glass having a Knoop hardness of 200 or more. The columnar particles are preferably made of glass having a Young's modulus of 50 GPa or more. Here, “Knoop hardness” is measured by the method of JIS B7734, and “Young's modulus” is measured by the method of resonance method.
 上記構成を採用すれば、機械的強度の高い立体造形物を得ることが容易になる。 If the above configuration is adopted, it becomes easy to obtain a three-dimensional shaped object with high mechanical strength.
 本発明においては、柱状粒子が、ガラス組成として、質量%でSiO+Al+B+P 50質量%以上含有するガラスからなることが好ましい。ここで「SiO+Al+B+P」とは、SiO、Al、B及びPの含有量の合量を意味する。 In the present invention, the columnar particles, as a glass composition, it is preferably made of glass containing SiO 2 + Al 2 O 3 + B 2 O 3 + P 2 O 5 50 wt% or more in mass%. Here, “SiO 2 + Al 2 O 3 + B 2 O 3 + P 2 O 5 ” means the total content of the contents of SiO 2 , Al 2 O 3 , B 2 O 3 and P 2 O 5 .
 上記構成を採用すれば、ガラスのネットワーク成分が多くなり、ヤング率やヌープ硬度の高いガラスとなる。その結果、機械的強度の高い立体造形物を得ることが容易になる。 If the above configuration is adopted, the glass has many network components, resulting in a glass having a high Young's modulus and Knoop hardness. As a result, it becomes easy to obtain a three-dimensional shaped object with high mechanical strength.
 本発明においては、体積%で、前記硬化性樹脂10~99%、前記無機充填材粒子1~90%を含有することが好ましい。 In the present invention, it is preferable that 10% to 99% of the curable resin and 1% to 90% of the inorganic filler particles are contained by volume.
 本発明においては、無機充填材粒子中に占める柱状粒子の割合が、体積%で0.1~100%であることが好ましい。 In the present invention, the ratio of columnar particles in the inorganic filler particles is preferably 0.1 to 100% by volume.
 上記構成を採用すれば、機械的強度の高い立体造形物を得ることが容易になる。 If the above configuration is adopted, it becomes easy to obtain a three-dimensional shaped object with high mechanical strength.
 本発明の立体造形物の製造方法は、樹脂組成物からなる液状層に選択的に活性エネルギー光線を照射して所定のパターンを有する硬化層を形成し、前記硬化層上に新たな液状層を形成した後に活性エネルギー線を照射して前記硬化層と連続した所定パターンを有する新たな硬化層を形成し、所定の立体造形物が得られるまで前記硬化層の積層を繰り返す立体造形物の製造方法であって、前記樹脂組成物として、上記した立体造形用樹脂組成物を使用することを特徴とする。 In the method for producing a three-dimensional structure according to the present invention, a liquid layer composed of a resin composition is selectively irradiated with active energy rays to form a cured layer having a predetermined pattern, and a new liquid layer is formed on the cured layer. A manufacturing method of a three-dimensional structure that repeats lamination of the hardened layer until a predetermined three-dimensional structure is obtained by forming a new hardened layer having a predetermined pattern continuous with the hardened layer by irradiation with active energy rays Then, the above-described resin composition for three-dimensional modeling is used as the resin composition.
 上記構成によれば、機械的強度の高い立体造形物を容易に作製することができる。 According to the above configuration, a three-dimensional shaped object with high mechanical strength can be easily produced.
 本発明の立体造形用樹脂組成物は、硬化性樹脂と無機充填材粒子とを含む。硬化性樹脂と無機充填材粒子の混合割合は、体積%で硬化性樹脂が10~99%、無機充填材粒子が1~90%であることが好ましい。より好ましくは、硬化性樹脂が20~95%、30~90%、40~85%、特に50~80%であり、無機充填材粒子が5~80%、10~70%、15~60%、20~50%、特に25~45%である。無機充填材粒子の割合が高すぎると、樹脂との接着する表面積が少なく機械的強度が低くなる。また光造形法を使用する場合は、硬化性樹脂の粘度が高くなり過ぎて造形ステージ上に新たな液状層を形成しにくくなる等の不具合が生じる。硬化性樹脂の割合が高すぎると無機充填材粒子の持つ強度や硬度をコンポジットに反映しにくくなる。また相対的に無機充填材粒子の含有量が低下することから造形物の機械的強度が低下する。 The resin composition for three-dimensional modeling of the present invention includes a curable resin and inorganic filler particles. The mixing ratio of the curable resin and the inorganic filler particles is preferably 10 to 99% for the curable resin and 1 to 90% for the inorganic filler particles by volume%. More preferably, the curable resin is 20 to 95%, 30 to 90%, 40 to 85%, particularly 50 to 80%, and the inorganic filler particles are 5 to 80%, 10 to 70%, 15 to 60%. 20 to 50%, especially 25 to 45%. When the ratio of the inorganic filler particles is too high, the surface area to be bonded to the resin is small and the mechanical strength is lowered. Moreover, when using an optical modeling method, the malfunction of the viscosity of curable resin becoming high too much and it becomes difficult to form a new liquid layer on a modeling stage arises. If the ratio of the curable resin is too high, it becomes difficult to reflect the strength and hardness of the inorganic filler particles in the composite. Moreover, since the content of the inorganic filler particles is relatively lowered, the mechanical strength of the shaped article is lowered.
 本発明の立体造形用樹脂組成物は、粘度が0.5~150Pa・s、1.0~100Pa・s、特に1.5~50Pa・sとなるように調整することが好ましい。樹脂組成物の粘度が小さすぎると無機充填材粒子が沈降、分離しやすくなることから、造形物にフィラーが入り難くなり、機械的強度の高い造形物を得難くなる。一方、150Pa・sより高いと連続的な積層が困難になる。 The resin composition for three-dimensional modeling of the present invention is preferably adjusted so that the viscosity is 0.5 to 150 Pa · s, 1.0 to 100 Pa · s, particularly 1.5 to 50 Pa · s. If the viscosity of the resin composition is too small, the inorganic filler particles are likely to settle and separate, making it difficult for the filler to enter the shaped article and obtaining a shaped article with high mechanical strength. On the other hand, if it is higher than 150 Pa · s, continuous lamination becomes difficult.
 本発明で使用する硬化性樹脂は、光硬化性樹脂、熱硬化性樹脂の何れであってもよく、採用する造形法によって適宜選択することができる。例えば光造形法を使用する場合は液状の光硬化性樹脂を選択すればよい。 The curable resin used in the present invention may be either a photocurable resin or a thermosetting resin, and can be appropriately selected depending on the modeling method employed. For example, when using an optical modeling method, a liquid photocurable resin may be selected.
 例えば光硬化性樹脂としては、重合性のビニル系化合物、エポキシ系化合物等種々の樹脂を選択することができる。また単官能性化合物や多官能性化合物のモノマーやオリゴマーが用いられる。これらの単官能性化合物、多官能性化合物は、特に限定されるものではない。例えば、以下に光硬化性樹脂の代表的なものを挙げる。 For example, as the photocurable resin, various resins such as a polymerizable vinyl compound and an epoxy compound can be selected. Monofunctional or polyfunctional compound monomers or oligomers are also used. These monofunctional compounds and polyfunctional compounds are not particularly limited. For example, typical examples of the photocurable resin are listed below.
