JPH02145616A - Resin composition for optical stereo modeling - Google Patents

Resin composition for optical stereo modeling

Info

Publication number
JPH02145616A
JPH02145616A JP63293440A JP29344088A JPH02145616A JP H02145616 A JPH02145616 A JP H02145616A JP 63293440 A JP63293440 A JP 63293440A JP 29344088 A JP29344088 A JP 29344088A JP H02145616 A JPH02145616 A JP H02145616A
Authority
JP
Japan
Prior art keywords
meth
acrylate
composition
resin
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63293440A
Other languages
Japanese (ja)
Other versions
JP2612484B2 (en
Inventor
Takeshi Sugimoto
健 杉本
Masahiro Goto
後藤 方弘
Katsutoshi Igarashi
五十嵐 勝利
John J Krajewski
ジョン・ジェイ・クラジュウスキー
Robert E Ansel
ロバート・イー・アンセル
Edward J Murphy
エドワード・ジェイ・マーフィー
T Vandeberg John
ジョン・ティー・ヴァンデバーグ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
DeSoto Inc
Original Assignee
Japan Synthetic Rubber Co Ltd
DeSoto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd, DeSoto Inc filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP63293440A priority Critical patent/JP2612484B2/en
Publication of JPH02145616A publication Critical patent/JPH02145616A/en
Application granted granted Critical
Publication of JP2612484B2 publication Critical patent/JP2612484B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

PURPOSE: To provide an optical three-dimensional molding resin composition minimized in deformation with low viscosity and capable of providing a tough hardened matter by containing a fine particle having a specified apparent specific gravity difference with a liquid hardening resin, and the hardening resin.
CONSTITUTION: This composition contains (A) a liquid hardening tesin and (B) a fine particle having an apparent specific gravity difference with the component A less than 0.2. As the component B, a polymer or copolymer of monofunctional monomer having one ethylenic unsaturated group such as isobornyl (meth)acrylate or the like is used, and it is manufactured by suspension polymerization with a particle size of 1-25 μm and an apparent specific gravity of 0.9-1.2. As the component A, a polyether polyol such as polyoxyethylene diol or the like may be used.
COPYRIGHT: (C)1990,JPO

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光学的立体造形用樹脂組成物に関し、特に低
粘度で硬化時の変形が小さく、強靭な硬化物を得ること
ができる光学的立体造形用樹脂組成物に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a resin composition for optical three-dimensional modeling, and in particular to an optical three-dimensional modeling resin composition that has a low viscosity, exhibits little deformation during curing, and is capable of producing a tough cured product. The present invention relates to a resin composition for three-dimensional modeling.

〔従来の技術] 近年、特開昭60−247515号公報により、光硬化
性液状物質に、硬化に必要な光エネルギー供給を選択的
に行って所望形状の立体造形物を形成する方法が提案さ
れた。同様の方法またはその改良技術が、米国特許明細
書筒4,575,330号(特開昭6235966号公
報)、特開昭62−101408号公報等にも開示され
ている。この光学的立体造形法の代表的な例は、容器に
入れた液状光硬化性樹脂の液面に、所望パターンの硬化
層が得られるように、例えば紫外線レーザーを選択的に
照射して硬化層を得、次に該硬化層の上に光硬化性樹脂
を1層分供給し、次に前記と同様に光を選択的に照射し
て前記の硬化層と連続した硬化層を得る積層操作を繰り
返すことにより、最終的に所望の立体造形物を得る方法
である。
[Prior Art] Recently, Japanese Unexamined Patent Publication No. 60-247515 has proposed a method for forming a three-dimensional object of a desired shape by selectively supplying light energy necessary for curing to a photocurable liquid material. Ta. Similar methods or improved techniques thereof are also disclosed in U.S. Pat. A typical example of this optical three-dimensional modeling method is to selectively irradiate the surface of a liquid photocurable resin placed in a container with, for example, an ultraviolet laser so as to obtain a cured layer with a desired pattern. Next, one layer of photocurable resin is supplied on top of the cured layer, and then light is selectively irradiated in the same manner as above to perform a lamination operation to obtain a cured layer continuous with the above cured layer. By repeating the process, a desired three-dimensional object is finally obtained.

この光学的立体造形法は、製作する造形物の形状が複雑
な場合でも、容易に短時間で目的の造形物を得ることが
できるため、注目されている。
This optical three-dimensional modeling method is attracting attention because even when the shape of the object to be manufactured is complex, it is possible to easily obtain the desired object in a short time.

従来、この光学的立体造形法に用いられる光硬化性の液
状物質としては、変性ポリウレタンメタクリレート、オ
リゴエステルアクリレート、ウレタンアクリレート、エ
ポキシアクリレート、感光性ポリイミド、アミノアルキ
ド等が挙げられている。(特開昭60−247515号
公報)。
Conventionally, examples of photocurable liquid substances used in this optical three-dimensional modeling method include modified polyurethane methacrylate, oligoester acrylate, urethane acrylate, epoxy acrylate, photosensitive polyimide, and amino alkyd. (Japanese Unexamined Patent Publication No. 60-247515).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、前記の光学的立体造形法においては、取扱性
、造形速度、造形精度等の観点から樹脂の粘度が低いこ
と、硬化時の体積収縮等による変形が小さ(高い寸法精
度で造形物を形成できること、また、得られる造形物の
強度が十分に高いこと等−が要求される。
By the way, in the above-mentioned optical three-dimensional modeling method, the viscosity of the resin is low from the viewpoint of ease of handling, modeling speed, modeling accuracy, etc., and deformation due to volumetric shrinkage during curing is small (it is possible to form a modeled object with high dimensional accuracy). It is required that the strength of the molded object obtained is sufficiently high.

しかし、前記従来の液状光硬化性樹脂は、いずれもこれ
らの特性をバランスよく備えておらず、満足できるもの
ではなかった。
However, none of the conventional liquid photocurable resins had these properties in a well-balanced manner, and were not satisfactory.

そこで、本発明の目的は、低粘度で、硬化時の体積収縮
等による変形が小さ(、また十分に高い強度を有する造
形物を得ることができる光学的立体造形用樹脂組成物を
提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a resin composition for optical three-dimensional modeling that has a low viscosity, exhibits little deformation due to volumetric shrinkage during curing, etc., and is capable of producing a modeled object having sufficiently high strength. It is in.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、前記課題を解決するものとして、液状硬化性
樹脂と、液状硬化性樹脂との見かけの比重の差が0.2
未満である微小粒子とを含む光学的立体造形用樹脂組成
物を提供するものである。
The present invention solves the above problem, and the difference in apparent specific gravity between the liquid curable resin and the liquid curable resin is 0.2.
The object of the present invention is to provide a resin composition for optical stereolithography, which includes microparticles that are less than or equal to 100%.

本発明において、上記の樹脂組成物が用いられる光学的
立体造形法とは、液状硬化性樹脂に光を特定箇所に選択
的に照射することにより硬化に必要なエネルギーを供給
し、所望形状の立体造形物を得る方法をいう。ここで用
いられる液状硬化性樹脂は、紫外線、可視光等により硬
化する光硬化性でもよいし、赤外線により硬化する熱硬
化性でもよい。したがって、照射に用いられる光として
は、上記のとおり、紫外線、可視光、赤外線等が挙げら
れる。また、光を液状硬化性樹脂の特定箇所に選択的に
照射する方法も制限されず、例えばレーザー光、レンズ
、鏡等を用いて得られた集束光等を特定箇所に照射する
方法、非集束光を一定パターンのマスクを介して液状硬
化性樹脂に照射することにより、特定箇所にのみ照射す
る方法等があげられる。さらに、光の照射を受ける特定
箇所は、容器に入れられた液状硬化性樹脂の液面、容器
の側壁または底壁と接した面あるいは液中でもよい。液
状硬化性樹脂の液面または器壁との接触面に光を照射す
るには、光を外部から直接または透明な器壁を通して照
射すればよく、液中の特定箇所に光を照射するには、例
えば光ファイバーのような導光体によって照射すること
ができる。
In the present invention, the optical three-dimensional modeling method in which the above-mentioned resin composition is used is a method in which the liquid curable resin is selectively irradiated with light to specific locations to supply the energy necessary for curing, thereby creating a three-dimensional shape of a desired shape. Refers to the method of obtaining a modeled object. The liquid curable resin used here may be a photocurable resin that is cured by ultraviolet rays, visible light, etc., or a thermosetting resin that is cured by infrared rays. Therefore, as described above, examples of the light used for irradiation include ultraviolet light, visible light, infrared light, and the like. Furthermore, the method of selectively irradiating light onto a specific location of the liquid curable resin is not limited, and examples include methods of irradiating a specific location with focused light obtained using a laser beam, a lens, a mirror, etc.; Examples include a method in which light is irradiated only to specific locations by irradiating the liquid curable resin through a mask with a certain pattern. Furthermore, the specific location that is irradiated with light may be the surface of the liquid curable resin contained in the container, the surface in contact with the side wall or bottom wall of the container, or even in the liquid. To irradiate the liquid surface of the liquid curable resin or the surface in contact with the container wall, it is sufficient to irradiate the light from the outside directly or through the transparent container wall.To irradiate light to a specific point in the liquid, , for example by means of a light guide such as an optical fiber.

