WO2023074234A1 - Method for manufacturing spherical glass particles, burner, spherical glass particles and composition for dental use - Google Patents

Method for manufacturing spherical glass particles, burner, spherical glass particles and composition for dental use Download PDF

Info

Publication number
WO2023074234A1
WO2023074234A1 PCT/JP2022/036116 JP2022036116W WO2023074234A1 WO 2023074234 A1 WO2023074234 A1 WO 2023074234A1 JP 2022036116 W JP2022036116 W JP 2022036116W WO 2023074234 A1 WO2023074234 A1 WO 2023074234A1
Authority
WO
WIPO (PCT)
Prior art keywords
spherical glass
glass particles
particles
nozzle
burner
Prior art date
Application number
PCT/JP2022/036116
Other languages
French (fr)
Japanese (ja)
Inventor
匡志 中村
潤 木下
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2023074234A1 publication Critical patent/WO2023074234A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum

Definitions

  • the present invention relates to a method for producing spherical glass particles, a burner, spherical glass particles and a dental composition.
  • Patent Document 1 describes a resin composition in which a curable resin contains glass particles.
  • the glass particles are preferably spherical particles with a small diameter, and there is a demand for a technique for obtaining such particles at a high yield.
  • a method for producing spherical glass particles which solves the above-mentioned problems is a method for producing spherical glass particles using non-spherical glass particles as a main raw material, wherein agglomerated particles containing the agglomerated non-spherical glass particles are passed through a dispersion nozzle. a dispersing step of crushing the aggregated particles and spraying the non-spherical glass particles from the dispersing nozzle; and heating the non-spherical glass particles sprayed from the dispersing nozzle. and a spheroidization step of spheroidizing.
  • the dispersion process is followed by the spheroidization process. Therefore, in the method for producing spherical glass particles, the spheroidizing step can be performed on non-spherical glass particles that are more dispersed than aggregated particles. Thus, the method for producing spherical glass particles can produce spherical glass particles that are fine and spherical.
  • the aggregated particles are crushed by colliding the aggregated particles with a collision member provided in the dispersion nozzle.
  • non-spherical glass particles can be obtained by colliding aggregated particles with a collision member.
  • the spheroidization step preferably heats the non-spherical glass particles by applying flames from a burner to the non-spherical glass particles ejected from the dispersion nozzle.
  • the method for producing spherical glass particles can easily melt the surface of the non-spherical glass particles in the spheroidizing step.
  • the non-spherical glass particles in the dispersed state preferably have a particle diameter of 2.0 ⁇ m or less when a cumulative value of 50% is measured by laser diffraction scattering particle size distribution measurement.
  • D50 refers to the particle size when the volume-based cumulative value is 50% in the particle size distribution measured by laser diffraction/scattering particle size distribution measurement. In the following description, this term will be used without special mention.
  • a burner for solving the above problems is a burner for processing agglomerated particles including agglomerated non-spherical glass particles, comprising a burner nozzle having a fuel injection port for injecting fuel, a dispersing section for crushing the agglomerated particles, and a dispersion nozzle having a powder injection port for injecting the non-spherical glass particles crushed in the dispersion unit, wherein the fuel injection port is arranged to surround the powder injection port.
  • the burner can apply flames to the non-spherical glass particles injected from the dispersion nozzle. Therefore, since the burner can heat the non-spherical glass particles immediately after being crushed, it is possible to obtain spherical glass particles having a fine particle size and having a spherical shape.
  • the spherical glass particles that solve the above problems are spherical glass particles that have a fire-polished surface on their surface, and have a particle diameter at a cumulative value of 50% in the particle size distribution measured by laser diffraction scattering particle size distribution measurement. is 2.0 ⁇ m or less.
  • the spherical glass particles having the above structure can increase the filling rate in the resin material and improve the dispersibility in the resin material. As a result, physical properties of the resin composition can be enhanced.
  • the spherical glass particles preferably have a specific surface area of 25.0 m 2 /g or less.
  • Spherical glass particles are composed of SiO 2 : 20 to 80%, Al 2 O 3 : 1 to 30%, B 2 O 3 : 0 to 20%, BaO+CaO: 0 to 40%, and ZnO: 0 in terms of % by mass as a glass composition. -20%, F: preferably 0-25%.
  • a dental composition that solves the above problems comprises the spherical glass particles described above and a photocurable resin.
  • the dental composition having the above structure can have improved physical properties.
  • FIG. 1 is a schematic diagram of an apparatus for producing spherical glass particles.
  • FIG. 2 is a cross-sectional view schematically showing a burner of the manufacturing apparatus.
  • FIG. 3 is a front view of the burner.
  • FIG. 4 is an enlarged sectional view of the dispersion nozzle of the burner.
  • FIG. 5 is a process diagram of a method for producing spherical glass particles.
  • FIG. 6 is a table comparing physical properties of spherical glass particles of Comparative Examples and Examples.
  • FIG. 7 is an image of spherical glass particles of Comparative Example 1-2.
  • FIG. 8 is an image of the spherical glass particles of Example 1-1.
  • FIG. 9 is a table comparing physical properties of dental materials of Examples and Comparative Examples.
  • FIG. 9 is a table comparing physical properties of dental materials of Examples and Comparative Examples.
  • FIG. 10 is an image of the dental material sample of Example 2-1.
  • FIG. 11 is an image of the dental material sample of Example 2-2.
  • FIG. 12 is an image of the dental material sample of Comparative Example 2-1.
  • FIG. 13 is a table comparing physical properties of dental compositions of Examples and Comparative Examples.
  • an apparatus for producing spherical glass particles includes a reservoir 21, a feeder 22, a first transport path 23, a carrier fluid supply source 24, A second transport path 26 , an oxygen supply source 27 , a fuel supply source 28 and a burner 30 are provided.
  • the storage part 21 is a tank that stores non-spherical glass particles, which are the main raw material of the spherical glass particles.
  • the non-spherical glass particles are crushed glass particles obtained by crushing a base glass of arbitrary shape such as plate-like, film-like, ingot-like, or fiber-like with a crusher such as a ball mill or a jet mill. , which are shaped particles with corners and peaks.
  • a crusher such as a ball mill or a jet mill.
  • the non-spherical glass particles are aggregated. Agglomeration of non-spherical glass particles does not occur intentionally, but occurs due to interaction of non-spherical glass particles.
  • aggregates containing secondary particles in which non-spherical glass particles that are primary particles are aggregated are also referred to as aggregated particles.
  • aggregated particles may contain primary particles that are not aggregated in addition to secondary particles, or may contain higher-order particles in which secondary particles are further aggregated.
  • the proportion of secondary particles in aggregated particles may be less than the proportion of primary particles in aggregated particles.
  • Feeder 22 is connected to reservoir 21 .
  • the feeder 22 supplies aggregated particles stored in the storage section 21 to the first transport path 23 .
  • the feeder 22 is preferably capable of adjusting the amount of aggregated particles supplied per unit time.
  • the first transportation path 23 connects the feeder 22 and the second transportation path 26 .
  • the second transport path 26 connects the first transport path 23 and the burner 30 .
  • a carrier fluid supply 24 is connected to a second transport line 26 .
  • Carrier fluid source 24 delivers carrier fluid to second transport path 26 .
  • carrier fluid is, for example, air, and is a gas or medium having fluidity capable of carrying aggregated particles in a suspended state.
  • a preliminary disperser can be installed between the feeder 22 and the burner 30.
  • the preliminary disperser should be appropriately selected from dispersers capable of crushing aggregated particles, such as fluidized bed dispersers, rotary drum dispersers, ejector dispersers and venturi dispersers. can be done.
  • Burner 30 is configured for processing agglomerated particles.
  • the burner 30 includes a burner nozzle 40 that injects fuel, and a dispersion nozzle 50 that injects the aggregated particles while crushing them.
  • the upstream side in the moving direction of the passing aggregated particles is the base end, and the downstream side is the tip.
  • the burner nozzle 40 includes a tubular first outer peripheral wall 42 and a second outer peripheral wall 43, a disk-shaped first partition wall 44 and a second partition wall 45, and a tubular wall. and a plurality of rectifier tubes 47 formed.
  • the burner nozzle 40 also has an oxygen supply chamber R1 to which oxygen is supplied and a fuel supply chamber R2 to which fuel is supplied.
  • the inner diameter of the first outer peripheral wall 42 is larger than the outer diameter of the second outer peripheral wall 43 .
  • the first outer peripheral wall 42 has a connection port 421 connected to the oxygen supply source 27 .
  • the second outer peripheral wall 43 has a connection port 431 connected to the fuel supply source 28 .
  • the first partition wall 44 is joined to the base end portion of the first outer peripheral wall 42 .
  • the second partition wall 45 is joined to the base end portion of the second outer peripheral wall 43 .
  • the first peripheral wall 42 houses the second peripheral wall 43 , which houses the dispersion nozzles 50 . At this time, the second outer peripheral wall 43 penetrates the first partition 44 and the dispersion nozzle 50 penetrates the second partition 45 .
  • the plurality of rectifying tubes 47 are bundled.
  • a plurality of straightening tubes 47 are arranged in a ring between the second outer peripheral wall 43 and the dispersion nozzle 50 .
  • a plurality of rectifying tubes 47 rectify the gas flow passing through the tubes.
  • the oxygen supply chamber R1 is partitioned by a first outer peripheral wall 42, a second outer peripheral wall 43 and a first partition 44.
  • Oxygen is supplied from the oxygen supply source 27 to the oxygen supply chamber R1 through the connection port 421 .
  • oxygen flows out from between the first outer peripheral wall 42 and the second outer peripheral wall 43 .
  • the fuel supply chamber R2 is partitioned by the second outer peripheral wall 43 and the second partition wall 45. Gaseous fuel is supplied from the fuel supply source 28 to the fuel supply chamber R2 via the connection port 431 .
  • the burner nozzle 40 when fuel is supplied to the fuel supply chamber R ⁇ b>2 , the fuel is injected from the fuel injection port 48 between the second outer peripheral wall 43 and the dispersion nozzle 50 .
  • the burner nozzle 40 can inject flame from the fuel injection port 48 by igniting the fuel injected from the fuel injection port 48 .
  • the dispersion nozzle 50 includes a tubular conduit 51 and a nozzle cover 53 that covers the tip of the conduit 51 .
  • the outer diameter of the conduit 51 is smaller than the inner diameter of the second outer peripheral wall 43 of the burner nozzle 40 .
  • a second transport path 26 is connected to the proximal end of the conduit 51 .
  • the conduit 51 has a nozzle 511 with an enlarged inner diameter at its tip.
  • the nozzle cover 53 has a disk-shaped collision member 531 and a plurality of powder injection ports 532 .
  • Impact member 531 includes an impact surface 533 .
  • the collision surface 533 is a plane orthogonal to the axial direction of the conduit 51, but in other embodiments, the collision surface 533 may be a cylindrical surface or a conical surface. .
  • the powder injection port 532 has an arc shape.
  • the plurality of powder injection ports 532 are arranged at intervals in the circumferential direction.
  • a plurality of powder injection ports 532 surround the collision member 531 .
  • the dispersion nozzle 50 is constructed by connecting a conduit 51 and a nozzle cover 53 in the axial direction. Specifically, the nozzle cover 53 covers the tip of the conduit 51 . At this time, the opening surface of the nozzle 511 of the conduit 51 faces the collision surface 533 of the nozzle cover 53 .
  • the dispersion nozzle 50 is housed in the burner nozzle 40. Specifically, the dispersion nozzle 50 is integrated with the burner nozzle 40 by being inserted into the cylindrical second outer peripheral wall 43 of the burner nozzle 40 . At this time, the tip of the nozzle cover 53 and the tip of the fuel injection port 48 of the burner nozzle 40 are flush with each other. As shown in FIG. 3 , the powder injection port 532 is surrounded by the fuel injection port 48 . Further, the powder injection port 532 and the fuel injection port 48 open in the same direction.
  • the aggregated particles supplied from the second transport path 26 are crushed by colliding with the collision member 531 .
  • the collision member 531 corresponds to an example of a "dispersion section", and the dispersion nozzle 50 can be said to have a collision-type disperser.
  • colliding with the collision member 531 most of the aggregated particles are crushed into non-spherical glass particles, which are primary particles. Then, the crushed non-spherical glass particles are injected from a plurality of powder injection nozzles 532 .
  • the method for producing spherical glass particles includes a preparation step S11, a transportation step S12, a dispersion step S13, and a spheroidizing step S14.
  • the preparation step S11 is a step of preparing aggregated particles to be stored in the storage unit 21.
  • the preparation step S11 includes a pulverization step of pulverizing the raw glass and a classification step of classifying the pulverized glass.
  • the preparation step S11 may include at least a pulverization step.
  • the crushing process is, for example, a process of crushing plate-shaped raw glass with a crusher.
  • fine spherical glass particles are produced using fine non-spherical glass particles as raw materials. Therefore, it is preferable to finely pulverize the raw material glass in the pulverization step.
  • aggregated particles are obtained by unintentionally aggregating the non-spherical glass particles. Further, the degree of aggregation of the aggregated particles, in other words, the degree of dispersibility of the non-spherical glass particles in the aggregated particles does not matter.
  • the classification process is a process of classifying agglomerated particles by air classification, elutriation classification, mesh sieving, and the like.
  • the classification step may be carried out for the purpose of removing coarse powder and the like contained in aggregated particles.
  • Aggregated particles obtained by performing the preparation step S ⁇ b>11 are stored in the storage section 21 .
  • Aggregated particles may have a D50 of "2.0 ⁇ m or less" in a dispersed state.
  • the transportation step S ⁇ b>12 is a step of transporting the aggregated particles stored in the storage section 21 to the burner 30 .
  • the transport step S ⁇ b>12 drives the feeder 22 and causes the carrier fluid to flow from the carrier fluid supply source 24 into the second transport path 26 . Therefore, the transport step S12 transports the agglomerated particles to the burner 30 with a carrier fluid.
  • the dispersing step S13 is a step of crushing the aggregated particles by causing the aggregated particles transported by the carrier fluid to pass through the dispersion nozzle 50. Specifically, the dispersing step S13 is a step of crushing the aggregated particles by causing the aggregated particles to collide with the collision member 531 of the dispersion nozzle 50 . In the dispersing step S13, most of the aggregated particles are crushed into non-spherical glass particles, which are primary particles. In the dispersing step S13, it is preferable to crush all of the aggregated particles into non-spherical glass particles, but it is not necessary to crush all of the aggregated particles into non-spherical glass particles. In the dispersion step S13, the crushed non-spherical glass particles are injected from the powder injection port 532 of the dispersion nozzle 50 together with the carrier fluid.
  • the spheroidizing step S14 is a step of heating the non-spherical glass particles jetted from the dispersion nozzle 50 to spheroidize the non-spherical glass particles. Specifically, the spheroidizing step S14 causes flame to be injected from the fuel injection port 48 of the burner nozzle 40 . Then, in the spheroidization step S14, flames jetted from the burner nozzle 40 are applied to the non-spherical glass jetted from the dispersion nozzle 50 to sphere the non-spherical glass. In addition, since the spherical glass particles may aggregate, it is preferable to provide a classification step after the spherical forming step S14 in order to crush the aggregation.
  • ⁇ Spherical glass particles> Spherical glass particles produced by the above-described particle production method will be described. Since the spherical glass particles are heated in the spheroidizing step S14, they have fire-polished surfaces.
  • the fire-polished surface may form part of the surface of the spherical glass particles, but preferably forms the entire surface of the spherical glass particles. Whether or not the spherical glass particles have a fire-polished surface can be determined by observing the surfaces of the spherical glass particles with a microscope or measuring the surfaces of the spherical glass particles with a measuring instrument.
  • Spherical glass particles can be rephrased as solid or non-porous glass particles.
  • the spherical glass particles preferably have smooth surfaces free of corners, peaks, voids and cracks.
  • the fire-polished surface can be rephrased as a convex curved surface, a spherical convex surface, or a curved surface.
  • the fire-polished surface is preferably a smooth surface free of corners, peaks, voids and cracks.
  • the specific surface area of the spherical glass particles tends to be small.
  • the dental material obtained by curing the dental composition is less likely to contain bubbles, thereby suppressing a decrease in the strength of the dental material.
  • the sphericity which indicates the degree of sphericity of spherical glass particles, is "0.5 to 1.0".
  • the sphericity is preferably "0.7 or more", more preferably “0.8 or more”, and even more preferably "0.85 or more”.
  • spherical glass particles having a sphericity of "0.5 or more” are called spherical.
  • the sphericity of at least 10,000,000 particles is measured by an image analyzer such as Verder Scientific Camsizer XT. can be calculated by substituting
  • Sphericality 4 ⁇ S/d 2 More specifically, when calculating the sphericity, first, a microscope is used to photograph particles transported in the air by compressed air. Subsequently, the area and circumference of the particle are obtained by analyzing the captured image. Finally, the sphericity is calculated by substituting the obtained numerical value into the above formula. In the above measurement, the photographed particle becomes a two-dimensional plane circle, so it can be said that the degree of circularity is actually evaluated. However, measuring the shape of 10 million or more particles is synonymous with measuring the circularity of particles at all angles. Therefore, the above circularity statistically corresponds to sphericity. If the photographed particle is a true sphere, the sphericity will be "1.000".
