JP6891394B2 - Manufacturing method of three-dimensional model - Google Patents

Manufacturing method of three-dimensional model Download PDF

Info

Publication number
JP6891394B2
JP6891394B2 JP2015256264A JP2015256264A JP6891394B2 JP 6891394 B2 JP6891394 B2 JP 6891394B2 JP 2015256264 A JP2015256264 A JP 2015256264A JP 2015256264 A JP2015256264 A JP 2015256264A JP 6891394 B2 JP6891394 B2 JP 6891394B2
Authority
JP
Japan
Prior art keywords
glass powder
dimensional model
curable resin
producing
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015256264A
Other languages
Japanese (ja)
Other versions
JP2017119591A (en
Inventor
俣野 高宏
高宏 俣野
藤田 直樹
直樹 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2015256264A priority Critical patent/JP6891394B2/en
Publication of JP2017119591A publication Critical patent/JP2017119591A/en
Application granted granted Critical
Publication of JP6891394B2 publication Critical patent/JP6891394B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ガラス粉末の焼結体からなる立体造形物の製造方法に関する。 The present invention relates to a method for producing a three-dimensional model made of a sintered body of glass powder.

従来、樹脂材料等を積層させて立体造形物を得る方法が知られている。例えば光造形法、粉末床溶融焼結法、熱溶解積層(Fused deposition modeling:FDM)法等種々の方法が提案され実用化されている(例えば特許文献1参照)。 Conventionally, a method of laminating resin materials and the like to obtain a three-dimensional model has been known. For example, various methods such as a stereolithography method, a powder bed fusion sintering method, and a Fused deposition modeling (FDM) method have been proposed and put into practical use (see, for example, Patent Document 1).

なかでも光造形法は、細やかな造形や正確なサイズ表現に優れており、広く普及している。光造形法は以下のようにして立体造形物を作製するものである。まず光硬化性樹脂を満たした槽内に造形ステージを設け、造形ステージ上の光硬化性樹脂に紫外線レーザー等の活性エネルギー線を照射して所望のパターンの硬化層を形成する。このようにして硬化層を1層形成すると造形ステージを1層分だけ下げて、硬化層上に未硬化の光硬化性樹脂を導入し、同様にして活性エネルギー線を光硬化性樹脂に照射して前記硬化層上に新たな硬化層を積み上げる。この操作を繰り返すことにより、所定の立体造形物を得る。また、粉末焼結法は、樹脂、金属、セラミックスまたはガラスの粉末を満たした槽内に造形ステージを設け、造形ステージ上の粉末に活性エネルギー線を照射し、軟化変形にて所望のパターンの硬化層を形成するものである。このような方法により得られた立体造形物には、用途によっては高い機械的強度が求められる。特許文献1では、樹脂組成物中に無機充填材粒子を含有させることにより、得られる立体造形物の機械的強度(機械的剛性)が向上することが記載されている。 Among them, the stereolithography method is excellent in delicate modeling and accurate size expression, and is widely used. The stereolithography method produces a three-dimensional model as follows. First, a modeling stage is provided in a tank filled with a photocurable resin, and the photocurable resin on the modeling stage is irradiated with active energy rays such as an ultraviolet laser to form a cured layer having a desired pattern. When one cured layer is formed in this way, the modeling stage is lowered by one layer, an uncured photocurable resin is introduced onto the cured layer, and the photocurable resin is similarly irradiated with active energy rays. A new hardened layer is piled up on the hardened layer. By repeating this operation, a predetermined three-dimensional model is obtained. Further, in the powder sintering method, a modeling stage is provided in a tank filled with resin, metal, ceramics or glass powder, the powder on the modeling stage is irradiated with active energy rays, and a desired pattern is cured by softening and deformation. It forms a layer. The three-dimensional model obtained by such a method is required to have high mechanical strength depending on the application. Patent Document 1 describes that the mechanical strength (mechanical rigidity) of the obtained three-dimensional model is improved by containing the inorganic filler particles in the resin composition.

上記の方法から派生して、ガラス粉末を含有する樹脂組成物を用いて、一旦前駆体立体造形物を作製した後、当該前駆体立体造形物を熱処理することにより硬化性樹脂を除去(脱脂)するとともに、ガラス粉末を焼結することにより立体造形物を製造する方法も提案されている(例えば特許文献2参照)。このようにすれば、ガラス粉末の焼結体からなる種々の形状を有する立体造形物を製造することが可能となる。 Derived from the above method, a resin composition containing glass powder is used to once prepare a three-dimensional precursor, and then the three-dimensional precursor is heat-treated to remove the curable resin (defatting). At the same time, a method of producing a three-dimensional model by sintering glass powder has also been proposed (see, for example, Patent Document 2). In this way, it becomes possible to manufacture a three-dimensional model having various shapes made of a sintered body of glass powder.

特開平7−26060号公報Japanese Unexamined Patent Publication No. 7-26060 特開2012−250022号公報Japanese Unexamined Patent Publication No. 2012-250022

特許文献2で得られた立体造形物は、硬化性樹脂の除去に起因して、内部に気孔が残存しやすく緻密性に劣る傾向がある。その結果、立体造形物の機械的強度に劣っていたり、気孔が散乱因子となって光透過率が低下し外観性に劣るという問題がある。 The three-dimensional model obtained in Patent Document 2 tends to have pores easily remaining inside due to the removal of the curable resin, and tends to be inferior in denseness. As a result, there is a problem that the mechanical strength of the three-dimensional model is inferior, or the pores become a scattering factor, the light transmittance is lowered, and the appearance is inferior.

以上に鑑み、本発明は、ガラス粉末の焼結体からなり、緻密性に優れた立体造形物を製造することが可能な方法を提供することを目的とする。 In view of the above, it is an object of the present invention to provide a method capable of producing a three-dimensional model having excellent density, which is made of a sintered body of glass powder.

本発明の立体造形物の製造方法は、硬化性樹脂とガラス粉末を含有する樹脂組成物に活性エネルギー光線を照射して、硬化性樹脂を硬化することにより前駆体を得る工程、前駆体を熱処理することにより硬化性樹脂を除去するとともに、ガラス粉末を焼結する工程、を有する立体造形物の製造方法であって、ガラス粉末の焼結を減圧雰囲気で行うことを特徴とする。 The method for producing a three-dimensional model of the present invention is a step of irradiating a resin composition containing a curable resin and a glass powder with active energy rays to cure the curable resin to obtain a precursor, and heat-treating the precursor. This is a method for producing a three-dimensional model, which comprises a step of removing the curable resin and sintering the glass powder, characterized in that the glass powder is sintered in a reduced pressure atmosphere.

上記の通り、本発明の立体造形物の製造方法においては、硬化性樹脂とガラス粉末を含有する樹脂組成物を用いて前駆体を作製した後、前駆体を減圧雰囲気で熱処理してガラス粉末を焼結する。このようにすれば、硬化性樹脂を除去した後に残存する気泡が外部に放出されやすくなり、焼結体の緻密性が向上しやすくなる。よって、立体造形物の機械的強度や光透過率を向上させることが可能となる。 As described above, in the method for producing a three-dimensional model of the present invention, a precursor is prepared using a resin composition containing a curable resin and a glass powder, and then the precursor is heat-treated in a reduced pressure atmosphere to produce a glass powder. Sinter. By doing so, the bubbles remaining after the curable resin is removed are easily released to the outside, and the denseness of the sintered body is easily improved. Therefore, it is possible to improve the mechanical strength and the light transmittance of the three-dimensional model.