この光学的立体造形法においては、通常、所望の特定箇
所を硬化させた後、被照射位置を硬化部からそれに隣接
する未硬化部分へ、連続的にまた段階的に移動させるこ
とにより、硬化部分を所望の立体的形状に成長させるこ
とができる。被照射位置の移動方法は種々可能であり、
例えば光源、容器および硬化部分の1または2以上を移
動させる、あるいは容器に未硬化の液状硬化性樹脂を追
加するなどの方法があげられる。
In this optical three-dimensional modeling method, after curing a desired specific area, the irradiation position is moved continuously or stepwise from the cured area to the adjacent uncured area, so that the cured area is cured. can be grown into a desired three-dimensional shape. Various methods are possible for moving the irradiation position.
For example, methods include moving one or more of the light source, the container, and the curing part, or adding uncured liquid curable resin to the container.

上述の光学的立体造形法には、例えば特開昭60247
515号、同62−101408号、同62−3596
6号、「型技術」第2巻第9号第72〜73頁に記載の
方法のほか、前記の定義に包含される方法はすべて含ま
れる。
The above-mentioned optical three-dimensional modeling method includes, for example, Japanese Patent Application Laid-open No. 60247.
No. 515, No. 62-101408, No. 62-3596
In addition to the method described in No. 6, "Kold Technology", Vol. 2, No. 9, pages 72-73, all methods included in the above definition are included.

本発明の樹脂組成物は、上記の光学的立体造形法におけ
る液状硬化性樹脂として用いられる。
The resin composition of the present invention is used as a liquid curable resin in the above-mentioned optical three-dimensional modeling method.

本発明の樹脂組成物中に含有される微小粒子は、特に限
定されず、例えば重合性エチレン性不飽和基を有する単
量体の重合体または共重合体、ポリアミド、エポキシ樹
脂、フェノール樹脂、ベンゾグアナミン樹脂、シリコー
ン樹脂などからなる樹脂粒子が挙げられる。
The fine particles contained in the resin composition of the present invention are not particularly limited, and include, for example, a polymer or copolymer of a monomer having a polymerizable ethylenically unsaturated group, polyamide, epoxy resin, phenol resin, benzoguanamine. Examples include resin particles made of resin, silicone resin, and the like.

上記の重合性エチレン性不飽和基を有する単量体は、エ
チレン性不飽和基を少なくとも1個有するものであり、
エチレン性不飽和基を1個有する単官能性単量体でも、
エチレン性不飽和基を2個以上有する多官能性単量体で
も、あるいはこれらを組み合わせたものでもよい。特に
、単官能性単量体を主成分として使用する場合には、多
官能性単量体を併用することが好ましい。
The above monomer having a polymerizable ethylenically unsaturated group has at least one ethylenically unsaturated group,
Even a monofunctional monomer having one ethylenically unsaturated group,
It may be a polyfunctional monomer having two or more ethylenically unsaturated groups, or a combination thereof. In particular, when a monofunctional monomer is used as the main component, it is preferable to use a polyfunctional monomer in combination.

このエチレン性不飽和基を1個有する単官能性単量体と
しては、例えばイソボルニル(メタ)アクリレート、ジ
シクロペンテニル(メタ)アクリレート、ボルニル(メ
タ)アクリレート、イソボルニルオキシエチル(メタ)
アクリレート、ジシクロペンテニルオキシエチル(メタ
)アクリレート、2−ヒドロキシエチル(メタ)アクリ
レート、2−ヒドロキシプロピル(メタ)アクリレート
、テトラヒドロフルフリル(メタ)アクリレート、ブト
キシエチル(メタ)アクリレート、エチルジエチレング
リコール(メタ)アクリレート、2エチルヘキシル(メ
タ)アクリレート、フェノキシエチル(メタ)アクリレ
ート、ジシクロペンタジェン(メタ)アクリレート、ポ
リエチレングリ′コール(メタ)アクリレート、ジエチ
ルアミノエチル(メタ)アクリレート、7−アミノ−3
,7ジメチルオクヂル(メタ)アクリレート、アクリル
アミド、イソブトキシメチルアクリルアミド、ジアセト
ンアクリルアミド、N、N−ジメチルアクリルアミド等
の単官能性(メタ)アクリル系単量体;またはN−ビニ
ルピロリドン、N−ビニルカプロラクタム、ビニルフェ
ノール、酢酸ビニル、ビニルエーテル、スチレン、アク
リロニトリル、エチレン、プロピレン等を挙げることが
できる。
Examples of the monofunctional monomer having one ethylenically unsaturated group include isobornyl (meth)acrylate, dicyclopentenyl (meth)acrylate, bornyl (meth)acrylate, and isobornyloxyethyl (meth)acrylate.
Acrylate, dicyclopentenyloxyethyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, tetrahydrofurfuryl (meth)acrylate, butoxyethyl (meth)acrylate, ethyldiethylene glycol (meth) Acrylate, 2-ethylhexyl (meth)acrylate, phenoxyethyl (meth)acrylate, dicyclopentadiene (meth)acrylate, polyethylene glycol (meth)acrylate, diethylaminoethyl (meth)acrylate, 7-amino-3
, 7 monofunctional (meth)acrylic monomers such as dimethylocdyl (meth)acrylate, acrylamide, isobutoxymethylacrylamide, diacetone acrylamide, N,N-dimethylacrylamide; or N-vinylpyrrolidone, N-vinylcaprolactam, Examples include vinylphenol, vinyl acetate, vinyl ether, styrene, acrylonitrile, ethylene, propylene, and the like.

また、エチレン性不飽和基を2個以上有する多官能性単
量体としては、例えば多官能性(メタ)アクリル系単量
体、ジビニルベンゼン等を挙げることができる。この多
官能性(メタ)アクリル系単量体は、(メタ)アクリロ
イル基を少なくとも2個有するものであり、例えばトリ
メチロールプロパントリ (メタ)アクリレート、エチ
レングリコールジ(メタ)アクリレート、テトラエチレ
ングリコールジ(メタ)アクリレート、ポリエチレング
リコールジ(メタ)アクリレート、1,4ブタンジオー
ルジ(メタ)アクリレート、1.6ヘキサンジオールジ
(メタ)アクリレート、ネオペンチルグリコールジ(メ
タ)アクリレート、ジシクロペンタジェン(メタ)アク
リレート、ポリエステルジ(メタ)アクリレート、ビス
フェノールAグリシジルエーテルの両末端(メタ)アク
リル酸付加物、ペンタエリスリトールテトラ(メタ)ア
クリレート等を例示することができる。
Furthermore, examples of the polyfunctional monomer having two or more ethylenically unsaturated groups include polyfunctional (meth)acrylic monomers, divinylbenzene, and the like. This polyfunctional (meth)acrylic monomer has at least two (meth)acryloyl groups, and includes, for example, trimethylolpropane tri(meth)acrylate, ethylene glycol di(meth)acrylate, and tetraethylene glycol di(meth)acrylate. (meth)acrylate, polyethylene glycol di(meth)acrylate, 1,4 butanediol di(meth)acrylate, 1.6 hexanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate, dicyclopentadiene(meth)acrylate, ) acrylate, polyester di(meth)acrylate, bisphenol A glycidyl ether (meth)acrylic acid adduct at both ends, pentaerythritol tetra(meth)acrylate, and the like.

上述の種々の原料からなる樹脂粒子は、懸濁重合法や乳
化重合法を利用する公知の方法により製造することがで
きる。また、これらの樹脂粒子は市販品として入手する
こともでき、例えば、日本触媒化学社製エポスターS、
綜研化学社製MP1000、東芝シリコーン社製XC9
1−501、住友化学社製ファインパール3000SP
、東し社製5P−500、EP−13、鐘紡社製ベルパ
ール、ダイキン社製ルブロンL−5、製鉄化学社製フロ
ービーズLE−1080、フロービーズCL−2080
、フロービーズEA−209、フローセンUF等の商品
名を挙げることができる。
Resin particles made of the various raw materials mentioned above can be produced by a known method using a suspension polymerization method or an emulsion polymerization method. These resin particles can also be obtained as commercial products, such as Eposter S manufactured by Nippon Shokubai Kagaku Co., Ltd.
MP1000 manufactured by Soken Chemical Co., Ltd., XC9 manufactured by Toshiba Silicone Corporation
1-501, Fine Pearl 3000SP manufactured by Sumitomo Chemical Co., Ltd.
, Toshisha 5P-500, EP-13, Kanebo Co., Ltd. Bell Pearl, Daikin Co., Ltd. Lubron L-5, Tetsu Kagaku Co., Ltd. Flow Beads LE-1080, Flow Beads CL-2080
, Flowbeads EA-209, Flowene UF and the like can be mentioned.

これらの重合体または共重合体からなる微小粒子は1種
単独でまたは2種以上を組合わせて用いることができる
。また粒子形状は特に限定されない。
Fine particles made of these polymers or copolymers can be used alone or in combination of two or more. Moreover, the particle shape is not particularly limited.

