JP2001026609A - Resin composition for optical stereolithography - Google Patents

Resin composition for optical stereolithography

Info

Publication number
JP2001026609A
JP2001026609A JP11199177A JP19917799A JP2001026609A JP 2001026609 A JP2001026609 A JP 2001026609A JP 11199177 A JP11199177 A JP 11199177A JP 19917799 A JP19917799 A JP 19917799A JP 2001026609 A JP2001026609 A JP 2001026609A
Authority
JP
Japan
Prior art keywords
resin composition
photocurable resin
fine particles
optical
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11199177A
Other languages
Japanese (ja)
Other versions
JP4307636B2 (en
Inventor
Tsuneo Hagiwara
恒夫 萩原
Junichi Tamura
順一 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nabtesco Corp
Original Assignee
Teijin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Seiki Co Ltd filed Critical Teijin Seiki Co Ltd
Priority to JP19917799A priority Critical patent/JP4307636B2/en
Publication of JP2001026609A publication Critical patent/JP2001026609A/en
Application granted granted Critical
Publication of JP4307636B2 publication Critical patent/JP4307636B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a photocurable resin composition having the excellent handleability and operability due to the low viscosity at the time of optically preparing a photocured substance such as a stereolithographic article and besides having the capability of forming a photocured substance such as an optical stereolithographic article having excellent surface smoothness, heat resistance, thermal deformation resistance, dynamic characteristics of mechanical strengths and dimensional accuracy, and to provide an optical stereolithographic method by using it. SOLUTION: A photocurable resin composition comprises a liquid photocurable resin containing 5-70% by volume, based on the total volume of the stereolithographic resin composition, of solid fine particles having an average particle diameter of 10 μm or less and including the fine particles with particle diameters of from 0.5 times to 1.5 times the average particle diameter in the ratio of 70 wt.% or more and moreover in some cases a whisker. The optical stereolithographic method uses this photocurable resin composition.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光硬化性樹脂組成
物、該光硬化性樹脂組成物を用いて得られる光学的立体
造形物および該光硬化性樹脂組成物を用いて立体造形物
を光学的に製造する方法に関する。より詳細には、本発
明は、粘度が低く、立体造形物などの光硬化物を光学的
に製造する際の取り扱い性および操作性に優れる光硬化
性樹脂組成物および該光硬化性樹脂組成物を用いて光学
的に立体造形物を製造する方法に関するものであり、本
発明による場合は、前記光硬化性樹脂組成物を用いて、
良好な取り扱い性、操作性で、表面平滑性に優れ、しか
も耐熱性、耐熱変形性、機械的強度などの力学的特性、
寸法精度などにも優れる高品質の光学的立体造形物など
の光硬化物を円滑に製造することができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photocurable resin composition, an optical three-dimensional object obtained using the photocurable resin composition, and a three-dimensional object using the photocurable resin composition. It relates to a method for optically manufacturing. More specifically, the present invention relates to a photocurable resin composition having a low viscosity and excellent in handleability and operability when optically producing a photocured product such as a three-dimensional molded article, and the photocurable resin composition. The present invention relates to a method for optically producing a three-dimensional molded object using, in the case of the present invention, using the photocurable resin composition,
Good handling and operability, excellent surface smoothness, and mechanical properties such as heat resistance, heat deformation resistance, mechanical strength, etc.
A photo-cured product such as a high-quality optical three-dimensional object having excellent dimensional accuracy can be produced smoothly.

【0002】[0002]

【従来の技術】一般に、液状の光硬化性樹脂組成物は被
覆剤(特にハードコート剤)、ホトレジスト、歯科用材
料などとして広く用いられているが、近年、三次元CA
Dに入力されたデータに基づいて光硬化性樹脂組成物を
立体的に光学造形する方法が特に注目を集めている。光
学的立体造形技術に関しては、液状の光硬化性樹脂に必
要量の制御された光エネルギーを供給して薄層状に硬化
させ、その上に更に液状光硬化性樹脂を供給した後に制
御下に光照射して薄層状に積層硬化させるという工程を
繰り返すことによって立体造形物を製造する光学的立体
造形法が特開昭56−144478号公報によって開示
され、そしてその基本的な実用方法が更に特開昭60−
247515号公報によって提案された。そしてその
後、光学的立体造形技術に関する多数の提案がなされて
おり、例えば、特開昭62−35966号公報、特開平
1−204915号公報、特開平2−113925号公
報、特開平2−145616号公報、特開平2−153
722号公報、特開平3−15520号公報、特開平3
−21432号公報、特開平3−41126号公報など
には光学的立体造形法に係る技術が開示されている。
2. Description of the Related Art In general, liquid photocurable resin compositions are widely used as coating materials (particularly hard coating agents), photoresists, dental materials, and the like.
A method of three-dimensionally optically molding the photocurable resin composition based on the data input to D has attracted particular attention. Regarding the optical three-dimensional molding technology, a required amount of controlled light energy is supplied to a liquid photo-curable resin to cure it in a thin layer, and then a liquid photo-curable resin is further supplied thereon, and then the light is controlled under control. Japanese Patent Application Laid-Open No. 56-144478 discloses an optical three-dimensional molding method for producing a three-dimensional molded product by repeating a process of irradiating and laminating and hardening into a thin layer, and further discloses a basic practical method. Showa 60-
247515. After that, a number of proposals regarding optical three-dimensional modeling technology have been made, for example, JP-A-62-35966, JP-A-1-204915, JP-A-2-113925, and JP-A-2-145616. Gazette, JP-A-2-153
722, JP-A-3-15520, JP-A-3-15520
Japanese Patent Application Laid-Open No. 21432 and Japanese Patent Application Laid-Open No. 3-41126 disclose techniques relating to an optical three-dimensional printing method.

【0003】立体造形物を光学的に製造する際の代表的
な方法としては、容器に入れた液状光硬化性樹脂組成物
の液面に所望のパターンが得られるようにコンピュータ
ーで制御された紫外線レーザーを選択的に照射して所定
の厚みに硬化させ、次にその硬化層の上に1層分の液状
樹脂組成物を供給して同様に紫外線レーザーを照射して
前記と同じように硬化させて連続した硬化層を形成させ
るという積層操作を繰り返して最終的な形状を有する立
体造形物を製造する方法が一般に広く採用されている。
この方法による場合は、造形物の形状がかなり複雑であ
っても簡単に且つ比較的短時間で目的とする立体造形物
を製造することが出来るために近年特に注目を集めてい
る。
[0003] A typical method for optically producing a three-dimensional object is a computer controlled ultraviolet ray so as to obtain a desired pattern on the liquid surface of a liquid photocurable resin composition placed in a container. A laser is selectively irradiated to cure to a predetermined thickness, and then one layer of the liquid resin composition is supplied on the cured layer and similarly irradiated with an ultraviolet laser to be cured as described above. In general, a method of manufacturing a three-dimensional structure having a final shape by repeating a lamination operation of forming a continuous hardened layer by a continuous process is widely adopted.
In the case of this method, even if the shape of the modeled object is considerably complicated, the target three-dimensional modeled object can be easily manufactured in a relatively short time, so that it has been receiving particular attention in recent years.

【0004】光学的立体造形法で用いる光硬化性樹脂組
成物としては、光重合性の変性(ポリ)ウレタン(メ
タ)アクリレート系化合物、オリゴエステルアクリレー
ト系化合物、エポキシアクリレート系化合物、エポキシ
系化合物、ポリイミド系化合物、アミノアルキド系化合
物、ビニルエーテル系化合物などの光重合性化合物の1
種または2種以上を主成分としこれに光重合開始剤を添
加したものが挙げられ、そして最近では、特開平1−2
04915号公報、特開平1−213304号公報、特
開平2−28261号公報、特開平2−75617号公
報、特開平2−145616号公報、特開平3−104
626号公報、特開平3−114732号公報、特開平
3−1147324号公報などには各種の改良技術が開
示されている。
The photocurable resin composition used in the optical three-dimensional molding method includes a photopolymerizable modified (poly) urethane (meth) acrylate compound, an oligoester acrylate compound, an epoxy acrylate compound, an epoxy compound, Photopolymerizable compounds such as polyimide compounds, aminoalkyd compounds and vinyl ether compounds
And those in which a photopolymerization initiator is added to the main component or two or more types.
JP-A-04915, JP-A-1-213304, JP-A-2-28261, JP-A-2-75617, JP-A-2-145616, JP-A-3-104
Various improved techniques are disclosed in Japanese Patent Application Laid-Open No. 626, Japanese Patent Application Laid-Open No. 3-114732, Japanese Patent Application Laid-Open No. 3-147324, and the like.

【0005】上記したような従来の光硬化性樹脂組成物
は、一般に高粘度の液体であり、そのため前記した積層
操作を繰り返して立体造形物を光学的に製造する際に、
均一で薄い1層分の液状光硬化性樹脂組成物層を形成し
にくく、光造形時の取り扱い性および作業性に劣ること
がある。本発明者らは、光硬化性樹脂組成物を用いる光
学的立体造形技術に関して長年研究を行ってきた。そし
て、液状の光硬化性樹脂中に固体微粒子やウィスカーな
どの充填剤を配合した光硬化性樹脂組成物を用いて光学
的立体造形を行うと、硬化時の体積収縮が小さくて寸法
精度に優れ、機械的物性が良好であり、しかも熱変形温
度が高くて耐熱性にも優れる光学的立体造形物が得られ
ることを見出して先に出願した(特許第2554443
号および特開平8−20620号)。しかしながら、固
体微粒子などの充填剤を含有する上記光硬化性樹脂組成
物は、充填剤を含有しないものに比べて一般に粘度が高
い。光硬化性樹脂組成物中に含有させる固体微粒子の粒
径が小さくなるほど、光硬化性樹脂組成物の粘度がより
高くなり、光造形時の取り扱い性や作業性が低下する。
特に、粒径の小さな固体微粒子と共にウィスカーを含有
する光硬化性樹脂組成物は、粘度が一層高くなり易く、
そのため光造形時の取り扱い性や作業性などの点で改良
の余地があることが判明した。また、充填剤を含有する
光硬化性樹脂組成物から得られる光学的立体造形物は、
充填剤を含有しない光硬化性樹脂組成物から得られる光
学的立体造形物に比べて、耐熱性、力学的特性、寸法精
度などに優れているが、その一方で表面の平滑性が低く
なる傾向があることが判明した。
[0005] The conventional photocurable resin composition as described above is generally a high-viscosity liquid. Therefore, when the above-described laminating operation is repeated to optically produce a three-dimensional molded article,
It is difficult to form a uniform and thin liquid photocurable resin composition layer of one layer, and the handleability and workability during stereolithography may be poor. The present inventors have long studied on an optical three-dimensional molding technique using a photocurable resin composition. When optical three-dimensional modeling is performed using a photocurable resin composition in which a filler such as solid fine particles or whiskers is mixed into a liquid photocurable resin, volume shrinkage during curing is small, and dimensional accuracy is excellent. It was found that an optical three-dimensional object having good mechanical properties, a high heat deformation temperature and excellent heat resistance can be obtained, and the application was filed earlier (Japanese Patent No. 2554443).
And JP-A-8-20620). However, the photocurable resin composition containing a filler such as solid fine particles generally has a higher viscosity than those containing no filler. As the particle size of the solid fine particles contained in the photocurable resin composition becomes smaller, the viscosity of the photocurable resin composition becomes higher, and the handleability and workability during stereolithography are reduced.
In particular, a photocurable resin composition containing whiskers together with solid fine particles having a small particle diameter is more likely to have a higher viscosity,
Therefore, it has been found that there is room for improvement in handling and workability during stereolithography. Further, an optical three-dimensional structure obtained from a photocurable resin composition containing a filler,
Compared to the optical three-dimensional structure obtained from the photocurable resin composition containing no filler, the heat resistance, mechanical properties, dimensional accuracy, etc. are excellent, but on the other hand, the surface smoothness tends to be low It turned out that there is.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、固体
微粒子、特に粒径の小さな固体微粒子を含有しているに
も拘わらず、粘度が低くて、立体造形物を光学的に製造
する際の取り扱い性および作業性に優れていて、しかも
表面が平滑で、更に耐熱性、耐熱変形性、機械的強度な
どの力学的特性、寸法精度などにも優れる立体造形物な
どの光硬化物を円滑に製造することのできる光硬化性樹
脂組成物を提供することである。そして、本発明の目的
は、前記光硬化性樹脂組成物を用いて立体造形物を光学
的に製造する方法を提供することである。さらに、本発
明の目的は、前記光硬化性樹脂組成物からなる立体造形
物を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for optically producing a three-dimensional molded article having a low viscosity despite containing solid fine particles, particularly solid fine particles having a small particle diameter. It is excellent in handling and workability, and has a smooth surface, and has excellent mechanical properties such as heat resistance, heat deformation resistance, mechanical strength, and dimensional accuracy. It is an object of the present invention to provide a photocurable resin composition which can be produced at a time. An object of the present invention is to provide a method for optically producing a three-dimensional structure using the photocurable resin composition. Further, an object of the present invention is to provide a three-dimensional structure comprising the photocurable resin composition.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成すべく
本発明者らが検討を重ねた結果、液状光硬化性樹脂中に
配合する固体微粒子として、所定の粒度分布を有する粒
径の揃った、平均粒径が10μm以下の固体微粒子を用
いると、それにより得られる光硬化性樹脂組成物は、粒
径の小さな固体微粒子を含有しているにも拘わらず、粘
度が低くて、光造形時の取り扱い性および作業性に極め
て優れていること、しかもその光硬化性樹脂組成物を用
いて得られる立体造形物などの光硬化物は、表面が平滑
であること、その上耐熱性、耐熱変形性、機械的強度な
どの力学的特性、寸法精度などにも優れていることを見
出した。さらに、本発明者らは、固体微粒子として所定
の粒度分布を有する粒径の揃った平均粒径が10μm以
下の前記した固体微粒子を用い、該固体微粒子にウィス
カーを組み合わせると、それにより得られる光硬化性樹
脂組成物は、粒径の小さな固体微粒子とウィスカーを含
有しているにも拘わらず、粘度が低く、光造形時の取り
扱い性および作業性に優れていること、しかもそれによ
り得られる立体造形物などの光硬化物は表面平滑性に優
れており、耐熱性、耐熱変形性、機械的強度などの力学
的特性、寸法精度などにも優れることを見出し、それら
の知見に基づいて本発明を完成した。
As a result of repeated studies by the present inventors to achieve the above object, the solid fine particles to be incorporated into the liquid photocurable resin have uniform particle diameters having a predetermined particle size distribution. In addition, when solid fine particles having an average particle diameter of 10 μm or less are used, the resulting photocurable resin composition has a low viscosity, despite containing solid fine particles having a small particle diameter, and has an optical molding. The photocurable product such as a three-dimensional object obtained using the photocurable resin composition has a very smooth surface, and furthermore has excellent heat resistance and heat resistance. It has been found that it has excellent mechanical properties such as deformability and mechanical strength, and dimensional accuracy. Furthermore, the present inventors use the above-mentioned solid fine particles having a predetermined particle size distribution and having a uniform particle diameter of 10 μm or less as solid fine particles, and combine the whiskers with the solid fine particles to obtain light obtained by the combination. The curable resin composition has low viscosity and excellent handleability and workability during stereolithography, despite containing solid fine particles and whiskers having a small particle size, and the three-dimensional shape obtained thereby. Photocured products such as shaped articles have excellent surface smoothness, and have excellent heat resistance, heat deformation resistance, mechanical properties such as mechanical strength, and dimensional accuracy. Was completed.