  • the specific surface area tends to be smaller than that of crushed particles.
  • the diameter of the spherical glass particles becomes smaller, the specific surface area of the spherical glass particles becomes larger. Accordingly, a dental composition in which spherical glass particles having a small particle size are mixed with a resin tends to have a high viscosity. Therefore, the dental material obtained by curing the dental composition may contain bubbles. In this case, there is a risk that the strength of the dental material will be reduced, or that the dental material will peel off from the cavity due to the deterioration of the adhesiveness between the dental material and the cavity.
  • the spherical glass particles preferably have a specific surface area of "25.0 m 2 /g or less", more preferably “21.0 m 2 /g or less", and "17 .0 m 2 /g or less” is more preferable.
  • the lower limit of the specific surface area is not particularly limited, it is practically “0.1 m 2 /g or more”.
  • the specific surface area is the specific surface area measured by the BET method.
  • a dental material prepared by photocuring a dental composition in which a resin and spherical glass particles are mixed if the D50 of the spherical glass particles is larger than 2.0 ⁇ m, the following problems arise.
  • spherical glass particles are removed from the surface of the dental material due to occlusion adjustment, polishing due to morphology correction, and friction due to chewing after occlusion.
  • a concave portion having a depth (Rv) of 1.0 ⁇ m or more is formed.
  • the spherical glass particles when the D50 of the spherical glass particles is less than 0.5 ⁇ m, there is a problem that the manufacturing cost of the spherical glass particles increases significantly. Therefore, in order to avoid these problems, the spherical glass particles have a D50 of "0.5 to 2.0 ⁇ m", preferably "0.8 to 1.5 ⁇ m”. Further, the spherical glass particles preferably have a refractive index of "1.48 to 1.62".
  • Spherical glass particles as a glass composition, SiO 2 : 20 to 80%, Al 2 O 3 : 1 to 30%, B 2 O 3 : 0 to 20%, BaO + CaO: 0 to 40%, ZnO: 0-20%, F: 0-25%.
  • the glass composition of the spherical glass particles is SiO 2 : 40 to 80%, Al 2 O 3 : 1 to 30%, B 2 O 3 : 2 to 20%, and CaO: 0 to 25% in mass %.
  • SiO2 is a component that forms the glass skeleton. It is also a component that improves chemical durability and devitrification resistance.
  • the content of SiO 2 is preferably 20-80%, 50-80%, 50-75%, especially 50-65%. If the amount of SiO 2 is too small, the chemical durability tends to decrease, and the glass tends to devitrify, which may make production difficult. On the other hand, if the amount of SiO2 is too large, the meltability tends to decrease. In addition, it is difficult to soften during molding, which may make production difficult.
  • Al 2 O 3 is a vitrification stabilizing component. It is also a component that improves chemical durability and devitrification resistance.
  • the content of Al 2 O 3 is preferably 1-30%, 2.5-25%, especially 5-20%. If the amount of Al 2 O 3 is too large, the meltability tends to decrease. In addition, it is difficult to soften during molding, which may make production difficult.
  • B 2 O 3 is a component that forms a glass skeleton. It is also a component that improves chemical durability and devitrification resistance. B 2 O 3 is preferably 0-20%, 3-19%, especially 5-17%. If the amount of B 2 O 3 is too small, the chemical durability tends to decrease. Moreover, the glass tends to devitrify, which may make the production difficult. On the other hand, too much B 2 O 3 tends to lower the meltability. In addition, it is difficult to soften during molding, which may make production difficult.
  • BaO and CaO are alkaline earth elements, and are components that stabilize vitrification as intermediate substances.
  • the total content of these components is preferably 0-40%, 0.1-40%, 0.5-40%, and more preferably 1-30%.
  • the content of CaO is preferably 0-25%, 0.5-20%, particularly 1-15%. If the amount of CaO is too high, the chemical durability tends to decrease, and the glass tends to devitrify, which may make production difficult.
  • ZnO is a component that reduces the viscosity of glass and suppresses devitrification.
  • the content of ZnO is preferably 0-20%, 0.1-9%, 0.4-7%, especially 0.6-5%. If the amount of ZnO is too large, the chemical durability tends to decrease, and the glass tends to devitrify, which may make production difficult.
  • Li 2 O is a component that reduces the viscosity of glass and suppresses devitrification.
  • the content of Li 2 O is preferably 0-10%, 0-9%, 0-7%, particularly 0-5%. If the amount of Li 2 O is too large, the chemical durability tends to decrease, and the glass tends to devitrify, which may make production difficult.
  • Na 2 O is a component that reduces the viscosity of glass and suppresses devitrification.
  • the content of Na 2 O is preferably 0-30%, 0-25%, 0-20%, particularly 0-15%. If there is too much Na 2 O, the chemical durability tends to decrease, and the glass tends to devitrify, which may make production difficult.
  • K 2 O is a component that reduces the viscosity of glass and suppresses devitrification.
  • the content of K 2 O is preferably 0-30%, 0.1-25%, 0.5-20%, especially 1-15%. If the K 2 O content is too high, the chemical durability tends to decrease, and the glass tends to devitrify, which may make production difficult.
  • Nb 2 O 5 is a component that can adjust the refractive index and Abbe number.
  • the content of Nb 2 O 5 is preferably 0-20%, 0.1-15%, 0.5-10%, especially 1-5%. Too much Nb 2 O 5 tends to devitrify the glass.
  • WO3 is a component that can adjust the refractive index and Abbe number, and is a component that reduces the viscosity of the glass.
  • the content of WO 3 is preferably 0-20%, 0.1-15%, 0.5-10%, especially 1-5%. Too much WO3 tends to devitrify the glass.
  • the total amount of Nb 2 O 5 and WO 3 is preferably 0.1-30%, 0.1-25%, 1-20%, particularly 2-10%. If the ranges of these components are limited as described above, it becomes easier to adjust the refractive index and Abbe number, and it becomes less likely to be colored. Moreover, it becomes easy to suppress the devitrification of glass. Furthermore, it becomes easy to obtain glass with high chemical durability.
  • TiO 2 is a component that can adjust the refractive index and Abbe's number, and is a component that reduces the viscosity of the glass.
  • the content of TiO 2 is preferably 0.1-15%, 0.1-12%, 0.5-10%, especially 1-5%. Too little TiO 2 makes it difficult to obtain the desired optical properties. Moreover, chemical durability tends to decrease. On the other hand, too much TiO 2 makes it difficult to obtain desired optical properties. In addition, the glass tends to be colored, and the light transmittance tends to decrease.
  • the total content of Nb 2 O 5 , WO 3 and TiO 2 is preferably 0.1-30%, 0.1-25%, 1-20%, especially 3-15%.
  • F is a component that can increase the transmittance, especially the transmittance in the ultraviolet region.
  • the content of F is preferably 0-25%, 0-10%, 0-7.5%, 0-5%, particularly 0-3%. Too much F tends to lower the chemical durability. Further, F is highly volatile, and the component sublimated in the spheroidization step S14 may adhere to the glass surface and deteriorate the surface properties.
  • MgO and SrO are components that stabilize vitrification as intermediate substances.
  • the total content of these components is preferably 0-50%, 0.1-50%, 0.5-40%, and more preferably 1-30%. If the content of these components is too high, the chemical durability tends to decrease, and the glass tends to devitrify, which may make production difficult.
  • a dental composition containing spherical glass particles is described.
  • a dental composition corresponds to an example of a resin composition containing spherical glass particles as a filler.
  • the dental composition is obtained by mixing resin and spherical glass particles in a mixer.
  • the compounding ratio of the resin and the spherical glass particles is "95:5" to "25:75” in mass %.
  • the compounding ratio of the resin and the spherical glass particles is preferably "90:10” to "40:60", more preferably “85:15” to "50:50", and "80:20". ⁇ "60:40" is more preferable. If the content of spherical glass particles is too low, the dental composition tends to have poor mechanical strength. On the other hand, if the content of the spherical glass particles is too high, the viscosity of the dental composition will be too high and the fluidity will be reduced, making molding difficult.
  • a three-roll mill, a rotation-revolution mixer, etc. are mentioned as a mixer.
  • Resins include curable resins such as photocurable resins and thermosetting resins, and can be appropriately selected according to the molding method to be adopted. For example, when stereolithography is used, a liquid photocurable resin may be selected, and when a powder sintering method is used, a powdered thermosetting resin may be selected.
  • photocurable resins examples include polyamide-based resins, polyamideimide-based resins, polyacetal-based resins, (meth)acrylic-based resins, melamine resins, (meth)acrylic-styrene copolymers, polycarbonate-based resins, styrene-based resins, Polyvinyl chloride resins, benzoguanamine-melamine formaldehyde, silicone resins, fluorine resins, polyester resins, crosslinked (meth)acrylic resins, crosslinked polystyrene resins, crosslinked polyurethane resins, epoxy resins, and the like.
  • Thermosetting resins include, for example, epoxy resins, thermosetting modified polyphenylene ether resins, thermosetting polyimide resins, urea resins, allyl resins, silicone resins, benzoxazine resins, phenol resins, unsaturated Examples include polyester resins, bismaleimide triazine resins, alkyd resins, furan resins, melamine resins, polyurethane resins, aniline resins, and the like.
  • FIG. Comparative Example 1-1 is a comparative example in which the dispersing step S13 is omitted from the particle production method shown in FIG.
  • Comparative Example 1-2 is a comparative example in which, in the particle manufacturing method shown in FIG. 5, the dispersing step S13 of colliding the aggregated particles against the collision member 531 is replaced with a dispersing step of passing the aggregated particles through an orifice having a small inner diameter.
  • Comparative Example 1-2 is a comparative example using an airflow shear type disperser instead of a collision type disperser in the dispersing step S13.
  • Examples 1-1 and 1-2 are examples based on the particle production method shown in FIG. The difference between Examples 1-1 and 1-2 lies in the inner diameter of the nozzle 511 of the dispersion nozzle 50 .
  • the inner diameter of the nozzle 511 of the dispersion nozzle 50 is set to "5 mm”
  • the inner diameter of the nozzle 511 of the dispersion nozzle 50 is set to "3.5 mm”. Due to the difference in flow passage cross-sectional area in the nozzle 511, the collision speed of the aggregated particles against the collision member 531 is higher in Example 1-2 than in Example 1-1.
  • D50 after performing the spheroidization step S14 is "1.3 ⁇ m" for Comparative Example 1-1, "1.4 ⁇ m” for Comparative Example 1-2, and Examples 1-1 and 1- 2 is "1.3 ⁇ m”. That is, D50 of Comparative Examples 1-1 and 1-2 and D50 of Examples 1-1 and 1-2 are substantially the same.
  • the specific surface area of Comparative Example 1-1 is "27.4 m 2 /g” and the specific surface area of Comparative Example 1-2 is "27.2 m 2 /g", whereas the ratio of Example 1-1 is The surface area is "16.3 m 2 /g", and the specific surface area of Example 1-2 is "15.9 m 2 /g".
  • the specific surface areas of Comparative Examples 1-1 and 1-2 are greater than "25.0 m 2 /g", while the specific surface areas of Examples 1-1 and 1-2 are "25.0 m 2 /g" or less. This indicates that the spherical glass particles are more spherical in Examples 1-1 and 1-2 than in Comparative Examples 1-1 and 1-2.
  • the spheroidization rate of Comparative Examples 1-1 and 1-2 is less than "1%", while the spheroidization rate of Example 1-1 is “99%", and the spheroidization rate of Example 2 is "99%”. is "98%”. In other words, the spheroidization rates of Comparative Examples 1-1 and 1-2 are less than "1%", while the spheroidization rates of Examples 1-1 and 1-2 are "90%" or more. ing.
  • the spheroidization rate of the present embodiment means that when an arbitrary number of glass particles having a particle diameter of "0.5 ⁇ m to 2.0 ⁇ m" are extracted, spherical particles occupying an arbitrary number of glass particles It is a value that indicates the proportion of glass particles that have been softened. Further, the spherical particles mean particles having a sphericity greater than "0.5" as described above.
  • FIG. 7 is a photograph of Comparative Example 1-2 after the spheroidization step S14 and before classification
  • FIG. 8 is a photograph of Example 1-1 after the spheroidization step S14 and before classification. It is a photograph. It can be seen that in Example 1-1 shown in FIG. 8, the spherical glass particles have a smaller particle diameter than in Comparative Example 1-2 shown in FIG. 7, and the glass particles are spherical.
  • FIG. Examples 2-1 and 2-2 and Comparative Example 2-1 in FIG. 9 were produced as follows. First, a photocurable resin (polyamideimide) and spherical glass particles with a predetermined D50 were prepared.
  • the glass composition of the spherical glass particles is, in mass %, SiO2 : 55%, Al2O3 : 15%, B2O3 : 15%, K2O : 3%, CaO: 1.5%, ZnO: 1.5% , TiO2 : 1.5%, Nb2O5 : 3.5%, and WO3 : 4%.
  • the photocurable resin and the spherical glass particles were mixed at a ratio of 70.0 to 30.0% by mass using a mixer to obtain a dental composition.
  • the dental composition was poured into a predetermined mold and irradiated with ultraviolet rays having a wavelength of 365 nm for 20 seconds.
  • a model of a dental material (hereinafter referred to as a "dental material sample”) was obtained by photocuring the dental composition.
  • the diameter of the dental material sample is 20 mm
  • the plate thickness of the dental material sample is 0.5 mm.
  • the surface of the obtained dental material sample was lap-polished with No. 6000 (for 10 minutes) in order to reproduce the surface state after the morphological correction polishing.
  • the spherical glass particles of Examples 2-1 and 2-2 and Comparative Example 2-1 were produced according to the particle production method shown in FIG.
  • the surface of the obtained dental material sample was measured for maximum valley depth (Rv) using a fine shape measuring machine ET4000A (manufactured by Kosaka Laboratory Co., Ltd.). Furthermore, as shown in FIGS. 10 to 12, the surfaces of the obtained dental material samples were observed at a magnification of 1000 using an electron microscope (SEM).
  • the D50 of the spherical glass particles was 2.0 ⁇ m or less, so the maximum valley depth (Rv) of the dental material sample was 1.0 ⁇ m or less. rice field.
  • the maximum valley depth (Rv) of the dental material sample was greater than 1.0 ⁇ m because D50 of the spherical glass particles was greater than 2.0 ⁇ m.
  • a photocurable resin polyamideimide
  • predetermined spherical glass particles were prepared.
  • the glass composition of the spherical glass particles is, in mass %, SiO2 : 55%, Al2O3 : 15%, B2O3 : 15%, K2O : 3%, CaO: 1.5%, ZnO: 1.5% , TiO2 : 1.5%, Nb2O5 : 3.5%, and WO3 : 4%.
  • the photocurable resin and the spherical glass particles were mixed at a ratio of 70.0 to 30.0% by mass using a mixer to obtain a dental composition.
  • the viscosity of the resulting dental composition was measured with a HAAKEMARS rheometer RS3000. As shown in FIG. 13, in Examples 3-1 to 3-3 in which the spherical glass particles had a specific surface area of 25.0 m 2 /g or less, the viscosity of the dental composition was 1500 mPa ⁇ s or less. On the other hand, in Comparative Example 3-1, in which the spherical glass particles had a specific surface area of more than 25.0 m 2 /g, the viscosity of the dental composition was more than 1500 mPa ⁇ s.
  • the dental materials obtained by curing the dental compositions containing spherical glass particles in Examples 3-1 to 3-3 are less likely to contain bubbles. Therefore, the reduction in the strength of the dental material is suppressed. In addition, the sufficient adhesion between the dental material and the cavity prevents the dental material from peeling off from the cavity.
  • the dispersion step S13 is followed by the spheroidizing step S14. Therefore, in the particle manufacturing method, the spheroidization step S14 can be performed on non-spherical glass particles, not on aggregated particles. Thus, the particle production method can obtain spherical glass particles that are fine and spherical.
  • the dispersion step S13 causes the aggregated particles to collide with the collision member 531 of the dispersion nozzle 50 to crush the aggregated particles. Therefore, in the dispersing step S13, the aggregated particles are easily crushed to primary particles.
  • the spheroidizing step S14 heats the non-spherical glass particles jetted from the dispersion nozzle 50 by applying flames from the burner 30 to the non-spherical glass particles. Therefore, in the particle manufacturing method, the surfaces of the non-spherical glass particles can be easily melted in the spheroidizing step S14.
  • the fuel injection port 48 of the burner nozzle 40 is arranged so as to surround the powder injection port 532 of the dispersion nozzle 50 . Therefore, the burner 30 can heat most of the non-spherical glass particles jetted from the dispersion nozzle 50 with the flame jetted from the burner nozzle 40 .
  • the spherical glass particles are fine and spherical. Therefore, when it is contained in a resin composition, the contact interface between the spherical glass particles and the resin tends to decrease. As a result, light scattering is less likely to occur inside the resin composition, and light transmission characteristics of the resin composition are less likely to deteriorate. Also, a large amount of spherical glass particles can be contained in the resin. In this case, the resin composition has high mechanical strength. Furthermore, the spherical glass particles are easily mixed with the resin, and the moldability of the resin composition is improved.
  • the spherical glass particles have a refractive index of 1.48 to 1.62. Therefore, it becomes easier to match the refractive index between the spherical glass particles and the resin. As a result, the resin composition can obtain moderate light transmission properties.
  • SiO 2 40 to 80%, Al 2 O 3 : 1 to 30%, B 2 O 3 : 2 to 20%, BaO + CaO: 0 to 20%, Li 2 O+Na 2 O+K 2 O: 0-30%, Cs 2 O: 0.1-20%, La 2 O 3 : 0-10%, ZrO 2 : 0-5%.
  • the dispersion nozzle 50 does not need to be accommodated in the burner nozzle 40 .
  • the injection direction of the fuel from the burner nozzle 40 and the injection direction of the non-spherical glass particles from the dispersion nozzle 50 may intersect.
  • the dispersion nozzle 50 may have a structure for crushing aggregated particles instead of the collision member 531 .
  • the spherical glass particles can also be used as a filler for resin compositions other than dental compositions.
  • spherical glass particles can also be used as a filler for resin compositions for modeling such as 3D printers.
  • the resin composition may be a thermosetting resin or a photocurable resin such as an ultraviolet curable resin.