 重合性のビニル系化合物の単官能性化合物としては、イソボルニルアクリレート、イソボルニルメタクリレート、ジンクロペンテニルアクリレート、ボルニルアクリレート、ボルニルメタクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、プロピレングリコールアクリレート、ビニルピロリドン、アクリルアミド、酢酸ビニル、スチレン等が挙げられる。また多官能性化合物としては、トリメチロールプロパントリアクリレート、EO変性トリメチロールプロパントリアクリレート、エチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ポリエチレングリコールジアクリレート、1,4-ブタンジオールジアクリレート、1,6-ヘキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、ジシクロペンテニルジアクリレート、ポリエステルジアクリレート、ジアリルフタレート等が挙げられる。これらの単官能性化合物や多官能性化合物の1種以上を単独又は混合物の形で使用することができる。 Monofunctional compounds of the polymerizable vinyl compound include isobornyl acrylate, isobornyl methacrylate, ginklopentenyl acrylate, bornyl acrylate, bornyl methacrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, propylene glycol Examples include acrylate, vinyl pyrrolidone, acrylamide, vinyl acetate, and styrene. Examples of the polyfunctional compound include trimethylolpropane triacrylate, EO-modified trimethylolpropane triacrylate, ethylene glycol diacrylate, tetraethylene glycol diacrylate, polyethylene glycol diacrylate, 1,4-butanediol diacrylate, 1,6 -Hexanediol diacrylate, neopentyl glycol diacrylate, dicyclopentenyl diacrylate, polyester diacrylate, diallyl phthalate and the like. One or more of these monofunctional compounds and polyfunctional compounds can be used alone or in the form of a mixture.
 ビニル系化合物の重合開始剤としては、光重合開始剤が用いられる。光重合開始剤としては、2,2-ジメトキシ-2-フェニルアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、アセトフェノン、ベンゾフェノン、キサントン、フルオレノン、ベズアルデヒド、フルオレン、アントラキノン、トリフェニルアミン、カルバゾール、3-メチルアセトフェノン、ミヒラーケトン等が代表的なものとして挙げることができ、これらの開始剤を1種または2種以上組み合わせて使用することができる。必要に応じてアミン系化合物等の増感剤を併用することも可能である。これらの重合開始剤の使用量は、ビニル系化合物に対してそれぞれ0.1~10質量%であることが好ましい。 As the polymerization initiator for the vinyl compound, a photopolymerization initiator is used. Photopolymerization initiators include 2,2-dimethoxy-2-phenylacetophenone, 1-hydroxycyclohexyl phenyl ketone, acetophenone, benzophenone, xanthone, fluorenone, bezaldehyde, fluorene, anthraquinone, triphenylamine, carbazole, 3-methylacetophenone Michler's ketone and the like can be mentioned as typical ones, and these initiators can be used alone or in combination of two or more. If necessary, a sensitizer such as an amine compound can be used in combination. The amount of these polymerization initiators used is preferably 0.1 to 10% by mass relative to the vinyl compound.
 エポキシ系化合物としては、水素添加ビスフェノールAジグリシジルエーテル、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、2-(3,4-エポキシシクロヘキシル-5,5-スピロ-3,4-エポキシ)シクロヘキサン-m-ジオキサン、ビス(3,4-エポキシシクロヘキシルメチル)アジペート等が挙げられる。これらのエポキシ系化合物を用いる場合には、トリフェニルスルホニウムヘキサフルオロアンチモネート等のエネルギー活性カチオン開始剤を用いることができる。 Epoxy compounds include hydrogenated bisphenol A diglycidyl ether, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, 2- (3,4-epoxycyclohexyl-5,5-spiro-3,4 -Epoxy) cyclohexane-m-dioxane, bis (3,4-epoxycyclohexylmethyl) adipate and the like. When using these epoxy compounds, an energy active cationic initiator such as triphenylsulfonium hexafluoroantimonate can be used.
 さらに光硬化性樹脂には、レベリング剤、界面活性剤、有機高分子化合物、有機可塑剤等を必要に応じて添加してもよい。 Furthermore, a leveling agent, a surfactant, an organic polymer compound, an organic plasticizer, etc. may be added to the photocurable resin as necessary.
 また粉末焼結法、熱融解積層法等を採用する場合は、硬化性樹脂に代えて、ポリプロピレン、ポリエチレン、ABS樹脂、ポリカーボネート、ポリエーテルエーテルケトン、ポリアミド、熱可塑性ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリアセタール、ポリエチレンテレフタレート、ポリブチレンテレフタレート、変性ポリフェニレンエーテル、ポリフェニレンサルファイド、ポリスルホン、ポリエーテルスルホン等の熱可塑性樹脂を使用すればよい。 In addition, when adopting powder sintering method, heat melting lamination method, etc., instead of curable resin, polypropylene, polyethylene, ABS resin, polycarbonate, polyetheretherketone, polyamide, thermoplastic polyimide, polyamideimide, polyetherimide A thermoplastic resin such as polyacetal, polyethylene terephthalate, polybutylene terephthalate, modified polyphenylene ether, polyphenylene sulfide, polysulfone, or polyethersulfone may be used.
 なお粉末焼結法では、樹脂粉末と柱状粒子とを混合した混合粉末として使用すればよい。熱融解積層法では、樹脂中に柱状粒子を配合したワイヤー状にして使用すればよい。なお熱融解積層法では、ワイヤーの軸方向に配向性を持たせて柱状粒子を配合することが重要である。 In the powder sintering method, a mixed powder obtained by mixing resin powder and columnar particles may be used. In the hot melt lamination method, a wire shape in which columnar particles are blended in a resin may be used. In the hot melt lamination method, it is important to blend the columnar particles with orientation in the axial direction of the wire.
 本発明で使用する無機充填材粒子には、柱状粒子を含む。柱状粒子は、直径が1~20μm、2.5~17.5μm、5~15μm、6~12.5μm、特に7~10μmであることが好ましく、アスペクト比(径/長さ)が0.01~1であり、好ましくは0.05~1、0.1~1、0.2~1、特に0.25~0.8が好ましい。柱状粒子の直径が小さすぎると機械的強度向上の効果が得られ難く、不都合があり、大きすぎると硬化性樹脂の粘度が上昇して立体成形が困難になる不都合がある。また柱状粒子のアスペクト比が小さすぎると硬化性樹脂の粘度が上昇して立体成形が困難になり、柱状粒子のアスペクト比が大きすぎると機械的強度向上効果が小さくなる。 The inorganic filler particles used in the present invention include columnar particles. The columnar particles preferably have a diameter of 1 to 20 μm, 2.5 to 17.5 μm, 5 to 15 μm, 6 to 12.5 μm, particularly 7 to 10 μm, and an aspect ratio (diameter / length) of 0.01. To 1, preferably 0.05 to 1, 0.1 to 1, 0.2 to 1, particularly preferably 0.25 to 0.8. If the diameter of the columnar particles is too small, it is difficult to obtain the effect of improving the mechanical strength, and if it is too large, the viscosity of the curable resin is increased and three-dimensional molding becomes difficult. On the other hand, if the aspect ratio of the columnar particles is too small, the viscosity of the curable resin is increased and three-dimensional molding becomes difficult. If the aspect ratio of the columnar particles is too large, the effect of improving the mechanical strength is decreased.