本発明の立体造形物の製造方法は、硬化性樹脂とガラス粉末を含有する樹脂組成物からなる層に選択的に活性エネルギー光線を照射して所定のパターンを有する硬化層を形成する工程、硬化層上に新たな樹脂組成物層を形成した後に、樹脂組成物層に活性エネルギー線を照射して硬化層と連続した所定パターンを有する新たな硬化層を形成し、所定の立体造形物が得られるまで硬化層の積層を繰り返して前駆体を作製する工程、前駆体を熱処理することにより硬化性樹脂を除去するとともに、ガラス粉末を焼結する工程、を有する立体造形物の製造方法であって、ガラス粉末の焼結を減圧雰囲気で行うことを特徴とする。このようにすれば、複雑な形状を有する立体造形物を容易に作製することが可能となる。 The method for producing a three-dimensional model of the present invention is a step of selectively irradiating a layer composed of a resin composition containing a curable resin and a glass powder with active energy rays to form a cured layer having a predetermined pattern, and curing. After forming a new resin composition layer on the layer, the resin composition layer is irradiated with active energy rays to form a new cured layer having a predetermined pattern continuous with the cured layer, and a predetermined three-dimensional model is obtained. It is a method for producing a three-dimensional model, which comprises a step of repeatedly laminating a cured layer until it is produced to prepare a precursor, and a step of removing a curable resin by heat-treating the precursor and sintering a glass powder. , The glass powder is sintered in a reduced pressure atmosphere. In this way, it is possible to easily produce a three-dimensional model having a complicated shape.

本発明の立体造形物の製造方法において、樹脂組成物中が、体積%で硬化性樹脂 1〜50%、ガラス粉末 50〜99%を含有することが好ましい。このようにすれば、焼結後の立体造形物の緻密性を向上させることが可能となる。 In the method for producing a three-dimensional model of the present invention, it is preferable that the resin composition contains 1 to 50% of curable resin and 50 to 99% of glass powder by volume. In this way, it is possible to improve the fineness of the three-dimensional model after sintering.

本発明の立体造形物の製造方法において、硬化性樹脂として紫外線硬化樹脂を使用することができる。 In the method for producing a three-dimensional model of the present invention, an ultraviolet curable resin can be used as the curable resin.

本発明の立体造形物の製造方法において、ガラス粉末の平均粒子径が1〜500μmであることが好ましい。このようにすれば、緻密な焼結体が得られやすくなる。 In the method for producing a three-dimensional model of the present invention, the average particle size of the glass powder is preferably 1 to 500 μm. By doing so, it becomes easy to obtain a dense sintered body.

本発明の立体造形物の製造方法において、ガラス粉末が、組成として質量%で、SiO 30〜85%、Al 0〜30%、B 0〜50%、LiO+NaO+KO 0〜10%を含有することが好ましい。このようにすれば、機械的強度及び化学的耐久性に優れた立体造形物が得られやすくなる。 The method of manufacturing a three-dimensional object of the present invention, the glass powder is in weight% as a composition, SiO 2 30~85%, Al 2 O 3 0~30%, B 2 O 3 0~50%, Li 2 O + Na 2 It preferably contains O + K 2 O 0 to 10%. In this way, it becomes easy to obtain a three-dimensional model having excellent mechanical strength and chemical durability.

本発明の立体造形物の製造方法において、ガラス粉末の焼結を、ガラス粉末の軟化点±100℃以内で行うことが好ましい。このようにすれば、緻密な立体造形物が得られやすくなる。 In the method for producing a three-dimensional model of the present invention, it is preferable that the glass powder is sintered within ± 100 ° C., which is the softening point of the glass powder. In this way, it becomes easy to obtain a precise three-dimensional model.

本発明によれば、ガラス粉末の焼結体からなり、緻密性に優れた立体造形物を製造することができる。 According to the present invention, it is possible to produce a three-dimensional model having excellent density, which is made of a sintered body of glass powder.

本発明で使用する硬化性樹脂は、光硬化性樹脂、熱硬化性樹脂のいずれであってもよく、採用する造形法によって適宜選択することができる。例えば光造形法を使用する場合は液状の光硬化性樹脂を選択すればよく、また粉末焼結法を採用する場合は粉末状の熱硬化性樹脂を選択すればよい。 The curable resin used in the present invention may be either a photocurable resin or a thermosetting resin, and can be appropriately selected depending on the molding method to be adopted. For example, when the stereolithography method is used, a liquid photocurable resin may be selected, and when the powder sintering method is adopted, a powdery thermosetting resin may be selected.

光硬化性樹脂としては、重合性のビニル系化合物、エポキシ系化合物等種々の樹脂を選択することができる。また単官能性化合物や多官能性化合物のモノマーやオリゴマーが用いられる。これらの単官能性化合物、多官能性化合物は、特に限定されるものではない。以下に光硬化性樹脂の代表例を挙げる。 As the photocurable resin, various resins such as a polymerizable vinyl compound and an epoxy compound can be selected. Further, monomers and oligomers of monofunctional compounds and polyfunctional compounds are used. These monofunctional compounds and polyfunctional compounds are not particularly limited. Typical examples of photocurable resins are given below.

重合性のビニル系化合物の単官能性化合物としては、イソボルニルアクリレート、イソボルニルメタクリレート、ジンクロペンテニルアクリレート、ボルニルアクリレート、ボルニルメタクリレート、2−ヒドロキシエチルアクリレート、2−ヒドロキシプロピルアクリレート、プロピレングリコールアクリレート、ビニルピロリドン、アクリルアミド、酢酸ビニル、スチレン等が挙げられる。また多官能性化合物としては、トリメチロールプロパントリアクリレート、EO変性トリメチロールプロパントリアクリレート、エチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ポリエチレングリコールジアクリレート、1,4−ブタンジオールジアクリレート、1,6−ヘキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、ジシクロペンテニルジアクリレート、ポリエステルジアクリレート、ジアリルフタレート等が挙げられる。これらの単官能性化合物や多官能性化合物の1種以上を単独又は混合物の形で使用することができる。 Examples of the monofunctional compound of the polymerizable vinyl compound include isobornyl acrylate, isobornyl methacrylate, dincropentenyl acrylate, borneyl acrylate, bornyl methacrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, and propylene glycol. Examples thereof include acrylate, vinylpyrrolidone, acrylamide, vinyl acetate and styrene. Examples of the polyfunctional compound include trimethyl propanetriacrylate, EO-modified trimethylpropantriacrylate, ethylene glycol diacrylate, tetraethylene glycol diacrylate, polyethylene glycol diacrylate, 1,4-butanediol diacrylate, and 1,6. -Hexanediol diacrylate, neopentyl glycol diacrylate, dicyclopentenyl diacrylate, polyester diacrylate, diallyl phthalate and the like can be mentioned. One or more of these monofunctional compounds and polyfunctional compounds can be used alone or in the form of a mixture.