Abstract

A method for manufacturing spherical glass particles that comprises: a dispersion step for crushing agglomerated particles containing agglomerated non-spherical glass particles by passing the agglomerated particles through a dispersion nozzle (50) and injecting the non-spherical glass particles from the dispersion nozzle (50); and a spheronization step for heating the non-spherical glass particles injected from the dispersing nozzle (50) to thereby spheronize the non-spherical glass particles.

Description

球状ガラス粒子の製造方法、バーナー、球状ガラス粒子及び歯科用組成物Method for producing spherical glass particles, burner, spherical glass particles and dental composition
 本発明は、球状ガラス粒子の製造方法、バーナー、球状ガラス粒子及び歯科用組成物に関する。 The present invention relates to a method for producing spherical glass particles, a burner, spherical glass particles and a dental composition.
 特許文献1には、硬化性樹脂にガラス粒子を含有させた樹脂組成物が記載されている。 Patent Document 1 describes a resin composition in which a curable resin contains glass particles.
特開2020-73333号公報JP 2020-73333 A
 こうした樹脂組成物においては、良好な物性を得ることのできるガラス粒子が望まれている。具体的には、ガラス粒子が球状の小径粒子であることが好ましく、このような粒子を高い収率で得られる技術が求められている。 In such resin compositions, glass particles capable of obtaining good physical properties are desired. Specifically, the glass particles are preferably spherical particles with a small diameter, and there is a demand for a technique for obtaining such particles at a high yield.
 以下、上記課題を解決するための手段及びその作用効果について記載する。
 上記課題を解決する球状ガラス粒子の製造方法は、非球状ガラス粒子を主原料とする球状ガラス粒子の製造方法であって、凝集した前記非球状ガラス粒子を含む凝集粒子を分散ノズルに通過させることによって、前記凝集粒子を解砕し、前記分散ノズルから前記非球状ガラス粒子を噴射させる分散工程と、前記分散ノズルから噴射される前記非球状ガラス粒子を加熱することにより、前記非球状ガラス粒子を球状化させる球状化工程と、を備える。
Means for solving the above problems and their effects will be described below.
A method for producing spherical glass particles which solves the above-mentioned problems is a method for producing spherical glass particles using non-spherical glass particles as a main raw material, wherein agglomerated particles containing the agglomerated non-spherical glass particles are passed through a dispersion nozzle. a dispersing step of crushing the aggregated particles and spraying the non-spherical glass particles from the dispersing nozzle; and heating the non-spherical glass particles sprayed from the dispersing nozzle. and a spheroidization step of spheroidizing.
 球状ガラス粒子の製造方法は、分散工程に続けて球状化工程を実施する。このため、球状ガラス粒子の製造方法は、凝集粒子よりも分散の取れた非球状ガラス粒子に対して、球状化工程を実施できる。こうして、球状ガラス粒子の製造方法は、微粒径かつ球状化した球状ガラス粒子を製造できる。 In the method of manufacturing spherical glass particles, the dispersion process is followed by the spheroidization process. Therefore, in the method for producing spherical glass particles, the spheroidizing step can be performed on non-spherical glass particles that are more dispersed than aggregated particles. Thus, the method for producing spherical glass particles can produce spherical glass particles that are fine and spherical.
 球状ガラス粒子の製造方法において、前記分散工程は、前記分散ノズルが備える衝突部材に前記凝集粒子を衝突させることにより、前記凝集粒子を解砕することが好ましい。
 球状ガラス粒子の製造方法は、衝突部材に凝集粒子を衝突させることで非球状ガラス粒子を得ることができる。
In the method for producing spherical glass particles, it is preferable that in the dispersing step, the aggregated particles are crushed by colliding the aggregated particles with a collision member provided in the dispersion nozzle.
In the method for producing spherical glass particles, non-spherical glass particles can be obtained by colliding aggregated particles with a collision member.
 球状ガラス粒子の製造方法において、前記球状化工程は、前記分散ノズルから噴射させた前記非球状ガラス粒子にバーナーの火炎を当てることで前記非球状ガラス粒子を加熱することが好ましい。 In the method for producing spherical glass particles, the spheroidization step preferably heats the non-spherical glass particles by applying flames from a burner to the non-spherical glass particles ejected from the dispersion nozzle.
 球状ガラス粒子の製造方法は、球状化工程において、非球状ガラス粒子の表面を容易に溶融できる。
 球状ガラス粒子の製造方法では、分散状態の前記非球状ガラス粒子において、レーザー回折散乱式粒度分布測定による累積値が50%であるときの粒子径が2.0μm以下であることが好ましい。本明細書では、レーザー回折散乱式粒度分布測定による粒子径分布において、体積基準の累積値が50%となるときの粒径をD50という。以降の説明では、特に断ることなくこの用語を使用する。
The method for producing spherical glass particles can easily melt the surface of the non-spherical glass particles in the spheroidizing step.
In the method for producing spherical glass particles, the non-spherical glass particles in the dispersed state preferably have a particle diameter of 2.0 μm or less when a cumulative value of 50% is measured by laser diffraction scattering particle size distribution measurement. In the present specification, D50 refers to the particle size when the volume-based cumulative value is 50% in the particle size distribution measured by laser diffraction/scattering particle size distribution measurement. In the following description, this term will be used without special mention.
 上記課題を解決するバーナーは、凝集した非球状ガラス粒子を含む凝集粒子を加工するバーナーであって、燃料を噴射する燃料噴射口を有するバーナーノズルと、前記凝集粒子を解砕する分散部と、前記分散部で解砕された前記非球状ガラス粒子を噴射する粉体噴射口と、を有する分散ノズルと、を備え、前記燃料噴射口は、前記粉体噴射口の周囲を囲うように配置される。 A burner for solving the above problems is a burner for processing agglomerated particles including agglomerated non-spherical glass particles, comprising a burner nozzle having a fuel injection port for injecting fuel, a dispersing section for crushing the agglomerated particles, and a dispersion nozzle having a powder injection port for injecting the non-spherical glass particles crushed in the dispersion unit, wherein the fuel injection port is arranged to surround the powder injection port. be.
 バーナーは、分散ノズルから噴射される非球状ガラス粒子に対して火炎を当てることができる。よって、バーナーは、解砕された直後の非球状ガラス粒子を加熱できる点で、微粒径かつ球状化した球状ガラス粒子を得ることができる。 The burner can apply flames to the non-spherical glass particles injected from the dispersion nozzle. Therefore, since the burner can heat the non-spherical glass particles immediately after being crushed, it is possible to obtain spherical glass particles having a fine particle size and having a spherical shape.
 上記課題を解決する球状ガラス粒子は、球状ガラス粒子であって、表面に火造り面を有し、レーザー回折散乱式粒度分布測定による粒子径分布において、累積値が50%であるときの粒子径が2.0μm以下である。 The spherical glass particles that solve the above problems are spherical glass particles that have a fire-polished surface on their surface, and have a particle diameter at a cumulative value of 50% in the particle size distribution measured by laser diffraction scattering particle size distribution measurement. is 2.0 μm or less.
 上記構成の球状ガラス粒子は、樹脂材料に対する充填率を高めたり、樹脂材料に対する分散性を高めたりできる。その結果、樹脂組成物の物性を高めることができる。
 上記球状ガラス粒子は、比表面積が25.0m/g以下であることが好ましい。
The spherical glass particles having the above structure can increase the filling rate in the resin material and improve the dispersibility in the resin material. As a result, physical properties of the resin composition can be enhanced.
The spherical glass particles preferably have a specific surface area of 25.0 m 2 /g or less.
 球状ガラス粒子は、ガラス組成として質量%で、SiO:20~80%、Al:1~30%、B:0~20%、BaO+CaO:0~40%、ZnO:0~20%、F:0~25%を含有することが好ましい。 Spherical glass particles are composed of SiO 2 : 20 to 80%, Al 2 O 3 : 1 to 30%, B 2 O 3 : 0 to 20%, BaO+CaO: 0 to 40%, and ZnO: 0 in terms of % by mass as a glass composition. -20%, F: preferably 0-25%.
 上記課題を解決する歯科用組成物は、上述した球状ガラス粒子と、光硬化性樹脂と、を備える。
 上記構成の歯科用組成物は、物性を高めることができる。
A dental composition that solves the above problems comprises the spherical glass particles described above and a photocurable resin.
The dental composition having the above structure can have improved physical properties.
 上記構成によれば、樹脂に含有させたときに良好な物性を発揮できる球状ガラス粒子を得ることができる。 According to the above configuration, it is possible to obtain spherical glass particles that can exhibit good physical properties when contained in a resin.
図1は、球状ガラス粒子の製造装置の模式図である。FIG. 1 is a schematic diagram of an apparatus for producing spherical glass particles. 図2は、上記製造装置のバーナーを模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing a burner of the manufacturing apparatus. 図3は、上記バーナーの正面図である。FIG. 3 is a front view of the burner. 図4は、上記バーナーの分散ノズルの拡大断面図である。FIG. 4 is an enlarged sectional view of the dispersion nozzle of the burner. 図5は、球状ガラス粒子の製造方法の工程図である。FIG. 5 is a process diagram of a method for producing spherical glass particles. 図6は、比較例及び実施例の球状ガラス粒子の物性を比較する表である。FIG. 6 is a table comparing physical properties of spherical glass particles of Comparative Examples and Examples. 図7は、比較例1-2の球状ガラス粒子を撮影した画像である。FIG. 7 is an image of spherical glass particles of Comparative Example 1-2. 図8は、実施例1-1の球状ガラス粒子を撮影した画像である。FIG. 8 is an image of the spherical glass particles of Example 1-1. 図9は、実施例及び比較例の歯科材料の物性を比較する表である。FIG. 9 is a table comparing physical properties of dental materials of Examples and Comparative Examples. 図10は、実施例2-1の歯科材料サンプルを撮影した画像である。FIG. 10 is an image of the dental material sample of Example 2-1. 図11は、実施例2-2の歯科材料サンプルを撮影した画像である。FIG. 11 is an image of the dental material sample of Example 2-2. 図12は、比較例2-1の歯科材料サンプルを撮影した画像である。FIG. 12 is an image of the dental material sample of Comparative Example 2-1. 図13は、実施例及び比較例の歯科用組成物の物性を比較する表である。FIG. 13 is a table comparing physical properties of dental compositions of Examples and Comparative Examples.
 以下、球状ガラス粒子に関する一実施形態について説明する。
 <球状ガラス粒子の製造装置>
 図1に示すように、球状ガラス粒子の製造装置(以下、「粒子製造装置10」という。)は、貯留部21と、フィーダー22と、第1輸送路23と、キャリア流体供給源24と、第2輸送路26と、酸素供給源27と、燃料供給源28と、バーナー30と、を備える。
An embodiment relating to spherical glass particles is described below.
<Spherical Glass Particle Manufacturing Apparatus>
As shown in FIG. 1, an apparatus for producing spherical glass particles (hereinafter referred to as "particle production apparatus 10") includes a reservoir 21, a feeder 22, a first transport path 23, a carrier fluid supply source 24, A second transport path 26 , an oxygen supply source 27 , a fuel supply source 28 and a burner 30 are provided.
 <貯留部21>
 貯留部21は、球状ガラス粒子の主原料である非球状ガラス粒子を貯留するタンクである。非球状ガラス粒子は、例えば、板状、フィルム状、インゴット状、或いは繊維状等の任意形状の母ガラスを、ボールミルやジェットミル等の粉砕機により粉砕して得られる破砕状のガラス粒子であり、角部や尖部を有する形状の粒子である。貯留部21の内部において、非球状ガラス粒子は凝集している。非球状ガラス粒子の凝集は、意図して発生するものではなく、非球状ガラス粒子の相互作用により発生するものである。以降の説明では、一次粒子である非球状ガラス粒子が凝集した二次粒子を含む集合体を凝集粒子ともいう。凝集粒子は、二次粒子に加え、凝集していない一次粒子を含んでいてもよいし、二次粒子がさらに凝集した高次粒子を含んでいてもよい。凝集粒子に占める二次粒子の割合は、凝集粒子に占める一次粒子の割合より少なくてもよい。
<Storage unit 21>
The storage part 21 is a tank that stores non-spherical glass particles, which are the main raw material of the spherical glass particles. The non-spherical glass particles are crushed glass particles obtained by crushing a base glass of arbitrary shape such as plate-like, film-like, ingot-like, or fiber-like with a crusher such as a ball mill or a jet mill. , which are shaped particles with corners and peaks. Inside the reservoir 21, the non-spherical glass particles are aggregated. Agglomeration of non-spherical glass particles does not occur intentionally, but occurs due to interaction of non-spherical glass particles. In the following description, aggregates containing secondary particles in which non-spherical glass particles that are primary particles are aggregated are also referred to as aggregated particles. Aggregated particles may contain primary particles that are not aggregated in addition to secondary particles, or may contain higher-order particles in which secondary particles are further aggregated. The proportion of secondary particles in aggregated particles may be less than the proportion of primary particles in aggregated particles.
 <フィーダー22>
 フィーダー22は、貯留部21に接続している。フィーダー22は、貯留部21に貯留される凝集粒子を第1輸送路23に供給する。フィーダー22は、単位時間当たりの凝集粒子の供給量を調整可能であることが好ましい。
<Feeder 22>
Feeder 22 is connected to reservoir 21 . The feeder 22 supplies aggregated particles stored in the storage section 21 to the first transport path 23 . The feeder 22 is preferably capable of adjusting the amount of aggregated particles supplied per unit time.
 <第1輸送路23及び第2輸送路26>
 第1輸送路23は、フィーダー22と第2輸送路26とを接続している。第2輸送路26は、第1輸送路23とバーナー30とを接続している。キャリア流体供給源24は、第2輸送路26に接続されている。キャリア流体供給源24は、第2輸送路26にキャリア流体を送出する。キャリア流体供給源24から第2輸送路26にキャリア流体が送出されると、キャリア流体によって、凝集粒子がバーナー30に輸送される。キャリア流体は、例えば、空気等であり、凝集粒子を浮遊状態で搬送可能な流動可能性を有する気体或いは媒質である。
<First transportation path 23 and second transportation path 26>
The first transportation path 23 connects the feeder 22 and the second transportation path 26 . The second transport path 26 connects the first transport path 23 and the burner 30 . A carrier fluid supply 24 is connected to a second transport line 26 . Carrier fluid source 24 delivers carrier fluid to second transport path 26 . As carrier fluid is delivered from the carrier fluid supply 24 to the second transport path 26 , the carrier fluid transports the agglomerated particles to the burner 30 . The carrier fluid is, for example, air, and is a gas or medium having fluidity capable of carrying aggregated particles in a suspended state.
 なお、フィーダー22とバーナー30との間に予備分散機を設置することもできる。当該予備分散機は、流動層型分散機、回転ドラム式分散機、エジェクター型分散機及びベンチュリー型分散機などの分散機など、凝集粒子を解砕する能力を有した分散機から適宜選定することができる。 A preliminary disperser can be installed between the feeder 22 and the burner 30. The preliminary disperser should be appropriately selected from dispersers capable of crushing aggregated particles, such as fluidized bed dispersers, rotary drum dispersers, ejector dispersers and venturi dispersers. can be done.
 <バーナー30>
 バーナー30は、凝集粒子を加工するための構成である。バーナー30は、燃料を噴射するバーナーノズル40と、凝集粒子を解砕しつつ噴射する分散ノズル50と、を備える。以降の説明では、バーナー30において、通過する凝集粒子の移動方向の上流側を基端、下流側を先端とする。
<Burner 30>
Burner 30 is configured for processing agglomerated particles. The burner 30 includes a burner nozzle 40 that injects fuel, and a dispersion nozzle 50 that injects the aggregated particles while crushing them. In the following description, in the burner 30, the upstream side in the moving direction of the passing aggregated particles is the base end, and the downstream side is the tip.
 <バーナーノズル40>
 図2及び図3に示すように、バーナーノズル40は、筒状をなす第1外周壁42及び第2外周壁43と、円板状をなす第1隔壁44及び第2隔壁45と、管状をなす複数の整流管47と、を有する。また、バーナーノズル40は、酸素が供給される酸素供給室R1と、燃料が供給される燃料供給室R2と、を有する。
<Burner Nozzle 40>
As shown in FIGS. 2 and 3, the burner nozzle 40 includes a tubular first outer peripheral wall 42 and a second outer peripheral wall 43, a disk-shaped first partition wall 44 and a second partition wall 45, and a tubular wall. and a plurality of rectifier tubes 47 formed. The burner nozzle 40 also has an oxygen supply chamber R1 to which oxygen is supplied and a fuel supply chamber R2 to which fuel is supplied.
 第1外周壁42の内径は、第2外周壁43の外径よりも大きくなっている。第1外周壁42は、酸素供給源27に接続される接続ポート421を有する。第2外周壁43は、燃料供給源28に接続される接続ポート431を有する。第1隔壁44は、第1外周壁42の基端部に接合されている。第2隔壁45は、第2外周壁43の基端部に接合されている。第1外周壁42は第2外周壁43を収容し、第2外周壁43は分散ノズル50を収容している。このとき、第2外周壁43は第1隔壁44を貫通し、分散ノズル50は第2隔壁45を貫通している。複数の整流管47は、束状をなしている。複数の整流管47は、第2外周壁43と分散ノズル50との間で環状に並んでいる。複数の整流管47は、管内を通る気体の流れを整流する。 The inner diameter of the first outer peripheral wall 42 is larger than the outer diameter of the second outer peripheral wall 43 . The first outer peripheral wall 42 has a connection port 421 connected to the oxygen supply source 27 . The second outer peripheral wall 43 has a connection port 431 connected to the fuel supply source 28 . The first partition wall 44 is joined to the base end portion of the first outer peripheral wall 42 . The second partition wall 45 is joined to the base end portion of the second outer peripheral wall 43 . The first peripheral wall 42 houses the second peripheral wall 43 , which houses the dispersion nozzles 50 . At this time, the second outer peripheral wall 43 penetrates the first partition 44 and the dispersion nozzle 50 penetrates the second partition 45 . The plurality of rectifying tubes 47 are bundled. A plurality of straightening tubes 47 are arranged in a ring between the second outer peripheral wall 43 and the dispersion nozzle 50 . A plurality of rectifying tubes 47 rectify the gas flow passing through the tubes.