さらに、本発明における微小粒子としては、無機質から
なる中空粒子を用いることもできる。
Furthermore, hollow particles made of inorganic material can also be used as the microparticles in the present invention.

本発明の組成物中、用いられる微小粒子の粒径は、通常
、0.1〜50t!m、好ましくは0.5〜35μm、
特に好ましくは1〜25μmであり、見かけの比重は、
通常、0.9〜1.2である。粒径が小さすぎると得ら
れる光学的立体造形用樹脂組成物の粘度が上昇し、立体
造形物の生産性や造形精度が劣り、また粒径が大きすぎ
ると得られる立体造形物の造形精度が低下したり、十分
に平滑な表面が得られないことがある。
The particle size of the microparticles used in the composition of the present invention is usually 0.1 to 50t! m, preferably 0.5 to 35 μm,
Particularly preferably, it is 1 to 25 μm, and the apparent specific gravity is
Usually, it is 0.9 to 1.2. If the particle size is too small, the viscosity of the resulting optical three-dimensional modeling resin composition will increase, resulting in poor productivity and modeling accuracy of the three-dimensional model, while if the particle size is too large, the modeling accuracy of the three-dimensional model will be poor. or a sufficiently smooth surface may not be obtained.

本発明の組成物において、微小粒子と液状硬化性樹脂と
の見かけの比重の差は、組成物の保存安定性の点からで
きるだけ小さいことが好ましく、0.2未満、好ましく
は0.1未満、特に好ましくは0.05未満である。こ
の見かけの比重の差が0.1を超えると、保存中に微小
粒子と液状硬化性樹脂とが分離してしまう。
In the composition of the present invention, the difference in apparent specific gravity between the microparticles and the liquid curable resin is preferably as small as possible from the viewpoint of storage stability of the composition, and is less than 0.2, preferably less than 0.1, Particularly preferably less than 0.05. If this difference in apparent specific gravity exceeds 0.1, the microparticles and the liquid curable resin will separate during storage.

さらに、本発明の組成物を使用して透明な立体造形物を
得たい場合には、使用する微小粒子の屈折率と液状硬化
性樹脂の硬化後における屈折率との差をできる限り小さ
(することが好ましい。例えば両者の屈折率の差の絶対
値が0.2以下とすればよい。
Furthermore, when it is desired to obtain a transparent three-dimensional object using the composition of the present invention, the difference between the refractive index of the microparticles used and the refractive index of the liquid curable resin after curing should be kept as small as possible. For example, the absolute value of the difference in refractive index between the two may be 0.2 or less.

本発明の組成物中における微小粒子の含有量は、通常、
5〜45重量%、好ましくは8〜40重量%、特に好ま
しくは10〜35重量%である。微小粒子の含有量が少
なすぎると微小粒子の添加による効果が十分に得られず
、含有量が多すぎると得られる組成物の粘度が上昇し、
組成物の取扱性、立体造形物の造形速度、造形精度等が
悪くなるおそれがある。
The content of microparticles in the composition of the present invention is usually
5 to 45% by weight, preferably 8 to 40% by weight, particularly preferably 10 to 35% by weight. If the content of microparticles is too low, the effect of adding the microparticles will not be sufficiently obtained, and if the content is too high, the viscosity of the resulting composition will increase,
There is a possibility that the handleability of the composition, the molding speed of the three-dimensional object, the molding accuracy, etc. may deteriorate.

本発明の組成物に用いられる液状硬化性樹脂は、光、熱
等で硬化する性質を有するものであれば特に匝定されず
、例えば下記の成分からなるものを挙げることができる
The liquid curable resin used in the composition of the present invention is not particularly limited as long as it has the property of being cured by light, heat, etc., and examples thereof include those comprising the following components.

(A)(メタ)アクリロイル基を2個以上有するオリゴ
マー (B) (B−1)エチレン性不飽和基を有する単官能
性単量体および/または (B−2)エチレン性不飽和基を有する多官能性単量体 ならびに (C)重合開始剤 上記に挙げた液状硬化性樹脂の具体例の(^)成分であ
る(メタ)アクリロイル基を2個以上有するオリゴマー
は、例えばエステル骨格、ウレタン骨格およびエポキシ
の開環構造を有する骨格から選ばれる少なくとも1種の
骨格、好ましくはウレタン骨格を有するオリゴマーであ
る。具体的には、ポリエーテルポリオール、ポリエステ
ルポリオール、ポリカプロラクトンポリオール、ポリカ
ーボネートポリオール等のポリオール化合物、好ましく
は1分子中に平均で2〜5個程度の水酸基を有するポリ
オール化合物と、ジイソシアネート化合物および(メタ
)アクリロイル基を有する化合物とを反応させて得られ
るウレタン(メタ)アクリレート系オリゴマー;同様の
ポリオール化合物と、(メタ)アクリロイル基を有する
化合物とのエステル化反応により得られるエステル(メ
タ)アクリレート系オリゴマー;エポキシ化合物と(メ
タ)アクリロイル基を有する化合物との付加反応により
得られるエポキシ(メタ)アクリレート化合物である。
(A) Oligomer having two or more (meth)acryloyl groups (B) (B-1) Monofunctional monomer having an ethylenically unsaturated group and/or (B-2) having an ethylenically unsaturated group Polyfunctional monomer and (C) polymerization initiator The oligomer having two or more (meth)acryloyl groups, which is the (^) component of the specific example of the liquid curable resin listed above, has an ester skeleton, a urethane skeleton, etc. and an epoxy ring-opened structure skeleton, preferably an oligomer having a urethane skeleton. Specifically, polyol compounds such as polyether polyols, polyester polyols, polycaprolactone polyols, and polycarbonate polyols, preferably polyol compounds having an average of about 2 to 5 hydroxyl groups in one molecule, diisocyanate compounds, and (meth) A urethane (meth)acrylate oligomer obtained by reacting a compound having an acryloyl group; an ester (meth)acrylate oligomer obtained by an esterification reaction between a similar polyol compound and a compound having a (meth)acryloyl group; It is an epoxy (meth)acrylate compound obtained by an addition reaction between an epoxy compound and a compound having a (meth)acryloyl group.

ここで、ポリエーテルポリオールとしては、例えばポリ
オキシエチレンジオール、ポリオキシプロピレンジオー
ル、ポリオキシテトラメチレンジオール等が挙げられる
Here, examples of the polyether polyol include polyoxyethylene diol, polyoxypropylene diol, polyoxytetramethylene diol, and the like.

ポリエステルポリオールとしては、例えば(ポリ)エチ
レングリコール、(ポリ)プロピレングリコール、(ポ
リ)テトラメチレングリコール、1.6−ヘキサンジオ
ール、ネオペンチルグリコール、1.4−シクロヘキサ
ンジメタツール等の2価アルコールと、フタル酸、イソ
フタル酸、テレフタル酸、マレイン酸、フマール酸、ア
ジピン酸、セバシン酸等の2塩基酸とを反応させて得ら
れるものが挙げられる。
Examples of polyester polyols include dihydric alcohols such as (poly)ethylene glycol, (poly)propylene glycol, (poly)tetramethylene glycol, 1,6-hexanediol, neopentyl glycol, and 1,4-cyclohexane dimetatool. , phthalic acid, isophthalic acid, terephthalic acid, maleic acid, fumaric acid, adipic acid, sebacic acid, and other dibasic acids.

ポリカプロラクトンポリオールとしては、例えばε−カ
プロラクトンと、(ポリ)エチレングリコール、(ポリ
)テトラメチレングリコール、1゜6−ヘキサンジオー
ル、ネオペンチルグリコール、1.4−ブタンジオール
等の2価のジオールとを反応させて得られるものが挙げ
られる。
Examples of polycaprolactone polyols include ε-caprolactone and divalent diols such as (poly)ethylene glycol, (poly)tetramethylene glycol, 1°6-hexanediol, neopentyl glycol, and 1,4-butanediol. Examples include those obtained by reaction.

また、ポリカーボネートポリオールとしては、例えば市
販品としてDN−980、DN−981、DN−982
、DN−983(以上、日本ポリウレタン■製)、PC
−8000(米国PPG社製)等が挙げられる。
In addition, as polycarbonate polyols, for example, commercially available products include DN-980, DN-981, and DN-982.
, DN-983 (manufactured by Nippon Polyurethane), PC
-8000 (manufactured by PPG, USA) and the like.

これらのポリオール化合物のうちで好ましいものはポリ
エステルジオールである。
Preferred among these polyol compounds are polyester diols.