 柱状粒子は、立体造形物に透明感や質感を与えたり、光造形法を用いる場合に光効果性樹脂の硬化を妨げない、という観点からガラス製であることが好ましい。ガラス製柱状粒子は、例えばジェットミル粉砕やライカイ機で短時間粉砕する方法によって作製することができる。この方法で作製すれば、粒子端面にエッジが残りにくくなり、柱状粒子同士が絡み合うことを防止しやすくなる。その結果、造形品表面に柱状粒子の先端が突き出る事態を効果的に回避することが可能になる。 The columnar particles are preferably made of glass from the viewpoint of giving a three-dimensional structure a sense of transparency and texture, and not hindering the curing of the light-effective resin when using an optical modeling method. The glass columnar particles can be produced by, for example, a jet mill pulverization method or a method of pulverizing for a short time using a likai machine. If it produces by this method, it will become difficult to leave an edge on a particle | grain end surface, and it will become easy to prevent that columnar particle | grains get entangled. As a result, it is possible to effectively avoid the situation where the tip of the columnar particle protrudes from the surface of the shaped article.
 柱状粒子を構成するガラスの組成は特に制限されないが、後述するヌープ硬度やヤング率の範囲を満たすガラスを採用することが好ましい。このような特性を得やすい組成条件としては、質量%でSiO+Al+B+P 50質量%以上、52.5質量%以上、特に55質量%以上含有するガラスを選択することが好ましい。SiO+Al+B+Pの含有量が少なすぎると、ガラスのヤング率やヌープ硬度が低下し、立体造形物に対する機械的強度の向上効果が低下する。上記条件を満たすガラスの具体例として、例えば質量%で、SiO 30~80%、Al 0~50%、B 0~50%、P0~50%、SiO+Al+B+P 50%以上含有するガラスが挙げられる。以下にガラス組成を上記のように限定した理由を説明する。なお以下の説明において特に断りがない限り「%」は質量%を表す。 The composition of the glass constituting the columnar particles is not particularly limited, but it is preferable to employ a glass that satisfies the Knoop hardness and Young's modulus ranges described below. As composition conditions for easily obtaining such characteristics, glass containing SiO 2 + Al 2 O 3 + B 2 O 3 + P 2 O 5 in an amount of 50% by mass or more, 52.5% by mass or more, and particularly 55% by mass or more is contained. It is preferable to select. When the content of SiO 2 + Al 2 O 3 + B 2 O 3 + P 2 O 5 is too small, the Young's modulus and Knoop hardness of the glass is lowered and the effect of improving the mechanical strength against the three-dimensional object is reduced. Specific examples of the glass satisfying the above conditions include, for example, by mass%, SiO 2 30-80%, Al 2 O 3 0-50%, B 2 O 3 0-50%, P 2 O 5 0-50%, SiO 2 Examples include glass containing 50% or more of 2 + Al 2 O 3 + B 2 O 3 + P 2 O 5 . The reason for limiting the glass composition as described above will be described below. In the following description, “%” represents mass% unless otherwise specified.
 SiOはガラス骨格を形成する成分である。化学耐久性を向上させやすく、失透性を抑制できる成分である。SiOは、30~80%、40~70%、特に45~65%であることが好ましい。SiOが多いと、溶融性が低下しやすく、柱状粒子成形時に軟化しにくく、製造が困難になる。また、SiOが少ないと、化学耐久性が低下しやすくなったり、ガラスが失透しやすくなり、製造が困難になる。 SiO 2 is a component that forms a glass skeleton. It is a component that can easily improve chemical durability and suppress devitrification. SiO 2 is preferably 30 to 80%, 40 to 70%, particularly 45 to 65%. When SiO 2 is large, it tends to decrease the melting property, hardly softened when the columnar particles forming, manufacturing becomes difficult. Further, when SiO 2 is small, or made chemically durability tends to decrease, it becomes easy glass devitrified, production becomes difficult.
 Alはガラス化安定成分である。化学耐久性を向上させやすく、失透性を抑制できる成分である。Alは、0~50%、2.5~40%、特に5~30%であることが好ましい。Alが多いと、溶融性が低下しやすく、柱状粒子成形時に軟化しにくく、製造が困難になる。また、Alが少ないと、化学耐久性が低下しやすくなったり、ガラスが失透しやすくなり、製造が困難になる可能性がある。 Al 2 O 3 is a vitrification stable component. It is a component that can easily improve chemical durability and suppress devitrification. Al 2 O 3 is preferably 0 to 50%, 2.5 to 40%, particularly preferably 5 to 30%. When al 2 O 3 is large, it tends to decrease the melting property, hardly softened when the columnar particles forming, manufacturing becomes difficult. Further, when the Al 2 O 3 is small, or made chemically durability tends to decrease, it becomes easy glass devitrified, there is a possibility that the production becomes difficult.
 Bはガラス骨格を形成する成分である。化学耐久性を向上させやすく、失透性を抑制できる成分である。Bは、0~50%、2.5~40%、特に5~30%であることが好ましい。Bが多いと、溶融性が低下しやすく、柱状粒子成形時に軟化しにくく、製造が困難になる。また、Bが少ないと、化学耐久性が低下しやすくなったり、ガラスが失透しやすくなり、製造が困難になる可能性がある。 B 2 O 3 is a component that forms a glass skeleton. It is a component that can easily improve chemical durability and suppress devitrification. B 2 O 3 is preferably 0 to 50%, 2.5 to 40%, particularly preferably 5 to 30%. When B 2 O 3 is large, it tends to decrease the melting property, hardly softened when the columnar particles forming, manufacturing becomes difficult. Also, when the B 2 O 3 is small, or made chemically durability tends to decrease, it becomes easy glass devitrified, there is a possibility that the production becomes difficult.
 Pはガラス骨格を形成する成分である。化学耐久性を向上させやすく、失透性を抑制できる成分である。Pは、0~50%、2.5~40%、特に5~30%が好ましい。Pが多いと、溶融性が低下しやすく、柱状粒子成形時に軟化しにくく、製造が困難になる。また、Pが少ないと、ガラスが失透しやすくなり、製造が困難になる可能性がある。 P 2 O 5 is a component that forms a glass skeleton. It is a component that can easily improve chemical durability and suppress devitrification. P 2 O 5 is preferably 0 to 50%, 2.5 to 40%, particularly preferably 5 to 30%. When P 2 O 5 is large, it tends to decrease the melting property, hardly softened when the columnar particles forming, manufacturing becomes difficult. Further, when the P 2 O 5 is less, the glass is easily devitrified, there is a possibility that the production becomes difficult.
 また上記以外にも、ガラス組成中のMgO、CaO、SrO、BaO及びZnOを合量で0.1~50質量%、1.0~40%、さらに2~30%添加することが好ましい。これらの成分は、ガラスの耐久性を大きく低下させずにガラスの粘度を低下させやすい成分である。 In addition to the above, MgO, CaO, SrO, BaO and ZnO in the glass composition are preferably added in a total amount of 0.1 to 50% by mass, 1.0 to 40%, and more preferably 2 to 30%. These components are components that tend to lower the viscosity of the glass without significantly reducing the durability of the glass.