 図2に示すように、酸素供給室R1は、第1外周壁42、第2外周壁43及び第1隔壁44によって区画されている。酸素供給室R1には、接続ポート421を介して、酸素供給源27から酸素が供給される。酸素供給室R1に酸素が供給される場合には、第1外周壁42及び第2外周壁43の間から酸素が流出する。 As shown in FIG. 2, the oxygen supply chamber R1 is partitioned by a first outer peripheral wall 42, a second outer peripheral wall 43 and a first partition 44. Oxygen is supplied from the oxygen supply source 27 to the oxygen supply chamber R1 through the connection port 421 . When oxygen is supplied to the oxygen supply chamber R<b>1 , oxygen flows out from between the first outer peripheral wall 42 and the second outer peripheral wall 43 .
 燃料供給室R2は、第2外周壁43及び第2隔壁45によって区画されている。燃料供給室R2には、接続ポート431を介して、燃料供給源28から気体の燃料が供給される。バーナーノズル40において、燃料供給室R2に燃料が供給される場合には、第2外周壁43と分散ノズル50との間の燃料噴射口48から燃料が噴射される。こうして、バーナーノズル40は、燃料噴射口48から噴射される燃料に点火されることにより、燃料噴射口48から火炎を噴射できる。 The fuel supply chamber R2 is partitioned by the second outer peripheral wall 43 and the second partition wall 45. Gaseous fuel is supplied from the fuel supply source 28 to the fuel supply chamber R2 via the connection port 431 . In the burner nozzle 40 , when fuel is supplied to the fuel supply chamber R<b>2 , the fuel is injected from the fuel injection port 48 between the second outer peripheral wall 43 and the dispersion nozzle 50 . Thus, the burner nozzle 40 can inject flame from the fuel injection port 48 by igniting the fuel injected from the fuel injection port 48 .
 <分散ノズル50>
 図4に示すように、分散ノズル50は、管状をなす導管51と、導管51の先端を覆うノズルカバー53と、を備える。
<Dispersion nozzle 50>
As shown in FIG. 4 , the dispersion nozzle 50 includes a tubular conduit 51 and a nozzle cover 53 that covers the tip of the conduit 51 .
 導管51の外径は、バーナーノズル40の第2外周壁43の内径よりも小さくなっている。導管51の基端には、第2輸送路26が接続されている。導管51は、先端に内径が拡大されたノズル511を有する。ノズルカバー53は、円板状をなす衝突部材531と、複数の粉体噴射口532と、を有する。衝突部材531は、衝突面533を含んでいる。本実施形態において、衝突面533は、導管51の軸方向と直交する平面であるが、他の実施形態において、衝突面533は、円柱面であってもよいし、円錐面であってもよい。図3に示すように、ノズルカバー53を先端から見たとき、粉体噴射口532は、円弧状をなしている。複数の粉体噴射口532は、周方向において、間隔をあけて並んでいる。複数の粉体噴射口532は、衝突部材531を取り囲んでいる。 The outer diameter of the conduit 51 is smaller than the inner diameter of the second outer peripheral wall 43 of the burner nozzle 40 . A second transport path 26 is connected to the proximal end of the conduit 51 . The conduit 51 has a nozzle 511 with an enlarged inner diameter at its tip. The nozzle cover 53 has a disk-shaped collision member 531 and a plurality of powder injection ports 532 . Impact member 531 includes an impact surface 533 . In this embodiment, the collision surface 533 is a plane orthogonal to the axial direction of the conduit 51, but in other embodiments, the collision surface 533 may be a cylindrical surface or a conical surface. . As shown in FIG. 3, when the nozzle cover 53 is viewed from the tip, the powder injection port 532 has an arc shape. The plurality of powder injection ports 532 are arranged at intervals in the circumferential direction. A plurality of powder injection ports 532 surround the collision member 531 .
 図4に示すように、分散ノズル50は、導管51とノズルカバー53とを軸方向に連結することにより構成されている。詳しくは、ノズルカバー53は、導管51の先端を覆っている。このとき、導管51のノズル511の開口面は、ノズルカバー53の衝突面533と対向している。 As shown in FIG. 4, the dispersion nozzle 50 is constructed by connecting a conduit 51 and a nozzle cover 53 in the axial direction. Specifically, the nozzle cover 53 covers the tip of the conduit 51 . At this time, the opening surface of the nozzle 511 of the conduit 51 faces the collision surface 533 of the nozzle cover 53 .
 図2に示すように、分散ノズル50は、バーナーノズル40に収容されている。詳しくは、分散ノズル50は、バーナーノズル40の筒状をなす第2外周壁43の筒内に挿入されることで、バーナーノズル40と一体化している。このとき、ノズルカバー53の先端とバーナーノズル40の燃料噴射口48の先端とは面一となっている。そして、図3に示すように、粉体噴射口532は燃料噴射口48によって周囲を囲われている。また、粉体噴射口532と燃料噴射口48とは、同じ方向に開口している。 As shown in FIG. 2, the dispersion nozzle 50 is housed in the burner nozzle 40. Specifically, the dispersion nozzle 50 is integrated with the burner nozzle 40 by being inserted into the cylindrical second outer peripheral wall 43 of the burner nozzle 40 . At this time, the tip of the nozzle cover 53 and the tip of the fuel injection port 48 of the burner nozzle 40 are flush with each other. As shown in FIG. 3 , the powder injection port 532 is surrounded by the fuel injection port 48 . Further, the powder injection port 532 and the fuel injection port 48 open in the same direction.
 分散ノズル50において、第2輸送路26から供給される凝集粒子は、衝突部材531に衝突することにより解砕される。この点で、衝突部材531は「分散部」の一例に相当し、分散ノズル50は衝突型分散機を備えているといえる。衝突部材531に衝突することにより、凝集粒子の多くは、一次粒子である非球状ガラス粒子まで解砕される。そして、解砕された非球状ガラス粒子は、複数の粉体噴射口532から噴射される。 In the dispersion nozzle 50 , the aggregated particles supplied from the second transport path 26 are crushed by colliding with the collision member 531 . In this respect, the collision member 531 corresponds to an example of a "dispersion section", and the dispersion nozzle 50 can be said to have a collision-type disperser. By colliding with the collision member 531, most of the aggregated particles are crushed into non-spherical glass particles, which are primary particles. Then, the crushed non-spherical glass particles are injected from a plurality of powder injection nozzles 532 .
 <球状ガラス粒子の製造方法>
 図5に示すように、球状ガラス粒子の製造方法(以下、「粒子製造方法」という。)は、準備工程S11と、輸送工程S12と、分散工程S13と、球状化工程S14と、を備える。
<Method for Producing Spherical Glass Particles>
As shown in FIG. 5, the method for producing spherical glass particles (hereinafter referred to as "particle production method") includes a preparation step S11, a transportation step S12, a dispersion step S13, and a spheroidizing step S14.
 準備工程S11は、貯留部21に貯留される凝集粒子を準備する工程である。準備工程S11は、原料ガラスを粉砕する粉砕工程と、粉状に粉砕されたガラスを分級する分級工程と、を有する。準備工程S11は、少なくとも粉砕工程を有していればよい。 The preparation step S11 is a step of preparing aggregated particles to be stored in the storage unit 21. The preparation step S11 includes a pulverization step of pulverizing the raw glass and a classification step of classifying the pulverized glass. The preparation step S11 may include at least a pulverization step.
 粉砕工程は、例えば、板状の原料ガラスを粉砕機で粉砕する工程である。本実施形態の粒子製造方法は、微粒径の非球状ガラス粒子を原料として微粒径の球状ガラス粒子を製造するものであるため、粉砕工程において、原料ガラスを細かく粉砕することが好ましい。なお、粉砕工程では、非球状ガラス粒子が意図せず凝集することにより凝集粒子が得られる。また、凝集粒子の凝集の程度、言い換えれば、凝集粒子における非球状ガラス粒子の分散性の程度は問わない。 The crushing process is, for example, a process of crushing plate-shaped raw glass with a crusher. In the particle production method of the present embodiment, fine spherical glass particles are produced using fine non-spherical glass particles as raw materials. Therefore, it is preferable to finely pulverize the raw material glass in the pulverization step. In the pulverization step, aggregated particles are obtained by unintentionally aggregating the non-spherical glass particles. Further, the degree of aggregation of the aggregated particles, in other words, the degree of dispersibility of the non-spherical glass particles in the aggregated particles does not matter.
 分級工程は、空気分級、水簸分級及び網篩い等により、凝集粒子を分級する工程である。分級工程は、凝集粒子に含まれる粗粉などを除去することを目的として実施される場合がある。準備工程S11を実施することで得られる凝集粒子は、貯留部21に貯留される。 The classification process is a process of classifying agglomerated particles by air classification, elutriation classification, mesh sieving, and the like. The classification step may be carried out for the purpose of removing coarse powder and the like contained in aggregated particles. Aggregated particles obtained by performing the preparation step S<b>11 are stored in the storage section 21 .
 準備工程S11を実施することで、微粒径かつ粒径の整った非球状ガラス粒子の凝集体を含む凝集粒子を得ることができる。凝集粒子は、分散状態において、D50が「2.0μm以下」であればよい。 By performing the preparation step S11, it is possible to obtain agglomerated particles containing agglomerates of non-spherical glass particles with fine and uniform particle diameters. Aggregated particles may have a D50 of "2.0 μm or less" in a dispersed state.
 輸送工程S12は、貯留部21に貯留される凝集粒子をバーナー30まで輸送する工程である。輸送工程S12は、フィーダー22を駆動するとともに、キャリア流体供給源24から第2輸送路26にキャリア流体を流入させる。このため、輸送工程S12は、キャリア流体により凝集粒子をバーナー30に輸送する。 The transportation step S<b>12 is a step of transporting the aggregated particles stored in the storage section 21 to the burner 30 . The transport step S<b>12 drives the feeder 22 and causes the carrier fluid to flow from the carrier fluid supply source 24 into the second transport path 26 . Therefore, the transport step S12 transports the agglomerated particles to the burner 30 with a carrier fluid.
 分散工程S13は、キャリア流体により輸送される凝集粒子を分散ノズル50に通過させることにより、凝集粒子を解砕する工程である。詳しくは、分散工程S13は、凝集粒子を分散ノズル50の衝突部材531に衝突させることにより、凝集粒子を解砕する工程である。分散工程S13は、凝集粒子の多くを一次粒子である非球状ガラス粒子まで解砕する。分散工程S13は、凝集粒子の全てを非球状ガラス粒子まで解砕することが好ましいが、必ずしも凝集粒子の全てを非球状ガラス粒子まで解砕する必要はない。分散工程S13は、キャリア流体とともに、解砕された非球状ガラス粒子を分散ノズル50の粉体噴射口532から噴射させる。 The dispersing step S13 is a step of crushing the aggregated particles by causing the aggregated particles transported by the carrier fluid to pass through the dispersion nozzle 50. Specifically, the dispersing step S13 is a step of crushing the aggregated particles by causing the aggregated particles to collide with the collision member 531 of the dispersion nozzle 50 . In the dispersing step S13, most of the aggregated particles are crushed into non-spherical glass particles, which are primary particles. In the dispersing step S13, it is preferable to crush all of the aggregated particles into non-spherical glass particles, but it is not necessary to crush all of the aggregated particles into non-spherical glass particles. In the dispersion step S13, the crushed non-spherical glass particles are injected from the powder injection port 532 of the dispersion nozzle 50 together with the carrier fluid.
 球状化工程S14は、分散ノズル50から噴射される非球状ガラス粒子を加熱することにより、非球状ガラス粒子を球状化させる工程である。詳しくは、球状化工程S14は、バーナーノズル40の燃料噴射口48から火炎を噴射させる。そして、球状化工程S14は、分散ノズル50から噴射される非球状ガラスにバーナーノズル40から噴射される火炎を当てることで、非球状ガラスを球状化する。なお、球状化したガラス粒子は凝集するおそれがあるため、この凝集を解砕するため、球状化工程S14の後に、分級工程を設けるとよい。 The spheroidizing step S14 is a step of heating the non-spherical glass particles jetted from the dispersion nozzle 50 to spheroidize the non-spherical glass particles. Specifically, the spheroidizing step S14 causes flame to be injected from the fuel injection port 48 of the burner nozzle 40 . Then, in the spheroidization step S14, flames jetted from the burner nozzle 40 are applied to the non-spherical glass jetted from the dispersion nozzle 50 to sphere the non-spherical glass. In addition, since the spherical glass particles may aggregate, it is preferable to provide a classification step after the spherical forming step S14 in order to crush the aggregation.
 <球状ガラス粒子>
 上述した粒子製造方法によって製造された球状ガラス粒子について説明する。
 球状ガラス粒子は、球状化工程S14で加熱されるため、火造り面を有する。火造り面は、球状ガラス粒子の表面の一部を構成していればよいが、球状ガラス粒子の表面の全てを構成していることが好ましい。球状ガラス粒子が火造り面を有しているか否かは、球状ガラス粒子の表面を顕微鏡で観察したり、球状ガラス粒子の表面を測定機器で測定したりすることにより判別可能である。
<Spherical glass particles>
Spherical glass particles produced by the above-described particle production method will be described.
Since the spherical glass particles are heated in the spheroidizing step S14, they have fire-polished surfaces. The fire-polished surface may form part of the surface of the spherical glass particles, but preferably forms the entire surface of the spherical glass particles. Whether or not the spherical glass particles have a fire-polished surface can be determined by observing the surfaces of the spherical glass particles with a microscope or measuring the surfaces of the spherical glass particles with a measuring instrument.
 球状ガラス粒子は、中実又は非多孔性のガラス微粒子と言い換えることができる。球状ガラス粒子は、角部、尖部、ボイド及びクラックなどを含まない滑らかな面を有することが好ましい。また、火造り面は、凸曲面、球状凸面又は湾曲面と言い換えることができる。火造り面は、角部、尖部、ボイド及びクラックなどを有しない滑らかな面であることが好ましい。 Spherical glass particles can be rephrased as solid or non-porous glass particles. The spherical glass particles preferably have smooth surfaces free of corners, peaks, voids and cracks. Also, the fire-polished surface can be rephrased as a convex curved surface, a spherical convex surface, or a curved surface. The fire-polished surface is preferably a smooth surface free of corners, peaks, voids and cracks.
 球状ガラス粒子の表面が火造り面であれば、比表面積が小さくなりやすい。そして、球状ガラス粒子の比表面積が小さい程、樹脂と球状ガラス粒子とを混合することで得られる歯科用組成物の粘度が低くなりやすい。この結果、歯科用組成物を硬化して得られる歯科材料が泡を含みにくくなるため、歯科材料の強度低下が抑制される。 If the surface of the spherical glass particles is a fire-polished surface, the specific surface area tends to be small. The smaller the specific surface area of the spherical glass particles, the lower the viscosity of the dental composition obtained by mixing the resin and the spherical glass particles. As a result, the dental material obtained by curing the dental composition is less likely to contain bubbles, thereby suppressing a decrease in the strength of the dental material.
 球状ガラス粒子の球状の度合いを示す真球度は、「0.5~1.0」である。真球度は、「0.7以上」であることが好ましく、「0.8以上」であることがより好ましく、「0.85以上」であることがさらに好ましい。本実施形態では、真球度が「0.5以上」の球状ガラス粒子を球状という。 The sphericity, which indicates the degree of sphericity of spherical glass particles, is "0.5 to 1.0". The sphericity is preferably "0.7 or more", more preferably "0.8 or more", and even more preferably "0.85 or more". In the present embodiment, spherical glass particles having a sphericity of "0.5 or more" are called spherical.
 真球度は、少なくとも1000万個の粒子に対して、ヴァーダーサイエンティフィック社製カムサイザーXTなどの画像解析装置で測定した粒子の面積(S)と円周の平均値(d)を次式に代入することにより算出できる。 The sphericity of at least 10,000,000 particles is measured by an image analyzer such as Verder Scientific Camsizer XT. can be calculated by substituting
 真球度=4π・S/d
 詳述すると、真球度を算出する場合には、まず、顕微鏡を用いて、圧縮空気により空中を輸送される粒子を撮影する。続いて、撮影した画像を解析することにより、粒子の面積及び円周を取得する。最後に、取得した数値を上記数式に代入することにより、真球度を算出する。上記測定では、撮影された粒子が二次元の平面の円になるため、実際には円形度を評価しているといえる。ただし、1000万個以上の粒子の形状を測定することは、あらゆる角度での粒子の円形度を測定することと同義である。このため、上記の円形度は、統計学的に真球度に相当する。撮影された粒子が真球であれば、真球度が「1.000」になる。
Sphericality = 4π·S/d 2
More specifically, when calculating the sphericity, first, a microscope is used to photograph particles transported in the air by compressed air. Subsequently, the area and circumference of the particle are obtained by analyzing the captured image. Finally, the sphericity is calculated by substituting the obtained numerical value into the above formula. In the above measurement, the photographed particle becomes a two-dimensional plane circle, so it can be said that the degree of circularity is actually evaluated. However, measuring the shape of 10 million or more particles is synonymous with measuring the circularity of particles at all angles. Therefore, the above circularity statistically corresponds to sphericity. If the photographed particle is a true sphere, the sphericity will be "1.000".
 球状ガラス粒子は、球状をなしているため、破砕状のものと比べて比表面積が小さくなりやすい。ただし、球状ガラス粒子の径が小さくなると、球状ガラス粒子の比表面積は大きくなる。したがって、粒子径が小さい球状ガラス粒子を樹脂に混合する歯科用組成物は、粘度が高くなる傾向がある。このため、歯科用組成物を硬化することで得られる歯科材料が泡を含む場合がある。この場合、歯科材料の強度が低下したり、歯科材料と窩洞部分との接着性の低下に伴って歯科材料が窩洞部分から剥離したりするおそれがある。具体的には、歯科用組成物の粘度が1500mPa・sを超過すると、この課題が顕在化する。従って、この課題を回避するため、球状ガラス粒子は、比表面積が「25.0m/g以下」であることが好ましく、「21.0m/g以下」であることがより好ましく、「17.0m/g以下」であることがさらに好ましい。比表面積の下限は特に限定されないが、現実的には「0.1m/g以上」である。ここで、比表面積とは、BET法により測定した比表面積である。 Since the spherical glass particles are spherical, the specific surface area tends to be smaller than that of crushed particles. However, when the diameter of the spherical glass particles becomes smaller, the specific surface area of the spherical glass particles becomes larger. Accordingly, a dental composition in which spherical glass particles having a small particle size are mixed with a resin tends to have a high viscosity. Therefore, the dental material obtained by curing the dental composition may contain bubbles. In this case, there is a risk that the strength of the dental material will be reduced, or that the dental material will peel off from the cavity due to the deterioration of the adhesiveness between the dental material and the cavity. Specifically, this problem becomes apparent when the viscosity of the dental composition exceeds 1500 mPa·s. Therefore, in order to avoid this problem, the spherical glass particles preferably have a specific surface area of "25.0 m 2 /g or less", more preferably "21.0 m 2 /g or less", and "17 .0 m 2 /g or less” is more preferable. Although the lower limit of the specific surface area is not particularly limited, it is practically "0.1 m 2 /g or more". Here, the specific surface area is the specific surface area measured by the BET method.