ビニル系化合物の重合開始剤としては、光重合開始剤が用いられる。光重合開始剤としては、2,2−ジメトキシ−2−フェニルアセトフェノン、1−ヒドロキシシクロヘキシルフェニルケトン、アセトフェノン、ベンゾフェノン、キサントン、フルオレノン、ベンズアルデヒド、フルオレン、アントラキノン、トリフェニルアミン、カルバゾール、3−メチルアセトフェノン、ミヒラーケトン等が代表的なものとして挙げることができ、これらの開始剤を1種または2種以上組み合わせて使用することができる。必要に応じてアミン系化合物等の増感剤を併用することも可能である。これらの重合開始剤の使用量は、ビニル系化合物に対してそれぞれ0.1〜10質量%であることが好ましい。 As the polymerization initiator of the vinyl compound, a photopolymerization initiator is used. Photopolymerization initiators include 2,2-dimethoxy-2-phenylacetophenone, 1-hydroxycyclohexylphenylketone, acetophenone, benzophenone, xantone, fluorenone, benzaldehyde, fluorene, anthraquinone, triphenylamine, carbazole, 3-methylacetophenone, Michler ketone and the like can be mentioned as typical examples, and one or a combination of two or more of these initiators can be used. If necessary, a sensitizer such as an amine compound can be used in combination. The amount of these polymerization initiators used is preferably 0.1 to 10% by mass, respectively, with respect to the vinyl compound.

エポキシ系化合物としては、水素添加ビスフェノールAジグリシジルエーテル、3,4−エポキシシクロヘキシルメチル−3,4−エポキシシクロヘキサンカルボキシレート、2−(3,4−エポキシシクロヘキシル−5,5−スピロ−3,4−エポキシ)シクロヘキサン−m−ジオキサン、ビス(3,4−エポキシシクロヘキシルメチル)アジペート等が挙げられる。これらのエポキシ系化合物を用いる場合には、トリフェニルスルホニウムヘキサフルオロアンチモネート等のエネルギー活性カチオン開始剤を用いることができる。 Examples of the epoxy compound include hydrogenated bisphenol A diglycidyl ether, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, and 2- (3,4-epoxycyclohexyl-5,5-spiro-3,4). -Epoxy) Cyclohexane-m-dioxane, bis (3,4-epoxycyclohexylmethyl) adipate and the like can be mentioned. When these epoxy compounds are used, an energy-active cation initiator such as triphenylsulfonium hexafluoroantimonate can be used.

さらに光硬化性樹脂には、レベリング剤、界面活性剤、有機高分子化合物、有機可塑剤等を必要に応じて添加してもよい。 Further, a leveling agent, a surfactant, an organic polymer compound, an organic plasticizer and the like may be added to the photocurable resin as needed.

本発明で使用する硬化性樹脂の分解温度は600℃以下、550℃以下、特に500℃以下であることが好ましい。硬化性樹脂の分解温度が高すぎると、熱処理により除去されにくくなるため、得られる立体造形物の緻密性に劣る傾向がある。 The decomposition temperature of the curable resin used in the present invention is preferably 600 ° C. or lower, 550 ° C. or lower, and particularly preferably 500 ° C. or lower. If the decomposition temperature of the curable resin is too high, it is difficult to remove the curable resin by heat treatment, so that the resulting three-dimensional model tends to be inferior in fineness.

ガラス粉末としては特に限定されず、例えばSiO−B−R’O(R’はアルカリ金属元素)系ガラス、SiO−Al−RO(Rはアルカリ土類金属元素)系ガラス、SiO−Al−R’O−RO系ガラス、SiO−Al−B−R’O系ガラス、SiO−Al−B−R’O−RO系ガラス、SiO−R’O系ガラス、SiO−R’O−RO系ガラス等を使用することができる。 Is not particularly limited as glass powder, for example, SiO 2 -B 2 O 3 -R ' 2 O (R' is an alkali metal element) based glass, SiO 2 -Al 2 O 3 -RO (R is an alkaline earth metal element ) based glass, SiO 2 -Al 2 O 3 -R '2 O-RO -based glass, SiO 2 -Al 2 O 3 -B 2 O 3 -R' 2 O -based glass, SiO 2 -Al 2 O 3 -B 2 O 3 -R '2 O- RO -based glass, SiO 2 -R' 2 O-based glass, a SiO 2 -R '2 O-RO-based glass may be used.

ガラス粉末の組成の具体例としては、組成として質量%で、SiO 30〜85%、Al 0〜30%、B 0〜50%、LiO+NaO+KO 0〜10%を含有するものが挙げられる。当該組成を有するガラス粉末を使用すれば、機械的強度及び化学的耐久性に優れた立体造形物が得られやすくなるため好ましい。以下に、各成分を上記の通り限定した理由を説明する。なお以下の各成分の含有量に関する説明において、特に断りがない限り「%」は質量%を表す。 Specific examples of the composition of the glass powder is in weight% as a composition, SiO 2 30~85%, Al 2 O 3 0~30%, B 2 O 3 0~50%, Li 2 O + Na 2 O + K 2 O 0~ Those containing 10% can be mentioned. It is preferable to use a glass powder having this composition because it is easy to obtain a three-dimensional model having excellent mechanical strength and chemical durability. The reason for limiting each component as described above will be described below. In the following description of the content of each component, "%" represents mass% unless otherwise specified.

SiOはガラス骨格を形成する成分であり、化学的耐久性を向上させやすく、失透を抑制する効果がある。また、機械的強度を高める効果がある。SiOの含有量は30〜85%、40〜75%、特に45〜70%であることが好ましい。SiOが少なすぎると、上記効果が得られにくくなる。また、結晶化温度と軟化温度の差が小さくなりやすい。その結果、後述するように、焼結時に結晶が析出しやすくなりガラス粉末の軟化流動を阻害するため、緻密性が低下しやすくなったり、ガラス粒界の泡が抜けにくくなる。一方、SiOが多すぎると、軟化点が高くなって成形性に劣る傾向がある。 SiO 2 is a component that forms a glass skeleton, easily improves chemical durability, and has an effect of suppressing devitrification. It also has the effect of increasing mechanical strength. The content of SiO 2 is preferably 30 to 85%, 40 to 75%, and particularly preferably 45 to 70%. If the amount of SiO 2 is too small, it becomes difficult to obtain the above effect. In addition, the difference between the crystallization temperature and the softening temperature tends to be small. As a result, as will be described later, crystals are likely to precipitate at the time of sintering, which hinders the softening flow of the glass powder, so that the denseness is likely to be lowered and bubbles at the glass grain boundaries are difficult to escape. On the other hand, if the amount of SiO 2 is too large, the softening point tends to be high and the moldability tends to be poor.

Alはガラス化安定成分である。また化学的耐久性を向上させる効果が高い。Alの含有量は0〜30%、2.5〜25%、特に5〜20%であることが好ましい。Alが多すぎると、軟化点が上昇して成形しにくくなる。また、溶融性や化学的耐久性が低下しやすくなったり、失透しやすくなる。 Al 2 O 3 is a vitrification stabilizing component. It also has a high effect of improving chemical durability. The content of Al 2 O 3 is preferably 0 to 30%, 2.5 to 25%, and particularly preferably 5 to 20%. If there is too much Al 2 O 3 , the softening point rises and it becomes difficult to mold. In addition, the meltability and chemical durability are likely to decrease, and devitrification is likely to occur.