 なお着色を抑制するために、ガラス組成中のFe、NiO、Cr及びCuOの含有量が合量で1%以下、0.75%以下、0.50%以下、0.25%以下、0.10%以下、0.05%以下、特に0.01%以下であることが好ましい。またガラス組成中のTiO、WO、La、Gd3、及びBiの含有量は合量で5%以下、2.5%以下、特に1.0%以下とすることが好ましい。これらの成分の範囲を上記のように限定すれば、柱状粒子の着色を抑制し易くなることや屈折率や密度の上昇が抑制できることから、無色透明で均一な立体造形物を容易に得ることができる。また、ガラス組成中のNaO、KO、LiOの含有量は合量で5%以下、2.5%以下、1.0%以下、特に0.5%以下とすることが好ましい。これらの成分の範囲を上記のように限定すれば、ガラスの耐久性を向上でき、樹脂の劣化を抑制することができる。さらに環境上の理由から、ガラス組成中に含まれる鉛、アンチモン、ヒ素、塩素及び硫黄の含有量は合量で1%以下、0.5%以下、特に0.1%以下とすることが好ましい。 In order to suppress coloring, the total content of Fe 2 O 3 , NiO, Cr 2 O 3, and CuO in the glass composition is 1% or less, 0.75% or less, 0.50% or less, 0. It is preferably 25% or less, 0.10% or less, 0.05% or less, and particularly preferably 0.01% or less. Further, the total content of TiO 2 , WO 3 , La 2 O 3 , Gd 2 O 3 and Bi 2 O 3 in the glass composition is 5% or less, 2.5% or less, particularly 1.0% or less. It is preferable to do. If the range of these components is limited as described above, it is easy to suppress the coloring of the columnar particles and the increase in the refractive index and density can be suppressed, so that it is possible to easily obtain a colorless, transparent, and uniform three-dimensional structure. it can. The total content of Na 2 O, K 2 O, and Li 2 O in the glass composition is 5% or less, 2.5% or less, 1.0% or less, and particularly 0.5% or less. preferable. If the range of these components is limited as described above, the durability of the glass can be improved and the deterioration of the resin can be suppressed. Furthermore, for environmental reasons, the total content of lead, antimony, arsenic, chlorine and sulfur contained in the glass composition is preferably 1% or less, 0.5% or less, particularly preferably 0.1% or less. .
 さらに、表面に付着するステンレスや鉄が1000μg/g以下、500μg/g以下、特に100μg/g以下であることが好ましい。表面に付着したステンレスや鉄は、造形物を黒化させる着色原因となり、樹脂と混ぜた際に顕著な着色がおこる。表面に付着するステンレスや鉄は、粉砕工程から混入することが多い。そこでガラスファイバーを用いて柱状粒子を作製すれば、粉砕工程が殆ど必要なくなるため、ステンレスや鉄の付着を大幅に低減できる。 Furthermore, it is preferable that stainless steel or iron adhering to the surface is 1000 μg / g or less, 500 μg / g or less, particularly 100 μg / g or less. Stainless steel and iron adhering to the surface cause a coloring to blacken the modeled object, and remarkable coloring occurs when mixed with the resin. Stainless steel and iron adhering to the surface are often mixed from the grinding process. Therefore, if columnar particles are produced using glass fiber, the pulverization step is almost unnecessary, so that the adhesion of stainless steel and iron can be greatly reduced.
 柱状粒子は、ヌープ硬度が200以上、300以上、特に350以上のガラスからなることが好ましい。ヌープ硬度が低すぎるガラスを使用すると立体造形物の機械的強度向上効果が小さくなる。また柱状粒子は、ビーズ状粒子に比べると樹脂の粘度を高めやすいことから、含有量が制限される場合がある。このような場合、ヌープ硬度がより高いガラスを選択することが好ましい。 The columnar particles are preferably made of glass having a Knoop hardness of 200 or more, 300 or more, particularly 350 or more. If glass with Knoop hardness is too low, the effect of improving the mechanical strength of the three-dimensional structure is reduced. Moreover, since the columnar particles tend to increase the viscosity of the resin compared to the bead-shaped particles, the content may be limited. In such a case, it is preferable to select a glass having a higher Knoop hardness.
 柱状粒子は、ヤング率が50GPa以上、55GPa以上、特に60GPa以上のガラスからなることが好ましい。ヤング率が低すぎるガラスを使用すると立体造形物の機械的強度向上効果が小さくなる。また柱状粒子は、ビーズ状粒子に比べると樹脂の粘度を高めやすいことから、含有量が制限される場合がある。このような場合、ヤング率がより高いガラスを選択することが好ましい。 The columnar particles are preferably made of glass having a Young's modulus of 50 GPa or more, 55 GPa or more, particularly 60 GPa or more. If glass with a Young's modulus that is too low is used, the effect of improving the mechanical strength of the three-dimensional structure is reduced. Moreover, since the columnar particles tend to increase the viscosity of the resin compared to the bead-shaped particles, the content may be limited. In such a case, it is preferable to select a glass having a higher Young's modulus.
 柱状粒子は、得られる造形物の透明性を高める観点から、可視域(400~700nm)における平均透過率が30%以上、50%以上、特に70%以上であるガラスからなることが望ましい。 The columnar particles are preferably made of glass having an average transmittance of 30% or more, 50% or more, particularly 70% or more in the visible region (400 to 700 nm) from the viewpoint of enhancing the transparency of the resulting molded article.
 無機充填材粒子は、柱状粒子のみで構成してもよいが、柱状粒子とともに破砕状粒子、ビーズ状粒子、ファイバー状粒子等を用いることができる。またこれらの粒子は、ガラス製、セラミック製等材質は問わないが、ガラス製粒子を採用する場合、立体造形物に透明感や質感を与えたり、光造形法を用いる場合に光効果性樹脂の硬化を妨げない、というメリットを享受できる。またガラス製とする場合、既述の組成、特性を有するガラスで構成することが好ましい。なおビーズ状粒子や破砕状粒子を柱状粒子と同一材質で構成すれば生産コストの面から有利である。またビーズ状粒子は柱状粒子等に比べると樹脂の粘度を高め難いことから、多量に含有できる場合があり、このような場合にはビーズ状粒子は柱状粒子等よりもヌープ硬度やヤング率が低いガラスで形成されていてもよい。 The inorganic filler particles may be composed only of columnar particles, but crushed particles, bead-shaped particles, fiber-shaped particles and the like can be used together with the columnar particles. These particles may be made of any material such as glass or ceramic. However, when glass particles are used, a three-dimensional object is given transparency and texture, or a photo-effective resin is used when using an optical modeling method. Benefit from not hindering curing. Moreover, when making it from glass, it is preferable to comprise by the glass which has the composition and characteristic as stated above. It is advantageous from the viewpoint of production cost if the bead-like particles and the crushed particles are made of the same material as the columnar particles. In addition, since the bead-like particles are difficult to increase the viscosity of the resin as compared with the columnar particles, it may be contained in a large amount. In such a case, the bead-like particles have lower Knoop hardness or Young's modulus than the columnar particles. It may be formed of glass.