 樹脂と球状ガラス粒子を混合した歯科用組成物を、光硬化等により作製する歯科材料において、球状ガラス粒子のD50が2.0μmよりも大きくなると、次のような問題が生じる。すなわち、歯科材料で歯を修復する際、咬合の調整、形態修正による研磨、さらには咬合後の咀嚼による摩擦により、歯科材料の表面から球状ガラス粒子が抜け、歯科材料の表面に、最大谷深さ(Rv)が1.0μm以上の凹部が形成される。そして、こうした歯科材料を使用すると、歯科材料の凹部で容易に菌が増殖し、虫歯が発生しやすくなる問題がある。一方、球状ガラス粒子のD50が0.5μm未満になると、球状ガラス粒子の製造コストが顕著に高くなる問題がある。従って、これらの課題を回避するため、球状ガラス粒子は、D50が「0.5~2.0μm」であり、好ましくは「0.8~1.5μm」である。また、球状ガラス粒子は、屈折率が「1.48~1.62」であることが好ましい。 In a dental material prepared by photocuring a dental composition in which a resin and spherical glass particles are mixed, if the D50 of the spherical glass particles is larger than 2.0 μm, the following problems arise. In other words, when a tooth is restored with a dental material, spherical glass particles are removed from the surface of the dental material due to occlusion adjustment, polishing due to morphology correction, and friction due to chewing after occlusion. A concave portion having a depth (Rv) of 1.0 μm or more is formed. When such dental materials are used, there is a problem that bacteria easily proliferate in the concave portions of the dental materials, and tooth decay is likely to occur. On the other hand, when the D50 of the spherical glass particles is less than 0.5 μm, there is a problem that the manufacturing cost of the spherical glass particles increases significantly. Therefore, in order to avoid these problems, the spherical glass particles have a D50 of "0.5 to 2.0 μm", preferably "0.8 to 1.5 μm". Further, the spherical glass particles preferably have a refractive index of "1.48 to 1.62".
 球状ガラス粒子は、ガラス組成として、質量%で、SiO:20~80%、Al:1~30%、B:0~20%、BaO+CaO:0~40%、ZnO:0~20%、F:0~25%を含有する。好ましくは、球状ガラス粒子は、ガラス組成として、質量%で、SiO:40~80%、Al:1~30%、B:2~20%、CaO:0~25%、ZnO:0~10%、LiO:0~10%、NaO:0~30%、KO:0~30%、Nb:0~20%、WO:0~20%、Nb+WO:0.1~30%、TiO:0.1~15%、F:0~10%を含有する。なお、球状ガラス粒子を上記組成とするべく、非球状ガラス粒子も上記組成とすることが好ましい。このようにガラス組成を限定した理由を以下に説明する。なお以下の各成分の含有量の説明において、特に断りのない限り「%」は「質量%」を意味する。 Spherical glass particles, as a glass composition, SiO 2 : 20 to 80%, Al 2 O 3 : 1 to 30%, B 2 O 3 : 0 to 20%, BaO + CaO: 0 to 40%, ZnO: 0-20%, F: 0-25%. Preferably, the glass composition of the spherical glass particles is SiO 2 : 40 to 80%, Al 2 O 3 : 1 to 30%, B 2 O 3 : 2 to 20%, and CaO: 0 to 25% in mass %. , ZnO: 0-10%, Li 2 O: 0-10%, Na 2 O: 0-30%, K 2 O: 0-30%, Nb 2 O 5 : 0-20%, WO 3 : 0- 20%, Nb 2 O 5 +WO 3 : 0.1-30%, TiO 2 : 0.1-15%, F: 0-10%. In order to make the spherical glass particles have the above composition, it is preferable that the non-spherical glass particles also have the above composition. The reason why the glass composition is limited in this way will be explained below. In addition, in the following description of the content of each component, "%" means "% by mass" unless otherwise specified.
 SiOはガラス骨格を形成する成分である。また化学耐久性や耐失透性を向上させる成分である。SiOの含有量は20~80%、50~80%、50~75%、特に50~65%であることが好ましい。SiOが少なすぎると化学耐久性が低下しやすくなり、またガラスが失透しやすくなって製造が困難になるおそれがある。一方、SiOが多すぎると溶融性が低下しやすくなる。また成形時に軟化しにくくなって製造が困難になるおそれがある。 SiO2 is a component that forms the glass skeleton. It is also a component that improves chemical durability and devitrification resistance. The content of SiO 2 is preferably 20-80%, 50-80%, 50-75%, especially 50-65%. If the amount of SiO 2 is too small, the chemical durability tends to decrease, and the glass tends to devitrify, which may make production difficult. On the other hand, if the amount of SiO2 is too large, the meltability tends to decrease. In addition, it is difficult to soften during molding, which may make production difficult.
 Alはガラス化安定成分である。また化学耐久性や耐失透性を向上させる成分である。Alの含有量は1~30%、2.5~25%、特に5~20%であることが好ましい。Alが多すぎると、溶融性が低下しやすくなる。また成形時に軟化しにくくなって製造が困難になるおそれがある。 Al 2 O 3 is a vitrification stabilizing component. It is also a component that improves chemical durability and devitrification resistance. The content of Al 2 O 3 is preferably 1-30%, 2.5-25%, especially 5-20%. If the amount of Al 2 O 3 is too large, the meltability tends to decrease. In addition, it is difficult to soften during molding, which may make production difficult.
 Bはガラス骨格を形成する成分である。また化学耐久性や耐失透性を向上させる成分である。Bは0~20%、3~19%、特に5~17%であることが好ましい。Bが少なすぎると、化学耐久性が低下しやすくなる。またガラスが失透しやすくなって製造が困難になるおそれがある。一方、Bが多すぎると、溶融性が低下しやすくなる。また成形時に軟化しにくくなって製造が困難になるおそれがある。 B 2 O 3 is a component that forms a glass skeleton. It is also a component that improves chemical durability and devitrification resistance. B 2 O 3 is preferably 0-20%, 3-19%, especially 5-17%. If the amount of B 2 O 3 is too small, the chemical durability tends to decrease. Moreover, the glass tends to devitrify, which may make the production difficult. On the other hand, too much B 2 O 3 tends to lower the meltability. In addition, it is difficult to soften during molding, which may make production difficult.
 BaO及びCaOはアルカリ土類であり、中間物質としてガラス化を安定化させる成分である。これらの成分の含有量は合量で0~40%、0.1~40%、0.5~40%、特に1~30%であることが好ましい。CaOの含有量は0~25%、0.5~20%、特に1~15%であることが好ましい。CaOが多すぎると化学耐久性が低下しやすくなり、またガラスが失透しやすくなって製造が困難になるおそれがある。 BaO and CaO are alkaline earth elements, and are components that stabilize vitrification as intermediate substances. The total content of these components is preferably 0-40%, 0.1-40%, 0.5-40%, and more preferably 1-30%. The content of CaO is preferably 0-25%, 0.5-20%, particularly 1-15%. If the amount of CaO is too high, the chemical durability tends to decrease, and the glass tends to devitrify, which may make production difficult.
 ZnOはガラスの粘度を低下させるとともに、失透を抑制する成分である。ZnOの含有量は0~20%、0.1~9%、0.4~7%、特に0.6~5%であることが好ましい。ZnOが多すぎると化学耐久性が低下しやすくなり、またガラスが失透しやすくなって製造が困難になるおそれがある。 ZnO is a component that reduces the viscosity of glass and suppresses devitrification. The content of ZnO is preferably 0-20%, 0.1-9%, 0.4-7%, especially 0.6-5%. If the amount of ZnO is too large, the chemical durability tends to decrease, and the glass tends to devitrify, which may make production difficult.
 LiOはガラスの粘度を低下させるとともに、失透を抑制する成分である。LiOの含有量は0~10%、0~9%、0~7%、特に0~5%であることが好ましい。LiOが多すぎると化学耐久性が低下しやすくなり、またガラスが失透しやすくなって製造が困難になるおそれがある。 Li 2 O is a component that reduces the viscosity of glass and suppresses devitrification. The content of Li 2 O is preferably 0-10%, 0-9%, 0-7%, particularly 0-5%. If the amount of Li 2 O is too large, the chemical durability tends to decrease, and the glass tends to devitrify, which may make production difficult.
 NaOはガラスの粘度を低下させるとともに、失透を抑制する成分である。NaOの含有量は0~30%、0~25%、0~20%、特に0~15%であることが好ましい。NaOが多すぎると化学耐久性が低下しやすくなり、またガラスが失透しやすくなって製造が困難になるおそれがある。 Na 2 O is a component that reduces the viscosity of glass and suppresses devitrification. The content of Na 2 O is preferably 0-30%, 0-25%, 0-20%, particularly 0-15%. If there is too much Na 2 O, the chemical durability tends to decrease, and the glass tends to devitrify, which may make production difficult.
 KOはガラスの粘度を低下させるとともに、失透を抑制する成分である。KOの含有量は0~30%、0.1~25%、0.5~20%、特に1~15%であることが好ましい。KOが多すぎると化学耐久性が低下しやすくなり、またガラスが失透しやすくなって製造が困難になるおそれがある。 K 2 O is a component that reduces the viscosity of glass and suppresses devitrification. The content of K 2 O is preferably 0-30%, 0.1-25%, 0.5-20%, especially 1-15%. If the K 2 O content is too high, the chemical durability tends to decrease, and the glass tends to devitrify, which may make production difficult.
 Nbは屈折率及びアッベ数を調整できる成分である。Nbの含有量は0~20%、0.1~15%、0.5~10%、特に1~5%であることが好ましい。Nbが多すぎるとガラスが失透しやすくなる。 Nb 2 O 5 is a component that can adjust the refractive index and Abbe number. The content of Nb 2 O 5 is preferably 0-20%, 0.1-15%, 0.5-10%, especially 1-5%. Too much Nb 2 O 5 tends to devitrify the glass.
 WOは屈折率及びアッベ数を調整できる成分であり、またガラスの粘度を低下させる成分である。WOの含有量は0~20%、0.1~15%、0.5~10%、特に1~5%であることが好ましい。WOが多すぎるとガラスが失透しやすくなる。 WO3 is a component that can adjust the refractive index and Abbe number, and is a component that reduces the viscosity of the glass. The content of WO 3 is preferably 0-20%, 0.1-15%, 0.5-10%, especially 1-5%. Too much WO3 tends to devitrify the glass.
 なおNb及びWOは合量で0.1~30%、0.1~25%、1~20%、特に2~10%とすることが好ましい。これらの成分の範囲を上記のように限定すれば、屈折率やアッベ数の調整がしやすくなるとともに、着色しにくくなる。またガラスの失透を抑制しやすくなる。さらに化学耐久性の高いガラスを得やすくなる。 The total amount of Nb 2 O 5 and WO 3 is preferably 0.1-30%, 0.1-25%, 1-20%, particularly 2-10%. If the ranges of these components are limited as described above, it becomes easier to adjust the refractive index and Abbe number, and it becomes less likely to be colored. Moreover, it becomes easy to suppress the devitrification of glass. Furthermore, it becomes easy to obtain glass with high chemical durability.
 TiOは屈折率やアッベ数を調整できる成分であり、ガラスの粘度を低下させる成分である。TiOの含有量は0.1~15%、0.1~12%、0.5~10%、特に1~5%であることが好ましい。TiOが少なすぎると所望の光学特性を得にくくなる。また化学耐久性が低下しやすくなる。一方、TiOが多すぎても所望の光学特性を得にくくなる。またガラスに着色が生じやすくなり、光透過率が低下しやすくなる。 TiO 2 is a component that can adjust the refractive index and Abbe's number, and is a component that reduces the viscosity of the glass. The content of TiO 2 is preferably 0.1-15%, 0.1-12%, 0.5-10%, especially 1-5%. Too little TiO 2 makes it difficult to obtain the desired optical properties. Moreover, chemical durability tends to decrease. On the other hand, too much TiO 2 makes it difficult to obtain desired optical properties. In addition, the glass tends to be colored, and the light transmittance tends to decrease.
 Nb、WO及びTiOの含有量は合量で0.1~30%、0.1~25%、1~20%、特に3~15%であることが好ましい。これらの成分の範囲を上記のように限定すれば、屈折率やアッベ数の調整がしやすく、またガラスの失透を抑制しやすくなる。さらに化学耐久性の高いガラスを得やすくなる。 The total content of Nb 2 O 5 , WO 3 and TiO 2 is preferably 0.1-30%, 0.1-25%, 1-20%, especially 3-15%. By limiting the ranges of these components as described above, it becomes easier to adjust the refractive index and Abbe number, and to suppress devitrification of the glass. Furthermore, it becomes easy to obtain glass with high chemical durability.
 Fは、透過率、特に紫外領域の透過率を高めることが可能な成分である。Fの含有量は、0~25%、0~10%、0~7.5%、0~5%、特に0~3%であることが好ましい。Fが多すぎると化学耐久性が低下しやすい。またFは揮発性が高く、球状化工程S14で昇華した成分がガラス表面に付着し、表面性状を悪化させるおそれがある。 F is a component that can increase the transmittance, especially the transmittance in the ultraviolet region. The content of F is preferably 0-25%, 0-10%, 0-7.5%, 0-5%, particularly 0-3%. Too much F tends to lower the chemical durability. Further, F is highly volatile, and the component sublimated in the spheroidization step S14 may adhere to the glass surface and deteriorate the surface properties.
 なお、上記成分以外に下記の成分を含有させることができる。
 MgO及びSrOは、BaO及びCaOと同様に中間物質としてガラス化を安定化させる成分である。これらの成分の含有量は合量で0~50%、0.1~50%、0.5~40%、特に1~30%であることが好ましい。これらの成分の含有量が多すぎると、化学耐久性が低下しやすくなり、またガラスが失透しやすくなって製造が困難になるおそれがある。
In addition to the above components, the following components may be included.
MgO and SrO, like BaO and CaO, are components that stabilize vitrification as intermediate substances. The total content of these components is preferably 0-50%, 0.1-50%, 0.5-40%, and more preferably 1-30%. If the content of these components is too high, the chemical durability tends to decrease, and the glass tends to devitrify, which may make production difficult.
 <歯科用組成物>
 球状ガラス粒子を含有する歯科用組成物について説明する。歯科用組成物は、球状ガラス粒子をフィラーとする樹脂組成物の一例に該当する。
<Dental composition>
A dental composition containing spherical glass particles is described. A dental composition corresponds to an example of a resin composition containing spherical glass particles as a filler.
 歯科用組成物は、樹脂と球状ガラス粒子とを混合機にて混合することにより得られる。樹脂と球状ガラス粒子の配合比は、質量%で、「95:5」~「25:75」である。樹脂と球状ガラス粒子の配合比は、「90:10」~「40:60」であることが好ましく、「85:15」~「50:50」であることがより好ましく、「80:20」~「60:40」であることがさらに好ましい。球状ガラス粒子の含有量が少なすぎると、歯科用組成物の機械的強度に劣る傾向がある。一方、球状ガラス粒子の含有量が多すぎると、歯科用組成物の粘度が高くなりすぎて流動性が低下し、成形が困難となる。なお、混合機としては、三本ロールミル、自公転ミキサー等が挙げられる。 The dental composition is obtained by mixing resin and spherical glass particles in a mixer. The compounding ratio of the resin and the spherical glass particles is "95:5" to "25:75" in mass %. The compounding ratio of the resin and the spherical glass particles is preferably "90:10" to "40:60", more preferably "85:15" to "50:50", and "80:20". ~ "60:40" is more preferable. If the content of spherical glass particles is too low, the dental composition tends to have poor mechanical strength. On the other hand, if the content of the spherical glass particles is too high, the viscosity of the dental composition will be too high and the fluidity will be reduced, making molding difficult. In addition, a three-roll mill, a rotation-revolution mixer, etc. are mentioned as a mixer.
 樹脂としては、光硬化性樹脂や熱硬化性樹脂等の硬化性樹脂が挙げられ、採用する成形法によって適宜選択することができる。例えば光造形法を使用する場合は液状の光硬化性樹脂を選択すればよく、また粉末焼結法を採用する場合は粉末状の熱硬化性樹脂を選択すればよい。 Resins include curable resins such as photocurable resins and thermosetting resins, and can be appropriately selected according to the molding method to be adopted. For example, when stereolithography is used, a liquid photocurable resin may be selected, and when a powder sintering method is used, a powdered thermosetting resin may be selected.
 光硬化性樹脂としては、例えば、ポリアミド系樹脂、ポリアミドイミド系樹脂、ポリアセタール系樹脂、(メタ)アクリル系樹脂、メラミン樹脂、(メタ)アクリル-スチレン共重合体、ポリカーボネート系樹脂、スチレン系樹脂、ポリ塩化ビニル系樹脂、ベンゾグアナミン-メラミンホルムアルデヒド、シリコーン系樹脂、フッ素系樹脂、ポリエステル系樹脂、架橋(メタ)アクリル系樹脂、架橋ポリスチレン系樹脂、架橋ポリウレタン系樹脂、エポキシ系樹脂等が挙げられる。 Examples of photocurable resins include polyamide-based resins, polyamideimide-based resins, polyacetal-based resins, (meth)acrylic-based resins, melamine resins, (meth)acrylic-styrene copolymers, polycarbonate-based resins, styrene-based resins, Polyvinyl chloride resins, benzoguanamine-melamine formaldehyde, silicone resins, fluorine resins, polyester resins, crosslinked (meth)acrylic resins, crosslinked polystyrene resins, crosslinked polyurethane resins, epoxy resins, and the like.
 熱硬化性樹脂としては、例えば、エポキシ系樹脂、熱硬化型変性ポリフェニレンエーテル系樹脂、熱硬化型ポリイミド系樹脂、ユリア系樹脂、アリル樹脂、ケイ素樹脂、ベンゾオキサジン系樹脂、フェノール系樹脂、不飽和ポリエステル系樹脂、ビスマレイミドトリアジン樹脂、アルキド系樹脂、フラン系樹脂、メラミン系樹脂、ポリウレタン系樹脂、アニリン系樹脂等が挙げられる。 Thermosetting resins include, for example, epoxy resins, thermosetting modified polyphenylene ether resins, thermosetting polyimide resins, urea resins, allyl resins, silicone resins, benzoxazine resins, phenol resins, unsaturated Examples include polyester resins, bismaleimide triazine resins, alkyd resins, furan resins, melamine resins, polyurethane resins, aniline resins, and the like.
 <本実施形態の作用>
 図6~図8を参照して、球状ガラス粒子の実施例と比較例との物性について説明する。
 比較例1-1は、図5に示す粒子製造方法から、分散工程S13を省略した場合の比較例である。比較例1-2は、図5に示す粒子製造方法において、衝突部材531に凝集粒子を衝突させる分散工程S13を、凝集粒子を内径の小さなオリフィスに通す分散工程に置き換えた比較例である。言い換えれば、比較例1-2は、分散工程S13において、衝突式ではなく気流せん断式の分散機を用いた比較例である。
<Action of this embodiment>
The physical properties of the spherical glass particles of Examples and Comparative Examples will be described with reference to FIGS. 6 to 8. FIG.
Comparative Example 1-1 is a comparative example in which the dispersing step S13 is omitted from the particle production method shown in FIG. Comparative Example 1-2 is a comparative example in which, in the particle manufacturing method shown in FIG. 5, the dispersing step S13 of colliding the aggregated particles against the collision member 531 is replaced with a dispersing step of passing the aggregated particles through an orifice having a small inner diameter. In other words, Comparative Example 1-2 is a comparative example using an airflow shear type disperser instead of a collision type disperser in the dispersing step S13.