これらのポリオール化合物と反応させるジイソシアネー
ト化合物としては、例えば2.4−トルエンジイソシア
ネート、2.6−)ルエンジイソシアネート、1,3−
キシレンジイソシアネート、1.4−キシレンジイソシ
アネート、1. 5−ナフタレンジイソシアネート、p
−フェニレンジイソシアネート、3.3′−ジメチル−
4,4′ジフエニルメタンジイソシアネート、4.4′
ジフエニルメタンジイソシアネート、3.3′ジメチル
フエニレンジイソシアネート、4,4′ビフエニレンジ
イソシアネート、ヘキサメチレンジイソシアネート、イ
ソフォロンジイソシアネート、ジシクロヘキシルメタン
ジイソシアネート、メチレンビス(4−シクロヘキシル
イソシアネート)、水添ジフェニルメタンジイソシアネ
ート、2.2.4−)ジメチルへキサメチレンジイソシ
アネート、ビス(2−イソシアナトエチル)フマレート
、6−イソプロビル−1,3−フエニルジイソシアネー
ト、4−ジフェニルプロパンジイソシアネート、リジン
ジイソシアネート等を挙げることができる。
Examples of the diisocyanate compound to be reacted with these polyol compounds include 2,4-toluene diisocyanate, 2,6-)toluene diisocyanate, and 1,3-toluene diisocyanate.
Xylene diisocyanate, 1.4-xylene diisocyanate, 1. 5-naphthalene diisocyanate, p
-phenylene diisocyanate, 3,3'-dimethyl-
4,4' diphenylmethane diisocyanate, 4,4'
Diphenylmethane diisocyanate, 3.3' dimethylphenylene diisocyanate, 4,4' biphenylene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, methylene bis(4-cyclohexyl isocyanate), hydrogenated diphenylmethane diisocyanate, 2. Examples include 2.4-) dimethylhexamethylene diisocyanate, bis(2-isocyanatoethyl) fumarate, 6-isoprobyl-1,3-phenyl diisocyanate, 4-diphenylpropane diisocyanate, and lysine diisocyanate.

ポリオール化合物と反応させる(メタ)アクリロイル基
を有する化合物としては、例えば水酸基を有する(メタ
)アクリル系化合物を挙げることかできる。この水酸基
を有する(メタ)アクリル系化合物の具体例としては、
2−ヒドロキシエチル(メタ)アクリレート、2−ヒド
ロキシエチル(メタ)アクリレート、2−ヒドロキシオ
クチル(メタ)アクリレート、ペンタエリスリトール(
メタ)アクリレート、グリセリンジ(メタ)アクリレー
ト、ジペンタエリスリトールモノヒドロキシペンタ(メ
タ)アクリレート、■、4−ブタンジオールモノ(メタ
)アクリレート、4−ヒドロキシシクロヘキシル(メタ
)アクリレート、1゜6−ヘキサンジオールモノ(メタ
)アクリレート、ネオペンチルグリコールモノ(メタ)
アクリレート、トリメチロールプロパンジ(メタ)アク
リレート、トリメチロールプロンジ(メタ)アクリレー
ト等が挙げられ、さらにアルキルグリシジルエーテル、
アリールグリシジルエーテル、グリシジルアクリレート
等のグリシジル基含有化合物と(メタ)アクリル酸との
付加反応により得られる化合物を挙げることができる。
Examples of the compound having a (meth)acryloyl group to be reacted with the polyol compound include (meth)acrylic compounds having a hydroxyl group. Specific examples of this (meth)acrylic compound having a hydroxyl group include:
2-hydroxyethyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxyoctyl (meth)acrylate, pentaerythritol (
meth)acrylate, glycerin di(meth)acrylate, dipentaerythritol monohydroxypenta(meth)acrylate, ■, 4-butanediol mono(meth)acrylate, 4-hydroxycyclohexyl(meth)acrylate, 1゜6-hexanediol mono (meth)acrylate, neopentyl glycol mono(meth)
Acrylate, trimethylolpropane di(meth)acrylate, trimethylolpropane di(meth)acrylate, etc., and further alkyl glycidyl ether,
Examples include compounds obtained by an addition reaction between a glycidyl group-containing compound such as aryl glycidyl ether and glycidyl acrylate and (meth)acrylic acid.

また、エポキシ化合物としては、例えばビスフェノール
Aまたはそのアルキレンオキサイド付加物とエピクロル
ヒドリンとの反応によって得られるグリシジルエーテル
;水素添加ビスフェノールAまたはそのアルキレンオキ
サイド付加体とエピクロルヒドリンとの反応によって得
られるグリシジルエーテル、フェノールノボラックポリ
グリシジルエーテル、1.4−ブタンジオールのジグリ
シジルエーテル、1,6−ヘキサンジオールのジグリシ
ジルエーテル、グリセリンのトリグリシジルエーテル、
トリメチロールプロパンのトリグリシジルエーテル、ポ
リエチレングリコールのジグリシジルエーテル;プロピ
レングリコール、グリセリン等の脂肪族2価アルコール
にエチレンオキサイド、プロピレンオキサイド等のアル
キレンオキサイドを付加することにより得られるポリエ
ーテルジオールのジグリシジルエーテル;脂肪族長鎖二
塩基酸のジグリシジルエステル;フェノール、ブチルフ
ェノール、クレゾールまたはこれらにアルキレンオキサ
イドを付加することにより得られるポリエーテルアルコ
ールのモノグリシジルエーテル;高級脂肪酸のグリシジ
ルエステル;フタル酸ジグリシジルエステル;グリシジ
ルアクリレート、ポリグリシジルアクリレート;3,4
−エポキシシクロヘキサンカルボキシレートなどを挙げ
ることができる。
Epoxy compounds include, for example, glycidyl ether obtained by reacting bisphenol A or its alkylene oxide adduct with epichlorohydrin; glycidyl ether obtained by reacting hydrogenated bisphenol A or its alkylene oxide adduct with epichlorohydrin, and phenol novolak. Polyglycidyl ether, diglycidyl ether of 1,4-butanediol, diglycidyl ether of 1,6-hexanediol, triglycidyl ether of glycerin,
Triglycidyl ether of trimethylolpropane, diglycidyl ether of polyethylene glycol; diglycidyl ether of polyether diol obtained by adding alkylene oxide such as ethylene oxide or propylene oxide to aliphatic dihydric alcohol such as propylene glycol or glycerin. diglycidyl esters of aliphatic long-chain dibasic acids; monoglycidyl ethers of phenol, butylphenol, cresol, or polyether alcohols obtained by adding alkylene oxides to these; glycidyl esters of higher fatty acids; diglycidyl phthalate esters; glycidyl Acrylate, polyglycidyl acrylate; 3,4
-Epoxycyclohexane carboxylate and the like.

さらに上記の(A)成分として市販品を用いることもで
き、例えばUCB社製Ebecry 1204、Ebe
cry 1205 、Ebecry 1210 、Eb
ecry 1220、Ebecry 1240 、Eb
ecry 1254 、Ebecry 1264、Eb
ecry 1265 、Ebecry 1270 、E
becry 1284、Ebecry 1285 、E
becry 1600 、Ebecry 1601、E
becry 1604 、Ebecry 1605 、
Ebecry 1608、Ebecry 1616 、
Ebecry 160B 、Ebecry 12608
、Ebecry 1860  ; A RCO社製CH
EML INK3000、CHEMLINK  500
0、CHEMLINK  9503、CHEMLINK
  9504、CHEMLINK  9505;東亜合
成化学社製アロニックスM−6100、アロニックスM
−6250、アロニックスM−6300、アロニックス
M−6500、アロニンクスM−8030、アロニック
スM−8060iモートンチオコール社製UV ITH
ANE893 ;シェル社製EPON100L、EPO
N82 B等を挙げることができる。
Furthermore, commercially available products can also be used as the component (A), such as Ebecry 1204 manufactured by UCB, Ebe
cry 1205, Ebecry 1210, Eb
ecry 1220, Ebecry 1240, Eb
ecry 1254, Ebecry 1264, Eb
ecry 1265, ebecry 1270, E
becry 1284, ebecry 1285, E
becry 1600, ebecry 1601, E
becry 1604, ebecry 1605,
Ebecry 1608, Ebecry 1616,
Ebecry 160B, Ebecry 12608
, Ebecry 1860; A CH made by RCO
EML INK3000, CHEMLINK 500
0, CHEMLINK 9503, CHEMLINK
9504, CHEMLINK 9505; Toagosei Kagaku Co., Ltd. Aronix M-6100, Aronix M
-6250, Aronix M-6300, Aronix M-6500, Aronix M-8030, Aronix M-8060i UV ITH manufactured by Morton Thiokol
ANE893; Shell EPON100L, EPO
Examples include N82B.

これらの(A)成分の組成物中の含有量は、通常、5〜
35重量%、好ましくは10〜35重量%、さらに好ま
しくは10〜30重量%である。(A)成分の含有量が
少なすぎると得られる組成物の硬化時の体積収縮率の増
加、硬化速度の減少、硬化物の力学的物性の悪化等が生
じ易(なり、また含有量が多すぎると得られる組成物の
粘度が増加し立体造形物の製造速度が低下したり、硬化
物の表面の平滑性が損なわれることがある。
The content of these components (A) in the composition is usually 5 to 5.
It is 35% by weight, preferably 10-35% by weight, more preferably 10-30% by weight. If the content of component (A) is too small, the volumetric shrinkage rate of the obtained composition during curing will increase, the curing speed will decrease, and the mechanical properties of the cured product will deteriorate (or if the content is too high) If it is too high, the viscosity of the resulting composition may increase, the production speed of the three-dimensional object may be reduced, and the surface smoothness of the cured object may be impaired.