 無機充填材粒子中に占める柱状粒子の割合は、体積%で1~100%、2.5~90%、特に5~80%であることが好ましい。柱状粒子の割合が低すぎると機械的強度の向上効果が望めない。 The ratio of the columnar particles in the inorganic filler particles is preferably 1 to 100%, 2.5 to 90%, particularly 5 to 80% by volume. If the ratio of the columnar particles is too low, the effect of improving the mechanical strength cannot be expected.
 無機充填材粒子は、その表面がシランカップリング剤によって処理されていることが好ましい。シランカップリング剤で処理すれば、無機充填材粒子と硬化性樹脂の結合力を高めることができ、より機械的強度の優れた造形物を得ることが可能になる。さらに、無機充填材粒子と硬化性樹脂のなじみがよくなり、界面の泡が減少でき、光散乱を抑制できる。シランカップリング剤としては、例えばアミノシラン、エポキシシラン、アクリルシラン等が好ましい。なおシランカップリング剤は、用いる硬化性樹脂によって適宜選択すればよく、例えば光硬化性樹脂としてビニル系不飽和化合物を用いる場合にはアクリルシラン系シランカップリング剤が最も好ましく、またエポキシ系化合物を用いる場合にはエポキシシラン系シランカップリング剤を用いることが望ましい。 The surface of the inorganic filler particles is preferably treated with a silane coupling agent. By treating with a silane coupling agent, it is possible to increase the bonding strength between the inorganic filler particles and the curable resin, and it is possible to obtain a shaped article with more excellent mechanical strength. Furthermore, the familiarity between the inorganic filler particles and the curable resin is improved, the bubbles at the interface can be reduced, and light scattering can be suppressed. As the silane coupling agent, for example, aminosilane, epoxy silane, acrylic silane and the like are preferable. The silane coupling agent may be appropriately selected depending on the curable resin to be used. For example, when a vinyl unsaturated compound is used as the photocurable resin, an acrylic silane silane coupling agent is most preferable, and an epoxy compound is used. When used, it is desirable to use an epoxy silane-based silane coupling agent.
 さらに、無機充填剤や硬化性樹脂に酸化物ナノ粒子を、樹脂組成物に対して1%以下の割合で添加してもよい。酸化物ナノ粒子は、ZrO、Al、SiO等が使用できる。尚、酸化物ナノ粒子は、可視光波長より小さい粒子であり、光散乱を発生しにくい。 Furthermore, you may add an oxide nanoparticle to an inorganic filler and curable resin in the ratio of 1% or less with respect to the resin composition. As the oxide nanoparticles, ZrO 2 , Al 2 O 3 , SiO 2 or the like can be used. Note that the oxide nanoparticles are particles smaller than the visible light wavelength, and hardly cause light scattering.
 次に上記した樹脂組成物を用いた本発明の立体造形物の製造方法を、光造形法を用いて説明する。なお樹脂組成物は既述の通りであり、ここでは説明を省略する。 Next, the manufacturing method of the three-dimensional model | molding of this invention using the above-mentioned resin composition is demonstrated using the optical modeling method. The resin composition is as described above, and the description is omitted here.
 まず光硬化性樹脂組成物からなる1層の液状層を用意する。例えば液状の光硬化性樹脂組成物を満たした槽内に、造形用ステージを設け、ステージ上面が液面から所望の深さ、(例えば0.2mm程度)となるように位置させる。このようにすることで、ステージ上に厚さ約0.1~0.2mmの液状層を用意することができる。 First, one liquid layer made of a photocurable resin composition is prepared. For example, a modeling stage is provided in a tank filled with a liquid photocurable resin composition, and the stage upper surface is positioned so as to have a desired depth (for example, about 0.2 mm) from the liquid surface. In this way, a liquid layer having a thickness of about 0.1 to 0.2 mm can be prepared on the stage.
 次にこの液状層に、活性エネルギー光線、例えば紫外線レーザーを照射して光硬化性樹脂を硬化させ、所定のパターンを有する硬化層を形成する。なお活性エネルギー光線としては、紫外線の他に、可視光線、赤外線等のレーザー光を用いることができる。 Next, the liquid layer is irradiated with an active energy ray, for example, an ultraviolet laser to cure the photocurable resin, thereby forming a cured layer having a predetermined pattern. As the active energy beam, in addition to ultraviolet rays, laser beams such as visible rays and infrared rays can be used.
 次いで形成した硬化層上に、光硬化性樹脂組成物からなる新たな液状層を準備する。例えば、前記した造形用ステージを1層分下降させることにより、硬化層上に光硬化性樹脂を導入し、新たな液状層を用意することができる。 Next, a new liquid layer made of the photocurable resin composition is prepared on the formed cured layer. For example, by lowering the modeling stage by one layer, a photocurable resin can be introduced onto the cured layer, and a new liquid layer can be prepared.
 続いて、硬化層上に用意した新たな液状層に活性エネルギー線を照射して、前記硬化層と連続した新たな硬化層を形成し、この操作を繰り返すことによって硬化層を連続的に積層し、所定の立体造形物を得る。 Subsequently, a new liquid layer prepared on the hardened layer is irradiated with active energy rays to form a new hardened layer continuous with the hardened layer, and the cured layer is continuously laminated by repeating this operation. A predetermined three-dimensional model is obtained.
 なお無機充填材粒子の充填を均質にしたり、配向性を高める目的で、造形時に振動を付与してもよい。また必要に応じて、得られた立体造形物に対して、その表面の少なくとも一部に研磨や研削等の機械加工を施して最終的な造形物とすることもできる。 In addition, you may give a vibration at the time of shaping | molding in order to make the filling of an inorganic filler particle uniform or to improve orientation. If necessary, the obtained three-dimensional object can be subjected to mechanical processing such as polishing or grinding on at least a part of its surface to obtain a final object.
 以下に本発明の立体造形用樹脂組成物を実施例に基づいて説明する。表1は本発明の実施例(試料No.1~8)及び比較例(No.9、10)を示している。なおNo.9は無機充填粉末を含まずに作製した参考例である。 Hereinafter, the resin composition for three-dimensional modeling of the present invention will be described based on examples. Table 1 shows examples of the present invention (sample Nos. 1 to 8) and comparative examples (Nos. 9 and 10). No. Reference numeral 9 is a reference example prepared without containing inorganic filler powder.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(光硬化性樹脂の調製)
 まずイソホロンジイソシアネート、モルホリンアクリルアミドおよびジブチル錫ジラウレートをオイルバスで加熱した。グリセリンモノメタクリレートモノアクリレートにメチルヒドロキノンを均一に混合溶解させた液を入れ撹拌混合して、反応させた。ペンタエリスリトールのプロピレンオキサイド4モル付加物(ペンタエリスリトールの4個の水酸基にプロピレンオキサイドをそれぞれ1モル付加したもの)を加え、反応させて、ウレタンアクリレートオリゴマーとモルホリンアクリルアミドを含む反応生成物を製造した。
(Preparation of photocurable resin)