 実施例1-1,1-2は、図5に示す粒子製造方法に基づく実施例である。実施例1-1,1-2の違いは、分散ノズル50のノズル511の内径の違いである。実施例1-1は、分散ノズル50のノズル511の内径を「5mm」とし、実施例1-2は、分散ノズル50のノズル511の内径を「3.5mm」としている。ノズル511における流路断面積の差に伴い、凝集粒子の衝突部材531に対する衝突速度は、実施例1-2の方が実施例1-1よりも高速となる。 Examples 1-1 and 1-2 are examples based on the particle production method shown in FIG. The difference between Examples 1-1 and 1-2 lies in the inner diameter of the nozzle 511 of the dispersion nozzle 50 . In Example 1-1, the inner diameter of the nozzle 511 of the dispersion nozzle 50 is set to "5 mm", and in Example 1-2, the inner diameter of the nozzle 511 of the dispersion nozzle 50 is set to "3.5 mm". Due to the difference in flow passage cross-sectional area in the nozzle 511, the collision speed of the aggregated particles against the collision member 531 is higher in Example 1-2 than in Example 1-1.
 図6に示すように、球状化工程S14の実施後のD50は、比較例1-1が「1.3μm」、比較例1-2が「1.4μm」、実施例1-1,1-2が「1.3μm」となっている。つまり、比較例1-1,1-2のD50と実施例1-1,1-2のD50とは、略同一である。 As shown in FIG. 6, D50 after performing the spheroidization step S14 is "1.3 μm" for Comparative Example 1-1, "1.4 μm" for Comparative Example 1-2, and Examples 1-1 and 1- 2 is "1.3 μm". That is, D50 of Comparative Examples 1-1 and 1-2 and D50 of Examples 1-1 and 1-2 are substantially the same.
 比較例1-1の比表面積は「27.4m/g」であり、比較例1-2の比表面積は「27.2m/g」であるのに対し、実施例1-1の比表面積は「16.3m/g」であり、実施例1-2の比表面積は「15.9m/g」である。言い換えれば、比較例1-1,1-2の比表面積は、「25.0m/g」よりも大きくなっているのに対して、実施例1-1,1-2の比表面積は、「25.0m/g」以下となっている。これは、実施例1-1,1-2の方が比較例1-1,1-2よりも、球状ガラス粒子がより球状化していることを示している。 The specific surface area of Comparative Example 1-1 is "27.4 m 2 /g" and the specific surface area of Comparative Example 1-2 is "27.2 m 2 /g", whereas the ratio of Example 1-1 is The surface area is "16.3 m 2 /g", and the specific surface area of Example 1-2 is "15.9 m 2 /g". In other words, the specific surface areas of Comparative Examples 1-1 and 1-2 are greater than "25.0 m 2 /g", while the specific surface areas of Examples 1-1 and 1-2 are "25.0 m 2 /g" or less. This indicates that the spherical glass particles are more spherical in Examples 1-1 and 1-2 than in Comparative Examples 1-1 and 1-2.
 比較例1-1,1-2の球状化率は、「1%」未満であるのに対し、実施例1-1の球状化率は「99%」であり、実施例2の球状化率は「98%」である。言い換えれば、比較例1-1,1-2の球状化率は、「1%」未満であるのに対し、実施例1-1,1-2の球状化率は「90%」以上となっている。ここで、本実施形態の球状化率とは、粒子径が「0.5μm~2.0μm」までのガラス粒子を任意の数だけ抽出したときに、任意の数のガラス粒子のうちに占める球状化しているガラス粒子の割合を示す値である。また、球状化している粒子とは、上述した真球度が「0.5」よりも大きい粒子を意味している。 The spheroidization rate of Comparative Examples 1-1 and 1-2 is less than "1%", while the spheroidization rate of Example 1-1 is "99%", and the spheroidization rate of Example 2 is "99%". is "98%". In other words, the spheroidization rates of Comparative Examples 1-1 and 1-2 are less than "1%", while the spheroidization rates of Examples 1-1 and 1-2 are "90%" or more. ing. Here, the spheroidization rate of the present embodiment means that when an arbitrary number of glass particles having a particle diameter of "0.5 μm to 2.0 μm" are extracted, spherical particles occupying an arbitrary number of glass particles It is a value that indicates the proportion of glass particles that have been softened. Further, the spherical particles mean particles having a sphericity greater than "0.5" as described above.
 図7は、球状化工程S14後であって分級前の比較例1-2を撮影した写真であり、図8は、球状化工程S14後であって分級前の実施例1-1を撮影した写真である。図8に示す実施例1-1の方が、図7に示す比較例1-2よりも、球状ガラス粒子の粒径が小さく、ガラス粒子が球状化していることが分かる。 FIG. 7 is a photograph of Comparative Example 1-2 after the spheroidization step S14 and before classification, and FIG. 8 is a photograph of Example 1-1 after the spheroidization step S14 and before classification. It is a photograph. It can be seen that in Example 1-1 shown in FIG. 8, the spherical glass particles have a smaller particle diameter than in Comparative Example 1-2 shown in FIG. 7, and the glass particles are spherical.
 続いて、図9~図12を参照して、球状ガラス粒子のD50と歯科材料の最大谷深さ(Rv)との関係について説明する。
 図9における実施例2-1,2-2、比較例2-1は、次のようにして作製した。まず、光硬化性樹脂(ポリアミドイミド)と所定のD50の球状ガラス粒子を準備した。球状ガラス粒子のガラス組成は、質量%で、SiO:55%、Al:15%、B:15%、KO:3%、CaO:1.5%、ZnO:1.5%、TiO:1.5%、Nb:3.5%、WO:4%である。続いて、光硬化性樹脂と球状ガラス粒子とを、質量%で、70.0対30.0の割合で混合機を用いて混合し、歯科用組成物を得た。その後、歯科用組成物を所定の型に流し込み、365nmの波長の紫外線を20秒間照射した。こうして、歯科用組成物を光硬化させることにより、歯科材料の模型(以下、「歯科材料サンプル」という。)を得た。ここで、歯科材料サンプルの直径は20mmであり、歯科材料サンプルの板厚は0.5mmである。その後、形態修正の研磨後の表面状態を再現するために、得られた歯科材料サンプルの表面を6000番でラップ研磨(10分間)した。なお、実施例2-1,2-2、比較例2-1の球状ガラス粒子は、図5に示す粒子製造方法に基づいて作製した。
Next, the relationship between the D50 of the spherical glass particles and the maximum valley depth (Rv) of the dental material will be described with reference to FIGS. 9 to 12. FIG.
Examples 2-1 and 2-2 and Comparative Example 2-1 in FIG. 9 were produced as follows. First, a photocurable resin (polyamideimide) and spherical glass particles with a predetermined D50 were prepared. The glass composition of the spherical glass particles is, in mass %, SiO2 : 55%, Al2O3 : 15%, B2O3 : 15%, K2O : 3%, CaO: 1.5%, ZnO: 1.5% , TiO2 : 1.5%, Nb2O5 : 3.5%, and WO3 : 4%. Subsequently, the photocurable resin and the spherical glass particles were mixed at a ratio of 70.0 to 30.0% by mass using a mixer to obtain a dental composition. After that, the dental composition was poured into a predetermined mold and irradiated with ultraviolet rays having a wavelength of 365 nm for 20 seconds. Thus, a model of a dental material (hereinafter referred to as a "dental material sample") was obtained by photocuring the dental composition. Here, the diameter of the dental material sample is 20 mm, and the plate thickness of the dental material sample is 0.5 mm. After that, the surface of the obtained dental material sample was lap-polished with No. 6000 (for 10 minutes) in order to reproduce the surface state after the morphological correction polishing. The spherical glass particles of Examples 2-1 and 2-2 and Comparative Example 2-1 were produced according to the particle production method shown in FIG.
 図9に示すように、得られた歯科材料サンプルの表面を、微細形状測定機ET4000A(株式会社小坂研究所製)を用いて最大谷深さ(Rv)を測定した。さらに、図10~図12に示すように、得られた歯科材料サンプルの表面を、電子顕微鏡(SEM)を用いて1000倍の倍率で観察した。 As shown in FIG. 9, the surface of the obtained dental material sample was measured for maximum valley depth (Rv) using a fine shape measuring machine ET4000A (manufactured by Kosaka Laboratory Co., Ltd.). Furthermore, as shown in FIGS. 10 to 12, the surfaces of the obtained dental material samples were observed at a magnification of 1000 using an electron microscope (SEM).
 図9に示すように、実施例2-1,2-2は、球状ガラス粒子のD50が2.0μm以下であったため、歯科材料サンプルの最大谷深さ(Rv)が1.0μm以下となった。一方、比較例2-1は、球状ガラス粒子のD50が2.0μmよりも大きいため、歯科材料サンプルの最大谷深さ(Rv)が1.0μmよりも大きくなった。 As shown in FIG. 9, in Examples 2-1 and 2-2, the D50 of the spherical glass particles was 2.0 μm or less, so the maximum valley depth (Rv) of the dental material sample was 1.0 μm or less. rice field. On the other hand, in Comparative Example 2-1, the maximum valley depth (Rv) of the dental material sample was greater than 1.0 μm because D50 of the spherical glass particles was greater than 2.0 μm.
 また、図10及び図11に示すように、実施例2-1,2-2は、歯科材料サンプルの表面に谷深さ(Rv)が1.0μm以上の凹部が確認できなかった。一方、図12に示すように、比較例2-1は、歯科材料サンプルの表面に谷深さ(Rv)が1.0μm以上の凹部が確認できた。 In addition, as shown in FIGS. 10 and 11, in Examples 2-1 and 2-2, no depressions with a valley depth (Rv) of 1.0 μm or more could be confirmed on the surface of the dental material sample. On the other hand, as shown in FIG. 12, in Comparative Example 2-1, recesses having a valley depth (Rv) of 1.0 μm or more were confirmed on the surface of the dental material sample.
 図9~図12より、球状ガラス粒子のD50が2.0μm以下の場合、歯科材料サンプルの表面から球状ガラス粒子が抜けにくくなるため、歯科材料サンプルの表面に凹部が形成されにくくなる。結果として、歯科材料サンプルの表面の最大谷深さ(Rv)が1.0μm以下になることが示された。 9 to 12, when the D50 of the spherical glass particles is 2.0 μm or less, it becomes difficult for the spherical glass particles to escape from the surface of the dental material sample, so that recesses are less likely to be formed on the surface of the dental material sample. As a result, it was shown that the maximum valley depth (Rv) on the surface of the dental material sample was 1.0 μm or less.
 続いて、図13を参照して、球状ガラス粒子の比表面積と歯科用組成物の粘度との関係について説明する。
 図13における実施例3-1,3-2,3-3及び比較例3-1は次のようにして作製した。まず、光硬化性樹脂(ポリアミドイミド)と所定の球状ガラス粒子を準備した。球状ガラス粒子のガラス組成は、質量%で、SiO:55%、Al:15%、B:15%、KO:3%、CaO:1.5%、ZnO:1.5%、TiO:1.5%、Nb:3.5%、WO:4%である。続いて、光硬化性樹脂と球状ガラス粒子とを、質量%で、70.0対30.0の割合で混合機を用いて混合し、歯科用組成物を得た。
Next, the relationship between the specific surface area of the spherical glass particles and the viscosity of the dental composition will be described with reference to FIG.
Examples 3-1, 3-2, 3-3 and Comparative Example 3-1 in FIG. 13 were produced as follows. First, a photocurable resin (polyamideimide) and predetermined spherical glass particles were prepared. The glass composition of the spherical glass particles is, in mass %, SiO2 : 55%, Al2O3 : 15%, B2O3 : 15%, K2O : 3%, CaO: 1.5%, ZnO: 1.5% , TiO2 : 1.5%, Nb2O5 : 3.5%, and WO3 : 4%. Subsequently, the photocurable resin and the spherical glass particles were mixed at a ratio of 70.0 to 30.0% by mass using a mixer to obtain a dental composition.
 得られた歯科用組成物の粘度を、HAAKEMARSレオメーターRS3000により測定した。
 図13に示すように、球状ガラス粒子の比表面積が25.0m/g以下の実施例3-1~3-3の場合、歯科用組成物の粘度が1500mPa・s以下になった。一方、球状ガラス粒子の比表面積が25.0m/gよりも大きい比較例3-1の場合、歯科用組成物の粘度が1500mPa・sよりも大きくなった。
The viscosity of the resulting dental composition was measured with a HAAKEMARS rheometer RS3000.
As shown in FIG. 13, in Examples 3-1 to 3-3 in which the spherical glass particles had a specific surface area of 25.0 m 2 /g or less, the viscosity of the dental composition was 1500 mPa·s or less. On the other hand, in Comparative Example 3-1, in which the spherical glass particles had a specific surface area of more than 25.0 m 2 /g, the viscosity of the dental composition was more than 1500 mPa·s.
 こうして、実施例3-1~3-3における球状ガラス粒子を含む歯科用組成物を硬化して得られる歯科材料は、泡を含みにくくなる。このため、歯科材料の強度が低下することが抑制される。また、歯科材料と窩洞部分が十分に接着することで、歯科材料が窩洞部分から剥離することが抑制される。 Thus, the dental materials obtained by curing the dental compositions containing spherical glass particles in Examples 3-1 to 3-3 are less likely to contain bubbles. Therefore, the reduction in the strength of the dental material is suppressed. In addition, the sufficient adhesion between the dental material and the cavity prevents the dental material from peeling off from the cavity.
 <本実施形態の効果>
 (1)粒子製造方法は、分散工程S13に続けて球状化工程S14を実施する。このため、粒子製造方法は、凝集粒子ではなく、非球状ガラス粒子に対して、球状化工程S14を実施できる。こうして、粒子製造方法は、微粒径かつ球状化した球状ガラス粒子を得ることができる。
<Effects of this embodiment>
(1) In the method for producing particles, the dispersion step S13 is followed by the spheroidizing step S14. Therefore, in the particle manufacturing method, the spheroidization step S14 can be performed on non-spherical glass particles, not on aggregated particles. Thus, the particle production method can obtain spherical glass particles that are fine and spherical.
 (2)粒子製造方法において、分散工程S13は、分散ノズル50の衝突部材531に凝集粒子を衝突させることにより、凝集粒子を解砕する。このため、分散工程S13は、凝集粒子を一次粒子まで解砕しやすい。 (2) In the particle manufacturing method, the dispersion step S13 causes the aggregated particles to collide with the collision member 531 of the dispersion nozzle 50 to crush the aggregated particles. Therefore, in the dispersing step S13, the aggregated particles are easily crushed to primary particles.
 (3)粒子製造方法において、球状化工程S14は、分散ノズル50から噴射させた非球状ガラス粒子にバーナー30の火炎を当てることで非球状ガラス粒子を加熱する。このため、粒子製造方法は、球状化工程S14において、非球状ガラス粒子の表面を容易に溶融できる。 (3) In the particle manufacturing method, the spheroidizing step S14 heats the non-spherical glass particles jetted from the dispersion nozzle 50 by applying flames from the burner 30 to the non-spherical glass particles. Therefore, in the particle manufacturing method, the surfaces of the non-spherical glass particles can be easily melted in the spheroidizing step S14.
 (4)バーナー30において、バーナーノズル40の燃料噴射口48は、分散ノズル50の粉体噴射口532の周囲を囲うように配置されている。このため、バーナー30は、分散ノズル50から噴射される非球状ガラス粒子の多くを、バーナーノズル40から噴射する火炎で加熱できる。 (4) In the burner 30 , the fuel injection port 48 of the burner nozzle 40 is arranged so as to surround the powder injection port 532 of the dispersion nozzle 50 . Therefore, the burner 30 can heat most of the non-spherical glass particles jetted from the dispersion nozzle 50 with the flame jetted from the burner nozzle 40 .
 (5)球状ガラス粒子は、微粒径かつ球状である。このため、樹脂組成物に含有させたときに、球状ガラス粒子と樹脂との接触界面が少なくなりやすい。その結果、樹脂組成物の内部で光散乱が生じにくくなり、樹脂組成物の光透過特性が低下にくくなる。また、多量の球状ガラス粒子を樹脂に含有させることができる。この場合、樹脂組成物は、機械的な強度が高くなる。さらに、樹脂に球状ガラス粒子が混ざりやすく、樹脂組成物の成形時における成形性が良好となる。 (5) The spherical glass particles are fine and spherical. Therefore, when it is contained in a resin composition, the contact interface between the spherical glass particles and the resin tends to decrease. As a result, light scattering is less likely to occur inside the resin composition, and light transmission characteristics of the resin composition are less likely to deteriorate. Also, a large amount of spherical glass particles can be contained in the resin. In this case, the resin composition has high mechanical strength. Furthermore, the spherical glass particles are easily mixed with the resin, and the moldability of the resin composition is improved.
 (6)球状ガラス粒子の屈折率は、1.48~1.62である。このため、球状ガラス粒子と樹脂との間で屈折率を整合させやすくなる。その結果、樹脂組成物は、適度な光透過特性を得ることができる。 (6) The spherical glass particles have a refractive index of 1.48 to 1.62. Therefore, it becomes easier to match the refractive index between the spherical glass particles and the resin. As a result, the resin composition can obtain moderate light transmission properties.
 <変更例>
 本実施形態は、以下のように変更して実施することができる。本実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
<Change example>
This embodiment can be implemented with the following modifications. This embodiment and the following modified examples can be implemented in combination with each other within a technically consistent range.
 ・球状ガラス粒子は、ガラス組成として、質量%で、SiO:40~80%、Al:1~30%、B:2~20%、BaO+CaO:0~20%、LiO+NaO+KO:0~30%、CsO:0.1~20%、La:0~10%、ZrO:0~5%を含有するものであっても良い。 - Spherical glass particles, as a glass composition, SiO 2 : 40 to 80%, Al 2 O 3 : 1 to 30%, B 2 O 3 : 2 to 20%, BaO + CaO: 0 to 20%, Li 2 O+Na 2 O+K 2 O: 0-30%, Cs 2 O: 0.1-20%, La 2 O 3 : 0-10%, ZrO 2 : 0-5%.
 ・粒子製造装置10において、分散ノズル50は、バーナーノズル40に収容させる必要はない。この場合、バーナーノズル40における燃料の噴射方向と分散ノズル50における非球状ガラス粒子の噴射方向とを交差させてもよい。 · In the particle manufacturing apparatus 10 , the dispersion nozzle 50 does not need to be accommodated in the burner nozzle 40 . In this case, the injection direction of the fuel from the burner nozzle 40 and the injection direction of the non-spherical glass particles from the dispersion nozzle 50 may intersect.
 ・分散ノズル50は、衝突部材531の代わりに凝集粒子を解砕するための構造を備えてもよい。
 ・球状ガラス粒子は、歯科用組成物を除く他の樹脂組成物のフィラーとして利用することもできる。例えば、球状ガラス粒子は、3Dプリンターなどの造形用の樹脂組成物のフィラーとして利用することもできる。ここで、樹脂組成物は、熱硬化性樹脂であってもよいし、紫外線硬化樹脂などの光硬化性樹脂であってもよい。
- The dispersion nozzle 50 may have a structure for crushing aggregated particles instead of the collision member 531 .
- The spherical glass particles can also be used as a filler for resin compositions other than dental compositions. For example, spherical glass particles can also be used as a filler for resin compositions for modeling such as 3D printers. Here, the resin composition may be a thermosetting resin or a photocurable resin such as an ultraviolet curable resin.
 10…粒子製造装置(球状ガラス粒子の製造装置)
 30…バーナー
 40…バーナーノズル
 47…整流管
 48…燃料噴射口
 50…分散ノズル
 51…導管
 53…ノズルカバー
 531…衝突部材
 532…粉体噴射口
 S11…準備工程
 S12…輸送工程
 S13…分散工程
 S14…球状化工程
10 Particle production device (production device for spherical glass particles)
DESCRIPTION OF SYMBOLS 30... Burner 40... Burner nozzle 47... Rectifier tube 48... Fuel injection port 50... Dispersion nozzle 51... Pipe 53... Nozzle cover 531... Collision member 532... Powder injection port S11... Preparation process S12... Transportation process S13... Dispersion process S14 …Spheroidizing process