【0008】すなわち、本発明は、(1) 液状光硬化
性樹脂中に、平均粒径が10μm以下で且つ平均粒径の
0.5倍ないし1.5倍の範囲内の粒径を有する微粒子
の割合が70重量%以上である固体微粒子を、光硬化性
樹脂組成物の全容量に基づいて5〜70容量%の割合で
含有することを特徴とする光硬化性樹脂組成物である。
That is, the present invention provides (1) fine particles having an average particle diameter of 10 μm or less and a particle diameter in the range of 0.5 to 1.5 times the average particle diameter in the liquid photocurable resin. Is a photocurable resin composition characterized by containing solid fine particles having a ratio of 70% by weight or more based on the total volume of the photocurable resin composition in a proportion of 5 to 70% by volume.

【0009】本発明は、(2) 前記固体微粒子におけ
る平均粒径の0.7倍ないし1.2倍の範囲内の粒径を
有する微粒子の割合が50重量%以上である、前記
(1)の光硬化性樹脂組成物;(3) 前記固体微粒子
の平均粒径が1〜10μmの範囲内である前記(1)ま
たは(2)の光硬化性樹脂組成物;(4) 前記固体微
粒子の平均粒径が1〜5μmの範囲内である前記(1)
〜(3)のいずれかの光硬化性樹脂組成物;および、
(5) 25℃における粘度が70,000センチポイ
ズ以下である前記(1)〜(4)のいずれかの光硬化性
樹脂組成物;を好ましい態様として包含する。
In the present invention, (2) the ratio of the fine particles having a particle diameter in the range of 0.7 to 1.2 times the average particle diameter in the solid fine particles is 50% by weight or more. (3) The photocurable resin composition according to (1) or (2), wherein the average particle diameter of the solid fine particles is in the range of 1 to 10 μm; (1) wherein the average particle size is in the range of 1 to 5 μm;
Any one of (3) to (3), and
(5) The photocurable resin composition according to any one of (1) to (4), which has a viscosity at 25 ° C. of 70,000 centipoise or less;

【0010】そして、本発明は、(6) 光硬化性樹脂
組成物の全容量に基づいて、ウィスカーを5〜30容量
%の割合でさらに含有し、固体微粒子とウィスカーの合
計容量が、光硬化性樹脂組成物の全容量に基づいて10
〜75容量%である前記(1)〜(4)のいずれかの光
硬化性樹脂組成物である。
According to the present invention, (6) whiskers are further contained at a ratio of 5 to 30% by volume based on the total volume of the photocurable resin composition, and the total volume of the solid fine particles and the whiskers is adjusted by photocuring. 10 based on the total volume of the conductive resin composition
The photocurable resin composition according to any one of the above (1) to (4), wherein the content is up to 75% by volume.

【0011】本発明は、(7) 径0.3〜1μm、長
さ10〜70μmおよびアスペクト比10〜100のウ
イスカーを用いる前記(6)の光硬化性樹脂組成物;
(8) 25℃における粘度が70,000センチポイ
ズ以下である前記(6)または(7)の光硬化性樹脂組
成物;および、(9) 光造形用樹脂組成物である前記
(1)〜(8)のいずれか光硬化性樹脂組成物;を好ま
しい態様として包含する。
The present invention provides (7) the photocurable resin composition according to (6), wherein a whisker having a diameter of 0.3 to 1 μm, a length of 10 to 70 μm, and an aspect ratio of 10 to 100 is used;
(8) The photocurable resin composition according to (6) or (7), wherein the viscosity at 25 ° C. is 70,000 centipoise or less; and (9) the photocurable resin composition (1) to (1). 8) as a preferred embodiment.

【0012】さらに、本発明は、(10) 前記(1)
〜(9)のいずれかの光硬化性樹脂組成物からなる1つ
の層に活性エネルギー光線を選択的に照射して所定のパ
ターンを有する硬化層を形成し、次いで前記硬化層上に
未硬化液状の光硬化性樹脂組成物を層状に施した後に活
性エネルギー光線を照射して前記硬化層と連続した硬化
層を新たに形成し、所定の立体造形物が得られるまで前
記積層操作を更に繰り返すことを特徴とする立体造形物
の製造方法である。
Further, the present invention provides (10) the above (1).
(1) forming a cured layer having a predetermined pattern by selectively irradiating one layer comprising the photocurable resin composition with an active energy ray, and then forming an uncured liquid on the cured layer; After applying the photocurable resin composition in a layer form to form a layered form, irradiating active energy rays to newly form a cured layer continuous with the cured layer, and further repeating the lamination operation until a predetermined three-dimensional structure is obtained. This is a method for producing a three-dimensional structure.

【0013】そして、本発明は、(11) 前記(1)
〜(9)のいずれかの光硬化性樹脂組成物を用いて得ら
れる光学的立体造形物であり、(12) 三次元表面粗
さ計を用いて三次元表面接触法で測定した表面粗度が平
均2μm以下である前記(11)の光学的立体造形物を
好ましい態様として包含する。
The present invention provides (11) the above (1)
An optical three-dimensional structure obtained using the photocurable resin composition according to any one of (9) to (9), and (12) a surface roughness measured by a three-dimensional surface contact method using a three-dimensional surface roughness meter. Is a preferred embodiment.

【0014】[0014]

【発明の実施の形態】以下に本発明について詳細に説明
する。本発明の光硬化性樹脂組成物で用いる固体微粒子
は、その平均粒径が10μm以下であることが必要であ
る。固体微粒子の平均粒径が10μmよりも大きいと、
光硬化性樹脂組成物を用いて得られる立体造形物などの
光硬化物の表面平滑性が低下する。但し、固体微粒子の
平均粒径があまりに小さすぎると、光硬化性樹脂組成物
の粘度が高くなるので、固体微粒子の平均粒径の下限値
は1μm程度であることが好ましく、そのため本発明で
用いる固体微粒子の平均粒径は、1〜10μmの範囲内
であることが好ましく、1〜7μmの範囲内であること
がより好ましく、1〜5μmの範囲内であることが更に
好ましい。なお、本明細書における固体微粒子の平均粒
径とは、固体微粒子の重量分布から求めた平均粒径であ
り、その詳細な算出方法は、以下の実施例の項に記載す
るとおりである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail. The solid fine particles used in the photocurable resin composition of the present invention must have an average particle size of 10 μm or less. When the average particle size of the solid fine particles is larger than 10 μm,
The surface smoothness of a photocured product such as a three-dimensional molded product obtained using the photocurable resin composition is reduced. However, if the average particle size of the solid fine particles is too small, the viscosity of the photocurable resin composition increases, so that the lower limit of the average particle size of the solid fine particles is preferably about 1 μm, and thus used in the present invention. The average particle size of the solid fine particles is preferably in the range of 1 to 10 μm, more preferably in the range of 1 to 7 μm, and even more preferably in the range of 1 to 5 μm. The average particle diameter of the solid fine particles in the present specification is an average particle diameter determined from the weight distribution of the solid fine particles, and a detailed calculation method thereof is as described in the following Examples.

【0015】さらに、本発明の光硬化性樹脂組成物で用
いる前記固体微粒子は、前記した平均粒径を有すると共
に、該平均粒径の0.5倍ないし1.5倍の範囲内の粒
径を有する微粒子の割合が、固体微粒子の全重量に基づ
いて、70重量%以上であることが必要である。固体微
粒子において、平均粒径の0.5倍ないし1.5倍の範
囲内の粒径を有する微粒子の割合が70重量%未満であ
ると、固体微粒子の平均粒径が10μm以下であって
も、光硬化性樹脂組成物の粘度が高くなって、光造形時
の取り扱い性や作業性が不良になり、しかも得られる立
体造形物などの光硬化物の表面平滑性が低下する。本発
明の光硬化性樹脂組成物で用いる固体微粒子では、該平
均粒径の0.5倍ないし1.5倍の範囲内の粒径を有す
る微粒子の割合が、固体微粒子の全重量に基づいて80
重量%以上であることが好ましい。また、本発明で用い
る固体微粒子では、固体微粒子の全重量に基づいて、平
均粒径の0.5倍ないし1.5倍の範囲内の粒径を有す
る微粒子の割合が70重量%以上であり且つ平均粒径の
0.7倍ないし1.2倍の範囲内の粒径を有する微粒子
の割合が50重量%以上であることが、光硬化性樹脂組
成物の粘度の低減効果、得られる立体造形物などの光硬
化物の表面平滑性などの点から好ましい。なお、本明細
書における固体微粒子の粒度分布(平均粒径の0.5倍
ないし1.5倍の範囲内の粒径を有する微粒子の割合)
は、以下の実施例に記載した方法で求めた。
Further, the solid fine particles used in the photocurable resin composition of the present invention have the above-mentioned average particle size and a particle size in the range of 0.5 to 1.5 times the average particle size. Is required to be 70% by weight or more based on the total weight of the solid fine particles. When the ratio of the fine particles having a particle size in the range of 0.5 to 1.5 times the average particle size in the solid fine particles is less than 70% by weight, even if the average particle size of the solid fine particles is 10 μm or less. In addition, the viscosity of the photocurable resin composition increases, and the handleability and workability during stereolithography become poor, and the surface smoothness of the resulting photocured product such as a three-dimensional molded product decreases. In the solid fine particles used in the photocurable resin composition of the present invention, the ratio of the fine particles having a particle size in the range of 0.5 to 1.5 times the average particle size is based on the total weight of the solid fine particles. 80
It is preferred that the content be at least 10% by weight. In the solid fine particles used in the present invention, the ratio of the fine particles having a particle diameter in the range of 0.5 to 1.5 times the average particle diameter based on the total weight of the solid fine particles is 70% by weight or more. In addition, when the ratio of the fine particles having a particle diameter in the range of 0.7 to 1.2 times the average particle diameter is 50% by weight or more, the effect of reducing the viscosity of the photocurable resin composition and the obtained three-dimensional structure can be obtained. It is preferable from the viewpoint of the surface smoothness of a photocured product such as a molded product. The particle size distribution of the solid fine particles in this specification (the ratio of the fine particles having a particle size in the range of 0.5 to 1.5 times the average particle size)
Was determined by the method described in the following examples.

【0016】本発明の光硬化性樹脂組成物で用いる固体
微粒子は、平均粒径が10μm以下であって粒径が小さ
く、しかも平均粒径の0.5倍ないし1.5倍の範囲内
の粒径を有する微粒子の割合が70重量%と多くて粒度
分布が狭く、固体微粒子の大きさが揃っており、それに
よって光硬化性樹脂組成物の低粘度化および立体造形物
などの光硬化物の表面平滑化の両方を達成したものであ
る。
The solid fine particles used in the photocurable resin composition of the present invention have an average particle size of 10 μm or less, a small particle size, and a range of 0.5 to 1.5 times the average particle size. The ratio of the fine particles having a particle size is as large as 70% by weight, the particle size distribution is narrow, and the size of the solid fine particles is uniform, whereby the viscosity of the photocurable resin composition is reduced and a photocured product such as a three-dimensional molded product And both of the surface smoothness are achieved.

【0017】本発明の光硬化性樹脂組成物に用い得る固
体微粒子の例としては、ガラスビーズ、シリカ微粒子、
タルク微粒子、酸化ケイ素微粒子、酸化アルミニウム微
粒子、水酸化アルミニウム微粒子、酸化マグネシウム微
粒子、酸化カルシウム微粒子、窒化アルミニウム微粒
子、炭酸カルシウム微粒子、カーボンブラック微粒子な
どの無機微粒子、ポリスチレン微粒子、ポリエチレン微
粒子、ポリプロピレン微粒子、アクリル樹脂微粒子、合
成ゴム微粒子などの有機重合体微粒子などを挙げること
ができ、これらの1種または2種以上を用いることがで
きる。前記したうちでも、固体微粒子として、ガラスビ
ーズ、酸化ケイ素微粒子、酸化アルミニウム微粒子、シ
リカ微粒子が好ましく用いられる。
Examples of solid fine particles that can be used in the photocurable resin composition of the present invention include glass beads, silica fine particles,
Inorganic fine particles such as talc fine particles, silicon oxide fine particles, aluminum oxide fine particles, aluminum hydroxide fine particles, magnesium oxide fine particles, calcium oxide fine particles, aluminum nitride fine particles, calcium carbonate fine particles, carbon black fine particles, polystyrene fine particles, polyethylene fine particles, polypropylene fine particles, and acrylic. Organic polymer fine particles such as resin fine particles and synthetic rubber fine particles can be used, and one or more of these can be used. Among the above, glass beads, silicon oxide fine particles, aluminum oxide fine particles, and silica fine particles are preferably used as the solid fine particles.