はガラス骨格を形成する成分である。また化学的耐久性を向上させやすく、失透を抑制する効果がある。Bの含有量は0〜50%、2.5〜40%、特に5〜30%であることが好ましい。Bの含有量が多すぎると、溶融性が低下したり、成形時に軟化しにくくなり、製造が困難になる傾向がある。 B 2 O 3 is a component that forms a glass skeleton. In addition, it is easy to improve the chemical durability and has the effect of suppressing devitrification. The content of B 2 O 3 is preferably 0 to 50%, 2.5 to 40%, and particularly preferably 5 to 30%. If the content of B 2 O 3 is too large, the meltability tends to decrease, and it becomes difficult to soften during molding, which tends to make production difficult.

LiO、NaO及びKOは軟化点を低下させ、成形を容易にする成分である。LiO+NaO+KOの含有量は0〜10%、0.01〜10%、0.1〜9%、0.5〜8%、特に1〜7%であることが好ましい。LiO+NaO+KOが多すぎると、化学的耐久性が低下しやすくなる。また、熱膨張係数が大きくなって、得られる立体造形物の耐サーマルショック性が低下しやすくなる。なお、LiO、NaO及びKOの各成分の含有量も上記範囲とすることが好ましい。 Li 2 O, Na 2 O and K 2 O are components that lower the softening point and facilitate molding. The content of Li 2 O + Na 2 O + K 2 O is preferably 0 to 10%, 0.01 to 10%, 0.1 to 9%, 0.5 to 8%, and particularly preferably 1 to 7%. If there is too much Li 2 O + Na 2 O + K 2 O, the chemical durability tends to decrease. In addition, the coefficient of thermal expansion becomes large, and the thermal shock resistance of the obtained three-dimensional model tends to decrease. The content of each component of Li 2 O, Na 2 O and K 2 O is also preferably in the above range.

ガラス粉末には、上記成分以外にも以下の成分を含有させることができる。 In addition to the above components, the glass powder may contain the following components.

MgO、CaO、SrO、BaO及びZnOは化学的耐久性を大きく低下させずに粘度を低下させ、溶融性を改善する成分である。これらの成分の含有量は、合量で0〜50%、0.1〜50%、1〜40%、特に2〜30%であることが好ましい。これらの成分の含有量が多すぎると、失透しやすくなる。 MgO, CaO, SrO, BaO and ZnO are components that reduce the viscosity and improve the meltability without significantly reducing the chemical durability. The total content of these components is preferably 0 to 50%, 0.1 to 50%, 1 to 40%, and particularly preferably 2 to 30%. If the content of these components is too high, devitrification is likely to occur.

はガラス骨格を形成する成分であり、光透過率や化学的耐久性を向上させやすく、また失透を抑制する効果もある。Pの含有量は0〜50%、2.5〜40%、特に5〜30%であることが好ましい。Pが多すぎると、溶融性が低下しやすくなる。また耐候性が低下しやすくなる。 P 2 O 5 is a component that forms a glass skeleton, and easily improves light transmittance and chemical durability, and also has an effect of suppressing devitrification. The content of P 2 O 5 is preferably 0 to 50%, 2.5 to 40%, and particularly preferably 5 to 30%. If there is too much P 2 O 5 , the meltability tends to decrease. In addition, the weather resistance tends to decrease.

ガラス粉末の平均粒子径D50は1〜500μm、1.5〜100μm、2〜50μm、特に2.5〜20μmであることが好ましい。ガラス粉末の平均粒子径D50が小さくなるほど充填率を高めることができるが、硬化性樹脂の流動性が低下して成形性が悪化しやすくなる。また、ガラス粉末と硬化性樹脂との界面に存在する泡(界面泡)が抜けにくくなり、得られる焼結体においても気泡が残存して緻密性低下の原因となる傾向がある。一方、ガラス粉末の平均粒子径D50が大きいほど充填率が低下しやすくなり、焼結体の緻密性が低下しやすくなる。 The average particle size D 50 of the glass powder is preferably 1 to 500 μm, 1.5 to 100 μm, 2 to 50 μm, and particularly preferably 2.5 to 20 μm. The smaller the average particle size D 50 of the glass powder is, the higher the filling rate can be, but the fluidity of the curable resin is lowered and the moldability is likely to be deteriorated. Further, bubbles (interfacial bubbles) existing at the interface between the glass powder and the curable resin are difficult to be removed, and bubbles tend to remain in the obtained sintered body to cause a decrease in denseness. On the other hand, it packing ratio the larger the average particle diameter D 50 of the glass powder is likely to decrease, denseness of the sintered body tends to decrease.

なお本発明において、平均粒子径D50は一次粒子のメジアン径での50%体積累積径を示し、レーザー回折式粒度分布測定装置により測定された値をいう。 In the present invention, the average particle diameter D 50 indicates a 50% volume cumulative diameter of the primary particles in terms of median diameter, and refers to a value measured by a laser diffraction type particle size distribution measuring device.

ガラス粉末の波長400nmにおける光透過率は5%以上、10%以上、30%以上、50%以上、特に70%以上であることが好ましい。特に光造形法の場合は、ガラス粉末の波長400nmにおける光透過率が低すぎると、活性エネルギー線が樹脂組成物内部に侵入しにくくなり、硬化しにくくなる。 The light transmittance of the glass powder at a wavelength of 400 nm is preferably 5% or more, 10% or more, 30% or more, 50% or more, and particularly preferably 70% or more. In particular, in the case of the stereolithography method, if the light transmittance of the glass powder at a wavelength of 400 nm is too low, it becomes difficult for the active energy rays to penetrate into the resin composition and it becomes difficult to cure.

ガラス粒子の比表面積は0.1〜3.5m/g、0.5〜3.2m/g、特に0.75〜3m/gであることが好ましい。ガラス粒子の比表面積が小さすぎると、粒子径が大きくなりやすいため、樹脂組成物中におけるガラス粒子の充填率が低下しやすくなる。一方、ガラス粒子の比表面積が大きすぎると、樹脂組成物の流動性が低下して成形性が悪化したり、焼結体の緻密性が低下しやすくなる。 The specific surface area of the glass particles 0.1~3.5m 2 /g,0.5~3.2m 2 / g, it is particularly preferably 0.75~3m 2 / g. If the specific surface area of the glass particles is too small, the particle size tends to be large, so that the filling rate of the glass particles in the resin composition tends to decrease. On the other hand, if the specific surface area of the glass particles is too large, the fluidity of the resin composition is lowered, the moldability is deteriorated, and the denseness of the sintered body is likely to be lowered.