(B)成分のうちで(B−1)エチレン性不飽和基を有
する単官能性単量体としては、微小粒子の原料として前
記に例示したエチレン性不飽和基を1個有する単官能性
単量体を挙げることができ、これらのうちで好ましいも
のは単官能性(メタ)アクリル系単量体、ビニルピロリ
ドンおよびビニルカプロラクタムである。
Among components (B), (B-1) the monofunctional monomer having an ethylenically unsaturated group is the monofunctional monomer having one ethylenically unsaturated group as exemplified above as a raw material for the microparticles. Among these, preferred are monofunctional (meth)acrylic monomers, vinylpyrrolidone and vinylcaprolactam.

また、組成物の屈折率を調整する場合には、(B1)成
分として、高い屈折率を有する化合物、例えば下記式(
I): 〔式中、R1およびR2は同一でも異 なってもよく、水素原子またはメチ ル基であり、R3はヒドロキシル基 で置換または非置換の炭素原子数2 16の直鎖または分岐状のアルキレ ン基であり、Xはハロゲン原子であ り、mは0〜6の整数であり、nは 1〜5の整数である] で表される化合物を使用すると有利である。
In addition, when adjusting the refractive index of the composition, a compound having a high refractive index, such as the following formula (
I): [In the formula, R1 and R2 may be the same or different and are a hydrogen atom or a methyl group, and R3 is a linear or branched alkylene group having 2 to 16 carbon atoms substituted or unsubstituted with a hydroxyl group. , X is a halogen atom, m is an integer from 0 to 6, and n is an integer from 1 to 5].

上記式(1)で表される化合物の具体例としては、トリ
ブロモフェニル(メタ)アクリレート、テトラブロモフ
ェニル(メタ)アクリレート、テトラクロロフェニル(
メタ)アクリレート、ペンタブロモフェニル(メタ)ア
クリレート、ペンタクロロフェニル(メタ)アクリレー
ト、2−トリクロロフェノキシエチル(メタ)アクリレ
ート、2−トリクロロフェノキシエチル(メタ)アクリ
レート、2−テトラクロロフェノキシエチル(メタ)ア
クリレート、2−テトラブロモフェノキシエチル(メタ
)アクリレート等を挙げることができる。
Specific examples of the compound represented by the above formula (1) include tribromophenyl (meth)acrylate, tetrabromophenyl (meth)acrylate, and tetrachlorophenyl (
meth)acrylate, pentabromophenyl (meth)acrylate, pentachlorophenyl (meth)acrylate, 2-trichlorophenoxyethyl (meth)acrylate, 2-trichlorophenoxyethyl (meth)acrylate, 2-tetrachlorophenoxyethyl (meth)acrylate, Examples include 2-tetrabromophenoxyethyl (meth)acrylate.

(B)成分のうちの(B−2)エチレン性不飽和基を有
する多官能性単量体としては、微小粒子の原料として前
記に例示したエチレン性不飽和基を2個以上有する多官
能性単量体やその他のエチレン性不飽和基を有する多官
能性単量体を挙げることができ、これらのうちで多官能
性(メタ)アクリル系単量体が好ましい。
The (B-2) polyfunctional monomer having an ethylenically unsaturated group in the component (B) is a polyfunctional monomer having two or more ethylenically unsaturated groups as exemplified above as a raw material for microparticles. Monomers and other polyfunctional monomers having an ethylenically unsaturated group can be mentioned, and among these, polyfunctional (meth)acrylic monomers are preferred.

これらの(B)成分は、組成物中に、通常、15〜75
重量%、好ましくは20〜75重量%、特に好ましくは
30〜75重量%含有される。この含有量が多すぎると
得られる組成物の硬化収縮率の増加、硬化速度の減少が
生じ易(なる。
These (B) components are usually contained in the composition in an amount of 15 to 75
It is contained in an amount of % by weight, preferably 20 to 75% by weight, particularly preferably 30 to 75% by weight. If this content is too large, the curing shrinkage rate of the resulting composition tends to increase and the curing speed decreases.

また、(C)成分の重合開始剤の種類は特に限定されず
、種々の光重合開始剤および熱重合開始剤を使用するこ
とができ、次の化合物を例示することができる。
Moreover, the type of polymerization initiator of component (C) is not particularly limited, and various photopolymerization initiators and thermal polymerization initiators can be used, and the following compounds can be exemplified.

光重合開始剤:アセトフェノン、ベンゾフェノン、キサ
ントン、フルオレノン、アントラキノン、カルバゾール
、4−クロロベンゾフェノン、33−ジメチル−4−メ
トキシベンゾフェノン、4゜4′−ジメトキシベンゾフ
ェノン、4.4′−ジアミノベンゾフェノン、ミヒラー
ケトン、ペンゾインエヂルエーテル、ベンゾインプロピ
ルエーテル、アセトフェノンジエチルケタール、2−ヒ
ドロキシ−2−メチル−1−フェニルプロパン−1−オ
ン、1−(4−ドデシルフェニル)−2−ヒドロキシ−
2−メチルプロパン−1オン、2−メチル−1−(4−
(メチルチオ)フェニル)−2モルフォリノープロパン
ー1−オン、1−ヒドロキシシクロへキシルフェニルケ
トン、ベンジルジメチルケタール、2,4.6−トリメ
チルベンゾイルジフエニルホスフインオキシド、チオキ
サントン系化合物、3.3’、4.4’−テトラ(t−
ブチルパーオキシカルボニル)ベンゾフェノン(BTT
B)、およびBTTBとキサンチン、チオキサンチン、
クマリン、ケトクマリンやその他の色素増感剤、例えば
カンファーキノン、フルオレセインとを組み合わせたも
の。
Photoinitiator: acetophenone, benzophenone, xanthone, fluorenone, anthraquinone, carbazole, 4-chlorobenzophenone, 33-dimethyl-4-methoxybenzophenone, 4°4'-dimethoxybenzophenone, 4,4'-diaminobenzophenone, Michler's ketone, pen Zoin ether, benzoin propyl ether, acetophenone diethyl ketal, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-(4-dodecylphenyl)-2-hydroxy-
2-methylpropan-1one, 2-methyl-1-(4-
(Methylthio)phenyl)-2morpholinopropan-1-one, 1-hydroxycyclohexylphenyl ketone, benzyldimethylketal, 2,4.6-trimethylbenzoyldiphenylphosphine oxide, thioxanthone compound, 3.3' , 4.4'-tetra (t-
Butylperoxycarbonyl)benzophenone (BTT
B), and BTTB and xanthine, thioxanthin,
Combinations of coumarin, ketocoumarin and other dye sensitizers such as camphorquinone and fluorescein.

熱重合開始剤:ベンゾインパーオキシド、L−ブチルパ
ーオキシベンゾエート、ジクミルパニオキシド、2.4
−ジクロロベンゾイルパーオキシド、乞−ブチルパーオ
キシド、アゾビスイソブチロニトリル。
Thermal polymerization initiator: benzoin peroxide, L-butyl peroxybenzoate, dicumyl panioxide, 2.4
-dichlorobenzoyl peroxide, butyl peroxide, azobisisobutyronitrile.

これらの(C)成分は1種または2種以上を組合せて用
いられ、また光重合開始剤の場合、必要に応じて光源か
らの光を有効に利用するための増感剤、アミン系化合物
等の助剤を併用することもできる。
These (C) components are used alone or in combination of two or more, and in the case of a photopolymerization initiator, a sensitizer, an amine compound, etc. are optionally added to effectively utilize the light from the light source. It is also possible to use an auxiliary agent.

(C)成分の組成物中の含有量は、通常、0.03〜1
0重早%、好ましくは0.1〜8重量%である。(C)
成分の含有量が少なすぎると得られる組成物の硬化性が
低下し、多すぎると得られる硬化物の機械的強度が低下
する傾向がある。
The content of component (C) in the composition is usually 0.03 to 1
It is 0% by weight, preferably 0.1 to 8% by weight. (C)
If the content of the component is too small, the curability of the composition obtained tends to decrease, and if the content is too large, the mechanical strength of the cured product obtained tends to decrease.

本発明の組成物には、必要に応じて、レベリング剤、界
面活性剤、有機ケイ素化合物、無機充填剤、顔料、染料
等を配合してもよい。
The composition of the present invention may contain leveling agents, surfactants, organosilicon compounds, inorganic fillers, pigments, dyes, and the like, if necessary.

2本発明の組成物は、上記の微小粒子と液状硬化性樹脂
とを混合し、あるいは必要に応じて他の成分を添加して
なるものであるが、この各成分の混合方法は特に限定さ
れない。
2 The composition of the present invention is made by mixing the above-mentioned microparticles and a liquid curable resin, or by adding other components as necessary, but the method of mixing these components is not particularly limited. .

本発明の組成物の粘度は、通常、100〜2000cl
’である。
The viscosity of the composition of the present invention is usually 100 to 2000 cl.
'is.