【0018】本発明の光硬化性樹脂組成物は、上記した
固体微粒子を、光硬化性樹脂組成物の全容量に基づいて
5〜70容量%の割合で含有する。固体微粒子の含有量
が5容量%未満であると、固体微粒子の強化材および耐
熱性の向上材としての特質が充分に発揮されにくくな
る。一方、固体微粒子の含有量が70容量%を超える
と、上記した特定の固体微粒子を使用した場合であって
も光硬化性樹脂組成物の粘度が高くなって、光造形など
の光硬化作業が行いにくくなる。本発明の光硬化性樹脂
組成物は固体微粒子を10〜40容量%の割合で含有す
ることが好ましい。
The photocurable resin composition of the present invention contains the solid fine particles in a proportion of 5 to 70% by volume based on the total volume of the photocurable resin composition. When the content of the solid fine particles is less than 5% by volume, the characteristics of the solid fine particles as a reinforcing material and a heat resistance improving material are not sufficiently exhibited. On the other hand, when the content of the solid fine particles exceeds 70% by volume, the viscosity of the photocurable resin composition increases even when the specific solid fine particles described above are used. Hard to do. The photocurable resin composition of the present invention preferably contains solid fine particles at a ratio of 10 to 40% by volume.

【0019】本発明の光硬化性樹脂組成物が固体微粒子
を含有し、ウィスカーを含有しないものである場合は、
上記した特定の固体微粒子を70容量%以下の割合で含
有させることによって、25℃における粘度が70,0
00センチポイズ以下の光硬化性樹脂組成物を円滑に得
ることができ、固体微粒子の平均粒径や粒度分布、含有
量を上記した範囲から更に選択することによって光硬化
性樹脂組成物の前記粘度を50,000センチポイズ以
下にすることも可能である。
When the photocurable resin composition of the present invention contains solid fine particles and does not contain whiskers,
By containing the above-mentioned specific solid fine particles at a ratio of 70% by volume or less, the viscosity at 25 ° C. becomes 70,0.
A photocurable resin composition of not more than 00 centipoise can be obtained smoothly, and the viscosity of the photocurable resin composition can be increased by further selecting the average particle size and particle size distribution of the solid fine particles from the above range. It is also possible to make it less than 50,000 centipoise.

【0020】本発明の光硬化性樹脂組成物は、上記した
固体微粒子と共に、ウィスカーを含有していてもよく、
固体微粒子およびウィスカーの両方を含有する場合は、
該光硬化性樹脂組成物から得られる光造形物などの光硬
化物の耐熱性、耐熱変形性、力学的特性、寸法安定性な
どが一層向上する。
The photocurable resin composition of the present invention may contain whiskers together with the solid fine particles described above,
When containing both solid fine particles and whiskers,
The heat resistance, heat deformation resistance, mechanical properties, dimensional stability, and the like of a photocured product such as an optical molded product obtained from the photocurable resin composition are further improved.

【0021】ウィスカーとしては、径0.3〜1μm、
長さ10〜70μmおよびアスペクト比10〜100の
ものが好ましく用いられ、径0.3〜0.7μm、長さ
20〜50μmおよびアスペクト比20〜70のものが
より好ましく用いられる。ウイスカーの径が0.3μm
未満であると、光硬化物の熱変形温度、曲げ弾性率、お
よび機械的特性が低いものとなり易く、一方1μmを超
えると光硬化性樹脂組成物の粘度増大を招き、取り扱い
性、造形性などの性質が低下したものとなり易い。ま
た、ウイスカーの長さが10μm未満であると、熱変形
温度、曲げ弾性率および機械的特性が低くなり易く、一
方70μmを超えると光硬化性樹脂組成物の粘度増大を
招き、取り扱い性、造形性などが低下し易い。特に、ウ
イスカーのアスペクト比が上記した10〜100の範囲
にあることが、光硬化性樹脂組成物の粘度が適当なもの
となって、光硬化時の操作が容易になり、しかも光造形
物などの光硬化物の体積収縮の低減、得られる光硬化物
の機械的特性や寸法精度などの点から好ましい。なお、
本明細書でいうウイスカーの寸法およびアスペクト比
は、レーザー回析/散乱式粒度分布測定装置を用いて測
定した寸法およびアスペクト比をいい、その詳細につい
ては下記の実施例の項に記載するとおりである。
The whiskers have a diameter of 0.3 to 1 μm,
Those having a length of 10 to 70 μm and an aspect ratio of 10 to 100 are preferably used, and those having a diameter of 0.3 to 0.7 μm, a length of 20 to 50 μm, and an aspect ratio of 20 to 70 are more preferably used. Whisker diameter 0.3μm
If it is less than 1, the heat deformation temperature, flexural modulus, and mechanical properties of the photocured product are likely to be low. On the other hand, if it exceeds 1 μm, the viscosity of the photocurable resin composition is increased, and handling properties, moldability, etc. Tend to have reduced properties. When the length of the whisker is less than 10 μm, the heat deformation temperature, the flexural modulus and the mechanical properties are liable to be lowered. On the other hand, when the whisker exceeds 70 μm, the viscosity of the photocurable resin composition is increased, and the handleability and the modeling are increased. Properties are easily reduced. In particular, when the aspect ratio of the whisker is in the range of 10 to 100 described above, the viscosity of the photocurable resin composition becomes appropriate, and the operation at the time of photocuring becomes easy, and furthermore, the photolithography and the like This is preferable from the viewpoints of reduction in volume shrinkage of the photocured product, mechanical properties and dimensional accuracy of the obtained photocured product. In addition,
The dimension and aspect ratio of the whisker referred to in the present specification refer to the dimension and aspect ratio measured using a laser diffraction / scattering type particle size distribution analyzer, and details thereof are as described in the following Examples. is there.

【0022】ウイスカーの種類は特に制限されず、例え
ば、ホウ酸アルミニウム系ウイスカー、酸化アルミニウ
ム系ウイスカー、窒化アルミニウム系ウイスカー水、酸
化硫酸マグネシウム系ウイスカー、酸化チタン系ウイス
カーなどを挙げることができ、前記したウイスカーの1
種または2種以上を用いることができる。
The type of whisker is not particularly limited, and examples thereof include aluminum borate whisker, aluminum oxide whisker, aluminum nitride whisker water, magnesium oxide whisker, and titanium oxide whisker. Whisker 1
Species or two or more can be used.

【0023】本発明の光硬化性樹脂組成物が固体微粒子
と共にウィスカーを含有する場合は、光硬化性樹脂組成
物の全容量に基づいて、固体微粒子の含有量を5〜70
容量%およびウィスカーの含有量を5〜30容量%と
し、固体微粒子とウィスカーの合計含有量を10〜75
容量%とすることが好ましく、固体微粒子を5〜65容
量%、ウィスカーを5〜30容量%および両者の合計含
有量を10〜70容量%とすることがより好ましく、両
者の合計量を20〜60容量%とすることがさらに好ま
しい。ウイスカーの含有量が光硬化性樹脂組成物の全容
量に基づいて30容量%を超えると、光硬化性樹脂組成
物の粘度が高くなり過ぎて、光造形などの光硬化作業が
行いにくくなり、しかも光硬化物の寸法精度が低下し易
い。また、固体微粒子とウィスカーの合計含有量が、光
硬化性樹脂組成物の全容量に基づいて75容量%を超え
ると、光硬化性樹脂組成物の粘度が高くなり過ぎて、取
り扱い性、造形性などが不良になり易く、しかも得られ
る光硬化物の寸法精度が低くなり易い。
When the photocurable resin composition of the present invention contains whiskers together with the solid fine particles, the content of the solid fine particles should be 5 to 70 based on the total volume of the photocurable resin composition.
Volume% and the whisker content are 5 to 30 volume%, and the total content of the solid fine particles and the whisker is 10 to 75%.
%, More preferably 5 to 65% by volume of solid fine particles, 5 to 30% by volume of whiskers, and more preferably 10 to 70% by volume, and the total amount of both is 20 to 70% by volume. More preferably, it is set to 60% by volume. When the content of the whisker exceeds 30% by volume based on the total volume of the photocurable resin composition, the viscosity of the photocurable resin composition becomes too high, and it becomes difficult to perform photocuring work such as stereolithography, In addition, the dimensional accuracy of the photocured product is liable to decrease. When the total content of the solid fine particles and the whisker exceeds 75% by volume based on the total volume of the photocurable resin composition, the viscosity of the photocurable resin composition becomes too high, and the handleability and the formability are increased. Are likely to be defective, and the dimensional accuracy of the obtained photocured product is likely to be low.

【0024】本発明の光硬化性樹脂組成物が固体微粒子
およびウィスカーを含有する場合は、上記した特定の固
体微粒子を70容量%以下の割合で含有させ、ウィスカ
ーを30容量%以下の割合で含有させ、且つ両者の合計
含有量を上記した75容量%以下とすることによって、
25℃における粘度が70,000センチポイズ以下の
光硬化性樹脂組成物を円滑に得ることができ、固体微粒
子の平均粒径、粒度分布、含有量、ウィスカーの種類、
アスペクト比、含有量などを上記した範囲から更に選択
することによって光硬化性樹脂組成物の粘度を50,0
00センチポイズ以下にすることも可能である。
When the photocurable resin composition of the present invention contains solid fine particles and whiskers, the specific solid fine particles described above are contained at a ratio of 70% by volume or less, and the whiskers are contained at a ratio of 30% by volume or less. And the total content of both is 75% by volume or less,
A photocurable resin composition having a viscosity at 25 ° C. of 70,000 centipoise or less can be smoothly obtained, and the average particle size, particle size distribution, content, type of whiskers,
The viscosity of the photocurable resin composition is set to 50,0 by further selecting the aspect ratio, the content and the like from the above ranges.
It is also possible to make it less than 00 centipoise.

【0025】本発明で用いる固体微粒子および/または
ウイスカーは、シランカップリング剤で表面処理されて
いても表面処理されていなくてもよいが、表面処理され
ていることが好ましい。固体微粒子および/またはウイ
スカーがシランカップリング剤で表面処理されている場
合には、熱変形温度、曲げ弾性率、機械的強度の一層高
い光硬化物を得ることができる。
The solid fine particles and / or whiskers used in the present invention may or may not be surface-treated with a silane coupling agent, but are preferably surface-treated. When the solid fine particles and / or whiskers are surface-treated with a silane coupling agent, a photocured product having a higher heat distortion temperature, flexural modulus, and mechanical strength can be obtained.

【0026】その場合のシランカップリング剤として
は、充填剤の表面処理などに従来から用いられているシ
ランカップリング剤のいずれもが使用でき、好ましいシ
ランカップリング剤としては、アミノシラン、エポキシ
シラン、ビニルシランおよび(メタ)アクリルシランを
挙げることができる。より具体的には、γ−アミノプロ
ピルトリエトキシシラン、N−β−(アミノエチル)−
γ−アミノプロピルトリエトキシシラン、N−β−(ア
ミノエチル)−γ−アミノプロピルメチルジメトキシシ
ランなどのアミノシラン;β−(3,4−エポキシシク
ロヘキシル)−エチルトリメトキシシラン、γ−グリシ
ドキシプロピルトリメトキシシランなどのエポキシシラ
ン;ビニルトリクロロシラン、ビニルジエトキシシラ
ン、ビニル−トリス(β−メトキシエトキシシラン)な
どのビニルシラン;トリメトキシシランメタクリレート
などの(メタ)アクリルシランなどを挙げることがで
き、これらのシランカップリング剤の1種または2種以
上を用いることができる。
In this case, as the silane coupling agent, any of the silane coupling agents conventionally used for surface treatment of a filler or the like can be used. Preferred silane coupling agents are aminosilane, epoxysilane, Vinyl silane and (meth) acryl silane can be mentioned. More specifically, γ-aminopropyltriethoxysilane, N-β- (aminoethyl)-
aminosilanes such as γ-aminopropyltriethoxysilane, N-β- (aminoethyl) -γ-aminopropylmethyldimethoxysilane; β- (3,4-epoxycyclohexyl) -ethyltrimethoxysilane, γ-glycidoxypropyl Epoxysilanes such as trimethoxysilane; vinylsilanes such as vinyltrichlorosilane, vinyldiethoxysilane and vinyl-tris (β-methoxyethoxysilane); and (meth) acrylsilanes such as trimethoxysilane methacrylate. One or more of the above silane coupling agents can be used.

【0027】シランカップリング剤によって固体微粒子
および/またはウイスカーの表面処理を行う場合に、使
用する光硬化性樹脂の種類によって、シランカップリン
グ剤の機能の発揮の仕方に違いが生じることがあるの
で、各々の光硬化性樹脂に適したシランカップリング剤
を選択して固体微粒子および/またはウイスカーの表面
処理を行うことが好ましい。例えば、ビニル系不飽和化
合物から主としてなる光硬化性樹脂では、ビニルシラン
および/または(メタ)アクリルシランを用いることが
好ましく、またエポキシ系化合物から主としてなる光硬
化性樹脂ではエポキシシランを用いることが好ましい。
When the surface treatment of solid fine particles and / or whiskers is performed with a silane coupling agent, the manner in which the silane coupling agent exerts its function may differ depending on the type of photocurable resin used. It is preferable to select a silane coupling agent suitable for each photocurable resin and perform surface treatment of the solid fine particles and / or whiskers. For example, for a photocurable resin mainly composed of a vinyl-based unsaturated compound, it is preferable to use vinylsilane and / or (meth) acrylsilane, and for a photocurable resin mainly composed of an epoxy-based compound, it is preferable to use epoxysilane. .

【0028】本発明では、液状光硬化性樹脂として、光
造形において従来から用いられている液状光硬化性樹脂
のいずれも使用でき、各種オリゴマー、各種の単官能性
ビニル化合物、多官能性ビニル化合物、エポキシ系化合
物などの1種または2種以上と、光重合開始剤および必
要に応じて増感剤などを含有する液状光硬化性樹脂が好
ましく用いられる。限定されるものではないが、本発明
で用い得るオリゴマー、単官能性ビニル化合物、多官能
性ビニル化合物、エポキシ系化合物の具体例としては、
以下のものを挙げることができる。
In the present invention, as the liquid photocurable resin, any liquid photocurable resin conventionally used in stereolithography can be used, and various oligomers, various monofunctional vinyl compounds, and polyfunctional vinyl compounds can be used. And a liquid photocurable resin containing one or more of epoxy compounds, and a photopolymerization initiator and, if necessary, a sensitizer. Although not limited, specific examples of the oligomer, the monofunctional vinyl compound, the polyfunctional vinyl compound, and the epoxy compound that can be used in the present invention include:
The following can be mentioned.