ガラス粉末を構成するガラス粒子の形状は略球状であることが好ましい。このようにすれば、ガラス粉末の比表面積が小さくなるため、樹脂組成物の粘度上昇を抑制することができ、成形性が向上する。また、焼結体の緻密性が向上しやすくなる。なお、略球形のガラス粒子は、例えばバルク状ガラスを粉砕した後、火炎研磨(ファイアポリッシュ)を行うことにより作製することができる。 The shape of the glass particles constituting the glass powder is preferably substantially spherical. By doing so, since the specific surface area of the glass powder is reduced, it is possible to suppress an increase in the viscosity of the resin composition and improve the moldability. In addition, the denseness of the sintered body is likely to be improved. The substantially spherical glass particles can be produced, for example, by crushing bulk glass and then performing flame polishing (fire polishing).

ガラス粉末の軟化点は1200℃以下、1000℃以下、特に900℃以下であることが好ましい。ガラス粉末の軟化点が高すぎると、緻密な焼結体が得られにくくなる。また、火炎研磨による球状化が困難になる傾向がある。一方、ガラス粉末の軟化点の下限は特に限定されないが、現実的には250℃以上、特に300℃以上である。 The softening point of the glass powder is preferably 1200 ° C. or lower, 1000 ° C. or lower, and particularly preferably 900 ° C. or lower. If the softening point of the glass powder is too high, it becomes difficult to obtain a dense sintered body. In addition, spheroidization by flame polishing tends to be difficult. On the other hand, the lower limit of the softening point of the glass powder is not particularly limited, but in reality, it is 250 ° C. or higher, particularly 300 ° C. or higher.

なお、ガラス粉末の結晶化温度と軟化点の差(結晶化温度−軟化点)は10℃以上、50℃以上、100℃以上、特に200℃以上であることが好ましい。結晶化温度と軟化点の差が小さすぎると、焼結時に結晶が析出しやすくなりガラス粉末の軟化流動を阻害するため、あるいはガラス粒界に気泡が残存しやすくなるため、緻密性が低下しやすくなる。なお、「結晶化温度」は示差熱分析装置(DTA)で測定した得られた結晶化ピーク温度を指す。 The difference between the crystallization temperature and the softening point of the glass powder (crystallization temperature-softening point) is preferably 10 ° C. or higher, 50 ° C. or higher, 100 ° C. or higher, and particularly preferably 200 ° C. or higher. If the difference between the crystallization temperature and the softening point is too small, crystals are likely to precipitate during sintering, which hinders the softening flow of the glass powder, or bubbles are likely to remain at the glass grain boundaries, resulting in reduced denseness. It will be easier. The "crystallization temperature" refers to the obtained crystallization peak temperature measured by a differential thermal analyzer (DTA).

ガラス粉末は、表面がシランカップリング剤によって処理されていることが好ましい。シランカップリング剤で処理すれば、ガラス粉末と硬化性樹脂のなじみがよくなり、成形性が向上しやすくなる。また、ガラス粉末の耐候性を向上させることができる。シランカップリング剤としては、例えばアミノシラン、エポキシシラン、アクリルシラン等が好ましい。なおシランカップリング剤は、用いる硬化性樹脂によって適宜選択すればよく、例えば光硬化性樹脂としてビニル系不飽和化合物を用いる場合にはアクリルシラン系シランカップリング剤が最も好ましく、またエポキシ系化合物を用いる場合にはエポキシシラン系シランカップリング剤を用いることが望ましい。 The surface of the glass powder is preferably treated with a silane coupling agent. Treatment with a silane coupling agent improves the compatibility between the glass powder and the curable resin, and makes it easier to improve the moldability. In addition, the weather resistance of the glass powder can be improved. As the silane coupling agent, for example, aminosilane, epoxysilane, acrylicsilane and the like are preferable. The silane coupling agent may be appropriately selected depending on the curable resin to be used. For example, when a vinyl-based unsaturated compound is used as the photocurable resin, the acrylic silane-based silane coupling agent is most preferable, and the epoxy-based compound is used. When used, it is desirable to use an epoxy silane-based silane coupling agent.

上記の硬化性樹脂とガラス粉末を混合することにより樹脂組成物を得る。樹脂組成物中における各成分の割合は、体積%で硬化性樹脂 1〜50%、ガラス粉末 50〜99%であることが好ましい。硬化性樹脂の割合が少なすぎる(ガラス粉末の割合が多すぎる)と、ガラス粉末の結着性に劣り、前駆体を形成することが困難になる傾向がある。一方、硬化性樹脂の割合が多すぎる(ガラス粉末の割合が少なすぎる)と、焼成後に立体造形物中に気孔が残存しやすくなり緻密性に劣る傾向がある。樹脂組成物の含有量の好ましい範囲は、体積%で5〜48%、10〜45%、特に20〜40%である。また、ガラス粉末の含有量の好ましい範囲は、体積%で52〜95%、55〜90%、特に60〜80%である。 A resin composition is obtained by mixing the above curable resin and glass powder. The ratio of each component in the resin composition is preferably 1 to 50% by volume of the curable resin and 50 to 99% by glass powder. If the proportion of the curable resin is too small (the proportion of the glass powder is too large), the binding property of the glass powder is poor and it tends to be difficult to form a precursor. On the other hand, if the proportion of the curable resin is too large (the proportion of the glass powder is too small), pores are likely to remain in the three-dimensional model after firing, and the density tends to be poor. The preferred range of the content of the resin composition is 5 to 48% by volume, 10 to 45%, and particularly 20 to 40%. The preferable range of the content of the glass powder is 52 to 95% by volume, 55 to 90%, and particularly 60 to 80%.

次に、上記樹脂組成物を用いた本発明の立体造形物の製造方法を説明する。 Next, a method for producing a three-dimensional model of the present invention using the above resin composition will be described.

まず得られた樹脂組成物に活性エネルギー光線を照射して、硬化性樹脂を硬化することにより前駆体を作製する。以下に、光硬化性樹脂を含む樹脂組成物を用いた前駆体の製造方法の具体例について説明する。 First, the obtained resin composition is irradiated with active energy rays to cure the curable resin to prepare a precursor. Hereinafter, a specific example of a method for producing a precursor using a resin composition containing a photocurable resin will be described.

まず樹脂組成物を満たした槽内に造形用ステージを設け、ステージ上面が液面から所望の深さ(例えば0.2mm程度)となるように位置させる。このようにすることで、ステージ上に樹脂組成物層を準備する。 First, a modeling stage is provided in a tank filled with the resin composition, and the upper surface of the stage is positioned so as to have a desired depth (for example, about 0.2 mm) from the liquid surface. By doing so, the resin composition layer is prepared on the stage.

次に、樹脂組成物層に活性エネルギー線、例えば紫外線レーザーを照射して光硬化性樹脂を硬化させ、所定のパターンを有する硬化層を形成する。なお活性エネルギー線としては、紫外線の他に、可視光線、赤外線等のレーザー光を用いることができる。 Next, the resin composition layer is irradiated with an active energy ray, for example, an ultraviolet laser to cure the photocurable resin to form a cured layer having a predetermined pattern. As the active energy ray, laser light such as visible light or infrared light can be used in addition to ultraviolet light.

続いて、形成した硬化層上に、新たな樹脂組成物層を導入する。例えば、前記の造形用ステージを1層分下降させることにより、硬化層上に樹脂組成物を導入することができる。 Subsequently, a new resin composition layer is introduced onto the formed cured layer. For example, the resin composition can be introduced onto the cured layer by lowering the modeling stage by one layer.