本発明の組成物を使用して光学的立体造型法により造型
物を得る場合に使用される光は、該組成物が光硬化性で
あ′るか、熱硬化性であるかに応じて選ばれ、紫外線、
可視光、赤外線等が用いられるが、紫外線を用いること
が好ましい。
The light used when obtaining a model by optical stereolithography using the composition of the present invention is selected depending on whether the composition is photocurable or thermosetting. , ultraviolet rays,
Visible light, infrared light, etc. are used, but it is preferable to use ultraviolet light.

本発明の組成物が用いられる光学的立体造形法のさらに
具体的態様としては次に例示のものが挙げられる。
More specific embodiments of the optical stereolithography method using the composition of the present invention include the following examples.

■第1の硬化層が形成されたのち、次の硬化面分の未硬
化の組成物を得られた第1の硬化層の上に追加供給し、
さらに光を照射して次の硬化層を形成する操作を繰返す
方法。
■After the first cured layer is formed, additionally supplying the uncured composition for the next cured surface onto the obtained first cured layer,
A method of repeating the process of further irradiating light to form the next hardened layer.

■組成物中に底板を第1の硬化層の分の深さだけ沈め、
第1の硬化層が形成されたのち、底板をさらに一層分の
深さだけ沈めることにより、−層分の未硬化の組成物を
第1の硬化層の上に流入させ、さらに光を照射して次の
硬化層を形成する操作を繰返す方法。
■ Submerge the bottom plate in the composition to the depth of the first hardened layer,
After the first cured layer is formed, the bottom plate is further sunk to a depth of one layer, thereby allowing -layers of uncured composition to flow onto the first cured layer and further irradiated with light. A method of repeating the process to form the next hardened layer.

■透明な底板を有する函体を容器に入れた組成物中に沈
下させ、該底板と容器の底面との間の間隙に形成される
組成物層を第1の硬化層の厚さと同じにしておいて、該
組成物層に函体の透明な底板を通して光を照射し、第1
の硬化層を形成させたのち、函体を上げて第1の硬化層
と函体の透明な底板との間の間隙に組成物を流入させ、
さらに光を同様に照射して次の硬化層を形成する操作を
繰返す方法。
■ A box with a transparent bottom plate is submerged in the composition placed in a container, and the composition layer formed in the gap between the bottom plate and the bottom of the container is made to have the same thickness as the first cured layer. , the composition layer is irradiated with light through the transparent bottom plate of the box, and the first
After forming a cured layer, the case is raised to allow the composition to flow into the gap between the first cured layer and the transparent bottom plate of the case,
A method of repeating the process of irradiating light in the same way to form the next hardened layer.

■底が透明である容器中に入れた組成物中に板を沈めて
、振板と容器の底面との間の間隙に形成される組成物層
を第1の硬化層の厚さと同じにしておいて、該組成物層
に容器の透明な底を通して光を照射して第1の硬化層を
形成させたのち、前記の板を一層の厚さ分だけ上げるこ
とにより一層分の未硬化の組成物を第1の硬化層と板と
の間の間隙に流入させ、次に光を前記と同様にして照射
して次の硬化層を形成する操作を繰返す方法。
■ Submerge the plate in the composition placed in a container with a transparent bottom, and make the composition layer formed in the gap between the shaking plate and the bottom of the container the same thickness as the first cured layer. After irradiating the composition layer with light through the transparent bottom of the container to form a first cured layer, one layer of uncured composition is added by raising the plate by one layer thickness. A method of repeating the operation of causing a material to flow into the gap between the first hardened layer and the plate, and then irradiating light in the same manner as described above to form the next hardened layer.

上記■〜■の方法により形成された立体造形物は、反応
に用いた容器から取り出し、立体造形物の表面に残存す
る未反応の組成物を除去した後、必要に応じて洗浄する
。洗浄に使用される洗浄剤としては、例えばイソプロピ
ルアルコール等のアルコール類に代表される有機溶剤や
低粘度例えば200cP以下の熱硬化性あるいは光硬化
性の粘度の樹脂を使用することができる。立体造形物に
透明性を付与したい場合には、前記の低粘度の熱硬化性
あるいは光硬化性の樹脂を洗浄に使用することが好まし
い。また、この場合には、洗浄に使用した樹脂の種類に
応じて、洗浄後に熱または光でポストキュアーを行う必
要がある。このポストキュアーは表面の未硬化樹脂を硬
化させるのみならず、立体造形物の内部に残存する可能
性のある未反応の組成物をも硬化させる効果があるので
、有機溶剤で洗浄した場合にも行うと好ましい。
The three-dimensional structure formed by the methods (1) to (4) above is taken out from the container used for the reaction, and after removing the unreacted composition remaining on the surface of the three-dimensional structure, the three-dimensional structure is washed as necessary. As the cleaning agent used for cleaning, organic solvents such as alcohols such as isopropyl alcohol, and low-viscosity resins such as thermosetting or photocuring resins having a viscosity of 200 cP or less can be used. When it is desired to impart transparency to a three-dimensional object, it is preferable to use the above-mentioned low-viscosity thermosetting or photosetting resin for cleaning. Furthermore, in this case, it is necessary to post-cure with heat or light after cleaning, depending on the type of resin used for cleaning. This post-cure not only cures the uncured resin on the surface, but also cures any unreacted composition that may remain inside the three-dimensional object, so even if it is cleaned with an organic solvent. It is preferable to do so.

〔実施例〕〔Example〕

次に実施例を挙げて本発明をさらに詳細に説明するが、
本発明はこれらに限定されるものではない。
Next, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited to these.

実施例1 攪拌機を備えた反応容器に、ポリエステル系ウレタンア
クリレートオリゴマー(モートンチオコール■製ユビサ
ン893)180g、トリメチロールプロパントリアク
リレート60gおよびビニルピロリドン60gを仕込み
、攪拌しなから50°Cで1時間加熱して、混合物を得
た。(以下、「混合物I」という) 次に、密閉可能な内容積250 mlの容器に、上記の
混合物136.4 g、イソボルニルアクリレート48
゜6g、前記ポリエステル系ウレタンアクリレートオリ
ゴマーとの見かけ比重の差が0.1であり、平均粒a3
μmのジビニルヘンゼンとスチレンのモル比80:20
の共重合体粒子15g、光重合開始剤(ヂハガイギーa
1製イルガキュア184)6.0gおよび粒径3皿のス
テンレス球80mρを仕込み、ペイントシェーカーを用
いて1.5時間混合した。得ら−れた混合物を200メ
ソシユのナイロン製フィルターで濾過してステンレス球
を除去し、光学的立体造形用樹脂組成物を得、これを「
組成物A」とした。
Example 1 A reaction vessel equipped with a stirrer was charged with 180 g of polyester urethane acrylate oligomer (Uvisan 893 manufactured by Morton Thiokol ■), 60 g of trimethylolpropane triacrylate, and 60 g of vinylpyrrolidone, and heated at 50°C for 1 hour without stirring. Heating resulted in a mixture. (Hereinafter referred to as "Mixture I") Next, in a sealable container with an internal volume of 250 ml, 136.4 g of the above mixture and 48 g of isobornyl acrylate were added.
゜6g, the difference in apparent specific gravity with the polyester urethane acrylate oligomer is 0.1, and the average particle size is a3
Molar ratio of μm divinylhenzene and styrene 80:20
15g of copolymer particles, photopolymerization initiator (Jiha Geigy a
6.0 g of Irgacure 184) manufactured by Irgacure Co., Ltd. and 80 mρ of stainless steel balls with particle size of 3 plates were charged and mixed for 1.5 hours using a paint shaker. The resulting mixture was filtered through a 200 MSO nylon filter to remove the stainless steel spheres to obtain a resin composition for optical three-dimensional modeling.
It was designated as "Composition A".

得られた組成物への粘度を測定し、また以下の方法にし
たがって硬化物の収縮率、ゲル含率およびヤング率を測
定し、さらに硬化物の外観を観察した。結果を表−1に
示す。
The viscosity of the obtained composition was measured, and the shrinkage rate, gel content, and Young's modulus of the cured product were measured according to the following methods, and the appearance of the cured product was observed. The results are shown in Table-1.

硬化■夏双血率 集束したHe−Cd レーザー光(出力20m匈、波長
3250人)を、組成物の表面に対して垂直方向から、
30mm X 30non X O,4m+++の矩形
が得られるように照射した。硬化した組成物の密度(D
I)および硬化前の組成物の密度(D2)を測定し、下
記式より硬化物の収縮率を算出した。
Curing: A focused He-Cd laser beam (output 20m, wavelength 3250m) is applied from a direction perpendicular to the surface of the composition.
Irradiation was carried out to obtain a rectangle of 30mm x 30non x O, 4m+++. Density of the cured composition (D
I) and the density (D2) of the composition before curing were measured, and the shrinkage rate of the cured product was calculated from the following formula.