【0029】[オリゴマー]ウレタンアクリレートオリ
ゴマー、エポキシアクリレートオリゴマー、エステルア
クリレートオリゴマー、多官能エポキシ樹脂など。
[Oligomer] Urethane acrylate oligomer, epoxy acrylate oligomer, ester acrylate oligomer, polyfunctional epoxy resin and the like.

【0030】[単官能性ビニル化合物] ○アクリル系化合物:イソボルニルアクリレート、イソ
ボルニルメタクリレート、ジシクロペンテニルアクリレ
ート、ジシクロペンテニルメタクリレート、ジシクロペ
ンテニロキシエチルアクリレート、ジシクロペンテニロ
キシエチルメタクリレート、ジシクロペタニルアクリレ
ート、ジシクロペタニルメタクリレート、ボルニルアク
リレート、ボルニルメタクリレート、2−ヒドロキシエ
チルアクリレート、シクロヘキシルアクリレート、2−
ヒドロキシプロピルアクリレート、フェノキシエチルア
クリレート、モルホリンアクリルアミド、モルホリンメ
タクリルアミド、アクリルアミドなど。 ○他の単官能性化合物:N−ビニルピロリドン、N−ビ
ニルカプロラクタム、酢酸ビニル、スチレンなど。
[Monofunctional vinyl compound] Acrylic compound : isobornyl acrylate, isobornyl methacrylate, dicyclopentenyl acrylate, dicyclopentenyl methacrylate, dicyclopentenyloxyethyl acrylate, dicyclopentenyloxyethyl methacrylate , Dicyclopetanyl acrylate, dicyclopetanyl methacrylate, bornyl acrylate, bornyl methacrylate, 2-hydroxyethyl acrylate, cyclohexyl acrylate, 2-
Hydroxypropyl acrylate, phenoxyethyl acrylate, morpholine acrylamide, morpholine methacrylamide, acrylamide and the like. ○ Other monofunctional compounds : N-vinylpyrrolidone, N-vinylcaprolactam, vinyl acetate, styrene and the like.

【0031】[多官能性ビニル化合物]トリメチロール
プロパントリアクリレート、エチレンオキサイド変性ト
リメチロールプロパントリアクリレート、エチレングリ
コールジアクリレート、テトラエチレングリコールジア
クリレート、ポリエチレングリコールジアクリレート、
1,4−ブタンジオールジアクリレート、1,6−ヘキ
サンジオールジアクリレート、ネオペンチルグリコール
ジアクリレート、ジシクロペンタニルジアクリレート、
ポリエステルジアクリレート、エチレンオキサイド変性
ビスフェノールAジアクリレート、ペンタエリスリトー
ルトリアクリレート、ペンタエリスリトールテトラアク
リレート、プロピレンオキサイド変性トリメチロールプ
ロパントリアクリレート、プロピレンオキサイド変性ビ
スフェノールAジアクリレート、トリス(アクリロキシ
エチル)イソシアヌレートなど。
[Polyfunctional vinyl compound] trimethylolpropane triacrylate, ethylene oxide-modified trimethylolpropane triacrylate, ethylene glycol diacrylate, tetraethylene glycol diacrylate, polyethylene glycol diacrylate,
1,4-butanediol diacrylate, 1,6-hexanediol diacrylate, neopentyl glycol diacrylate, dicyclopentanyl diacrylate,
Polyester diacrylate, ethylene oxide-modified bisphenol A diacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, propylene oxide-modified trimethylolpropane triacrylate, propylene oxide-modified bisphenol A diacrylate, tris (acryloxyethyl) isocyanurate and the like.

【0032】[エポキシ化合物]水素添加ビスフェノー
ルAジグリシジルエーテル、3,4−エポキシシクロヘ
キシルメチル−3,4−エポキシシクロヘキサンカルボ
キシレート、2−(3,4−エポキシシクロヘキシル−
5,5−スピロ−3,4−エポキシ)シクロヘキサン−
メタ−ジオキサン、ビス(3,4−エポキシシクロヘキ
シルメチル)アジペートなど。
[Epoxy compound] hydrogenated bisphenol A diglycidyl ether, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, 2- (3,4-epoxycyclohexyl-
5,5-spiro-3,4-epoxy) cyclohexane-
Meta-dioxane, bis (3,4-epoxycyclohexylmethyl) adipate and the like.

【0033】また、本発明の光硬化性樹脂組成物に用い
る光硬化性樹脂で使用する光重合開始剤は特に制限され
ず、光硬化性樹脂組成物で従来から用いられている光重
合開始剤のいずれもが使用できる。限定されるものでは
ないが、光重合開始剤の代表例としては、2,2−ジメ
トキシ−2−フェニルアセトフェノン、1−ヒドロキシ
シクロヘキシルフェニルケトン、アセトフェノン、ベン
ゾフェノン、キサントン、フルオレノン、ベンズアルデ
ヒド、フルオレン、アントラキノン、トリフェニルアミ
ン、カルバゾール、3−メチルアセトフェノン、ミヒラ
ーケトンなどを挙げることができ、これらの1種または
2種以上を用いることができる。また、必要に応じて、
アミン系化合物などの増感剤を併用してもよい。
The photopolymerization initiator used in the photocurable resin used in the photocurable resin composition of the present invention is not particularly limited, and the photopolymerization initiator conventionally used in the photocurable resin composition is used. Any of these can be used. Although not limited, typical examples of the photopolymerization initiator include 2,2-dimethoxy-2-phenylacetophenone, 1-hydroxycyclohexylphenylketone, acetophenone, benzophenone, xanthone, fluorenone, benzaldehyde, fluorene, anthraquinone, Examples thereof include triphenylamine, carbazole, 3-methylacetophenone, and Michler's ketone, and one or more of these can be used. Also, if necessary,
A sensitizer such as an amine compound may be used in combination.

【0034】特に、上記した多官能エポキシ樹脂の場合
は、脂肪族ジエポキシ化合物、脂環族ジエポキシ化合
物、芳香族ジエポキシ化合物の1種または2種以上を主
体とし、これに必要に応じて単官能(メタ)アクリレー
トモノマー、多官能(メタ)アクリレートモノマーを混
合し、これにカチオン性光重合開始剤および必要に応じ
て光ラジカル重合開始剤を含有させた液状光硬化性樹脂
組成物の形態で用いられることが多い。その場合のカチ
オン性光重合開始剤としては、スルホニウム塩やヨウド
ニウム塩などのオニウム塩が用いられ、その代表的な市
販品の例としては、UVI−6950、UVI−697
0、UVI−6974、UVI−6990(以上ユニオ
ンカーバイド社製)、アデカオプトマーSP−150、
SP−151、SP−170、SP−171(以上旭電
化工業株式会社製)などを挙げることができる。
In particular, in the case of the above-mentioned polyfunctional epoxy resin, one or more of an aliphatic diepoxy compound, an alicyclic diepoxy compound and an aromatic diepoxy compound are mainly used, and if necessary, a monofunctional ( It is used in the form of a liquid photo-curable resin composition in which a meth) acrylate monomer and a polyfunctional (meth) acrylate monomer are mixed, and a cationic photopolymerization initiator and, if necessary, a radical photopolymerization initiator are added thereto. Often. In this case, as the cationic photopolymerization initiator, an onium salt such as a sulfonium salt or an iodonium salt is used. Examples of typical commercial products include UVI-6950 and UVI-697.
0, UVI-6974, UVI-6990 (all manufactured by Union Carbide), Adeka Optomer SP-150,
SP-151, SP-170, SP-171 (all manufactured by Asahi Denka Kogyo Co., Ltd.) and the like.

【0035】本発明の光硬化性樹脂組成物は、上記した
成分以外にも、必要に応じて、レベリング剤、リン酸エ
ステル塩系界面活性剤以外の界面活性剤、有機高分子改
質剤、有機可塑剤などを含有していてもよい。
The photocurable resin composition of the present invention may further comprise, if necessary, a leveling agent, a surfactant other than a phosphate ester-based surfactant, an organic polymer modifier, It may contain an organic plasticizer and the like.

【0036】本発明の光硬化性樹脂組成物は、光を遮断
し得る状態に保存した場合には、通常、10〜40℃の
温度で、約6〜18ケ月の長期に亙って、その変性や重
合を防止しながら良好な光硬化性能を保ちながら保存す
ることができる。
When the photocurable resin composition of the present invention is stored in a state capable of blocking light, it is usually kept at a temperature of 10 to 40 ° C. for a long period of about 6 to 18 months. It can be stored while maintaining good photocuring performance while preventing denaturation and polymerization.

【0037】何ら限定されるものではないが、本発明の
光硬化性樹脂組成物は、例えば、光照射を伴う各種の造
形技術、例えば、光学的立体造形、光照射を伴う流延成
形、注型などの光造形技術やなどの用途に有効に用いる
ことができ、そのうちでも光学的立体造形に有効に用い
られる。本発明の光硬化性樹脂組成物を用いて光学的立
体造形を行う場合は、従来既知の光学的立体造形方法お
よび装置のいずれもが使用できる。そのうちでも、本発
明では、樹脂を硬化させるための光エネルギーとして、
Arレーザー、He−Cdレーザー、半導体励起固体レ
ーザー、キセノンランプ、メタルハライドランプ、水銀
灯、蛍光灯などからは発生される活性エネルギー光線を
用いるのが好ましく、レーザー光線が特に好ましく用い
られる。活性エネルギー光線としてレーザー光線を用い
た場合には、エネルギーレベルを高めて造形時間を短縮
することが可能であり、しかもレーザー光線の良好な集
光性を利用して、造形精度の高い立体造形物を得ること
ができる。
Although not limited in any way, the photocurable resin composition of the present invention can be produced by, for example, various molding techniques involving light irradiation, such as optical three-dimensional molding, cast molding with light irradiation, and injection molding. It can be effectively used for applications such as stereolithography technology such as a mold, and among them, it is effectively used for optical three-dimensional modeling. When performing optical three-dimensional modeling using the photocurable resin composition of the present invention, any of conventionally known optical three-dimensional modeling methods and apparatuses can be used. Among them, in the present invention, as light energy for curing the resin,
It is preferable to use an active energy beam generated from an Ar laser, a He-Cd laser, a semiconductor-excited solid laser, a xenon lamp, a metal halide lamp, a mercury lamp, a fluorescent lamp, and the like, and a laser beam is particularly preferably used. When a laser beam is used as the active energy beam, it is possible to increase the energy level and shorten the molding time, and to obtain a three-dimensional object with high modeling accuracy by utilizing the good light condensing property of the laser beam. be able to.

【0038】本発明の光硬化性樹脂組成物を用いて光学
的立体造形を行う場合は、従来既知の方法や従来既知の
光造形システム装置のいずれもが採用でき特に制限され
ないが、本発明で好ましく用いられる光学的立体造形法
の代表例としては、上記した本発明の光硬化性樹脂組成
物からなる1つの層に活性エネルギー光線を選択的に照
射して所定のパターンを有する硬化層を形成し、次いで
前記硬化層上に未硬化液状の光硬化性樹脂組成物を層状
に施した後に活性エネルギー光線を照射して前記硬化層
と連続した硬化層を新たに形成し、所定の立体造形物が
得られるまで前記積層操作を更に繰り返すことからなる
立体造形物の製造方法を挙げることができる。これによ
って得られる立体造形物はそのまま用いても、また場合
によっては更に光照射によるポストキュアや熱によるポ
ストキュアなどを行って、その力学的特性や形状安定性
などを一層高いものとしてから使用するようにしてもよ
い。
In the case of performing optical three-dimensional modeling using the photocurable resin composition of the present invention, any of a conventionally known method and a conventionally known stereolithography system apparatus can be adopted, and there is no particular limitation. A typical example of the preferably used optical three-dimensional molding method is to selectively irradiate one layer made of the above-described photocurable resin composition of the present invention with an active energy ray to form a cured layer having a predetermined pattern. Then, after applying an uncured liquid photocurable resin composition in a layer on the cured layer, the cured layer continuous with the cured layer by irradiating active energy rays to form a new three-dimensional molded article And a method for producing a three-dimensional structure, which comprises repeating the above-mentioned laminating operation until is obtained. The three-dimensional object obtained by this method can be used as it is, or in some cases, post-cured by light irradiation or post-cured by heat, etc., and used after further improving its mechanical properties and shape stability etc. You may do so.

【0039】本発明の光硬化性樹脂組成物を用いた場合
には、光造形時の良好な取り扱い性および作業性でもっ
て、表面平滑性に優れ、しかも力学的特性、耐熱性、耐
熱変形性、寸法精度などに優れる高品質の光造形物やそ
の他の光硬化物を得ることができ、特に三次元表面粗さ
計を用いて三次元接触法で測定した表面粗度が平均で2
μm以下である、表面平滑性に極めて優れる立体造形物
や光硬化物を円滑に得ることができる。
When the photocurable resin composition of the present invention is used, it has excellent surface smoothness, good mechanical properties, heat resistance, and heat deformation resistance, with good handling and workability during stereolithography. It is possible to obtain high-quality stereolithography and other photo-cured products with excellent dimensional accuracy, especially the surface roughness measured by the three-dimensional contact method using a three-dimensional surface roughness meter is 2 on average.
It is possible to smoothly obtain a three-dimensional structure or a photo-cured product having a surface smoothness of not more than μm which is extremely excellent.