その後、硬化層上に導入した新たな樹脂組成物層に活性エネルギー線を照射して、前記硬化層と連続した新たな硬化層を形成する。 Then, the new resin composition layer introduced onto the cured layer is irradiated with active energy rays to form a new cured layer continuous with the cured layer.

以上の操作を繰り返すことによって硬化層を連続的に積層し、所定形状の前駆体を得る。なお、後の熱処理工程での体積収縮量を予め考慮して前駆体の寸法及び形状を設計することで、得られる立体造形物の寸法精度を担保することができる。 By repeating the above operation, the cured layers are continuously laminated to obtain a precursor having a predetermined shape. By designing the dimensions and shape of the precursor in consideration of the amount of volume shrinkage in the subsequent heat treatment step, the dimensional accuracy of the obtained three-dimensional model can be ensured.

次に、得られた前駆体を熱処理することにより硬化性樹脂を除去するとともに、ガラス粉末を焼結する。ここで、まず硬化性樹脂の分解温度で前駆体を熱処理(脱脂)した後、昇温してガラス粉末の焼結温度で熱処理することが好ましい(2段階焼成)。このようにすれば、前駆体から硬化性樹脂が除去されやすくなり、焼結体の緻密性が向上しやすくなる。脱脂は上述した硬化性樹脂の分解温度で行う。ガラス粉末の焼結のための熱処理は、ガラス粉末の軟化点の±100℃以内、特に軟化点の±50℃以内で行うことが好ましい。ガラス粉末の焼結のための熱処理温度が低すぎると、焼結が不十分となり焼結体の緻密性が低下しやすくなる。一方、ガラス粉末の焼結のための熱処理温度が高すぎると、ガラス粉末が過度に軟化流動して所望の形状の立体造形物が得られにくくなる。 Next, the curable resin is removed by heat-treating the obtained precursor, and the glass powder is sintered. Here, it is preferable that the precursor is first heat-treated (defatted) at the decomposition temperature of the curable resin, then heated to a high temperature and heat-treated at the sintering temperature of the glass powder (two-step firing). By doing so, the curable resin can be easily removed from the precursor, and the denseness of the sintered body can be easily improved. Solventing is performed at the decomposition temperature of the curable resin described above. The heat treatment for sintering the glass powder is preferably performed within ± 100 ° C. of the softening point of the glass powder, particularly within ± 50 ° C. of the softening point. If the heat treatment temperature for sintering the glass powder is too low, the sintering becomes insufficient and the compactness of the sintered body tends to decrease. On the other hand, if the heat treatment temperature for sintering the glass powder is too high, the glass powder softens and flows excessively, making it difficult to obtain a three-dimensional model having a desired shape.

さらに本発明においては、上記したガラス粉末の焼結を減圧雰囲気(1気圧(1.013×10Pa)未満)で行う。ガラス粉末の焼結時における気圧が高すぎると、硬化性樹脂を除去した後に残存する気泡が外部に放出されにくくなり、焼結体の緻密性が低下しやすくなる。ガラス粉末の焼結時の雰囲気は0.9×10Pa以下、1000Pa以下、400Pa以下、特に200Pa以下であることが好ましい。なお、ガラス粉末の焼結時の雰囲気の下限は特に限定されないが、現実的には0.001Pa以上、特に0.01Pa以上である。 Further, in the present invention, sintering is performed for the glass powder as described above under reduced atmosphere (less than 1 atm (1.013 × 10 5 Pa)) . If the atmospheric pressure at the time of sintering the glass powder is too high, it becomes difficult for the bubbles remaining after removing the curable resin to be released to the outside, and the compactness of the sintered body tends to decrease. Atmosphere during sintering of the glass powder 0.9 × 10 5 Pa or less, 1000 Pa or less, 400 Pa or less, more preferably 200Pa or less. The lower limit of the atmosphere at the time of sintering the glass powder is not particularly limited, but in reality, it is 0.001 Pa or more, particularly 0.01 Pa or more.

なお、少なくともガラス粉末の焼結を減圧雰囲気で行う必要があるが、硬化性樹脂を除去する工程も減圧雰囲気で行っても良い。その場合の気圧は上記の範囲とすることが好ましい。 It is necessary to at least sinter the glass powder in a reduced pressure atmosphere, but the step of removing the curable resin may also be performed in a reduced pressure atmosphere. In that case, the atmospheric pressure is preferably in the above range.

本発明の製造方法により得られた立体造形物は緻密性に優れる。具体的には、立体造形物の焼結密度は95%以上、97%以上、特に99%以上であることが好ましい。 The three-dimensional model obtained by the production method of the present invention is excellent in fineness. Specifically, the sintering density of the three-dimensional model is preferably 95% or more, 97% or more, and particularly preferably 99% or more.

本発明の製造方法によれば、複雑な形状を有するガラス製の立体造形物を容易に製造することができる。例えば、デンドライト状(三次元網目状)に成形したものは、光学フィルターとして使用することができる。ここで、網目の大きさを適宜調整することにより、可視〜赤外の所望の波長を対象とした波長フィルターとして機能させることができる。 According to the manufacturing method of the present invention, a three-dimensional shaped object made of glass having a complicated shape can be easily manufactured. For example, a dendrite-shaped (three-dimensional network-shaped) molded product can be used as an optical filter. Here, by appropriately adjusting the size of the mesh, it can function as a wavelength filter targeting desired wavelengths from visible to infrared.

以下に、本発明を実施例に基づいて説明するが、本発明は以下の実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described based on examples, but the present invention is not limited to the following examples.

表1は本発明の実施例1及び2、比較例を示す。 Table 1 shows Examples 1 and 2 of the present invention and comparative examples.

Figure 0006891394
Figure 0006891394

(実施例1)
(ガラス粉末の作製)
質量%で、SiO 65.1%、B 8.8%、Al 5.9%、BaO 2.9%、ZnO 4.4%、LiO 1.5%、NaO 5.7%、KO 5.7%のガラス組成となるように原料を調合し、1500℃で6時間溶融した後、フィルム状に成形した。フィルム状ガラスを粉砕することにより、平均粒子径(D50)が5μmのガラス粉末(粉砕品;軟化点692℃、結晶化温度1000℃以上)を得た。なお、ガラス粉末の軟化点はファイバーエロンゲーション法により測定した値である。
(Example 1)
(Making glass powder)
By mass%, SiO 2 65.1%, B 2 O 3 8.8%, Al 2 O 3 5.9%, BaO 2.9%, ZnO 4.4%, Li 2 O 1.5%, Na The raw materials were prepared so as to have a glass composition of 2 O 5.7% and K 2 O 5.7%, melted at 1500 ° C. for 6 hours, and then molded into a film. By pulverizing the film-shaped glass, a glass powder having an average particle size (D 50 ) of 5 μm (pulverized product; softening point 692 ° C., crystallization temperature 1000 ° C. or higher) was obtained. The softening point of the glass powder is a value measured by the fiber elongation method.