First, isophorone diisocyanate, morpholine acrylamide and dibutyltin dilaurate were heated in an oil bath. A liquid in which methylhydroquinone was uniformly mixed and dissolved in glycerin monomethacrylate monoacrylate was added and mixed by stirring to react. A propylene oxide 4 mol adduct of pentaerythritol (1 mol of propylene oxide added to 4 hydroxyl groups of pentaerythritol) was added and reacted to produce a reaction product containing a urethane acrylate oligomer and morpholine acrylamide.
 得られたウレタンアクリレートオリゴマーとモルホリンアクリルアミドに、モルホリンアクリルアミド、ジシクロペンタニルジアクリレートを添加した。さらに、1-ヒドロキシシクロヘキシルフェニルケトン(光重合開始剤)を添加し、無色透明なアクリル系光硬化性樹脂を得た。このアクリル系光硬化性樹脂は、粘度が1Pa・s、ヌープ硬度が11であった。 Morpholine acrylamide and dicyclopentanyl diacrylate were added to the obtained urethane acrylate oligomer and morpholine acrylamide. Further, 1-hydroxycyclohexyl phenyl ketone (photopolymerization initiator) was added to obtain a colorless and transparent acrylic photocurable resin. This acrylic photocurable resin had a viscosity of 1 Pa · s and a Knoop hardness of 11.
(柱状粒子の調製)
 まずガラス組成として質量%で、SiO 69%、Al19%、MgO 2%、CaO 6%、SrO 3%、BaO 1%含有するガラスとなるように調合した原料を1500℃で4時間溶融した後、ブッシング炉に供給し、ブッシングノズルから、平均径5μmのファイバー状ガラスを引き出した。このファイバー状ガラスを表中に示す長さに切断することでガラス製の略円柱状の柱状粒子を得た。なお柱状粒子を構成するガラスのヌープ硬度及びヤング率を測定したところ、ヌープ硬度は540、ヤング率は79GPaであった。また、表面に付着するステンレスや鉄のコンタミを測定したところ、10μg/gであった。
(Preparation of columnar particles)
First, raw materials prepared so as to contain a glass composition containing 4% by mass of SiO 2 69%, Al 2 O 3 19%, MgO 2%, CaO 6%, SrO 3%, BaO 1% at 1500 ° C. After melting for a time, it was supplied to a bushing furnace, and fiber glass with an average diameter of 5 μm was drawn out from the bushing nozzle. The fiber-like glass was cut to a length shown in the table to obtain a substantially cylindrical columnar particle made of glass. When the Knoop hardness and Young's modulus of the glass constituting the columnar particles were measured, the Knoop hardness was 540 and the Young's modulus was 79 GPa. Moreover, when the contamination of stainless steel and iron adhering to the surface was measured, it was 10 μg / g.
(ビーズ状粒子の調製)
 柱状粒子と同じガラス組成により溶融したガラスを粉砕し、平均粒径5μmの粉末ガラスを作製した。この粉末を酸素バーナーのフレームに当て、球状(ビーズ状)に成形した。その後、分級をすることで平均粒径5μmのガラス製ビーズ状粒子を得た。
(Preparation of bead-like particles)
Glass melted with the same glass composition as the columnar particles was pulverized to produce powdered glass having an average particle size of 5 μm. This powder was applied to an oxygen burner frame and formed into a spherical shape (bead shape). Thereafter, classification was performed to obtain glass bead-like particles having an average particle diameter of 5 μm.
(光造形用樹脂組成物の調製及び硬化)
 表1に示す割合で、光硬化性樹脂に無機充填材粒子(柱状粒子及び/又はビーズ状粒子)を添加し、3本ローラーにより混練を行い、均質に無機充填材粒子を分散させたペースト状の光硬化性樹脂を得た。なお光硬化性樹脂(硬化前)の粘度を表1に示す。
(Preparation and curing of resin composition for stereolithography)
Paste form in which inorganic filler particles (columnar particles and / or bead-like particles) are added to the photocurable resin at the ratio shown in Table 1 and kneaded with three rollers to uniformly disperse the inorganic filler particles. The photocurable resin was obtained. The viscosity of the photocurable resin (before curing) is shown in Table 1.
 このペースト状樹脂をテフロン(登録商標)製の内寸30mm□の型枠に流し入れた。その後、500mW、波長364nmの光を照射して、硬化させ、80℃にてキュアを行った。 The paste-like resin was poured into a mold made of Teflon (registered trademark) with an inner size of 30 mm □. Thereafter, it was cured by irradiation with light having a wavelength of 500 mW and a wavelength of 364 nm, and cured at 80 ° C.
(機械的強度の評価)
 得られた試料について、ヌープ硬度及び曲げ強度を測定したところ、ヌープ硬度が18以上、曲げ強度が90MPa以上であった。これに対して柱状粒子を含まない試料No.10は、無機充填材粒子の含有量が同じである試料No.5と比べて、ヌープ硬度は同等であったものの、曲げ強度が低かった。
(Evaluation of mechanical strength)
When the Knoop hardness and bending strength of the obtained sample were measured, the Knoop hardness was 18 or more and the bending strength was 90 MPa or more. On the other hand, sample no. No. 10 is a sample No. 10 having the same content of inorganic filler particles. Compared to 5, Knoop hardness was equivalent, but bending strength was low.
(各種測定)
 光硬化性樹脂及び光硬化性樹脂組成物の粘度は、ブルックフィールド粘度計(DV-3)により測定した。
(Various measurements)
The viscosity of the photocurable resin and the photocurable resin composition was measured with a Brookfield viscometer (DV-3).
 硬化後の光硬化性樹脂、光硬化性樹脂組成物、及び柱状粒子やビーズ状粒子を構成するガラスのヌープ硬度は、表面が鏡面研磨された20mm□、板厚5mmの測定試料を作製し、ヌープ硬度計(松沢製作所製)を用い、荷重50gで測定した。 As for the Knoop hardness of the glass constituting the photocurable resin after curing, the photocurable resin composition, and the columnar particles and bead-shaped particles, a measurement sample having a surface polished to 20 mm □ and a plate thickness of 5 mm is prepared. Using a Knoop hardness tester (manufactured by Matsuzawa Seisakusho), the measurement was performed with a load of 50 g.
 ヤング率は、共振法(日本テクノプラス製JE-RT)にて測定した。 The Young's modulus was measured by a resonance method (JE-RT manufactured by Nippon Techno Plus).
 曲げ強度は、JIS R1601の方法で測定した。 Bending strength was measured by the method of JIS R1601.
 表面に付着するステンレスや鉄のコンタミは、5gの試料に純水30ml、SSG塩酸20mlを加え、180℃―20分間加熱処理を行い、表面付着金属を溶解させた。この溶液中のFe、Ni、Cr濃度を測定した。 For the contamination of stainless steel and iron adhering to the surface, 30 ml of pure water and 20 ml of SSG hydrochloric acid were added to a 5 g sample, followed by heat treatment at 180 ° C. for 20 minutes to dissolve the metal adhering to the surface. The Fe, Ni, and Cr concentrations in this solution were measured.
 本発明の立体造形用樹脂組成物は、無機充填材粒子として柱状粒子を含むため、機械的強度の高い立体造形物を作製することが可能である。また立体造形用途以外にも、エポキシ、ポリウレタン、ポリイミド、不飽和ポリエステル、シリコーン等の熱硬化性樹脂の充填材用途として使用することも可能である。 Since the resin composition for three-dimensional modeling of the present invention includes columnar particles as inorganic filler particles, it is possible to produce a three-dimensional molded product with high mechanical strength. In addition to three-dimensional modeling, it can also be used as a filler for thermosetting resins such as epoxy, polyurethane, polyimide, unsaturated polyester, and silicone.