収縮率(%)=100 x ((1/D2)−(1/D
+))/(1/DZ) 硬」」笈@ゲ」脣り旦 硬化物の収縮率の測定と同一の条件で組成物を硬化させ
、得られた硬化物の重量を23°Cで測定した後、メチ
ルエチルケトン100 ml中に23°Cで1時間浸漬
させた。その後、硬化物を取り出し、常圧下、70゛C
で1時間乾燥させた後、23°Cで重量を測定し、ゲル
含率を算出した。
Shrinkage rate (%) = 100 x ((1/D2) - (1/D
+))/(1/DZ) The composition was cured under the same conditions as for measuring the shrinkage rate of the cured product, and the weight of the obtained cured product was measured at 23°C. After that, it was immersed in 100 ml of methyl ethyl ketone at 23°C for 1 hour. After that, take out the cured product and store it at 70°C under normal pressure.
After drying for 1 hour at 23°C, the weight was measured and the gel content was calculated.

硬止租皇ヱノ久皇 集束した1le−Cd レーザー光(出力20mW 、
波長3250人)を、組成物の表面に対して垂直から、
50nusX3mm Xo、4mmの矩形が得られるよ
うに照射した。硬化した組成物を23°C1相対湿度5
0%で24時間状態調整し、試験片とした。この試験片
のヤング率を、引張試験機を用いて、温度23°C5相
対湿度50%において引張速度10mm/min 、標
線間の距離15mmの条件で測定した。
Focused 1le-Cd laser beam (output 20mW,
wavelength 3250) from perpendicular to the surface of the composition,
Irradiation was carried out to obtain a 4 mm rectangle using 50 nus x 3 mm Xo. The cured composition was heated to 23°C 1 relative humidity 5
Conditions were adjusted for 24 hours at 0% and used as test pieces. The Young's modulus of this test piece was measured using a tensile testing machine at a temperature of 23° C. and a relative humidity of 50%, a tensile speed of 10 mm/min, and a distance between gauge lines of 15 mm.

硬化登■五且 硬化物の収縮率の測定と同一の条件で組成物を硬化させ
、得られた硬化物を紫外線硬化型の粘度80cPの洗浄
用樹脂〔日本北条(m”J−KAYARADDPCA−
12020重量部、ビニルピロリドン74重足部、光重
合開始剤ニイルガキュア184(チバガイギーQη製)
4重量部および光重合開始剤:ベンゾフェノン2重量部
の割合で混合した混合物]に緩やかに攪拌しながら浸漬
し、表面を洗浄した。次に、300kW高圧水銀灯を用
いて、20cmの距離から30秒間、洗浄後の組成物に
紫外線を照射し、洗浄用樹脂を硬化させ、得られた硬化
物の表面を目視で観察した。
The composition was cured under the same conditions as in the curing process and the measurement of the shrinkage rate of the cured product, and the resulting cured product was used as an ultraviolet curing type cleaning resin with a viscosity of 80 cP [Japan Hojo (m''J-KAYARADDPCA-
12,020 parts by weight, 74 parts by weight of vinylpyrrolidone, photopolymerization initiator Nilgacure 184 (manufactured by Ciba Geigy Qη)
4 parts by weight and photopolymerization initiator: 2 parts by weight of benzophenone] with gentle stirring, and the surface was washed. Next, using a 300 kW high-pressure mercury lamp, the cleaned composition was irradiated with ultraviolet rays for 30 seconds from a distance of 20 cm to cure the cleaning resin, and the surface of the resulting cured product was visually observed.

実施例2 平均粒径3μmのジビニルベンゼンとスチレンとの共重
合体粒子の代わりに、前記ポリエステル系ウレタンアク
リレートオリゴマーとの見かけ比重の差が0.07であ
り、平均粒径0.3μmのポリジビニルベンゼンからな
る粒子を使用した以外は、実施例1と同様にして光学的
立体造形用樹脂組成物を得、「組成物B」とした。
Example 2 Instead of copolymer particles of divinylbenzene and styrene with an average particle size of 3 μm, polydivinyl with an apparent specific gravity difference of 0.07 from the polyester urethane acrylate oligomer and an average particle size of 0.3 μm was used. A resin composition for optical three-dimensional modeling was obtained in the same manner as in Example 1, except that particles made of benzene were used, and designated as "composition B".

得られた組成物Bについて粘度を測定し、また硬化物の
収縮率、ゲル含率およびヤング率を測定し、硬化物の外
観を観察した。結果を表−1に示す。
The viscosity of the obtained composition B was measured, and the shrinkage rate, gel content, and Young's modulus of the cured product were also measured, and the appearance of the cured product was observed. The results are shown in Table-1.

実施例3 平均粒径3μmのジビニルベンゼンとスチレンとの共重
合体粒子の代わりに、前記ポリエステル系ウレタンアク
リレートオリゴマーとの見かけ比重の差が0.09であ
り、平均粒径5μmの低密度ポリアミド粒子を使用した
以外は、実施例1を同様にして光学的立体造形用樹脂組
成物を得、「組成物C」とした。
Example 3 Instead of copolymer particles of divinylbenzene and styrene with an average particle size of 3 μm, low-density polyamide particles with an average particle size of 5 μm and a difference in apparent specific gravity from the polyester urethane acrylate oligomer of 0.09 were used. A resin composition for optical three-dimensional modeling was obtained in the same manner as in Example 1, except that the following was used, and designated as "Composition C".

得られた組成物Cについて粘度を測定し、また硬化物の
収縮率、ゲル含率およびヤング率を測定し、硬化物の外
観を観察した。結果を表−1に示す。
The viscosity of the resulting composition C was measured, and the shrinkage rate, gel content, and Young's modulus of the cured product were also measured, and the appearance of the cured product was observed. The results are shown in Table-1.

実施例4 平均粒径3μmのジビニルベンゼンとスチレンとの共重
合体粒子の代わりに、前記ポリエステル系ウレタンアク
リレートオリゴマーとの見かけ比重の差が0.13であ
り、平均粒径7μmのポリアミド粒子を使用した以外は
、実施例1と同様にして光学的立体造形用樹脂組成物を
得、「Mi成物D」とした。
Example 4 Instead of copolymer particles of divinylbenzene and styrene with an average particle size of 3 μm, polyamide particles with an average particle size of 7 μm and a difference in apparent specific gravity from the polyester urethane acrylate oligomer of 0.13 were used. Except for the above, a resin composition for optical three-dimensional modeling was obtained in the same manner as in Example 1, and designated as "Mi composition D".

得られた組成物りについて粘度を測定し、また硬化物の
収縮率、ゲル含率およびヤング率を測定し、硬化物の外
観を観察した。結果を表−1に示す。
The viscosity of the obtained composition was measured, the shrinkage rate, gel content and Young's modulus of the cured product were measured, and the appearance of the cured product was observed. The results are shown in Table-1.

比較例1 攪拌機を備えた反応容器に、実施例1で得られた混合物
142.9 g、イソボルニルアクリレート57.1g
および光重合開始剤(チハガイギー味製イルガキュア1
84)6.0gを仕込み、攪拌しながら50°Cで1時
間加熱して光学的立体造形用樹脂組成物を得、「組成物
E」とした。この組成物已について粘度を測定し、また
実施例1と同様にして硬化物の収縮率、ゲル含率および
ヤング率を測定し、硬化物の外観を観察した。結果を表
−1に示す。
Comparative Example 1 142.9 g of the mixture obtained in Example 1 and 57.1 g of isobornyl acrylate were placed in a reaction vessel equipped with a stirrer.
and photopolymerization initiator (Irgacure 1 manufactured by Chiha Geigy)
84) 6.0 g was charged and heated at 50°C for 1 hour while stirring to obtain a resin composition for optical three-dimensional modeling, which was designated as "Composition E". The viscosity of this composition was measured, and the shrinkage rate, gel content and Young's modulus of the cured product were measured in the same manner as in Example 1, and the appearance of the cured product was observed. The results are shown in Table-1.

〔発明の効果〕〔Effect of the invention〕

本発明の光学的立体造形用樹脂組成物は、低粘度で、し
かも硬化時の体積収縮率が小さいため、光学的立体造形
法により、造形精度の良い造形物を高い生産性で得るこ
とができる。さらに、硬化後、十分に高い強度を有する
造形物を得ることができる。
Since the resin composition for optical three-dimensional modeling of the present invention has a low viscosity and a small volumetric shrinkage rate during curing, it is possible to obtain objects with good modeling accuracy and high productivity by optical three-dimensional modeling. . Furthermore, after curing, a shaped article having sufficiently high strength can be obtained.