(光硬化性樹脂の作製)
まずイソホロンジイソシアネート、モルホリンアクリルアミドおよびジブチル錫ジラウレートをオイルバスで加熱した。グリセリンモノメタクリレートモノアクリレートにメチルヒドロキノンを均一に混合溶解させた液を投入し、撹拌混合して反応させた。ペンタエリスリトールのプロピレンオキサイド4モル付加物(ペンタエリスリトールの4個の水酸基にプロピレンオキサイドをそれぞれ1モル付加したもの)を加え、反応させて、ウレタンアクリレートオリゴマーとモルホリンアクリルアミドを含む反応生成物を製造した。
(Preparation of photocurable resin)
First, isophorone diisocyanate, morpholine acrylamide and dibutyl tin dilaurate were heated in an oil bath. A solution prepared by uniformly mixing and dissolving methylhydroquinone in glycerin monomethacrylate monoacrylate was added, and the mixture was stirred and mixed for reaction. A reaction product containing urethane acrylate oligomer and morpholine acrylamide was produced by adding 4 mol adducts of pentaerythritol propylene oxide (1 mol adduct of propylene oxide added to each of the 4 hydroxyl groups of pentaerythritol) and reacting them.

得られたウレタンアクリレートオリゴマーとモルホリンアクリルアミドに、モルホリンアクリルアミド、ジシクロペンタニルジアクリレートを添加した。さらに、1−ヒドロキシシクロヘキシルフェニルケトン(光重合開始剤)を添加し、無色透明なアクリル系光硬化性樹脂を得た。 Morpholine acrylamide and dicyclopentanyl diacrylate were added to the obtained urethane acrylate oligomer and morpholine acrylamide. Further, 1-hydroxycyclohexylphenyl ketone (photopolymerization initiator) was added to obtain a colorless and transparent acrylic photocurable resin.

(立体造形物の作製)
上記で得られたガラス粉末及び光硬化性樹脂を、ガラス粉末 70体積%、光硬化性樹脂 30体積%の割合となるように混合し、3本ローラーにより混練を行うことにより、ペースト状の樹脂組成物を得た。得られた樹脂組成物をテフロン(登録商標)製の内寸30mm□の型枠に流し入れた。その後、500mW、波長364nmの光を照射して、樹脂組成物を硬化させた後、80℃でアニールすることにより前駆体を得た。
(Making a three-dimensional model)
The glass powder and the photocurable resin obtained above are mixed so as to have a ratio of 70% by volume of the glass powder and 30% by volume of the photocurable resin, and kneaded with three rollers to form a paste-like resin. The composition was obtained. The obtained resin composition was poured into a Teflon (registered trademark) inner size 30 mm □ mold. Then, the resin composition was cured by irradiating with light having a wavelength of 500 mW and a wavelength of 364 nm, and then annealed at 80 ° C. to obtain a precursor.

得られた前駆体を減圧下(2Pa)600℃で1時間熱処理することにより脱脂した後、692℃で10分間熱処理してガラス粉末を焼結することにより板状の立体造形物を得た。 The obtained precursor was degreased by heat treatment at 600 ° C. under reduced pressure (2 Pa) for 1 hour, and then heat-treated at 692 ° C. for 10 minutes to sinter the glass powder to obtain a plate-shaped three-dimensional model.

得られた立体造形物について、以下のようにして焼結密度、光透過率及び曲げ強度を測定した。結果を表1に示す。 The sintering density, light transmittance and bending strength of the obtained three-dimensional model were measured as follows. The results are shown in Table 1.

焼結密度は、アルキメデス法により測定した実測密度と理論密度に基づき、(実測密度/理論密度)×100(%)に式から求めた値をいう。 The sintering density is a value obtained from the formula (measured density / theoretical density) × 100 (%) based on the measured density and the theoretical density measured by the Archimedes method.

光透過率は、厚み1mmの試料について、分光光度計を用いて測定した。なお測定は波長400〜800nmの範囲で行い、その最大光透過率を表に示した。 The light transmittance was measured using a spectrophotometer for a sample having a thickness of 1 mm. The measurement was carried out in the wavelength range of 400 to 800 nm, and the maximum light transmittance is shown in the table.

曲げ強度は、4mm×40mm×3mmに加工した試料を用い、JIS R1601に準拠して測定した。 The bending strength was measured according to JIS R1601 using a sample processed to 4 mm × 40 mm × 3 mm.

(実施例2)
実施例1で得られたガラス粉末を酸素バーナーの火炎中に投入して球状に成形した。その後、分級をすることで平均粒子径(D50)が5μmのガラス粉末(球状化品)を得た。得られたガラス粉末を用いて、実施例1と同様の方法で立体造形物を作製し、各特性を測定した。結果を表1に示す。
(Example 2)
The glass powder obtained in Example 1 was put into a flame of an oxygen burner to form a spherical shape. Then, by classification, a glass powder (spheroidized product) having an average particle size (D 50) of 5 μm was obtained. Using the obtained glass powder, a three-dimensional model was produced in the same manner as in Example 1, and each characteristic was measured. The results are shown in Table 1.

(比較例)
実施例1において、ガラス粉末の焼結雰囲気を大気圧(1atm)としたこと以外は、実施例1と同様の方法で立体造形物を作製し、各特性を測定した。結果を表1に示す。
(Comparison example)
In Example 1, a three-dimensional model was produced by the same method as in Example 1 except that the sintering atmosphere of the glass powder was set to atmospheric pressure (1 atm), and each characteristic was measured. The results are shown in Table 1.

表1から明らかなように、ガラス粉末の焼結を減圧雰囲気で行った実施例1及び2では、得られた立体造形物の焼結密度が99.9%以上と緻密性に優れており、光透過率が89%以上、曲げ強度が130MPa以上と優れた特性を示した。球状化したガラス粉末を用いた実施例2では、各特性が特に優れていた。一方、ガラス粉末の焼結を大気圧で行った比較例では、得られた立体造形物の焼結密度が94%と緻密性が低く、光透過率が5%、曲げ強度が100MPaと実施例1、2と比較して劣っていた。 As is clear from Table 1, in Examples 1 and 2 in which the glass powder was sintered in a reduced pressure atmosphere, the sintered density of the obtained three-dimensional model was 99.9% or more, which was excellent in denseness. The light transmittance was 89% or more, and the bending strength was 130 MPa or more, showing excellent characteristics. In Example 2 using the spheroidized glass powder, each characteristic was particularly excellent. On the other hand, in the comparative example in which the glass powder was sintered at atmospheric pressure, the obtained three-dimensional model had a low sintering density of 94%, a light transmittance of 5%, and a bending strength of 100 MPa. It was inferior to 1 and 2.