Claims (8)

  1.  硬化性樹脂と無機充填材粒子とを含む立体造形用樹脂組成物であって、無機充填材粒子が、直径が1~20μm、アスペクト比(径/長さ)が0.01~1の柱状粒子を含むことを特徴とする立体造形用樹脂組成物。 A resin composition for three-dimensional modeling comprising a curable resin and inorganic filler particles, wherein the inorganic filler particles are columnar particles having a diameter of 1 to 20 μm and an aspect ratio (diameter / length) of 0.01 to 1 A resin composition for three-dimensional modeling characterized by containing.
  2.  柱状粒子が、ガラスからなることを特徴とする請求項1に記載の立体造形用樹脂組成物。 2. The resin composition for three-dimensional modeling according to claim 1, wherein the columnar particles are made of glass.
  3.  柱状粒子が、ヌープ硬度が200以上のガラスからなることを特徴とする請求項1又は2に記載の立体造形用樹脂組成物。 3. The resin composition for three-dimensional modeling according to claim 1 or 2, wherein the columnar particles are made of glass having a Knoop hardness of 200 or more.
  4.  柱状粒子が、ヤング率が50GPa以上のガラスからなることを特徴とする請求項1~3のいずれか一項に記載の立体造形用樹脂組成物。 4. The resin composition for three-dimensional modeling according to any one of claims 1 to 3, wherein the columnar particles are made of glass having a Young's modulus of 50 GPa or more.
  5.  柱状粒子が、ガラス組成として、質量%でSiO+Al+B+P 50質量%以上含有するガラスからなることを特徴とする請求項1~4のいずれか一項に記載の立体造形用樹脂組成物。 The columnar particles are made of glass containing, as a glass composition, 50% by mass or more of SiO 2 + Al 2 O 3 + B 2 O 3 + P 2 O 5 by mass%, according to any one of claims 1 to 4. The resin composition for three-dimensional modeling described.
  6.  体積%で、硬化性樹脂 10~99%、無機充填材粒子 1~90%を含有することを特徴とする請求項1~5のいずれか一項に記載の立体造形用樹脂組成物。 The resin composition for three-dimensional modeling according to any one of claims 1 to 5, wherein the resin composition contains 10% to 99% curable resin and 1% to 90% inorganic filler particles in a volume%.
  7.  無機充填材粒子中に占める柱状粒子の割合が、体積%で0.1~100%であることを特徴とする請求項1~6のいずれか一項に記載の立体造形用樹脂組成物。 The resin composition for three-dimensional modeling according to any one of claims 1 to 6, wherein the proportion of the columnar particles in the inorganic filler particles is 0.1 to 100% by volume.
  8.  樹脂組成物からなる液状層に選択的に活性エネルギー光線を照射して所定のパターンを有する硬化層を形成し、前記硬化層上に新たな液状層を形成した後に活性エネルギー線を照射して前記硬化層と連続した所定パターンを有する新たな硬化層を形成し、所定の立体造形物が得られるまで前記硬化層の積層を繰り返した後、得られた立体造形物の表面の少なくとも一部を機械加工する立体造形物の製造方法であって、前記樹脂組成物として、請求項1~7のいずれか一項に記載の立体造形用樹脂組成物を使用することを特徴とする立体造形物の製造方法。 The liquid layer made of the resin composition is selectively irradiated with active energy rays to form a cured layer having a predetermined pattern, and after forming a new liquid layer on the cured layer, the active energy ray is irradiated to form the cured layer. After forming a new hardened layer having a predetermined pattern continuous with the hardened layer and repeating the lamination of the hardened layers until a predetermined three-dimensional object is obtained, at least a part of the surface of the obtained three-dimensional object is machined A method for producing a three-dimensional structure to be processed, wherein the three-dimensional structure resin composition according to any one of claims 1 to 7 is used as the resin composition. Method.
PCT/JP2015/084189 2015-01-16 2015-12-04 Resin composition for 3d modeling WO2016114031A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016569256A JP6686909B2 (en) 2015-01-16 2015-12-04 Resin composition for three-dimensional modeling