【0040】本発明の光硬化性樹脂組成物を用いて製造
する際の立体造形物の構造、形状、サイズなどは特に制
限されず、各々の用途に応じて決めることができる。本
発明の光学的立体造形法の代表的な応用分野としては、
設計の途中で外観デザインを検証するためのモデル、部
品の機能性をチェックするためのモデル、鋳型を制作す
るための樹脂型、金型を制作するためのベースモデル、
試作金型用の直接型、樹脂成形品などを製造する際の簡
易型などの作製などを挙げることができる。より具体的
には、精密部品、電気・電子部品、家具、建築構造物、
自動車用部品、各種容器類、鋳物、金型、母型などのた
めのモデルや加工用モデルなどの製作を挙げることがで
きる。特にその良好な耐熱性、力学的特性、高い寸法精
度などの特性を活かして、高温部品の試作、例えば複雑
な熱媒回路の設計、複雑な構造の熱媒挙動の解析企画用
の部品の製造などに極めて有効に使用することができ
る。
The structure, shape, size, and the like of the three-dimensionally formed object produced using the photocurable resin composition of the present invention are not particularly limited, and can be determined according to each use. As typical application fields of the optical three-dimensional modeling method of the present invention,
A model for verifying the external design during the design process, a model for checking the functionality of parts, a resin mold for producing a mold, a base model for producing a mold,
Production of direct molds for prototype molds, simplified molds for producing resin molded products, and the like can be cited. More specifically, precision components, electrical and electronic components, furniture, building structures,
Production of models for automobile parts, various containers, castings, dies, mother dies, and the like, and models for machining can be mentioned. Taking advantage of its properties such as good heat resistance, mechanical properties, and high dimensional accuracy, trial production of high-temperature parts, for example, design of complex heat transfer circuits, manufacture of parts for analysis planning of heat transfer behavior of complex structures It can be used very effectively for such purposes.

【0041】[0041]

【実施例】以下に実施例等によって本発明について具体
的に説明するが、本発明は以下の例によって何ら限定さ
れない。以下の例において、固体微粒子の平均粒径およ
び粒度分布(平均粒径の0.5倍ないし1.5倍の範囲
内または平均粒径の0.7倍ないし1.2倍の範囲内の
粒径を有する微粒子の割合)、ウイスカーの寸法および
アスペクト比、光硬化性樹脂組成物の粘度は次のように
して求めた。また、光学的立体造形時の作業性の良否の
判定、光学的立体造形により得られた光学的立体造形物
の表面平滑性(表面粗度)、引張強度、引張伸度、引張
弾性率、熱変形温度および光学的立体造形時の体積収縮
率の測定は次のようにして行った。
EXAMPLES The present invention will be specifically described below with reference to examples and the like, but the present invention is not limited to the following examples. In the following examples, the average particle size and particle size distribution of the solid fine particles (particles in the range of 0.5 to 1.5 times the average particle size or 0.7 to 1.2 times the average particle size) The ratio of fine particles having a diameter), the size and aspect ratio of the whisker, and the viscosity of the photocurable resin composition were determined as follows. In addition, determination of workability during optical three-dimensional modeling, surface smoothness (surface roughness), tensile strength, tensile elongation, tensile elastic modulus, thermal elasticity of the optical three-dimensional molded article obtained by optical three-dimensional modeling. The measurement of the deformation temperature and the volumetric shrinkage at the time of optical three-dimensional molding was performed as follows.

【0042】[固体微粒子の平均粒径]日科機バイオス
株式会社製「コールター・マルチサイザーII」を使用し
て固体微粒子の粒子サイズを測定して、その粒子サイズ
の重量分布を求めて、その結果から平均粒径を求めた。
[Average Particle Size of Solid Fine Particles] The particle size of the solid fine particles was measured using “Coulter Multisizer II” manufactured by Nikkaki Bios, and the weight distribution of the particle sizes was determined. The average particle size was determined from the results.

【0043】[固体微粒子の粒度分布(平均粒径の0.
5倍ないし1.5倍の範囲内または平均粒径の0.7倍
ないし1.2倍の範囲内の粒径を有する微粒子の割
合)]上記装置を使用して得られた固体微粒子の粒子サ
イズの測定データーをコンピューター処理し、ヒストグ
ラム化することにより固体微粒子の粒度分布を求めた。
[Particle Size Distribution of Solid Fine Particles
Proportion of fine particles having a particle size in the range of 5 to 1.5 times or in a range of 0.7 to 1.2 times the average particle size)] Particles of solid fine particles obtained using the above apparatus The measured data of the size was processed by computer, and the particle size distribution of the solid fine particles was determined by forming a histogram.

【0044】[ウイスカーの寸法およびアスペクト比]
レーザー回析/散乱式粒度分布測定装置(株式会社的場
製作所製「LA−7000」)を使用し、分散媒として
イオン交換水を用いて、イオン交換水中にウイスカーを
1重量%の割合で分散させ、その粒度分布を調べ、小さ
い方から10%の部分(D10)における粒度を径(繊
維径)とし、90%の部分(D90)における粒度を長
さ(繊維長)とした。また、アスペクト比をD90/D
10として求めた。
[Dimensions and aspect ratio of whisker]
Using a laser diffraction / scattering particle size distribution analyzer (“LA-7000” manufactured by Matoba Seisakusho Co., Ltd.), whiskers are dispersed in ion-exchanged water at a ratio of 1% by weight using ion-exchanged water as a dispersion medium. The particle size distribution was examined, and the particle size at the 10% portion (D10) from the smaller one was defined as the diameter (fiber diameter), and the particle size at the 90% portion (D90) was defined as the length (fiber length). When the aspect ratio is D90 / D
It was determined as 10.

【0045】[光硬化性樹脂組成物の粘度]回転式B型
粘度計(株式会社トキメック製「モデルBH」)を使用
して、25℃の温度で、ローターの回転速度4回/分〜
10回/分の条件下に光硬化性樹脂組成物の粘度を測定
した。
[Viscosity of Photocurable Resin Composition] Using a rotary B-type viscometer (“Model BH” manufactured by Tokimec Co., Ltd.), at a temperature of 25 ° C., the rotation speed of the rotor is 4 times / min.
The viscosity of the photocurable resin composition was measured under the conditions of 10 times / minute.

【0046】[光学的立体造形時の作業性の良否]光硬
化性樹脂組成物の粘度が低くいために光造形時における
光硬化性樹脂組成物の1層分での塗布操作をスムーズに
行うことができ、しかも塗布層の表面が平坦である場合
を○(作業性良好)、光硬化性樹脂組成物の粘度が高す
ぎて光造形時における光硬化性樹脂組成物の1層分での
塗布操作が行いにくく、しかも塗布層の表面に多少なり
と凹凸がある場合を×(塗布作業性不良)として判定し
た。
[Goodness of workability at the time of optical three-dimensional molding] Since the viscosity of the photocurable resin composition is low, the coating operation of one layer of the photocurable resin composition at the time of optical molding can be smoothly performed. When the coating layer is flat and the surface of the coating layer is flat (good workability), the viscosity of the photocurable resin composition is too high and the photocurable resin composition is applied in one layer during stereolithography. When the operation was difficult to perform and the surface of the coating layer had some irregularities, it was judged as x (poor coating workability).

【0047】[光学的立体造形物の表面粗度]三次元表
面粗さ計(株式会社東京精密製「サーフコム1400A
−3DF」)を使用して、光学的立体造形物の表面に接
触させながら三次元接触法で表面の粗さを測定し、それ
により得られた表面粗さ(凹凸)の平均値(Ra)を表
面粗度とした。
[Surface Roughness of Optical Three-dimensional Object] Three-dimensional surface roughness meter (Surfcom 1400A manufactured by Tokyo Seimitsu Co., Ltd.)
-3DF ”), the surface roughness is measured by a three-dimensional contact method while making contact with the surface of the optical three-dimensional structure, and the average value (Ra) of the surface roughness (irregularities) obtained thereby is obtained. Was defined as the surface roughness.

【0048】[光学的立体造形物の引張強度、引張伸度
および引張弾性率]光学的立体造形によって製造したダ
ンベル形状試験片を用いて、JIS K 7113に準拠
して、その引張強度、引張伸度および引張弾性率を測定
した。
[Tensile Strength, Tensile Elongation and Tensile Elasticity of Optical Three-Dimensional Object] Using a dumbbell-shaped test piece manufactured by optical three-dimensional molding, the tensile strength, tensile elongation and tensile elongation are measured in accordance with JIS K 7113. The degree and tensile modulus were measured.

【0049】[光学的立体造形物の熱変形温度]光学的
立体造形によって製造したダンベル形状試験片を用い
て、JIS K7207に準拠してA法(荷重18.5
kg/mm2)で熱変形温度を測定した。
[Thermal Deformation Temperature of Optical Three-Dimensional Object] Using a dumbbell-shaped test piece manufactured by optical three-dimensional molding, method A (load 18.5) according to JIS K7207
kg / mm 2 ).

【0050】[光学的立体造形時の体積収縮率]光学的
立体造形に用いた光硬化前の光硬化性樹脂組成物の比重
(d1)と、光学的立体造形により得られた光学的立体
造形物(ダンベル形状試験片)の比重(d2)をそれぞ
れ測定して、下記の数式(1)によりその体積収縮率
(%)を求めた。
[Volume shrinkage during optical three-dimensional modeling] The specific gravity (d 1 ) of the photocurable resin composition before photocuring used in the optical three-dimensional modeling, and the optical three-dimensional model obtained by the optical three-dimensional modeling The specific gravity (d 2 ) of the molded article (dumbbell-shaped test piece) was measured, and the volume shrinkage (%) was determined by the following equation (1).

【0051】[0051]

【数1】 体積収縮率(%)={(d2−d1)/d2}×100 (1)## EQU1 ## Volume shrinkage (%) = {(d 2 −d 1 ) / d 2 } × 100 (1)

【0052】《製造例1》[ウレタンアクリレートオリ
ゴマーとモルホリンアクリルアミドを含む反応生成物の
製造] (1) 攪拌機、冷却管および側管付きの滴下ロートを
備えた内容積5リットルの三つ口フラスコに、イソホロ
ンジイソシアネート888g、モルホリンアクリルアミ
ド906gおよびジブチル錫ジラウレート1.0gを仕
込んで、オイルバスで内温が80〜90℃になるように
加熱した。 (2) 予め50℃に保温した上記の側管付きの滴下ロ
ートにグリセリンモノメタクリレートモノアクリレート
856gにメチルヒドロキノン0.7gを均一に混合溶
解させた液を仕込み、この滴下ロート内の液を、上記
(1)のフラスコ中の内容物に、窒素雰囲気下でフラス
コの内容物の温度を80〜90℃に保ちながら撹拌下に
滴下混合して、同温度で2時間撹拌して反応させた。 (3) 次いで、フラスコの内容物の温度を60℃に下
げた後、別の滴下ロートに仕込んだペンタエリスリトー
ルのプロピレンオキサイド4モル付加物(ペンタエリス
リトールの4個の水酸基にプロピレンオキサイドをそれ
ぞれ1モル付加したもの)366gを素早く滴下して加
え、フラスコの内容物の温度を80〜90℃に保って4
時間反応させて、ウレタンアクリレートオリゴマーとモ
ルホリンアクリルアミドを含む反応生成物を製造し、得
られた反応生成物を温かいうちにフラスコから取り出し
た。
<< Production Example 1 >> [Production of a reaction product containing a urethane acrylate oligomer and morpholine acrylamide] (1) A 5-liter three-necked flask equipped with a dropping funnel equipped with a stirrer, a condenser and a side tube was used. , 888 g of isophorone diisocyanate, 906 g of morpholine acrylamide and 1.0 g of dibutyltin dilaurate were heated in an oil bath so that the internal temperature was 80 to 90 ° C. (2) A liquid obtained by uniformly mixing and dissolving 0.7 g of methylhydroquinone in 856 g of glycerin monomethacrylate monoacrylate is charged into the dropping funnel with the side tube previously heated to 50 ° C., and the liquid in the dropping funnel is mixed with The contents in the flask of (1) were dropped and mixed under stirring in a nitrogen atmosphere while maintaining the temperature of the contents of the flask at 80 to 90 ° C, and reacted by stirring at the same temperature for 2 hours. (3) Then, after lowering the temperature of the contents of the flask to 60 ° C., a 4-mol adduct of propylene oxide of pentaerythritol charged in another dropping funnel (each of 1 mol of propylene oxide was added to 4 hydroxyl groups of pentaerythritol) 366 g was quickly added dropwise and the temperature of the contents of the flask was maintained at 80 to 90 ° C.
The reaction was carried out for a time to produce a reaction product containing a urethane acrylate oligomer and morpholine acrylamide, and the obtained reaction product was taken out of the flask while it was still warm.

【0053】《実施例1》[光硬化性樹脂組成物および
立体造形物の製造] (1) 攪拌機、冷却管および側管付き滴下ロートを備
えた内容積5リットルの三つ口フラスコに、製造例1で
得られた、ウレタンアクリレートオリゴマーとモルホリ
ンアクリルアミドを含む反応生成物2020g、モルホ
リンアクリルアミド454gおよびジシクロペンタニル
ジアクリレート1060gを仕込み、減圧脱気窒素置換
した。次いで、紫外線を遮断した環境下に、1−ヒドロ
キシシクロヘキシルフェニルケトン(チバガイギー社製
「イルガキュアー184」;光重合開始剤)118gを
添加し、完全に溶解するまで温度25℃で混合攪拌して
(混合撹拌時間約1時間)、無色透明な粘稠液体である
光硬化性樹脂を得た。
<< Example 1 >> [Production of photocurable resin composition and three-dimensional molded article] (1) Production in a three-necked flask having an internal volume of 5 liters equipped with a stirrer, a cooling tube and a dropping funnel with a side tube. 2020 g of a reaction product containing a urethane acrylate oligomer and morpholine acrylamide obtained in Example 1, 454 g of morpholine acrylamide and 1060 g of dicyclopentanyl diacrylate were charged, and the atmosphere was replaced by degassing under reduced pressure. Next, 118 g of 1-hydroxycyclohexyl phenyl ketone (“Irgacure 184” manufactured by Ciba Geigy; photopolymerization initiator) was added in an environment where ultraviolet rays were blocked, and mixed and stirred at a temperature of 25 ° C. until completely dissolved ( The mixing and stirring time was about 1 hour) to obtain a photocurable resin which was a colorless and transparent viscous liquid.