Claims (7)

硬化性樹脂と平均粒子径が1.5〜500μmである略球状のガラス粉末を含有する樹脂組成物からなる層に選択的に活性エネルギー光線を照射して所定のパターンを有する硬化層を形成する工程、
硬化層上に新たな樹脂組成物層を形成した後に、樹脂組成物層に活性エネルギー線を照射して硬化層と連続した所定パターンを有する新たな硬化層を形成し、所定の立体造形物が得られるまで硬化層の積層を繰り返して前駆体を作製する工程、
前駆体を熱処理することにより硬化性樹脂を除去するとともに、ガラス粉末を焼結する工程、
を有する立体造形物の製造方法であって、
ガラス粉末の焼結を1000Pa以下の減圧雰囲気で行うことを特徴とする立体造形物の製造方法。
A layer composed of a curable resin and a resin composition containing a substantially spherical glass powder having an average particle size of 1.5 to 500 μm is selectively irradiated with active energy rays to form a cured layer having a predetermined pattern. Process,
After forming a new resin composition layer on the cured layer, the resin composition layer is irradiated with active energy rays to form a new cured layer having a predetermined pattern continuous with the cured layer, and a predetermined three-dimensional model is formed. A step of repeatedly laminating the cured layer until it is obtained to prepare a precursor.
The process of removing the curable resin by heat-treating the precursor and sintering the glass powder,
It is a manufacturing method of a three-dimensional model having
A method for producing a three-dimensional model, which comprises sintering glass powder in a reduced pressure atmosphere of 1000 Pa or less.
樹脂組成物中が、体積%で硬化性樹脂 1〜50%、ガラス粉末 50〜99%を含有することを特徴とする請求項1に記載の立体造形物の製造方法。 The method for producing a three-dimensional model according to claim 1, wherein the resin composition contains 1 to 50% of a curable resin and 50 to 99% of a glass powder in a volume%. 硬化性樹脂が紫外線硬化樹脂であることを特徴とする請求項1または2に記載の立体造形物の製造方法。 The method for producing a three-dimensional model according to claim 1 or 2 , wherein the curable resin is an ultraviolet curable resin. ガラス粉末の軟化点が1200℃以下であることを特徴とする請求項1〜のいずれか一項に記載の立体造形物の製造方法。 The method for producing a three-dimensional model according to any one of claims 1 to 3 , wherein the softening point of the glass powder is 1200 ° C. or lower. ガラス粉末の結晶化温度と軟化点の差(結晶化温度−軟化点)が10℃以上であることを特徴とする請求項1〜のいずれか一項に記載の立体造形物の製造方法。 The method for producing a three-dimensional model according to any one of claims 1 to 4 , wherein the difference between the crystallization temperature and the softening point (crystallization temperature-softening point) of the glass powder is 10 ° C. or higher. ガラス粉末が、組成として質量%で、SiO 30〜85%、Al 0〜30%、B 0〜50%、LiO+NaO+KO 0〜10%を含有することを特徴とする請求項1〜のいずれか一項に記載の立体造形物の製造方法。 Glass powder, in mass% as a composition, which contains SiO 2 30~85%, Al 2 O 3 0~30%, B 2 O 3 0~50%, the 2 O 0~10% Li 2 O + Na 2 O + K The method for manufacturing a three-dimensional model according to any one of claims 1 to 5, wherein the three-dimensional modeled product is manufactured. ガラス粉末の焼結を、ガラス粉末の軟化点±100℃以内で行うことを特徴とする請求項1〜のいずれか一項に記載の立体造形用樹脂組成物の製造方法。 The method for producing a resin composition for three-dimensional modeling according to any one of claims 1 to 6 , wherein the glass powder is sintered within a softening point of the glass powder of ± 100 ° C.
JP2015256264A 2015-12-28 2015-12-28 Manufacturing method of three-dimensional model Active JP6891394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015256264A JP6891394B2 (en) 2015-12-28 2015-12-28 Manufacturing method of three-dimensional model

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015256264A JP6891394B2 (en) 2015-12-28 2015-12-28 Manufacturing method of three-dimensional model

Publications (2)

Publication Number Publication Date
JP2017119591A JP2017119591A (en) 2017-07-06
JP6891394B2 true JP6891394B2 (en) 2021-06-18

Family

ID=59271551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015256264A Active JP6891394B2 (en) 2015-12-28 2015-12-28 Manufacturing method of three-dimensional model

Country Status (1)

Country Link
JP (1) JP6891394B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101912839B1 (en) 2018-05-31 2018-12-28 주식회사 바이오알파 Composition for FDM 3D printer
CN109250916B (en) * 2018-09-25 2022-04-05 西安赛尔电子材料科技有限公司 Sealing glass material and preparation method thereof
WO2023074234A1 (en) * 2021-10-28 2023-05-04 日本電気硝子株式会社 Method for manufacturing spherical glass particles, burner, spherical glass particles and composition for dental use
CN114560684A (en) * 2022-02-26 2022-05-31 河南职业技术学院 Inorganic slurry for direct-writing forming and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04332562A (en) * 1991-05-07 1992-11-19 Nippon Electric Glass Co Ltd Bioactive composite implant material and production thereof
JPH0985839A (en) * 1995-09-27 1997-03-31 Olympus Optical Co Ltd Preparation of sintered structural body
JP2005145766A (en) * 2003-11-17 2005-06-09 Tosoh Corp Method for producing silica glass molding
JP4846425B2 (en) * 2005-04-20 2011-12-28 トライアル株式会社 Microsphere used in powder sintering additive manufacturing method, manufacturing method thereof, powder sintering additive manufacturing method, and manufacturing method thereof
US20070154666A1 (en) * 2005-12-31 2007-07-05 Coonan Everett W Powder injection molding of glass and glass-ceramics
US7767135B2 (en) * 2007-10-19 2010-08-03 Corning Incorporated Method of forming a sintered microfluidic device
US20180037463A1 (en) * 2015-03-04 2018-02-08 Kyushu University, National University Corporation Silica glass precursor production method, silica glass precursor, silica glass production method, and silica glass

Also Published As

Publication number Publication date
JP2017119591A (en) 2017-07-06

Similar Documents

Publication Publication Date Title
JP6993623B2 (en) Resin composition for three-dimensional modeling, manufacturing method of three-dimensional modeling and inorganic filler particles
US10954362B2 (en) Resin composition for three-dimensional forming
JP6891394B2 (en) Manufacturing method of three-dimensional model
JP6812093B2 (en) Inorganic filler particles and resin composition for three-dimensional modeling using them
JP2022022290A (en) Resin composition
JP6686909B2 (en) Resin composition for three-dimensional modeling
WO2021049371A1 (en) Resin composition for three-dimensional shaping
JP2016169355A (en) Resin composition for three-dimensional molding
JP6883271B2 (en) Inorganic filler particles
JP2017114701A (en) Production method of inorganic filler material
CN114080375A (en) Paste for three-dimensional ceramic molding and method for producing three-dimensional molded object
JP6481850B2 (en) Three-dimensional modeling resin composition
JP2016097517A (en) Production method of three-dimensional molded object
JP6670478B2 (en) Three-dimensional modeling resin composition
JP7368787B2 (en) Ceramics 3D modeling paste and method for producing three-dimensional objects
JP2020073333A (en) Resin components for three-dimensional modeling
JP7094490B2 (en) Glass, glass filler, and resin mixture
JP2017165621A (en) Method for producing inorganic filler particle
WO2021132217A1 (en) Resin composition, resin composition for three-dimensional models, and dental resin composition
JP2016108432A (en) Resin composition for stereolithography
WO2022145339A1 (en) Glass and method for producing same
JP2017110056A (en) Resin composition
JP2018062571A (en) Resin composition for three-dimensional molding
JP2020180171A (en) Resin composition, resin cured body and method for producing three-dimensional molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191007

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200403

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210510

R150 Certificate of patent or registration of utility model

Ref document number: 6891394

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150