Claims (1)

【特許請求の範囲】[Claims] 液状硬化性樹脂と、液状硬化性樹脂との見かけの比重の
差が0.2未満である微小粒子とを含む光学的立体造形
用樹脂組成物。
A resin composition for optical three-dimensional modeling, comprising a liquid curable resin and microparticles having an apparent specific gravity difference of less than 0.2 with the liquid curable resin.
JP63293440A 1988-11-18 1988-11-18 Optical three-dimensional molding resin composition Expired - Lifetime JP2612484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63293440A JP2612484B2 (en) 1988-11-18 1988-11-18 Optical three-dimensional molding resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63293440A JP2612484B2 (en) 1988-11-18 1988-11-18 Optical three-dimensional molding resin composition

Publications (2)

Publication Number Publication Date
JPH02145616A true JPH02145616A (en) 1990-06-05
JP2612484B2 JP2612484B2 (en) 1997-05-21

Family

ID=17794791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63293440A Expired - Lifetime JP2612484B2 (en) 1988-11-18 1988-11-18 Optical three-dimensional molding resin composition

Country Status (1)

Country Link
JP (1) JP2612484B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03114732A (en) * 1989-04-21 1991-05-15 E I Du Pont De Nemours & Co Stereoscopic model formation method using radiation curing multiphase composition
JPH06199962A (en) * 1992-11-13 1994-07-19 Takemoto Oil & Fat Co Ltd Optical three-dimensional molding composition and three-dimensional molded product obtained by photopolymerization thereof
US5679722A (en) * 1993-07-15 1997-10-21 Teijin Seiki Co., Ltd. Resin composition for production of a three-dimensional object by curing
JPH1087791A (en) * 1996-07-29 1998-04-07 Ciba Specialty Chem Holding Inc Liquid, radiation-curable composition particularly for stereolithography
WO1998034987A1 (en) * 1997-02-05 1998-08-13 Teijin Seiki Co., Ltd. Stereolithographic resin composition
US5849459A (en) * 1994-11-29 1998-12-15 Teijin Seiki Co., Ltd. Resin composition for stereolithography
US6017973A (en) * 1996-05-16 2000-01-25 Teijin Seiki Company, Ltd. Photocurable resin composition, method of producing photo-cured shaped object, vacuum casting mold, vacuum casting method and novel urethane acrylate
US6036910A (en) * 1996-09-25 2000-03-14 Teijin Seiki Co., Ltd. Three-dimensional object by optical stereography and resin composition containing colorant for producing the same
JP2001026609A (en) * 1999-07-13 2001-01-30 Teijin Seiki Co Ltd Resin composition for optical stereolithography
US6200732B1 (en) 1996-04-15 2001-03-13 Teijin Seikei Co., Ltd. Photocurable resin composition
US6232398B1 (en) 1996-12-05 2001-05-15 Nec Corporation Alkali or acid corrodible organic or composite particles in resin matrix
US6432607B1 (en) 1998-11-10 2002-08-13 Teijin Seiki Co., Ltd. Photocurable resin composition and method of optically forming three-dimensional shape
JP2005254521A (en) * 2004-03-10 2005-09-22 Fuji Photo Film Co Ltd Three-dimensional shaped article and its manufacturing method
EP1757979A1 (en) 2005-08-26 2007-02-28 Cmet Inc. Rapid prototyping resin compositions
JP2007290391A (en) * 2003-08-19 2007-11-08 Three D Syst Inc Nanoparticle-filled stereolithographic resin
JP2011246574A (en) * 2010-05-26 2011-12-08 Seiko Epson Corp Slurry for shaping and shaping method
US8293810B2 (en) 2005-08-29 2012-10-23 Cmet Inc. Rapid prototyping resin compositions
JP2021532244A (en) * 2018-08-01 2021-11-25 ブラスケム・アメリカ・インコーポレイテッド Thermoplastic compositions with improved robustness, articles thereof, and methods thereof.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60247515A (en) * 1984-05-23 1985-12-07 Oosakafu Optical shaping method
JPS6235966A (en) * 1984-08-08 1987-02-16 スリーデイー、システムズ、インコーポレーテッド Method and apparatus for generating 3-d object
JPS6243412A (en) * 1985-08-21 1987-02-25 Nippon Paint Co Ltd High energy ray curable resin composition
JPS62101408A (en) * 1985-10-29 1987-05-11 Osaka Pref Gov Optical shaping

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60247515A (en) * 1984-05-23 1985-12-07 Oosakafu Optical shaping method
JPS6235966A (en) * 1984-08-08 1987-02-16 スリーデイー、システムズ、インコーポレーテッド Method and apparatus for generating 3-d object
JPS6243412A (en) * 1985-08-21 1987-02-25 Nippon Paint Co Ltd High energy ray curable resin composition
JPS62101408A (en) * 1985-10-29 1987-05-11 Osaka Pref Gov Optical shaping

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03114732A (en) * 1989-04-21 1991-05-15 E I Du Pont De Nemours & Co Stereoscopic model formation method using radiation curing multiphase composition
JPH0661849B2 (en) * 1989-04-21 1994-08-17 イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー Stereoscopic image forming method using photocurable multiphase composition
JPH06199962A (en) * 1992-11-13 1994-07-19 Takemoto Oil & Fat Co Ltd Optical three-dimensional molding composition and three-dimensional molded product obtained by photopolymerization thereof
US5679722A (en) * 1993-07-15 1997-10-21 Teijin Seiki Co., Ltd. Resin composition for production of a three-dimensional object by curing
US5849459A (en) * 1994-11-29 1998-12-15 Teijin Seiki Co., Ltd. Resin composition for stereolithography
US6162576A (en) * 1994-11-29 2000-12-19 Teijin Seiki Co., Ltd. Resin composition for stereolithography
US6200732B1 (en) 1996-04-15 2001-03-13 Teijin Seikei Co., Ltd. Photocurable resin composition
US6017973A (en) * 1996-05-16 2000-01-25 Teijin Seiki Company, Ltd. Photocurable resin composition, method of producing photo-cured shaped object, vacuum casting mold, vacuum casting method and novel urethane acrylate
JPH1087791A (en) * 1996-07-29 1998-04-07 Ciba Specialty Chem Holding Inc Liquid, radiation-curable composition particularly for stereolithography
US6036910A (en) * 1996-09-25 2000-03-14 Teijin Seiki Co., Ltd. Three-dimensional object by optical stereography and resin composition containing colorant for producing the same
US6232398B1 (en) 1996-12-05 2001-05-15 Nec Corporation Alkali or acid corrodible organic or composite particles in resin matrix
WO1998034987A1 (en) * 1997-02-05 1998-08-13 Teijin Seiki Co., Ltd. Stereolithographic resin composition
US6203966B1 (en) 1997-02-05 2001-03-20 Teijin Seiki Co., Ltd. Stereolithographic resin composition
US6432607B1 (en) 1998-11-10 2002-08-13 Teijin Seiki Co., Ltd. Photocurable resin composition and method of optically forming three-dimensional shape
JP2001026609A (en) * 1999-07-13 2001-01-30 Teijin Seiki Co Ltd Resin composition for optical stereolithography
JP2007290391A (en) * 2003-08-19 2007-11-08 Three D Syst Inc Nanoparticle-filled stereolithographic resin
JP2005254521A (en) * 2004-03-10 2005-09-22 Fuji Photo Film Co Ltd Three-dimensional shaped article and its manufacturing method
EP1757979A1 (en) 2005-08-26 2007-02-28 Cmet Inc. Rapid prototyping resin compositions
US8293810B2 (en) 2005-08-29 2012-10-23 Cmet Inc. Rapid prototyping resin compositions
JP2011246574A (en) * 2010-05-26 2011-12-08 Seiko Epson Corp Slurry for shaping and shaping method
JP2021532244A (en) * 2018-08-01 2021-11-25 ブラスケム・アメリカ・インコーポレイテッド Thermoplastic compositions with improved robustness, articles thereof, and methods thereof.

Also Published As

Publication number Publication date
JP2612484B2 (en) 1997-05-21

Similar Documents

Publication Publication Date Title
JPH02145616A (en) Resin composition for optical stereo modeling
US6200732B1 (en) Photocurable resin composition
JP3252331B2 (en) Acrylate-based photosensitive composition
JP2525216B2 (en) Resin composition for optical three-dimensional modeling
US5874041A (en) Photo-curable resin composition and process for preparing resin-based mold
JP3724893B2 (en) Optical three-dimensional molding resin composition
JP2687082B2 (en) Optical three-dimensional molding resin composition
JP2762389B2 (en) Optical three-dimensional molding resin composition
JP2001139663A (en) Resin composition for optical shaping, its preparation process and optically shaped product
US5932625A (en) Photo-curable resin composition and process for preparing resin-basedmold
JP2731363B2 (en) Optical three-dimensional molding resin composition
JP3176430B2 (en) Optical three-dimensional molding resin composition
JP2554443B2 (en) Resin composition for optical three-dimensional modeling
JP3410799B2 (en) Optical three-dimensional molding resin composition
JP3657057B2 (en) Photocurable resin composition for molding resin mold production and method for producing molding resin mold
JP3356553B2 (en) Optical three-dimensional molding resin composition
JP3951344B2 (en) Photosensitive resin composition
JP3356557B2 (en) Optical three-dimensional molding resin composition
JP4007704B2 (en) Photocurable resin composition for optical three-dimensional modeling
JP3705508B2 (en) Photo-curable resin composition with excellent heat resistance
JP3468479B2 (en) Photocurable resin composition for stereolithography and method for producing optical stereolithography
JP3356558B2 (en) Optical three-dimensional molding resin composition
JP2811358B2 (en) Optical three-dimensional molding resin composition
JP2002060435A (en) Photo-setting resin composition
JPH06128342A (en) Resin composition for optical three-dimensional shaping

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 12