【0054】(2) 上記(1)で得られた光硬化性樹
脂1400gを万能撹拌機(ダルトン株式会社製;内容
積10リットル)に入れガラスビーズ(平均粒径5.4
μm;平均粒径の0.5倍ないし1.5倍の範囲内の粒
径を有する微粒子の割合86重量%)2600g(最終
的に得られる光硬化性樹脂組成物の全容量に基づいて3
8容量%)を添加し、一日撹拌し、脱泡処理して、光硬
化性樹脂組成物を製造した。これにより得られた光硬化
性樹脂組成物の25℃の粘度を上記した方法で測定した
ところ、下記の表1に示すとおりであった。
(2) 1400 g of the photocurable resin obtained in the above (1) was placed in a universal stirrer (Dalton Co., Ltd .; internal volume: 10 liters) and glass beads (average particle size: 5.4)
μm; 86% by weight of fine particles having a particle size in the range of 0.5 to 1.5 times the average particle size) 2600 g (3 based on the total volume of the finally obtained photocurable resin composition)
8% by volume), followed by stirring for one day and defoaming to produce a photocurable resin composition. The viscosity of the photocurable resin composition thus obtained at 25 ° C. was measured by the method described above, and was as shown in Table 1 below.

【0055】(3) 上記(2)で得られた光硬化性樹
脂組成物を用いて、超高速光造形システム(帝人製機株
式会社製「SOLIFORM500」)を使用して、水
冷Arレーザー光(出力500mW;波長333,35
1,364nm)を表面に対して垂直に照射して、照射
エネルギー20〜30mJ/cm2の条件下にスライス
ピッチ(積層厚み)0.05mm、1層当たりの平均造
形時間2分で光学的立体造形を行って、表面粗度、引張
強度、引張伸び、引張弾性率、熱伝導率、および熱変形
温度を測定するための光学的立体造形物(試験片)を製
造した。光学的立体造形物の製造に際して、光造形時の
作業性の良否を上記した方法で判定した。得られた光学
的立体造形物(試験片)をイソプロピルアルコールで洗
浄した後、3KWの紫外線を10分間照射してポストキ
ュアを行った。それにより得られた光学的立体造形物
(試験片)の物性を上記した方法で測定したところ、下
記の表1に示すとおりであった。さらに、この実施例1
の光学的立体造形物の製造に用いた光硬化前の光硬化性
樹脂組成物の比重(d1)と、ポストキュア後の立体造
形物の比重(d2)をそれぞれ測定して、上記の数式
(1)によりその体積収縮率を求めたところ、下記の表
1に示すとおりであった。
(3) Using the photocurable resin composition obtained in the above (2), a water-cooled Ar laser beam (“SOLIFORM500” manufactured by Teijin Seiki Co., Ltd.) using an ultra-high-speed stereolithography system Output 500mW; wavelength 333,35
1,364 nm) perpendicularly to the surface, and under the condition of irradiation energy of 20 to 30 mJ / cm 2 , a slice pitch (lamination thickness) of 0.05 mm, and an optical three-dimensional structure with an average modeling time of 2 minutes per layer of 2 minutes. By performing modeling, an optical three-dimensional molded article (test piece) for measuring surface roughness, tensile strength, tensile elongation, tensile modulus, thermal conductivity, and thermal deformation temperature was manufactured. In the production of the optical three-dimensional structure, the workability at the time of the stereolithography was judged by the above method. After the obtained optical three-dimensional structure (test piece) was washed with isopropyl alcohol, it was irradiated with 3 KW ultraviolet rays for 10 minutes to perform post cure. The physical properties of the optical three-dimensional structure (test piece) obtained by the measurement were measured by the above-mentioned methods, and were as shown in Table 1 below. Example 1
The specific gravity (d 1 ) of the photocurable resin composition before photocuring and the specific gravity (d 2 ) of the three-dimensional molded article after post-curing, which were used for the production of the optical three-dimensional molded article, were measured. The volumetric shrinkage was determined by equation (1) and was as shown in Table 1 below.

【0056】《実施例2》[光硬化性樹脂組成物および
立体造形物の製造] (1) 実施例1の(1)で得られた光硬化性樹脂15
00gを万能撹拌機(ダルトン株式会社製;内容積10
リットル)に入れ、酸化アルミニウム微粒子(平均粒径
3.5μm、平均粒径の0.5倍ないし1.5倍の範囲
内の粒径を有する微粒子の割合75重量%)2200g
(最終的に得られる光硬化性樹脂組成物の全容量に基づ
いて25容量%)、およびアクリルシラン系カップリン
グ剤[γ−(メタクリロキシプロピル)トリメトキシシ
ラン]で処理したホウ酸アルミニウムウイスカー(四国
化成工業株式会社製「アルボレックスYS−4」;径
0.5〜0.7μm、アスペクト比50〜70)102
0g(最終的に得られる光硬化性樹脂組成物の全容量に
基づいて15容量%)を添加し、一日撹拌し、脱泡処理
して、光硬化性樹脂組成物を製造した。これにより得ら
れた光硬化性樹脂組成物の25℃の粘度を上記した方法
で測定したところ、下記の表1に示すとおりであった。
<< Example 2 >> [Production of photocurable resin composition and three-dimensional molded article] (1) Photocurable resin 15 obtained in (1) of Example 1
100 g of a universal stirrer (Dalton Co., Ltd .; internal volume 10
2200 g of aluminum oxide fine particles (average particle size 3.5 μm, 75% by weight of fine particles having a particle size in the range of 0.5 to 1.5 times the average particle size).
(25% by volume based on the total volume of the finally obtained photocurable resin composition), and aluminum borate whiskers (γ- (methacryloxypropyl) trimethoxysilane) treated with an acrylic silane-based coupling agent ( "Albolex YS-4" manufactured by Shikoku Chemical Industry Co., Ltd .; diameter: 0.5 to 0.7 μm; aspect ratio: 50 to 70) 102
0 g (15% by volume based on the total volume of the finally obtained photocurable resin composition) was added, followed by stirring for one day and defoaming to produce a photocurable resin composition. The viscosity of the photocurable resin composition thus obtained at 25 ° C. was measured by the method described above, and was as shown in Table 1 below.

【0057】(3) 上記(2)で得られた光硬化性樹
脂組成物を用いて、実施例1の(3)と同様にして光学
的立体造形を行って、表面粗度、引張強度、引張伸び、
引張弾性率、熱伝導率、および熱変形温度を測定するた
めの光学的立体造形物(試験片)を製造した。光学的立
体造形物の製造に際して、光造形時の作業性の良否を上
記した方法で判定した。得られた光学的立体造形物(試
験片)をイソプロピルアルコールで洗浄した後、3KW
の紫外線を10分間照射してポストキュアを行った。そ
れにより得られた光学的立体造形物(試験片)の物性を
上記した方法で測定したところ、下記の表1に示すとお
りであった。さらに、この実施例2の光学的立体造形物
の製造に用いた光硬化前の光硬化性樹脂組成物の比重
(d1)と、ポストキュア後の立体造形物の比重(d2
をそれぞれ測定して、上記の数式(1)によりその体積
収縮率を求めたところ、下記の表1に示すとおりであっ
た。
(3) Using the photocurable resin composition obtained in the above (2), optical three-dimensional modeling was performed in the same manner as in (3) of Example 1, and the surface roughness, tensile strength, Tensile elongation,
An optical three-dimensional structure (test piece) for measuring tensile modulus, thermal conductivity, and thermal deformation temperature was manufactured. In the production of the optical three-dimensional structure, the workability at the time of the stereolithography was judged by the above method. After washing the obtained optical three-dimensional structure (test piece) with isopropyl alcohol, 3 KW
Was irradiated for 10 minutes to perform post cure. The physical properties of the optical three-dimensional structure (test piece) obtained by the measurement were measured by the above-mentioned methods, and were as shown in Table 1 below. Furthermore, the specific gravity (d 1 ) of the photocurable resin composition before photocuring used in the production of the optical three-dimensional molded article of Example 2 and the specific gravity (d 2 ) of the three-dimensional molded article after post-curing.
Was measured, and the volumetric shrinkage was determined by the above equation (1). The results are as shown in Table 1 below.

【0058】《実施例3》[光硬化性樹脂組成物および
立体造形物の製造] (1) 攪拌機、冷却管および側管付き滴下ロートを備
えた内容積5リットルの三つ口フラスコに、3,4−エ
ポキシシクロヘキシルメチル−3,4−エポキシシクロ
ヘキサンカルボキシレート4000g、1,4−ブタン
ジオールジグリシジルエーテル1000g、2,2−ビ
ス[4−(アクリロキシジエトキシ)フェニルプロパン
(新中村化学工業株式会社製「NKエステルA−BPE
−4)2500g、およびエチレンオキサイド変性トリ
メチロールプロパントリアクリレート(新中村化学工業
株式会社製「A−TMPT−3EO)2500gを仕込
み、約1時間撹拌混合した。次いで、紫外線を遮断した
環境下に、2,2−ジメトキシ−2−フェニルアセトフ
ェノン(チバガイギー社製「イルガキュアー651)1
50gおよびビス[4−(ジフェニルスルホニオ)フェ
ニル]スルフィドビスヘキサフルオロアンチモネート2
00gを添加し、完全溶解するまで混合撹拌してエポキ
シ系光硬化性樹脂を製造した。
Example 3 [Production of photocurable resin composition and three-dimensional molded article] (1) A three-necked flask having an inner volume of 5 liters equipped with a stirrer, a cooling tube, and a dropping funnel with a side tube was placed in a three-necked flask. , 4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate 4000 g, 1,4-butanediol diglycidyl ether 1000 g, 2,2-bis [4- (acryloxydiethoxy) phenylpropane (Shin-Nakamura Chemical Co., Ltd. "NK Ester A-BPE"
-4) 2500 g and 2500 g of ethylene oxide-modified trimethylolpropane triacrylate (“A-TMPT-3EO” manufactured by Shin-Nakamura Chemical Co., Ltd.) were mixed and stirred for about 1 hour. 2,2-dimethoxy-2-phenylacetophenone (“Irgacure 651” manufactured by Ciba Geigy)
50 g and bis [4- (diphenylsulfonio) phenyl] sulfide bishexafluoroantimonate 2
Then, 00g was added and mixed and stirred until completely dissolved to produce an epoxy-based photocurable resin.

【0059】(2) 上記(1)で得られたエポキシ系
光硬化性樹脂2500gを万能撹拌機(ダルトン株式会
社製;内容積10リットル)に入れ、シリカ微粒子(平
均粒径5.0μm;平均粒径の0.7倍ないし1.2倍
の範囲内の粒径を有する微粒子の割合80重量%)25
00g(最終的に得られる光硬化性樹脂組成物の全容量
に基づいて37容量%)を添加し、一日撹拌し、脱泡処
理して、光硬化性樹脂組成物を製造した。これにより得
られた光硬化性樹脂組成物の25℃の粘度を上記した方
法で測定したところ、下記の表1に示すとおりであっ
た。
(2) 2500 g of the epoxy photocurable resin obtained in the above (1) was placed in a universal stirrer (Dalton Co., Ltd .; internal volume: 10 liters), and silica fine particles (average particle size: 5.0 μm; average) 80% by weight of fine particles having a particle size in the range of 0.7 to 1.2 times the particle size) 25
Then, 00 g (37% by volume based on the total volume of the photocurable resin composition finally obtained) was added, and the mixture was stirred for one day and defoamed to produce a photocurable resin composition. The viscosity of the photocurable resin composition thus obtained at 25 ° C. was measured by the method described above, and was as shown in Table 1 below.

【0060】(3) 上記(2)で得られた光硬化性樹
脂組成物を用いて、実施例1の(3)と同様にして光学
的立体造形を行って、表面粗度、引張強度、引張伸び、
引張弾性率、熱伝導率、および熱変形温度を測定するた
めの光学的立体造形物(試験片)を製造した。光学的立
体造形物の製造に際して、光造形時の作業性の良否を上
記した方法で判定した。得られた光学的立体造形物(試
験片)をイソプロピルアルコールで洗浄した後、3KW
の紫外線を10分間照射してポストキュアを行った。そ
れにより得られた光学的立体造形物(試験片)の物性を
上記した方法で測定したところ、下記の表1に示すとお
りであった。さらに、この実施例2の光学的立体造形物
の製造に用いた光硬化前の光硬化性樹脂組成物の比重
(d1)と、ポストキュア後の立体造形物の比重(d2
をそれぞれ測定して、上記の数式(1)によりその体積
収縮率を求めたところ、下記の表1に示すとおりであっ
た。
(3) Using the photocurable resin composition obtained in the above (2), optical three-dimensional modeling was performed in the same manner as in (3) of Example 1, and the surface roughness, tensile strength, Tensile elongation,
An optical three-dimensional structure (test piece) for measuring tensile modulus, thermal conductivity, and thermal deformation temperature was manufactured. In the production of the optical three-dimensional structure, the workability at the time of the stereolithography was judged by the above method. After washing the obtained optical three-dimensional structure (test piece) with isopropyl alcohol, 3 KW
Was irradiated for 10 minutes to perform post cure. The physical properties of the optical three-dimensional structure (test piece) obtained by the measurement were measured by the above-mentioned methods, and were as shown in Table 1 below. Furthermore, the specific gravity (d 1 ) of the photocurable resin composition before photocuring used in the production of the optical three-dimensional molded article of Example 2 and the specific gravity (d 2 ) of the three-dimensional molded article after post-curing.
Was measured, and the volumetric shrinkage was determined by the above equation (1). The results are as shown in Table 1 below.