Claims (9)

  1.  非球状ガラス粒子を主原料とする球状ガラス粒子の製造方法であって、
     凝集した前記非球状ガラス粒子を含む凝集粒子を分散ノズルに通過させることによって、前記凝集粒子を解砕し、前記分散ノズルから前記非球状ガラス粒子を噴射させる分散工程と、
     前記分散ノズルから噴射される前記非球状ガラス粒子を加熱することにより、前記非球状ガラス粒子を球状化させる球状化工程と、を備える
     球状ガラス粒子の製造方法。
    A method for producing spherical glass particles using non-spherical glass particles as a main raw material, comprising:
    a dispersing step of passing agglomerated particles containing the agglomerated non-spherical glass particles through a dispersing nozzle to crush the agglomerated particles and ejecting the non-spherical glass particles from the dispersing nozzle;
    a spheroidizing step of heating the non-spherical glass particles injected from the dispersion nozzle to spheroidize the non-spherical glass particles.
  2.  前記分散工程は、前記分散ノズルが備える衝突部材に前記凝集粒子を衝突させることにより、前記凝集粒子を解砕する
     請求項1に記載の球状ガラス粒子の製造方法。
    2. The method for producing spherical glass particles according to claim 1, wherein in the dispersing step, the aggregated particles are crushed by colliding the aggregated particles with a collision member provided in the dispersion nozzle.
  3.  前記球状化工程は、前記分散ノズルから噴射させた前記非球状ガラス粒子にバーナーの火炎を当てることで前記非球状ガラス粒子を加熱する
     請求項1又は請求項2に記載の球状ガラス粒子の製造方法。
    3. The method for producing spherical glass particles according to claim 1, wherein the spheroidizing step heats the non-spherical glass particles by applying a flame of a burner to the non-spherical glass particles jetted from the dispersion nozzle. .
  4.  分散状態の前記非球状ガラス粒子において、
     レーザー回折散乱式粒度分布測定による累積値が50%であるときの粒子径が2.0μm以下である
     請求項1又は請求項2に記載の球状ガラス粒子の製造方法。
    In the dispersed non-spherical glass particles,
    3. The method for producing spherical glass particles according to claim 1, wherein the particle diameter is 2.0 μm or less when the cumulative value obtained by laser diffraction scattering particle size distribution measurement is 50%.
  5.  凝集した非球状ガラス粒子を含む凝集粒子を加工するバーナーであって、
     燃料を噴射する燃料噴射口を有するバーナーノズルと、
     前記凝集粒子を解砕する分散部と、前記分散部で解砕された前記非球状ガラス粒子を噴射する粉体噴射口と、を有する分散ノズルと、を備え、
     前記燃料噴射口は、前記粉体噴射口の周囲を囲うように配置される
     バーナー。
    A burner for processing agglomerated particles comprising agglomerated non-spherical glass particles, comprising:
    a burner nozzle having a fuel injection port for injecting fuel;
    a dispersing nozzle having a dispersing unit for crushing the aggregated particles and a powder injection port for injecting the non-spherical glass particles crushed by the dispersing unit;
    The burner, wherein the fuel injection port is arranged to surround the powder injection port.
  6.  球状ガラス粒子であって、
     表面に火造り面を有し、
     レーザー回折散乱式粒度分布測定による粒子径分布において、累積値が50%であるときの粒子径が2.0μm以下である
     球状ガラス粒子。
    Spherical glass particles,
    Having a fire-polished surface on the surface,
    Spherical glass particles having a particle size of 2.0 µm or less when the cumulative value is 50% in the particle size distribution measured by laser diffraction scattering particle size distribution measurement.
  7.  比表面積が25.0m/g以下である
     請求項6に記載の球状ガラス粒子。
    The spherical glass particles according to Claim 6, which have a specific surface area of 25.0 m2 /g or less.
  8.  ガラス組成として質量%で、SiO:20~80%、Al:1~30%、B:0~20%、BaO+CaO:0~40%、ZnO:0~20%、F:0~25%を含有する
     請求項6又は請求項7に記載の球状ガラス粒子。
    SiO 2 : 20 to 80%, Al 2 O 3 : 1 to 30%, B 2 O 3 : 0 to 20%, BaO + CaO: 0 to 40%, ZnO: 0 to 20%, F : 0 to 25% of the spherical glass particles according to claim 6 or 7.
  9.  請求項6又は請求項7に記載の球状ガラス粒子と、
     光硬化性樹脂と、を備える
     歯科用組成物。
    the spherical glass particles according to claim 6 or claim 7;
    A dental composition comprising a photocurable resin.
PCT/JP2022/036116 2021-10-28 2022-09-28 Method for manufacturing spherical glass particles, burner, spherical glass particles and composition for dental use WO2023074234A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-176465 2021-10-28
JP2021176465 2021-10-28