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015006366 2015-01-16
JP2015-006366 2015-01-16

Publications (1)

Publication Number Publication Date
WO2016114031A1 true WO2016114031A1 (en) 2016-07-21

Family

ID=56405587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084189 WO2016114031A1 (en) 2015-01-16 2015-12-04 Resin composition for 3d modeling

Country Status (2)

Country Link
JP (1) JP6686909B2 (en)
WO (1) WO2016114031A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019085523A (en) * 2017-11-09 2019-06-06 株式会社リコー Curable composition, cured product, method for producing cured product and apparatus for producing cured product
US20200276752A1 (en) * 2017-09-22 2020-09-03 Konica Minolta, Inc. Resin composition, method for manufacturing three-dimensional object using resin composition, three-dimensional object, and object-gripping attachment, and industrial robot using object-gripping attachment
JP2021017040A (en) * 2019-07-24 2021-02-15 日本電気硝子株式会社 Resin composition, three-dimensional modeling object, and method for manufacturing three-dimensional modeling object

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726062A (en) * 1993-07-15 1995-01-27 Teijin Seiki Co Ltd Resin composition for optical three-dimensional shaping
JPH0820620A (en) * 1994-07-06 1996-01-23 Teijin Seiki Co Ltd Resin composition for optical three-dimensional molding
JPH10279819A (en) * 1997-02-05 1998-10-20 Teijin Seiki Co Ltd Optical stereolithographic resin composition
JP2001026609A (en) * 1999-07-13 2001-01-30 Teijin Seiki Co Ltd Resin composition for optical stereolithography
JP2004238597A (en) * 2003-02-04 2004-08-26 Cmet Inc Photocurable resin composition excellent in heat resistance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726062A (en) * 1993-07-15 1995-01-27 Teijin Seiki Co Ltd Resin composition for optical three-dimensional shaping
JPH0820620A (en) * 1994-07-06 1996-01-23 Teijin Seiki Co Ltd Resin composition for optical three-dimensional molding
JPH10279819A (en) * 1997-02-05 1998-10-20 Teijin Seiki Co Ltd Optical stereolithographic resin composition
JP2001026609A (en) * 1999-07-13 2001-01-30 Teijin Seiki Co Ltd Resin composition for optical stereolithography
JP2004238597A (en) * 2003-02-04 2004-08-26 Cmet Inc Photocurable resin composition excellent in heat resistance

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200276752A1 (en) * 2017-09-22 2020-09-03 Konica Minolta, Inc. Resin composition, method for manufacturing three-dimensional object using resin composition, three-dimensional object, and object-gripping attachment, and industrial robot using object-gripping attachment
JP2019085523A (en) * 2017-11-09 2019-06-06 株式会社リコー Curable composition, cured product, method for producing cured product and apparatus for producing cured product
JP7180068B2 (en) 2017-11-09 2022-11-30 株式会社リコー Curable liquid composition, cured product, method for producing cured product, and apparatus for producing cured product
JP7424434B2 (en) 2017-11-09 2024-01-30 株式会社リコー Curable liquid composition, cured product, and method for producing cured product
JP2021017040A (en) * 2019-07-24 2021-02-15 日本電気硝子株式会社 Resin composition, three-dimensional modeling object, and method for manufacturing three-dimensional modeling object
JP7323861B2 (en) 2019-07-24 2023-08-09 日本電気硝子株式会社 RESIN COMPOSITION, 3D MODEL PRODUCT AND METHOD FOR MANUFACTURING 3D MODEL

Also Published As

Publication number Publication date
JP6686909B2 (en) 2020-04-22
JPWO2016114031A1 (en) 2017-10-26

Similar Documents

Publication Publication Date Title
JP6993623B2 (en) Resin composition for three-dimensional modeling, manufacturing method of three-dimensional modeling and inorganic filler particles
US10954362B2 (en) Resin composition for three-dimensional forming
JP6812093B2 (en) Inorganic filler particles and resin composition for three-dimensional modeling using them
JP6686909B2 (en) Resin composition for three-dimensional modeling
JP6891394B2 (en) Manufacturing method of three-dimensional model
JP6987355B2 (en) Resin composition for three-dimensional modeling
WO2021049371A1 (en) Resin composition for three-dimensional shaping
JP6481850B2 (en) Three-dimensional modeling resin composition
CN114080375A (en) Paste for three-dimensional ceramic molding and method for producing three-dimensional molded object
JP2016169355A (en) Resin composition for three-dimensional molding
JP6883271B2 (en) Inorganic filler particles
JP2017114701A (en) Production method of inorganic filler material
JP2016097517A (en) Production method of three-dimensional molded object
WO2017221599A1 (en) Glass filler and method for production of same
JP6670478B2 (en) Three-dimensional modeling resin composition
JP7368787B2 (en) Ceramics 3D modeling paste and method for producing three-dimensional objects
JP2016108432A (en) Resin composition for stereolithography
JP2017165621A (en) Method for producing inorganic filler particle
WO2022145339A1 (en) Glass and method for producing same
WO2021132217A1 (en) Resin composition, resin composition for three-dimensional models, and dental resin composition
JP7276655B2 (en) Resin cured body and manufacturing method of three-dimensional model
JP2020073333A (en) Resin components for three-dimensional modeling
JP2017110056A (en) Resin composition
CN111971336A (en) Highly loaded inorganic filled organic resin systems
WO2023008122A1 (en) X-ray opaque glass, glass filler, and resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15877982

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016569256

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15877982

Country of ref document: EP

Kind code of ref document: A1