【0061】《比較例1》[光硬化性樹脂組成物および
立体造形物の製造] (1) 実施例1の(1)で得られた光硬化性樹脂15
00gを万能撹拌機(ダルトン株式会社製;内容積10
リットル)に入れ、酸化アルミニウム微粒子(平均粒径
5.3μm、平均粒径の0.5倍ないし1.5倍の範囲
内の粒径を有する微粒子の割合63重量%)2200g
(最終的に得られる光硬化性樹脂組成物の全容量に基づ
いて25容量%)、およびアクリルシラン系カップリン
グ剤[γ−(メタクリロキシプロピル)トリメトキシシ
ラン]で処理したホウ酸アルミニウムウイスカー(四国
化成工業株式会社製「アルボレックスYS−4」;径
0.5〜0.7μm、アスペクト比50〜70)102
0g(最終的に得られる光硬化性樹脂組成物の全容量に
基づいて15容量%)を添加し、一日撹拌し、脱泡処理
して、光硬化性樹脂組成物を製造した。これにより得ら
れた光硬化性樹脂組成物の25℃の粘度を上記した方法
で測定したところ、下記の表1に示すとおりであった。
<< Comparative Example 1 >> [Production of photocurable resin composition and three-dimensional molded article] (1) Photocurable resin 15 obtained in (1) of Example 1
100 g of a universal stirrer (Dalton Co., Ltd .; internal volume 10
2200 g of aluminum oxide fine particles (average particle size 5.3 μm, 63% by weight of fine particles having a particle size in the range of 0.5 to 1.5 times the average particle size).
(25% by volume based on the total volume of the finally obtained photocurable resin composition), and aluminum borate whiskers (γ- (methacryloxypropyl) trimethoxysilane) treated with an acrylic silane-based coupling agent ( "Albolex YS-4" manufactured by Shikoku Chemical Industry Co., Ltd .; diameter: 0.5 to 0.7 μm; aspect ratio: 50 to 70) 102
0 g (15% by volume based on the total volume of the finally obtained photocurable resin composition) was added, followed by stirring for one day and defoaming to produce a photocurable resin composition. The viscosity of the photocurable resin composition thus obtained at 25 ° C. was measured by the method described above, and was as shown in Table 1 below.

【0062】(2) 上記(1)で得られた光硬化性樹
脂組成物を用いて、実施例1の(3)と同様にして光学
的立体造形を行って、表面粗度、引張強度、引張伸び、
引張弾性率、熱伝導率、および熱変形温度を測定するた
めの光学的立体造形物(試験片)を製造した。光学的立
体造形物の製造に際して、光造形時の作業性の良否を上
記した方法で判定した。得られた光学的立体造形物(試
験片)をイソプロピルアルコールで洗浄した後、3KW
の紫外線を10分間照射してポストキュアを行った。そ
れにより得られた光学的立体造形物(試験片)の物性を
上記した方法で測定したところ、下記の表1に示すとお
りであった。さらに、この比較例1の光学的立体造形物
の製造に用いた光硬化前の光硬化性樹脂組成物の比重
(d1)と、ポストキュア後の立体造形物の比重(d2
をそれぞれ測定して、上記の数式(1)によりその体積
収縮率を求めたところ、下記の表1に示すとおりであっ
た。
(2) Using the photocurable resin composition obtained in the above (1), optical three-dimensional modeling was performed in the same manner as in (3) of Example 1, and the surface roughness, tensile strength, Tensile elongation,
An optical three-dimensional structure (test piece) for measuring tensile modulus, thermal conductivity, and thermal deformation temperature was manufactured. In the production of the optical three-dimensional structure, the workability at the time of the stereolithography was judged by the above method. After washing the obtained optical three-dimensional structure (test piece) with isopropyl alcohol, 3 KW
Was irradiated for 10 minutes to perform post cure. The physical properties of the optical three-dimensional structure (test piece) obtained by the measurement were measured by the above-mentioned methods, and were as shown in Table 1 below. Further, the specific gravity (d 1 ) of the photocurable resin composition before photocuring used in the production of the optical three-dimensional structure of Comparative Example 1 and the specific gravity (d 2 ) of the three-dimensional structure after post-curing.
Was measured, and the volumetric shrinkage was determined by the above equation (1). The results are as shown in Table 1 below.

【0063】《比較例2》[光硬化性樹脂組成物および
立体造形物の製造] (1) 実施例1の(1)で得られた光硬化性樹脂14
55gを万能撹拌機(ダルトン株式会社製;内容積10
リットル)に入れ、ガラスビーズ(平均粒径17.3μ
m、平均粒径の0.5倍ないし1.5倍の範囲内の粒径
を有する微粒子の割合61重量%)1116g(最終的
に得られる光硬化性樹脂組成物の全容量に基づいて20
容量%)、およびアクリルシラン系カップリング剤[γ
−(メタクリロキシプロピル)トリメトキシシラン]で
処理したホウ酸アルミニウムウイスカー(四国化成工業
株式会社製「アルボレックスYS−4」;径0.5〜
0.7μm、アスペクト比50〜70)374g(最終
的に得られる光硬化性樹脂組成物の全容量に基づいて
7.5容量%)を添加し、一日撹拌し、脱泡処理して、
光硬化性樹脂組成物を製造した。これにより得られた光
硬化性樹脂組成物の25℃の粘度を上記した方法で測定
したところ、下記の表1に示すとおりであった。
<< Comparative Example 2 >> [Production of photocurable resin composition and three-dimensional molded article] (1) Photocurable resin 14 obtained in (1) of Example 1
55 g of a universal stirrer (Dalton Co., Ltd .; internal volume 10
Liter) and put into glass beads (average particle size 17.3μ).
m, 1116 g (proportion of fine particles having a particle diameter in the range of 0.5 to 1.5 times the average particle diameter), 1116 g (20% based on the total volume of the finally obtained photocurable resin composition)
%) And an acrylic silane coupling agent [γ
-(Methacryloxypropyl) trimethoxysilane] treated aluminum borate whisker (“Albolex YS-4” manufactured by Shikoku Chemicals Co., Ltd .;
374 g (7.5% by volume based on the total volume of the finally obtained photocurable resin composition) was added, stirred for one day, and defoamed.
A photocurable resin composition was manufactured. The viscosity of the photocurable resin composition thus obtained at 25 ° C. was measured by the method described above, and was as shown in Table 1 below.

【0064】(2) 上記(2)で得られた光硬化性樹
脂組成物を用いて、実施例1の(3)と同様にして光学
的立体造形を行って、表面粗度、引張強度、引張伸び、
引張弾性率、熱伝導率、および熱変形温度を測定するた
めの光学的立体造形物(試験片)を製造した。光学的立
体造形物の製造に際して、光造形時の作業性の良否を上
記した方法で判定した。得られた光学的立体造形物(試
験片)をイソプロピルアルコールで洗浄した後、3KW
の紫外線を10分間照射してポストキュアを行った。そ
れにより得られた光学的立体造形物(試験片)の物性を
上記した方法で測定したところ、下記の表1に示すとお
りであった。さらに、この実施例2の光学的立体造形物
の製造に用いた光硬化前の光硬化性樹脂組成物の比重
(d1)と、ポストキュア後の立体造形物の比重(d2
をそれぞれ測定して、上記の数式(1)によりその体積
収縮率を求めたところ、下記の表1に示すとおりであっ
た。
(2) Using the photocurable resin composition obtained in (2) above, optical three-dimensional modeling was performed in the same manner as in (3) of Example 1, and the surface roughness, tensile strength, Tensile elongation,
An optical three-dimensional structure (test piece) for measuring tensile modulus, thermal conductivity, and thermal deformation temperature was manufactured. In the production of the optical three-dimensional structure, the workability at the time of the stereolithography was judged by the above method. After washing the obtained optical three-dimensional structure (test piece) with isopropyl alcohol, 3 KW
Was irradiated for 10 minutes to perform post cure. The physical properties of the optical three-dimensional structure (test piece) obtained by the measurement were measured by the above-mentioned methods, and were as shown in Table 1 below. Furthermore, the specific gravity (d 1 ) of the photocurable resin composition before photocuring used in the production of the optical three-dimensional molded article of Example 2 and the specific gravity (d 2 ) of the three-dimensional molded article after post-curing.
Was measured, and the volumetric shrinkage was determined by the above equation (1). The results are as shown in Table 1 below.

【0065】[0065]

【表1】 [Table 1]

【0066】上記の表1の結果から、平均粒径が10μ
m以下で且つ平均粒径の0.5倍ないし1.5倍の範囲
内の粒径を有する微粒子の割合が70重量%以上である
固体微粒子を含有する実施例1の光硬化性樹脂組成物、
該固体微粒子とウィスカーを含有する実施例2の光硬化
性樹脂組成物、および平均粒径が10μm以下で且つ平
均粒径の0.7倍ないし1.2倍の範囲内の粒径を有す
る微粒子の割合が50重量%以上(80重量%)である
固体微粒子を含有する実施例3の光硬化性樹脂組成物
は、粒径の小さな固体微粒子を含有しているにも拘わら
ず(実施例1および実施例3)、または粒径の小さな固
体微粒子とウィスカーを含有しているにも拘わらず(実
施例2)、粘度が低くて、光造形を行う際の作業性に優
れていること、しかもそれらの光硬化性樹脂組成物から
得られた光学的立体造形物は、表面粗度が低くて表面平
滑性に優れていること、さらには力学的特性、耐熱性、
耐熱変形性、寸法精度に優れることがわかる。
From the results shown in Table 1 above, the average particle size was 10 μm.
m and a ratio of fine particles having a particle size in the range of 0.5 to 1.5 times the average particle size is 70% by weight or more. The photocurable resin composition of Example 1 contains solid fine particles. ,
Photocurable resin composition of Example 2 containing the solid fine particles and whiskers, and fine particles having an average particle size of 10 μm or less and having a particle size in the range of 0.7 to 1.2 times the average particle size The photocurable resin composition of Example 3 containing solid fine particles having a ratio of 50% by weight or more (80% by weight), despite containing solid fine particles having a small particle size (Example 1) And Example 3) or despite containing solid fine particles and whiskers having a small particle diameter (Example 2), the viscosity is low, and the workability at the time of stereolithography is excellent, and Optical three-dimensional objects obtained from those photocurable resin compositions have low surface roughness and excellent surface smoothness, and furthermore, mechanical properties, heat resistance,
It can be seen that it has excellent heat deformation resistance and dimensional accuracy.

【0067】これに対して、比較例1の光硬化性樹脂組
成物、すなわち平均粒径が10μm以下で、平均粒径の
0.5倍ないし1.5倍の範囲内の粒径を有する微粒子
の割合が70重量%未満(63重量%)である固体微粒
子をウィスカーと共に含有する光硬化性樹脂組成物は、
粘度が高くて、光造形時の作業性に劣っていること、し
かも比較例1の光硬化性樹脂組成物から得られた光学的
立体造形物は、実施例1および2で得られた光学的立体
造形物に比べて表面粗度が高く、表面平滑性に劣ってい
ることがわかる。また、平均粒径が10μmを超える固
体微粒子をウィスカーと共に含有する比較例2の光硬化
性樹脂組成物は、固体微粒子の平均粒径が大きいことに
よって粘度が低く、光造形時の作業性の点では良好であ
るものの、比較例2の光硬化性樹脂組成物から得られた
光学的立体造形物は表面粗度が高く、表面平滑性に劣っ
ていることがわかる。
On the other hand, the photocurable resin composition of Comparative Example 1, that is, fine particles having an average particle size of 10 μm or less and having a particle size in the range of 0.5 to 1.5 times the average particle size Is less than 70% by weight (63% by weight), the photocurable resin composition containing fine particles together with whiskers is
The optical three-dimensional structure obtained from the photocurable resin composition of Comparative Example 1 has a high viscosity and is inferior in workability during stereolithography, and the optical three-dimensional molded product obtained in Examples 1 and 2 It can be seen that the surface roughness is higher and the surface smoothness is inferior to the three-dimensional structure. In addition, the photocurable resin composition of Comparative Example 2 containing solid fine particles having an average particle size of more than 10 μm together with whiskers has a low viscosity due to the large average particle size of the solid fine particles, and has a low workability during stereolithography. It can be seen that, although good, the optical three-dimensional structure obtained from the photocurable resin composition of Comparative Example 2 had high surface roughness and poor surface smoothness.

【0068】[0068]

【発明の効果】本発明では、光硬化性樹脂組成物中に含
有させる固体微粒子として、平均粒径が10μm以下で
且つ平均粒径の0.5倍ないし1.5倍の範囲内の粒径
を有する微粒子の割合が70重量%以上である固体微粒
子を用いることによって、平均粒径10μm以下の粒径
の小さな固体微粒子を含有しているにも拘わらず、また
は粒径の小さな前記固体微粒子とウィスカーを含有して
いるのも拘わらず、粘度が低くて、立体造形物などの光
硬化物を光学的に製造する際の取り扱い性および作業性
に優れている。さらに、本発明の光硬化性樹脂組成物を
用いて得られる光学的立体造形物などの光硬化物は、表
面の平滑性に優れており、しかも耐熱性、耐熱変形性、
機械的強度などの力学的特性、寸法精度などにも優れて
いる。
According to the present invention, the solid fine particles contained in the photocurable resin composition have an average particle diameter of 10 μm or less and a particle diameter in the range of 0.5 to 1.5 times the average particle diameter. By using solid fine particles in which the ratio of fine particles having the following is 70% by weight or more, the solid fine particles having a small average particle diameter of 10 μm or less are contained, or the solid fine particles having a small particle diameter are used. Despite containing whiskers, it has low viscosity and is excellent in handleability and workability when optically producing a photocured product such as a three-dimensional molded product. Furthermore, a photocured product such as an optical three-dimensional molded product obtained by using the photocurable resin composition of the present invention has excellent surface smoothness, and furthermore has heat resistance, heat deformation resistance,
Excellent mechanical properties such as mechanical strength and dimensional accuracy.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4F213 AA44 AB24 AB25 WA25 WB01 WL02 WL25 WL92 WL96 4J011 GA05 GB08 PA03 PA07 PA08 PA09 PA13 PA14 PA15 PA64 PA65 PA69 PA76 PB04 PB16 PB22 QA03 QA06 QA08 QA09 QA12 QA13 QA23 QA24 QA34 QA39 QA45 QA46 QB14 QB16 QB19 QB24 RA10 SA02 SA12 SA14 SA16 SA20 SA22 SA61 SA63 SA78 SA87 UA02 UA06 WA10  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4F213 AA44 AB24 AB25 WA25 WB01 WL02 WL25 WL92 WL96 4J011 GA05 GB08 PA03 PA07 PA08 PA09 PA13 PA14 PA15 PA64 PA65 PA69 PA76 PB04 PB16 PB22 QA03 QA06 QA08 QA09 QA12 QA13 QA23 QA23 QA23 QA23 QA46 QB14 QB16 QB19 QB24 RA10 SA02 SA12 SA14 SA16 SA20 SA22 SA61 SA63 SA78 SA87 UA02 UA06 WA10