Publications (1)

Publication Number Publication Date
WO2023074234A1 true WO2023074234A1 (en) 2023-05-04

Family

ID=86159784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036116 WO2023074234A1 (en) 2021-10-28 2022-09-28 Method for manufacturing spherical glass particles, burner, spherical glass particles and composition for dental use

Country Status (1)

Country Link
WO (1) WO2023074234A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06144873A (en) * 1991-01-11 1994-05-24 Carl Zeiss:Fa Method of preparing highly pure fine glass powder
JPH0748118A (en) * 1993-06-02 1995-02-21 Nippon Sanso Kk Burner for producing inorganic spherical particle
WO2010016229A1 (en) * 2008-08-04 2010-02-11 大陽日酸株式会社 Burner for producing inorganic spherical particles
JP2016204223A (en) * 2015-04-27 2016-12-08 日本電気硝子株式会社 Filler powder and method for producing the same
JP2017119591A (en) * 2015-12-28 2017-07-06 日本電気硝子株式会社 Production method of solid molding
WO2021049269A1 (en) * 2019-09-13 2021-03-18 株式会社ジーシー Glass powder and chemical polymerization initiator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06144873A (en) * 1991-01-11 1994-05-24 Carl Zeiss:Fa Method of preparing highly pure fine glass powder
JPH0748118A (en) * 1993-06-02 1995-02-21 Nippon Sanso Kk Burner for producing inorganic spherical particle
WO2010016229A1 (en) * 2008-08-04 2010-02-11 大陽日酸株式会社 Burner for producing inorganic spherical particles
JP2016204223A (en) * 2015-04-27 2016-12-08 日本電気硝子株式会社 Filler powder and method for producing the same
JP2017119591A (en) * 2015-12-28 2017-07-06 日本電気硝子株式会社 Production method of solid molding
WO2021049269A1 (en) * 2019-09-13 2021-03-18 株式会社ジーシー Glass powder and chemical polymerization initiator

Similar Documents

Publication Publication Date Title
KR101902587B1 (en) Method for making hollow microspheres
CN106007671B (en) 3D printing ceramic composite and preparation method thereof
RU2586128C2 (en) Hollow microspheres
JP3633091B2 (en) Method for producing minute inorganic spherical solid body
US20110152057A1 (en) Hollow microspheres
US9266764B2 (en) Hollow microspheres and method of making hollow microspheres
JP2007535463A (en) High reflectivity glass beads for high reverse reflectivity surfaces
CN1938237A (en) X-ray opaque glass, method for the production and use thereof
WO2023074234A1 (en) Method for manufacturing spherical glass particles, burner, spherical glass particles and composition for dental use
JP2022022290A (en) Resin composition
KR20110047192A (en) Method for preparing inorganic spheroidized particles
JP2019112283A (en) Method for producing glass filler
WO2021049371A1 (en) Resin composition for three-dimensional shaping
WO2017221599A1 (en) Glass filler and method for production of same
SG184177A1 (en) Method for producing semiconductor encapsulating resin composition and pulverizing apparatus
JP7094490B2 (en) Glass, glass filler, and resin mixture
JP7101937B2 (en) Resin composition for three-dimensional modeling
US8431627B2 (en) Filler material for crowns, crown material containing same, and method of manufacturing thereof
JP2013193908A (en) Glass melting furnace, method for producing melted glass, and apparatus for producing glass product, and method for producing glass product
WO2022070971A1 (en) Glass filler powder
JPH0526531B2 (en)
Velez et al. Processing of yttrium aluminosilicate (YAS) glasses for dental composites
JP7249811B2 (en) METHOD FOR MANUFACTURING METAL POWDER MATERIAL
JPH11199249A (en) Production of spheroidized particle
JPS63201039A (en) Production of fine glass powder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22886566

Country of ref document: EP

Kind code of ref document: A1