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 液状光硬化性樹脂中に、平均粒径が10
μm以下で且つ平均粒径の0.5倍ないし1.5倍の範
囲内の粒径を有する微粒子の割合が70重量%以上であ
る固体微粒子を、光硬化性樹脂組成物の全容量に基づい
て5〜70容量%の割合で含有することを特徴とする光
硬化性樹脂組成物。
1. A liquid photocurable resin having an average particle size of 10
The solid fine particles having a ratio of fine particles having a particle diameter of 0.5 μm or less and having a particle diameter in the range of 0.5 to 1.5 times the average particle diameter of 70% by weight or more are determined based on the total volume of the photocurable resin composition. A photocurable resin composition, which is contained in an amount of 5 to 70% by volume.
【請求項2】 前記固体微粒子における平均粒径の0.
7倍ないし1.2倍の範囲内の粒径を有する微粒子の割
合が50重量%以上である、請求項1の光硬化性樹脂組
成物。
2. The solid fine particles having an average particle diameter of 0.
2. The photocurable resin composition according to claim 1, wherein the proportion of the fine particles having a particle size in the range of 7 to 1.2 times is 50% by weight or more.
【請求項3】 前記固体微粒子の平均粒径が1〜10μ
mの範囲内である請求項1または2の光硬化性樹脂組成
物。
3. The solid fine particles have an average particle size of 1 to 10 μm.
The photocurable resin composition according to claim 1 or 2, wherein m is in the range of m.
【請求項4】 前記固体微粒子の平均粒径が1〜5μm
の範囲内である請求項1〜3のいずれか1項の光硬化性
樹脂組成物。
4. An average particle diameter of the solid fine particles is 1 to 5 μm.
The photocurable resin composition according to any one of claims 1 to 3, which is within the range.
【請求項5】 25℃における粘度が70,000セン
チポイズ以下である請求項1〜4のいずれか1項の光硬
化性樹脂組成物。
5. The photocurable resin composition according to claim 1, which has a viscosity at 25 ° C. of 70,000 centipoise or less.
【請求項6】 光硬化性樹脂組成物の全容量に基づい
て、ウィスカーを5〜30容量%の割合でさらに含有
し、固体微粒子とウィスカーの合計容量が、光硬化性樹
脂組成物の全容量に基づいて10〜75容量%である請
求項1〜4のいずれか1項の光硬化性樹脂組成物。
6. The whisker is further contained in a proportion of 5 to 30% by volume based on the total volume of the photocurable resin composition, and the total volume of the solid fine particles and the whisker is the total volume of the photocurable resin composition. The photocurable resin composition according to any one of claims 1 to 4, which is 10 to 75% by volume based on the composition.
【請求項7】 径0.3〜1μm、長さ10〜70μm
およびアスペクト比10〜100のウイスカーを用いる
請求項6の光硬化性樹脂組成物。
7. A diameter of 0.3 to 1 μm and a length of 10 to 70 μm
The photocurable resin composition according to claim 6, wherein a whisker having an aspect ratio of 10 to 100 is used.
【請求項8】 25℃における粘度が70,000セン
チポイズ以下である請求項6または7の光硬化性樹脂組
成物。
8. The photocurable resin composition according to claim 6, which has a viscosity at 25 ° C. of 70,000 centipoise or less.
【請求項9】 光造形用樹脂組成物である請求項1〜8
のいずれか1項の光硬化性樹脂組成物。
9. A resin composition for stereolithography, wherein the resin composition is for stereolithography.
The photocurable resin composition according to any one of the above.
【請求項10】 請求項1〜9のいずれか1項の光硬化
性樹脂組成物からなる1つの層に活性エネルギー光線を
選択的に照射して所定のパターンを有する硬化層を形成
し、次いで前記硬化層上に未硬化液状の光硬化性樹脂組
成物を層状に施した後に活性エネルギー光線を照射して
前記硬化層と連続した硬化層を新たに形成し、所定の立
体造形物が得られるまで前記積層操作を更に繰り返すこ
とを特徴とする立体造形物の製造方法。
10. A cured layer having a predetermined pattern by selectively irradiating one layer of the photocurable resin composition according to claim 1 with an active energy ray, After applying an uncured liquid photocurable resin composition in a layered form on the cured layer, irradiation with active energy rays is performed to newly form a cured layer continuous with the cured layer, and a predetermined three-dimensional structure is obtained. The method of manufacturing a three-dimensional structure, further comprising repeating the above-described laminating operation.
【請求項11】 請求項1〜9のいずれか1項の光硬化
性樹脂組成物を用いて得られる光学的立体造形物。
11. An optical three-dimensional structure obtained by using the photocurable resin composition according to claim 1. Description:
【請求項12】 三次元表面粗さ計を用いて三次元表面
接触法で測定した表面粗度が平均2.0μm以下である
請求項11の光学的立体造形物。
12. The optical three-dimensional structure according to claim 11, wherein a surface roughness measured by a three-dimensional surface contact method using a three-dimensional surface roughness meter is 2.0 μm or less on average.
JP19917799A 1999-07-13 1999-07-13 Photocurable resin composition for optical three-dimensional modeling Expired - Fee Related JP4307636B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19917799A JP4307636B2 (en) 1999-07-13 1999-07-13 Photocurable resin composition for optical three-dimensional modeling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19917799A JP4307636B2 (en) 1999-07-13 1999-07-13 Photocurable resin composition for optical three-dimensional modeling

Publications (2)

Publication Number Publication Date
JP2001026609A true JP2001026609A (en) 2001-01-30
JP4307636B2 JP4307636B2 (en) 2009-08-05

Family

ID=16403438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19917799A Expired - Fee Related JP4307636B2 (en) 1999-07-13 1999-07-13 Photocurable resin composition for optical three-dimensional modeling

Country Status (1)

Country Link
JP (1) JP4307636B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003053847A (en) * 2001-06-22 2003-02-26 Three D Syst Inc Recoating system for using high viscosity build material in solid freeform fabrication
WO2015002269A1 (en) * 2013-07-04 2015-01-08 東洋インキScホールディングス株式会社 Active-energy-ray-polymerizable resin composition and laminate
JP2015040278A (en) * 2013-08-23 2015-03-02 東洋インキScホールディングス株式会社 Active energy ray-polymerizable resin composition and laminate
JP5799952B2 (en) * 2010-05-20 2015-10-28 日立化成株式会社 Photosensitive resin composition, photosensitive film, rib pattern forming method, hollow structure and forming method thereof, and electronic component
CN105358584A (en) * 2013-07-04 2016-02-24 东洋油墨Sc控股株式会社 Active-energy-ray-polymerizable resin composition and laminate
WO2016114031A1 (en) * 2015-01-16 2016-07-21 日本電気硝子株式会社 Resin composition for 3d modeling
JP2019056082A (en) * 2017-09-22 2019-04-11 コニカミノルタ株式会社 Resin composition, method for manufacturing three-dimensional molding using the same, and three-dimensional molding
JP2020073333A (en) * 2020-01-21 2020-05-14 日本電気硝子株式会社 Resin components for three-dimensional modeling

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021147581A (en) 2020-03-23 2021-09-27 株式会社リコー Active energy ray-curable composition for inkjet, and method and apparatus for manufacturing three-dimensionally molded object

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61162501A (en) * 1985-01-10 1986-07-23 Nippon Paint Co Ltd Resin composition curable with high-energy rays
JPH02145616A (en) * 1988-11-18 1990-06-05 Desoto Inc Resin composition for optical stereo modeling
JPH0376702A (en) * 1989-08-21 1991-04-02 Tokuyama Soda Co Ltd Curable composition
JPH05286040A (en) * 1992-02-15 1993-11-02 Matsushita Electric Works Ltd Method for forming three-dimensional shape
JPH0726062A (en) * 1993-07-15 1995-01-27 Teijin Seiki Co Ltd Resin composition for optical three-dimensional shaping
JPH0733838A (en) * 1993-07-21 1995-02-03 Sumitomo Bakelite Co Ltd Paste for tie bar
JPH0820620A (en) * 1994-07-06 1996-01-23 Teijin Seiki Co Ltd Resin composition for optical three-dimensional molding
JPH0825486A (en) * 1994-07-08 1996-01-30 Toshiba Ceramics Co Ltd Optically shaped object composed of silica dispersed resin
JPH08323867A (en) * 1995-03-25 1996-12-10 Takemoto Oil & Fat Co Ltd Method for imparting leveling properties to photo-setting liquid composition layer in process for forming optical three-dimensional shaped article
JPH10279819A (en) * 1997-02-05 1998-10-20 Teijin Seiki Co Ltd Optical stereolithographic resin composition
JPH1130855A (en) * 1997-07-11 1999-02-02 Fujitsu Ltd Photosensitive resin composition

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61162501A (en) * 1985-01-10 1986-07-23 Nippon Paint Co Ltd Resin composition curable with high-energy rays
JPH02145616A (en) * 1988-11-18 1990-06-05 Desoto Inc Resin composition for optical stereo modeling
JPH0376702A (en) * 1989-08-21 1991-04-02 Tokuyama Soda Co Ltd Curable composition
JPH05286040A (en) * 1992-02-15 1993-11-02 Matsushita Electric Works Ltd Method for forming three-dimensional shape
JPH0726062A (en) * 1993-07-15 1995-01-27 Teijin Seiki Co Ltd Resin composition for optical three-dimensional shaping
JPH0733838A (en) * 1993-07-21 1995-02-03 Sumitomo Bakelite Co Ltd Paste for tie bar
JPH0820620A (en) * 1994-07-06 1996-01-23 Teijin Seiki Co Ltd Resin composition for optical three-dimensional molding
JPH0825486A (en) * 1994-07-08 1996-01-30 Toshiba Ceramics Co Ltd Optically shaped object composed of silica dispersed resin
JPH08323867A (en) * 1995-03-25 1996-12-10 Takemoto Oil & Fat Co Ltd Method for imparting leveling properties to photo-setting liquid composition layer in process for forming optical three-dimensional shaped article
JPH10279819A (en) * 1997-02-05 1998-10-20 Teijin Seiki Co Ltd Optical stereolithographic resin composition
JPH1130855A (en) * 1997-07-11 1999-02-02 Fujitsu Ltd Photosensitive resin composition

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003053847A (en) * 2001-06-22 2003-02-26 Three D Syst Inc Recoating system for using high viscosity build material in solid freeform fabrication
JP5799952B2 (en) * 2010-05-20 2015-10-28 日立化成株式会社 Photosensitive resin composition, photosensitive film, rib pattern forming method, hollow structure and forming method thereof, and electronic component
WO2015002269A1 (en) * 2013-07-04 2015-01-08 東洋インキScホールディングス株式会社 Active-energy-ray-polymerizable resin composition and laminate
CN105358584A (en) * 2013-07-04 2016-02-24 东洋油墨Sc控股株式会社 Active-energy-ray-polymerizable resin composition and laminate
TWI623579B (en) * 2013-07-04 2018-05-11 東洋油墨Sc控股股份有限公司 Active energy ray-polymerizable resin composition, adhesive agent, coating agent, laminate and laminate for optical device
CN108424745A (en) * 2013-07-04 2018-08-21 东洋油墨Sc控股株式会社 Active energy ray polymer resin composition, bonding agent, smears, laminated body and laminated body used for optical elements
JP2015040278A (en) * 2013-08-23 2015-03-02 東洋インキScホールディングス株式会社 Active energy ray-polymerizable resin composition and laminate
WO2016114031A1 (en) * 2015-01-16 2016-07-21 日本電気硝子株式会社 Resin composition for 3d modeling
JPWO2016114031A1 (en) * 2015-01-16 2017-10-26 日本電気硝子株式会社 Three-dimensional modeling resin composition
JP2019056082A (en) * 2017-09-22 2019-04-11 コニカミノルタ株式会社 Resin composition, method for manufacturing three-dimensional molding using the same, and three-dimensional molding
JP2020073333A (en) * 2020-01-21 2020-05-14 日本電気硝子株式会社 Resin components for three-dimensional modeling

Also Published As

Publication number Publication date
JP4307636B2 (en) 2009-08-05

Similar Documents

Publication Publication Date Title
EP0802455B1 (en) Use of a photocurable resin composition for the production of a stereolithographed object
US6003832A (en) Mold of a photocured resin containing a reinforcing agent
JP3650216B2 (en) Manufacturing method of resin mold used for molding method
US5679722A (en) Resin composition for production of a three-dimensional object by curing
CN110650986A (en) Composition of radiation-curable resin and method for obtaining the same
JP2001310918A (en) Curing composition for photoforming and product
WO2018119049A1 (en) Photopolymer ceramic dispersion for additive fabrication
JP2762389B2 (en) Optical three-dimensional molding resin composition
US5932625A (en) Photo-curable resin composition and process for preparing resin-basedmold
JP4307636B2 (en) Photocurable resin composition for optical three-dimensional modeling
JPH0726060A (en) Resin composition for optical three-dimensional shaping
JP2554443B2 (en) Resin composition for optical three-dimensional modeling
JP3657057B2 (en) Photocurable resin composition for molding resin mold production and method for producing molding resin mold
WO2021205954A1 (en) Photocurable resin composition for three-dimensional shaping
JP4046398B2 (en) Optical three-dimensional resin composition
JP3705511B2 (en) Photocurable resin composition for optical three-dimensional modeling
JP4021347B2 (en) Photo-curable resin composition with excellent heat resistance
JP2001079855A (en) Mold for photo fabrication
JP2662934B2 (en) Stereolithography simple mold and its manufacturing method
JP4315507B2 (en) Photo-curable resin composition with excellent heat resistance
US6203966B1 (en) Stereolithographic resin composition
JPH10330626A (en) Resin composition for optical modeling
JP3705508B2 (en) Photo-curable resin composition with excellent heat resistance
JP4007704B2 (en) Photocurable resin composition for optical three-dimensional modeling
JP4150819B2 (en) Photocurable resin composition having dilatancy properties

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041013

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090430

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090430

R150 Certificate of patent or registration of utility model

Ref document number: 4307636

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140515

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees