WO2022153931A1 - Method for producing liquid composition and composition - Google Patents

Method for producing liquid composition and composition Download PDF

Info

Publication number
WO2022153931A1
WO2022153931A1 PCT/JP2022/000323 JP2022000323W WO2022153931A1 WO 2022153931 A1 WO2022153931 A1 WO 2022153931A1 JP 2022000323 W JP2022000323 W JP 2022000323W WO 2022153931 A1 WO2022153931 A1 WO 2022153931A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
polymer
composition
tetrafluoroethylene
aromatic
Prior art date
Application number
PCT/JP2022/000323
Other languages
French (fr)
Japanese (ja)
Inventor
敦美 光永
剛 長谷川
満 関
創太 結城
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to CN202280009889.2A priority Critical patent/CN116724077A/en
Priority to KR1020237022146A priority patent/KR20230132449A/en
Priority to JP2022575562A priority patent/JPWO2022153931A1/ja
Publication of WO2022153931A1 publication Critical patent/WO2022153931A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2479/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron

Definitions

  • the present invention relates to a method for producing a liquid composition and a liquid composition containing at least one of tetrafluoroethylene polymer particles and an aromatic resin or a predetermined inorganic particle.
  • Tetrafluoroethylene-based polymers such as polytetrafluoroethylene (PTFE) have excellent physical properties such as electrical properties, water and oil repellency, chemical resistance, and heat resistance, and are used in various industrial applications such as printed circuit boards.
  • PTFE polytetrafluoroethylene
  • a coating agent used to impart the physical properties to the surface of the base material a liquid composition containing particles of a tetrafluoroethylene polymer and a liquid dispersion medium such as water is known. Since a molded product having excellent electrical characteristics such as low dielectric constant and low dielectric loss tangent can be formed from such a liquid composition, the liquid composition is a material for forming a dielectric layer of a printed circuit board corresponding to a frequency in a high frequency band. It is attracting attention as.
  • Patent Document 1 discloses a polyimide-PTFE blend film prepared by mixing PTFE particles with a polyamic acid varnish and subjecting the PTFE particles to an imidization process.
  • Patent Document 2 a polyimide-PTFE produced by producing a polyamic acid varnish, taking out a part thereof, mixing it with PTFE particles, mixing the remaining varnish with the varnish, and subjecting it to a heat casting method. Blended films are disclosed.
  • Patent Document 3 proposes the use of a thickener for the purpose of improving the coatability of such a liquid composition.
  • Patent Document 4 proposes the use of a polyamide-imide resin and a polyetherimide for the purpose of improving the adhesiveness of a molded product formed from such a liquid composition. Further, since the tetrafluoroethylene polymer has extremely low dispersion stability, various proposals have been made from the viewpoint of obtaining a liquid composition having excellent dispersion stability.
  • Patent Document 5 discloses a liquid composition containing PTFE particles, which is further mixed with inorganic particles of ceramics, from the viewpoint of improving dispersion stability.
  • Tetrafluoroethylene-based polymer has low surface tension, does not easily interact with other components, and has extremely low dispersion stability. Therefore, in the aspect of the prior art document, the dispersion stability of the obtained mixture (composition) is low and it is easily altered, so that the uniformity and denseness of the component distribution of the molded product obtained from the mixture are lowered and the physical properties are exhibited.
  • the present inventors are aware of the problem that it is difficult to do. Furthermore, the present inventors have also found that such a problem becomes remarkable when a molded product having a fine or complicated shape such as a base material having a convex portion is formed from such a mixture (composition).
  • the present inventors have found that in the production of a liquid composition containing particles of a tetrafluoroethylene polymer and at least one of an aromatic resin or a specific inorganic particle, they are mixed under specific conditions. It was found that a liquid composition having excellent dispersion stability, uniformity and handleability can be obtained. Further, specifically, it was found that the content of the tetrafluoroethylene polymer particles and the aromatic resin in the composition can be increased.
  • the liquid composition is not only suitable for forming a dense molded product, but also has excellent low dielectric loss tangent and low linear expansion property, and is suitable for forming a molded product having a fine or complicated shape. They found out.
  • liquid composition is suitable for forming a dense molded product having excellent low dielectric loss tangent and low line expansion property.
  • such a liquid composition is a dense molded product having a high degree of physical properties of a tetrafluoroethylene polymer and inorganic particles and having excellent low dielectric loss tangent, low linear expansion property, thermal conductivity and the like.
  • the present inventors have also found that it is suitable for formation.
  • An object of the present invention is a method for producing a composition containing at least one of tetrafluoroethylene polymer particles and an aromatic resin or a predetermined inorganic particle, which is excellent in dispersion stability, uniformity and handleability, preferably a resist. It is the provision of such a composition, which is a composition.
  • an object of the present invention is a method for producing a liquid composition containing tetrafluoroethylene polymer particles and an aromatic resin, which is excellent in dispersion stability and handleability, preferably a resist composition.
  • an object of the present invention is a liquid composition containing particles of a tetrafluoroethylene polymer, an aromatic polymer, a predetermined thickening polymer, and water, and having excellent dispersion stability, uniformity, and handleability.
  • the present invention provides a method for producing the same, such a liquid composition, and a method for producing a laminate using the liquid composition.
  • an object of the present invention is a composition capable of forming a liquid composition having excellent dispersion stability, uniformity and handleability, preferably a lumpy and clay-like solidified product (powder or wet powder). ) Is provided.
  • an object of the present invention is a liquid composition containing particles of a tetrafluoroethylene-based polymer and predetermined inorganic particles, with little aggregation of the inorganic particles, and excellent dispersion stability, uniformity and handleability.
  • the present invention provides a production method and a method for producing a laminate using the obtained liquid composition.
  • the present invention has the following aspects. ⁇ 1> A stirring mechanism by thin film swirling or a stirring mechanism by rotation and revolution of tetrafluoroethylene polymer particles, at least one of aromatic resin or new moth hardness of 12 or less inorganic particles, and a liquid compound. To obtain a liquid composition containing the particles of the tetrafluoroethylene-based polymer, at least one of the aromatic resin or the inorganic particles having a new Morse hardness of 12 or less, and the liquid compound, the mixture is mixed in a tank provided with the above. Method for producing the composition.
  • the production method of ⁇ 1> which obtains a liquid composition containing the aromatic resin.
  • ⁇ 3> The method for producing ⁇ 2>, wherein the tetrafluoroethylene polymer is a tetrafluoroethylene polymer having an oxygen-containing polar group containing a unit based on perfluoro (alkyl vinyl ether).
  • ⁇ 4> The production method of ⁇ 2> or ⁇ 3>, wherein the ratio of the mass of the particles of the tetrafluoroethylene-based polymer to the mass of the aromatic resin is 0.5 to 10.
  • ⁇ 5> The total content of the tetrafluoroethylene polymer particles and the aromatic resin is 50% by mass or more, and the tetrafluoroethylene polymer particles and the aromatic resin varnish are contained.
  • a liquid composition containing the tetrafluoroethylene polymer particles, the aromatic resin, the thickening polymer, and water is obtained by mixing in a tank equipped with a stirring mechanism by rotation and revolution.
  • Manufacturing method ⁇ 7> The particles of the tetrafluoroethylene polymer, the aromatic resin, the thickening polymer, and the water are mixed in a stirring mechanism by thin film swirling or in a tank equipped with a stirring mechanism by rotation and revolution.
  • the production method of ⁇ 6> wherein water is further mixed to obtain the liquid composition.
  • the aromatic resin is an aromatic polyimide, an aromatic polyamideimide, an aromatic polyetherimide, or a precursor thereof.
  • the tetrafluoroethylene polymer contains particles of the tetrafluoroethylene polymer, an aromatic polymer, at least one thickening polymer selected from the group consisting of polar vinyl polymers and polysaccharides, and water.
  • ⁇ 12> The particles of the tetrafluoroethylene-based polymer, the inorganic particles having a new moth hardness of 12 or less, and the liquid compound are mixed by swirling a thin film, and the particles of the tetrafluoroethylene-based polymer, the inorganic particles, and the liquid compound are mixed.
  • the production method of ⁇ 1> which obtains a liquid composition containing a liquid compound.
  • the production method of ⁇ 12>, wherein the tetrafluoroethylene-based polymer particles include heat-meltable tetrafluoroethylene-based polymer particles and non-heat-meltable tetrafluoroethylene-based polymer particles.
  • ⁇ 14> The method for producing ⁇ 12> or ⁇ 13>, wherein the inorganic particles are boron nitride particles or silica particles.
  • ⁇ 15> The production method according to any one of ⁇ 12> to ⁇ 14>, wherein the viscosity of the liquid composition is 10,000 mPa ⁇ s or less.
  • a liquid composition containing tetrafluoroethylene polymer particles and an aromatic resin which are excellent in dispersion stability and handleability.
  • Such a composition is excellent in physical properties such as electrical characteristics, and is useful as, for example, a solder resist composition and a constituent material of a printed circuit board.
  • a liquid composition containing particles of a tetrafluoroethylene-based polymer, an aromatic polymer, a predetermined thickening polymer, and water, which are excellent in dispersion stability, uniformity, and handleability.
  • a liquid composition is excellent in physical properties such as electrical characteristics, and is useful as a constituent material of a printed circuit board, for example.
  • a composition capable of forming a liquid composition having excellent dispersion stability, uniformity and handleability.
  • a liquid composition containing tetrafluoroethylene polymer particles and predetermined inorganic particles which are excellent in dispersion stability and handleability.
  • Such a liquid composition can form a molded product having excellent physical properties such as electrical characteristics, and is useful as a material for a printed circuit board, for example.
  • the "tetrafluoroethylene-based polymer” is a polymer containing a unit (hereinafter, also referred to as "TFE unit”) based on tetrafluoroethylene (hereinafter, also referred to as "TFE”), and is also simply referred to as "F polymer”. I will write it down.
  • the "average particle diameter (D50)” is a volume-based cumulative 50% diameter of an object (particle and filler) determined by a laser diffraction / scattering method. That is, the particle size distribution is measured by the laser diffraction / scattering method, the cumulative curve is obtained with the total volume of the group of objects as 100%, and the particle diameter is the point at which the cumulative volume is 50% on the cumulative curve.
  • the D50 of the object is obtained by dispersing the object in water and analyzing it by a laser diffraction / scattering method using a laser diffraction / scattering type particle size distribution measuring device (LA-920 measuring device manufactured by HORIBA, Ltd.). ..
  • the "average particle size (D90)" is the cumulative volume particle size of the particles, and is the volume-based cumulative 90% diameter of the particles obtained in the same manner as in "D50".
  • the "heat-meltable resin” is a melt-fluid resin having a melt flow rate of 1 to 1000 g / 10 minutes at a temperature 20 ° C. or higher higher than the melt temperature of the resin under a load of 49 N. means.
  • non-thermally meltable resin means a non-meltable fluid resin in which there is no temperature at which the melt flow rate is 1 to 1000 g / 10 minutes under the condition of a load of 49 N.
  • the “melting temperature” is the temperature corresponding to the maximum value of the melting peak of the polymer measured by the differential scanning calorimetry (DSC) method.
  • the “polymer melting temperature (melting point)” is the temperature corresponding to the maximum value of the polymer melting peak measured by the differential scanning calorimetry (DSC) method.
  • “Viscosity” is the viscosity of a liquid composition measured at 25 ° C. and a rotation speed of 30 rpm using a B-type viscometer.
  • the measurement is repeated 3 times, and the average value of the measured values for 3 times is used.
  • the "thixotropic ratio” is a value calculated by dividing the viscosity ⁇ 1 of the liquid composition measured under the condition of a rotation speed of 30 rpm by the viscosity ⁇ 2 measured under the condition of a rotation speed of 60 rpm. Each viscosity measurement is repeated 3 times, and the average value of the measured values for 3 times is used.
  • the "new Mohs hardness” is a hardness obtained by measuring the hardness of 15 kinds of reference minerals.
  • the reference minerals are talc, gypsum, talite, fluorite, phosphorous stone, regular length stone, molten quartz, crystal (quartz), and yellow jade (topaz) in the order of soft mineral (new Mohs hardness 1) to hard mineral (new Mohs hardness 15).
  • the hardness is determined by the presence or absence of scratches when the target sample is rubbed with these reference minerals.
  • the new Mohs hardness of the target sample which is not scratched by calcite and is scratched by fluorite, is 3.5.
  • the "unit" in a polymer means an atomic group based on the monomer formed by polymerization of the monomer.
  • the unit may be a unit directly formed by a polymerization reaction, or may be a unit in which a part of the unit is converted into another structure by processing a polymer.
  • the unit based on the monomer a is also simply referred to as “monomer a unit”.
  • the production method of the present invention includes F polymer particles (hereinafter, also referred to as “F particles”) and aromatic resin or new moth hardness of 12 or less inorganic particles (hereinafter, also referred to as “F particles”).
  • F particles F polymer particles
  • F particles aromatic resin or new moth hardness of 12 or less inorganic particles
  • This inorganic particle and the liquid compound are mixed in a tank equipped with a stirring mechanism by thin film swirling or a stirring mechanism by rotation and revolution, and F particles and aroma are mixed.
  • This is a method for obtaining a liquid composition containing at least one of a group resin or the present inorganic particles and a liquid compound (hereinafter, also referred to as “the present liquid composition”).
  • the F polymer in the present invention may be heat-meltable or non-heat-meltable.
  • its melting temperature is preferably 200 ° C. or higher, more preferably 240 ° C. or higher, still more preferably 260 ° C. or higher.
  • the melting temperature of the F polymer is preferably 325 ° C. or lower, more preferably 320 ° C. or lower.
  • the melting temperature of the F polymer is particularly preferably 200 to 320 ° C.
  • the glass transition point of the F polymer is preferably 50 ° C. or higher, more preferably 75 ° C. or higher.
  • the glass transition point of the F polymer is preferably 150 ° C. or lower, more preferably 125 ° C. or lower.
  • the surface tension of the F polymer is preferably 16 to 26 mN / m, more preferably 16 to 20 mN / m.
  • the surface tension of the F polymer can be measured by placing a droplet of a wetting index reagent (manufactured by Wako Pure Chemical Industries, Ltd.) on a flat plate made of the F polymer.
  • the fluorine content of the F polymer is preferably 70% by mass or more, more preferably 72 to 76% by mass.
  • the F polymer having a high fluorine content is excellent in physical properties such as electrical properties, but has a low surface tension, and the dispersion stability in a liquid compound tends to be lowered. , The dispersion stability of the F polymer is likely to be improved.
  • F-polymers are based on polytetrafluoroethylene (PTFE), polymers containing TFE units and ethylene-based units, polymers containing TFE units and propylene-based units, TFE units and perfluoro (alkyl vinyl ether) (PAVE).
  • Polymers containing units (PAVE units) (PFA) PFA
  • polymers containing TFE units and units based on hexafluoropropylene FEP
  • polymers containing TFE units and units based on fluoroalkylethylene TFE units and chlorotrifluoro
  • Polymers containing units based on ethylene can be mentioned, with PFA or FEP being preferred, and PFA being more preferred.
  • the polymer may further contain units based on other comonomeres.
  • CF 2 CFOCF 3
  • CF 2 CFOCF 2 CF 3
  • CF 2 CFOCF 2 CF 3
  • PPVE CFOCF 2 CF 2 CF 3
  • the PTFE may be a non-heat-meltable PTFE or a heat-meltable PTFE.
  • the F polymer preferably has an oxygen-containing polar group. In this case, it becomes easy to form microspherulites at the molecular assembly level, the wettability of F particles is improved, and the effect of the present invention is highly likely to be exhibited.
  • the oxygen-containing polar group may be contained in a unit in the F polymer, or may be contained in the terminal group of the main chain of the F polymer.
  • the oxygen-containing polar group is preferably a hydroxyl group-containing group, a carbonyl group-containing group and a phosphono group-containing group, and from the viewpoint of dispersion stability of the present liquid composition, a hydroxyl group-containing group and a carbonyl group-containing group are more preferable, and a carbonyl group-containing group is preferable. Is even more preferable.
  • the hydroxyl group-containing group is preferably an alcoholic hydroxyl group-containing group, more preferably -CF 2 CH 2 OH or -C (CF 3 ) 2 OH.
  • the carbonyl group-containing group is a group containing a carbonyl group (> C (O)), a carboxyl group, an alkoxycarbonyl group, an amide group, an isocyanate group, a carbamate group (-OC (O) NH 2 ), and an acid anhydride residue.
  • a group (-C (O) OC (O)-), an imide residue (-C (O) NHC (O)-etc.) or a carbonate group (-OC (O) O-) is preferred, and an acid anhydride residue. Is more preferable.
  • the F particles are likely to interact with the inorganic particles and the liquid compound, and the liquid composition is likely to have excellent liquid physical characteristics such as dispersion stability.
  • the F polymer is preferably a polymer having a carbonyl group-containing group containing TFE units and PAVE units, and more preferably a polymer containing units based on TFE units, PAVE units and a monomer having a carbonyl group-containing group. It is more preferable that the polymer contains 90 to 99 mol%, 0.5 to 9.97 mol%, 0.01 to 3 mol% of these units in this order with respect to all the units. The presence of a carbonyl group-containing group is preferable from the viewpoint of further improving the affinity and adhesion of the F polymer.
  • the number of carbonyl group-containing groups in the F polymer is preferably 10 to 5000, more preferably 100 to 3000, and more preferably 800, per 1 ⁇ 10 6 carbon atoms in the main chain. ⁇ 1500 pieces are more preferable.
  • the number of carbonyl group-containing groups in the F polymer can be quantified by the composition of the polymer or the method described in International Publication No. 2020/145133.
  • the monomer having a carbonyl group-containing group is preferably itaconic anhydride, citraconic anhydride or 5-norbornene-2,3-dicarboxylic acid anhydride (hereinafter, also referred to as “NAH”). Specific examples of such polymers include the polymers described in WO 2018/16644.
  • the D50 of the F particles in the present invention is preferably 0.1 to 25 ⁇ m.
  • the D50 of the F particles is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less, and even more preferably 8 ⁇ m or less.
  • the D50 of the F particles is preferably 0.2 ⁇ m or more, more preferably 0.5 ⁇ m or more, and even more preferably 1 ⁇ m or more. In D50 in this range, the fluidity and dispersion stability of F particles tend to be good. From the viewpoint of dispersion stability, the specific surface area of the F particles is preferably 1 to 25 m 2 / g, more preferably 1 to 8 m 2 / g.
  • the F particles preferably contain particles of a heat-meltable F polymer and particles of a non-heat-meltable F polymer, and the F polymer having a melting temperature of 200 to 320 ° C. (preferably). More preferably contains particles of (a polymer having an oxygen-containing polar group) containing the above-mentioned TFE units and PAVE units) and particles of non-heat-meltable PTFE. Further, it is more preferable that the content of the latter particles is larger than the content of the former particles. In this case, the F polymer is appropriately fibrillated while maintaining its physical properties, and the inorganic particles are likely to be supported in the molded product formed from the liquid composition, and the strength of the molded product is likely to be improved.
  • the ratio of the former particles to the total of the former particles and the latter particles is preferably 50% by mass or less, more preferably 25% by mass or less. Further, the ratio in this case is preferably 0.1% by mass or more, and more preferably 1% by mass or more.
  • Such a liquid composition is not only easy to be excellent in dispersion stability, uniformity and handleability, but is also easy to form an adhesive molded product having excellent physical properties based on non-thermally meltable PTFE.
  • the D50 of the F polymer particles having a melting temperature of 200 to 320 ° C. is 0.1 to 1 ⁇ m
  • the D50 of the non-thermally meltable PTFE particles is 0.1 to 1 ⁇ m, that is, the melting temperature. It is preferable that the D50 of the F polymer particles having a temperature of 200 to 320 ° C. is 1 to 4 ⁇ m and the D50 of the non-thermally meltable PTFE particles is 0.1 to 1 ⁇ m.
  • the F particles may contain a resin other than the F polymer, but it is preferable that the F polymer is the main component.
  • the content of the F polymer in the F particles is preferably 80% by mass or more, more preferably 100% by mass.
  • the resin include heat-resistant resins such as aromatic polyester, polyamide-imide, (thermoplastic) polyimide, polyphenylene ether, polyphenylene oxide, and maleimide.
  • the content of F particles in the liquid composition is preferably 20% by mass or more, more preferably 30% by mass or more, based on the total mass of the liquid composition.
  • the content of F particles is preferably 80% by mass or less, more preferably 70% by mass or less, based on the total mass of the liquid composition.
  • this method 1 particles of a tetrafluoroethylene polymer (hereinafter, also referred to as “F polymer”) (hereinafter, also referred to as “F particles”) and an aromatic resin (hereinafter, “first aromatic resin”)
  • F polymer tetrafluoroethylene polymer
  • first aromatic resin an aromatic resin
  • the composition of the present invention contains F particles and a first aromatic resin, and the total content of the F particles and the first aromatic resin. Is 50% by mass or more, and the mass ratio of the content of F particles to the first aromatic resin is 0.5 to 10.
  • the present composition 1 is used by mixing with a varnish of an aromatic resin (hereinafter, also referred to as "second aromatic resin”), and is preferably a composition used for a negative type resist composition. be.
  • the composition obtained by the present method 1, for example, the present composition 1, is excellent in dispersion stability and handleability.
  • the reason and its mechanism of action are not always clear, but it is estimated as follows, for example.
  • a specific stirring means that is, a treatment liquid containing F particles and an aromatic resin is moved at high speed in the container, and a slip stress is generated between the liquid film and the inner wall of the container.
  • the F particles and the aromatic resin are mixed while suppressing the alteration of the F particles and loosening the secondary particles of the F particles.
  • a composition having excellent dispersion stability can be obtained, and further, a composition having excellent handleability even if the contents of the F polymer and the first aromatic resin are increased (for example, It is considered that the present composition 1.) was obtained.
  • this composition 1 it is possible to form a molded product having a high degree of physical properties of the F polymer and the first aromatic resin and having excellent electrical characteristics and the like.
  • the aromatic resin in the varnish of the first aromatic resin used in the present invention is preferably an aromatic resin having an oxygen-containing polar group.
  • the first aromatic resin include aromatic polyimide, aromatic polyimide precursor (polyamic acid), aromatic polyamideimide, aromatic polyamideimide precursor, epoxy resin, phenol resin, and aromatic polyester resin. Examples thereof include (liquid crystal aromatic polyester and the like), aromatic polyester amide (liquid liquid and aromatic polyester amide and the like), polyphenylene ether, and aromatic maleimide resin. Of these, an aromatic resin having an epoxy group or a curable aromatic resin having a carboxyl group and an acid value of 150 mgKOH / g or less is more preferable.
  • aromatic resins having an epoxy group examples include phenol novolac type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AF type epoxy resin, naphthalene type epoxy resin, trisphenol type epoxy resin, and tert-butyl catechol.
  • examples thereof include epoxy resins such as type epoxy resins, aminophenol type epoxy resins, biphenyl type epoxy resins, and biphenyl aralkyl type epoxy resins. These epoxy resins may be solid (solid at 40 ° C.), semi-solid (solid at 20 ° C. and liquid at 40 ° C.), or liquid (liquid at 20 ° C.). These epoxy resins may be used alone or in combination of two or more.
  • the glass transition temperature (Tg) of the cured product obtained by curing the present composition 1 is high, and the coefficient of linear expansion is low. Therefore, it tends to have excellent crack resistance.
  • the glass transition temperature of the cured product tends to be high and the heat resistance tends to be excellent, and when the liquid epoxy resin is contained, the flexibility of the dry film tends to be excellent.
  • the curable aromatic resin having a carboxyl group and having an acid value of 150 mgKOH / g or less is preferably a photosensitive resin having a carboxyl group and an alkali-soluble resin.
  • a photosensitive resin preferably has an ethylenically unsaturated double bond in the molecule, and more preferably has a (meth) acryloyloxy group.
  • a (meth) acryloyloxy group is a term which collectively refers to an acryloyloxy group, a methacryloyloxy group, and both of them.
  • a carboxyl group-containing phenol resin is preferable, and a polyfunctional phenol resin (for example, a polyfunctional novolac type epoxy resin) which is epoxidized by reacting a phenolic hydroxyl group with epichlorohydrin is mixed with (meth) acrylic.
  • a carboxyl group-containing phenol resin in which a dibasic acid anhydride is added to a hydroxyl group existing in the side chain after the acid is reacted is more preferable.
  • Such a carboxyl group-containing phenol resin is preferable because it easily interacts with an F polymer (particularly, an F polymer having a polar functional group).
  • the acid value of the first aromatic resin is preferably 120 mgKOH / g or less, more preferably 90 mgKOH / g or less.
  • the acid value is preferably 40 mgKOH / g or more, and more preferably 45 mgKOH / g or more.
  • the first aromatic resin having such an acid value highly interacts with the F polymer to enhance the dispersion stability of the F particles in the composition 1.
  • the first aromatic resin has good alkali developability, and it is easy to obtain a molded product (convex portion) having a desired complicated shape.
  • Examples of the solvent constituting the varnish of the first aromatic resin include N-methyl-2-pyrrolidone and cyclohexanone.
  • the content of the first aromatic resin in the varnish of the first aromatic resin is preferably in the range of 20 to 90% by mass.
  • the F particles and the varnish of the first aromatic resin are rotated by a cylindrical stirring tank and a cylindrical portion having a plurality of holes formed inside the inner wall surface of the stirring tank. It is placed in the stirring tank of a stirrer provided with a portion, and is stirred while spreading in a thin cylindrical shape on the inner wall surface of the stirring tank by the centrifugal force due to the rotation of the rotating portion, and the F polymer and the first aromatic property.
  • a composition containing a resin is obtained.
  • Such a stirring means may also be referred to as a thin film swirling high-speed mixer, and the F particles and the first aromatic resin are loosened by the above-mentioned action mechanism without deteriorating the F particles themselves. Can be mixed.
  • Such a composition, particularly the present composition 1, is a composition having excellent dispersion stability even when further mixed with a second aromatic resin varnish and, if necessary, an optional additive component such as an inorganic filler. Can be formed.
  • the inner wall surface of the cylindrical stirring tank may be provided with irregularities.
  • the combination of the height and shape of the unevenness is provided with a depth (height) of about several ⁇ m to several hundred ⁇ m, a grid-like groove, or dimples, and may be appropriately replaceable.
  • the inner wall surface of the stirring tank may be divided into equal parts, for example, upper, middle and lower parts, and different uneven patterns may be formed.
  • the material of the stirring tank for example, stainless steel or ceramic, which can be processed to form unevenness and is not easily worn, can be used.
  • the stirring tank may be provided with a plurality of inlets for components constituting the stirring target. That is, when producing the composition by the present method 1, a mixture in which F particles and the varnish of the first aromatic resin are premixed may be collectively supplied into the stirring tank, and the F particles and the first aromatic resin may be supplied together.
  • the aromatic resin varnish of the above may be separately supplied into the stirring tank.
  • the stirring tank may be provided with a discharge port of a mixture in which the components constituting the stirring target are mixed. Therefore, this method 1 can be carried out by either a batch method or a continuous method.
  • the rotating portion having a cylindrical portion having a plurality of holes formed inside the inner wall surface of the stirring tank faces the inner wall surface of the stirring tank with a slight gap of about 1 to 10 mm.
  • the peripheral speed and stirring time of the rotating part can be set as appropriate.
  • the supplied F particles and the varnish of the first aromatic resin spread over the gap between the inner wall surface of the stirring tank and the outer peripheral surface of the cylindrical portion of the rotating portion to form a film, which accompanies the rotation of the rotating portion. And swirl at high speed in the stirring tank. At this time, high-level dispersion is achieved by receiving not only shear stress but also shear stress.
  • the amount of the F particles and the varnish of the first aromatic resin used is such that the ratio of the mass of the F particles to the mass of the first aromatic resin in the varnish is 0.5 to 10.
  • the range is preferable, and the range of 1 to 3 is more preferable.
  • the present composition 1 contains F particles and a varnish of a first aromatic resin, and the total content of the F particles and the first aromatic resin is 50% by mass or more, and the first The composition has a mass ratio of the content of F particles to the aromatic resin of No. 1 of 0.5 to 10, and is used by being mixed with the varnish of the second aromatic resin.
  • the present composition 1 is a composition having a high content of resin solid content and a high content of F polymer in the resin solid content, and is excellent in dispersion stability and handleability. This tendency becomes remarkable when the F particles and the F polymer in the present composition 1 are in the above-mentioned ranges, particularly when the F polymer is a polymer having an oxygen-containing polar group.
  • the present composition 1 is preferably prepared by stirring the F particles and the varnish of the first aromatic resin by stirring using the above-mentioned thin film swirling high-speed mixer. In this case as well, this tendency tends to be remarkable.
  • the present composition 1 may further contain a surfactant as a dispersant from the viewpoint of further improving dispersibility and handleability.
  • the surfactant is preferably nonionic.
  • the hydrophilic moiety of the surfactant preferably has an oxyalkylene group or an alcoholic hydroxyl group, and the hydrophobic moiety preferably has an acetylene group, a polysiloxane group, a perfluoroalkyl group or a perfluoroalkenyl group.
  • the surfactant is preferably an acetylene-based surfactant, a silicone-based surfactant or a fluorine-based surfactant.
  • the present composition 1 may further contain other resins.
  • the other resin may be a thermosetting resin or a thermoplastic resin.
  • other resins include maleimide resins, urethane resins, polyimides, polyamic acids, polyamideimides, and polyvinyl acetal resins, which do not have aromaticity.
  • maleimide resin, polyimide and polyamic acid are preferable.
  • the molded product formed from the present composition 1 tends to be excellent in flexibility and adhesiveness.
  • the present composition 1 contains a silane coupling agent, a dehydrating agent, a defoaming agent, a plasticizer, a weathering agent, an antioxidant, a heat stabilizer, a lubricant, an antistatic agent, a whitening agent, and a coloring agent. It may contain additives such as agents, conductive agents, mold release agents, surface treatment agents, and flame retardants.
  • the varnish of the present composition 1 and the second aromatic resin may be mixed with the varnish of the present composition 1 and the second aromatic resin in a batch, and the composition 1 may be mixed with the second aromatic resin.
  • the composition 1 may be sequentially mixed with the varnish of the sex resin, or may be sequentially mixed with the varnish of the second aromatic resin.
  • any additional components such as an inorganic filler, a photopolymerization initiator, a curing agent or a curing accelerator, a dispersant, and another liquid dispersion medium, which will be described later, are further mixed, they can be mixed at any stage.
  • a stirring device provided with blades (stirring blades) such as propeller blades, turbine blades, paddle blades, shell-shaped blades, etc.
  • blades such as propeller blades, turbine blades, paddle blades, shell-shaped blades, etc.
  • Stirring with Henschel mixer, pressurized kneader, Banbury mixer or planetary mixer; ball mill, attritor, basket mill, sand mill, sand grinder, dyno mill (bead mill using crushing medium such as glass beads or zirconium oxide beads), dispermat, Mixing with a disperser using media such as SC mill, spike mill or agitator mill; high-pressure homogenizer such as microfluidizer, nanomizer, ultimateizer, ultrasonic homogenizer, resolver, dispenser, high-speed impeller disperser, rotation / revolution stirring described later.
  • the planetary mixer has a biaxial stirring blade that rotates and revolves with each other, and has a structure for stirring and kneading the kneaded material in the stirring tank. Therefore, there is little dead space in the stirring tank that the stirring blades do not reach, the load on the blades can be reduced, and the contents can be highly mixed.
  • the obtained composition 1 is subsequently added with a second aromatic resin varnish and, if necessary, an optional additive component such as an inorganic filler, and the composition described later is used as it is. 1 can be manufactured. Further, the mixing may be carried out using a twin-screw extrusion kneader or a millstone kneader.
  • the twin-screw extrusion kneader is, for example, a twin-screw type continuous kneading device that kneads an object to be kneaded by a shearing force between two screws arranged in parallel in close proximity to each other.
  • the stone mill type kneader is, for example, a cylindrical fixed portion having an internal space through which the kneaded material can pass, and a kneaded material which is arranged in the internal space of the fixed portion and passes through the internal space by rotating. It is a kneading machine having a rotating portion that conveys in the direction of the rotation axis while kneading. Further, the above-mentioned thin film swirl type high-speed mixer may be used.
  • the aromatic resin constituting the varnish of the second aromatic resin is preferably an aromatic resin having an oxygen-containing polar group, and is an aromatic resin having an epoxy group or an aromatic resin having a carboxyl group. More preferably, it is a group resin.
  • the details and suitable specific examples of the second aromatic resin are the same as those of the first aromatic resin described above. Further, in the mixing, the first aromatic resin and the second aromatic resin constituting the present composition 1 may be different, and it is preferable to use the same kind.
  • an inorganic filler When mixing the varnish of the present composition 1 and the second aromatic resin, an inorganic filler may be further mixed.
  • the inorganic filler is not particularly limited as long as it is a component containing inorganic particles.
  • examples of the inorganic filler include fillers composed of oxides, nitrides, simple metals, alloys and carbon, and silicates (silicon oxide (silica), wollastonite, talc, mica) and metal oxides (oxidation). Fillers of beryllium, cerium oxide, aluminum oxide, soda alumina, magnesium oxide, zinc oxide, titanium oxide, etc.), boron nitride and magnesium metasilicate (steatite) are preferable, and are selected from aluminum, magnesium, silicon, titanium and zinc.
  • Inorganic oxide fillers containing at least one of the elements are more preferred, silica, titanium oxide, zinc oxide, steatite and boron nitride fillers are even more preferred, and silica fillers are particularly preferred.
  • the inorganic filler may be ceramics.
  • the inorganic filler one kind may be used, or two or more kinds may be mixed and used.
  • two kinds of silica fillers may be mixed and used, or a silica filler and a metal oxide filler may be mixed and used. If a silica filler is used, the coefficient of linear expansion of the obtained molded product can be sufficiently reduced.
  • the content of silica in the inorganic filler is preferably 50% by mass or more, more preferably 75% by mass.
  • the silica content is preferably 100% by mass or less.
  • the surface of the inorganic filler is surface-treated.
  • a silane coupling agent is preferable, and 3-aminopropyltriethoxysilane, vinyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, and 3-glycidoxypropylmethyldiethoxysilane.
  • 3-Methyloxypropyltriethoxysilane, 3-Isocyanoxidetriethoxysilane is more preferred.
  • the D50 of the inorganic filler is preferably 25 ⁇ m or less, more preferably 15 ⁇ m or less.
  • the D50 of the inorganic filler is preferably 0.1 ⁇ m or more.
  • the shape of the inorganic filler may be granular, needle-like (fibrous), or plate-like. Specific shapes of the inorganic filler include spherical, scaly, layered, leafy, apricot kernel, columnar, chicken crown, equiaxed, leafy, mica, block, flat, wedge, rosette, and mesh. Shape and prismatic shape.
  • the inorganic filler may be hollow or may contain a hollow filler and a non-hollow filler.
  • Suitable specific examples of the inorganic filler include silica filler (“Admafine (registered trademark)” series manufactured by Admatex Co., Ltd.), zinc oxide surface-treated with an ester such as propylene glycol dicaprate (Sakai Chemical Industry Co., Ltd.). "FINEX (registered trademark)” series, etc.), spherical fused silica (“SFP (registered trademark)” series, etc.
  • the content of the inorganic filler is preferably 0.1 to 75% by mass, more preferably 1 to 60% by mass.
  • a photopolymerization initiator When mixing the varnish of the present composition 1 and the second aromatic resin, a photopolymerization initiator (sensitizer) may be further mixed.
  • the photopolymerization initiator include an alkylphenone-based photopolymerization initiator, an acylphosphine oxide-based photopolymerization initiator, a benzoin-based photopolymerization initiator, a benzophenone-based photopolymerization initiator, and 2,2'-azobisisobutyronitrile. Benzoyl peroxide can be mentioned.
  • the varnish of the present composition 1 and the second aromatic resin it is preferable to further mix a curing agent or a curing accelerator, and a curing agent or a curing accelerator capable of thermosetting with the aromatic resin. Is more preferable to mix.
  • the F polymer has a carbonyl group-containing group (carboxyl group, acid anhydride residue, etc.)
  • the curing agent or curing accelerator may undergo a thermal curing reaction with the F polymer.
  • the curing agent or curing accelerator is at least one selected from the group consisting of amines, imidazoles, phenols, acid anhydrides, compounds having a phenolic hydroxyl group, compounds having a cyanate ester group, and compounds having a maleimide group. Is preferable, and amine or imidazole is more preferable from the viewpoint of enhancing the stability of the present composition 1 and the adhesiveness and electrical properties of the formed molded product.
  • the curing agent or curing accelerator one type may be used alone, or two or more types may be used in combination. It is preferable to select a curing agent or a curing accelerator so that the curing start temperature of the obtained composition is 120 to 200 ° C.
  • the "curing start temperature” is a temperature indicating the first change point when the obtained composition is heated, which is confirmed by differential scanning calorimetry (DSC).
  • amine examples include an aliphatic polyamine (alkylenediamine, polyalkylene polyamine, an aliphatic polyamine having an aromatic ring, etc.), an adduct compound thereof (a reaction product with phenylglycidyl ether, trillglycidyl ether, alkyl glycidyl ether, etc.), and an alicyclic type.
  • an aliphatic polyamine alkylenediamine, polyalkylene polyamine, an aliphatic polyamine having an aromatic ring, etc.
  • an adduct compound thereof a reaction product with phenylglycidyl ether, trillglycidyl ether, alkyl glycidyl ether, etc.
  • an alicyclic type examples include an aliphatic polyamine (alkylenediamine, polyalkylene polyamine, an aliphatic polyamine having an aromatic ring, etc.), an adduct compound thereof (a reaction product with phenylglycid
  • Polyamines isophoronediamine, 1,3-bis (aminomethyl) cyclohexane, bis (4-aminocyclohexyl) methane, norbornenediamine, 1,2-diaminocyclohexane, laromine, etc.
  • adduct compounds thereof n-butylglycidyl ether or (Reactant with bisphenol A diglycidyl ether, etc.) is preferable.
  • imidazole examples include 2-methylimidazole, 4-methyl-2-ethylimidazole, 2-phenylimidazole, 4-methyl-2-phenylimidazole, 1-benzyl-2-methylimidazole, 2-ethylimidazole, and 2-isopropylimidazole.
  • phenol hydroquinone, resorcinol, or bisphenol A is preferable.
  • acid anhydride phthalic anhydride, hexahydrophthalic anhydride, methylnadic anhydride, or benzophenone tetracarboxylic acid are preferable.
  • Examples of the compound having a phenolic hydroxyl group include phenol novolac resin, alkylphenol volac resin, bisphenol A novolak resin, dicyclopentadiene type phenol resin, Xylok type phenol resin, terpene-modified phenol resin, cresol / naphthol resin, polyvinylphenols, and phenol. / Naftor resin, ⁇ -naphthol skeleton-containing phenol resin, triazine skeleton-containing cresol novolac resin, biphenyl aralkyl type phenol resin, Zyroc type phenol novolac resin and the like can be mentioned.
  • Examples of the compound having a cyanate ester group include phenol novolac type cyanate ester resin, alkylphenol novolac type cyanate ester resin, dicyclopentadiene type cyanate ester resin, bisphenol A type cyanate ester resin, bisphenol F type cyanate ester resin, and bisphenol S type.
  • Cyanate ester resin can be mentioned. Further, it may be a prepolymer in which a part is triazine-ized.
  • Examples of the compound having a maleimide group include 4,4'-diphenylmethanebismaleimide, phenylmethanebismaleimide, m-phenylenebismaleimide, and 3,3'-dimethyl-5,5'-dimethyl-4,4'-diphenylmethanebis.
  • Maleimide, 4-methyl-1,3,-phenylene bismaleimide, (1,6-bismaleimide-2,2,4-trimethyl) hexane, and oligomers thereof, and diamine condensates having a maleimide skeleton can be mentioned.
  • a dispersant When mixing the varnish of the present composition 1 and the second aromatic resin, a dispersant may be further mixed.
  • the dispersant include the same as the surfactant as the dispersant that may be contained in the present composition 1.
  • the liquid dispersion medium for example, the solvent constituting the varnish of the first aromatic resin
  • the second can be contained in the composition 1.
  • a liquid dispersion medium (another liquid dispersion medium) other than the solvent contained in the varnish of the aromatic resin may be further mixed.
  • the ratio of the other liquid dispersion medium at the time of mixing is preferably 25% by mass or less, more preferably 10% by mass or less, still more preferably 5% by mass or less, based on the total amount of the second aromatic resin varnish. Further, the lower limit of the ratio (content) of the liquid dispersion medium in the present composition 1 is 0%.
  • Specific examples of other liquid dispersion media include cellosolve-based solvents, ester-based solvents, ketone-based solvents, alcohol-based solvents, amide-based solvents, and aromatic hydrocarbon-based solvents.
  • the content (ratio) of the aromatic resin is set as the total amount of the first aromatic resin and the second aromatic resin. It is preferably higher than the content (ratio) of the F polymer. In this case, the physical properties such as handleability, curability, and developability of the obtained composition are further improved.
  • the ratio of the content of the aromatic resin to the content of the F polymer by mass is preferably 1 to 10, more preferably 1 to 5, and even more preferably 1.5 to 3.
  • the content of the F polymer in the obtained composition is preferably 1 to 30% by mass, more preferably 10 to 25% by mass.
  • the content of the aromatic resin in the obtained composition is preferably 20 to 90% by mass, preferably 30 to 80% by mass, as the total amount of the first aromatic resin and the second aromatic resin. More preferred.
  • the obtained composition contains a curing agent or a curing accelerator, the content thereof is preferably 0.01 to 15% by mass, more preferably 0.5 to 10% by mass.
  • the present composition 1 can be suitably used as a negative type resist composition.
  • the resist composition can be applied to the surface of the base material by a coating method such as a screen printing method, a bar coating method, or a blade coating method. After coating, it is preferable to dry the coating film in order to obtain dryness to the touch.
  • the drying conditions are preferably 75 to 95 ° C. for 40 to 70 minutes.
  • a hot air circulation type drying oven or a far infrared drying oven can be used for drying.
  • the thickness of the coating film (dry film) after drying is preferably 10 to 150 ⁇ m, more preferably 20 to 60 ⁇ m from the viewpoint of improving the developability of the dry film.
  • an exposure mask having a predetermined exposure pattern is used to irradiate the dry film with exposure light.
  • a halogen lamp, a high-pressure mercury lamp, a laser beam, a metal halide lamp, a black lamp, an electrodeless lamp, or the like can be used as the exposure light source.
  • a pattern may be formed on the dry film by a laser direct imaging device without using an exposure mask.
  • the dry film after exposure is developed with a developing solution.
  • a developing solution As a result, unnecessary portions of the dry film are removed, and a dry film having a predetermined pattern is obtained.
  • the developer can be applied to the dry film after exposure by a spray method, a dipping method or the like.
  • the developing solution it is preferable to use an alkaline aqueous solution containing an alkali such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium silicate, etc., and a dilute alkaline aqueous solution containing an alkali at a concentration of 1.5% by mass or less is used. It is more preferable to use.
  • the present composition 1 since a dilute alkaline aqueous solution can be used as the developing solution, a dry film having less damage and excellent resolution can be obtained.
  • the dried film after development is preferably washed with water or acid-neutralized in order to remove unnecessary developing solution.
  • the obtained dried film after development is cured (post-cured) by irradiation with ultraviolet rays (active energy rays).
  • the present composition 1 contains the above-mentioned curing agent, the dried film after development can be cured by heating. As a result, a cured film (molded product such as a convex portion) having excellent adhesion and crack resistance can be obtained.
  • the present composition 1 can also be suitably used as a filling material used for filling through holes or recesses in a multilayer printed wiring board.
  • the multilayer printed wiring board has a plurality of circuit patterns laminated via an insulating layer.
  • the insulating layer is composed of polyphenylene ether, polyphenylene oxide, cyanate ester, polyimide, fluoropolymer and the like.
  • the circuit pattern is composed of a metal film formed by plating or the like.
  • This multilayer printed wiring board has a through hole or a recessed recess that penetrates in the thickness direction thereof. The through hole or recess is formed by drilling or laser machining.
  • a conductive film is formed on the inner surface of the through hole or the recess, and predetermined circuit patterns are electrically connected to each other.
  • the through holes or recesses of the composition 1 can be filled by a screen printing method, a roll coating method, a die coating method, or a vacuum printing method. At this time, it is preferable to fill the composition 1 to such an extent that it protrudes from the through hole or the recess.
  • the present composition 1 contains a curing agent or a curing accelerator, it is preferable to cure the present composition 1 filled in the through holes or recesses by heating.
  • the heating conditions for the composition 1 are preferably 80 to 160 ° C. for 30 to 180 minutes. From the viewpoint of suppressing outgassing in the curing of the composition 1, it is preferable to cure the composition 1 in two stages, a temporary curing step and a main curing step.
  • the conditions for temporary curing are preferably 80 to 110 ° C. for 30 to 90 minutes.
  • the conditions for the main curing are preferably 130 to 160 ° C. for 30 to 180 minutes. Since the volume change rate of the present composition 1 at the time of curing is small, it is possible to prevent a decrease in the shape stability of the multilayer printed wiring board.
  • unnecessary portions protruding from the through holes or recesses of the molded product may be removed and flattened. After that, a metal film may be formed on the surface of the multilayer printed wiring board by plating or the like, and a predetermined pattern may be patterned to form a circuit pattern.
  • the surface of the multilayer printed wiring board may be roughened with an aqueous solution of potassium permanganate or the like, if necessary, prior to the formation of the metal film.
  • the composition 1 can also be suitably used for producing a dry film.
  • a dry film can be produced by applying the present composition 1 on a carrier film and drying it to form a resin film as a dry film.
  • a protective film may be laminated on the dry film, if necessary.
  • the carrier film is a film having a function of supporting a dry film. Examples of such a carrier film include a polyolefin film, a polyester film, a polyimide film, a polyamide-imide film, a polytetrafluoroethylene film, a polystyrene film, and a surface-treated paper substrate. Among them, a polyester film is preferable from the viewpoint of heat resistance, mechanical strength, handleability and the like.
  • the surface of the carrier film may be subjected to a mold release treatment.
  • the protective film is a film that is attached to the surface of the dry film opposite to the carrier film for the purpose of preventing dust and the like from adhering to the surface of the dry film and improving its handleability.
  • the protective film for example, the same film or paper base material as mentioned in the above carrier film is used, and a polyolefin film or a polyester film is preferable.
  • the thickness of the protective film is preferably 10 to 150 ⁇ m.
  • the surface of the protective film may be subjected to a mold release treatment.
  • Examples of a method for producing a printed wiring board from a laminated film having a dry film, a carrier film, and a protective film include the following methods. First, either the carrier film or the protective film is peeled off from the dry film. When the present composition 1 contains a curing agent or a curing accelerator, it is then pressure-bonded to a circuit board on which a circuit pattern is formed and then thermosetting. An oven, a heat press, or the like can be used for thermosetting. After that, a through hole (via hole) is formed at a predetermined position on the circuit board by laser processing or drilling to expose the circuit pattern. As a result, a printed wiring board can be obtained.
  • the other of the carrier film and the protective film is peeled from the dry film at a predetermined stage.
  • a conductive film formed on the inner surface of the through hole, a pillar or a post housed in the through hole can be used.
  • the base material with a convex portion of the present invention (hereinafter, also referred to as “base material with a convex portion”) is provided on the base material and the surface of the base material, and has a predetermined pattern formed from the present composition 1. It has a convex portion.
  • the convex portion can be produced by the above-mentioned method using the present composition 1 as a negative type resist composition.
  • a base material I an active matrix substrate in which a pixel electrode, a switching element and wiring are formed on the substrate
  • a base material II a laminated plate in which a polymer film and a metal layer are laminated can be used.
  • the convex portion is provided as a frame on the surface of the active matrix substrate so as to expose the pixel electrodes, for example.
  • an electrophoretic dispersion containing an organic EL layer (electron transport layer, light emitting layer, hole transport layer, etc.) and electrophoretic particles is arranged in the space partitioned by the convex portion, and a common electrode or the like is provided.
  • a display device (electronic device) can be manufactured by arranging the facing substrate facing the active matrix substrate.
  • the convex portion can be provided with a function as a spacer that defines the separation distance between the two substrates and a black matrix that prevents crosstalk between unit pixels. Further, since the convex portion of the base material with the convex portion has excellent water and oil repellency and few defects, the ink forming the organic EL layer and the electrophoresis dispersion liquid do not easily adhere to the convex portion, and the display performance is excellent. A display device is obtained. Further, since the convex portion is also excellent in electrical characteristics (low dielectric constant), parasitic capacitance is unlikely to occur in the display device, and deterioration of switching characteristics can be prevented.
  • the polymer film may be a single-layer film composed of only a polymer layer, and is a laminated film having a polymer layer as a surface layer and a support layer supporting the surface layer (polymer layer). May be good.
  • the support layer can be composed of a heat-resistant resin film, a prepreg which is a precursor of a fiber-reinforced resin plate, a film having a heat-resistant resin layer, and a film having a prepreg layer.
  • the prepreg is a sheet-like substrate in which a fiber base material (tow, woven fabric, etc.) of reinforcing fibers (glass fiber, carbon fiber, etc.) is impregnated with a thermosetting resin or a thermoplastic resin.
  • the heat-resistant resin film is a film containing one or more heat-resistant resins.
  • the heat-resistant resin include polyimide, polyarylate, polysulfone, polyallylsulfone, aromatic polyamide, aromatic polyetheramide, polyphenylene sulfide, polyallyl ether ketone, polyamideimide, liquid crystal polyester, and liquid crystal polyester amide. Fluororesin other than polyimide (particularly aromatic polyimide), F polymer, and F polymer is preferable.
  • the polymer layer preferably contains the above-mentioned heat-resistant resin, and more preferably contains an F polymer. In such a case, the base material tends to have excellent low dielectric loss tangent properties, and the convex portion and the base material tend to adhere firmly.
  • the polymer layer containing the F polymer may be obtained by melt-kneading the F polymer and extrusion molding.
  • the laminated film is obtained by thermocompression bonding a film containing an F polymer and a support layer.
  • the polymer layer containing the F polymer may be obtained by applying a dispersion liquid containing F particles and a liquid dispersion medium to a base material and heating the substrate. In this case, if the base material is peeled off, a single-layer film containing the F polymer is obtained, and if the film constituting the support layer is used as the base material and the base material is not peeled off, a laminated film is obtained.
  • the laminated board as the base material II can be produced by thermocompression bonding a polymer film and a metal foil.
  • the material of the metal foil include copper, copper alloy, stainless steel, nickel, nickel alloy (including 42 alloy), aluminum, aluminum alloy, titanium, titanium alloy and the like.
  • the metal foil is preferably a copper foil, more preferably a rolled copper foil or an electrolytic copper foil.
  • a preferred embodiment of the laminated board as the base material II is a polymer layer / metal layer containing a prepreg layer / F polymer.
  • the metal layer may have a predetermined pattern.
  • a printed wiring board may be obtained by forming a main convex portion on a metal layer having no pattern and using this convex portion as a mask to etch the metal layer and process it into a circuit.
  • the present invention is not limited to the configuration of the above-described embodiment.
  • the present method 1 may additionally have any other step in the configuration of the above embodiment, or may be replaced with any step that produces the same action.
  • the present composition 1 may be added with any other configuration, or may be replaced with an arbitrary configuration exhibiting the same function.
  • this method 2 F particles, an aromatic resin, at least one thickening polymer selected from the group consisting of polar vinyl polymers and polysaccharides, and water are stirred by a thin film swirl or a rotation.
  • a method of obtaining a liquid composition containing F particles, an aromatic resin, a thickening polymer, and water (hereinafter, also referred to as "this composition 2") by mixing in a tank equipped with a stirring mechanism by revolution. Is.
  • the present composition 2 is excellent in dispersion stability, uniformity and handleability.
  • the present composition 2 it is possible to form a molded product having excellent electrical characteristics and low linear expansion property, which has a high degree of physical characteristics of the F polymer and the physical characteristics of the aromatic resin.
  • the reason and its mechanism of action are not always clear, but are estimated as follows, for example.
  • F polymer has low dispersibility due to its low surface energy.
  • the F particles and the aromatic resin are mixed in water by applying a strong shearing force to improve the dispersibility of the liquid composition, the F polymer is modified by fibrillation and the like to form complex secondary particles. It becomes easy to aggregate. Even when a thickening polymer is used, the interaction within a single component is conversely enhanced rather than the interaction between the components, and for example, the thickening polymer itself tends to aggregate. As described above, it has been difficult to obtain a liquid composition having excellent dispersion stability, uniformity and handleability by mixing the F particles and the aromatic resin while suppressing component aggregation.
  • F particles, an aromatic resin, a thickening polymer, and water are mixed by a stirring mechanism by thin film swirling or in a tank equipped with a stirring mechanism by rotation and revolution.
  • Each of the aromatic resins is mixed with the thickening polymer highly impregnated.
  • the thickening polymer alleviates the impact of collision generated when the two are mixed, and suppresses the denaturation of F particles and the aggregation of components.
  • the collision between the F particles and the aromatic resin promotes the formation of the coalesced particles of both (composite particles in which the aromatic resin is bonded to the surface of the F particles, etc.).
  • the F particles are highly mixed with the aromatic resin at the individual particle level, so that a liquid composition having excellent dispersion stability, uniformity and handleability and suppressed foaming can be obtained by this method 2. It is believed that it was obtained. Further, since uniform particles typified by the coalesced particles are contained, when a liquid component such as water is removed from the composition 2, it becomes easy to form a uniform and dense packing structure of particles. .. As a result, it is considered that from the present composition 2, the aromatic resin was densely arranged in the F polymer, and a molded product having excellent electrical characteristics and low linear expansion property was obtained.
  • the aromatic resin (also referred to as “aromatic polymer”) in the present invention improves the liquid physical characteristics such as the dispersion stability of the present composition 2 by the above-mentioned action mechanism, and is a molded product obtained from the present composition 2. In addition, flexibility such as bending resistance and UV absorption can be imparted. Further, when the composition 2 is applied to the surface of a base material such as a polyimide film or a metal foil to form a polymer layer containing an F polymer, the aromatic polymer has adhesiveness to the resin film of the polymer layer. It is possible to impart characteristics such as adhesion.
  • the aromatic polymer may be thermosetting, thermoplastic or modified.
  • the aromatic polymer may be contained in the present composition 2 as a precursor thereof.
  • the aromatic polymer is preferably water soluble. In other words, the aromatic polymer is preferably dissolved in the composition 2.
  • the acid value of the aromatic polymer is preferably 20 to 100 mg / KOH, more preferably 35 to 70 mgKOH / g, from the viewpoint of dispersion stability of the present composition 2.
  • the acid value when the acid anhydride group is opened is defined as the acid value of the aromatic polymer.
  • the acid value about 0.5 g of aromatic polymer was collected, about 0.15 g of 1,4-diazabicyclo [2.2.2] octane was added thereto, and about 60 g of N-methyl-2-pyrrolidone and ions were added. Add about 1 mL of replacement water and stir until the aromatic polymer is completely dissolved. This can be measured by titrating with a potentiometric titrator using a 0.05 mol / L ethanolic potassium hydroxide solution.
  • the average molecular weight of the aromatic polymer is preferably 5000 or more, more preferably 10000 or more.
  • the average molecular weight of the aromatic polymer is preferably 50,000 or less, more preferably 30,000 or less.
  • the aromatic polymer is easily dissolved in water. Further, the molded product obtained from the present composition 2 tends to have excellent mechanical properties such as bending resistance.
  • the aromatic polymer include an aromatic imide resin, an aromatic sulfide resin, an aromatic sulfone resin, and a phenol resin, and an aromatic imide resin is preferable.
  • aromatic imide-based resin examples include aromatic polyimides, aromatic polyamideimides, aromatic polyetherimides, and precursors thereof. These may be modified and may have polar functional groups such as carboxylic acid groups.
  • aromatic polyimide or a precursor thereof polyamic acid or a salt thereof
  • aromatic polyamideimide or a precursor thereof is preferable, and a water-soluble aromatic polyimide precursor or a water-soluble aromatic polyamideimide is preferable.
  • the precursor is more preferred, and the water-soluble aromatic polyamide-imide precursor is even more preferred.
  • Examples of the water-soluble aromatic polyimide precursor include a polyamic acid obtained by polymerizing a tetracarboxylic acid dianhydride and a diamine in a solvent, and a polyamic acid salt obtained by reacting the polyamic acid with aqueous ammonia or an organic amine. Can be mentioned.
  • An aqueous solution of a polyamic acid can be prepared by dissolving the polyamic acid salt in water.
  • Examples of the tetracarboxylic acid dianhydride include pyromellitic acid anhydride and biphenyltetracarboxylic acid anhydride.
  • Examples of the diamine include N, N'-diaminodiphenyl ether and p-diaminobenzene.
  • Examples of the solvent include N-methylpyrrolidone and N, N-dimethylformamide.
  • organic amine examples include primary amines such as methylamine, ethylamine, n-propylamine, 2-ethanolamine and 2-amino-2-methyl-1-propanol; dimethylamine, 2- (methylamino) ethanol, and the like. Secondary amines such as 2- (ethylamino) ethanol; Tertiary amines such as 2-dimethylaminoethanol, 2-diethylaminoethanol, 1-dimethylamino-2-propanol; A quaternary ammonium salt can be mentioned.
  • the aromatic polyamide-imide obtained by reacting diisocyanate and / or diamine with tribasic acid anhydride (or tribasic acid chloride) as an acid component or its precursor.
  • diisocyanate examples include 4,4'-diphenylmethane diisocyanate, xylylene diisocyanate, 3,3'-dimethylbiphenyl-4,4'-diisocyanate, 3,3'-diphenylmethane diisocyanate, and 3,3'-dimethoxybiphenyl-4.
  • a blocked isocyanate having an isocyanate group stabilized by a blocking agent may be used as the diisocyanate.
  • the blocking agent include alcohol, phenol, oxime and the like.
  • the diamine include 3,3'-dimethylbiphenyl-4,4'-diamine, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3,3'. -Diaminodiphenyl sulfone, xylylene diamine, phenylenediamine, isophoronediamine can be mentioned. These diamines may be used alone or in combination of two or more.
  • Examples of the tribasic acid anhydride include trimellitic acid anhydride, and examples of the tribasic acid chloride include trimellitic acid anhydride chloride.
  • trimellitic acid anhydride is preferable from the viewpoint of reducing the burden on the environment.
  • dicarboxylic acid, tetracarboxylic acid dianhydride, etc. are used as acid components, and the characteristics of the aromatic polyamideimide. May be used as long as the above is not impaired.
  • Examples of the dicarboxylic acid include terephthalic acid, isophthalic acid, adipic acid, and sebacic acid.
  • Examples of the tetracarboxylic acid dianhydride include pyromellitic acid dianhydride, benzophenone tetracarboxylic acid dianhydride, and biphenyltetracarboxylic acid dianhydride. These may be used alone or in combination of two or more.
  • the total amount of carboxylic acids (dicarboxylic acid and tetracarboxylic acid) other than tribasic acid is preferably in the range of 0 to 30 mol% in the total carboxylic acid from the viewpoint of maintaining the characteristics of aromatic polyamide-imide.
  • the proportion of diisocyanate and / or diamine and acid component (total amount of tribasic acid anhydride or tribasic acid chloride and dicarboxylic acid and tetracarboxylic acid dianhydride used as needed) is the aromatic polyamideimide produced.
  • the amount of the diisocyanate compound and / or the diamine compound is preferably 0.8 to 1.1 mol with respect to the total amount of the acid component of 1.0 mol.
  • Specific examples of the water-soluble aromatic polyamide-imide or its precursor include "HPC-1000" and "HPC-2100D” (both manufactured by Showa Denko Materials Co., Ltd.).
  • aromatic polyetherimide examples include an amorphous polymer having an imide bond and an ether bond in the main chain, and 2,2-bis [4- (3,4-dicarboxyphenyloxy) phenyl] propane and m. -A polycondensate with phenylenediamine is preferable.
  • Specific examples of the aromatic polyetherimide include "Ultem 1000F3SP" (manufactured by SABIC).
  • Examples of the aromatic sulfide resin include polyphenylene sulfide.
  • aromatic sulfone resin examples include polyphenylsulfone.
  • the content of the aromatic polymer in the composition 2 is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, based on the total mass of the present composition 2.
  • the content of the aromatic polymer is preferably 30% by mass or less, more preferably 10% by mass or less, based on the total mass of the composition 2.
  • the ratio of the content of the aromatic polymer to the content of the F particles in the composition 2 is preferably 0.001 or more, more preferably 0.005 or more.
  • the ratio of such contents is preferably 0.1 or less, more preferably 0.05 or less.
  • the thickening polymer in the present invention is at least one polymer selected from the group consisting of polar vinyl-based polymers and polysaccharides.
  • the polar vinyl polymer is a vinyl polymer having a polar functional group in the main chain or side chain of the polymer.
  • Polar functional groups include ether bond, ester bond, amide bond, imide bond, thioether bond, sulfide bond, disulfide bond, carbonyl group-containing group, hydroxyl group-containing group, thiol group, sulfide group, sulfonyl group, sulfoxyl group and amino group. , Amid group.
  • the thickening polymer may be thermosetting, thermoplastic or modified.
  • the thickening polymer may be contained in the present composition 2 as a precursor thereof.
  • the thickening polymer is preferably water soluble. In other words, the thickening polymer is preferably dissolved in the composition 2.
  • the thickening polymer preferably has a carbonyl group-containing group or a hydroxyl group-containing group.
  • the affinity of the thickening polymer with the F particles and the aromatic polymer is improved, the composition 2 tends to have excellent physical properties such as dispersion stability, and the thickening polymer has an excellent action as a binder.
  • Cheap The average molecular weight of the thickening polymer is preferably 3000 or more, more preferably 10000 or more, further preferably 100,000 or more, and particularly preferably 300,000 or more.
  • the average molecular weight of the thickening polymer is preferably 1,000,000 or less, more preferably 500,000 or less. In this case, the present composition 2 tends to be excellent in physical properties such as dispersion stability.
  • the thermal decomposition temperature of the thickening polymer is preferably 150 ° C. or higher, more preferably 200 ° C. or higher.
  • the thermal decomposition temperature of the thickening polymer is preferably 320 ° C. or lower, more preferably 300 ° C. or lower.
  • the thermal decomposition temperature is preferably equal to or lower than the melting temperature of the F polymer.
  • the thickening polymer tends to have an excellent action as a binder. Further, the thickening polymer is unlikely to remain in the molded product formed from the present composition 2, and the molded product tends to have excellent physical properties such as electrical characteristics.
  • polar vinyl polymer examples include vinyl alcohol-based polymers such as polyvinyl alcohol, vinylpyrrolidone-based polymers such as polyvinylpyrrolidone, acrylic acid-based polymers such as polyacrylic acid, and carboxyvinyl-based polymers such as carboxyvinyl polymer. Based polymers are preferred.
  • vinyl alcohol-based polymer polyvinyl alcohol, polyvinyl acetate, a partially acetylated product of polyvinyl alcohol, a partially acetal product of polyvinyl alcohol, and a copolymer of vinyl alcohol, vinyl butyral, and vinyl acetate are preferable.
  • vinyl alcohol-based polymers include "Eslek (registered trademark) B" series, “Eslek (registered trademark) K (KS)” series, and “Eslek (registered trademark) SV” series (all manufactured by Sekisui Chemical Co., Ltd.). ) ”,“ Mobital (registered trademark) ”series (manufactured by Kuraray).
  • acrylic acid-based polymers examples include polyacrylates such as polyacrylic acid, methyl polyacrylate, and ethyl polyacrylate, poly- ⁇ -haloacrylate, poly- ⁇ -cyanoacrylate, polyacrylamide, and sodium polyacrylate.
  • Polysaccharides include glycogen, amylose, agarose, amyropectin, cellulose, dextrin, glucan, fructan, chitin, xanthan gum, guar gum, casein, arabic gum, gelatin, agaropectin, arabinan, curdran, carose, carboxymethyl starch, chitin, chitosan.
  • the thickening polymer is preferably a nonionic polysaccharide, preferably glycogen, amylose, agarose, amylopectin, cellulose, dextrin, glucan, fructan, or chitin, and preferably carboxymethyl cellulose or hydroxyethyl cellulose as the cellulose.
  • the carboxymethyl cellulose may be a carboxymethyl cellulose salt such as sodium carboxymethyl cellulose or ammonium carboxymethyl cellulose.
  • Hydroxyethyl cellulose has an average number of moles of 1.5 or more and 2.5 or less, which is an index indicating the degree of ethylene oxide addition, from the viewpoint that foaming and aggregation due to air entrainment can be suppressed during mixing. preferable.
  • Specific examples of polysaccharides include "Sunrose (registered trademark)” series (manufactured by Nippon Paper Industries), “Metros (registered trademark)” series (manufactured by Shin-Etsu Chemical Co., Ltd.), and "HEC CF grade” (Sumitomo Seika Chemical Co., Ltd.). Made by).
  • the content of the thickening polymer in the present composition 2 is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, based on the total mass of the present composition 2.
  • the content of the thickening polymer is preferably 30% by mass or less, more preferably 10% by mass or less, based on the total mass of the composition 2.
  • the ratio of the content of the thickening polymer to the content of F particles in the present composition 2 is preferably 0.001 or more, more preferably 0.003 or more.
  • the ratio of such contents is preferably 0.05 or less, more preferably 0.03 or less, still more preferably 0.01 or less.
  • the content of water in the composition 2 is preferably 30% by mass or more, more preferably 40% by mass or more.
  • the water content is preferably 90% by mass or less, more preferably 80% by mass or less, and even more preferably 60% by mass or less. In such a range, the liquid physical characteristics such as the dispersion stability of the present composition 2 are more likely to be improved.
  • the present composition 2 may further contain a water-soluble dispersion medium other than water as the dispersion medium.
  • a water-soluble dispersion medium a water-soluble compound that is liquid at 25 ° C., which is classified as polar under atmospheric pressure, is preferable, and for example, N, N-dimethylformamide, N, N-dimethylacetamide, 3-methoxy-N. , N-Dimethylpropanamide, 3-butoxy-N, N-dimethylpropanamide, N-methyl-2-pyrrolidone.
  • the mixing is preferably carried out by applying a centrifugal force associated with swirling to each component developed in a thin film.
  • the thickening polymer is highly permeated into each of the F particles and the aromatic polymer, and the mixing proceeds.
  • the mixing is preferably performed by the thin film swirl type high-speed mixer described in the present method 1.
  • the details of the stirring tank in the thin film swirling high-speed mixer and the rotating portion having the cylindrical portion in which a plurality of holes are formed are as described above.
  • F particles, an aromatic resin, a thickening polymer, and water may be collectively supplied into the stirring tank, or may be separately supplied into the stirring tank using a plurality of inlets. May be good.
  • Mixing can be carried out in batch or continuous manner.
  • one stirring tank may be used to supply the mixture taken out from the discharge port again from the input port and mixed, or a plurality of stirring tanks may be used to prepare the stirring tank in the previous stage.
  • the mixture taken out from the discharge port may be supplied from the input port of the stirring tank in the subsequent stage and mixed.
  • the supplied F particles, aromatic resin, thickening polymer, and water spread over the gap between the inner wall surface of the stirring tank and the outer peripheral surface of the cylindrical portion of the rotating portion to form a film, which accompanies the rotation of the rotating portion. And swirl at high speed in the stirring tank. At this time, by receiving not only shear stress but also shear stress, dispersion mixing at a high level is achieved.
  • the mixing is a stirrer comprising a truncated cone-shaped and cylindrical stator and a disk rotating inside the inner wall surface of the stator, in which F particles, an aromatic polymer, a thickening polymer, and water are mixed.
  • the cylinder may be passed through a cylindrical gap between the stator and the disc while being swiveled by the rotation of the disc.
  • the inner wall surface of the stator and the disk are provided with an uneven structure. Examples of such a concavo-convex structure include a structure having grid-like grooves or dimples having a height (depth) of about several ⁇ m to several hundred ⁇ m.
  • Such agitating means is sometimes referred to as a colloid mill.
  • the outer peripheral surface of the disc faces the inner wall surface of the stator with a slight gap of about 1 to 10 mm.
  • the peripheral speed and stirring time of the disc can be set as appropriate.
  • the supplied F particles, aromatic resin, thickening polymer, and water form a film when passing through the gap between the inner wall surface of the stator and the outer peripheral surface of the disk, and become a film as the disk rotates. It turns at high speed in the stator. At this time, by receiving not only shear stress but also shear stress, dispersion mixing at a high level is achieved.
  • aspect 2-1 it is preferable to mix the composition containing F particles, an aromatic resin, a thickening polymer, and water by swirling a thin film. That is, it is preferable that the F particles, the aromatic resin, the thickening polymer, and water are premixed before being swirled in a thin film and mixed. In this case, the mechanism of action of the method 2 described above is enhanced, foaming of the composition 2 is suppressed, and physical properties such as dispersion stability are likely to be further improved.
  • the premixing method examples include the same method as the above-mentioned mixing method for mixing the varnish of the present composition 1 and the second aromatic resin.
  • the composition containing the F particles, the aromatic resin, the thickening polymer, and water is preferably a kneaded product obtained by premixing the F particles, the aromatic resin, the thickening polymer, and water. Water may be further added to the kneaded product to adjust the viscosity. In this case, the mechanism of action of the above-mentioned method 2 is likely to be enhanced.
  • the kneaded product is preferably a solidified product (paste) having fluidity and viscosity, or a lumpy and clay-like solidified product (powder).
  • the solid content in the paste is preferably 40 to 90% by mass, more preferably 60 to 80% by mass.
  • the solid content in the dough is preferably 50 to 99% by mass, more preferably 60 to 95% by mass.
  • the solid content in the paste and the kneaded powder means the total amount of the substances forming the solid content in the molded product formed from the present composition 2. For example, when the paste contains an F polymer, an aromatic resin and inorganic particles described later, the total content of these components is the solid content in the paste and the dough.
  • the stirring mechanism by rotation is a mechanism that stirs the object by rotating the tank containing the stirring object around the rotation axis.
  • the direction of the rotation axis may be any direction with respect to the tank.
  • the stirring mechanism by revolution is a mechanism in which the tank orbits around a fixed point outside the tank containing the stirring object to stir the object.
  • the layer may be vertical, horizontal or inclined with respect to the revolution surface.
  • Such agitating means may be referred to as a rotation / revolution agitator.
  • the mixing is performed under the condition that the rotation speed is twice or more the revolution speed or the revolution speed is twice or more the rotation speed.
  • foaming and aggregation due to air entrainment are suppressed, and the present composition 2 having excellent dispersibility and dispersion stability can be easily obtained.
  • the composition containing the F particles, the aromatic polymer, the thickening polymer, and water may be mixed in a tank equipped with a stirring mechanism by rotation and revolution. That is, the F particles, the aromatic polymer, the thickening polymer, and water may be premixed before being mixed in a tank provided with a stirring mechanism by rotation and revolution.
  • F particles, an aromatic resin, a thickening polymer and water may be mixed in any of aspects 2-1 and 2-2, and water may be further mixed to obtain the present composition 2.
  • a method for mixing water a method that may be used for the above-mentioned premixing of Aspects 2-1 and 2-2 and the above-mentioned premixing can be adopted, and Aspects 2-1 and 2-2 are preferable.
  • the mechanism of action of the present method 2 described above is enhanced, and the physical properties such as the dispersion stability of the present composition 2 are likely to be further improved.
  • inorganic particles may be further added.
  • the step of adding the inorganic particles may be before or during mixing.
  • a composition containing F particles, an aromatic resin, a thickening polymer, water and inorganic particles may be prepared and used for mixing.
  • the inorganic particles nitride particles or inorganic oxide particles are preferable, and boron nitride particles, beryllia particles (particles of berylium oxide), silicate particles (silica particles, wollastonite particles, talc particles), or metals.
  • Oxide (cerium oxide, aluminum oxide, magnesium oxide, zinc oxide, titanium oxide, etc.) particles are more preferable, boron nitride particles and silica particles are more preferable, and silica particles are particularly preferable.
  • At least a part of the surface of the inorganic particles is a silane coupling agent (3-aminopropyltriethoxysilane, vinyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3). -It is preferable that the surface is treated with (methacryloxypropyltriethoxysilane, 3-isocyanuppropyltriethoxysilane, etc.).
  • the D50 of the inorganic particles is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less. D50 is preferably 0.01 ⁇ m or more, more preferably 0.1 ⁇ m or more.
  • the shape of the inorganic particles may be spherical, needle-shaped (fibrous), or plate-shaped, and is preferably spherical or plate-shaped.
  • Specific shapes of the inorganic particles include spherical, scaly, layered, leafy, apricot kernel, columnar, chicken crown, equiaxed, leafy, mica, block, flat, wedge, rosette, and mesh. Shape and prismatic shape.
  • the inorganic particles one type may be used alone, or two or more types may be used in combination.
  • the amount thereof is preferably 1 to 50% by mass, more preferably 5 to 40% by mass, based on the total mass of the composition 2.
  • Preferable specific examples of the inorganic particles include the same specific examples of the inorganic filler that may be further mixed when the composition 1 and the varnish of the second aromatic resin are mixed.
  • the F particles are mixed in a powder state in advance and crushed prior to mixing. That is, it is preferable to perform a treatment in which the agglomerated state of the F particles is eliminated in advance so that the F particles are in a dispersed state.
  • the crushing of the F particles can be carried out by a method that may be used for the premixing of Aspect 2-2 and the above-mentioned premixing, and is preferably carried out by the method of Aspect 2-2.
  • the F particles and the inorganic particles are mixed in advance in the state of a powder mixture as described above, crushed, and subjected to the present method 2.
  • the F particles, the aromatic resin, the thickening polymer, and the water are premixed before being mixed by swirling the thin film or before being mixed in a tank equipped with a stirring mechanism by rotation and revolution, the F particles are mixed. Crushing is preferably performed prior to premixing.
  • a surfactant may be further added.
  • the step of adding the surfactant may be before or during mixing.
  • a composition containing F particles, an aromatic resin, a thickening polymer and water, and a surfactant may be prepared and used for mixing.
  • the surfactant is preferably a nonionic surfactant.
  • the nonionic surfactant is preferably a glycol monoalkyl ether, an acetylene-based surfactant, a silicone-based surfactant or a fluorine-based surfactant, and more preferably a glycol monoalkyl ether or a silicone-based surfactant.
  • the present composition 2 may contain a silicone-based surfactant and a glycol monoalkyl ether.
  • nonionic surfactants include the "Futergent” series (Futergent manufactured by Neos Co., Ltd. is a registered trademark), the “Surflon” series (Surflon manufactured by AGC Seimi Chemical Co., Ltd. is a registered trademark), and the “Megafuck” series. (Megafuck manufactured by DIC Co., Ltd. is a registered trademark), "Unidyne” series (Unidyne manufactured by Daikin Kogyo Co., Ltd.
  • the present composition 2 may further contain a pH adjuster or a pH buffer from the viewpoint of pH adjustment.
  • the pH of the present composition 2 is preferably adjusted to 5 to 10 and more preferably 7 to 9 with a pH adjuster or a pH buffer.
  • the pH adjuster include amines, ammonia and citric acid.
  • the pH buffer include tris (hydroxymethyl) aminomethane, ethylenediaminetetraacetic acid, ammonium hydrogencarbonate, ammonium carbonate, and ammonium acetate.
  • the step of adding the pH adjuster or pH buffer may be before or during mixing.
  • the present composition 2 may be further subjected to a defoaming treatment. Defoaming is preferably performed using a rotation / revolution stirrer.
  • a water-soluble solvent may be further added to the composition 2. Due to the mechanism of action described above, the composition 2 has excellent dispersion stability and can be easily mixed with a water-soluble solvent.
  • the water-soluble solvent include compounds similar to the water-soluble solvent that can be used in the above-mentioned composition 2.
  • the present composition 2 contains a thixo-imparting agent, a viscosity modifier, an antifoaming agent, a plasticizer, a weathering agent, an antioxidant, a heat stabilizer, a lubricant, an antioxidant, a whitening agent, and the like.
  • Coloring agents may be further added. Since the composition 2 is excellent in dispersion stability due to the above-mentioned mechanism of action, the liquid physical characteristics can be easily adjusted by adding these.
  • the viscosity of the composition 2 is preferably 10 mPa ⁇ s or more, more preferably 50 mPa ⁇ s or more, and even more preferably 100 mPa ⁇ s or more.
  • the viscosity of the composition 2 is preferably 10,000 mPa ⁇ s or less, more preferably 3000 mPa ⁇ s or less, and even more preferably 1000 mPa ⁇ s or less.
  • the present composition 2 tends to be excellent in liquid physical properties such as dispersion stability.
  • the thixotropy of the composition 2 is preferably 1.0 or more.
  • the thixotropy of the composition 2 is preferably 3.0 or less, more preferably 2.0 or less. In this case, the present composition 2 is excellent in liquid physical characteristics such as dispersion stability, and it is easy to form a more dense molded product.
  • the dispersed layer ratio of the present composition 2 is preferably 60% or more, more preferably 70% or more, still more preferably 80% or more. Since the present composition 2 is excellent in dispersion stability, it is easy to take a value in the range where the dispersion layer ratio is applied.
  • the dispersed layer ratio is the liquid composition in the screw tube after the liquid composition (18 mL) is placed in a screw tube (internal volume: 30 mL) and allowed to stand at 25 ° C. for 14 days. It is a value calculated by the following formula from the total height and the height of the sedimentation layer (dispersion layer).
  • Dispersed layer ratio (%) (height of sedimented layer) / (height of the entire liquid composition) ⁇ 100
  • the dispersity of the composition 2 is preferably 100 ⁇ m or less, more preferably 70 ⁇ m or less, and even more preferably 50 ⁇ m or less.
  • the dispersity of the composition 2 is preferably 10 ⁇ m or more.
  • the degree of dispersion means the size of coarse particles existing in the liquid composition, which is measured according to JIS K5600-2-5 using a grind meter.
  • the present composition 2 is excellent in liquid physical properties such as dispersion stability, and can form a molded product having excellent physical properties based on an F polymer and an aromatic resin by the above-mentioned mechanism of action. In addition, it is possible to form a molded product that exhibits strong adhesiveness to the base material.
  • the composition 2 is applied to the surface of a base material and heated to form a polymer layer containing an F polymer and an aromatic resin (hereinafter, also referred to as “F layer 1”).
  • F layer 1 also referred to as “F layer 1”.
  • the present composition is applied to the surface of the base material to form a liquid film, the liquid film is heated to remove the dispersion medium to form a dry film, and the dry film is further heated.
  • the F polymer By firing the F polymer, a laminate having the F layer 1 on the surface of the base material layer can be obtained.
  • a metal substrate (copper, nickel, aluminum, titanium, metal foil such as an alloy thereof, etc.), a heat-resistant resin film (polyethylene, polyarylate, polysulfone, polyallylsulfone, polyamide, polyetheramide, polyphenylene sulfide, etc.) , Polyallyl ether ketone, polyamideimide, liquid crystal polyester, liquid crystal polyester amide, tetrafluoroethylene polymer, and other heat-resistant resins. (May be good), prepreg (precursor of fiber-reinforced resin substrate), glass.
  • the metal substrate may be a low-roughened copper foil or a non-roughened copper foil.
  • the laminate tends to have excellent transmission characteristics.
  • the ten-point average roughness of the surface of the base material is preferably 0.01 to 0.05 ⁇ m.
  • the shape of the base material include a flat shape, a curved surface shape, and an uneven shape, and further, any of a foil shape, a plate shape, a film shape, and a fibrous shape may be used.
  • the method of applying the composition 2 to the surface of the base material may be any method as long as a stable liquid film (wet film) composed of the present composition 2 is formed on the surface of the base material, and is a coating method or droplets. Examples thereof include a discharge method and a dipping method, and a coating method is preferable. If the coating method is used, a liquid film can be efficiently formed on the surface of the base material with simple equipment.
  • the coating methods include spray method, roll coating method, spin coating method, gravure coating method, micro gravure coating method, gravure offset method, knife coating method, kiss coating method, bar coating method, die coating method, fountain Mayer bar method, and slot die coating. The method and the dip coat method can be mentioned.
  • the liquid film When the liquid film is dried, the liquid film is heated at a temperature at which liquid components (including water) volatilize to form a dry film on the surface of the base material.
  • the heating temperature in such drying is preferably 100 to 200 ° C. Air may be blown in the step of removing the liquid component.
  • the liquid component does not necessarily have to be completely volatilized, and may be volatilized to the extent that the layer shape after holding is stable and the self-supporting film can be maintained.
  • firing the F polymer it is preferable to heat the dry film at a temperature equal to or higher than the melting temperature of the F polymer.
  • the heating temperature is preferably 380 ° C. or lower, more preferably 350 ° C. or lower.
  • each heating method examples include a method using an oven, a method using a ventilation drying furnace, and a method of irradiating heat rays such as infrared rays. Heating may be performed under either normal pressure or reduced pressure.
  • the heating atmosphere may be any of an oxidizing gas atmosphere (oxygen gas, etc.), a reducing gas atmosphere (hydrogen gas, etc.), and an inert gas atmosphere (helium gas, neon gas, argon gas, nitrogen gas, etc.). ..
  • the heating time is preferably 0.1 to 30 minutes, more preferably 0.5 to 20 minutes.
  • the thickness of the F layer 1 is preferably 0.1 ⁇ m or more, more preferably 10 ⁇ m or more, and even more preferably 50 ⁇ m or more.
  • the thickness of the F layer 1 is preferably 500 ⁇ m or less, more preferably 250 ⁇ m or less. Since the present composition 2 is excellent in physical properties such as dispersion stability, a thick F layer 1 can be easily formed from the present composition 2.
  • the peel strength between the F layer 1 and the base material layer is preferably 10 N / cm or more, more preferably 15 N / cm or more. The peel strength is preferably 100 N / cm or less. By using the present composition 2, such a laminated body can be easily formed without impairing the physical characteristics of the F polymer in the F layer 1.
  • the present composition 2 may be applied only to one surface of the base material, or may be applied to both sides of the base material.
  • a base material layer composed of a base material and a laminate having an F layer 1 on one surface of the base material layer are obtained, and in the latter, a base material layer composed of a base material and such a base material are obtained.
  • a laminate having the F layer 1 on both surfaces of the material layer is obtained. Since the latter laminate is less likely to warp, it is excellent in handleability during its processing.
  • Specific examples of such a laminate include a metal foil, a metal-clad laminate having an F layer 1 on at least one surface of the metal foil, a polyimide film, and a multilayer having an F layer 1 on both surfaces of the polyimide film. Film is mentioned. Since these laminates are excellent in various physical properties such as electrical characteristics, they are suitable as printed circuit board materials and the like, and can be used for manufacturing flexible printed circuit boards and rigid printed circuit boards.
  • the composition 2 is applied to both surfaces of the base material, heated to remove liquid components, and further heated to obtain an F polymer. It may be obtained by firing to form the F layer 1 on both surfaces at the same time.
  • This laminate having the F layer 1 on both surfaces of the base material layer is heated by immersing the base material in the present composition 2 to apply the present composition 2 to both surfaces of the base material, and then passing the base material through a firing furnace. You may get it. Specifically, after immersing the base material in the present composition 2, the base material may be obtained by passing it through a firing furnace while pulling it up from the present composition 2 and heating it.
  • a firing furnace include a vertical firing furnace. Further, as such a device, a glass cloth coating device manufactured by Tabata Machinery Co., Ltd. can be mentioned.
  • the present composition 2 when used, a laminate having excellent uniform distribution of components and excellent electrical characteristics can be obtained.
  • the present composition 2 is particularly suitable when a multilayer film containing the F layer 1 on both surfaces of the polyimide film is produced by a roll-to-roll process.
  • Such a multilayer film can be effectively used as a material for a printed wiring board, particularly a flexible printed wiring board, and can satisfactorily exhibit the physical characteristics of the F polymer.
  • a sheet made of F layer 1 can be manufactured.
  • the method of removal includes peeling or etching.
  • the laminate of the F layer 1 and the base material layer and the sheet composed of the F layer 1 are useful as antenna parts, printed circuit boards, aircraft parts, automobile parts, sports equipment, food industry supplies, heat dissipation parts, paints, cosmetics, etc. Is.
  • wire coating materials aircraft wires, etc.
  • enamel wire coating materials used for motors of electric vehicles, etc. electrically insulating tapes, insulating tapes for oil drilling, materials for printed substrates, separation films (precision).
  • Product covers sliding members (load bearings, sliding shafts, valves, bearings, bushes, seals, thrust washers, wear rings, pistons, slide switches, gears, cams, belt conveyors, food transport belts, etc.), wear pads , Wear strips, tube lamps, test sockets, wafer guides, worn parts of centrifugal pumps, hydrocarbon / chemical and water supply pumps, tools (shovels, shavings, cuttings, saws, etc.), boilers, hoppers, pipes, ovens, baking molds.
  • Chute die, toilet bowl, container coating material, power device, transistor, thyristor, rectifier, transformer, power MOS FET, CPU, heat dissipation fin, metal heat dissipation plate, blade of windmill, wind power generation equipment, aircraft, etc., heat dissipation for automobiles It can also be suitably used as a heat radiating member for a substrate and a wireless communication device (for example, the wireless communication device described in International Publication No. 2020/008691 and International Publication No. 2020/031419).
  • the laminate in which the base material layer is a resin film (preferably a polyimide-based resin film) is useful as a release film or a carrier film. Since this laminate has excellent adhesiveness between the F layer 1 and the base material layer and is difficult to delaminate, it can be used repeatedly as a carrier film. Further, since the F layer 1 has excellent heat resistance, the releasability is unlikely to deteriorate even after repeated use.
  • the laminate is a carrier film for forming a ceramic green sheet, a carrier film for forming a secondary battery, a carrier film for forming a solid polymer electrolyte membrane, and a carrier film for forming a catalyst for a solid polymer electrolyte membrane. It is useful as.
  • the liquid composition of the present invention contains F particles, an aromatic resin, at least one thickening polymer selected from the group consisting of polar vinyl polymers and polysaccharides, and water, and is a thickening polymer for F particles. It is a liquid composition having a content ratio of 0.05 or less.
  • the definitions and ranges of F particles, aromatic resin, thickening polymer, and water in the liquid composition of the present invention are the same as those in the present composition 2 of the present method 2 including suitable ranges. Further, the physical characteristics of the liquid composition of the present invention are the same as those in the present composition 2 of the present method 2.
  • the liquid composition of the present invention can be suitably produced by the present method 2.
  • the composition of the present invention contains F particles, an aromatic resin, at least one thickening polymer selected from the group consisting of polar vinyl polymers and polysaccharides, and water, and is a thickening polymer for F particles.
  • the definitions and ranges of F particles, aromatic resins, thickening polymers, and water in the composition of the present invention are the same as those in the present composition 2 of the present method 2 including suitable ranges.
  • the viscosity of the composition of the present invention as measured by capillograph, where the temperature is 25 ° C. and the shear rate is 1s -1 is preferably 15,000 Pa ⁇ s or more.
  • the viscosity is preferably 50,000 Pa ⁇ s or less, and more preferably 30,000 Pa ⁇ s or less.
  • the composition of the present invention is preferably a powder containing sufficiently water and highly wet F particles, that is, a lumpy and clay-like solidified product (powder or wet powder).
  • the content of F particles in the composition of the present invention is preferably 40% by mass or more, more preferably 50% by mass or more, based on the total mass of the composition of the present invention.
  • the content of F particles is preferably 90% by mass or less, more preferably 80% by mass or less.
  • the content of the aromatic resin in the composition of the present invention is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, based on the total mass of the composition of the present invention.
  • the content of the aromatic resin is preferably 30% by mass or less, more preferably 10% by mass or less.
  • the content of the thickening polymer in the composition of the present invention is preferably 0.1% by mass or more, more preferably 1% by mass or more, based on the total mass of the composition of the present invention.
  • the content of the thickening polymer is preferably 30% by mass or less, more preferably 10% by mass or less.
  • the content of water in the composition of the present invention is preferably 10% by mass or more, more preferably 20% by mass or more, based on the total mass of the composition of the present invention.
  • the water content is preferably 50% by mass or less, more preferably 40% by mass or less.
  • the ratio of the content of the thickening polymer to the F particles in the composition of the present invention is 0.05 or less, preferably 0.03 or less, and more preferably 0.01 or less. Such a ratio is preferably 0.001 or more, and more preferably 0.03 or more.
  • the solid content in the composition of the present invention is preferably 40 to 99% by mass, more preferably 50 to 80% by mass.
  • composition of the present invention F particles, an aromatic resin, a thickening polymer, and water are mixed in a tank equipped with a stirring mechanism by thin film swirling or a stirring mechanism by rotation and revolution. It is preferable to obtain it.
  • the mixing method is the same as that in the present method 2 including a suitable range.
  • the aspect of the liquid composition obtained by mixing the composition of the present invention with water is the same as that of the present composition 2 of the present method 2 including a suitable range.
  • the method for producing the present composition 2, the method for producing a laminate using the present composition 2, the liquid composition of the present invention and the composition of the present invention have been described above. Not limited.
  • the method for producing the present composition 2 and the method for producing a laminate using the present composition 2 may additionally have any other step in the configuration of the above embodiment, and the same action is produced. It may be replaced with any step.
  • the composition 2, the liquid composition of the present invention, and the composition of the present invention may be added with any other composition in the configuration of the above embodiment, or any configuration exhibiting the same function. May be replaced with.
  • this method 3 F particles, inorganic particles having a new moth hardness of 12 or less (this inorganic particles), and a liquid compound are mixed by swirling a thin film to include F particles, the present inorganic particles, and a liquid compound.
  • This is a method for obtaining a liquid composition (hereinafter, also referred to as “this composition 3”).
  • the composition 3 has less aggregation of the inorganic particles and is excellent in dispersion stability, uniformity and handleability.
  • the present composition 3 it is possible to form a molded product having excellent electrical characteristics, low linear expansion property and thermal conductivity, which has the physical characteristics of the F polymer and the physical characteristics of the inorganic particles to a high degree.
  • the reason is not always clear, but it is estimated as follows, for example.
  • the interaction between the inorganic particles is higher than the interaction between the inorganic particles and the F particles, and the aggregation of the inorganic particles is likely to occur.
  • the inorganic particles forming the secondary particles are subjected to mixing, this tendency tends to be remarkable.
  • the F polymer is easily denatured by fibrillation or the like, and the physical properties of the F polymer are easily impaired.
  • the particles themselves are crushed into fine particles and are more likely to aggregate.
  • the liquid compound alleviates the impact generated when the two collide with each other, and suppresses the denaturation of the F particles and the excessive crushing of the present inorganic particles.
  • the collision between the F particles and the inorganic particles promotes the formation of the coalesced particles of the inorganic particles and the F particles (composite particles in which the inorganic particles are fused on the surface of the F particles, etc.).
  • the permeation of the liquid compound promotes the elimination of the secondary particles.
  • the F particles and the present inorganic particles are highly mixed at the individual particle level, and it is considered that a liquid composition having excellent dispersion stability, uniformity and handleability was obtained by this method. .. Further, since the uniform particles typified by the coalesced particles are contained, when the liquid compound is removed from the composition 3, it becomes easy to form a uniform and dense particle packing structure. As a result, it is considered that from the present composition 3, inorganic particles are densely arranged in the F polymer, and a molded product having excellent electrical characteristics, low linear expansion and thermal conductivity is obtained.
  • the present inorganic particles in the present method 3 are particles of an inorganic compound having a new Mohs hardness of 12 or less.
  • One type of the inorganic particles may be used alone, or two or more types may be used in combination.
  • the new Mohs hardness of the inorganic particles is preferably 10 or less, more preferably 8 or less, further preferably 5 or less, and particularly preferably 3 or less.
  • the new Mohs hardness of the inorganic particles is preferably 1 or more, and more preferably 2 or more.
  • the shape of the inorganic particles may be spherical, needle-shaped (fibrous), or plate-shaped, and is preferably plate-shaped.
  • the composition 3 is likely to be excellent in physical properties such as dispersion stability.
  • the molded product formed from the present composition 3 tends to be excellent in electrical characteristics and low line expandability.
  • the inorganic particles tend to form paths in the molded product, and the molded product tends to have excellent thermal conductivity.
  • Specific shapes of the inorganic particles include spherical, scaly, layered, leafy, apricot kernel, columnar, chicken crown, equiaxed, leafy, mica, block, flat, wedge, rosette, etc. Examples include mesh-like and prismatic.
  • the inorganic particles are preferably carbon particles, nitride particles and inorganic oxide particles, and are carbon fiber particles, boron nitride particles (new Morse hardness: 2), aluminum nitride particles, beryllia particles (particles of berylium oxide), and Kay.
  • Acidic acid particles (silica particles (new moth hardness: 8), wollastonite particles, talc particles (new moth hardness: 1)), and metal oxide particles (cerium oxide, aluminum oxide (new moth hardness: 12), oxidation (Magnet, zinc oxide, titanium oxide, etc.) are more preferable, and boron nitride particles and silica are preferable from the viewpoint of the dispersion stability of the composition 3 and the electrical characteristics and low linear expansion of the molded product formed from the composition 3. Particles are more preferred, and boron nitride particles are particularly preferred. Further, from the viewpoint of thermal conductivity of the molded product formed from the present composition 3, boron nitride particles and aluminum oxide particles are preferable.
  • the D50 of the inorganic particles is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less. D50 is preferably 0.01 ⁇ m or more, more preferably 0.1 ⁇ m or more.
  • the ratio of D50 of the present inorganic particles to D50 of the F particles is preferably 1 or more, and more preferably 2 or more. The ratio is preferably 20 or less, more preferably 10 or less.
  • the specific surface area of the inorganic particles is preferably 1 to 20 m 2 / g.
  • the aspect ratio of the inorganic particles is preferably 2 or more, more preferably 5 or more, and even more preferably 10 or more.
  • the aspect ratio of the inorganic particles is preferably 10,000 or less. Inorganic particles having such an aspect ratio and a small Mohs hardness are likely to be aggregated or crushed in mixing due to their shape anisotropy. A high degree of mixing is possible.
  • the surface of the inorganic particles is a silane coupling agent (3-aminopropyltriethoxysilane, vinyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxy). It may be surface-treated with propylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-isopropylpropyltriethoxysilane, etc.).
  • Preferable specific examples of the inorganic particles include the specific examples of the inorganic filler in the above-mentioned method 1 and the same as the inorganic particles in the present method 2.
  • the content of the inorganic particles in the composition 3 is preferably 10% by mass or more, more preferably 20% by mass or more, based on the total mass of the composition 3.
  • the content of the inorganic particles is preferably 60% by mass or less, more preferably 50% by mass or less, based on the total mass of the composition 3.
  • the ratio of the content of the inorganic particles to the content of the F particles in the composition 3 is preferably 0.1 to 3, more preferably 0.2 to 1. In this case, the secondary particles of the inorganic particles are easily eliminated, and the composition 3 is likely to have excellent physical properties such as dispersion stability.
  • the liquid compound in this method 3 means a compound that is liquid at 25 ° C. under atmospheric pressure.
  • the liquid compound include hydrocarbons, water, alcohols, amides, ketones and esters, with water, amides, ketones and esters being preferred.
  • the boiling point of the liquid compound is preferably in the range of 50 to 240 ° C.
  • One type of liquid dispersion medium may be used alone, or two or more types may be used in combination.
  • Examples of the alcohol include methanol, ethanol, isopropanol and glycol.
  • As amides N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethylpropanamide, 3-methoxy-N, N-dimethylpropanamide, 3-butoxy- Examples thereof include N, N-dimethylpropanamide, N, N-diethylformamide, hexamethylphosphoric triamide, 1,3-dimethyl-2-imidazolidinone and the like.
  • ketone examples include acetone, methyl ethyl ketone, methyl isopropyl ketone, methyl isobutyl ketone, methyl n-pentyl ketone, methyl isopentyl ketone, 2-heptanone, cyclopentanone, cyclohexanone, and cycloheptanone.
  • Esters include methyl acetate, ethyl acetate, butyl acetate, methyl lactate, ethyl lactate, methyl pyruvate, ethyl pyruvate, methyl methoxypropionate, ethyl ethoxypropionate, ethyl 3-ethoxypropionate, ⁇ -butyrolactone, ⁇ - Valerolactone can be mentioned.
  • liquid compound examples include water, N-methyl-2-pyrrolidone, ⁇ -butyrolactone, cyclohexanone and cyclopentanone.
  • the content of the liquid compound in the composition 3 is preferably 30 to 90% by mass, more preferably 50 to 80% by mass. In such a range, the liquid physical characteristics such as the dispersion stability of the present composition 3 are more likely to be improved.
  • the F particles, the inorganic particles, and the liquid compound are swirled and mixed in a thin film, that is, these components are swirled and mixed while spreading in a thin film shape to obtain the composition 3.
  • Centrifugal force associated with swirling effectively acts on each of the components developed in the form of a thin film, and the liquid compound is highly permeated into each of the F particles and the present inorganic particles, and the mixing proceeds.
  • the mixing is preferably performed by the thin film swirl type high-speed mixer described in the present method 1 and the present method 2.
  • the details of the stirring tank in the thin film swirling high-speed mixer and the rotating portion having the cylindrical portion in which a plurality of holes are formed are as described above.
  • the F particles, the present inorganic particles, and the liquid compound may be collectively supplied into the stirring tank, or may be separately supplied into the stirring tank using a plurality of inlets.
  • Mixing can be carried out in batch or continuous manner.
  • one stirring tank may be used to supply the mixture taken out from the discharge port again from the input port and mixed, or a plurality of stirring tanks may be used to prepare the stirring tank in the previous stage.
  • the mixture taken out from the discharge port may be supplied from the input port of the stirring tank in the subsequent stage and mixed.
  • the supplied F particles, the present inorganic particles, and the liquid compound spread over the gap between the inner wall surface of the stirring tank and the outer peripheral surface of the cylindrical portion of the rotating portion to form a film, and as the rotating portion rotates, the stirring tank becomes a film. Turn at high speed inside. At this time, by receiving not only shear stress but also shear stress, dispersion mixing at a high level is achieved.
  • the composition containing the F particles, the present inorganic particles and the liquid compound is swirled in a thin film and mixed. That is, in this method, it is preferable that the F particles, the inorganic particles, and the liquid compound are premixed before being swirled in a thin film and mixed.
  • the mechanism of action of the present method described above is enhanced, and the physical properties such as the dispersion stability of the present composition 3 are likely to be further improved.
  • Examples of the premixing method include the same methods as those described above in the present method 1 and the present method 2.
  • the composition containing the F particles, the present inorganic particles and the liquid compound is preferably a kneaded product obtained by premixing the F particles, the present inorganic particles and the liquid compound.
  • a liquid compound may be further added to the kneaded product to adjust the viscosity. In this case, the mechanism of action of this method described above is likely to be enhanced.
  • the kneaded product is preferably a solidified product (paste) having fluidity and viscosity, or a lumpy and clay-like solidified product (powder).
  • the solid content in the paste is preferably 40 to 90% by mass, more preferably 60 to 80% by mass.
  • the solid content in the dough is preferably 50 to 99% by mass, more preferably 60 to 95% by mass.
  • the solid content in the paste and the kneaded powder has the same meaning as described above in the present method 2.
  • a polymer different from the F polymer may be further added.
  • the step of adding the different polymer may be before or during mixing.
  • a composition containing F particles, the present inorganic particles and a liquid compound, and a different polymer may be prepared and used for mixing.
  • the different polymers may be thermosetting, thermoplastic or modified. Further, different polymers may be dissolved in the present composition 3 or may be dispersed without being dissolved. Different polymers may be included in the composition 3 as precursors thereof.
  • Different polymers include acrylic resin, phenolic resin, liquid crystal polyester, liquid crystal polyesteramide, polyolefin resin, modified polyphenylene ether, polyfunctional cyanate ester resin, polyfunctional maleimide-cyanic acid ester resin, polyfunctional maleimide, styrene elastomer.
  • Aromatic elastomers such as vinyl ester resin, urea resin, diallyl phthalate resin, melamine resin, guanamine resin, melamine-urea cocondensate resin, polycarbonate, polyarylate, polysulfone, polyallylsulfone, aromatic polyamide, aromatic polyamideimide , Aromatic polyether amide, polyphenylensulfide, polyallyl ether ketone, polyphenylene ether, epoxy resin and the like.
  • Preferred embodiments of different polymers include aromatic polymers.
  • the aromatic polymer is preferably a polyphenylene ether or an aromatic elastomer (styrene elastomer or the like).
  • styrene elastomer styrene elastomer or the like.
  • the content thereof is preferably 40% by mass or less with respect to the total mass of the composition 3.
  • a surfactant may be further added.
  • the step of adding the surfactant may be before or during mixing.
  • a composition containing F particles, the present inorganic particles, a liquid compound, and a surfactant may be prepared and used for mixing.
  • the surfactant is preferably a nonionic surfactant.
  • Specific examples of the nonionic surfactant include the same surfactants that may be added to the composition 2 described above.
  • the present composition 3 contains a nonionic surfactant
  • the content of the nonionic surfactant in the present composition 3 is preferably 0.1 to 15% by mass, more preferably 1 to 10% by mass.
  • a silane coupling agent may be further added.
  • the binding force between the F particles and the present inorganic particles is likely to be improved, and the exfoliation of the present inorganic particles is likely to be suppressed in the molded product formed from the present composition 3.
  • the silane coupling agent include compounds similar to the silane coupling agent that can be used for the surface treatment of the present inorganic particles.
  • the step of adding the silane coupling agent may be before or during mixing.
  • a composition containing F particles, the present inorganic particles and a liquid compound, and a silane coupling agent may be prepared and used for mixing.
  • the present composition 3 contains a silane coupling agent
  • the content of the silane coupling agent in the present composition 3 is preferably 1 to 10% by mass with respect to the content of the F particles.
  • a pH adjuster or a pH buffer may be further used from the viewpoint of pH adjustment.
  • Examples of the pH adjuster or pH buffer include compounds similar to those described above in the present composition 2.
  • the step of adding the pH adjuster or pH buffer may be before or during mixing.
  • the present composition 3 may be further subjected to a defoaming treatment. Defoaming is preferably performed using a rotation / revolution stirrer.
  • a liquid compound may be further added to the composition 3. Due to the mechanism of action described above, the composition 3 has excellent dispersion stability and can be easily mixed with the liquid compound.
  • the liquid compound to be further added may be the same as or different from the liquid compound in this method.
  • the present composition 3 contains the above-mentioned components (polymer different from F polymer, surfactant, silane coupling agent, pH adjuster, pH buffer), tyxo property imparting agent, and viscosity adjusting agent.
  • compositions 3 are excellent in dispersion stability due to the above-mentioned mechanism of action, the liquid physical characteristics can be easily adjusted by adding these.
  • the viscosity of the composition 3 is preferably 10 mPa ⁇ s or more, more preferably 50 mPa ⁇ s or more, and even more preferably 100 mPa ⁇ s or more.
  • the viscosity of the composition 3 is preferably 10,000 mPa ⁇ s or less, more preferably 3000 mPa ⁇ s or less, and even more preferably 1000 mPa ⁇ s or less.
  • the present composition 3 tends to be excellent in liquid physical properties such as dispersion stability.
  • the thixotropy ratio of the present composition 3 is preferably 1.0 or more.
  • the thixotropy of the composition 3 is preferably 3.0 or less, more preferably 2.0 or less. In this case, the present composition 3 is excellent in liquid physical characteristics such as dispersion stability, and it is easy to form a more dense molded product.
  • the dispersed layer ratio of the present composition 3 is preferably 60% or more, more preferably 70% or more, still more preferably 80% or more. Since the present composition 3 is excellent in dispersion stability, it is easy to take a value in the range where the dispersion layer ratio is applied.
  • the dispersed layer ratio is as described above in the present composition 2.
  • the dispersity of the composition 3 is preferably 100 ⁇ m or less, more preferably 70 ⁇ m or less, and even more preferably 50 ⁇ m or less.
  • the dispersity of the composition 3 is preferably 10 ⁇ m or more.
  • the dispersity is as described above in the present composition 2.
  • the present composition 3 is excellent in liquid physical properties such as dispersion stability, and a molded product having excellent physical properties based on the F polymer and the present inorganic particles can be formed by the above-mentioned action mechanism. In addition, it is possible to form a molded product that exhibits strong adhesiveness to the base material.
  • the composition 3 is applied to the surface of a base material and heated to form a polymer layer containing the F polymer and the inorganic particles (hereinafter, also referred to as “F layer 2”).
  • F layer 2 a polymer layer containing the F polymer and the inorganic particles
  • the present composition 3 is applied to the surface of the base material to form a liquid film, the liquid film is heated to remove the dispersion medium to form a dry film, and the dry film is further heated.
  • the F polymer By firing the F polymer, a laminate having the F layer 2 on the surface of the base material layer can be obtained.
  • the base material examples include those similar to those described above in the present method 2.
  • the metal substrate may be a low-roughened copper foil or a non-roughened copper foil.
  • the laminate tends to have excellent transmission characteristics.
  • the shape of the base material include a flat shape, a curved surface shape, and an uneven shape, and further, any of a foil shape, a plate shape, a film shape, and a fibrous shape may be used.
  • the method of applying the composition 3 to the surface of the base material, the method of drying the formed liquid film, and the method of heating are the same as the method for producing the laminate in the above-mentioned method 2.
  • the thickness of the F layer 2 is preferably 0.1 ⁇ m or more, more preferably 10 ⁇ m or more, and even more preferably 50 ⁇ m or more.
  • the thickness of the F layer 2 is preferably 500 ⁇ m or less, more preferably 250 ⁇ m or less. Since the present composition 3 is excellent in physical properties such as dispersion stability, a thick F layer 2 can be easily formed from the present composition 3.
  • the peel strength between the F layer 2 and the base material layer is preferably 10 N / cm or more, more preferably 15 N / cm or more. The peel strength is preferably 100 N / cm or less. By using the present composition 3, such a laminated body can be easily formed without impairing the physical characteristics of the F polymer in the F layer 2.
  • the present composition 3 may be applied only to one surface of the base material, or may be applied to both sides of the base material.
  • a base material layer composed of a base material and a laminate having an F layer 2 on one surface of the base material layer are obtained, and in the latter, a base material layer composed of a base material and such a base material are obtained.
  • a laminate having the F layer 2 on both surfaces of the material layer is obtained. Since the latter laminate is less likely to warp, it is excellent in handleability during its processing.
  • Specific examples of such a laminate include a metal foil, a metal-clad laminate having an F layer 2 on at least one surface of the metal foil, a polyimide film, and a multilayer having an F layer 2 on both surfaces of the polyimide film. Film is mentioned. Since these laminates are excellent in various physical properties such as electrical characteristics, they are suitable as printed circuit board materials and the like, and can be used for manufacturing flexible printed circuit boards and rigid printed circuit boards.
  • a sheet made of the F layer 2 can be manufactured.
  • the method of removal includes peeling or etching.
  • the laminate of the F layer 2 and the base material layer and the sheet composed of the F layer 2 are useful as antenna parts, printed circuit boards, aircraft parts, automobile parts, sports equipment, food industry supplies, heat dissipation parts, paints, cosmetics, etc. Is. Specific examples are as described above in this method 2.
  • the present invention is not limited to the configuration of the above-described embodiment.
  • the method for producing the present composition 3 and the method for producing a laminate using the present composition 3 may additionally have any other step in the configuration of the above embodiment, and have the same action. It may be replaced with any step that occurs.
  • F particle 1 Contains 97.9 mol%, 0.1 mol%, and 2.0 mol% of TFE units, NAH units, and PPVE units in this order, and contains carbonyl group-containing groups per 1 ⁇ 10 6 main chain carbon atoms.
  • Particles (D50: 2.1 ⁇ m) composed of 1000 F-polymer 1 (melting temperature: 300 ° C.)
  • F particle 2 Particles (D50: 1.8 ⁇ m) composed of a polymer (melting temperature 305 ° C.) containing 97.5 mol% and 2.5 mol% of TFE units and PPVE units in this order and having no oxygen-containing polar group.
  • F particle 3 Non-meltable particle (D50: 0.3 ⁇ m) made of non-heat-meltable polytetrafluoroethylene [Liquid dispersion medium (liquid compound)] NMP: N-methyl-2-pyrrolidone Tol: Toluene [Aromatic resin (aromatic polymer) varnish] Alligator 1: A carboxyl group-containing phenol resin (aromatic resin 1, acid value: 1, which is obtained by reacting an epoxidized polyfunctional phenol resin with an acrylic acid and then adding a phthalic acid anhydride to a hydroxyl group existing in a side chain.
  • Varnish 2 Water varnish containing a precursor (acid value: 50 mgKOH / g) of aromatic polyamide-imide (PAI1) [inorganic particles]
  • Particle 1 Plate-like and scaly boron nitride particles (D50: 14.6 ⁇ m, new Mohs hardness: 2)
  • Particle 2 Spherical boron carbide particles (D50: 12.2 ⁇ m, new Mohs hardness: 14)
  • Thickening polymer Thickening polymer 1: Carboxymethyl cellulose (molecular weight: 350,000, pyrolysis temperature: 300 ° C)
  • Thickening polymer 2 Hydroxyethyl cellulose ("HEC CF-Y" manufactured by Sumitomo Seika Chemical Co., Ltd.)
  • Polyimide film 1 Aromatic polyimide film with a thickness of 25 ⁇ m (“FG-100” manufactured by PI
  • Example 1-1 (1) Stirring of F particles 1, varnish 1, and NMP with a cylindrical stirring tank and a rotating portion having a cylindrical portion having a plurality of holes formed inside the inner wall surface of the stirring tank. Put it in the stirring tank of the machine, rotate the rotating part at high speed and mix it, F particle 1 (30 parts by mass), aromatic resin 1 (20 parts by mass), Tol (10 parts by mass), NMP (30 parts by mass) Part) was obtained as a composition 1-1 (viscosity: 10000 mPa ⁇ s).
  • composition 1 and the varnish 1 are put into a pot and shaken to shake F particles 1 (30 parts by mass), aromatic resin 1 (80 parts by mass), Tol (40 parts by mass) and NMP (20 parts by mass).
  • a liquid composition 1-1 (viscosity: 400 mPa ⁇ s) containing 60 parts by mass) was obtained.
  • the composition 1-1 and the liquid composition 1-1 were excellent in dispersibility, with no visible agglomerates even after storage at 25 ° C. for 30 days.
  • Example 1-2 (1) Composition 1-2 was obtained in the same manner as in (1) of Example 1-1 except that F particle 1 was changed to F particle 2. (2) A liquid composition 1-2 was obtained in the same manner as in (2) of Example 1-1 except that the composition 1 was changed to the composition 2. In the composition 1-2 and the liquid composition 1-2, aggregates were visually recognized even after storage at 25 ° C. for 30 days, and a redispersion operation was required.
  • F particles 2 (30 parts by mass), aromatic resin 1 (80 parts by mass), Tol (40 parts by mass) and NMP (60 parts by mass) were put into the pot, and zirconia balls were put into the pot. Then, the pot was rolled at 150 rpm for 1 hour to try to prepare a liquid composition, but the liquid composition became viscous, and a uniform dispersion could not be directly obtained.
  • Example of manufacturing a base material with a convex portion In a laminate of an F polymer 1 film and an electrolytic copper foil (manufactured by Fukuda Metal Foil Powder Industry Co., Ltd., "CF-T49A-DS-HD2"), the opposite side of the electrolytic copper foil film.
  • the liquid composition 1-1 was applied to the surface of the laminate to form a coating film on the laminate.
  • This coating film was dried at 80 ° C. for 10 minutes to obtain a dry film (thickness: 50 ⁇ m).
  • the dry film was irradiated with ultraviolet rays (integrated light intensity: 150 mJ / cm 2 ) using an exposure mask having a predetermined pattern of openings.
  • Example of Film Production A liquid composition 1-1 is applied to an electrolytic copper foil (manufactured by Fukuda Metal Foil Powder Industry Co., Ltd., "CF-T49A-DS-HD2") to form a coating film, and this coating film is applied at 80 ° C. It was dried for 10 minutes to obtain a dry film (thickness: 50 ⁇ m). Next, ultraviolet rays were applied to the entire dry film without using an exposure mask. The integrated amount of ultraviolet rays was set to 150 mJ / cm 2 . Next, the electrolytic copper foil was etched with an aqueous ferric chloride solution to obtain a film.
  • the dielectric constant is 3 or less and the dielectric loss tangent is 0.05 or less, which are excellent in electrical characteristics. rice field.
  • Example 2-1 Production Example of Liquid Composition
  • varnish 2, thickening polymer 1 and water were put into a pot and mixed.
  • F particle 1 was put into a pot and mixed to prepare a composition.
  • the prepared composition was put into a planetary mixer, kneaded, and F particles 1 (40 parts by mass), PAI 1 (0.4 parts by mass), thickening polymer 1 (0.6 parts by mass) and water.
  • a kneaded powder 2-1 containing (29 parts by mass) was obtained.
  • the kneaded powder 2-1 was lumpy and clay-like.
  • Water is added to the kneaded powder 2-1 in a plurality of times and stirred, and has a cylindrical stirring tank and a cylindrical portion having a plurality of holes formed which rotates inside the inner wall surface of the stirring tank. It was placed in a stirring tank of a stirrer equipped with a rotating portion, and the rotating portion was rotated at a high speed of 7500 rpm for 30 seconds to mix.
  • the liquid composition 2-1 viscosity:
  • F particles 1 40 parts by mass
  • PAI 1 0.4 parts by mass
  • thickening polymer 1 0.6 parts by mass
  • water 59 parts by mass
  • Example 2-2 F particle 2 (40 parts by mass), PAI 1 (0.4 parts by mass), thickening polymer 1 (0.6 mass by mass) in the same manner as in Example 2-1 except that F particle 1 was changed to F particle 2. Part) and water (59 parts by mass) were obtained as a liquid composition 2-2 (viscosity: 600 mPa ⁇ s).
  • Example 2-3 F particle 1 (20 parts by mass) in the same manner as in Example 2-1 except that F particle 1 (40 parts by mass) was changed to F particle 1 (20 parts by mass) and F particle 3 (20 parts by mass).
  • Example 2-4 F particles 1, varnish 2, thickening polymer 1 and water were put into the pot, and zirconia balls were put into the pot. Then, the pot was rolled at 150 rpm for 1 hour to add F particle 1 (40 parts by mass), PAI 1 (0.4 parts by mass), thickening polymer 1 (0.6 parts by mass) and water (59 parts by mass). A liquid composition containing 2-4 (viscosity: 900 mPa ⁇ s) was obtained. [Example 2-5] Example 2-1 except that the amounts of the thickening polymer 1 and water when the varnish 2 and the thickening polymer 1 and water were put into the pot and mixed were changed to 2.6 parts by mass and 27 parts by mass, respectively.
  • Liquid composition 2-5 (similar to) containing F particles 1 (40 parts by mass), PAI 1 (0.4 parts by mass), thickening polymer 1 (2.6 parts by mass) and water (57 parts by mass). Viscosity: 1000 mPa ⁇ s) was obtained. The ratio of the content of the thickening polymer to the F particles in the liquid composition 2-5 is 0.065.
  • Example 2-6 F particles 2, varnish 2, thickening polymer 1 and water were put into the pot, and zirconia balls were put into the pot. Then, the pot was rolled at 150 rpm for 1 hour to add F particles 2 (40 parts by mass), PAI 1 (0.4 parts by mass), thickening polymer 1 (2.6 parts by mass) and water (57 parts by mass). A liquid composition containing 2-6 (viscosity: 3000 mPa ⁇ s) was obtained. The ratio of the content of the thickening polymer to the F particles in the liquid composition 2-6 is 0.065.
  • Example 2-7 F particles 1 were put into a rotation / revolution stirrer, stirred, and pre-dispersed. Further, the pre-dispersed F particles 1, the varnish 2, the thickening polymer 2, and water are put into the rotation / revolution stirrer, and the mixture is stirred with the ratio of the rotation speed to the revolution speed being 2, and the F particles 1 (40 parts by mass). ), PAI1 (0.4 parts by mass), thickening polymer 2 (0.6 parts by mass) and water (19 parts by mass). Viscosity measured by capillograph: 20000 Pa ⁇ s) was obtained.
  • the ratio of the rotation speed to the revolution speed was set to 2 and mixed with a rotation revolution stirrer, and F particles 1 (40 parts by mass) and PAI1 (0.4 by mass) were mixed.
  • a liquid composition 2-7 (viscosity: 400 mPa ⁇ s) containing (by mass), thickening polymer 2 (0.6 parts by mass) and water (59 parts by mass) was obtained.
  • the ratio of the content of the thickening polymer to the F particles in the liquid composition 2-7 is 0.015.
  • the time from the production of the liquid composition 2-7 to the disappearance of foaming is shorter than the time from the production of the liquid composition 2-1 to the disappearance of foaming, and the liquid composition 7 is easy to handle. It was excellent.
  • Laminated Liquid Composition 2-1 was applied to the surface of a long copper foil having a thickness of 18 ⁇ m using a bar coater to form a wet film.
  • the copper foil on which the wet film was formed was dried by passing it through a drying oven at 110 ° C. for 5 minutes to form a dry film.
  • the substrate on which the dry film was formed was heated in a nitrogen oven at 380 ° C. for 3 minutes.
  • a laminate 2-1 having a copper foil and a polymer layer having a thickness of 200 ⁇ m as a molded product containing a melt-fired product of F particles 1 and PAI1 on the surface thereof was produced.
  • Laminated bodies 2-2 to 2-7 were obtained in the same manner as in laminated body 2-1 except that the liquid composition 2-1 was changed to liquid compositions 2-2 to 2-7.
  • the sheet obtained from the laminated body 2-3 was superior in bending property to the sheet obtained from the laminated body 2-1 and was excellent in sheet strength.
  • liquid composition 2-7 is applied to one surface of polyimide film 1 by the small-diameter gravure reverse method, and placed in a ventilation drying oven (furnace temperature 150 ° C.) in 3 minutes. It was allowed to pass and water was removed to form a dry film. Further, the liquid composition 2-7 was similarly applied to the other surface of the polyimide film 1 and dried to form a dry film. Next, the polyimide film 1 having the dry film formed on both sides is passed through a far-infrared furnace (a furnace temperature of 300 ° C. near the inlet and outlet of the furnace and a furnace temperature of 360 ° C. near the center) in 5 minutes, and the F particles 1 are passed.
  • a far-infrared furnace a furnace temperature of 300 ° C. near the inlet and outlet of the furnace and a furnace temperature of 360 ° C. near the center
  • the polymer layer and the polyimide film layer were peeled off at 90 ° to the test piece.
  • the maximum load applied at that time was 15 N / cm or more, and the laminated film 2-1 was excellent in interlayer adhesion.
  • a 180 mm square test piece was cut out from the laminated film 2-1 and the linear expansion coefficient of the test piece was measured by the measuring method specified in JIS C 6471: 1995. As a result, it was less than 20 ppm / ° C., and the laminated film 2-1. was excellent in low line expansion.
  • Example 3-1 Production Example of Liquid Composition
  • a powder mixture of F particles 1 and particles 1 and NMP were put into a pot and mixed to prepare a composition. Subsequently, the prepared composition is put into a planetary mixer, kneaded, and kneaded powder 3-1 containing F particles 1 (20 parts by mass), particles 1 (20 parts by mass) and NMP (30 parts by mass). Got The kneaded powder 3-1 was lumpy and clay-like.
  • NMP is added to the kneaded powder 3-1 in a plurality of times and stirred, and has a cylindrical stirring tank and a cylindrical portion having a plurality of holes formed which rotates inside the inner wall surface of the stirring tank. It was placed in a stirring tank of a stirrer equipped with a rotating portion, and the rotating portion was rotated at a high speed of 7500 rpm for 30 seconds to mix. As a result, a liquid composition 3-1 (viscosity: 500 mPa ⁇ s) containing F particle 1 (20 parts by mass), particle 1 (20 parts by mass) and NMP (60 parts by mass) was obtained.
  • Example 3-2 Liquid composition containing F particle 2 (20 parts by mass), particle 1 (20 parts by mass) and NMP (60 parts by mass) in the same manner as in Example 3-1 except that F particle 1 was changed to F particle 2.
  • a product 3-2 viscosity: 800 mPa ⁇ s
  • Example 3-3 F particle 1 (10 parts by mass) in the same manner as in Example 3-1 except that F particle 1 (20 parts by mass) was changed to F particle 1 (10 parts by mass) and F particle 3 (10 parts by mass).
  • F particle 2 (10 parts by mass), particle 2 (20 parts by mass) and NMP (60 parts by mass) to obtain a liquid composition 3-3 (viscosity: 700 mPa ⁇ s).
  • Example 3-4 F particle 2 (20 parts by mass), particle 2 (20 parts by mass) and the same as in Example 3-1 except that F particle 1 was changed to F particle 2 and particle 1 was changed to particle 2.
  • a liquid composition 3-4 (viscosity: 2000 mPa ⁇ s) containing NMP (60 parts by mass) was obtained.
  • Example 3-5 F particle 2, particle 1 and NMP were put into the pot, and zirconia balls were put into the pot. Then, the pot was rolled at 150 rpm for 1 hour to form a liquid composition 3-5 (viscosity: 3000 mPa ⁇ s) containing F particle 2 (20 parts by mass), particle 1 (20 parts by mass) and NMP (60 parts by mass). ) was obtained.
  • Laminated Liquid Composition 3-1 was applied to the surface of a long copper foil having a thickness of 18 ⁇ m using a bar coater to form a wet film.
  • the copper foil on which the wet film was formed was dried by passing it through a drying oven at 110 ° C. for 5 minutes to form a dry film.
  • the substrate on which the dry film was formed was passed between two pairs of rolls heated to 120 ° C., which were adjusted to press the dry film at 0.5 MPa, and pressed the dry film. The substrate was then further heated in a nitrogen oven at 380 ° C. for 3 minutes.
  • a laminate 3-1 having a copper foil and a polymer layer having a thickness of 200 ⁇ m as a molded product containing a melt-fired product of F particles 1 and particles 1 on the surface thereof was produced.
  • Laminated bodies 3-2 to 3-5 were obtained in the same manner as in laminated body 3-1 except that the liquid composition 3-1 was changed to liquid compositions 3-2 to 3-5.
  • the sheet obtained from the laminated body 3-3 was superior in bending property as compared with the sheet obtained from the laminated body 3-1 and was excellent in sheet strength.
  • the liquid composition produced by the method of the present invention is excellent in dispersion stability, uniformity and handleability.
  • the liquid composition obtained by the production method of Aspect 1 is also useful as, for example, a solder resist composition, a filling material used for filling through holes or recesses in a multilayer printed wiring board.
  • a molded product having excellent physical properties such as low linear expansion property, thermal conductivity, and electrical properties can be formed. Therefore, such a liquid composition can be easily processed into a film, a fiber reinforced film, a prepreg, a metal laminated plate (metal foil with resin), or the like.
  • the obtained processed article can be used as a material for antenna parts, printed circuit boards, aircraft parts, automobile parts, sports equipment, food industry supplies, slip bearings, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

[Problem] To provide a method for producing a liquid composition which contains particles of a tetrafluoroethylene-based polymer, exhibits excellent dispersion stability, homogeneity and handleability, yields a molded product that exhibits excellent physical properties such as electrical characteristics, and is useful as a constituent material of a solder resist composition or a printed substrate. [Solution] In this method for producing a liquid composition, particles of a tetrafluoroethylene-based polymer, at least one of an aromatic resin and inorganic particles having a new Mohs hardness of 12 or less, and a liquid compound are mixed in a tank having a stirring mechanism involving thin film rotation or a stirring mechanism involving rotation and revolution, thereby obtaining a liquid composition that contains the particles of a tetrafluoroethylene-based polymer, at least one of an aromatic resin and inorganic particles having a new Mohs hardness of 12 or less, and the liquid compound.

Description

液状組成物の製造方法及び組成物Method for producing liquid composition and composition
 本発明は、テトラフルオロエチレン系ポリマーの粒子と、芳香族性樹脂又は所定の無機粒子の少なくとも一方を含む液状組成物の製造方法及び液状組成物に関する。 The present invention relates to a method for producing a liquid composition and a liquid composition containing at least one of tetrafluoroethylene polymer particles and an aromatic resin or a predetermined inorganic particle.
 ポリテトラフルオロエチレン(PTFE)等のテトラフルオロエチレン系ポリマーは、電気特性、撥水撥油性、耐薬品性、耐熱性等の物性に優れており、プリント基板等の種々の産業用途に利用されている。前記物性を基材表面に付与するために用いるコーティング剤として、テトラフルオロエチレン系ポリマーの粒子と水等の液状分散媒とを含む液状組成物が知られている。
 かかる液状組成物からは、低誘電率、低誘電正接等の電気特性に優れた成形物を形成できるため、かかる液状組成物は高周波帯域の周波数に対応するプリント基板の誘電体層を形成する材料として注目されている。
Tetrafluoroethylene-based polymers such as polytetrafluoroethylene (PTFE) have excellent physical properties such as electrical properties, water and oil repellency, chemical resistance, and heat resistance, and are used in various industrial applications such as printed circuit boards. There is. As a coating agent used to impart the physical properties to the surface of the base material, a liquid composition containing particles of a tetrafluoroethylene polymer and a liquid dispersion medium such as water is known.
Since a molded product having excellent electrical characteristics such as low dielectric constant and low dielectric loss tangent can be formed from such a liquid composition, the liquid composition is a material for forming a dielectric layer of a printed circuit board corresponding to a frequency in a high frequency band. It is attracting attention as.
 より優れた誘電体層を形成するために、テトラフルオロエチレン系ポリマーと芳香族性樹脂の混合の検討もなされている。
 例えば特許文献1には、ポリアミック酸のワニスにPTFEの粒子を混合し、それをイミド化プロセスに供して作成された、ポリイミド-PTFEブレンドフィルムが開示されている。特許文献2には、ポリアミック酸のワニスを製造し、その一部を取り出してPTFEの粒子と混合し、それと残余のワニスを混合し、それを熱キャスト法に供して作成された、ポリイミド-PTFEブレンドフィルムが開示されている。
 特許文献3には、かかる液状組成物の塗工性を向上させる目的で、増粘剤の使用が提案されている。特許文献4には、かかる液状組成物から形成される成形物の接着性を向上する目的で、ポリアミドイミド樹脂及びポリエーテルイミドの使用が提案されている。
 また、テトラフルオロエチレン系ポリマーは、分散安定性が著しく低いため、分散安定性に優れた液状組成物を得る観点から従前より様々な提案がなされている。
 例えば特許文献5には、分散安定性を向上する観点から、セラミックスの無機粒子をさらに混合した、PTFEの粒子を含む液状組成物が開示されている。
In order to form a better dielectric layer, a mixture of a tetrafluoroethylene polymer and an aromatic resin has also been studied.
For example, Patent Document 1 discloses a polyimide-PTFE blend film prepared by mixing PTFE particles with a polyamic acid varnish and subjecting the PTFE particles to an imidization process. In Patent Document 2, a polyimide-PTFE produced by producing a polyamic acid varnish, taking out a part thereof, mixing it with PTFE particles, mixing the remaining varnish with the varnish, and subjecting it to a heat casting method. Blended films are disclosed.
Patent Document 3 proposes the use of a thickener for the purpose of improving the coatability of such a liquid composition. Patent Document 4 proposes the use of a polyamide-imide resin and a polyetherimide for the purpose of improving the adhesiveness of a molded product formed from such a liquid composition.
Further, since the tetrafluoroethylene polymer has extremely low dispersion stability, various proposals have been made from the viewpoint of obtaining a liquid composition having excellent dispersion stability.
For example, Patent Document 5 discloses a liquid composition containing PTFE particles, which is further mixed with inorganic particles of ceramics, from the viewpoint of improving dispersion stability.
特開2005-142572号公報Japanese Unexamined Patent Publication No. 2005-142572 国際公開第2016/159061号International Publication No. 2016/159061 特開2018-048233号公報Japanese Unexamined Patent Publication No. 2018-408233 特開2019-218484号公報Japanese Unexamined Patent Publication No. 2019-218484 特開2016-194017号公報Japanese Unexamined Patent Publication No. 2016-194017
 テトラフルオロエチレン系ポリマーは表面張力が低く、他の成分と相互作用しにくく、分散安定性が著しく低い。そのため、先行技術文献の態様では、得られる混合物(組成物)の分散安定性が低く、また変質しやすいため、それから得られる成形品の成分分布の均一性や緻密性が低下し、物性を発揮し難いという課題を、本発明者らは知見している。さらに、本発明者らは、かかる混合物(組成物)から凸部付き基材等の微細又は複雑な形状を有する成形物を形成する場合、かかる課題が顕著になることも知見している。 Tetrafluoroethylene-based polymer has low surface tension, does not easily interact with other components, and has extremely low dispersion stability. Therefore, in the aspect of the prior art document, the dispersion stability of the obtained mixture (composition) is low and it is easily altered, so that the uniformity and denseness of the component distribution of the molded product obtained from the mixture are lowered and the physical properties are exhibited. The present inventors are aware of the problem that it is difficult to do. Furthermore, the present inventors have also found that such a problem becomes remarkable when a molded product having a fine or complicated shape such as a base material having a convex portion is formed from such a mixture (composition).
 また、特許文献5に記載の態様では、無機粒子の凝集により、液状組成物の分散安定性及び均一性が充分でなく、また液状組成物が変質しやすかった。さらに、かかる液状組成物から得られる成形物中における成分分布の均一性は未だ不充分であった。 Further, in the embodiment described in Patent Document 5, the dispersion stability and uniformity of the liquid composition were not sufficient due to the aggregation of the inorganic particles, and the liquid composition was easily denatured. Furthermore, the uniformity of the component distribution in the molded product obtained from such a liquid composition was still insufficient.
 本発明者らは、鋭意検討した結果、テトラフルオロエチレン系ポリマーの粒子と芳香族樹脂又は特定の無機粒子の少なくとも一方とを含有する液状組成物の製造において、それらを特定の条件で混合すると、分散安定性、均一性及び取扱い性に優れる液状組成物が得られることを知見した。また、具体的には、組成物中のテトラフルオロエチレン系ポリマーの粒子及び芳香族性樹脂の含有量を高められることを知見した。
 加えて、かかる液状組成物は、緻密な成形物の形成に適するだけでなく、低誘電正接及び低線膨張性等に優れ、微細又は複雑な形状を有する成形物の形成に適することも本発明者らは知見した。
As a result of diligent studies, the present inventors have found that in the production of a liquid composition containing particles of a tetrafluoroethylene polymer and at least one of an aromatic resin or a specific inorganic particle, they are mixed under specific conditions. It was found that a liquid composition having excellent dispersion stability, uniformity and handleability can be obtained. Further, specifically, it was found that the content of the tetrafluoroethylene polymer particles and the aromatic resin in the composition can be increased.
In addition, the liquid composition is not only suitable for forming a dense molded product, but also has excellent low dielectric loss tangent and low linear expansion property, and is suitable for forming a molded product having a fine or complicated shape. They found out.
 また、具体的には、かかる液状組成物は、低誘電正接及び低線膨張性等に優れた緻密な成形物の形成に適することも本発明者らは知見した。 Specifically, the present inventors have also found that such a liquid composition is suitable for forming a dense molded product having excellent low dielectric loss tangent and low line expansion property.
 さらに、具体的には、かかる液状組成物は、テトラフルオロエチレン系ポリマー及び無機粒子の物性を高度に具備した、低誘電正接、低線膨張性及び熱伝導性等に優れた緻密な成形物の形成に適することも本発明者らは知見した。 Further, specifically, such a liquid composition is a dense molded product having a high degree of physical properties of a tetrafluoroethylene polymer and inorganic particles and having excellent low dielectric loss tangent, low linear expansion property, thermal conductivity and the like. The present inventors have also found that it is suitable for formation.
 本発明の目的は、分散安定性、均一性及び取扱い性に優れる、テトラフルオロエチレン系ポリマーの粒子と芳香族性樹脂又は所定の無機粒子の少なくとも一方を含む組成物の製造方法、好適にはレジスト組成物である、かかる組成物の提供である。
 具体的には、本発明の目的は、分散安定性及び取扱い性に優れる、テトラフルオロエチレン系ポリマーの粒子及び芳香族性樹脂を含む液状組成物の製造方法、好適にはレジスト組成物である、かかる液状組成物、並びにかかるレジスト組成物から形成された所定のパターンを有する凸部を有する、凸部付き部材の提供である。
An object of the present invention is a method for producing a composition containing at least one of tetrafluoroethylene polymer particles and an aromatic resin or a predetermined inorganic particle, which is excellent in dispersion stability, uniformity and handleability, preferably a resist. It is the provision of such a composition, which is a composition.
Specifically, an object of the present invention is a method for producing a liquid composition containing tetrafluoroethylene polymer particles and an aromatic resin, which is excellent in dispersion stability and handleability, preferably a resist composition. Provided is a member with a convex portion having a convex portion having a predetermined pattern formed from the liquid composition and the resist composition.
 また具体的には、本発明の目的は、テトラフルオロエチレン系ポリマーの粒子と芳香族ポリマーと所定の増粘ポリマーと水とを含み、分散安定性、均一性及び取り扱い性に優れた液状組成物の製造方法及びかかる液状組成物、並びにこの液状組成物を使用した積層体の製造方法の提供である。
 また具体的には、本発明の目的は、分散安定性、均一性及び取り扱い性に優れた液状組成物を形成できる組成物、好適には塊状かつ粘土状の固練品(練粉やウェットパウダー)である組成物の提供である。
Specifically, an object of the present invention is a liquid composition containing particles of a tetrafluoroethylene polymer, an aromatic polymer, a predetermined thickening polymer, and water, and having excellent dispersion stability, uniformity, and handleability. The present invention provides a method for producing the same, such a liquid composition, and a method for producing a laminate using the liquid composition.
Specifically, an object of the present invention is a composition capable of forming a liquid composition having excellent dispersion stability, uniformity and handleability, preferably a lumpy and clay-like solidified product (powder or wet powder). ) Is provided.
 また具体的には、本発明の目的は、テトラフルオロエチレン系ポリマーの粒子及び所定の無機粒子を含み、無機粒子の凝集が少なく、分散安定性、均一性及び取扱い性に優れた液状組成物の製造方法、及び得られた液状組成物を使用した積層体の製造方法の提供である。 Specifically, an object of the present invention is a liquid composition containing particles of a tetrafluoroethylene-based polymer and predetermined inorganic particles, with little aggregation of the inorganic particles, and excellent dispersion stability, uniformity and handleability. The present invention provides a production method and a method for producing a laminate using the obtained liquid composition.
 本発明は、下記の態様を有する。
<1> テトラフルオロエチレン系ポリマーの粒子と、芳香族樹脂又は新モース硬度が12以下の無機粒子の少なくとも一方と、液状化合物とを、薄膜旋回による撹拌機構か、又は、自転及び公転による撹拌機構を備えた槽内にて混合して、前記テトラフルオロエチレン系ポリマーの粒子と芳香族樹脂又は新モース硬度が12以下の無機粒子の少なくとも一方と前記液状化合物とを含む液状組成物を得る、液状組成物の製造方法。
<2> テトラフルオロエチレン系ポリマーの粒子と、芳香族性樹脂のワニスとを、円筒形の撹拌槽と、前記撹拌槽の内壁面の内側で回転する、複数の孔が形成された円筒部を有する回転部位とを備える撹拌機の前記撹拌槽内に入れ、前記回転部位の回転による遠心力によって、前記撹拌槽の内壁面に薄膜円筒状に拡げながら撹拌して、前記テトラフルオロエチレン系ポリマーと前記芳香族性樹脂を含む液状組成物を得る、<1>の製造方法。
<3> 前記テトラフルオロエチレン系ポリマーが、ペルフルオロ(アルキルビニルエーテル)に基づく単位を含む酸素含有極性基を有するテトラフルオロエチレン系ポリマーである、<2>の製造方法。
<4> 前記芳香族性樹脂の質量に対する、前記テトラフルオロエチレン系ポリマーの粒子の質量の比が、0.5~10である、<2>又は<3>の製造方法。
<5> テトラフルオロエチレン系ポリマーの粒子と、芳香族性樹脂のワニスとを含み、前記テトラフルオロエチレン系ポリマーの粒子及び前記芳香族性樹脂の総含有量が50質量%以上であり、かつ、前記芳香族性樹脂に対する、前記テトラフルオロエチレン系ポリマーの粒子の含有量の質量比が0.5~10である、芳香族性樹脂のワニスと混合して使用される液状組成物。
The present invention has the following aspects.
<1> A stirring mechanism by thin film swirling or a stirring mechanism by rotation and revolution of tetrafluoroethylene polymer particles, at least one of aromatic resin or new moth hardness of 12 or less inorganic particles, and a liquid compound. To obtain a liquid composition containing the particles of the tetrafluoroethylene-based polymer, at least one of the aromatic resin or the inorganic particles having a new Morse hardness of 12 or less, and the liquid compound, the mixture is mixed in a tank provided with the above. Method for producing the composition.
<2> A cylindrical portion having a plurality of holes formed by rotating tetrafluoroethylene polymer particles and an aromatic resin varnish inside a cylindrical stirring tank and the inner wall surface of the stirring tank. It is placed in the stirring tank of a stirrer having a rotating portion, and is stirred while spreading in a thin film cylindrical shape on the inner wall surface of the stirring tank by the centrifugal force due to the rotation of the rotating portion to obtain the tetrafluoroethylene polymer. The production method of <1>, which obtains a liquid composition containing the aromatic resin.
<3> The method for producing <2>, wherein the tetrafluoroethylene polymer is a tetrafluoroethylene polymer having an oxygen-containing polar group containing a unit based on perfluoro (alkyl vinyl ether).
<4> The production method of <2> or <3>, wherein the ratio of the mass of the particles of the tetrafluoroethylene-based polymer to the mass of the aromatic resin is 0.5 to 10.
<5> The total content of the tetrafluoroethylene polymer particles and the aromatic resin is 50% by mass or more, and the tetrafluoroethylene polymer particles and the aromatic resin varnish are contained. A liquid composition used by mixing with an aromatic resin varnish having a mass ratio of particles of the tetrafluoroethylene polymer to the aromatic resin of 0.5 to 10.
<6> テトラフルオロエチレン系ポリマーの粒子と、芳香族樹脂と、極性ビニル系ポリマー及び多糖類からなる群から選ばれる少なくとも1種の増粘ポリマーと、水とを、薄膜旋回による撹拌機構か、又は、自転及び公転による撹拌機構を備えた槽内にて混合して、前記テトラフルオロエチレン系ポリマーの粒子と前記芳香族樹脂と前記増粘ポリマーと前記水とを含む液状組成物を得る、<1>の製造方法。
<7> 前記テトラフルオロエチレン系ポリマーの粒子、前記芳香族樹脂、前記増粘ポリマー及び前記水を、薄膜旋回による撹拌機構か、又は、自転及び公転による撹拌機構を備えた槽内にて混合し、さらに水を混合して前記液状組成物を得る、<6>の製造方法。
<8> 前記テトラフルオロエチレン系ポリマーの粒子が、熱溶融性テトラフルオロエチレン系ポリマーの粒子と非熱溶融性テトラフルオロエチレン系ポリマーの粒子とを含む、<6>又は<7>の製造方法。
<9> 前記芳香族樹脂が、芳香族ポリイミド、芳香族ポリアミドイミド、芳香族ポリエーテルイミド又はそれらの前駆体である、<6>~<8>のいずれかの製造方法。
<10> さらに、無機粒子を薄膜旋回による撹拌機構か、又は、自転及び公転による撹拌機構を備えた槽内にて混合して、前記液状組成物を得る、<6>~<9>のいずれかの製造方法。
<11> テトラフルオロエチレン系ポリマーの粒子と、芳香族ポリマーと、極性ビニル系ポリマー及び多糖類からなる群から選ばれる少なくとも1種の増粘ポリマーと、水とを含み、前記テトラフルオロエチレン系ポリマーの粒子に対する前記増粘ポリマーの含有量の比が0.05以下であり、温度を25℃、剪断速度剪断速度を1s-1とするキャピログラフ測定による粘度が10000Pa・sから100000Pa・sである組成物。
<6> A stirring mechanism by swirling a thin film of tetrafluoroethylene polymer particles, an aromatic resin, at least one thickening polymer selected from the group consisting of polar vinyl polymers and polysaccharides, and water. Alternatively, a liquid composition containing the tetrafluoroethylene polymer particles, the aromatic resin, the thickening polymer, and water is obtained by mixing in a tank equipped with a stirring mechanism by rotation and revolution. 1> Manufacturing method.
<7> The particles of the tetrafluoroethylene polymer, the aromatic resin, the thickening polymer, and the water are mixed in a stirring mechanism by thin film swirling or in a tank equipped with a stirring mechanism by rotation and revolution. The production method of <6>, wherein water is further mixed to obtain the liquid composition.
<8> The method for producing <6> or <7>, wherein the tetrafluoroethylene-based polymer particles include heat-meltable tetrafluoroethylene-based polymer particles and non-heat-meltable tetrafluoroethylene-based polymer particles.
<9> The method for producing any of <6> to <8>, wherein the aromatic resin is an aromatic polyimide, an aromatic polyamideimide, an aromatic polyetherimide, or a precursor thereof.
<10> Further, any of <6> to <9>, wherein the inorganic particles are mixed in a stirring mechanism by thin film swirling or in a tank equipped with a stirring mechanism by rotation and revolution to obtain the liquid composition. Manufacturing method.
<11> The tetrafluoroethylene polymer contains particles of the tetrafluoroethylene polymer, an aromatic polymer, at least one thickening polymer selected from the group consisting of polar vinyl polymers and polysaccharides, and water. The composition in which the ratio of the content of the thickening polymer to the particles of the thickening polymer is 0.05 or less, the viscosity is 10000 Pa · s to 100,000 Pa · s by capillograph measurement at a temperature of 25 ° C. and a shear rate of 1 s -1 . thing.
<12> テトラフルオロエチレン系ポリマーの粒子と、新モース硬度が12以下の無機粒子と、液状化合物とを、薄膜旋回させて混合して、前記テトラフルオロエチレン系ポリマーの粒子と前記無機粒子と前記液状化合物とを含む液状組成物を得る、<1>の製造方法。
<13> 前記テトラフルオロエチレン系ポリマーの粒子が、熱溶融性テトラフルオロエチレン系ポリマーの粒子と非熱溶融性テトラフルオロエチレン系ポリマーの粒子とを含む、<12>の製造方法。
<14> 前記無機粒子が、窒化ホウ素粒子又はシリカ粒子である、<12>又は<13>の製造方法。
<15> 前記液状組成物の粘度が、10000mPa・s以下である、<12>~<14>のいずれかの製造方法。
<12> The particles of the tetrafluoroethylene-based polymer, the inorganic particles having a new moth hardness of 12 or less, and the liquid compound are mixed by swirling a thin film, and the particles of the tetrafluoroethylene-based polymer, the inorganic particles, and the liquid compound are mixed. The production method of <1>, which obtains a liquid composition containing a liquid compound.
<13> The production method of <12>, wherein the tetrafluoroethylene-based polymer particles include heat-meltable tetrafluoroethylene-based polymer particles and non-heat-meltable tetrafluoroethylene-based polymer particles.
<14> The method for producing <12> or <13>, wherein the inorganic particles are boron nitride particles or silica particles.
<15> The production method according to any one of <12> to <14>, wherein the viscosity of the liquid composition is 10,000 mPa · s or less.
 本発明によれば、分散安定性及び取扱い性に優れる、テトラフルオロエチレン系ポリマーの粒子及び芳香族性樹脂を含む液状組成物を製造できる。かかる組成物は電気特性等の物性に優れ、例えば、ソルダーレジスト組成物として、またプリント基板の構成材料として有用である。 According to the present invention, it is possible to produce a liquid composition containing tetrafluoroethylene polymer particles and an aromatic resin, which are excellent in dispersion stability and handleability. Such a composition is excellent in physical properties such as electrical characteristics, and is useful as, for example, a solder resist composition and a constituent material of a printed circuit board.
 また、本発明によれば、分散安定性、均一性及び取扱い性に優れる、テトラフルオロエチレン系ポリマーの粒子と芳香族ポリマーと所定の増粘ポリマーと水とを含む液状組成物を製造できる。かかる液状組成物は、電気特性等の物性に優れ、例えば、プリント基板の構成材料として有用である。
 また本発明によれば、分散安定性、均一性及び取り扱い性に優れた液状組成物を形成できる組成物が提供される。
Further, according to the present invention, it is possible to produce a liquid composition containing particles of a tetrafluoroethylene-based polymer, an aromatic polymer, a predetermined thickening polymer, and water, which are excellent in dispersion stability, uniformity, and handleability. Such a liquid composition is excellent in physical properties such as electrical characteristics, and is useful as a constituent material of a printed circuit board, for example.
Further, according to the present invention, there is provided a composition capable of forming a liquid composition having excellent dispersion stability, uniformity and handleability.
 また、本発明によれば、分散安定性及び取扱い性に優れる、テトラフルオロエチレン系ポリマーの粒子及び所定の無機粒子を含む液状組成物を製造できる。かかる液状組成物は、電気特性等の物性に優れた成形物を形成でき、例えば、プリント基板の材料として有用である。 Further, according to the present invention, it is possible to produce a liquid composition containing tetrafluoroethylene polymer particles and predetermined inorganic particles, which are excellent in dispersion stability and handleability. Such a liquid composition can form a molded product having excellent physical properties such as electrical characteristics, and is useful as a material for a printed circuit board, for example.
 「テトラフルオロエチレン系ポリマー」とは、テトラフルオロエチレン(以下、「TFE」とも記す。)に基づく単位(以下、「TFE単位」とも記す。)を含有するポリマーであり、単に「Fポリマー」とも記す。
 「平均粒子径(D50)」は、レーザー回折・散乱法によって求められる、対象物(粒子及びフィラー)の体積基準累積50%径である。すなわち、レーザー回折・散乱法によって粒度分布を測定し、対象物の集団の全体積を100%として累積カーブを求め、その累積カーブ上で累積体積が50%となる点の粒子径である。
 対象物のD50は、対象物を水中に分散させ、レーザー回折・散乱式の粒度分布測定装置(堀場製作所社製、LA-920測定器)を用いたレーザー回折・散乱法により分析して求められる。
 「平均粒子径(D90)」は、粒子の累積体積粒径であり、「D50」と同様にして求められる粒子の体積基準累積90%径である。
 「熱溶融性樹脂」とは、荷重49Nの条件下、樹脂の溶融温度よりも20℃以上高い温度において、溶融流れ速度が1~1000g/10分となる温度が存在する溶融流動性の樹脂を意味する。
 「非熱溶融性樹脂」とは、荷重49Nの条件下、溶融流れ速度が1~1000g/10分となる温度が存在しない、非溶融流動性の樹脂を意味する。
 「溶融温度」は、示差走査熱量測定(DSC)法で測定したポリマーの融解ピークの最大値に対応する温度である。
 「ポリマーの溶融温度(融点)」は、示差走査熱量測定(DSC)法で測定したポリマーの融解ピークの最大値に対応する温度である。
 「粘度」は、B型粘度計を用いて、25℃で回転数が30rpmの条件下で測定される液状組成物の粘度である。測定を3回繰り返し、3回分の測定値の平均値とする。
 「チキソ比」とは、回転数が30rpmの条件で測定される液状組成物の粘度ηを回転数が60rpmの条件で測定される粘度ηで除して算出される値である。それぞれの粘度の測定は、3回繰り返し、3回分の測定値の平均値とする。
 「新モース硬度」は、15種の基準鉱物の硬さを尺度として求められる硬度である。基準鉱物は、柔らかい鉱物(新モース硬度1)から硬い鉱物(新モース硬度15)の順に、滑石、石膏、方解石、蛍石、燐灰石、正長石、溶融石英、水晶(石英)、黄玉(トパーズ)、柘榴石、溶融ジルコニア、溶融アルミナ、炭化ケイ素、炭化ホウ素及びダイヤモンドである。本明細書においては、これらの基準鉱物で対象試料をこすった際の、ひっかき傷の有無で硬度を決定する。例えば、方解石では傷が付かず、蛍石で傷が付く対象試料の新モース硬度は3.5となる。
 ポリマーにおける「単位」とは、モノマーの重合により形成された前記モノマーに基づく原子団を意味する。単位は、重合反応によって直接形成された単位であってもよく、ポリマーを処理することによって前記単位の一部が別の構造に変換された単位であってもよい。以下、モノマーaに基づく単位を、単に「モノマーa単位」とも記す。
The "tetrafluoroethylene-based polymer" is a polymer containing a unit (hereinafter, also referred to as "TFE unit") based on tetrafluoroethylene (hereinafter, also referred to as "TFE"), and is also simply referred to as "F polymer". I will write it down.
The "average particle diameter (D50)" is a volume-based cumulative 50% diameter of an object (particle and filler) determined by a laser diffraction / scattering method. That is, the particle size distribution is measured by the laser diffraction / scattering method, the cumulative curve is obtained with the total volume of the group of objects as 100%, and the particle diameter is the point at which the cumulative volume is 50% on the cumulative curve.
The D50 of the object is obtained by dispersing the object in water and analyzing it by a laser diffraction / scattering method using a laser diffraction / scattering type particle size distribution measuring device (LA-920 measuring device manufactured by HORIBA, Ltd.). ..
The "average particle size (D90)" is the cumulative volume particle size of the particles, and is the volume-based cumulative 90% diameter of the particles obtained in the same manner as in "D50".
The "heat-meltable resin" is a melt-fluid resin having a melt flow rate of 1 to 1000 g / 10 minutes at a temperature 20 ° C. or higher higher than the melt temperature of the resin under a load of 49 N. means.
The “non-thermally meltable resin” means a non-meltable fluid resin in which there is no temperature at which the melt flow rate is 1 to 1000 g / 10 minutes under the condition of a load of 49 N.
The "melting temperature" is the temperature corresponding to the maximum value of the melting peak of the polymer measured by the differential scanning calorimetry (DSC) method.
The "polymer melting temperature (melting point)" is the temperature corresponding to the maximum value of the polymer melting peak measured by the differential scanning calorimetry (DSC) method.
"Viscosity" is the viscosity of a liquid composition measured at 25 ° C. and a rotation speed of 30 rpm using a B-type viscometer. The measurement is repeated 3 times, and the average value of the measured values for 3 times is used.
The "thixotropic ratio" is a value calculated by dividing the viscosity η 1 of the liquid composition measured under the condition of a rotation speed of 30 rpm by the viscosity η 2 measured under the condition of a rotation speed of 60 rpm. Each viscosity measurement is repeated 3 times, and the average value of the measured values for 3 times is used.
The "new Mohs hardness" is a hardness obtained by measuring the hardness of 15 kinds of reference minerals. The reference minerals are talc, gypsum, talite, fluorite, phosphorous stone, regular length stone, molten quartz, crystal (quartz), and yellow jade (topaz) in the order of soft mineral (new Mohs hardness 1) to hard mineral (new Mohs hardness 15). , Quartz, molten zirconia, molten alumina, silicon carbide, boron carbide and diamond. In the present specification, the hardness is determined by the presence or absence of scratches when the target sample is rubbed with these reference minerals. For example, the new Mohs hardness of the target sample, which is not scratched by calcite and is scratched by fluorite, is 3.5.
The "unit" in a polymer means an atomic group based on the monomer formed by polymerization of the monomer. The unit may be a unit directly formed by a polymerization reaction, or may be a unit in which a part of the unit is converted into another structure by processing a polymer. Hereinafter, the unit based on the monomer a is also simply referred to as “monomer a unit”.
 本発明の製造方法(以下、「本法」とも記す。)は、Fポリマーの粒子(以下、「F粒子」とも記す。)と、芳香族樹脂又は新モース硬度が12以下の無機粒子(以下、「本無機粒子」とも記す。)の少なくとも一方と、液状化合物とを、薄膜旋回による撹拌機構か、又は、自転及び公転による撹拌機構を備えた槽内にて混合して、F粒子と芳香族樹脂又は本無機粒子の少なくとも一方と液状化合物とを含む液状組成物(以下、「本液状組成物」とも記す。)を得る方法である。 The production method of the present invention (hereinafter, also referred to as "the present method") includes F polymer particles (hereinafter, also referred to as "F particles") and aromatic resin or new moth hardness of 12 or less inorganic particles (hereinafter, also referred to as "F particles"). , "This inorganic particle") and the liquid compound are mixed in a tank equipped with a stirring mechanism by thin film swirling or a stirring mechanism by rotation and revolution, and F particles and aroma are mixed. This is a method for obtaining a liquid composition containing at least one of a group resin or the present inorganic particles and a liquid compound (hereinafter, also referred to as “the present liquid composition”).
 本発明におけるFポリマーは、熱溶融性であってもよく、非熱溶融性であってもよい。
 Fポリマーが熱溶融性である場合、その溶融温度は、200℃以上が好ましく、240℃以上がより好ましく、260℃以上がさらに好ましい。Fポリマーの溶融温度は、325℃以下が好ましく、320℃以下がより好ましい。Fポリマーの溶融温度は、200~320℃が特に好ましい。
The F polymer in the present invention may be heat-meltable or non-heat-meltable.
When the F polymer is thermally meltable, its melting temperature is preferably 200 ° C. or higher, more preferably 240 ° C. or higher, still more preferably 260 ° C. or higher. The melting temperature of the F polymer is preferably 325 ° C. or lower, more preferably 320 ° C. or lower. The melting temperature of the F polymer is particularly preferably 200 to 320 ° C.
 Fポリマーのガラス転移点は、50℃以上が好ましく、75℃以上がより好ましい。Fポリマーのガラス転移点は、150℃以下が好ましく、125℃以下がより好ましい。
 Fポリマーの表面張力は、16~26mN/mが好ましく、16~20mN/mがより好ましい。なお、Fポリマーの表面張力は、Fポリマーで作製された平板上に、濡れ指数試薬(和光純薬社製)の液滴を載置して測定できる。
 Fポリマーのフッ素含有量は、70質量%以上が好ましく、72~76質量%がより好ましい。フッ素含有量が高いFポリマーは、電気物性等の物性に優れる反面、表面張力が低く、液状化合物中での分散安定性が低下しやすいが、本発明においては、後述する各態様の作用機構により、かかるFポリマーの分散安定性が向上しやすい。
The glass transition point of the F polymer is preferably 50 ° C. or higher, more preferably 75 ° C. or higher. The glass transition point of the F polymer is preferably 150 ° C. or lower, more preferably 125 ° C. or lower.
The surface tension of the F polymer is preferably 16 to 26 mN / m, more preferably 16 to 20 mN / m. The surface tension of the F polymer can be measured by placing a droplet of a wetting index reagent (manufactured by Wako Pure Chemical Industries, Ltd.) on a flat plate made of the F polymer.
The fluorine content of the F polymer is preferably 70% by mass or more, more preferably 72 to 76% by mass. The F polymer having a high fluorine content is excellent in physical properties such as electrical properties, but has a low surface tension, and the dispersion stability in a liquid compound tends to be lowered. , The dispersion stability of the F polymer is likely to be improved.
 Fポリマーとしては、ポリテトラフルオロエチレン(PTFE)、TFE単位とエチレンに基づく単位とを含むポリマー、TFE単位とプロピレンに基づく単位とを含むポリマー、TFE単位とペルフルオロ(アルキルビニルエーテル)(PAVE)に基づく単位(PAVE単位)とを含むポリマー(PFA)、TFE単位とヘキサフルオロプロピレンに基づく単位とを含むポリマー(FEP)、TFE単位とフルオロアルキルエチレンに基づく単位とを含むポリマー、TFE単位とクロロトリフルオロエチレンに基づく単位とを含むポリマーが挙げられ、PFA又はFEPが好ましく、PFAがより好ましい。上記ポリマーは、さらに他のコモノマーに基づく単位を含んでいてもよい。
 PAVEとしては、CF=CFOCF、CF=CFOCFCF又はCF=CFOCFCFCF(以下、「PPVE」とも記す。)が好ましく、PPVEがより好ましい。
F-polymers are based on polytetrafluoroethylene (PTFE), polymers containing TFE units and ethylene-based units, polymers containing TFE units and propylene-based units, TFE units and perfluoro (alkyl vinyl ether) (PAVE). Polymers containing units (PAVE units) (PFA), polymers containing TFE units and units based on hexafluoropropylene (FEP), polymers containing TFE units and units based on fluoroalkylethylene, TFE units and chlorotrifluoro Polymers containing units based on ethylene can be mentioned, with PFA or FEP being preferred, and PFA being more preferred. The polymer may further contain units based on other comonomeres.
As the PAVE, CF 2 = CFOCF 3 , CF 2 = CFOCF 2 CF 3 or CF 2 = CFOCF 2 CF 2 CF 3 (hereinafter, also referred to as “PPVE”) is preferable, and PPVE is more preferable.
 PTFEは、非熱溶融性PTFEであってもよく、熱溶融性PTFEであってもよい。
 Fポリマーは、酸素含有極性基を有するのが好ましい。この場合、分子集合体レベルで微小球晶を形成しやすくなり、F粒子の濡れ性が向上して、本発明の効果が高度に発現しやすい。
 酸素含有極性基は、Fポリマー中の単位に含まれていてもよく、Fポリマーの主鎖の末端基に含まれていてもよい。後者の態様としては、重合開始剤、連鎖移動剤等に由来する末端基として酸素含有極性基を有するFポリマー、Fポリマーをプラズマ処理や電離線処理して得られる、酸素含有極性基を有するFポリマーが挙げられる。酸素含有極性基は、水酸基含有基、カルボニル基含有基及びホスホノ基含有基が好ましく、本液状組成物の分散安定性の観点から、水酸基含有基及びカルボニル基含有基がより好ましく、カルボニル基含有基がさらに好ましい。
The PTFE may be a non-heat-meltable PTFE or a heat-meltable PTFE.
The F polymer preferably has an oxygen-containing polar group. In this case, it becomes easy to form microspherulites at the molecular assembly level, the wettability of F particles is improved, and the effect of the present invention is highly likely to be exhibited.
The oxygen-containing polar group may be contained in a unit in the F polymer, or may be contained in the terminal group of the main chain of the F polymer. In the latter aspect, an F polymer having an oxygen-containing polar group as a terminal group derived from a polymerization initiator, a chain transfer agent, etc., and an F having an oxygen-containing polar group obtained by plasma-treating or ionizing the F polymer. Polymers can be mentioned. The oxygen-containing polar group is preferably a hydroxyl group-containing group, a carbonyl group-containing group and a phosphono group-containing group, and from the viewpoint of dispersion stability of the present liquid composition, a hydroxyl group-containing group and a carbonyl group-containing group are more preferable, and a carbonyl group-containing group is preferable. Is even more preferable.
 水酸基含有基は、アルコール性水酸基を含有する基が好ましく、-CFCHOH又は-C(CFOHがより好ましい。
 カルボニル基含有基は、カルボニル基(>C(O))を含む基であり、カルボキシル基、アルコキシカルボニル基、アミド基、イソシアネート基、カルバメート基(-OC(O)NH)、酸無水物残基(-C(O)OC(O)-)、イミド残基(-C(O)NHC(O)-等)又はカーボネート基(-OC(O)O-)が好ましく、酸無水物残基がより好ましい。この場合、F粒子と、本無機粒子及び液状化合物とが相互作用しやすく、本液状組成物が分散安定性等の液物性に優れやすい。
The hydroxyl group-containing group is preferably an alcoholic hydroxyl group-containing group, more preferably -CF 2 CH 2 OH or -C (CF 3 ) 2 OH.
The carbonyl group-containing group is a group containing a carbonyl group (> C (O)), a carboxyl group, an alkoxycarbonyl group, an amide group, an isocyanate group, a carbamate group (-OC (O) NH 2 ), and an acid anhydride residue. A group (-C (O) OC (O)-), an imide residue (-C (O) NHC (O)-etc.) or a carbonate group (-OC (O) O-) is preferred, and an acid anhydride residue. Is more preferable. In this case, the F particles are likely to interact with the inorganic particles and the liquid compound, and the liquid composition is likely to have excellent liquid physical characteristics such as dispersion stability.
 Fポリマーは、TFE単位及びPAVE単位を含む、カルボニル基含有基を有するポリマーであるのが好ましく、TFE単位、PAVE単位及びカルボニル基含有基を有するモノマーに基づく単位を含むポリマーであるのがより好ましく、全単位に対して、これらの単位をこの順に、90~99モル%、0.5~9.97モル%、0.01~3モル%、含むポリマーであるのがさらに好ましい。カルボニル基含有基が存在すると、Fポリマーの親和性や密着性を一層向上させ得る観点から好ましい。 The F polymer is preferably a polymer having a carbonyl group-containing group containing TFE units and PAVE units, and more preferably a polymer containing units based on TFE units, PAVE units and a monomer having a carbonyl group-containing group. It is more preferable that the polymer contains 90 to 99 mol%, 0.5 to 9.97 mol%, 0.01 to 3 mol% of these units in this order with respect to all the units. The presence of a carbonyl group-containing group is preferable from the viewpoint of further improving the affinity and adhesion of the F polymer.
 Fポリマーがカルボニル基含有基を有する場合、Fポリマーにおけるカルボニル基含有基の数は、主鎖の炭素数1×10個あたり、10~5000個が好ましく、100~3000個がより好ましく、800~1500個がさらに好ましい。なお、Fポリマーにおけるカルボニル基含有基の数は、ポリマーの組成又は国際公開第2020/145133号に記載の方法によって定量できる。
 また、カルボニル基含有基を有するモノマーは、無水イタコン酸、無水シトラコン酸又は5-ノルボルネン-2,3-ジカルボン酸無水物(以下、「NAH」とも記す。)が好ましい。かかるポリマーの具体例としては、国際公開第2018/16644号に記載されるポリマーが挙げられる。
When the F polymer has a carbonyl group-containing group, the number of carbonyl group-containing groups in the F polymer is preferably 10 to 5000, more preferably 100 to 3000, and more preferably 800, per 1 × 10 6 carbon atoms in the main chain. ~ 1500 pieces are more preferable. The number of carbonyl group-containing groups in the F polymer can be quantified by the composition of the polymer or the method described in International Publication No. 2020/145133.
The monomer having a carbonyl group-containing group is preferably itaconic anhydride, citraconic anhydride or 5-norbornene-2,3-dicarboxylic acid anhydride (hereinafter, also referred to as “NAH”). Specific examples of such polymers include the polymers described in WO 2018/16644.
 本発明におけるF粒子のD50は、0.1~25μmであるのが好ましい。F粒子のD50は、20μm以下が好ましく、10μm以下がより好ましく、8μm以下がさらに好ましい。F粒子のD50は、0.2μm以上が好ましく、0.5μm以上がより好ましく、1μm以上がさらに好ましい。この範囲のD50において、F粒子の流動性と分散安定性とが良好となりやすい。
 分散安定性の観点から、F粒子の比表面積は、1~25m/gが好ましく、1~8m/gがより好ましい。
The D50 of the F particles in the present invention is preferably 0.1 to 25 μm. The D50 of the F particles is preferably 20 μm or less, more preferably 10 μm or less, and even more preferably 8 μm or less. The D50 of the F particles is preferably 0.2 μm or more, more preferably 0.5 μm or more, and even more preferably 1 μm or more. In D50 in this range, the fluidity and dispersion stability of F particles tend to be good.
From the viewpoint of dispersion stability, the specific surface area of the F particles is preferably 1 to 25 m 2 / g, more preferably 1 to 8 m 2 / g.
 F粒子は、1種を用いてもよく、2種以上を用いてもよい。2種のF粒子を用いる場合、F粒子は、熱溶融性Fポリマーの粒子と非熱溶融性Fポリマーの粒子とを含むのが好ましく、溶融温度が200~320℃であるFポリマー(好適には上述したTFE単位及びPAVE単位を含む、酸素含有極性基を有するポリマー)の粒子と非熱溶融性PTFEの粒子とを含むのがより好ましい。そして、後者の粒子の含有量が前者の粒子の含有量よりも多い態様がさらに好ましい。
 この場合、Fポリマーが物性を保ちつつ適度にフィブリル化し、本液状組成物から形成される成形物において本無機粒子が担持されやすくなり、成形物の強度が向上しやすい。
One type of F particle may be used, or two or more types may be used. When two types of F particles are used, the F particles preferably contain particles of a heat-meltable F polymer and particles of a non-heat-meltable F polymer, and the F polymer having a melting temperature of 200 to 320 ° C. (preferably). More preferably contains particles of (a polymer having an oxygen-containing polar group) containing the above-mentioned TFE units and PAVE units) and particles of non-heat-meltable PTFE. Further, it is more preferable that the content of the latter particles is larger than the content of the former particles.
In this case, the F polymer is appropriately fibrillated while maintaining its physical properties, and the inorganic particles are likely to be supported in the molded product formed from the liquid composition, and the strength of the molded product is likely to be improved.
 この場合、前者の粒子と後者の粒子との合計に占める前者の粒子の割合は、50質量%以下が好ましく、25質量%以下がより好ましい。また、この場合の割合は、0.1質量%以上が好ましく、1質量%以上がより好ましい。
 かかる本液状組成物は、分散安定性、均一性及び取り扱い性に優れやすいだけでなく、非熱溶融性PTFEに基づく物性に優れた、接着性の成形物を形成しやすい。
 また、この場合、溶融温度が200~320℃であるFポリマーの粒子のD50が0.1~1μmであり、非熱溶融性PTFEの粒子のD50が0.1~1μmである態様、溶融温度が200~320℃であるFポリマーの粒子のD50が1~4μmであり、非熱溶融性PTFEの粒子のD50が0.1~1μmである態様が好ましい。
In this case, the ratio of the former particles to the total of the former particles and the latter particles is preferably 50% by mass or less, more preferably 25% by mass or less. Further, the ratio in this case is preferably 0.1% by mass or more, and more preferably 1% by mass or more.
Such a liquid composition is not only easy to be excellent in dispersion stability, uniformity and handleability, but is also easy to form an adhesive molded product having excellent physical properties based on non-thermally meltable PTFE.
Further, in this case, the D50 of the F polymer particles having a melting temperature of 200 to 320 ° C. is 0.1 to 1 μm, and the D50 of the non-thermally meltable PTFE particles is 0.1 to 1 μm, that is, the melting temperature. It is preferable that the D50 of the F polymer particles having a temperature of 200 to 320 ° C. is 1 to 4 μm and the D50 of the non-thermally meltable PTFE particles is 0.1 to 1 μm.
 F粒子は、Fポリマー以外の樹脂を含んでいてもよいが、Fポリマーを主成分とするのが好ましい。F粒子におけるFポリマーの含有量は80質量%以上が好ましく、100質量%がより好ましい。
 上記樹脂としては、芳香族ポリエステル、ポリアミドイミド、(熱可塑性)ポリイミド、ポリフェニレンエーテル、ポリフェニレンオキシド、マレイミド等の耐熱性樹脂が挙げられる。
 本液状組成物におけるF粒子の含有量は、本液状組成物の全体質量に対して、20質量%以上が好ましく、30質量%以上がより好ましい。F粒子の含有量は、本液状組成物の全体質量に対して80質量%以下が好ましく、70質量%以下がより好ましい。
The F particles may contain a resin other than the F polymer, but it is preferable that the F polymer is the main component. The content of the F polymer in the F particles is preferably 80% by mass or more, more preferably 100% by mass.
Examples of the resin include heat-resistant resins such as aromatic polyester, polyamide-imide, (thermoplastic) polyimide, polyphenylene ether, polyphenylene oxide, and maleimide.
The content of F particles in the liquid composition is preferably 20% by mass or more, more preferably 30% by mass or more, based on the total mass of the liquid composition. The content of F particles is preferably 80% by mass or less, more preferably 70% by mass or less, based on the total mass of the liquid composition.
 まず、本法の第1の態様(以下、「本法1」とも記す。)について説明する。
 本法1は、テトラフルオロエチレン系ポリマー(以下、「Fポリマー」とも記す。)の粒子(以下、「F粒子」とも記す。)及び芳香族性樹脂(以下、「第1の芳香族性樹脂」とも記す。)のワニスを、特定の撹拌手段により混合して、前記F粒子と前記第1の芳香族性樹脂を含む組成物を得る方法である。
 また、本発明の組成物(以下、「本組成物1」とも記す。)は、F粒子と第1の芳香族性樹脂とを含み、F粒子及び第1の芳香族性樹脂の総含有量が50質量%以上であり、かつ、第1の芳香族性樹脂に対する、F粒子の含有量の質量比が0.5~10である。本組成物1は、芳香族性樹脂(以下、「第2の芳香族性樹脂」とも記す。)のワニスと混合して使用され、好適にはネガ型のレジスト組成物に用いられる組成物である。
First, the first aspect of this method (hereinafter, also referred to as "this method 1") will be described.
In this method 1, particles of a tetrafluoroethylene polymer (hereinafter, also referred to as “F polymer”) (hereinafter, also referred to as “F particles”) and an aromatic resin (hereinafter, “first aromatic resin”) The varnish is mixed by a specific stirring means to obtain a composition containing the F particles and the first aromatic resin.
Further, the composition of the present invention (hereinafter, also referred to as "the present composition 1") contains F particles and a first aromatic resin, and the total content of the F particles and the first aromatic resin. Is 50% by mass or more, and the mass ratio of the content of F particles to the first aromatic resin is 0.5 to 10. The present composition 1 is used by mixing with a varnish of an aromatic resin (hereinafter, also referred to as "second aromatic resin"), and is preferably a composition used for a negative type resist composition. be.
 本法1により得られる組成物、例えば本組成物1は、分散安定性及び取扱い性に優れる。その理由とその作用機構とは、必ずしも明確ではないが、例えば以下のように推定している。
 Fポリマーは表面エネルギーが低く分散性が低いため、F粒子は芳香族性樹脂との混合に際して、複雑な二次粒子を形成して凝集しやすい。そこで、本法1では、特定の撹拌手段、すなわち、F粒子及び芳香族性樹脂を含む処理液を容器内にて高速移動させ、その液膜と容器の内壁との間にズリ応力を生じせしめ、それによりF粒子の変質を抑制しつつ、F粒子の二次粒子をほぐしながら、F粒子及び芳香族性樹脂を混合する手段を採っている。その結果、本発明によれば分散安定性に優れた組成物が得られ、さらには、Fポリマー及び第1の芳香族性樹脂の含有量を高めても取扱い性に優れた組成物(例えば、本組成物1。)が得られたと考えられる。本組成物1を用いれば、Fポリマー及び第1の芳香族性樹脂の物性を高度に具備し、電気特性等に優れた成形物を形成できる。
The composition obtained by the present method 1, for example, the present composition 1, is excellent in dispersion stability and handleability. The reason and its mechanism of action are not always clear, but it is estimated as follows, for example.
Since the F polymer has low surface energy and low dispersibility, the F particles tend to form complex secondary particles and aggregate when mixed with the aromatic resin. Therefore, in the present method 1, a specific stirring means, that is, a treatment liquid containing F particles and an aromatic resin is moved at high speed in the container, and a slip stress is generated between the liquid film and the inner wall of the container. As a result, the F particles and the aromatic resin are mixed while suppressing the alteration of the F particles and loosening the secondary particles of the F particles. As a result, according to the present invention, a composition having excellent dispersion stability can be obtained, and further, a composition having excellent handleability even if the contents of the F polymer and the first aromatic resin are increased (for example, It is considered that the present composition 1.) was obtained. By using this composition 1, it is possible to form a molded product having a high degree of physical properties of the F polymer and the first aromatic resin and having excellent electrical characteristics and the like.
 本発明で用いる、第1の芳香族性樹脂のワニスにおける芳香族性樹脂は、酸素含有極性基を有する芳香族性樹脂であるのが好ましい。第1の芳香族性樹脂の具体例としては、芳香族ポリイミド、芳香族ポリイミド前駆体(ポリアミック酸)、芳香族ポリアミドイミド、芳香族ポリアミドイミド前駆体、エポキシ樹脂、フェノール樹脂、芳香族性ポリエステル樹脂(液晶性芳香族性ポリエステル等)、芳香族性ポリエステルアミド(液晶性芳香族性ポリエステルアミド等)、ポリフェニレンエーテル、芳香族性マレイミド樹脂が挙げられる。
 中でも、エポキシ基を有する芳香族性樹脂、又はカルボキシル基を有し、酸価が150mgKOH/g以下である硬化性の芳香族性樹脂であるのがより好ましい。
The aromatic resin in the varnish of the first aromatic resin used in the present invention is preferably an aromatic resin having an oxygen-containing polar group. Specific examples of the first aromatic resin include aromatic polyimide, aromatic polyimide precursor (polyamic acid), aromatic polyamideimide, aromatic polyamideimide precursor, epoxy resin, phenol resin, and aromatic polyester resin. Examples thereof include (liquid crystal aromatic polyester and the like), aromatic polyester amide (liquid liquid and aromatic polyester amide and the like), polyphenylene ether, and aromatic maleimide resin.
Of these, an aromatic resin having an epoxy group or a curable aromatic resin having a carboxyl group and an acid value of 150 mgKOH / g or less is more preferable.
 エポキシ基を有する芳香族性樹脂としては、フェノールノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、ナフタレン型エポキシ樹脂、トリスフェノール型エポキシ樹脂、tert-ブチルカテコール型エポキシ樹脂、アミノフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂等のエポキシ樹脂が挙げられる。これらのエポキシ樹脂は、固形状(40℃で固体状)、半固形状(20℃で固体状であり40℃で液状)、液状(20℃で液状)のいずれであってもよい。これらのエポキシ樹脂は、1種を単独で用いても、2種以上を併用してもよい。
 本組成物1が半固形状エポキシ樹脂を含む場合、本組成物1(好適にはネガ型のレジスト組成物)を硬化させた硬化物のガラス転移温度(Tg)が高く、線膨張係数が低くなり、クラック耐性に優れる傾向となる。一方、固形状エポキシ樹脂を含む場合には、硬化物のガラス転移温度が高くなり耐熱性に優れる傾向となり、液状エポキシ樹脂を含む場合には、ドライフィルムの可とう性に優れる傾向となる。
Examples of aromatic resins having an epoxy group include phenol novolac type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AF type epoxy resin, naphthalene type epoxy resin, trisphenol type epoxy resin, and tert-butyl catechol. Examples thereof include epoxy resins such as type epoxy resins, aminophenol type epoxy resins, biphenyl type epoxy resins, and biphenyl aralkyl type epoxy resins. These epoxy resins may be solid (solid at 40 ° C.), semi-solid (solid at 20 ° C. and liquid at 40 ° C.), or liquid (liquid at 20 ° C.). These epoxy resins may be used alone or in combination of two or more.
When the present composition 1 contains a semi-solid epoxy resin, the glass transition temperature (Tg) of the cured product obtained by curing the present composition 1 (preferably a negative resist composition) is high, and the coefficient of linear expansion is low. Therefore, it tends to have excellent crack resistance. On the other hand, when the solid epoxy resin is contained, the glass transition temperature of the cured product tends to be high and the heat resistance tends to be excellent, and when the liquid epoxy resin is contained, the flexibility of the dry film tends to be excellent.
 カルボキシル基を有し、酸価が150mgKOH/g以下である硬化性の芳香族性樹脂としては、カルボキシル基を有する感光性樹脂であり、かつ、アルカリ可溶性樹脂であるのが好ましい。かかる感光性樹脂は、光硬化性及び現像性が良好になる観点から、分子中にエチレン性不飽和二重結合を有するのが好ましく、(メタ)アクリロイルオキシ基を有するのがより好ましい。なお、本明細書において、(メタ)アクリロイルオキシ基とは、アクリロイルオキシ基、メタクリロイルオキシ基及びそれらの双方を総称する用語である。
 このような樹脂としては、カルボキシル基含有フェノール樹脂が好ましく、フェノール性水酸基にエピクロロヒドリンを反応させてエポキシ化した多官能フェノール樹脂(例えば、多官能ノボラック型エポキシ樹脂)に、(メタ)アクリル酸を反応させた後、側鎖に存在する水酸基に2塩基酸無水物を付加させたカルボキシル基含有フェノール樹脂がより好ましい。かかるカルボキシル基含有フェノール樹脂は、Fポリマー(特に、極性官能基を有するFポリマー)と相互作用しやすいため好ましい。
The curable aromatic resin having a carboxyl group and having an acid value of 150 mgKOH / g or less is preferably a photosensitive resin having a carboxyl group and an alkali-soluble resin. From the viewpoint of improving photocurability and developability, such a photosensitive resin preferably has an ethylenically unsaturated double bond in the molecule, and more preferably has a (meth) acryloyloxy group. In addition, in this specification, a (meth) acryloyloxy group is a term which collectively refers to an acryloyloxy group, a methacryloyloxy group, and both of them.
As such a resin, a carboxyl group-containing phenol resin is preferable, and a polyfunctional phenol resin (for example, a polyfunctional novolac type epoxy resin) which is epoxidized by reacting a phenolic hydroxyl group with epichlorohydrin is mixed with (meth) acrylic. A carboxyl group-containing phenol resin in which a dibasic acid anhydride is added to a hydroxyl group existing in the side chain after the acid is reacted is more preferable. Such a carboxyl group-containing phenol resin is preferable because it easily interacts with an F polymer (particularly, an F polymer having a polar functional group).
 第1の芳香族性樹脂の酸価は、120mgKOH/g以下が好ましく、90mgKOH/g以下がより好ましい。酸価は、40mgKOH/g以上が好ましく、45mgKOH/g以上がより好ましい。かかる酸価を有する第1の芳香族性樹脂は、Fポリマーと高度に相互作用して、本組成物1中におけるF粒子の分散安定性が高まる。
 また、かかる第1の芳香族性樹脂は、アルカリ現像性が良好であり、目的とする複雑な形状を有する成形物(凸部)を得やすい。
The acid value of the first aromatic resin is preferably 120 mgKOH / g or less, more preferably 90 mgKOH / g or less. The acid value is preferably 40 mgKOH / g or more, and more preferably 45 mgKOH / g or more. The first aromatic resin having such an acid value highly interacts with the F polymer to enhance the dispersion stability of the F particles in the composition 1.
In addition, the first aromatic resin has good alkali developability, and it is easy to obtain a molded product (convex portion) having a desired complicated shape.
 第1の芳香族性樹脂のワニスを構成する溶剤としては、N-メチル-2-ピロリドン、シクロヘキサノンが挙げられる。第1の芳香族性樹脂のワニスにおける第1の芳香族性樹脂の含有量は20~90質量%の範囲であるのが好ましい。 Examples of the solvent constituting the varnish of the first aromatic resin include N-methyl-2-pyrrolidone and cyclohexanone. The content of the first aromatic resin in the varnish of the first aromatic resin is preferably in the range of 20 to 90% by mass.
 本法では、F粒子と第1の芳香族性樹脂のワニスとを、円筒形の撹拌槽と、前記撹拌槽の内壁面の内側で回転する、複数の孔が形成された円筒部を有する回転部位とを備える撹拌機の前記撹拌槽内に入れ、前記回転部位の回転による遠心力によって、前記撹拌槽の内壁面に薄膜円筒状に拡げながら撹拌して、Fポリマーと第1の芳香族性樹脂を含む組成物を得る。
 かかる撹拌手段は、薄膜旋回型高速ミキサーとも称される場合もあり、上述した作用機構により、F粒子自体を変質させることなくその二次粒子をほぐしながら、F粒子と第1の芳香族性樹脂を混合できる。
 その結果、より短時間の撹拌で分散性に優れた組成物が得られる。また、かかる組成物、特に本組成物1は、第2の芳香族性樹脂のワニス、及び必要に応じて無機フィラー等の任意添加成分とさらに混合しても、分散安定性に優れた組成物を形成できる。
In this method, the F particles and the varnish of the first aromatic resin are rotated by a cylindrical stirring tank and a cylindrical portion having a plurality of holes formed inside the inner wall surface of the stirring tank. It is placed in the stirring tank of a stirrer provided with a portion, and is stirred while spreading in a thin cylindrical shape on the inner wall surface of the stirring tank by the centrifugal force due to the rotation of the rotating portion, and the F polymer and the first aromatic property. A composition containing a resin is obtained.
Such a stirring means may also be referred to as a thin film swirling high-speed mixer, and the F particles and the first aromatic resin are loosened by the above-mentioned action mechanism without deteriorating the F particles themselves. Can be mixed.
As a result, a composition having excellent dispersibility can be obtained by stirring for a shorter time. Further, such a composition, particularly the present composition 1, is a composition having excellent dispersion stability even when further mixed with a second aromatic resin varnish and, if necessary, an optional additive component such as an inorganic filler. Can be formed.
 前記円筒形の撹拌槽の内壁面には凹凸が設けられていてもよい。かかる凹凸の高さ及び形状の組合せは、数μm~数百μm程度の深さ(高さ)、格子状の溝又はディンプルを備えたものであり、適宜取り換え可能となっていてもよい。また、撹拌槽の内壁面を例えば上中下と等分に分け、異なる凹凸パターンを形成していてもよい。
 前記撹拌槽の材質は、凹凸形成加工処理可能であり、摩耗しにくい、例えばステンレスやセラミック等を使用できる。
The inner wall surface of the cylindrical stirring tank may be provided with irregularities. The combination of the height and shape of the unevenness is provided with a depth (height) of about several μm to several hundred μm, a grid-like groove, or dimples, and may be appropriately replaceable. Further, the inner wall surface of the stirring tank may be divided into equal parts, for example, upper, middle and lower parts, and different uneven patterns may be formed.
As the material of the stirring tank, for example, stainless steel or ceramic, which can be processed to form unevenness and is not easily worn, can be used.
 前記撹拌槽は、撹拌対象を構成する成分の投入口を複数備えることができる。すなわち、本法1で組成物を製造するに際し、F粒子と第1の芳香族性樹脂のワニスとを予備混合した混合物を撹拌槽内に一括して供給してもよく、F粒子と第1の芳香族性樹脂のワニスとを別々に撹拌槽内に供給してもよい。
 また、前記撹拌槽は、撹拌対象を構成する成分を混合した混合物の排出口を備えることができる。したがって、本法1はバッチ式でも連続式でも実施できる。
The stirring tank may be provided with a plurality of inlets for components constituting the stirring target. That is, when producing the composition by the present method 1, a mixture in which F particles and the varnish of the first aromatic resin are premixed may be collectively supplied into the stirring tank, and the F particles and the first aromatic resin may be supplied together. The aromatic resin varnish of the above may be separately supplied into the stirring tank.
Further, the stirring tank may be provided with a discharge port of a mixture in which the components constituting the stirring target are mixed. Therefore, this method 1 can be carried out by either a batch method or a continuous method.
 前記撹拌槽の内壁面の内側で回転する、複数の孔が形成された円筒部を有する回転部位は、撹拌槽の内壁面に対して1~10mm程度の僅かな隙間を介して対向する。回転部位の周速及び撹拌時間は、適宜設定できる。
 供給された、F粒子及び第1の芳香族性樹脂のワニスは、撹拌槽の内壁面と回転部位の円筒部の外周面との間の隙間に行き渡って膜状となり、回転部位の回転に伴って撹拌槽内で高速で旋回する。このとき、剪断応力だけでなくズリ応力を受けることで、高レベルでの分散が達成される。
The rotating portion having a cylindrical portion having a plurality of holes formed inside the inner wall surface of the stirring tank faces the inner wall surface of the stirring tank with a slight gap of about 1 to 10 mm. The peripheral speed and stirring time of the rotating part can be set as appropriate.
The supplied F particles and the varnish of the first aromatic resin spread over the gap between the inner wall surface of the stirring tank and the outer peripheral surface of the cylindrical portion of the rotating portion to form a film, which accompanies the rotation of the rotating portion. And swirl at high speed in the stirring tank. At this time, high-level dispersion is achieved by receiving not only shear stress but also shear stress.
 本法1において、F粒子と第1の芳香族性樹脂のワニスの使用量は、ワニス中の第1の芳香族性樹脂の質量に対する、F粒子の質量の比が、0.5~10の範囲であるのが好ましく、1~3の範囲であるのがより好ましい。 In the present method 1, the amount of the F particles and the varnish of the first aromatic resin used is such that the ratio of the mass of the F particles to the mass of the first aromatic resin in the varnish is 0.5 to 10. The range is preferable, and the range of 1 to 3 is more preferable.
 本組成物1は、F粒子と、第1の芳香族性樹脂のワニスとを含み、F粒子及び前記第1の芳香族性樹脂の総含有量が50質量%以上であり、かつ、前記第1の芳香族性樹脂に対する、F粒子の含有量の質量比が0.5~10であり、第2の芳香族性樹脂のワニスと混合してされて使用される組成物である。
 本組成物1は、樹脂固形分の含有量が高く、樹脂固形分に占めるFポリマー含有量が高い、分散安定性と取り扱い性に優れた組成物である。
 この傾向は、本組成物1におけるF粒子とFポリマーのそれぞれが上述した範囲にある場合、特にFポリマーが酸素含有極性基を有するポリマーである場合に顕著となる。
 本組成物1は、F粒子と第1の芳香族性樹脂のワニスとを、好適には上記した薄膜旋回型高速ミキサーを用いた撹拌により調製されるのが好ましい。この場合も、この傾向が顕著となりやすい。
The present composition 1 contains F particles and a varnish of a first aromatic resin, and the total content of the F particles and the first aromatic resin is 50% by mass or more, and the first The composition has a mass ratio of the content of F particles to the aromatic resin of No. 1 of 0.5 to 10, and is used by being mixed with the varnish of the second aromatic resin.
The present composition 1 is a composition having a high content of resin solid content and a high content of F polymer in the resin solid content, and is excellent in dispersion stability and handleability.
This tendency becomes remarkable when the F particles and the F polymer in the present composition 1 are in the above-mentioned ranges, particularly when the F polymer is a polymer having an oxygen-containing polar group.
The present composition 1 is preferably prepared by stirring the F particles and the varnish of the first aromatic resin by stirring using the above-mentioned thin film swirling high-speed mixer. In this case as well, this tendency tends to be remarkable.
 本組成物1は、分散性と取扱い性をさらに向上させる観点から、分散剤としてさらに界面活性剤を含んでいてもよい。
 界面活性剤は、ノニオン性であるのが好ましい。
 界面活性剤の親水部位は、オキシアルキレン基又はアルコール性水酸基を有するのが好ましく、疎水部位は、アセチレン基、ポリシロキサン基、ペルフルオロアルキル基又はペルフルオロアルケニル基を有するのが好ましい。換言すれば、界面活性剤は、アセチレン系界面活性剤、シリコーン系界面活性剤又はフッ素系界面活性剤が好ましい。
The present composition 1 may further contain a surfactant as a dispersant from the viewpoint of further improving dispersibility and handleability.
The surfactant is preferably nonionic.
The hydrophilic moiety of the surfactant preferably has an oxyalkylene group or an alcoholic hydroxyl group, and the hydrophobic moiety preferably has an acetylene group, a polysiloxane group, a perfluoroalkyl group or a perfluoroalkenyl group. In other words, the surfactant is preferably an acetylene-based surfactant, a silicone-based surfactant or a fluorine-based surfactant.
 本組成物1は、さらに他の樹脂を含んでもよい。他の樹脂は、熱硬化性樹脂であってもよく、熱可塑性樹脂であってもよい。
 他の樹脂としては、芳香族性を有さない、マレイミド樹脂、ウレタン樹脂、ポリイミド、ポリアミック酸、ポリアミドイミド、ポリビニルアセタール樹脂が挙げられる。他の樹脂としては、マレイミド樹脂、ポリイミド及びポリアミック酸が好ましい。この場合、本組成物1から形成する成形物が柔軟性と接着性に優れやすい。
The present composition 1 may further contain other resins. The other resin may be a thermosetting resin or a thermoplastic resin.
Examples of other resins include maleimide resins, urethane resins, polyimides, polyamic acids, polyamideimides, and polyvinyl acetal resins, which do not have aromaticity. As other resins, maleimide resin, polyimide and polyamic acid are preferable. In this case, the molded product formed from the present composition 1 tends to be excellent in flexibility and adhesiveness.
 本組成物1は、これらの成分以外にも、シランカップリング剤、脱水剤、消泡剤、可塑剤、耐候剤、酸化防止剤、熱安定剤、滑剤、帯電防止剤、増白剤、着色剤、導電剤、離型剤、表面処理剤、難燃剤等の添加剤を含んでいてもよい。 In addition to these components, the present composition 1 contains a silane coupling agent, a dehydrating agent, a defoaming agent, a plasticizer, a weathering agent, an antioxidant, a heat stabilizer, a lubricant, an antistatic agent, a whitening agent, and a coloring agent. It may contain additives such as agents, conductive agents, mold release agents, surface treatment agents, and flame retardants.
 本組成物1と第2の芳香族性樹脂のワニスの混合は、本組成物1と第2の芳香族性樹脂のワニスを一括混合してもよく、本組成物1を第2の芳香族性樹脂のワニスに逐次混合してもよく、第2の芳香族性樹脂のワニスに本組成物1を逐次混合してもよい。
 なお、後述する、無機フィラー、光重合開始剤、硬化剤又は硬化促進剤、分散剤、他の液状分散媒等の任意の添加成分を、さらに混合する場合は、任意の段階で混合できる。
The varnish of the present composition 1 and the second aromatic resin may be mixed with the varnish of the present composition 1 and the second aromatic resin in a batch, and the composition 1 may be mixed with the second aromatic resin. The composition 1 may be sequentially mixed with the varnish of the sex resin, or may be sequentially mixed with the varnish of the second aromatic resin.
When any additional components such as an inorganic filler, a photopolymerization initiator, a curing agent or a curing accelerator, a dispersant, and another liquid dispersion medium, which will be described later, are further mixed, they can be mixed at any stage.
 本組成物1と第2の芳香族性樹脂のワニスの混合方法としては、プロペラブレード、タービンブレード、パドルブレード、シェル状ブレード等のブレード(撹拌翼)を一軸あるいは多軸で備える撹拌装置や、ヘンシェルミキサー、加圧ニーダー、バンバリーミキサー又はプラネタリーミキサーによる撹拌;ボールミル、アトライター、バスケットミル、サンドミル、サンドグラインダー、ダイノーミル(ガラスビーズ又は酸化ジルコニウムビーズなどの粉砕媒体を用いたビーズミル)、ディスパーマット、SCミル、スパイクミル又はアジテーターミル等のメディアを使用する分散機による混合;マイクロフルイダイザー、ナノマイザー、アルティマイザーなどの高圧ホモジナイザー、超音波ホモジナイザー、デゾルバー、ディスパー、高速インペラー分散機、後述する自転公転撹拌機等の、メディアを使用しない分散機を用いた混合が挙げられ、ヘンシェルミキサー、加圧ニーダー、バンバリーミキサー、プラネタリーミキサー又は自転公転撹拌機が好ましく、プラネタリーミキサーがより好ましい。プラネタリーミキサーは、互いに自転と公転を行う2軸の撹拌羽根を有し、撹拌槽中の混練物を撹拌、混練する構造を有している。そのため、撹拌槽中に撹拌羽根の到達しないデッドスペースが少なく、羽根の負荷を軽減して、高度に内容物を混合できる。また、混合終了後、得られた本組成物1に、続いて第2の芳香族性樹脂のワニス、及び必要に応じて無機フィラー等の任意添加成分を添加して、そのまま後述する本組成物1を製造できる。
 また、混合は、二軸型押出混練機や石臼型混練機を用いて行ってもよい。二軸型押出混練機とは、例えば被混練物を平行に近接配置された二本のスクリュー間のせん断力によって混練する二軸スクリュー式の連続混練装置である。石臼型混練機とは、例えば被混練物が通過可能な内部空間を備える筒状の固定部と、固定部の内部空間に配置され、回転することで内部空間を通過する被混練物を連続的に混練しながら回転軸方向に搬送する回転部とを有する混練機である。
 また、上述した薄膜旋回型高速ミキサーを用いてもよい。
As a method of mixing the varnish of the present composition 1 and the second aromatic resin, a stirring device provided with blades (stirring blades) such as propeller blades, turbine blades, paddle blades, shell-shaped blades, etc. Stirring with Henschel mixer, pressurized kneader, Banbury mixer or planetary mixer; ball mill, attritor, basket mill, sand mill, sand grinder, dyno mill (bead mill using crushing medium such as glass beads or zirconium oxide beads), dispermat, Mixing with a disperser using media such as SC mill, spike mill or agitator mill; high-pressure homogenizer such as microfluidizer, nanomizer, ultimateizer, ultrasonic homogenizer, resolver, dispenser, high-speed impeller disperser, rotation / revolution stirring described later. Mixing using a disperser that does not use media such as a machine can be mentioned, and a Henschel mixer, a pressurized kneader, a Banbury mixer, a planetary mixer, or a rotation / revolution stirrer is preferable, and a planetary mixer is more preferable. The planetary mixer has a biaxial stirring blade that rotates and revolves with each other, and has a structure for stirring and kneading the kneaded material in the stirring tank. Therefore, there is little dead space in the stirring tank that the stirring blades do not reach, the load on the blades can be reduced, and the contents can be highly mixed. After the mixing is completed, the obtained composition 1 is subsequently added with a second aromatic resin varnish and, if necessary, an optional additive component such as an inorganic filler, and the composition described later is used as it is. 1 can be manufactured.
Further, the mixing may be carried out using a twin-screw extrusion kneader or a millstone kneader. The twin-screw extrusion kneader is, for example, a twin-screw type continuous kneading device that kneads an object to be kneaded by a shearing force between two screws arranged in parallel in close proximity to each other. The stone mill type kneader is, for example, a cylindrical fixed portion having an internal space through which the kneaded material can pass, and a kneaded material which is arranged in the internal space of the fixed portion and passes through the internal space by rotating. It is a kneading machine having a rotating portion that conveys in the direction of the rotation axis while kneading.
Further, the above-mentioned thin film swirl type high-speed mixer may be used.
 前記第2の芳香族性樹脂のワニスを構成する芳香族性樹脂は、酸素含有極性基を有する芳香族性樹脂であるのが好ましく、エポキシ基を有する芳香族性樹脂、又はカルボキシル基を有する芳香族性樹脂であるのがより好ましい。かかる第2の芳香族性樹脂の詳細及び好適な具体例は、上述した第1の芳香族性樹脂と同様である。
 また、混合において、本組成物1を構成する第1の芳香族性樹脂と、第2の芳香族性樹脂は異なっていてもよく、同種のものを用いるのが好ましい。
The aromatic resin constituting the varnish of the second aromatic resin is preferably an aromatic resin having an oxygen-containing polar group, and is an aromatic resin having an epoxy group or an aromatic resin having a carboxyl group. More preferably, it is a group resin. The details and suitable specific examples of the second aromatic resin are the same as those of the first aromatic resin described above.
Further, in the mixing, the first aromatic resin and the second aromatic resin constituting the present composition 1 may be different, and it is preferable to use the same kind.
 本組成物1と第2の芳香族性樹脂のワニスの混合に際しては、無機フィラーをさらに混合してもよい。無機フィラーは、無機粒子を含む成分であれば、特に限定されない。
 無機フィラーとしては、酸化物、窒化物、金属単体、合金及びカーボンから構成されるフィラーが挙げられ、ケイ酸塩(酸化ケイ素(シリカ)、ウォラストナイト、タルク、マイカ)、金属酸化物(酸化ベリリウム、酸化セリウム、酸化アルミニウム、ソーダアルミナ、酸化マグネシウム、酸化亜鉛、酸化チタン等)、窒化ホウ素及びメタ珪酸マグネシウム(ステアタイト)のフィラーが好ましく、アルミニウム、マグネシウム、ケイ素、チタン、亜鉛から選択される元素の少なくとも1種を含有する無機酸化物のフィラーがより好ましく、シリカ、酸化チタン、酸化亜鉛、ステアタイト及び窒化ホウ素のフィラーがさらに好ましく、シリカのフィラーが特に好ましい。また、無機フィラーはセラミックスであってもよい。無機フィラーは、1種を用いてもよく、2種以上を混合して用いてもよい。2種以上の無機フィラーを混合して用いる場合、2種のシリカのフィラーを混合して用いてもよく、シリカのフィラーと、金属酸化物のフィラーを混合して用いてもよい。
 シリカのフィラーを使用すれば、得られる成形物の線膨張係数を充分に低下できる。
 無機フィラーがシリカフィラーである場合、無機フィラーにおけるシリカの含有量は、50質量%以上が好ましく、75質量%がより好ましい。シリカの含有量は、100質量%以下が好ましい。
When mixing the varnish of the present composition 1 and the second aromatic resin, an inorganic filler may be further mixed. The inorganic filler is not particularly limited as long as it is a component containing inorganic particles.
Examples of the inorganic filler include fillers composed of oxides, nitrides, simple metals, alloys and carbon, and silicates (silicon oxide (silica), wollastonite, talc, mica) and metal oxides (oxidation). Fillers of beryllium, cerium oxide, aluminum oxide, soda alumina, magnesium oxide, zinc oxide, titanium oxide, etc.), boron nitride and magnesium metasilicate (steatite) are preferable, and are selected from aluminum, magnesium, silicon, titanium and zinc. Inorganic oxide fillers containing at least one of the elements are more preferred, silica, titanium oxide, zinc oxide, steatite and boron nitride fillers are even more preferred, and silica fillers are particularly preferred. Moreover, the inorganic filler may be ceramics. As the inorganic filler, one kind may be used, or two or more kinds may be mixed and used. When two or more kinds of inorganic fillers are mixed and used, two kinds of silica fillers may be mixed and used, or a silica filler and a metal oxide filler may be mixed and used.
If a silica filler is used, the coefficient of linear expansion of the obtained molded product can be sufficiently reduced.
When the inorganic filler is a silica filler, the content of silica in the inorganic filler is preferably 50% by mass or more, more preferably 75% by mass. The silica content is preferably 100% by mass or less.
 無機フィラーの表面の少なくとも一部は、表面処理されているのが好ましい。かかる表面処理に用いられる表面処理剤としては、シランカップリング剤が好ましく、3-アミノプロピルトリエトキシシラン、ビニルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-イソシアネートプロピルトリエトキシシランがより好ましい。 It is preferable that at least a part of the surface of the inorganic filler is surface-treated. As the surface treatment agent used for such surface treatment, a silane coupling agent is preferable, and 3-aminopropyltriethoxysilane, vinyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, and 3-glycidoxypropylmethyldiethoxysilane. , 3-Methyloxypropyltriethoxysilane, 3-Isocyanoxidetriethoxysilane is more preferred.
 無機フィラーのD50は、25μm以下が好ましく、15μm以下がより好ましい。無機フィラーのD50は、0.1μm以上が好ましい。
 無機フィラーの形状は、粒状、針状(繊維状)、板状のいずれであってもよい。無機フィラーの具体的な形状としては、球状、鱗片状、層状、葉片状、杏仁状、柱状、鶏冠状、等軸状、葉状、雲母状、ブロック状、平板状、楔状、ロゼット状、網目状、角柱状が挙げられる。無機フィラーは中空状であってもよく、中空状のフィラーと、非中空状のフィラーとを含んでもよい。
The D50 of the inorganic filler is preferably 25 μm or less, more preferably 15 μm or less. The D50 of the inorganic filler is preferably 0.1 μm or more.
The shape of the inorganic filler may be granular, needle-like (fibrous), or plate-like. Specific shapes of the inorganic filler include spherical, scaly, layered, leafy, apricot kernel, columnar, chicken crown, equiaxed, leafy, mica, block, flat, wedge, rosette, and mesh. Shape and prismatic shape. The inorganic filler may be hollow or may contain a hollow filler and a non-hollow filler.
 無機フィラーの好適な具体例としては、シリカフィラー(アドマテックス社製の「アドマファイン(登録商標)」シリーズ等)、ジカプリン酸プロピレングリコール等のエステルで表面処理された酸化亜鉛(堺化学工業株式会社製の「FINEX(登録商標)」シリーズ等)、球状溶融シリカ(デンカ社製の「SFP(登録商標)」シリーズ等)、多価アルコール及び無機物で被覆処理された酸化チタン(石原産業社製の「タイペーク(登録商標)」シリーズ等)、アルキルシランで表面処理されたルチル型酸化チタン(テイカ社製の「JMT(登録商標)」シリーズ等)、中空状シリカフィラー(太平洋セメント社製の「E-SPHERES」シリーズ、日鉄鉱業社製の「シリナックス」シリーズ、エマーソン・アンド・カミング社製「エココスフイヤー」シリーズ等)、タルクフィラー(日本タルク社製の「SG」シリーズ等)、ステアタイトフィラー(日本タルク社製の「BST」シリーズ等)、窒化ホウ素フィラー(昭和電工社製の「UHP」シリーズ、デンカ社製の「デンカボロンナイトライド」シリーズ(「GP」、「HGP」グレード)等)が挙げられる。 Suitable specific examples of the inorganic filler include silica filler (“Admafine (registered trademark)” series manufactured by Admatex Co., Ltd.), zinc oxide surface-treated with an ester such as propylene glycol dicaprate (Sakai Chemical Industry Co., Ltd.). "FINEX (registered trademark)" series, etc.), spherical fused silica ("SFP (registered trademark)" series, etc. manufactured by Denka Co., Ltd.), titanium oxide coated with polyhydric alcohol and inorganic substances (manufactured by Ishihara Sangyo Co., Ltd.) "Typake (registered trademark)" series, etc.), rutile-type titanium oxide surface-treated with alkylsilane ("JMT (registered trademark)" series manufactured by Teika, etc.), hollow silica filler ("E" manufactured by Pacific Cement Co., Ltd.) -SPHERES "series, Nittetsu Mining Co., Ltd." Sirinax "series, Emerson & Cumming Co., Ltd." Ecocos Fire "series, etc.), Tarku Filler (Nippon Tarku Co., Ltd." SG "series, etc.), Steatite Filler (Steatite Filler) Nippon Tarku's "BST" series, etc.), boron nitride filler (Showa Denko's "UHP" series, Denka's "Denka Boron Nitride" series ("GP", "HGP" grade), etc.) Can be mentioned.
 無機フィラーを混合する場合、無機フィラーの含有量は、0.1~75質量%が好ましく、1~60質量%がより好ましい。無機フィラーをかかる範囲で混合すると、得られる成形物(硬化物)の線膨張係数を低下できる。したがって、成形物に熱処理を行っても、その変形を防止できる。 When the inorganic filler is mixed, the content of the inorganic filler is preferably 0.1 to 75% by mass, more preferably 1 to 60% by mass. By mixing the inorganic filler in such a range, the coefficient of linear expansion of the obtained molded product (cured product) can be reduced. Therefore, even if the molded product is heat-treated, its deformation can be prevented.
 本組成物1と第2の芳香族性樹脂のワニスの混合に際しては、光重合開始剤(増感剤)をさらに混合してもよい。光重合開始剤としては、アルキルフェノン系光重合開始剤、アシルホスフィンオキシド系光重合開始剤、ベンゾイン系光重合開始剤、ベンゾフェノン系光重合開始剤、2,2’-アゾビスイソブチロニトリル、ベンゾイルペルオキシドが挙げられる。 When mixing the varnish of the present composition 1 and the second aromatic resin, a photopolymerization initiator (sensitizer) may be further mixed. Examples of the photopolymerization initiator include an alkylphenone-based photopolymerization initiator, an acylphosphine oxide-based photopolymerization initiator, a benzoin-based photopolymerization initiator, a benzophenone-based photopolymerization initiator, and 2,2'-azobisisobutyronitrile. Benzoyl peroxide can be mentioned.
 本組成物1と第2の芳香族性樹脂のワニスの混合に際しては、さらに、硬化剤又は硬化促進剤を混合するのが好ましく、芳香族性樹脂と熱硬化反応し得る硬化剤又は硬化促進剤を混合するのがより好ましい。なお、Fポリマーがカルボニル基含有基(カルボキシル基、酸無水物残基等)を有する場合、硬化剤又は硬化促進剤は、Fポリマーと熱硬化反応してもよい。硬化剤又は硬化促進剤を混合すれば、得られる組成物から形成された成形物の硬度をより高められる。
 かかる硬化剤又は硬化促進剤としては、アミン、イミダゾール、フェノール、酸無水物、フェノール性水酸基を有する化合物、シアネートエステル基を有する化合物、マレイミド基を有する化合物からなる群から選ばれる少なくとも1種であるのが好ましく、本組成物1の安定性と、形成される成形物の接着性及び電気特性とを高める観点から、アミン又はイミダゾールであるのがより好ましい。硬化剤又は硬化促進剤は、1種を単独で用いても、2種以上を併用してもよい。
 得られる組成物の硬化開始温度が、120~200℃となるように、硬化剤又は硬化促進剤を選択するのが好ましい。なお、「硬化開始温度」とは、示差走査熱量測定(DSC)により確認される、得られる組成物を加熱した際の最初の変化点を示す温度である。
When mixing the varnish of the present composition 1 and the second aromatic resin, it is preferable to further mix a curing agent or a curing accelerator, and a curing agent or a curing accelerator capable of thermosetting with the aromatic resin. Is more preferable to mix. When the F polymer has a carbonyl group-containing group (carboxyl group, acid anhydride residue, etc.), the curing agent or curing accelerator may undergo a thermal curing reaction with the F polymer. By mixing a curing agent or a curing accelerator, the hardness of the molded product formed from the obtained composition can be further increased.
The curing agent or curing accelerator is at least one selected from the group consisting of amines, imidazoles, phenols, acid anhydrides, compounds having a phenolic hydroxyl group, compounds having a cyanate ester group, and compounds having a maleimide group. Is preferable, and amine or imidazole is more preferable from the viewpoint of enhancing the stability of the present composition 1 and the adhesiveness and electrical properties of the formed molded product. As the curing agent or curing accelerator, one type may be used alone, or two or more types may be used in combination.
It is preferable to select a curing agent or a curing accelerator so that the curing start temperature of the obtained composition is 120 to 200 ° C. The "curing start temperature" is a temperature indicating the first change point when the obtained composition is heated, which is confirmed by differential scanning calorimetry (DSC).
 アミンとしては、脂肪族ポリアミン(アルキレンジアミン、ポリアルキレンポリアミン、芳香環を有する脂肪族ポリアミン等)、そのアダクト化合物(フェニルグリシジルエーテル、トリルグリシジルエーテル又はアルキルグリシジルエーテルとの反応物等)、脂環式ポリアミン(イソホロンジアミン、1,3-ビス(アミノメチル)シクロヘキサン、ビス(4-アミノシクロヘキシル)メタン、ノルボルネンジアミン、1,2-ジアミノシクロヘキサン、ラロミン等)、又はそのアダクト化合物(n-ブチルグリシジルエーテル又はビスフェノールAジグリシジルエーテルとの反応物等)が好ましい。 Examples of the amine include an aliphatic polyamine (alkylenediamine, polyalkylene polyamine, an aliphatic polyamine having an aromatic ring, etc.), an adduct compound thereof (a reaction product with phenylglycidyl ether, trillglycidyl ether, alkyl glycidyl ether, etc.), and an alicyclic type. Polyamines (isophoronediamine, 1,3-bis (aminomethyl) cyclohexane, bis (4-aminocyclohexyl) methane, norbornenediamine, 1,2-diaminocyclohexane, laromine, etc.) or adduct compounds thereof (n-butylglycidyl ether or (Reactant with bisphenol A diglycidyl ether, etc.) is preferable.
 イミダゾールとしては、2-メチルイミダゾール、4-メチル-2-エチルイミダゾール、2-フェニルイミダゾール、4-メチル-2-フェニルイミダゾール、1-ベンジル-2-メチルイミダゾール、2-エチルイミダゾール、2-イソプロピルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、イミダゾールのアジン化合物、イミダゾールのイソシアヌル酸塩、イミダゾールヒドロキシメチル体、又は、これらのアダクト化合物(エポキシ樹脂とイミダゾールとの反応物等)が好ましい。 Examples of the imidazole include 2-methylimidazole, 4-methyl-2-ethylimidazole, 2-phenylimidazole, 4-methyl-2-phenylimidazole, 1-benzyl-2-methylimidazole, 2-ethylimidazole, and 2-isopropylimidazole. , 1-Cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecylimidazole, imidazole azine compound, imidazole isocyanurate, imidazole hydroxymethyl form, or , These adduct compounds (reactants of epoxy resin and imidazole, etc.) are preferable.
 フェノールとしては、ヒドロキノン、レゾルシノール、又はビスフェノールAが好ましい。酸無水物としては、無水フタル酸、ヘキサヒドロ無水フタル酸、無水メチルナジック酸、又はベンゾフェノンテトラカルボン酸が好ましい。 As the phenol, hydroquinone, resorcinol, or bisphenol A is preferable. As the acid anhydride, phthalic anhydride, hexahydrophthalic anhydride, methylnadic anhydride, or benzophenone tetracarboxylic acid are preferable.
 フェノール性水酸基を有する化合物としては、フェノールノボラック樹脂、アルキルフェノールボラック樹脂、ビスフェノールAノボラック樹脂、ジシクロペンタジエン型フェノール樹脂、Xylok型フェノール樹脂、テルペン変性フェノール樹脂、クレゾール/ナフトール樹脂、ポリビニルフェノール類、フェノール/ナフトール樹脂、α-ナフトール骨格含有フェノール樹脂、トリアジン骨格含有クレゾールノボラック樹脂、ビフェニルアラルキル型フェノール樹脂、ザイロック型フェノールノボラック樹脂等が挙げられる。 Examples of the compound having a phenolic hydroxyl group include phenol novolac resin, alkylphenol volac resin, bisphenol A novolak resin, dicyclopentadiene type phenol resin, Xylok type phenol resin, terpene-modified phenol resin, cresol / naphthol resin, polyvinylphenols, and phenol. / Naftor resin, α-naphthol skeleton-containing phenol resin, triazine skeleton-containing cresol novolac resin, biphenyl aralkyl type phenol resin, Zyroc type phenol novolac resin and the like can be mentioned.
 シアネートエステル基を有する化合物としては、例えば、フェノールノボラック型シアネートエステル樹脂、アルキルフェノールノボラック型シアネートエステル樹脂、ジシクロペンタジエン型シアネートエステル樹脂、ビスフェノールA型シアネートエステル樹脂、ビスフェノールF型シアネートエステル樹脂、ビスフェノールS型シアネートエステル樹脂が挙げられる。また、一部がトリアジン化したプレポリマーであってもよい。 Examples of the compound having a cyanate ester group include phenol novolac type cyanate ester resin, alkylphenol novolac type cyanate ester resin, dicyclopentadiene type cyanate ester resin, bisphenol A type cyanate ester resin, bisphenol F type cyanate ester resin, and bisphenol S type. Cyanate ester resin can be mentioned. Further, it may be a prepolymer in which a part is triazine-ized.
 マレイミド基を有する化合物としては、例えば4,4’-ジフェニルメタンビスマレイミド、フェニルメタンビスマレイミド、m-フェニレンビスマレイミド、3,3’-ジメチル-5,5’-ジメチル-4,4’-ジフェニルメタンビスマレイミド、4-メチル-1,3,-フェニレンビスマレイミド、(1,6-ビスマレイミド-2,2,4-トリメチル)ヘキサン、及びこれらのオリゴマー、並びにマレイミド骨格を有するジアミン縮合物が挙げられる。 Examples of the compound having a maleimide group include 4,4'-diphenylmethanebismaleimide, phenylmethanebismaleimide, m-phenylenebismaleimide, and 3,3'-dimethyl-5,5'-dimethyl-4,4'-diphenylmethanebis. Maleimide, 4-methyl-1,3,-phenylene bismaleimide, (1,6-bismaleimide-2,2,4-trimethyl) hexane, and oligomers thereof, and diamine condensates having a maleimide skeleton can be mentioned.
 本組成物1と第2の芳香族性樹脂のワニスの混合に際し、分散剤をさらに混合してもよい。分散剤としては、本組成物1が含んでいてもよい分散剤としての界面活性剤と同様のものが挙げられる。 When mixing the varnish of the present composition 1 and the second aromatic resin, a dispersant may be further mixed. Examples of the dispersant include the same as the surfactant as the dispersant that may be contained in the present composition 1.
 本組成物1と第2の芳香族性樹脂のワニスの混合に際しては、本組成物1が含みうる液状分散媒(例えば、第1の芳香族性樹脂のワニスを構成する溶剤)及び第2の芳香族性樹脂のワニスが含有する溶剤以外の液状分散媒(他の液状分散媒)を、さらに混合してもよい。混合に際しての他の液状分散媒の割合は、第2の芳香族性樹脂ワニスの総量に対して、25質量%以下が好ましく、10質量%以下がより好ましく、5質量%以下がさらに好ましい。また、本組成物1における液状分散媒の割合(含有量)の下限は、0%である。
 他の液状分散媒の具体例としては、セロソルブ系溶媒、エステル系溶媒、ケトン系溶媒、アルコール系溶媒、アミド系溶媒、芳香族炭化水素系溶媒が挙げられる。
When mixing the varnish of the composition 1 and the second aromatic resin, the liquid dispersion medium (for example, the solvent constituting the varnish of the first aromatic resin) and the second can be contained in the composition 1. A liquid dispersion medium (another liquid dispersion medium) other than the solvent contained in the varnish of the aromatic resin may be further mixed. The ratio of the other liquid dispersion medium at the time of mixing is preferably 25% by mass or less, more preferably 10% by mass or less, still more preferably 5% by mass or less, based on the total amount of the second aromatic resin varnish. Further, the lower limit of the ratio (content) of the liquid dispersion medium in the present composition 1 is 0%.
Specific examples of other liquid dispersion media include cellosolve-based solvents, ester-based solvents, ketone-based solvents, alcohol-based solvents, amide-based solvents, and aromatic hydrocarbon-based solvents.
 本組成物1と第2の芳香族性樹脂のワニスの混合に際して、芳香族性樹脂の含有量(割合)は、第1の芳香族性樹脂と第2の芳香族性樹脂の合計量として、Fポリマーの含有量(割合)より多いのが好ましい。この場合、得られる組成物の取扱い性、硬化性、現像性等の物性がより向上する。具体的には、Fポリマーの含有量に対する芳香族性樹脂の含有量の質量での比は、1~10が好ましく、1~5がより好ましく、1.5~3がさらに好ましい。
 得られる組成物におけるFポリマーの含有量は、1~30質量%が好ましく、10~25質量%がより好ましい。
 また、得られる組成物における芳香族性樹脂の含有量は、第1の芳香族性樹脂と第2の芳香族性樹脂の合計量として、20~90質量%が好ましく、30~80質量%がより好ましい。
 また、得られる組成物が硬化剤又は硬化促進剤を含有する場合、その含有量は、0.01~15質量%が好ましく、0.5~10質量%がより好ましい。
When the composition 1 and the varnish of the second aromatic resin are mixed, the content (ratio) of the aromatic resin is set as the total amount of the first aromatic resin and the second aromatic resin. It is preferably higher than the content (ratio) of the F polymer. In this case, the physical properties such as handleability, curability, and developability of the obtained composition are further improved. Specifically, the ratio of the content of the aromatic resin to the content of the F polymer by mass is preferably 1 to 10, more preferably 1 to 5, and even more preferably 1.5 to 3.
The content of the F polymer in the obtained composition is preferably 1 to 30% by mass, more preferably 10 to 25% by mass.
The content of the aromatic resin in the obtained composition is preferably 20 to 90% by mass, preferably 30 to 80% by mass, as the total amount of the first aromatic resin and the second aromatic resin. More preferred.
When the obtained composition contains a curing agent or a curing accelerator, the content thereof is preferably 0.01 to 15% by mass, more preferably 0.5 to 10% by mass.
 本組成物1は、ネガ型のレジスト組成物として好適に使用できる。
 レジスト組成物は、スクリーン印刷法、バーコート法、ブレードコート法等の塗布方法により、基材の表面に塗布できる。
 塗布後、指触乾燥性を得るために、塗膜を乾燥するのが好ましい。この乾燥の条件は、75~95℃で40~70分間とするのが好ましい。
 乾燥には、熱風循環式乾燥炉や遠赤外線乾燥炉を使用できる。
 乾燥後の塗膜(乾燥被膜)の厚さは、乾燥被膜の現像性が良好になる観点から、10~150μmが好ましく、20~60μmがより好ましい。
The present composition 1 can be suitably used as a negative type resist composition.
The resist composition can be applied to the surface of the base material by a coating method such as a screen printing method, a bar coating method, or a blade coating method.
After coating, it is preferable to dry the coating film in order to obtain dryness to the touch. The drying conditions are preferably 75 to 95 ° C. for 40 to 70 minutes.
A hot air circulation type drying oven or a far infrared drying oven can be used for drying.
The thickness of the coating film (dry film) after drying is preferably 10 to 150 μm, more preferably 20 to 60 μm from the viewpoint of improving the developability of the dry film.
 次に、所定の露光パターン(開口)を有する露光マスクを使用して、露光光を乾燥被膜に照射する。
 露光光源には、ハロゲンランプ、高圧水銀灯、レーザー光、メタルハライドランプ、ブラックランプ、無電極ランプ等を使用できる。なお、露光マスクを使用することなく、レーザー・ダイレクト・イメージング装置により、乾燥被膜にパターンを形成してもよい。
Next, an exposure mask having a predetermined exposure pattern (aperture) is used to irradiate the dry film with exposure light.
As the exposure light source, a halogen lamp, a high-pressure mercury lamp, a laser beam, a metal halide lamp, a black lamp, an electrodeless lamp, or the like can be used. A pattern may be formed on the dry film by a laser direct imaging device without using an exposure mask.
 次に、露光後の乾燥被膜を現像液により現像する。これにより、乾燥被膜の不要部分が除去されて、所定のパターンを有する乾燥被膜が得られる。
 現像液は、スプレー法、浸漬法等により、露光後の乾燥被膜に付与できる。
 現像液には、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、珪酸ナトリウム等のアルカリを含むアルカリ水溶液を使用するのが好ましく、アルカリを濃度1.5質量%以下で含む希アルカリ水溶液を使用するのがより好ましい。
 本組成物1によれば、現像液として希アルカリ水溶液を使用できるので、ダメージが少なく、解像性にも優れる乾燥被膜が得られる。なお、現像後の乾燥被膜は、不要な現像液を除去するために、水洗や酸中和を行うのが好ましい。
Next, the dry film after exposure is developed with a developing solution. As a result, unnecessary portions of the dry film are removed, and a dry film having a predetermined pattern is obtained.
The developer can be applied to the dry film after exposure by a spray method, a dipping method or the like.
As the developing solution, it is preferable to use an alkaline aqueous solution containing an alkali such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium silicate, etc., and a dilute alkaline aqueous solution containing an alkali at a concentration of 1.5% by mass or less is used. It is more preferable to use.
According to the present composition 1, since a dilute alkaline aqueous solution can be used as the developing solution, a dry film having less damage and excellent resolution can be obtained. The dried film after development is preferably washed with water or acid-neutralized in order to remove unnecessary developing solution.
 次に、得られた現像後の乾燥被膜を紫外線(活性エネルギー線)の照射により硬化(後硬化)させる。なお、本組成物1が上記硬化剤を含有する場合、現像後の乾燥被膜を加熱によっても硬化できる。これにより、密着性及び耐クラック性に優れる硬化被膜(凸部等の成形物)が得られる。 Next, the obtained dried film after development is cured (post-cured) by irradiation with ultraviolet rays (active energy rays). When the present composition 1 contains the above-mentioned curing agent, the dried film after development can be cured by heating. As a result, a cured film (molded product such as a convex portion) having excellent adhesion and crack resistance can be obtained.
 本組成物1は、多層プリント配線板の貫通孔又は凹部の穴埋めに用いられる充填材料としても好適に使用できる。
 多層プリント配線板は、絶縁層を介して積層された複数の回路パターンを有している。絶縁層は、ポリフェニレンエーテル、ポリフェニレンオキシド、シアネートエステル、ポリイミド、フルオロポリマー等で構成される。また、回路パターンは、メッキ等により形成される金属膜で構成されている。
 この多層プリント配線板は、その厚さ方向に貫通する貫通孔又は凹没する凹部を有している。貫通孔又は凹部は、ドリル加工、レーザー加工により形成されている。貫通孔又は凹部の内面には、導電膜が形成されており、所定の回路パターン同士が電気的に接続されている。
 かかる貫通孔又は凹部に本組成物1が充填され、硬化させると、貫通孔又は凹部が穴埋めできる。
The present composition 1 can also be suitably used as a filling material used for filling through holes or recesses in a multilayer printed wiring board.
The multilayer printed wiring board has a plurality of circuit patterns laminated via an insulating layer. The insulating layer is composed of polyphenylene ether, polyphenylene oxide, cyanate ester, polyimide, fluoropolymer and the like. Further, the circuit pattern is composed of a metal film formed by plating or the like.
This multilayer printed wiring board has a through hole or a recessed recess that penetrates in the thickness direction thereof. The through hole or recess is formed by drilling or laser machining. A conductive film is formed on the inner surface of the through hole or the recess, and predetermined circuit patterns are electrically connected to each other.
When the composition 1 is filled in the through hole or the recess and cured, the through hole or the recess can be filled.
 本組成物1の貫通孔又は凹部への充填は、スクリーン印刷法、ロールコーティング法、ダイコーティング法、真空印刷法により実施できる。このとき、本組成物1を貫通孔又は凹部からはみ出す程度に充填するのが好ましい。
 本組成物1が硬化剤又は硬化促進剤を含有する場合、貫通孔又は凹部に充填された本組成物1を加熱により硬化させるのが好ましい。
 本組成物1の加熱の条件は、80~160℃で30~180分間が好ましい。なお、本組成物1の硬化におけるアウトガスを抑制する観点からは、本組成物1を仮硬化段階及び本硬化段階の2段階で硬化させるのが好ましい。仮硬化の条件としては、80~110℃で30~90分間が好ましい。本硬化の条件としては、130~160℃で30~180分間が好ましい。本組成物1は、硬化時の容積変化率が小さいため、多層プリント配線板の形状安定性の低下を防止できる。
 なお、本組成物1の仮硬化段階または硬化段階で、成形物の貫通孔又は凹部からはみ出す不要部分を除去して、平坦化してもよい。その後、多層プリント配線板の表面に、メッキ等により金属膜を形成し、所定のパターンにパターニングして回路パターンを形成してもよい。ここで、多層プリント配線板の表面には、金属膜の形成に先立って、必要に応じて、過マンガン酸カリウム水溶液等による粗化処理を行ってもよい。
The through holes or recesses of the composition 1 can be filled by a screen printing method, a roll coating method, a die coating method, or a vacuum printing method. At this time, it is preferable to fill the composition 1 to such an extent that it protrudes from the through hole or the recess.
When the present composition 1 contains a curing agent or a curing accelerator, it is preferable to cure the present composition 1 filled in the through holes or recesses by heating.
The heating conditions for the composition 1 are preferably 80 to 160 ° C. for 30 to 180 minutes. From the viewpoint of suppressing outgassing in the curing of the composition 1, it is preferable to cure the composition 1 in two stages, a temporary curing step and a main curing step. The conditions for temporary curing are preferably 80 to 110 ° C. for 30 to 90 minutes. The conditions for the main curing are preferably 130 to 160 ° C. for 30 to 180 minutes. Since the volume change rate of the present composition 1 at the time of curing is small, it is possible to prevent a decrease in the shape stability of the multilayer printed wiring board.
In the temporary curing step or the curing step of the present composition 1, unnecessary portions protruding from the through holes or recesses of the molded product may be removed and flattened. After that, a metal film may be formed on the surface of the multilayer printed wiring board by plating or the like, and a predetermined pattern may be patterned to form a circuit pattern. Here, the surface of the multilayer printed wiring board may be roughened with an aqueous solution of potassium permanganate or the like, if necessary, prior to the formation of the metal film.
 また、本組成物1は、ドライフィルムを作製するのにも好適に使用できる。
 かかるドライフィルムは、キャリアフィルム上に、本組成物1を塗布、乾燥して、乾燥被膜としての樹脂膜を形成することにより作製できる。ドライフィルムには、必要に応じて、保護フィルムを積層してもよい。
 キャリアフィルムとは、ドライフィルムを支持する機能を有するフィルムである。かかるキャリアフィルムとしては、例えば、ポリオレフィンフィルム、ポリエステルフィルム、ポリイミドフィルム、ポリアミドイミドフィルム、ポリテトラフルオロエチレンフィルム、ポリスチレンフィルム、表面処理した紙基材が挙げられる。中でも、耐熱性、機械的強度、取扱性等の観点から、ポリエステルフィルムが好ましい。
 キャリアフィルムの表面には、離型処理を施してもよい。
The composition 1 can also be suitably used for producing a dry film.
Such a dry film can be produced by applying the present composition 1 on a carrier film and drying it to form a resin film as a dry film. A protective film may be laminated on the dry film, if necessary.
The carrier film is a film having a function of supporting a dry film. Examples of such a carrier film include a polyolefin film, a polyester film, a polyimide film, a polyamide-imide film, a polytetrafluoroethylene film, a polystyrene film, and a surface-treated paper substrate. Among them, a polyester film is preferable from the viewpoint of heat resistance, mechanical strength, handleability and the like.
The surface of the carrier film may be subjected to a mold release treatment.
 保護フィルムは、ドライフィルムの表面に塵等が付着するのを防止するとともに、その取扱性を向上させる目的で、ドライフィルムのキャリアフィルムと反対側の面に貼着されるフィルムである。
 保護フィルムには、例えば、上記キャリアフィルムで挙げたのと同じフィルムや紙基材が用いられ、ポリオレフィンフィルム又はポリエステルフィルムが好ましい。
 保護フィルムの厚さは、10~150μmであるのが好ましい。保護フィルムの表面には、離型処理を施してもよい。
The protective film is a film that is attached to the surface of the dry film opposite to the carrier film for the purpose of preventing dust and the like from adhering to the surface of the dry film and improving its handleability.
As the protective film, for example, the same film or paper base material as mentioned in the above carrier film is used, and a polyolefin film or a polyester film is preferable.
The thickness of the protective film is preferably 10 to 150 μm. The surface of the protective film may be subjected to a mold release treatment.
 ドライフィルムとキャリアフィルムと保護フィルムとを有する積層フィルムからプリント配線板を製造する方法としては、以下の方法が挙げられる。
 まず、ドライフィルムからキャリアフィルム及び保護フィルムのいずれか一方を剥離する。本組成物1が硬化剤又は硬化促進剤を含有する場合、次に、回路パターンが形成された回路基板に圧着した後、熱硬化させる。熱硬化には、オーブン、熱プレス機等を使用できる。その後、回路基板の所定の箇所に、レーザー加工またはドリル加工で貫通孔(ビアホール)を形成し、回路パターンを露出させる。これにより、プリント配線板が得られる。なお、回路パターン上に除去しきれず不要成分(スミア)が残留した場合には、デスミア処理を行うのが好ましい。
 キャリアフィルム及び保護フィルムの他方は、所定の段階で、ドライフィルムから剥離される。なお、回路パターン同士の電気的な接続には、貫通孔の内面に形成された導電膜、貫通孔内に収納されたピラーやポストを使用できる。
Examples of a method for producing a printed wiring board from a laminated film having a dry film, a carrier film, and a protective film include the following methods.
First, either the carrier film or the protective film is peeled off from the dry film. When the present composition 1 contains a curing agent or a curing accelerator, it is then pressure-bonded to a circuit board on which a circuit pattern is formed and then thermosetting. An oven, a heat press, or the like can be used for thermosetting. After that, a through hole (via hole) is formed at a predetermined position on the circuit board by laser processing or drilling to expose the circuit pattern. As a result, a printed wiring board can be obtained. If unnecessary components (smear) remain on the circuit pattern because they cannot be completely removed, it is preferable to perform desmear treatment.
The other of the carrier film and the protective film is peeled from the dry film at a predetermined stage. For the electrical connection between the circuit patterns, a conductive film formed on the inner surface of the through hole, a pillar or a post housed in the through hole can be used.
 本発明の凸部付き基材(以下、「本凸部付き基材」とも記す。)は、基材と、基材の表面に設けられ、本組成物1から形成された所定のパターンを有する凸部とを有する。凸部は、上述した、本組成物1をネガ型のレジスト組成物として用いる方法にて製造できる。
 基材には、基材I:基板上に画素電極、スイッチング素子及び配線が形成されたアクティブマトリックス基板、基材II:ポリマーフィルムと金属層とが積層された積層板等を使用できる。
 基材Iの場合、凸部は、例えば、画素電極を露出させるようにアクティブマトリックス基板の表面に枠体として設けられる。この場合、凸部で区画される空間内に、有機EL層(電子輸送層、発光層、正孔輸送層等)、電気泳動粒子を含有する電気泳動分散液を配置し、共通電極等を備える対向基板をアクティブマトリックス基板に対向配置すれば、表示装置(電子デバイス)を作製できる。
The base material with a convex portion of the present invention (hereinafter, also referred to as “base material with a convex portion”) is provided on the base material and the surface of the base material, and has a predetermined pattern formed from the present composition 1. It has a convex portion. The convex portion can be produced by the above-mentioned method using the present composition 1 as a negative type resist composition.
As the base material, a base material I: an active matrix substrate in which a pixel electrode, a switching element and wiring are formed on the substrate, and a base material II: a laminated plate in which a polymer film and a metal layer are laminated can be used.
In the case of the base material I, the convex portion is provided as a frame on the surface of the active matrix substrate so as to expose the pixel electrodes, for example. In this case, an electrophoretic dispersion containing an organic EL layer (electron transport layer, light emitting layer, hole transport layer, etc.) and electrophoretic particles is arranged in the space partitioned by the convex portion, and a common electrode or the like is provided. A display device (electronic device) can be manufactured by arranging the facing substrate facing the active matrix substrate.
 かかる構成において、凸部には、2つの基板の離間距離を規定するスペーサー、単位画素同士の間でのクロストークを防止するブラックマトリックスとしての機能を付与できる。
 また、本凸部付き基材における凸部は、撥水撥油性に優れ、かつ欠陥が少ないため、有機EL層を形成するインクや電気泳動分散液が凸部に付着しにくく、表示性能に優れる表示装置が得られる。また、凸部は、電気特性(低誘電率性)にも優れるため、表示装置において寄生容量が生じにくく、スイッチング特性の低下も防止できる。
In such a configuration, the convex portion can be provided with a function as a spacer that defines the separation distance between the two substrates and a black matrix that prevents crosstalk between unit pixels.
Further, since the convex portion of the base material with the convex portion has excellent water and oil repellency and few defects, the ink forming the organic EL layer and the electrophoresis dispersion liquid do not easily adhere to the convex portion, and the display performance is excellent. A display device is obtained. Further, since the convex portion is also excellent in electrical characteristics (low dielectric constant), parasitic capacitance is unlikely to occur in the display device, and deterioration of switching characteristics can be prevented.
 基材IIの場合、ポリマーフィルムは、ポリマー層のみからなる単層フィルムであってもよく、表面層としてのポリマー層と表面層(ポリマー層)を支持する支持層とを有する積層フィルムであってもよい。
 支持層は、耐熱性樹脂フィルム、繊維強化樹脂板の前駆体であるプリプレグ、耐熱性樹脂層を有するフィルム、プリプレグ層を有するフィルムで構成できる。
 なお、プリプレグは、強化繊維(ガラス繊維、炭素繊維等)の繊維基材(トウ、織布等)に熱硬化性樹脂又は熱可塑性樹脂を含浸させたシート状の基板である。
In the case of the base material II, the polymer film may be a single-layer film composed of only a polymer layer, and is a laminated film having a polymer layer as a surface layer and a support layer supporting the surface layer (polymer layer). May be good.
The support layer can be composed of a heat-resistant resin film, a prepreg which is a precursor of a fiber-reinforced resin plate, a film having a heat-resistant resin layer, and a film having a prepreg layer.
The prepreg is a sheet-like substrate in which a fiber base material (tow, woven fabric, etc.) of reinforcing fibers (glass fiber, carbon fiber, etc.) is impregnated with a thermosetting resin or a thermoplastic resin.
 耐熱性樹脂フィルムは、1種以上の耐熱性樹脂を含むフィルムである。耐熱性樹脂としては、ポリイミド、ポリアリレート、ポリスルホン、ポリアリルスルホン、芳香族ポリアミド、芳香族ポリエーテルアミド、ポリフェニレンスルフィド、ポリアリルエーテルケトン、ポリアミドイミド、液晶性ポリエステル、液晶性ポリエステルアミドが挙げられ、ポリイミド(特に、芳香族性ポリイミド)、Fポリマー、Fポリマー以外のフッ素樹脂が好ましい。
 ポリマー層は、上記の耐熱性樹脂を含むのが好ましく、Fポリマーを含むのがより好ましい。かかる場合、基材が低誘電正接性に優れやすく、本凸部と基材とが強固に接着しやすい。
The heat-resistant resin film is a film containing one or more heat-resistant resins. Examples of the heat-resistant resin include polyimide, polyarylate, polysulfone, polyallylsulfone, aromatic polyamide, aromatic polyetheramide, polyphenylene sulfide, polyallyl ether ketone, polyamideimide, liquid crystal polyester, and liquid crystal polyester amide. Fluororesin other than polyimide (particularly aromatic polyimide), F polymer, and F polymer is preferable.
The polymer layer preferably contains the above-mentioned heat-resistant resin, and more preferably contains an F polymer. In such a case, the base material tends to have excellent low dielectric loss tangent properties, and the convex portion and the base material tend to adhere firmly.
 Fポリマーを含むポリマー層は、Fポリマーを溶融混練し、押出成形して得てもよい。この場合、積層フィルムは、Fポリマーを含むフィルムと、支持層とを熱圧着して得られる。
 Fポリマーを含むポリマー層は、F粒子と液状分散媒とを含む分散液を基材に塗布、加熱して得てもよい。この場合、基材を剥離すればFポリマーを含む単層フィルムが得られ、基材として上記支持層を構成するフィルムを使用し、基材を剥離しなければ、積層フィルムが得られる。
 基材IIとしての積層板は、ポリマーフィルムと金属箔とを熱圧着して作製できる。
 金属箔の材質としては、銅、銅合金、ステンレス鋼、ニッケル、ニッケル合金(42合金も含む。)、アルミニウム、アルミニウム合金、チタン、チタン合金等が挙げられる。
 金属箔は、銅箔が好ましく、圧延銅箔又は電解銅箔がより好ましい。
The polymer layer containing the F polymer may be obtained by melt-kneading the F polymer and extrusion molding. In this case, the laminated film is obtained by thermocompression bonding a film containing an F polymer and a support layer.
The polymer layer containing the F polymer may be obtained by applying a dispersion liquid containing F particles and a liquid dispersion medium to a base material and heating the substrate. In this case, if the base material is peeled off, a single-layer film containing the F polymer is obtained, and if the film constituting the support layer is used as the base material and the base material is not peeled off, a laminated film is obtained.
The laminated board as the base material II can be produced by thermocompression bonding a polymer film and a metal foil.
Examples of the material of the metal foil include copper, copper alloy, stainless steel, nickel, nickel alloy (including 42 alloy), aluminum, aluminum alloy, titanium, titanium alloy and the like.
The metal foil is preferably a copper foil, more preferably a rolled copper foil or an electrolytic copper foil.
 基材IIとしての積層板の好適な態様としては、プリプレグ層/Fポリマーを含むポリマー層/金属層の態様が挙げられる。金属層は、所定のパターンを有してもよい。また、パターンを有さない金属層上に本凸部を形成し、この凸部をマスクとして使用して、金属層をエッチングし回路に加工してプリント配線板を得てもよい。 A preferred embodiment of the laminated board as the base material II is a polymer layer / metal layer containing a prepreg layer / F polymer. The metal layer may have a predetermined pattern. Further, a printed wiring board may be obtained by forming a main convex portion on a metal layer having no pattern and using this convex portion as a mask to etch the metal layer and process it into a circuit.
 以上、本法1、本組成物1及び凸部付き基材について説明したが、本発明は、上述した実施形態の構成に限定されない。
 例えば、本法1は、上記実施形態の構成において、他の任意の工程を追加で有してもよいし、同様の作用を生じる任意の工程と置換されていてよい。また本組成物1は、上記実施形態の構成において、他の任意の構成を追加してもよいし、同様の機能を発揮する任意の構成と置換されていてよい。
Although the present method 1, the present composition 1, and the base material with a convex portion have been described above, the present invention is not limited to the configuration of the above-described embodiment.
For example, the present method 1 may additionally have any other step in the configuration of the above embodiment, or may be replaced with any step that produces the same action. Further, in the configuration of the above-described embodiment, the present composition 1 may be added with any other configuration, or may be replaced with an arbitrary configuration exhibiting the same function.
 続いて、本法の第2の態様(以下、「本法2」とも記す。)について説明する。
 本法2は、F粒子と、芳香族樹脂と、極性ビニル系ポリマー及び多糖類からなる群から選ばれる少なくとも1種の増粘ポリマーと、水とを、薄膜旋回による撹拌機構か、又は、自転及び公転による撹拌機構を備えた槽内にて混合して、F粒子と芳香族樹脂と増粘ポリマーと水とを含む液状組成物(以下、「本組成物2」とも記す。)を得る方法である。
 本組成物2は、分散安定性、均一性及び取扱い性に優れる。また、本組成物2からは、Fポリマーの物性と、芳香族樹脂の物性とを高度に具備した、電気特性と低線膨張性に優れた成形物を形成できる。その理由とその作用機構とは、必ずしも明確ではないが、例えば以下の様に推定している。
Subsequently, the second aspect of this method (hereinafter, also referred to as “this method 2”) will be described.
In this method 2, F particles, an aromatic resin, at least one thickening polymer selected from the group consisting of polar vinyl polymers and polysaccharides, and water are stirred by a thin film swirl or a rotation. A method of obtaining a liquid composition containing F particles, an aromatic resin, a thickening polymer, and water (hereinafter, also referred to as "this composition 2") by mixing in a tank equipped with a stirring mechanism by revolution. Is.
The present composition 2 is excellent in dispersion stability, uniformity and handleability. Further, from the present composition 2, it is possible to form a molded product having excellent electrical characteristics and low linear expansion property, which has a high degree of physical characteristics of the F polymer and the physical characteristics of the aromatic resin. The reason and its mechanism of action are not always clear, but are estimated as follows, for example.
 Fポリマーは、その低い表面エネルギーが要因で分散性が低い。液状組成物の分散性を向上するために強い剪断力をかけてF粒子と芳香族樹脂とを水中にて混合すると、Fポリマーがフィブリル化等して変性し、複雑な二次粒子を形成して凝集しやすくなる。増粘ポリマーを使用した場合においても、成分同士の間の相互作用より、単独成分内での相互作用が逆に高まり、例えば、増粘ポリマー自体が凝集しやすくなる。このように、成分凝集を抑制しつつ、F粒子と芳香族樹脂とを混合して、分散安定性、均一性及び取り扱い性に優れた液状組成物を得るのは困難であった。 F polymer has low dispersibility due to its low surface energy. When the F particles and the aromatic resin are mixed in water by applying a strong shearing force to improve the dispersibility of the liquid composition, the F polymer is modified by fibrillation and the like to form complex secondary particles. It becomes easy to aggregate. Even when a thickening polymer is used, the interaction within a single component is conversely enhanced rather than the interaction between the components, and for example, the thickening polymer itself tends to aggregate. As described above, it has been difficult to obtain a liquid composition having excellent dispersion stability, uniformity and handleability by mixing the F particles and the aromatic resin while suppressing component aggregation.
 本法2では、F粒子と芳香族樹脂と増粘ポリマーと水とを薄膜旋回による撹拌機構か、又は、自転及び公転による撹拌機構を備えた槽内にて混合する手段を採り、F粒子及び芳香族樹脂のそれぞれに増粘ポリマーを高度に浸透させた状態で混合する。換言すれば、増粘ポリマーによって両者を混合する際に生じる衝突の衝撃を緩和させ、F粒子の変性と成分凝集とを抑制しているともみなせる。また、F粒子と芳香族樹脂との衝突により、両者の合着粒子(F粒子の表面に芳香族樹脂が合着した複合粒子等)の形成を促しているともみなせる。 In this method 2, F particles, an aromatic resin, a thickening polymer, and water are mixed by a stirring mechanism by thin film swirling or in a tank equipped with a stirring mechanism by rotation and revolution. Each of the aromatic resins is mixed with the thickening polymer highly impregnated. In other words, it can be considered that the thickening polymer alleviates the impact of collision generated when the two are mixed, and suppresses the denaturation of F particles and the aggregation of components. Further, it can be considered that the collision between the F particles and the aromatic resin promotes the formation of the coalesced particles of both (composite particles in which the aromatic resin is bonded to the surface of the F particles, etc.).
 これらの要因によって、F粒子が個々の粒子レベルで芳香族樹脂と高度に混合されるため、分散安定性、均一性及び取扱い性に優れ、発泡が抑制された液状組成物が、本法2によって得られたと考えられる。
 さらに、上記合着粒子に代表される均一な粒子が含まれることにより、本組成物2から水等の液性成分を除去した際には、均一かつ密な粒子のパッキング構造を形成しやすくなる。その結果、本組成物2からは、Fポリマー中に芳香族樹脂が緻密に配置され、電気特性、低線膨張性に優れた成形物が得られたと考えられる。
Due to these factors, the F particles are highly mixed with the aromatic resin at the individual particle level, so that a liquid composition having excellent dispersion stability, uniformity and handleability and suppressed foaming can be obtained by this method 2. It is believed that it was obtained.
Further, since uniform particles typified by the coalesced particles are contained, when a liquid component such as water is removed from the composition 2, it becomes easy to form a uniform and dense packing structure of particles. .. As a result, it is considered that from the present composition 2, the aromatic resin was densely arranged in the F polymer, and a molded product having excellent electrical characteristics and low linear expansion property was obtained.
 本発明における芳香族樹脂(「芳香族ポリマー」とも記す。)は、上述の作用機構により、本組成物2の分散安定性等の液物性を向上すると共に、本組成物2から得られる成形物に、耐屈曲性等の柔軟性、UV吸収性を付与できる。また、芳香族ポリマーは、ポリイミドフィルムや金属箔等の基材の表面に、本組成物2を付与してFポリマーを含むポリマー層を形成する際に、かかるポリマー層の樹脂フィルムに対する接着性、密着性等の特性を付与できる。
 芳香族ポリマーは、熱硬化性であっても熱可塑性であってもよく、変性されていてもよい。芳香族ポリマーは、その前駆体として本組成物2に含まれていてもよい。
 芳香族ポリマーは、水溶性であるのが好ましい。換言すれば、芳香族ポリマーは、本組成物2中に溶解しているのが好ましい。
The aromatic resin (also referred to as “aromatic polymer”) in the present invention improves the liquid physical characteristics such as the dispersion stability of the present composition 2 by the above-mentioned action mechanism, and is a molded product obtained from the present composition 2. In addition, flexibility such as bending resistance and UV absorption can be imparted. Further, when the composition 2 is applied to the surface of a base material such as a polyimide film or a metal foil to form a polymer layer containing an F polymer, the aromatic polymer has adhesiveness to the resin film of the polymer layer. It is possible to impart characteristics such as adhesion.
The aromatic polymer may be thermosetting, thermoplastic or modified. The aromatic polymer may be contained in the present composition 2 as a precursor thereof.
The aromatic polymer is preferably water soluble. In other words, the aromatic polymer is preferably dissolved in the composition 2.
 芳香族ポリマーの酸価は、本組成物2の分散安定性の観点から、20~100mg/KOHが好ましく、35~70mgKOH/gがより好ましい。なお、芳香族ポリマーが酸無水物基を有する場合、酸無水物基を開環させた場合の酸価を、芳香族ポリマーの酸価とする。
 酸価は、芳香族ポリマーを約0.5g採取し、これに1,4-ジアザビシクロ[2.2.2]オクタンを約0.15g加え、さらにN-メチル-2-ピロリドンを約60g及びイオン交換水を約1mL加え、芳香族ポリマーが完全に溶解するまで撹拌する。これを、0.05モル/Lのエタノール性水酸化カリウム溶液を使用して、電位差滴定装置で滴定することで測定できる。
The acid value of the aromatic polymer is preferably 20 to 100 mg / KOH, more preferably 35 to 70 mgKOH / g, from the viewpoint of dispersion stability of the present composition 2. When the aromatic polymer has an acid anhydride group, the acid value when the acid anhydride group is opened is defined as the acid value of the aromatic polymer.
As for the acid value, about 0.5 g of aromatic polymer was collected, about 0.15 g of 1,4-diazabicyclo [2.2.2] octane was added thereto, and about 60 g of N-methyl-2-pyrrolidone and ions were added. Add about 1 mL of replacement water and stir until the aromatic polymer is completely dissolved. This can be measured by titrating with a potentiometric titrator using a 0.05 mol / L ethanolic potassium hydroxide solution.
 芳香族ポリマーの平均分子量は、5000以上が好ましく、10000以上がより好ましい。芳香族ポリマーの平均分子量は、50000以下が好ましく、30000以下がより好ましい。この場合、芳香族ポリマーが水へ溶解しやすい。また、本組成物2から得られる成形物が、耐屈曲性等の力学的特性に優れやすい。
 芳香族ポリマーとしては、芳香族イミド系樹脂、芳香族スルフィド系樹脂、芳香族スルホン系樹脂、フェノール樹脂が挙げられ、芳香族イミド系樹脂が好ましい。
The average molecular weight of the aromatic polymer is preferably 5000 or more, more preferably 10000 or more. The average molecular weight of the aromatic polymer is preferably 50,000 or less, more preferably 30,000 or less. In this case, the aromatic polymer is easily dissolved in water. Further, the molded product obtained from the present composition 2 tends to have excellent mechanical properties such as bending resistance.
Examples of the aromatic polymer include an aromatic imide resin, an aromatic sulfide resin, an aromatic sulfone resin, and a phenol resin, and an aromatic imide resin is preferable.
 芳香族イミド系樹脂としては、芳香族ポリイミド、芳香族ポリアミドイミド、芳香族ポリエーテルイミド又はそれらの前駆体が挙げられる。これらは、変性されていてもよく、例えばカルボン酸基等の極性官能基を有してもよい。
 芳香族イミド系樹脂としては、芳香族ポリイミド又はその前駆体(ポリアミック酸又はその塩)、芳香族ポリアミドイミド又はその前駆体が好ましく、水溶性の芳香族ポリイミド前駆体、水溶性の芳香族ポリアミドイミド前駆体がより好ましく、水溶性の芳香族ポリアミドイミド前駆体がさらに好ましい。
Examples of the aromatic imide-based resin include aromatic polyimides, aromatic polyamideimides, aromatic polyetherimides, and precursors thereof. These may be modified and may have polar functional groups such as carboxylic acid groups.
As the aromatic imide-based resin, aromatic polyimide or a precursor thereof (polyamic acid or a salt thereof), aromatic polyamideimide or a precursor thereof is preferable, and a water-soluble aromatic polyimide precursor or a water-soluble aromatic polyamideimide is preferable. The precursor is more preferred, and the water-soluble aromatic polyamide-imide precursor is even more preferred.
 水溶性の芳香族ポリイミド前駆体としては、テトラカルボン酸二無水物とジアミンとを溶媒中で重合させたポリアミック酸や、該ポリアミック酸と、アンモニア水又は有機アミンとを反応させたポリアミック酸塩が挙げられる。ポリアミック酸塩を水に溶解させることで、ポリアミック酸の水溶液を調製できる。
 テトラカルボン酸二無水物としては、例えば、ピロメリット酸無水物、ビフェニルテトラカルボン酸無水物が挙げられる。ジアミンとしては、例えば、N,N’-ジアミノジフェニルエーテル、p-ジアミノベンゼンが挙げられる。溶媒としては、例えば、N-メチルピロリドン、N,N-ジメチルホルムアミドが挙げられる。
Examples of the water-soluble aromatic polyimide precursor include a polyamic acid obtained by polymerizing a tetracarboxylic acid dianhydride and a diamine in a solvent, and a polyamic acid salt obtained by reacting the polyamic acid with aqueous ammonia or an organic amine. Can be mentioned. An aqueous solution of a polyamic acid can be prepared by dissolving the polyamic acid salt in water.
Examples of the tetracarboxylic acid dianhydride include pyromellitic acid anhydride and biphenyltetracarboxylic acid anhydride. Examples of the diamine include N, N'-diaminodiphenyl ether and p-diaminobenzene. Examples of the solvent include N-methylpyrrolidone and N, N-dimethylformamide.
 有機アミンとしては、例えば、メチルアミン、エチルアミン、n-プロピルアミン、2-エタノールアミン、2-アミノ-2-メチル-1-プロパノール等の1級アミン;ジメチルアミン、2-(メチルアミノ)エタノール、2-(エチルアミノ)エタノール等の2級アミン;2-ジメチルアミノエタノール、2-ジエチルアミノエタノール、1-ジメチルアミノ-2-プロパノール等の3級アミン;テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド等の4級アンモニウム塩が挙げられる。 Examples of the organic amine include primary amines such as methylamine, ethylamine, n-propylamine, 2-ethanolamine and 2-amino-2-methyl-1-propanol; dimethylamine, 2- (methylamino) ethanol, and the like. Secondary amines such as 2- (ethylamino) ethanol; Tertiary amines such as 2-dimethylaminoethanol, 2-diethylaminoethanol, 1-dimethylamino-2-propanol; A quaternary ammonium salt can be mentioned.
 水溶性の芳香族ポリアミドイミド又はその前駆体としては、ジイソシアネート及び/又はジアミンと、酸成分としての三塩基酸無水物(又は三塩基酸クロリド)とを反応させて得られる芳香族ポリアミドイミド又はその前駆体が挙げられる。
 ジイソシアネートとしては、例えば、4,4’-ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、3,3’-ジメチルビフェニル-4,4’-ジイソシアネート、3,3’-ジフェニルメタンジイソシアネート、3,3’-ジメトキシビフェニル-4,4’-ジイソシアネート、パラフェニレンジイソシアネート、ヘキサメチレンジイソシアネート、トリレンジイソシアネート、ナフタレンジイソシアネート、トリレンジイソシアレート、イソホロンジイソシアネートが挙げられる。これらのジイソシアネートは、1種類を単独で用いても、2種類以上を組み合わせて用いてもよい。
As the water-soluble aromatic polyamide-imide or its precursor, the aromatic polyamide-imide obtained by reacting diisocyanate and / or diamine with tribasic acid anhydride (or tribasic acid chloride) as an acid component or its precursor. Examples include precursors.
Examples of the diisocyanate include 4,4'-diphenylmethane diisocyanate, xylylene diisocyanate, 3,3'-dimethylbiphenyl-4,4'-diisocyanate, 3,3'-diphenylmethane diisocyanate, and 3,3'-dimethoxybiphenyl-4. , 4'-diisocyanate, paraphenylenediocyanate, hexamethylene diisocyanate, tolylene diisocyanate, naphthalene diisocyanate, tolylene diisocyanate, isophorone diisocyanate. These diisocyanates may be used alone or in combination of two or more.
 なお、芳香族ポリアミドイミドの安定性を向上する観点から、ジイソシアネートとして、ブロック化剤でイソシアネート基を安定化したブロック型イソシアネートを使用してもよい。ブロック化剤としては、アルコール、フェノール、及びオキシム等が挙げられる。
 ジアミンとしては、例えば、3,3’-ジメチルビフェニル-4,4’-ジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、キシリレンジアミン、フェニレンジアミン、イソホロンジアミンが挙げられる。これらのジアミンは、1種類を単独で用いても、2種類以上を組み合わせて用いてもよい。
From the viewpoint of improving the stability of the aromatic polyamide-imide, a blocked isocyanate having an isocyanate group stabilized by a blocking agent may be used as the diisocyanate. Examples of the blocking agent include alcohol, phenol, oxime and the like.
Examples of the diamine include 3,3'-dimethylbiphenyl-4,4'-diamine, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3,3'. -Diaminodiphenyl sulfone, xylylene diamine, phenylenediamine, isophoronediamine can be mentioned. These diamines may be used alone or in combination of two or more.
 三塩基酸無水物としては、例えば、トリメリット酸無水物が挙げられ、三塩基酸クロリドとしては、例えば、トリメリット酸無水物クロリドが挙げられる。三塩基酸無水物としては、環境への負荷を軽減させる観点から、トリメリット酸無水物が好ましい。
 芳香族ポリアミドイミドを製造する際に、上記の三塩基酸無水物(又は三塩基酸クロリド)の他に、酸成分として、ジカルボン酸、テトラカルボン酸二無水物等を、芳香族ポリアミドイミドの特性を損なわない範囲で用いてもよい。
Examples of the tribasic acid anhydride include trimellitic acid anhydride, and examples of the tribasic acid chloride include trimellitic acid anhydride chloride. As the tribasic acid anhydride, trimellitic acid anhydride is preferable from the viewpoint of reducing the burden on the environment.
When producing an aromatic polyamideimide, in addition to the above tribasic acid anhydride (or tribasic acid chloride), dicarboxylic acid, tetracarboxylic acid dianhydride, etc. are used as acid components, and the characteristics of the aromatic polyamideimide. May be used as long as the above is not impaired.
 ジカルボン酸としては、例えば、テレフタル酸、イソフタル酸、アジピン酸、セバシン酸が挙げられる。テトラカルボン酸二無水物としては、例えば、ピロメリット酸二無水物、ベンゾフェノンテトラカルボン酸二無水物、ビフェニルテトラカルボン酸二無水物が挙げられる。これらは、1種類を単独で用いても、2種類以上を組合せて用いてもよい。
 三塩基酸以外のカルボン酸(ジカルボン酸とテトラカルボン酸)の総量は、芳香族ポリアミドイミドの特性を保つ観点から、全カルボン酸中の0~30モル%の範囲であるのが好ましい。
Examples of the dicarboxylic acid include terephthalic acid, isophthalic acid, adipic acid, and sebacic acid. Examples of the tetracarboxylic acid dianhydride include pyromellitic acid dianhydride, benzophenone tetracarboxylic acid dianhydride, and biphenyltetracarboxylic acid dianhydride. These may be used alone or in combination of two or more.
The total amount of carboxylic acids (dicarboxylic acid and tetracarboxylic acid) other than tribasic acid is preferably in the range of 0 to 30 mol% in the total carboxylic acid from the viewpoint of maintaining the characteristics of aromatic polyamide-imide.
 ジイソシアネート及び/又はジアミンと酸成分(三塩基酸無水物又は三塩基酸クロリドと必要に応じて使用するジカルボン酸及びテトラカルボン酸二無水物の合計量)の使用比率は、生成する芳香族ポリアミドイミドの分子量及び架橋度の観点から、酸成分の総量1.0モルに対して、ジイソシアネート化合物及び/又はジアミン化合物を0.8~1.1モルとすることが好ましい。
 水溶性の芳香族ポリアミドイミド又はその前駆体の具体例としては、「HPC-1000」、「HPC-2100D」(いずれも昭和電工マテリアルズ社製)が挙げられる。
The proportion of diisocyanate and / or diamine and acid component (total amount of tribasic acid anhydride or tribasic acid chloride and dicarboxylic acid and tetracarboxylic acid dianhydride used as needed) is the aromatic polyamideimide produced. From the viewpoint of the molecular weight and the degree of cross-linking of the acid component, the amount of the diisocyanate compound and / or the diamine compound is preferably 0.8 to 1.1 mol with respect to the total amount of the acid component of 1.0 mol.
Specific examples of the water-soluble aromatic polyamide-imide or its precursor include "HPC-1000" and "HPC-2100D" (both manufactured by Showa Denko Materials Co., Ltd.).
 芳香族ポリエーテルイミドとしては、主鎖中にイミド結合とエーテル結合とを有する非晶性ポリマーが挙げられ、2,2-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]プロパンとm-フェニレンジアミンとの重縮合体が好ましい。芳香族ポリエーテルイミドの具体例としては、例えば「Ultem 1000F3SP」(SABIC社製)が挙げられる。
 芳香族スルフィド系樹脂としては、ポリフェニレンスルフィドが挙げられる。
 芳香族スルホン系樹脂としては、ポリフェニルスルホンが挙げられる。
Examples of the aromatic polyetherimide include an amorphous polymer having an imide bond and an ether bond in the main chain, and 2,2-bis [4- (3,4-dicarboxyphenyloxy) phenyl] propane and m. -A polycondensate with phenylenediamine is preferable. Specific examples of the aromatic polyetherimide include "Ultem 1000F3SP" (manufactured by SABIC).
Examples of the aromatic sulfide resin include polyphenylene sulfide.
Examples of the aromatic sulfone resin include polyphenylsulfone.
 本組成物2における芳香族ポリマーの含有量は、本組成物2の全体質量に対して、0.1質量%以上が好ましく、0.3質量%以上がより好ましい。芳香族ポリマーの含有量は、本組成物2の全体質量に対して30質量%以下が好ましく、10質量%以下がより好ましい。
 本組成物2におけるF粒子の含有量に対する芳香族ポリマーの含有量の比は、0.001以上が好ましく、0.005以上がより好ましい。かかる含有量の比は、0.1以下が好ましく、0.05以下がより好ましい。
The content of the aromatic polymer in the composition 2 is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, based on the total mass of the present composition 2. The content of the aromatic polymer is preferably 30% by mass or less, more preferably 10% by mass or less, based on the total mass of the composition 2.
The ratio of the content of the aromatic polymer to the content of the F particles in the composition 2 is preferably 0.001 or more, more preferably 0.005 or more. The ratio of such contents is preferably 0.1 or less, more preferably 0.05 or less.
 本発明における増粘ポリマーは、極性ビニル系ポリマー及び多糖類からなる群から選ばれる少なくとも1種のポリマーである。なお、極性ビニル系ポリマーとは、ポリマーの主鎖又は側鎖に極性官能基を有するビニル系ポリマーである。
 極性官能基としては、エーテル結合、エステル結合、アミド結合、イミド結合、チオエーテル結合、スルフィド結合、ジスルフィド結合、カルボニル基含有基、水酸基含有基、チオール基、スルフィド基、スルホニル基、スルホキシル基、アミノ基、アミド基が挙げられる。
The thickening polymer in the present invention is at least one polymer selected from the group consisting of polar vinyl-based polymers and polysaccharides. The polar vinyl polymer is a vinyl polymer having a polar functional group in the main chain or side chain of the polymer.
Polar functional groups include ether bond, ester bond, amide bond, imide bond, thioether bond, sulfide bond, disulfide bond, carbonyl group-containing group, hydroxyl group-containing group, thiol group, sulfide group, sulfonyl group, sulfoxyl group and amino group. , Amid group.
 増粘ポリマーは、熱硬化性であっても熱可塑性であってもよく、変性されていてもよい。増粘ポリマーは、その前駆体として本組成物2に含まれていてもよい。
 増粘ポリマーは、水溶性であるのが好ましい。換言すれば、増粘ポリマーは、本組成物2中に溶解しているのが好ましい。
The thickening polymer may be thermosetting, thermoplastic or modified. The thickening polymer may be contained in the present composition 2 as a precursor thereof.
The thickening polymer is preferably water soluble. In other words, the thickening polymer is preferably dissolved in the composition 2.
 増粘ポリマーは、カルボニル基含有基又は水酸基含有基を有するのが好ましい。この場合、増粘ポリマーのF粒子及び芳香族ポリマーとの親和性が向上し、本組成物2が分散安定性等の物性に優れやすく、また、増粘ポリマーが結着剤としての作用に優れやすい。
 増粘ポリマーの平均分子量は、3000以上が好ましく、10000以上がより好ましく、100000以上がさらに好ましく、300000以上が特に好ましい。増粘ポリマーの平均分子量は、1000000以下が好ましく、500000以下がより好ましい。この場合、本組成物2が分散安定性等の物性に優れやすい。
The thickening polymer preferably has a carbonyl group-containing group or a hydroxyl group-containing group. In this case, the affinity of the thickening polymer with the F particles and the aromatic polymer is improved, the composition 2 tends to have excellent physical properties such as dispersion stability, and the thickening polymer has an excellent action as a binder. Cheap.
The average molecular weight of the thickening polymer is preferably 3000 or more, more preferably 10000 or more, further preferably 100,000 or more, and particularly preferably 300,000 or more. The average molecular weight of the thickening polymer is preferably 1,000,000 or less, more preferably 500,000 or less. In this case, the present composition 2 tends to be excellent in physical properties such as dispersion stability.
 増粘ポリマーの熱分解温度は、150℃以上が好ましく、200℃以上がより好ましい。増粘ポリマーの熱分解温度は、320℃以下が好ましく、300℃以下がより好ましい。熱分解温度は、Fポリマーの溶融温度以下であるのが好ましい。この場合、増粘ポリマーが、結着剤としての作用に優れやすい。また、本組成物2から形成される成形物に増粘ポリマーが残留しにくく、成形物が電気特性等の物性に優れやすい。 The thermal decomposition temperature of the thickening polymer is preferably 150 ° C. or higher, more preferably 200 ° C. or higher. The thermal decomposition temperature of the thickening polymer is preferably 320 ° C. or lower, more preferably 300 ° C. or lower. The thermal decomposition temperature is preferably equal to or lower than the melting temperature of the F polymer. In this case, the thickening polymer tends to have an excellent action as a binder. Further, the thickening polymer is unlikely to remain in the molded product formed from the present composition 2, and the molded product tends to have excellent physical properties such as electrical characteristics.
 極性ビニル系ポリマーとしては、ポリビニルアルコール等のビニルアルコール系ポリマー、ポリビニルピロリドン等のビニルピロリドン系ポリマー、ポリアクリル酸等のアクリル酸系ポリマー、カルボキシビニルポリマー等のカルボキシビニル系ポリマーが挙げられ、ビニルアルコール系ポリマーが好ましい。 Examples of the polar vinyl polymer include vinyl alcohol-based polymers such as polyvinyl alcohol, vinylpyrrolidone-based polymers such as polyvinylpyrrolidone, acrylic acid-based polymers such as polyacrylic acid, and carboxyvinyl-based polymers such as carboxyvinyl polymer. Based polymers are preferred.
 ビニルアルコール系ポリマーとしては、ポリビニルアルコール、ポリ酢酸ビニル、ポリビニルアルコールの部分アセチル化物、ポリビニルアルコールの部分アセタール化物、ビニルアルコールとビニルブチラールと酢酸ビニルの共重合体が好ましい。
 ビニルアルコール系ポリマーの具体例としては、「エスレック(登録商標)B」シリーズ、「エスレック(登録商標)K(KS)」シリーズ、「エスレック(登録商標)SV」シリーズ(以上、積水化学工業社製)」、「モビタール(登録商標)」シリーズ(クラレ社製)が挙げられる。
As the vinyl alcohol-based polymer, polyvinyl alcohol, polyvinyl acetate, a partially acetylated product of polyvinyl alcohol, a partially acetal product of polyvinyl alcohol, and a copolymer of vinyl alcohol, vinyl butyral, and vinyl acetate are preferable.
Specific examples of vinyl alcohol-based polymers include "Eslek (registered trademark) B" series, "Eslek (registered trademark) K (KS)" series, and "Eslek (registered trademark) SV" series (all manufactured by Sekisui Chemical Co., Ltd.). ) ”,“ Mobital (registered trademark) ”series (manufactured by Kuraray).
 アクリル酸系ポリマーとしては、ポリアクリル酸、ポリアクリル酸メチル、ポリアクリル酸エチル等のポリアクリレート、ポリ-α-ハロアクリレート、ポリ-α-シアノアクリレート、ポリアクリルアミド、ポリアクリル酸ナトリウムが挙げられる。 Examples of acrylic acid-based polymers include polyacrylates such as polyacrylic acid, methyl polyacrylate, and ethyl polyacrylate, poly-α-haloacrylate, poly-α-cyanoacrylate, polyacrylamide, and sodium polyacrylate.
 多糖類としては、グリコーゲン、アミロース、アガロース、アミロペクチン、セルロース、デキストリン、グルカン、フルクタン、キチン、キサンタンガム、グアーガム、カゼイン、アラビアガム、ゼラチン、アガロペクチン、アラビナン、カードラン、カロース、カルボキシメチルデンプン、キチン、キトサン、クインスシード、グルコマンナン、ジェランガム、タマリンシードガム、デキストラン、ニゲラン、ヒアルロン酸、プスツラン、フノラン、ペクチン、ポルフィラン、ラミナラン、リケナン、カラギーナン、アルギン酸、トラガカントガム、アルカシーガム、ローカストビーンガム等が挙げられる。
 上記の中でも、増粘ポリマーとしてはノニオン性の多糖類が好ましく、グリコーゲン、アミロース、アガロース、アミロペクチン、セルロース、デキストリン、グルカン、フルクタン、キチンが好ましく、セルロースとしてはカルボキシメチルセルロース、ヒドロキシエチルセルロースが好ましい。カルボキシメチルセルロースは、カルボキシメチルセルロースナトリウム、カルボキシメチルセルロースアンモニウム等のカルボキシメチルセルロース塩であってもよい。ヒドロキシエチルセルロースは、その酸化エチレンの付加の程度を示す指標である付加平均モル数が1.5以上2.5以下であると、混合の際に、空気の巻き込みによる発泡や凝集が抑制できる観点で好ましい。
 多糖類の具体例としては、「サンローズ(登録商標)」シリーズ(日本製紙社製)、「メトローズ(登録商標)」シリーズ(信越化学工業社製)、「HEC CFグレード」(住友精化社製)が挙げられる。
Polysaccharides include glycogen, amylose, agarose, amyropectin, cellulose, dextrin, glucan, fructan, chitin, xanthan gum, guar gum, casein, arabic gum, gelatin, agaropectin, arabinan, curdran, carose, carboxymethyl starch, chitin, chitosan. , Quince seed, glucomannan, gellan gum, tamarin seed gum, dextran, nigeran, hyaluronic acid, cellulose, funoran, pectin, porphyran, laminaran, likenan, carrageenan, alginic acid, tragacanto gum, alkathy gum, locust bean gum and the like.
Among the above, the thickening polymer is preferably a nonionic polysaccharide, preferably glycogen, amylose, agarose, amylopectin, cellulose, dextrin, glucan, fructan, or chitin, and preferably carboxymethyl cellulose or hydroxyethyl cellulose as the cellulose. The carboxymethyl cellulose may be a carboxymethyl cellulose salt such as sodium carboxymethyl cellulose or ammonium carboxymethyl cellulose. Hydroxyethyl cellulose has an average number of moles of 1.5 or more and 2.5 or less, which is an index indicating the degree of ethylene oxide addition, from the viewpoint that foaming and aggregation due to air entrainment can be suppressed during mixing. preferable.
Specific examples of polysaccharides include "Sunrose (registered trademark)" series (manufactured by Nippon Paper Industries), "Metros (registered trademark)" series (manufactured by Shin-Etsu Chemical Co., Ltd.), and "HEC CF grade" (Sumitomo Seika Chemical Co., Ltd.). Made by).
 本組成物2における増粘ポリマーの含有量は、本組成物2の全体質量に対して、0.1質量%以上が好ましく、0.2質量%以上がより好ましい。増粘ポリマーの含有量は、本組成物2の全体質量に対して30質量%以下が好ましく、10質量%以下がより好ましい。
 本組成物2におけるF粒子の含有量に対する増粘ポリマーの含有量の比は、0.001以上が好ましく、0.003以上がより好ましい。かかる含有量の比は、0.05以下が好ましく、0.03以下がより好ましく、0.01以下がさらに好ましい。
The content of the thickening polymer in the present composition 2 is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, based on the total mass of the present composition 2. The content of the thickening polymer is preferably 30% by mass or less, more preferably 10% by mass or less, based on the total mass of the composition 2.
The ratio of the content of the thickening polymer to the content of F particles in the present composition 2 is preferably 0.001 or more, more preferably 0.003 or more. The ratio of such contents is preferably 0.05 or less, more preferably 0.03 or less, still more preferably 0.01 or less.
 本組成物2における水の含有量は、30質量%以上が好ましく、40質量%以上がより好ましい。水の含有量は、90質量%以下が好ましく、80質量%以下がより好ましく、60質量%以下がさらに好ましい。
 かかる範囲において、本組成物2の分散安定性等の液物性がより向上しやすい。
 本組成物2は、分散媒として、水以外の水溶性分散媒をさらに含んでいてもよい。かかる水溶性分散媒としては、大気圧下、極性に分類される25℃にて液体の水溶性化合物が好ましく、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、N-メチル-2-ピロリドンが挙げられる。
The content of water in the composition 2 is preferably 30% by mass or more, more preferably 40% by mass or more. The water content is preferably 90% by mass or less, more preferably 80% by mass or less, and even more preferably 60% by mass or less.
In such a range, the liquid physical characteristics such as the dispersion stability of the present composition 2 are more likely to be improved.
The present composition 2 may further contain a water-soluble dispersion medium other than water as the dispersion medium. As such a water-soluble dispersion medium, a water-soluble compound that is liquid at 25 ° C., which is classified as polar under atmospheric pressure, is preferable, and for example, N, N-dimethylformamide, N, N-dimethylacetamide, 3-methoxy-N. , N-Dimethylpropanamide, 3-butoxy-N, N-dimethylpropanamide, N-methyl-2-pyrrolidone.
 本法2の第1の態様(以下、「態様2-1」とも記す。)は、F粒子と芳香族樹脂と増粘ポリマーと水とを薄膜旋回による撹拌機構を備えた槽内にて混合して、すなわち、これらの成分を薄膜状に拡げながら旋回させて混合して、本組成物2を得る。
 態様2-1において、混合は、薄膜状に展開したそれぞれの成分に、旋回に伴う遠心力を作用させて行うのが好ましい。この場合、F粒子及び芳香族ポリマーのそれぞれに増粘ポリマーが高度に浸透して混合が進行する。具体的には、混合は、本法1にて前述した薄膜旋回型高速ミキサーで行うのが好ましい。
In the first aspect of the second method (hereinafter, also referred to as "aspect 2-1"), F particles, an aromatic resin, a thickening polymer, and water are mixed in a tank equipped with a stirring mechanism by thin film swirling. That is, these components are swirled and mixed while spreading in a thin film to obtain the present composition 2.
In the second aspect, the mixing is preferably carried out by applying a centrifugal force associated with swirling to each component developed in a thin film. In this case, the thickening polymer is highly permeated into each of the F particles and the aromatic polymer, and the mixing proceeds. Specifically, the mixing is preferably performed by the thin film swirl type high-speed mixer described in the present method 1.
 薄膜旋回型高速ミキサーにおける撹拌槽、及び複数の孔が形成された円筒部を有する回転部位の詳細は前述したとおりである。
 混合においては、F粒子と芳香族樹脂と増粘ポリマーと水とを、一括して撹拌槽内に供給してもよく、複数の投入口を使用して、別々に撹拌槽内に供給してもよい。
 混合は、バッチ式でも連続式でも実施できる。連続式の場合、1つの攪拌槽を使用して、排出口から取り出された混合物を、再度投入口から供給して混合してもよく、複数の攪拌槽を使用して、前段の攪拌槽の排出口から取り出された混合物を、後段の攪拌槽の投入口から供給して混合してもよい。供給された、F粒子、芳香族樹脂、増粘ポリマー及び水は、撹拌槽の内壁面と回転部位の円筒部の外周面との間の隙間に行き渡って膜状となり、回転部位の回転に伴って撹拌槽内で高速で旋回する。このとき、剪断応力だけでなくズリ応力を受けることで、高レベルでの分散混合が達成される。
The details of the stirring tank in the thin film swirling high-speed mixer and the rotating portion having the cylindrical portion in which a plurality of holes are formed are as described above.
In mixing, F particles, an aromatic resin, a thickening polymer, and water may be collectively supplied into the stirring tank, or may be separately supplied into the stirring tank using a plurality of inlets. May be good.
Mixing can be carried out in batch or continuous manner. In the case of the continuous type, one stirring tank may be used to supply the mixture taken out from the discharge port again from the input port and mixed, or a plurality of stirring tanks may be used to prepare the stirring tank in the previous stage. The mixture taken out from the discharge port may be supplied from the input port of the stirring tank in the subsequent stage and mixed. The supplied F particles, aromatic resin, thickening polymer, and water spread over the gap between the inner wall surface of the stirring tank and the outer peripheral surface of the cylindrical portion of the rotating portion to form a film, which accompanies the rotation of the rotating portion. And swirl at high speed in the stirring tank. At this time, by receiving not only shear stress but also shear stress, dispersion mixing at a high level is achieved.
 態様2-1において、混合は、円錐台形状かつ筒状のステーターと、ステーターの内壁面の内側で回転するディスクとを備える撹拌機で、F粒子と芳香族ポリマーと増粘ポリマーと水とを、ディスクの回転により旋回させながら、ステーターとディスクとの間の円筒状の空隙を通過させて行ってもよい。この場合、ステーターの内壁面とディスクには、凹凸構造が設けられているのが好ましい。かかる凹凸構造としては、高さ(深さ)が数μm~数百μm程度である格子状の溝又はディンプルを備えた構造が挙げられる。かかる撹拌手段は、コロイドミルと称されることもある。 In aspect 2-1 the mixing is a stirrer comprising a truncated cone-shaped and cylindrical stator and a disk rotating inside the inner wall surface of the stator, in which F particles, an aromatic polymer, a thickening polymer, and water are mixed. , The cylinder may be passed through a cylindrical gap between the stator and the disc while being swiveled by the rotation of the disc. In this case, it is preferable that the inner wall surface of the stator and the disk are provided with an uneven structure. Examples of such a concavo-convex structure include a structure having grid-like grooves or dimples having a height (depth) of about several μm to several hundred μm. Such agitating means is sometimes referred to as a colloid mill.
 ディスクは、その外周面がステーターの内壁面に対して1~10mm程度の僅かな隙間を介して対向する。ディスクの周速及び撹拌時間は、適宜設定できる。
 この場合、供給された、F粒子、芳香族樹脂、増粘ポリマー及び水は、ステーターの内壁面とディスクの外周面との間の隙間を通過する際に膜状となり、ディスクの回転に伴ってステーター内で高速で旋回する。このとき、剪断応力だけでなくズリ応力を受けることで、高レベルでの分散混合が達成される。
The outer peripheral surface of the disc faces the inner wall surface of the stator with a slight gap of about 1 to 10 mm. The peripheral speed and stirring time of the disc can be set as appropriate.
In this case, the supplied F particles, aromatic resin, thickening polymer, and water form a film when passing through the gap between the inner wall surface of the stator and the outer peripheral surface of the disk, and become a film as the disk rotates. It turns at high speed in the stator. At this time, by receiving not only shear stress but also shear stress, dispersion mixing at a high level is achieved.
 態様2-1においては、F粒子と芳香族樹脂と増粘ポリマーと水とを含む組成物を、薄膜旋回させて混合するのが好ましい。すなわち、F粒子と芳香族樹脂と増粘ポリマーと水とは、薄膜旋回させて混合する前に、予備混合されているのが好ましい。この場合、上述した本法2の作用機構が亢進して、本組成物2の発泡が抑制され、分散安定性等の物性がさらに向上しやすい。 In aspect 2-1 it is preferable to mix the composition containing F particles, an aromatic resin, a thickening polymer, and water by swirling a thin film. That is, it is preferable that the F particles, the aromatic resin, the thickening polymer, and water are premixed before being swirled in a thin film and mixed. In this case, the mechanism of action of the method 2 described above is enhanced, foaming of the composition 2 is suppressed, and physical properties such as dispersion stability are likely to be further improved.
 予備混合の方法としては、前述した、本組成物1と第2の芳香族樹脂のワニスの混合に際する混合方法と同様の方法が挙げられる。
 F粒子と芳香族樹脂と増粘ポリマーと水とを含む組成物は、F粒子と芳香族樹脂と増粘ポリマーと水とを予備混合して得た混練物であるのが好ましい。混練物には、さらに水を添加して粘度を調整してもよい。この場合、上述した本法2の作用機構が亢進しやすい。かかる混練物は、流動性と粘性を有する固練品(ペースト)であるか、塊状かつ粘土状の固練品(練粉)であるのが好ましい。
Examples of the premixing method include the same method as the above-mentioned mixing method for mixing the varnish of the present composition 1 and the second aromatic resin.
The composition containing the F particles, the aromatic resin, the thickening polymer, and water is preferably a kneaded product obtained by premixing the F particles, the aromatic resin, the thickening polymer, and water. Water may be further added to the kneaded product to adjust the viscosity. In this case, the mechanism of action of the above-mentioned method 2 is likely to be enhanced. The kneaded product is preferably a solidified product (paste) having fluidity and viscosity, or a lumpy and clay-like solidified product (powder).
 ペーストにおける固形分量は、40~90質量%が好ましく、60~80質量%がより好ましい。練粉における固形分量は、50~99質量%が好ましく、60~95質量%がより好ましい。
 なお、ペースト及び練粉における固形分量とは、本組成物2から形成される成形物において固形分を形成する物質の総量を意味する。例えば、ペーストが、Fポリマーと、芳香族樹脂及び後述する無機粒子とを含む場合には、これらの成分の総含有量がペースト及び練粉における固形分量となる。
The solid content in the paste is preferably 40 to 90% by mass, more preferably 60 to 80% by mass. The solid content in the dough is preferably 50 to 99% by mass, more preferably 60 to 95% by mass.
The solid content in the paste and the kneaded powder means the total amount of the substances forming the solid content in the molded product formed from the present composition 2. For example, when the paste contains an F polymer, an aromatic resin and inorganic particles described later, the total content of these components is the solid content in the paste and the dough.
 本法2の第2の態様(以下、「態様2-2」とも記す。)は、自転及び公転による撹拌機構を備えた槽内にてF粒子、芳香族樹脂、増粘ポリマー及び水を混合して、本組成物2を得る。ここで、自転による撹拌機構とは、撹拌対象物を収納した槽が回転軸の回りに回転することで対象物を撹拌する機構である。回転軸の方向は槽に対していずれの方向でもよい。一方、公転による撹拌機構とは、撹拌対象物を収納した槽の外にある定点の周りを槽が周回することで対象物を撹拌する機構である。公転面に対して層は垂直、水平又は傾斜のいずれでもよい。かかる撹拌手段は、自転公転撹拌機と称される場合もある。
 態様2-2においては、前記混合を、自転速度が公転速度の2倍以上であるか、又は公転速度が自転速度の2倍以上である条件で行うのが好ましい。この場合、空気の巻き込みによる発泡や凝集が抑制され、分散性と分散安定性に優れた本組成物2が得られやすい。
 態様2-2においても、F粒子と芳香族ポリマーと増粘ポリマーと水とを含む組成物を、自転及び公転による撹拌機構を備えた槽内にて混合してもよい。すなわち、F粒子と芳香族ポリマーと増粘ポリマーと水とは、自転及び公転による撹拌機構を備えた槽内にて混合する前に、予備混合されていてもよい。
In the second aspect of this method 2 (hereinafter, also referred to as "aspect 2-2"), F particles, an aromatic resin, a thickening polymer, and water are mixed in a tank equipped with a stirring mechanism by rotation and revolution. Then, the present composition 2 is obtained. Here, the stirring mechanism by rotation is a mechanism that stirs the object by rotating the tank containing the stirring object around the rotation axis. The direction of the rotation axis may be any direction with respect to the tank. On the other hand, the stirring mechanism by revolution is a mechanism in which the tank orbits around a fixed point outside the tank containing the stirring object to stir the object. The layer may be vertical, horizontal or inclined with respect to the revolution surface. Such agitating means may be referred to as a rotation / revolution agitator.
In the second aspect, it is preferable that the mixing is performed under the condition that the rotation speed is twice or more the revolution speed or the revolution speed is twice or more the rotation speed. In this case, foaming and aggregation due to air entrainment are suppressed, and the present composition 2 having excellent dispersibility and dispersion stability can be easily obtained.
Also in the second aspect, the composition containing the F particles, the aromatic polymer, the thickening polymer, and water may be mixed in a tank equipped with a stirring mechanism by rotation and revolution. That is, the F particles, the aromatic polymer, the thickening polymer, and water may be premixed before being mixed in a tank provided with a stirring mechanism by rotation and revolution.
 また、F粒子、芳香族樹脂、増粘ポリマー及び水を態様2-1及び態様2-2のいずれかで混合し、さらに水を混合して本組成物2を得てもよい。
 さらに水を混合する際の方法としては、態様2-1、態様2-2及び上述の予備混合に用いてもよい方法を採用でき、態様2-1及び態様2-2が好ましい。特に、F粒子、芳香族樹脂、増粘ポリマー及び水の混合と、さらに水を添加して行う混合を、同一の態様で行うのが好ましく、両者の混合を態様2-2で行うのが好ましい。この場合、上述した本法2の作用機構が亢進して、本組成物2の分散安定性等の物性がさらに向上しやすい。
Further, F particles, an aromatic resin, a thickening polymer and water may be mixed in any of aspects 2-1 and 2-2, and water may be further mixed to obtain the present composition 2.
Further, as a method for mixing water, a method that may be used for the above-mentioned premixing of Aspects 2-1 and 2-2 and the above-mentioned premixing can be adopted, and Aspects 2-1 and 2-2 are preferable. In particular, it is preferable to mix the F particles, the aromatic resin, the thickening polymer, and water with water in the same manner, and it is preferable to mix the two in the second mode. .. In this case, the mechanism of action of the present method 2 described above is enhanced, and the physical properties such as the dispersion stability of the present composition 2 are likely to be further improved.
 混合においては、さらに、無機粒子を添加してもよい。無機粒子を添加する段階は、混合前であってもよく混合中であってもよい。例えば、F粒子、芳香族樹脂、増粘ポリマー、水及び無機粒子を含む組成物を調製し、これを混合に供してもよい。
 無機粒子としては、窒化物粒子又は無機酸化物粒子が好ましく、窒化ホウ素粒子、ベリリア粒子(ベリリウムの酸化物の粒子)、ケイ酸塩粒子(シリカ粒子、ウォラストナイト粒子、タルク粒子)、又は金属酸化物(酸化セリウム、酸化アルミニウム、酸化マグネシウム、酸化亜鉛、酸化チタン等)粒子がより好ましく、窒化ホウ素粒子及びシリカ粒子がさらに好ましく、シリカ粒子が特に好ましい。
In the mixing, inorganic particles may be further added. The step of adding the inorganic particles may be before or during mixing. For example, a composition containing F particles, an aromatic resin, a thickening polymer, water and inorganic particles may be prepared and used for mixing.
As the inorganic particles, nitride particles or inorganic oxide particles are preferable, and boron nitride particles, beryllia particles (particles of berylium oxide), silicate particles (silica particles, wollastonite particles, talc particles), or metals. Oxide (cerium oxide, aluminum oxide, magnesium oxide, zinc oxide, titanium oxide, etc.) particles are more preferable, boron nitride particles and silica particles are more preferable, and silica particles are particularly preferable.
 無機粒子は、その表面の少なくとも一部が、シランカップリング剤(3-アミノプロピルトリエトキシシラン、ビニルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-イソシアネートプロピルトリエトキシシラン等)で表面処理されているのが好ましい。
 無機粒子のD50は、20μm以下が好ましく、10μm以下がより好ましい。D50は、0.01μm以上が好ましく、0.1μm以上がより好ましい。
At least a part of the surface of the inorganic particles is a silane coupling agent (3-aminopropyltriethoxysilane, vinyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3). -It is preferable that the surface is treated with (methacryloxypropyltriethoxysilane, 3-isocyanuppropyltriethoxysilane, etc.).
The D50 of the inorganic particles is preferably 20 μm or less, more preferably 10 μm or less. D50 is preferably 0.01 μm or more, more preferably 0.1 μm or more.
 無機粒子の形状は、球状、針状(繊維状)、板状のいずれであってもよく、球状又は板状であるのが好ましい。
 無機粒子の具体的な形状としては、球状、鱗片状、層状、葉片状、杏仁状、柱状、鶏冠状、等軸状、葉状、雲母状、ブロック状、平板状、楔状、ロゼット状、網目状、角柱状が挙げられる。
 無機粒子は、1種を単独で用いてもよく、2種以上を併用してもよい。本組成物2が無機粒子をさらに含む場合、その量は、本組成物2全体の質量に対して、1~50質量%が好ましく、5~40質量%がより好ましい。
 無機粒子の好適な具体例としては、前記した本組成物1と第2の芳香族樹脂のワニスとの混合に際してさらに混合してもよい無機フィラーの具体例と同様のものが挙げられる。
The shape of the inorganic particles may be spherical, needle-shaped (fibrous), or plate-shaped, and is preferably spherical or plate-shaped.
Specific shapes of the inorganic particles include spherical, scaly, layered, leafy, apricot kernel, columnar, chicken crown, equiaxed, leafy, mica, block, flat, wedge, rosette, and mesh. Shape and prismatic shape.
As the inorganic particles, one type may be used alone, or two or more types may be used in combination. When the composition 2 further contains inorganic particles, the amount thereof is preferably 1 to 50% by mass, more preferably 5 to 40% by mass, based on the total mass of the composition 2.
Preferable specific examples of the inorganic particles include the same specific examples of the inorganic filler that may be further mixed when the composition 1 and the varnish of the second aromatic resin are mixed.
 態様2-1及び態様2-2のいずれにおいても、混合に先立ち、F粒子を粉体の状態で予め混合して解砕するのが好ましい。すなわち、F粒子の凝集状態を予め解消し分散された状態とする処理を行うのが好ましい。
 F粒子の解砕は、態様2-2及び上述の予備混合に用いてもよい方法で行うことができ、態様2-2の方法で行うのが好ましい。
 上記した無機粒子をさらに添加する場合は、F粒子と無機粒子とを粉体混合物の状態で予め前記のとおり混合して解砕し、本法2に供するのが好ましい。
 また、F粒子と芳香族樹脂と増粘ポリマーと水とを、薄膜旋回させて混合する前又は自転及び公転による撹拌機構を備えた槽内にて混合する前に予備混合する場合、F粒子の解砕は、予備混合に先立ち行うのが好ましい。
In both aspects 2-1 and 2-2, it is preferable that the F particles are mixed in a powder state in advance and crushed prior to mixing. That is, it is preferable to perform a treatment in which the agglomerated state of the F particles is eliminated in advance so that the F particles are in a dispersed state.
The crushing of the F particles can be carried out by a method that may be used for the premixing of Aspect 2-2 and the above-mentioned premixing, and is preferably carried out by the method of Aspect 2-2.
When the above-mentioned inorganic particles are further added, it is preferable that the F particles and the inorganic particles are mixed in advance in the state of a powder mixture as described above, crushed, and subjected to the present method 2.
Further, when the F particles, the aromatic resin, the thickening polymer, and the water are premixed before being mixed by swirling the thin film or before being mixed in a tank equipped with a stirring mechanism by rotation and revolution, the F particles are mixed. Crushing is preferably performed prior to premixing.
 混合においては、さらに、界面活性剤を添加してもよい。界面活性剤を添加する段階は、混合前であってもよく混合中であってもよい。例えば、F粒子、芳香族樹脂、増粘ポリマー及び水と、界面活性剤とを含む組成物を調製し、これを混合に供してもよい。
 界面活性剤は、ノニオン性界面活性剤であるのが好ましい。
 ノニオン性界面活性剤は、グリコールモノアルキルエーテル、アセチレン系界面活性剤、シリコーン系界面活性剤又はフッ素系界面活性剤が好ましく、グリコールモノアルキルエーテル、シリコーン系界面活性剤がより好ましい。本組成物2は、シリコーン系界面活性剤とグリコールモノアルキルエーテルとを含んでもよい。
In mixing, a surfactant may be further added. The step of adding the surfactant may be before or during mixing. For example, a composition containing F particles, an aromatic resin, a thickening polymer and water, and a surfactant may be prepared and used for mixing.
The surfactant is preferably a nonionic surfactant.
The nonionic surfactant is preferably a glycol monoalkyl ether, an acetylene-based surfactant, a silicone-based surfactant or a fluorine-based surfactant, and more preferably a glycol monoalkyl ether or a silicone-based surfactant. The present composition 2 may contain a silicone-based surfactant and a glycol monoalkyl ether.
 ノニオン性界面活性剤の具体例としては、「フタージェント」シリーズ(株式会社ネオス社製 フタージェントは登録商標)、「サーフロン」シリーズ(AGCセイミケミカル社製 サーフロンは登録商標)、「メガファック」シリーズ(DIC株式会社製 メガファックは登録商標)、「ユニダイン」シリーズ(ダイキン工業株式会社製 ユニダインは登録商標)、「BYK-347」、「BYK-349」、「BYK-378」、「BYK-3450」、「BYK-3451」、「BYK-3455」、「BYK-3456」(ビックケミー・ジャパン株式会社社製)、「KF-6011」、「KF-6043」(信越化学工業株式会社製)、「Tergitol」シリーズ(ダウケミカル社製。「Tergitol TMN-100X」等。)、「Lutensol T08」、「Lutensol XL70」、「Lutensol XL80」、「Lutensol XL90」、「Lutensol XP80」、「Lutensol M5」(以上、BASF社製)、「ニューコール 1308FA」、「ニューコール 1310」(以上、日本乳化剤社製)、「レオコール TDN-90-80」、「レオコール SC-90」(以上、ライオン・スペシャリティ・ケミカルズ社製)が挙げられる。
 本組成物2が界面活性剤を含む場合、本組成物2における界面活性剤の含有量は、0.1~15質量%が好ましく、1~10質量%がより好ましい。
Specific examples of nonionic surfactants include the "Futergent" series (Futergent manufactured by Neos Co., Ltd. is a registered trademark), the "Surflon" series (Surflon manufactured by AGC Seimi Chemical Co., Ltd. is a registered trademark), and the "Megafuck" series. (Megafuck manufactured by DIC Co., Ltd. is a registered trademark), "Unidyne" series (Unidyne manufactured by Daikin Kogyo Co., Ltd. is a registered trademark), "BYK-347", "BYK-349", "BYK-378", "BYK-3450" , "BYK-3451", "BYK-3455", "BYK-3456" (manufactured by Big Chemie Japan Co., Ltd.), "KF-6011", "KF-6043" (manufactured by Shinetsu Chemical Industry Co., Ltd.), " Tergitol "series (manufactured by Dow Chemical Co., Ltd." Tergitol TMN-100X "etc.)," Lutensol T08 "," Lutensol XL70 "," Lutensol XL80 "," Lutensol XL90 "," Lutensol XP80 "," Lutensol XP80 "," Lutensol , BASF), "New Call 1308FA", "New Call 1310" (above, manufactured by Nippon Embroidery Co., Ltd.), "Leocol TDN-90-80", "Leocol SC-90" (above, Lion Specialty Chemicals) Made by).
When the present composition 2 contains a surfactant, the content of the surfactant in the present composition 2 is preferably 0.1 to 15% by mass, more preferably 1 to 10% by mass.
 本組成物2は、pH調整の観点から、さらにpH調整剤又はpH緩衝剤を含んでもよい。この場合、pH調整剤又はpH緩衝剤により、本組成物2のpHを5~10に調整するのが好ましく、7~9に調整するのがより好ましい。
 pH調整剤としては、アミン、アンモニア、クエン酸が挙げられる。
 pH緩衝剤としては、トリス(ヒドロキシメチル)アミノメタン、エチレンジアミン四酢酸、炭酸水素アンモニウム、炭酸アンモニウム、酢酸アンモニウムが挙げられる。
 pH調整剤又はpH緩衝剤を添加する段階は、混合前であってもよく混合中であってもい。
 本組成物2は、さらに脱泡処理に供してもよい。脱泡は、自転公転撹拌機を用いて行うのが好ましい。
The present composition 2 may further contain a pH adjuster or a pH buffer from the viewpoint of pH adjustment. In this case, the pH of the present composition 2 is preferably adjusted to 5 to 10 and more preferably 7 to 9 with a pH adjuster or a pH buffer.
Examples of the pH adjuster include amines, ammonia and citric acid.
Examples of the pH buffer include tris (hydroxymethyl) aminomethane, ethylenediaminetetraacetic acid, ammonium hydrogencarbonate, ammonium carbonate, and ammonium acetate.
The step of adding the pH adjuster or pH buffer may be before or during mixing.
The present composition 2 may be further subjected to a defoaming treatment. Defoaming is preferably performed using a rotation / revolution stirrer.
 本組成物2には、さらに水溶性溶媒を添加してもよい。上述した作用機構により、本組成物2は、分散安定性に優れるため、容易に水溶性溶媒と混合できる。水溶性溶媒としては、上述の本組成物2に使用可能な水溶性溶媒と同様の化合物が挙げられる。
 本組成物2には、上述した成分以外に、チキソ性付与剤、粘度調節剤、消泡剤、可塑剤、耐候剤、酸化防止剤、熱安定剤、滑剤、帯電防止剤、増白剤、着色剤、導電剤、離型剤、表面処理剤、難燃剤、防腐剤、防カビ剤、有機フィラー等を、さらに添加してもよい。
 上述した作用機構により、本組成物2は、分散安定性に優れるため、これらを添加して容易に液物性を調整できる。
A water-soluble solvent may be further added to the composition 2. Due to the mechanism of action described above, the composition 2 has excellent dispersion stability and can be easily mixed with a water-soluble solvent. Examples of the water-soluble solvent include compounds similar to the water-soluble solvent that can be used in the above-mentioned composition 2.
In addition to the above-mentioned components, the present composition 2 contains a thixo-imparting agent, a viscosity modifier, an antifoaming agent, a plasticizer, a weathering agent, an antioxidant, a heat stabilizer, a lubricant, an antioxidant, a whitening agent, and the like. Coloring agents, conductive agents, mold release agents, surface treatment agents, flame retardants, preservatives, fungicides, organic fillers and the like may be further added.
Since the composition 2 is excellent in dispersion stability due to the above-mentioned mechanism of action, the liquid physical characteristics can be easily adjusted by adding these.
 本組成物2の粘度は、10mPa・s以上が好ましく、50mPa・s以上がより好ましく、100mPa・s以上がさらに好ましい。本組成物2の粘度は、10000mPa・s以下が好ましく、3000mPa・s以下がより好ましく、1000mPa・s以下がさらに好ましい。この場合、本組成物2が分散安定性等の液物性に優れやすい。
 本組成物2のチキソ比は、1.0以上が好ましい。本組成物2のチキソ比は、3.0以下が好ましく、2.0以下がより好ましい。この場合、本組成物2は、分散安定性等の液物性に優れ、より緻密な成形物を形成しやすい。
The viscosity of the composition 2 is preferably 10 mPa · s or more, more preferably 50 mPa · s or more, and even more preferably 100 mPa · s or more. The viscosity of the composition 2 is preferably 10,000 mPa · s or less, more preferably 3000 mPa · s or less, and even more preferably 1000 mPa · s or less. In this case, the present composition 2 tends to be excellent in liquid physical properties such as dispersion stability.
The thixotropy of the composition 2 is preferably 1.0 or more. The thixotropy of the composition 2 is preferably 3.0 or less, more preferably 2.0 or less. In this case, the present composition 2 is excellent in liquid physical characteristics such as dispersion stability, and it is easy to form a more dense molded product.
 本組成物2の分散層率は、60%以上が好ましく、70%以上がより好ましく、80%以上がさらに好ましい。本組成物2は、分散安定性に優れるため、分散層率がかかる範囲の値をとりやすい。
 ここで、分散層率とは、液状組成物(18mL)をスクリュー管(内容積:30mL)に入れ、25℃にて14日静置した際、静置後の、スクリュー管中の液状組成物全体の高さと沈降層(分散層)の高さとから、以下の式により算出される値である。なお、静置後に沈降層が確認されず、状態に変化がない場合には、液状組成物全体の高さに変化がないとして、分散層率は100%とする。
 分散層率(%)=(沈降層の高さ)/(液状組成物全体の高さ)×100
The dispersed layer ratio of the present composition 2 is preferably 60% or more, more preferably 70% or more, still more preferably 80% or more. Since the present composition 2 is excellent in dispersion stability, it is easy to take a value in the range where the dispersion layer ratio is applied.
Here, the dispersed layer ratio is the liquid composition in the screw tube after the liquid composition (18 mL) is placed in a screw tube (internal volume: 30 mL) and allowed to stand at 25 ° C. for 14 days. It is a value calculated by the following formula from the total height and the height of the sedimentation layer (dispersion layer). If the sedimented layer is not confirmed after standing and the state does not change, the height of the entire liquid composition does not change, and the dispersed layer ratio is set to 100%.
Dispersed layer ratio (%) = (height of sedimented layer) / (height of the entire liquid composition) × 100
 本組成物2の分散度は、100μm以下が好ましく、70μm以下がより好ましく、50μm以下がさらに好ましい。本組成物2の分散度は、10μm以上が好ましい。本組成物2は上述の作用機構により、F粒子の凝集が抑制されているため、分散度が上記範囲となりやすい。
 なお、分散度とは、グラインドメーターを用いて、JIS K5600-2-5に準拠して測定される、液状組成物中に存在する粗大粒子の大きさを意味する。
The dispersity of the composition 2 is preferably 100 μm or less, more preferably 70 μm or less, and even more preferably 50 μm or less. The dispersity of the composition 2 is preferably 10 μm or more. In the present composition 2, since the aggregation of F particles is suppressed by the above-mentioned mechanism of action, the degree of dispersion tends to be in the above range.
The degree of dispersion means the size of coarse particles existing in the liquid composition, which is measured according to JIS K5600-2-5 using a grind meter.
 本組成物2は、分散安定性等の液物性に優れており、上述の作用機構により、Fポリマー及び芳香族樹脂に基づく物性に優れた成形物を形成できる。また、基材に対して強固な接着性を示す成形物を形成できる。
 本発明の積層体の製造方法は、本組成物2を基材の表面に付与し、加熱して、Fポリマーと芳香族樹脂とを含むポリマー層(以下、「F層1」とも記す。)を形成して、基材で構成される基材層とF層1とを有する積層体を得る、積層体の製造方法である。
 より具体的には、本組成物を基材の表面に付与して液状被膜を形成し、この液状被膜を加熱して分散媒を除去して乾燥被膜を形成し、さらに乾燥被膜を加熱してFポリマーを焼成すれば、F層1を基材層の表面に有する積層体が得られる。
The present composition 2 is excellent in liquid physical properties such as dispersion stability, and can form a molded product having excellent physical properties based on an F polymer and an aromatic resin by the above-mentioned mechanism of action. In addition, it is possible to form a molded product that exhibits strong adhesiveness to the base material.
In the method for producing a laminate of the present invention, the composition 2 is applied to the surface of a base material and heated to form a polymer layer containing an F polymer and an aromatic resin (hereinafter, also referred to as “F layer 1”). Is a method for producing a laminate, which comprises forming a laminate having a substrate layer composed of a substrate and an F layer 1.
More specifically, the present composition is applied to the surface of the base material to form a liquid film, the liquid film is heated to remove the dispersion medium to form a dry film, and the dry film is further heated. By firing the F polymer, a laminate having the F layer 1 on the surface of the base material layer can be obtained.
 基材としては、金属基板(銅、ニッケル、アルミニウム、チタン、それらの合金等の金属箔等)、耐熱性樹脂フィルム(ポリイミド、ポリアリレート、ポリスルホン、ポリアリルスルホン、ポリアミド、ポリエーテルアミド、ポリフェニレンスルフィド、ポリアリルエーテルケトン、ポリアミドイミド、液晶性ポリエステル、液晶性ポリエステルアミド、テトラフルオロエチレン系ポリマー等の耐熱性樹脂の1種以上を含むフィルムであり、単層フィルムであっても多層フィルムであってもよい)、プリプレグ(繊維強化樹脂基板の前駆体)、ガラスが挙げられる。
 金属基板は、低粗化銅箔であってもよく、無粗化銅箔であってもよい。金属基板が低粗化銅箔又は無粗化銅箔である場合、積層体が伝送特性に優れやすい。
 基材の表面の十点平均粗さは、0.01~0.05μmが好ましい。
 基材の形状としては平面状、曲面状、凹凸状が挙げられ、さらに、箔状、板状、膜状、繊維状のいずれであってもよい。
As the base material, a metal substrate (copper, nickel, aluminum, titanium, metal foil such as an alloy thereof, etc.), a heat-resistant resin film (polyethylene, polyarylate, polysulfone, polyallylsulfone, polyamide, polyetheramide, polyphenylene sulfide, etc.) , Polyallyl ether ketone, polyamideimide, liquid crystal polyester, liquid crystal polyester amide, tetrafluoroethylene polymer, and other heat-resistant resins. (May be good), prepreg (precursor of fiber-reinforced resin substrate), glass.
The metal substrate may be a low-roughened copper foil or a non-roughened copper foil. When the metal substrate is a low-roughened copper foil or a non-roughened copper foil, the laminate tends to have excellent transmission characteristics.
The ten-point average roughness of the surface of the base material is preferably 0.01 to 0.05 μm.
Examples of the shape of the base material include a flat shape, a curved surface shape, and an uneven shape, and further, any of a foil shape, a plate shape, a film shape, and a fibrous shape may be used.
 本組成物2を基材の表面に付与する方法としては、基材の表面に本組成物2からなる安定した液状被膜(ウェット膜)が形成される方法であればよく、塗布法、液滴吐出法、浸漬法が挙げられ、塗布法が好ましい。塗布法を用いれば、簡単な設備で効率よく基材の表面に液状被膜を形成できる。
 塗布法としては、スプレー法、ロールコート法、スピンコート法、グラビアコート法、マイクログラビアコート法、グラビアオフセット法、ナイフコート法、キスコート法、バーコート法、ダイコート法、ファウンテンメイヤーバー法、スロットダイコート法、ディップコート法が挙げられる。
The method of applying the composition 2 to the surface of the base material may be any method as long as a stable liquid film (wet film) composed of the present composition 2 is formed on the surface of the base material, and is a coating method or droplets. Examples thereof include a discharge method and a dipping method, and a coating method is preferable. If the coating method is used, a liquid film can be efficiently formed on the surface of the base material with simple equipment.
The coating methods include spray method, roll coating method, spin coating method, gravure coating method, micro gravure coating method, gravure offset method, knife coating method, kiss coating method, bar coating method, die coating method, fountain Mayer bar method, and slot die coating. The method and the dip coat method can be mentioned.
 液状被膜を乾燥する際は、液状被膜を液性成分(水を含む)が揮発する温度で加熱し、乾燥被膜を基材の表面に形成する。かかる乾燥における加熱の温度は、100~200℃が好ましい。なお、液性成分を除去する工程で空気を吹き付けてもよい。
 乾燥時に、液性成分は、必ずしも完全に揮発させる必要はなく、保持後の層形状が安定し、自立膜を維持できる程度まで揮発させればよい。
 Fポリマーの焼成の際は、Fポリマーの溶融温度以上の温度で乾燥被膜を加熱するのが好ましい。かかる加熱の温度は380℃以下が好ましく、350℃以下がより好ましい。
When the liquid film is dried, the liquid film is heated at a temperature at which liquid components (including water) volatilize to form a dry film on the surface of the base material. The heating temperature in such drying is preferably 100 to 200 ° C. Air may be blown in the step of removing the liquid component.
At the time of drying, the liquid component does not necessarily have to be completely volatilized, and may be volatilized to the extent that the layer shape after holding is stable and the self-supporting film can be maintained.
When firing the F polymer, it is preferable to heat the dry film at a temperature equal to or higher than the melting temperature of the F polymer. The heating temperature is preferably 380 ° C. or lower, more preferably 350 ° C. or lower.
 それぞれの加熱の方法としては、オーブンを用いる方法、通風乾燥炉を用いる方法、赤外線等の熱線を照射する方法が挙げられる。加熱は、常圧下及び減圧下のいずれの状態で行ってもよい。また、加熱雰囲気は、酸化性ガス雰囲気(酸素ガス等)、還元性ガス雰囲気(水素ガス等)、不活性ガス雰囲気(ヘリウムガス、ネオンガス、アルゴンガス、窒素ガス等)のいずれであってもよい。
 加熱時間は、0.1~30分間が好ましく、0.5~20分間がより好ましい。
 以上のような条件で加熱すれば、高い生産性を維持しつつ、F層1を好適に形成できる。
Examples of each heating method include a method using an oven, a method using a ventilation drying furnace, and a method of irradiating heat rays such as infrared rays. Heating may be performed under either normal pressure or reduced pressure. The heating atmosphere may be any of an oxidizing gas atmosphere (oxygen gas, etc.), a reducing gas atmosphere (hydrogen gas, etc.), and an inert gas atmosphere (helium gas, neon gas, argon gas, nitrogen gas, etc.). ..
The heating time is preferably 0.1 to 30 minutes, more preferably 0.5 to 20 minutes.
By heating under the above conditions, the F layer 1 can be suitably formed while maintaining high productivity.
 F層1の厚さは、0.1μm以上が好ましく、10μm以上がより好ましく、50μm以上がさらに好ましい。F層1の厚さは、500μm以下が好ましく、250μm以下がより好ましい。本組成物2は、分散安定性等の物性に優れるため、本組成物2からは、厚いF層1を容易に形成できる。
 F層1と基材層との剥離強度は、10N/cm以上が好ましく、15N/cm以上がより好ましい。上記剥離強度は、100N/cm以下が好ましい。本組成物2を用いれば、F層1におけるFポリマーの物性を損なわずに、かかる本積層体を容易に形成できる。
The thickness of the F layer 1 is preferably 0.1 μm or more, more preferably 10 μm or more, and even more preferably 50 μm or more. The thickness of the F layer 1 is preferably 500 μm or less, more preferably 250 μm or less. Since the present composition 2 is excellent in physical properties such as dispersion stability, a thick F layer 1 can be easily formed from the present composition 2.
The peel strength between the F layer 1 and the base material layer is preferably 10 N / cm or more, more preferably 15 N / cm or more. The peel strength is preferably 100 N / cm or less. By using the present composition 2, such a laminated body can be easily formed without impairing the physical characteristics of the F polymer in the F layer 1.
 本組成物2は、基材の一方の表面にのみ付与してもよく、基材の両面に付与してもよい。前者では、基材で構成される基材層と、かかる基材層の片方の表面にF層1を有する積層体が得られ、後者では、基材で構成される基材層と、かかる基材層の両方の表面にF層1を有する積層体が得られる。後者の積層体は、より反りが発生しにくいため、その加工に際するハンドリング性に優れる。
 かかる積層体の具体例としては、金属箔と、その金属箔の少なくとも一方の表面にF層1を有する金属張積層体、ポリイミドフィルムと、そのポリイミドフィルムの両方の表面にF層1を有する多層フィルムが挙げられる。これらの積層体は、電気特性等の諸物性に優れるのでプリント基板材料等として好適であり、フレキシブルプリント基板やリジッドプリント基板の製造に使用できる。
The present composition 2 may be applied only to one surface of the base material, or may be applied to both sides of the base material. In the former, a base material layer composed of a base material and a laminate having an F layer 1 on one surface of the base material layer are obtained, and in the latter, a base material layer composed of a base material and such a base material are obtained. A laminate having the F layer 1 on both surfaces of the material layer is obtained. Since the latter laminate is less likely to warp, it is excellent in handleability during its processing.
Specific examples of such a laminate include a metal foil, a metal-clad laminate having an F layer 1 on at least one surface of the metal foil, a polyimide film, and a multilayer having an F layer 1 on both surfaces of the polyimide film. Film is mentioned. Since these laminates are excellent in various physical properties such as electrical characteristics, they are suitable as printed circuit board materials and the like, and can be used for manufacturing flexible printed circuit boards and rigid printed circuit boards.
 基材層の両方の表面にF層1を有する本積層体は、本組成物2を基材の両方の面に付与し、加熱して液性成分を除去し、さらに加熱してFポリマーを焼成させて、両方の面のF層1を同時に形成して得てもよい。 In this laminate having the F layer 1 on both surfaces of the base material layer, the composition 2 is applied to both surfaces of the base material, heated to remove liquid components, and further heated to obtain an F polymer. It may be obtained by firing to form the F layer 1 on both surfaces at the same time.
 基材層の両方の表面にF層1を有する本積層体は、基材を本組成物2に浸漬して本組成物2を基材の両方の面に付与した後に焼成炉を通過させ加熱して得てもよい。具体的には、基材を本組成物2に浸漬した後に、基材を本組成物2から引き上げながら焼成炉を通過させ加熱して得てもよい。
 かかる本積層体は、ディップコーターと焼成炉とを有する装置を用いれば好適に製造できる。焼成炉としては、竪型焼成炉が挙げられる。また、かかる装置としては、田端機械工業社製のガラスクロスコーティング装置が挙げられる。
This laminate having the F layer 1 on both surfaces of the base material layer is heated by immersing the base material in the present composition 2 to apply the present composition 2 to both surfaces of the base material, and then passing the base material through a firing furnace. You may get it. Specifically, after immersing the base material in the present composition 2, the base material may be obtained by passing it through a firing furnace while pulling it up from the present composition 2 and heating it.
Such a laminate can be suitably produced by using an apparatus having a dip coater and a firing furnace. Examples of the firing furnace include a vertical firing furnace. Further, as such a device, a glass cloth coating device manufactured by Tabata Machinery Co., Ltd. can be mentioned.
 上述のとおり、本組成物2を用いれば、成分の均一分布性に優れ、電気特性に優れた積層体が得られる。本組成物2は、ポリイミドフィルムの両方の表面にF層1を含有する多層フィルムをロール・ツー・ロールプロセスにより製造する場合に、特に好適である。かかる多層フィルムはプリント配線基板、特にフレキシブルプリント配線基板の材料として有効に使用でき、Fポリマーの物性を良好に発現する。 As described above, when the present composition 2 is used, a laminate having excellent uniform distribution of components and excellent electrical characteristics can be obtained. The present composition 2 is particularly suitable when a multilayer film containing the F layer 1 on both surfaces of the polyimide film is produced by a roll-to-roll process. Such a multilayer film can be effectively used as a material for a printed wiring board, particularly a flexible printed wiring board, and can satisfactorily exhibit the physical characteristics of the F polymer.
 また、本積層体から基材を除去することでF層1からなるシートを製造することができる。除去の方法としては、剥離又はエッチングが挙げられる。
 F層1と基材層との積層体及びF層1からなるシートは、アンテナ部品、プリント基板、航空機用部品、自動車用部品、スポーツ用具、食品工業用品、放熱部品、塗料、化粧品等として有用である。
Further, by removing the base material from the present laminate, a sheet made of F layer 1 can be manufactured. The method of removal includes peeling or etching.
The laminate of the F layer 1 and the base material layer and the sheet composed of the F layer 1 are useful as antenna parts, printed circuit boards, aircraft parts, automobile parts, sports equipment, food industry supplies, heat dissipation parts, paints, cosmetics, etc. Is.
 具体的には、電線被覆材(航空機用電線等)、電気自動車等のモーター等に使用されるエナメル線被覆材、電気絶縁性テープ、石油掘削用絶縁テープ、プリント基板用材料、分離膜(精密濾過膜、限外濾過膜、逆浸透膜、イオン交換膜、透析膜、気体分離膜等)、電極バインダー(リチウム二次電池用、燃料電池用等)、コピーロール、家具、自動車ダッシュボート、家電製品等のカバー、摺動部材(荷重軸受、すべり軸、バルブ、ベアリング、ブッシュ、シール、スラストワッシャ、ウェアリング、ピストン、スライドスイッチ、歯車、カム、ベルトコンベア、食品搬送用ベルト等)、ウェアパッド、ウェアストリップ、チューブランプ、試験ソケット、ウェハーガイド、遠心ポンプの摩耗部品、炭化水素・薬品及び水供給ポンプ、工具(シャベル、やすり、きり、のこぎり等)、ボイラー、ホッパー、パイプ、オーブン、焼き型、シュート、ダイス、便器、コンテナ被覆材、パワーデバイス、トランジスタ、サイリスタ、整流器、トランス、パワーMOS FET、CPU、放熱フィン、金属放熱板、風車や風力発電設備や航空機等のブレード、自動車向けの放熱基板、無線通信デバイス(例えば、国際公開第2020/008691号や国際公開第2020/031419号に記載の無線通信デバイス)の放熱部材としても好適に使用できる。 Specifically, wire coating materials (aircraft wires, etc.), enamel wire coating materials used for motors of electric vehicles, etc., electrically insulating tapes, insulating tapes for oil drilling, materials for printed substrates, separation films (precision). Filtration membrane, ultrafiltration membrane, back-penetration membrane, ion exchange membrane, dialysis membrane, gas separation membrane, etc.), electrode binder (for lithium secondary battery, fuel cell, etc.), copy roll, furniture, automobile dashboard, home appliances Product covers, sliding members (load bearings, sliding shafts, valves, bearings, bushes, seals, thrust washers, wear rings, pistons, slide switches, gears, cams, belt conveyors, food transport belts, etc.), wear pads , Wear strips, tube lamps, test sockets, wafer guides, worn parts of centrifugal pumps, hydrocarbon / chemical and water supply pumps, tools (shovels, shavings, cuttings, saws, etc.), boilers, hoppers, pipes, ovens, baking molds. , Chute, die, toilet bowl, container coating material, power device, transistor, thyristor, rectifier, transformer, power MOS FET, CPU, heat dissipation fin, metal heat dissipation plate, blade of windmill, wind power generation equipment, aircraft, etc., heat dissipation for automobiles It can also be suitably used as a heat radiating member for a substrate and a wireless communication device (for example, the wireless communication device described in International Publication No. 2020/008691 and International Publication No. 2020/031419).
 基材層が樹脂フィルム(好適にはポリイミド系樹脂フィルム)である本積層体は、離型フィルムやキャリアフィルムとして有用である。本積層体は、F層1と基材層との接着性に優れ層間剥離しにくいため、キャリアフィルムとして繰り返し使用できる。また、F層1は耐熱性に優れるため、繰り返し使用しても離型性も悪化しにくい。
 本積層体は、具体的には、セラミックグリーンシート形成用のキャリアフィルム、二次電池形成用のキャリアフィルム、固体高分子電解質膜形成用のキャリアフィルム、固体高分子電解質膜の触媒形成用キャリアフィルムとして有用である。
This laminate in which the base material layer is a resin film (preferably a polyimide-based resin film) is useful as a release film or a carrier film. Since this laminate has excellent adhesiveness between the F layer 1 and the base material layer and is difficult to delaminate, it can be used repeatedly as a carrier film. Further, since the F layer 1 has excellent heat resistance, the releasability is unlikely to deteriorate even after repeated use.
Specifically, the laminate is a carrier film for forming a ceramic green sheet, a carrier film for forming a secondary battery, a carrier film for forming a solid polymer electrolyte membrane, and a carrier film for forming a catalyst for a solid polymer electrolyte membrane. It is useful as.
 本発明の液状組成物は、F粒子と、芳香族樹脂と、極性ビニル系ポリマー及び多糖類からなる群から選ばれる少なくとも1種の増粘ポリマーと、水とを含み、F粒子に対する増粘ポリマーの含有量の比が、0.05以下である、液状組成物である。
 本発明の液状組成物におけるF粒子、芳香族樹脂、増粘ポリマー、水の定義及び範囲は、好適な範囲も含めて本法2の本組成物2におけるそれらと同様である。また、本発明の液状組成物の物性も、本法2の本組成物2におけるそれと同様である。
 本発明の液状組成物は、本法2にて好適に製造できる。
The liquid composition of the present invention contains F particles, an aromatic resin, at least one thickening polymer selected from the group consisting of polar vinyl polymers and polysaccharides, and water, and is a thickening polymer for F particles. It is a liquid composition having a content ratio of 0.05 or less.
The definitions and ranges of F particles, aromatic resin, thickening polymer, and water in the liquid composition of the present invention are the same as those in the present composition 2 of the present method 2 including suitable ranges. Further, the physical characteristics of the liquid composition of the present invention are the same as those in the present composition 2 of the present method 2.
The liquid composition of the present invention can be suitably produced by the present method 2.
 本発明の組成物は、F粒子と、芳香族樹脂と、極性ビニル系ポリマー及び多糖類からなる群から選ばれる少なくとも1種の増粘ポリマーと、水とを含み、F粒子に対する増粘ポリマーの含有量の比が0.05以下であり、温度を25℃、剪断速度剪断速度を1s-1とするキャピログラフ測定による粘度が10000Pa・sから100000Pa・sである組成物である。本発明の組成物は、均一性に優れるため、本発明の組成物と水とを混合すれば、分散安定性、均一性及び取扱い性に優れる液状組成物が得られる。 The composition of the present invention contains F particles, an aromatic resin, at least one thickening polymer selected from the group consisting of polar vinyl polymers and polysaccharides, and water, and is a thickening polymer for F particles. A composition having a content ratio of 0.05 or less, a temperature of 25 ° C., a shear rate of 1s -1 , and a viscosity measured by a capillograph of 10000 Pa · s to 100,000 Pa · s. Since the composition of the present invention is excellent in uniformity, a liquid composition excellent in dispersion stability, uniformity and handleability can be obtained by mixing the composition of the present invention with water.
 本発明の組成物におけるF粒子、芳香族樹脂、増粘ポリマー、水の定義及び範囲は、好適な範囲も含めて本法2の本組成物2におけるそれらと同様である。
 本発明の組成物の温度を25℃、剪断速度を1s-1とするキャピログラフ測定による粘度は15000Pa・s以上が好ましい。かかる粘度は50000Pa・s以下が好ましく、30000Pa・s以下がより好ましい。
 本発明の組成物は、充分に水を含み、高度に濡れたF粒子を含むパウダー、すなわち塊状かつ粘土状の固練品(練粉やウェットパウダー)であるのが好ましい。
The definitions and ranges of F particles, aromatic resins, thickening polymers, and water in the composition of the present invention are the same as those in the present composition 2 of the present method 2 including suitable ranges.
The viscosity of the composition of the present invention as measured by capillograph, where the temperature is 25 ° C. and the shear rate is 1s -1 , is preferably 15,000 Pa · s or more. The viscosity is preferably 50,000 Pa · s or less, and more preferably 30,000 Pa · s or less.
The composition of the present invention is preferably a powder containing sufficiently water and highly wet F particles, that is, a lumpy and clay-like solidified product (powder or wet powder).
 本発明の組成物における、F粒子の含有量は、本発明の組成物の全体質量に対して40質量%以上が好ましく、50質量%以上がより好ましい。F粒子の含有量は90質量%以下が好ましく、80質量%以下がより好ましい。
 本発明の組成物における、芳香族樹脂の含有量は、本発明の組成物の全体質量に対して0.1質量%以上が好ましく、0.3質量%以上がより好ましい。芳香族樹脂の含有量は、30質量%以下が好ましく、10質量%以下がより好ましい。
 本発明の組成物における、増粘ポリマーの含有量は、本発明の組成物の全体質量に対して、0.1質量%以上が好ましく、1質量%以上がより好ましい。増粘ポリマーの含有量は、30質量%以下が好ましく、10質量%以下がより好ましい。
 本発明の組成物における、水の含有量は、本発明の組成物の全体質量に対して、10質量%以上が好ましく、20質量%以上がより好ましい。水の含有量は、50質量%以下が好ましく、40質量%以下がより好ましい。
 本発明の組成物における、F粒子に対する増粘ポリマーの含有量の比が0.05以下であり、0.03以下が好ましく、0.01以下がより好ましい。かかる比は、0.001以上が好ましく、0.03以上がより好ましい。
 本発明の組成物における固形分量は、40~99質量%が好ましく、50~80質量%がより好ましい。
The content of F particles in the composition of the present invention is preferably 40% by mass or more, more preferably 50% by mass or more, based on the total mass of the composition of the present invention. The content of F particles is preferably 90% by mass or less, more preferably 80% by mass or less.
The content of the aromatic resin in the composition of the present invention is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, based on the total mass of the composition of the present invention. The content of the aromatic resin is preferably 30% by mass or less, more preferably 10% by mass or less.
The content of the thickening polymer in the composition of the present invention is preferably 0.1% by mass or more, more preferably 1% by mass or more, based on the total mass of the composition of the present invention. The content of the thickening polymer is preferably 30% by mass or less, more preferably 10% by mass or less.
The content of water in the composition of the present invention is preferably 10% by mass or more, more preferably 20% by mass or more, based on the total mass of the composition of the present invention. The water content is preferably 50% by mass or less, more preferably 40% by mass or less.
The ratio of the content of the thickening polymer to the F particles in the composition of the present invention is 0.05 or less, preferably 0.03 or less, and more preferably 0.01 or less. Such a ratio is preferably 0.001 or more, and more preferably 0.03 or more.
The solid content in the composition of the present invention is preferably 40 to 99% by mass, more preferably 50 to 80% by mass.
 本発明の組成物は、F粒子と、芳香族樹脂と、増粘ポリマーと、水とを、薄膜旋回による撹拌機構か、又は、自転及び公転による撹拌機構を備えた槽内にて混合して得るのが好ましい。混合の方法は、好適な範囲も含めて本法2におけるそれと同様である。
 また、本発明の組成物と水とを混合して得られる液状組成物の態様は、好適な範囲も含めて本法2の本組成物2におけるそれと同様である。
In the composition of the present invention, F particles, an aromatic resin, a thickening polymer, and water are mixed in a tank equipped with a stirring mechanism by thin film swirling or a stirring mechanism by rotation and revolution. It is preferable to obtain it. The mixing method is the same as that in the present method 2 including a suitable range.
Moreover, the aspect of the liquid composition obtained by mixing the composition of the present invention with water is the same as that of the present composition 2 of the present method 2 including a suitable range.
 以上、本組成物2の製造方法、本組成物2を用いる積層体の製造方法、本発明の液状組成物及び本発明の組成物について説明したが、本発明は、前述した実施形態の構成に限定されない。
 例えば、本組成物2の製造方法、本組成物2を用いる積層体の製造方法は、上記実施形態の構成において、他の任意の工程を追加で有してもよいし、同様の作用を生じる任意の工程と置換されていてよい。また、本組成物2、本発明の液状組成物及び本発明の組成物は、上記実施形態の構成において、他の任意の構成を追加してもよいし、同様の機能を発揮する任意の構成と置換されていてよい。
The method for producing the present composition 2, the method for producing a laminate using the present composition 2, the liquid composition of the present invention and the composition of the present invention have been described above. Not limited.
For example, the method for producing the present composition 2 and the method for producing a laminate using the present composition 2 may additionally have any other step in the configuration of the above embodiment, and the same action is produced. It may be replaced with any step. In addition, the composition 2, the liquid composition of the present invention, and the composition of the present invention may be added with any other composition in the configuration of the above embodiment, or any configuration exhibiting the same function. May be replaced with.
 続いて、本法の第3の態様(以下、「本法3」とも記す。)について説明する。
 本法3は、F粒子と、新モース硬度が12以下の無機粒子(本無機粒子)と、液状化合物とを、薄膜旋回させて混合して、F粒子と本無機粒子と液状化合物とを含む液状組成物(以下、「本組成物3」とも記す。)を得る方法である。
 本組成物3は、本無機粒子の凝集が少なく、分散安定性、均一性及び取扱い性に優れる。また、本組成物3からは、Fポリマーの物性と、本無機粒子の物性とを高度に具備した、電気特性と低線膨張性と熱伝導性とに優れた成形物を形成できる。その理由は、必ずしも明確ではないが、例えば以下のように推定している。
Subsequently, a third aspect of this method (hereinafter, also referred to as “this method 3”) will be described.
In this method 3, F particles, inorganic particles having a new moth hardness of 12 or less (this inorganic particles), and a liquid compound are mixed by swirling a thin film to include F particles, the present inorganic particles, and a liquid compound. This is a method for obtaining a liquid composition (hereinafter, also referred to as “this composition 3”).
The composition 3 has less aggregation of the inorganic particles and is excellent in dispersion stability, uniformity and handleability. Further, from the present composition 3, it is possible to form a molded product having excellent electrical characteristics, low linear expansion property and thermal conductivity, which has the physical characteristics of the F polymer and the physical characteristics of the inorganic particles to a high degree. The reason is not always clear, but it is estimated as follows, for example.
 表面エネルギーの低いFポリマーと無機粒子とを混合すると、無機粒子とF粒子との間での相互作用より無機粒子同士の相互作用が高まり、無機粒子の凝集が起こりやすくなる。特に、2次粒子を形成した無機粒子を混合に供する場合、この傾向が顕著になりやすい。
 無機粒子の凝集を解消するために液状組成物に強い剪断力をかけると、Fポリマーがフィブリル化等して変性し、Fポリマーの物性を損ないやすい。そればかりか、低硬度の無機粒子の場合では、それ自体が破砕して微粉化しさらに凝集しやすくなる。このように、無機粒子の凝集を抑制しつつ、F粒子と無機粒子とを混合して、分散安定性、均一性及び取り扱い性に優れた液状組成物を得るのは困難であった。
When the F polymer having a low surface energy and the inorganic particles are mixed, the interaction between the inorganic particles is higher than the interaction between the inorganic particles and the F particles, and the aggregation of the inorganic particles is likely to occur. In particular, when the inorganic particles forming the secondary particles are subjected to mixing, this tendency tends to be remarkable.
When a strong shearing force is applied to the liquid composition in order to eliminate the aggregation of the inorganic particles, the F polymer is easily denatured by fibrillation or the like, and the physical properties of the F polymer are easily impaired. Not only that, in the case of low-hardness inorganic particles, the particles themselves are crushed into fine particles and are more likely to aggregate. As described above, it has been difficult to obtain a liquid composition having excellent dispersion stability, uniformity and handleability by mixing the F particles and the inorganic particles while suppressing the aggregation of the inorganic particles.
 本法では、F粒子と本無機粒子と液状化合物とを薄膜旋回させて混合する手段を採り、F粒子及び本無機粒子のそれぞれに液状化合物を高度に浸透させ、両者を濡れた状態で混合する。換言すれば、液状化合物によって両者が衝突する際に生じる衝撃を緩和させ、F粒子の変性と本無機粒子の過度な破砕とを抑制しているともみなせる。また、F粒子と無機粒子との衝突により、本無機粒子とF粒子との合着粒子(F粒子の表面に無機粒子が合着した複合粒子等)の形成を促しているともみなせる。さらに、2次粒子を形成した無機粒子を混合に供した場合においては、液状化合物の浸透によって、2次粒子の解消を促しているともみなせる。 In this method, a means is adopted in which the F particles, the present inorganic particles, and the liquid compound are swirled in a thin film and mixed, the liquid compound is highly permeated into each of the F particles and the present inorganic particles, and both are mixed in a wet state. .. In other words, it can be considered that the liquid compound alleviates the impact generated when the two collide with each other, and suppresses the denaturation of the F particles and the excessive crushing of the present inorganic particles. Further, it can be considered that the collision between the F particles and the inorganic particles promotes the formation of the coalesced particles of the inorganic particles and the F particles (composite particles in which the inorganic particles are fused on the surface of the F particles, etc.). Further, when the inorganic particles forming the secondary particles are subjected to mixing, it can be considered that the permeation of the liquid compound promotes the elimination of the secondary particles.
 これらの要因によって、F粒子と本無機粒子とが個々の粒子レベルで高度に混合されるため、分散安定性、均一性及び取扱い性に優れた液状組成物が、本法によって得られたと考えられる。さらに、上記合着粒子に代表される均一な粒子が含まれることにより、本組成物3から液状化合物を除去した際には、均一かつ密な粒子のパッキング構造を形成しやすくなる。その結果、本組成物3からは、Fポリマー中に無機粒子が緻密に配置され、電気特性、低線膨張性及び熱伝導性に優れた成形物が得られたと考えられる。 Due to these factors, the F particles and the present inorganic particles are highly mixed at the individual particle level, and it is considered that a liquid composition having excellent dispersion stability, uniformity and handleability was obtained by this method. .. Further, since the uniform particles typified by the coalesced particles are contained, when the liquid compound is removed from the composition 3, it becomes easy to form a uniform and dense particle packing structure. As a result, it is considered that from the present composition 3, inorganic particles are densely arranged in the F polymer, and a molded product having excellent electrical characteristics, low linear expansion and thermal conductivity is obtained.
 本法3における本無機粒子は、新モース硬度が12以下の無機化合物の粒子である。本無機粒子は、1種類を単独で用いてもよく、2種類以上を併用してもよい。
 本無機粒子の新モース硬度は、10以下が好ましく、8以下がより好ましく、5以下がさらに好ましく、3以下が特に好ましい。本無機粒子の新モース硬度は、1以上が好ましく、2以上がより好ましい。
The present inorganic particles in the present method 3 are particles of an inorganic compound having a new Mohs hardness of 12 or less. One type of the inorganic particles may be used alone, or two or more types may be used in combination.
The new Mohs hardness of the inorganic particles is preferably 10 or less, more preferably 8 or less, further preferably 5 or less, and particularly preferably 3 or less. The new Mohs hardness of the inorganic particles is preferably 1 or more, and more preferably 2 or more.
 本無機粒子の形状は、球状、針状(繊維状)、板状のいずれであってもよく、板状であるのが好ましい。この場合、本無機粒子とF粒子との合着粒子が形成されやすいと考えられ、本組成物3が分散安定性等の物性に優れやすい。その結果、本組成物3から形成される成形物が電気特性と低線膨張性に優れやすい。また、成形物中で本無機粒子がパスを形成しやすく、成形物が熱伝導性に優れやすい。
 本無機粒子の具体的な形状としては、球状、鱗片状、層状、葉片状、杏仁状、柱状、鶏冠状、等軸状、葉状、雲母状、ブロック状、平板状、楔状、ロゼット状、網目状、角柱状が挙げられる。
The shape of the inorganic particles may be spherical, needle-shaped (fibrous), or plate-shaped, and is preferably plate-shaped. In this case, it is considered that coalesced particles of the inorganic particles and the F particles are likely to be formed, and the composition 3 is likely to be excellent in physical properties such as dispersion stability. As a result, the molded product formed from the present composition 3 tends to be excellent in electrical characteristics and low line expandability. In addition, the inorganic particles tend to form paths in the molded product, and the molded product tends to have excellent thermal conductivity.
Specific shapes of the inorganic particles include spherical, scaly, layered, leafy, apricot kernel, columnar, chicken crown, equiaxed, leafy, mica, block, flat, wedge, rosette, etc. Examples include mesh-like and prismatic.
 本無機粒子は、カーボン粒子、窒化物粒子及び無機酸化物粒子が好ましく、炭素繊維粒子、窒化ホウ素粒子(新モース硬度:2)、窒化アルミニウム粒子、ベリリア粒子(ベリリウムの酸化物の粒子)、ケイ酸塩粒子(シリカ粒子(新モース硬度:8)、ウォラストナイト粒子、タルク粒子(新モース硬度:1))、及び金属酸化物粒子(酸化セリウム、酸化アルミニウム(新モース硬度:12)、酸化マグネシウム、酸化亜鉛、酸化チタン等)がより好ましく、本組成物3の分散安定性と本組成物3から形成される成形物の電気特性及び低線膨張性との観点から、窒化ホウ素粒子及びシリカ粒子がさらに好ましく、窒化ホウ素粒子が特に好ましい。また、本組成物3から形成される成形物の熱伝導性の観点からは、窒化ホウ素粒子及び酸化アルミニウム粒子が好ましい。 The inorganic particles are preferably carbon particles, nitride particles and inorganic oxide particles, and are carbon fiber particles, boron nitride particles (new Morse hardness: 2), aluminum nitride particles, beryllia particles (particles of berylium oxide), and Kay. Acidic acid particles (silica particles (new moth hardness: 8), wollastonite particles, talc particles (new moth hardness: 1)), and metal oxide particles (cerium oxide, aluminum oxide (new moth hardness: 12), oxidation (Magnet, zinc oxide, titanium oxide, etc.) are more preferable, and boron nitride particles and silica are preferable from the viewpoint of the dispersion stability of the composition 3 and the electrical characteristics and low linear expansion of the molded product formed from the composition 3. Particles are more preferred, and boron nitride particles are particularly preferred. Further, from the viewpoint of thermal conductivity of the molded product formed from the present composition 3, boron nitride particles and aluminum oxide particles are preferable.
 本無機粒子のD50は、20μm以下が好ましく、10μm以下がより好ましい。D50は、0.01μm以上が好ましく、0.1μm以上がより好ましい。F粒子のD50に対する、本無機粒子のD50の比は、1以上が好ましく、2以上がより好ましい。かかる比は、20以下が好ましく、10以下がより好ましい。
 本無機粒子の比表面積は、1~20m/gが好ましい。
 本無機粒子のアスペクト比は、2以上が好ましく、5以上がより好ましく、10以上がさらに好ましい。本無機粒子のアスペクト比は、10000以下が好ましい。かかるアスペクト比かつ新モース硬度が小さい無機粒子は、その形状異方性により、混合において凝集又は破砕が進行しやすいが、本法においては、上述した作用機構により、本法によればF粒子と高度な混合が可能である。
The D50 of the inorganic particles is preferably 20 μm or less, more preferably 10 μm or less. D50 is preferably 0.01 μm or more, more preferably 0.1 μm or more. The ratio of D50 of the present inorganic particles to D50 of the F particles is preferably 1 or more, and more preferably 2 or more. The ratio is preferably 20 or less, more preferably 10 or less.
The specific surface area of the inorganic particles is preferably 1 to 20 m 2 / g.
The aspect ratio of the inorganic particles is preferably 2 or more, more preferably 5 or more, and even more preferably 10 or more. The aspect ratio of the inorganic particles is preferably 10,000 or less. Inorganic particles having such an aspect ratio and a small Mohs hardness are likely to be aggregated or crushed in mixing due to their shape anisotropy. A high degree of mixing is possible.
 本無機粒子は、濡れ性の観点から、その表面の少なくとも一部が、シランカップリング剤(3-アミノプロピルトリエトキシシラン、ビニルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-イソシアネートプロピルトリエトキシシラン等)で表面処理されていてもよい。
 本無機粒子の好適な具体例としては、前記した本法1における無機フィラーの具体例および本法2における無機粒子と同様のものが挙げられる。
From the viewpoint of wettability, at least a part of the surface of the inorganic particles is a silane coupling agent (3-aminopropyltriethoxysilane, vinyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxy). It may be surface-treated with propylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-isopropylpropyltriethoxysilane, etc.).
Preferable specific examples of the inorganic particles include the specific examples of the inorganic filler in the above-mentioned method 1 and the same as the inorganic particles in the present method 2.
 本組成物3における本無機粒子の含有量は、本組成物3の全体質量に対して、10質量%以上が好ましく、20質量%以上がより好ましい。本無機粒子の含有量は、本組成物3の全体質量に対して60質量%以下が好ましく、50質量%以下がより好ましい。
 本組成物3におけるF粒子の含有量に対する、本無機粒子の含有量の比は、0.1~3が好ましく、0.2~1がより好ましい。この場合、本無機粒子の2次粒子が解消されやすく、本組成物3が分散安定性等の物性に優れやすい。
The content of the inorganic particles in the composition 3 is preferably 10% by mass or more, more preferably 20% by mass or more, based on the total mass of the composition 3. The content of the inorganic particles is preferably 60% by mass or less, more preferably 50% by mass or less, based on the total mass of the composition 3.
The ratio of the content of the inorganic particles to the content of the F particles in the composition 3 is preferably 0.1 to 3, more preferably 0.2 to 1. In this case, the secondary particles of the inorganic particles are easily eliminated, and the composition 3 is likely to have excellent physical properties such as dispersion stability.
 本法3における液状化合物は、大気圧下、25℃にて液体である化合物を意味する。
 液状化合物としては、炭化水素、水、アルコール、アミド、ケトン及びエステルが挙げられ、水、アミド、ケトン及びエステルが好ましい。
 液状化合物の沸点は50~240℃の範囲が好ましい。液状分散媒は1種類を単独で用いてもよく、2種以上を併用してもよい。
The liquid compound in this method 3 means a compound that is liquid at 25 ° C. under atmospheric pressure.
Examples of the liquid compound include hydrocarbons, water, alcohols, amides, ketones and esters, with water, amides, ketones and esters being preferred.
The boiling point of the liquid compound is preferably in the range of 50 to 240 ° C. One type of liquid dispersion medium may be used alone, or two or more types may be used in combination.
 アルコールとしては、メタノール、エタノール、イソプロパノール、グリコールが挙げられる。
 アミドとしては、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルプロパンアミド、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、N,N-ジエチルホルムアミド、ヘキサメチルホスホリックトリアミド、1,3-ジメチル-2-イミダゾリジノン等が挙げられる。
Examples of the alcohol include methanol, ethanol, isopropanol and glycol.
As amides, N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethylpropanamide, 3-methoxy-N, N-dimethylpropanamide, 3-butoxy- Examples thereof include N, N-dimethylpropanamide, N, N-diethylformamide, hexamethylphosphoric triamide, 1,3-dimethyl-2-imidazolidinone and the like.
 ケトンとしては、アセトン、メチルエチルケトン、メチルイソプロピルケトン、メチルイソブチルケトン、メチルn-ペンチルケトン、メチルイソペンチルケトン、2-へプタノン、シクロペンタノン、シクロヘキサノン、シクロヘプタノンが挙げられる。
 エステルとしては、酢酸メチル、酢酸エチル、酢酸ブチル、乳酸メチル、乳酸エチル、ピルビン酸メチル、ピルビン酸エチル、メトキシプロピオン酸メチル、エトキシプロピオン酸エチル、3-エトキシプロピオン酸エチル、γ-ブチロラクトン、γ-バレロラクトンが挙げられる。
Examples of the ketone include acetone, methyl ethyl ketone, methyl isopropyl ketone, methyl isobutyl ketone, methyl n-pentyl ketone, methyl isopentyl ketone, 2-heptanone, cyclopentanone, cyclohexanone, and cycloheptanone.
Esters include methyl acetate, ethyl acetate, butyl acetate, methyl lactate, ethyl lactate, methyl pyruvate, ethyl pyruvate, methyl methoxypropionate, ethyl ethoxypropionate, ethyl 3-ethoxypropionate, γ-butyrolactone, γ- Valerolactone can be mentioned.
 液状化合物の好適な具体例としては、水、N-メチル-2-ピロリドン、γ-ブチロラクトン、シクロヘキサノン及びシクロペンタノンが挙げられる。
 本組成物3における液状化合物の含有量は、30~90質量%が好ましく、50~80質量%がより好ましい。かかる範囲において、本組成物3の分散安定性等の液物性がより向上しやすい。
Suitable specific examples of the liquid compound include water, N-methyl-2-pyrrolidone, γ-butyrolactone, cyclohexanone and cyclopentanone.
The content of the liquid compound in the composition 3 is preferably 30 to 90% by mass, more preferably 50 to 80% by mass. In such a range, the liquid physical characteristics such as the dispersion stability of the present composition 3 are more likely to be improved.
 本法は、F粒子と本無機粒子と液状化合物とを薄膜旋回させて混合して、すなわち、これらの成分を薄膜状に拡げながら旋回させて混合して、本組成物3を得る。薄膜状に展開したそれぞれの成分に、旋回に伴う遠心力が効果的に作用して、F粒子及び本無機粒子のそれぞれに液状化合物が高度に浸透して混合が進行する。
 混合は、本法1及び本法2にて上述した薄膜旋回型高速ミキサーで行うのが好ましい。
 薄膜旋回型高速ミキサーにおける撹拌槽、及び複数の孔が形成された円筒部を有する回転部位の詳細は前述したとおりである。
 混合においては、F粒子と本無機粒子と液状化合物とを、一括して撹拌槽内に供給してもよく、複数の投入口を使用して、別々に撹拌槽内に供給してもよい。
 混合は、バッチ式でも連続式でも実施できる。連続式の場合、1つの攪拌槽を使用して、排出口から取り出された混合物を、再度投入口から供給して混合してもよく、複数の攪拌槽を使用して、前段の攪拌槽の排出口から取り出された混合物を、後段の攪拌槽の投入口から供給して混合してもよい。
In this method, the F particles, the inorganic particles, and the liquid compound are swirled and mixed in a thin film, that is, these components are swirled and mixed while spreading in a thin film shape to obtain the composition 3. Centrifugal force associated with swirling effectively acts on each of the components developed in the form of a thin film, and the liquid compound is highly permeated into each of the F particles and the present inorganic particles, and the mixing proceeds.
The mixing is preferably performed by the thin film swirl type high-speed mixer described in the present method 1 and the present method 2.
The details of the stirring tank in the thin film swirling high-speed mixer and the rotating portion having the cylindrical portion in which a plurality of holes are formed are as described above.
In mixing, the F particles, the present inorganic particles, and the liquid compound may be collectively supplied into the stirring tank, or may be separately supplied into the stirring tank using a plurality of inlets.
Mixing can be carried out in batch or continuous manner. In the case of the continuous type, one stirring tank may be used to supply the mixture taken out from the discharge port again from the input port and mixed, or a plurality of stirring tanks may be used to prepare the stirring tank in the previous stage. The mixture taken out from the discharge port may be supplied from the input port of the stirring tank in the subsequent stage and mixed.
 供給された、F粒子、本無機粒子及び液状化合物は、撹拌槽の内壁面と回転部位の円筒部の外周面との間の隙間に行き渡って膜状となり、回転部位の回転に伴って撹拌槽内で高速で旋回する。このとき、剪断応力だけでなくズリ応力を受けることで、高レベルでの分散混合が達成される。
 本法においては、F粒子と本無機粒子と液状化合物とを含む組成物を、薄膜旋回させて混合するのが好ましい。すなわち、本法において、F粒子と本無機粒子と液状化合物とは、薄膜旋回させて混合する前に、予備混合されているのが好ましい。この場合、上述した本法の作用機構が亢進して、本組成物3の分散安定性等の物性がさらに向上しやすい。
 予備混合の方法としては、本法1及び本法2で上述した混合方法と同様の方法が挙げられる。
The supplied F particles, the present inorganic particles, and the liquid compound spread over the gap between the inner wall surface of the stirring tank and the outer peripheral surface of the cylindrical portion of the rotating portion to form a film, and as the rotating portion rotates, the stirring tank becomes a film. Turn at high speed inside. At this time, by receiving not only shear stress but also shear stress, dispersion mixing at a high level is achieved.
In this method, it is preferable that the composition containing the F particles, the present inorganic particles and the liquid compound is swirled in a thin film and mixed. That is, in this method, it is preferable that the F particles, the inorganic particles, and the liquid compound are premixed before being swirled in a thin film and mixed. In this case, the mechanism of action of the present method described above is enhanced, and the physical properties such as the dispersion stability of the present composition 3 are likely to be further improved.
Examples of the premixing method include the same methods as those described above in the present method 1 and the present method 2.
 F粒子と本無機粒子と液状化合物とを含む組成物は、F粒子と本無機粒子と液状化合物とを予備混合して得た混練物であるのが好ましい。混練物には、さらに液状化合物を添加して粘度を調整してもよい。この場合、上述した本法の作用機構が亢進しやすい。かかる混練物は、流動性と粘性とを有する固練品(ペースト)であるか、塊状かつ粘土状の固練品(練粉)であるのが好ましい。 The composition containing the F particles, the present inorganic particles and the liquid compound is preferably a kneaded product obtained by premixing the F particles, the present inorganic particles and the liquid compound. A liquid compound may be further added to the kneaded product to adjust the viscosity. In this case, the mechanism of action of this method described above is likely to be enhanced. The kneaded product is preferably a solidified product (paste) having fluidity and viscosity, or a lumpy and clay-like solidified product (powder).
 ペーストにおける固形分量は、40~90質量%が好ましく、60~80質量%がより好ましい。練粉における固形分量は、50~99質量%が好ましく、60~95質量%がより好ましい。
 なお、ペースト及び練粉における固形分量とは、本法2にて前述したのと同様の意味である。
The solid content in the paste is preferably 40 to 90% by mass, more preferably 60 to 80% by mass. The solid content in the dough is preferably 50 to 99% by mass, more preferably 60 to 95% by mass.
The solid content in the paste and the kneaded powder has the same meaning as described above in the present method 2.
 混合においては、さらに、Fポリマーとは異なるポリマーを添加してもよい。異なるポリマーを添加する段階は、混合前であってもよく混合中であってもよい。例えば、F粒子、本無機粒子及び液状化合物と、異なるポリマーとを含む組成物を調製し、これを混合に供してもよい。
 異なるポリマーは、熱硬化性であっても熱可塑性であってもよく、変性されていてもよい。また、異なるポリマーは、本組成物3中に溶解してもよく、溶解せず分散してもよい。異なるポリマーは、その前駆体として本組成物3に含まれていてもよい。
In the mixing, a polymer different from the F polymer may be further added. The step of adding the different polymer may be before or during mixing. For example, a composition containing F particles, the present inorganic particles and a liquid compound, and a different polymer may be prepared and used for mixing.
The different polymers may be thermosetting, thermoplastic or modified. Further, different polymers may be dissolved in the present composition 3 or may be dispersed without being dissolved. Different polymers may be included in the composition 3 as precursors thereof.
 異なるポリマーとしては、アクリル樹脂、フェノール樹脂、液晶性ポリエステル、液晶性ポリエステルアミド、ポリオレフィン樹脂、変性ポリフェニレンエーテル、多官能シアン酸エステル樹脂、多官能マレイミド-シアン酸エステル樹脂、多官能性マレイミド、スチレンエラストマーのような芳香族エラストマー、ビニルエステル樹脂、尿素樹脂、ジアリルフタレート樹脂、メラミン樹脂、グアナミン樹脂、メラミン-尿素共縮合樹脂、ポリカーボネート、ポリアリレート、ポリスルホン、ポリアリルスルホン、芳香族ポリアミド、芳香族ポリアミドイミド、芳香族ポリエーテルアミド、ポリフェニレンスルファイド、ポリアリルエーテルケトン、ポリフェニレンエーテル、エポキシ樹脂等が挙げられる。 Different polymers include acrylic resin, phenolic resin, liquid crystal polyester, liquid crystal polyesteramide, polyolefin resin, modified polyphenylene ether, polyfunctional cyanate ester resin, polyfunctional maleimide-cyanic acid ester resin, polyfunctional maleimide, styrene elastomer. Aromatic elastomers such as vinyl ester resin, urea resin, diallyl phthalate resin, melamine resin, guanamine resin, melamine-urea cocondensate resin, polycarbonate, polyarylate, polysulfone, polyallylsulfone, aromatic polyamide, aromatic polyamideimide , Aromatic polyether amide, polyphenylensulfide, polyallyl ether ketone, polyphenylene ether, epoxy resin and the like.
 異なるポリマーの好適な態様としては、芳香族ポリマーが挙げられる。芳香族ポリマーは、ポリフェニレンエーテル又は芳香族エラストマー(スチレンエラストマー等)であるのが好ましい。この場合、本組成物3から形成される成形物の接着性と低線膨張性とが一層向上するだけでなく、本組成物3の液物性(粘度、チキソ比等)のバランスがとれるため、その取扱い性が向上しやすい。
 本組成物3が上記異なるポリマーを含む場合、その含有量は、本組成物3全体の質量に対して40質量%以下が好ましい。
Preferred embodiments of different polymers include aromatic polymers. The aromatic polymer is preferably a polyphenylene ether or an aromatic elastomer (styrene elastomer or the like). In this case, not only the adhesiveness and low linear expansion property of the molded product formed from the present composition 3 are further improved, but also the liquid physical characteristics (viscosity, thixotropy, etc.) of the present composition 3 are balanced. Its handleability is likely to improve.
When the composition 3 contains the above-mentioned different polymers, the content thereof is preferably 40% by mass or less with respect to the total mass of the composition 3.
 混合においては、さらに、界面活性剤を添加してもよい。界面活性剤を添加する段階は、混合前であってもよく混合中であってもい。例えば、F粒子、本無機粒子及び液状化合物と、界面活性剤とを含む組成物を調製し、これを混合に供してもよい。
 界面活性剤は、ノニオン性界面活性剤であるのが好ましい。
 ノニオン性界面活性剤の具体例としては、上述した、本組成物2に添加してもよい界面活性剤と同様のものが挙げられる。
 本組成物3がノニオン性界面活性剤を含む場合、本組成物3におけるノニオン性界面活性剤の含有量は、0.1~15質量%が好ましく、1~10質量%がより好ましい。
In mixing, a surfactant may be further added. The step of adding the surfactant may be before or during mixing. For example, a composition containing F particles, the present inorganic particles, a liquid compound, and a surfactant may be prepared and used for mixing.
The surfactant is preferably a nonionic surfactant.
Specific examples of the nonionic surfactant include the same surfactants that may be added to the composition 2 described above.
When the present composition 3 contains a nonionic surfactant, the content of the nonionic surfactant in the present composition 3 is preferably 0.1 to 15% by mass, more preferably 1 to 10% by mass.
 混合においては、さらに、シランカップリング剤を添加してもよい。この場合、F粒子と本無機粒子との結着力が向上しやすくなり、本組成物3から形成される成形物において本無機粒子の剥落が抑制されやすい。シランカップリング剤としては、本無機粒子の表面処理に使用可能なシランカップリング剤と同様の化合物が挙げられる。
 シランカップリング剤を添加する段階は、混合前であってもよく混合中であってもい。例えば、F粒子、本無機粒子及び液状化合物と、シランカップリング剤とを含む組成物を調製し、これを混合に供してもよい。
 本組成物3がシランカップリング剤を含む場合、本組成物3におけるシランカップリング剤の含有量は、F粒子の含有量に対して、1~10質量%が好ましい。
In mixing, a silane coupling agent may be further added. In this case, the binding force between the F particles and the present inorganic particles is likely to be improved, and the exfoliation of the present inorganic particles is likely to be suppressed in the molded product formed from the present composition 3. Examples of the silane coupling agent include compounds similar to the silane coupling agent that can be used for the surface treatment of the present inorganic particles.
The step of adding the silane coupling agent may be before or during mixing. For example, a composition containing F particles, the present inorganic particles and a liquid compound, and a silane coupling agent may be prepared and used for mixing.
When the present composition 3 contains a silane coupling agent, the content of the silane coupling agent in the present composition 3 is preferably 1 to 10% by mass with respect to the content of the F particles.
 本法における液状化合物が水である場合、pH調整の観点から、さらにpH調整剤又はpH緩衝剤を用いてもよい。この場合、pH調整剤又はpH緩衝剤により、本組成物3のpHを5~10に調整するのが好ましく、7~9に調整するのがより好ましい。
 pH調整剤又はpH緩衝剤としては、本組成物2において前記した化合物と同様の化合物が挙げられる。
 pH調整剤又はpH緩衝剤を添加する段階は、混合前であってもよく混合中であってもい。
 本組成物3は、さらに脱泡処理に供してもよい。脱泡は、自転公転撹拌機を用いて行うのが好ましい。
When the liquid compound in this method is water, a pH adjuster or a pH buffer may be further used from the viewpoint of pH adjustment. In this case, it is preferable to adjust the pH of the present composition 3 to 5 to 10 with a pH adjuster or a pH buffer, and it is more preferable to adjust the pH to 7 to 9.
Examples of the pH adjuster or pH buffer include compounds similar to those described above in the present composition 2.
The step of adding the pH adjuster or pH buffer may be before or during mixing.
The present composition 3 may be further subjected to a defoaming treatment. Defoaming is preferably performed using a rotation / revolution stirrer.
 本組成物3には、さらに液状化合物を添加してもよい。上述した作用機構により、本組成物3は、分散安定性に優れるため、容易に液状化合物と混合できる。さらに添加する液状化合物は、本法における液状化合物と同じであってもよく、異なっていてもよい。
 本組成物3には、液状化合物以外にも、上述した成分(Fポリマーとは異なるポリマー、界面活性剤、シランカップリング剤、pH調整剤、pH緩衝剤)や、チキソ性付与剤、粘度調節剤、消泡剤、可塑剤、耐候剤、酸化防止剤、熱安定剤、滑剤、帯電防止剤、増白剤、着色剤、導電剤、離型剤、表面処理剤、難燃剤、防腐剤、防カビ剤等を、さらに添加してもよい。
 上述した作用機構により、本組成物3は、分散安定性に優れるため、これらを添加して容易に液物性を調整できる。
A liquid compound may be further added to the composition 3. Due to the mechanism of action described above, the composition 3 has excellent dispersion stability and can be easily mixed with the liquid compound. The liquid compound to be further added may be the same as or different from the liquid compound in this method.
In addition to the liquid compound, the present composition 3 contains the above-mentioned components (polymer different from F polymer, surfactant, silane coupling agent, pH adjuster, pH buffer), tyxo property imparting agent, and viscosity adjusting agent. Agents, defoamers, plasticizers, weather resistant agents, antioxidants, heat stabilizers, lubricants, antistatic agents, whitening agents, colorants, conductive agents, mold release agents, surface treatment agents, flame retardants, preservatives, An antifungal agent or the like may be further added.
Since the composition 3 is excellent in dispersion stability due to the above-mentioned mechanism of action, the liquid physical characteristics can be easily adjusted by adding these.
 本組成物3の粘度は、10mPa・s以上が好ましく、50mPa・s以上がより好ましく、100mPa・s以上がさらに好ましい。本組成物3の粘度は、10000mPa・s以下が好ましく、3000mPa・s以下がより好ましく、1000mPa・s以下がさらに好ましい。この場合、本組成物3が分散安定性等の液物性に優れやすい。
 本組成物3のチキソ比は、1.0以上が好ましい。本組成物3のチキソ比は、3.0以下が好ましく、2.0以下がより好ましい。この場合、本組成物3は、分散安定性等の液物性に優れ、より緻密な成形物を形成しやすい。
The viscosity of the composition 3 is preferably 10 mPa · s or more, more preferably 50 mPa · s or more, and even more preferably 100 mPa · s or more. The viscosity of the composition 3 is preferably 10,000 mPa · s or less, more preferably 3000 mPa · s or less, and even more preferably 1000 mPa · s or less. In this case, the present composition 3 tends to be excellent in liquid physical properties such as dispersion stability.
The thixotropy ratio of the present composition 3 is preferably 1.0 or more. The thixotropy of the composition 3 is preferably 3.0 or less, more preferably 2.0 or less. In this case, the present composition 3 is excellent in liquid physical characteristics such as dispersion stability, and it is easy to form a more dense molded product.
 本組成物3の分散層率は、60%以上が好ましく、70%以上がより好ましく、80%以上がさらに好ましい。本組成物3は、分散安定性に優れるため、分散層率がかかる範囲の値をとりやすい。分散層率とは、本組成物2において前述したとおりである。 The dispersed layer ratio of the present composition 3 is preferably 60% or more, more preferably 70% or more, still more preferably 80% or more. Since the present composition 3 is excellent in dispersion stability, it is easy to take a value in the range where the dispersion layer ratio is applied. The dispersed layer ratio is as described above in the present composition 2.
 本組成物3の分散度は、100μm以下が好ましく、70μm以下がより好ましく、50μm以下がさらに好ましい。本組成物3の分散度は、10μm以上が好ましい。本組成物3は、上述の作用機構により、本無機粒子の凝集が抑制されているため、分散度が上記範囲となりやすい。分散度とは、本組成物2において前述したとおりである。 The dispersity of the composition 3 is preferably 100 μm or less, more preferably 70 μm or less, and even more preferably 50 μm or less. The dispersity of the composition 3 is preferably 10 μm or more. In the present composition 3, since the aggregation of the present inorganic particles is suppressed by the above-mentioned mechanism of action, the degree of dispersion tends to be in the above range. The dispersity is as described above in the present composition 2.
 本組成物3は、分散安定性等の液物性に優れており、上述の作用機構により、Fポリマー及び本無機粒子に基づく物性に優れた成形物を形成できる。また、基材に対して強固な接着性を示す成形物を形成できる。
 本発明の積層体の製造方法は、本組成物3を基材の表面に付与し、加熱して、Fポリマーと本無機粒子とを含むポリマー層(以下、「F層2」とも記す。)を形成して、基材で構成される基材層とF層2とを有する積層体を得る、積層体の製造方法である。
 より具体的には、本組成物3を基材の表面に付与して液状被膜を形成し、この液状被膜を加熱して分散媒を除去して乾燥被膜を形成し、さらに乾燥被膜を加熱してFポリマーを焼成すれば、F層2を基材層の表面に有する積層体が得られる。
The present composition 3 is excellent in liquid physical properties such as dispersion stability, and a molded product having excellent physical properties based on the F polymer and the present inorganic particles can be formed by the above-mentioned action mechanism. In addition, it is possible to form a molded product that exhibits strong adhesiveness to the base material.
In the method for producing a laminate of the present invention, the composition 3 is applied to the surface of a base material and heated to form a polymer layer containing the F polymer and the inorganic particles (hereinafter, also referred to as “F layer 2”). Is a method for producing a laminate, which comprises forming a laminate having a substrate layer composed of a substrate and an F layer 2.
More specifically, the present composition 3 is applied to the surface of the base material to form a liquid film, the liquid film is heated to remove the dispersion medium to form a dry film, and the dry film is further heated. By firing the F polymer, a laminate having the F layer 2 on the surface of the base material layer can be obtained.
 基材としては、本法2において前述したものと同様のものが挙げられる。
 金属基板は、低粗化銅箔であってもよく、無粗化銅箔であってもよい。金属基板が低粗化銅箔又は無粗化銅箔である場合、積層体が伝送特性に優れやすい。
 基材の形状としては平面状、曲面状、凹凸状が挙げられ、さらに、箔状、板状、膜状、繊維状のいずれであってもよい。
Examples of the base material include those similar to those described above in the present method 2.
The metal substrate may be a low-roughened copper foil or a non-roughened copper foil. When the metal substrate is a low-roughened copper foil or a non-roughened copper foil, the laminate tends to have excellent transmission characteristics.
Examples of the shape of the base material include a flat shape, a curved surface shape, and an uneven shape, and further, any of a foil shape, a plate shape, a film shape, and a fibrous shape may be used.
 本組成物3を基材の表面に付与する方法、形成した液状被膜を乾燥する方法、及び加熱の方法は、前記した本法2における積層体の製造方法と同様である。 The method of applying the composition 3 to the surface of the base material, the method of drying the formed liquid film, and the method of heating are the same as the method for producing the laminate in the above-mentioned method 2.
 F層2の厚さは、0.1μm以上が好ましく、10μm以上がより好ましく、50μm以上がさらに好ましい。F層2の厚さは、500μm以下が好ましく、250μm以下がより好ましい。本組成物3は、分散安定性等の物性に優れるため、本組成物3からは、厚いF層2を容易に形成できる。
 F層2と基材層との剥離強度は、10N/cm以上が好ましく、15N/cm以上がより好ましい。上記剥離強度は、100N/cm以下が好ましい。本組成物3を用いれば、F層2におけるFポリマーの物性を損なわずに、かかる本積層体を容易に形成できる。
The thickness of the F layer 2 is preferably 0.1 μm or more, more preferably 10 μm or more, and even more preferably 50 μm or more. The thickness of the F layer 2 is preferably 500 μm or less, more preferably 250 μm or less. Since the present composition 3 is excellent in physical properties such as dispersion stability, a thick F layer 2 can be easily formed from the present composition 3.
The peel strength between the F layer 2 and the base material layer is preferably 10 N / cm or more, more preferably 15 N / cm or more. The peel strength is preferably 100 N / cm or less. By using the present composition 3, such a laminated body can be easily formed without impairing the physical characteristics of the F polymer in the F layer 2.
 本組成物3は、基材の一方の表面にのみ付与してもよく、基材の両面に付与してもよい。前者では、基材で構成される基材層と、かかる基材層の片方の表面にF層2を有する積層体が得られ、後者では、基材で構成される基材層と、かかる基材層の両方の表面にF層2を有する積層体が得られる。後者の積層体は、より反りが発生しにくいため、その加工に際するハンドリング性に優れる。
 かかる積層体の具体例としては、金属箔と、その金属箔の少なくとも一方の表面にF層2を有する金属張積層体、ポリイミドフィルムと、そのポリイミドフィルムの両方の表面にF層2を有する多層フィルムが挙げられる。これらの積層体は、電気特性等の諸物性に優れるのでプリント基板材料等として好適であり、フレキシブルプリント基板やリジッドプリント基板の製造に使用できる。
The present composition 3 may be applied only to one surface of the base material, or may be applied to both sides of the base material. In the former, a base material layer composed of a base material and a laminate having an F layer 2 on one surface of the base material layer are obtained, and in the latter, a base material layer composed of a base material and such a base material are obtained. A laminate having the F layer 2 on both surfaces of the material layer is obtained. Since the latter laminate is less likely to warp, it is excellent in handleability during its processing.
Specific examples of such a laminate include a metal foil, a metal-clad laminate having an F layer 2 on at least one surface of the metal foil, a polyimide film, and a multilayer having an F layer 2 on both surfaces of the polyimide film. Film is mentioned. Since these laminates are excellent in various physical properties such as electrical characteristics, they are suitable as printed circuit board materials and the like, and can be used for manufacturing flexible printed circuit boards and rigid printed circuit boards.
 また、本積層体から基材を除去することでF層2からなるシートを製造することができる。除去の方法としては、剥離またはエッチングが挙げられる。
 F層2と基材層との積層体及びF層2からなるシートは、アンテナ部品、プリント基板、航空機用部品、自動車用部品、スポーツ用具、食品工業用品、放熱部品、塗料、化粧品等として有用である。具体的な例は、本法2で上述したとおりである。
Further, by removing the base material from the present laminate, a sheet made of the F layer 2 can be manufactured. The method of removal includes peeling or etching.
The laminate of the F layer 2 and the base material layer and the sheet composed of the F layer 2 are useful as antenna parts, printed circuit boards, aircraft parts, automobile parts, sports equipment, food industry supplies, heat dissipation parts, paints, cosmetics, etc. Is. Specific examples are as described above in this method 2.
 以上、本組成物3の製造方法及び本組成物3を用いる積層体の製造方法について説明したが、本発明は、前述した実施形態の構成に限定されない。例えば、本組成物3の製造方法、及び本組成物3を用いる積層体の製造方法は、上記実施形態の構成において、他の任意の工程を追加で有してもよいし、同様の作用を生じる任意の工程と置換されていてよい。 Although the method for producing the present composition 3 and the method for producing a laminate using the present composition 3 have been described above, the present invention is not limited to the configuration of the above-described embodiment. For example, the method for producing the present composition 3 and the method for producing a laminate using the present composition 3 may additionally have any other step in the configuration of the above embodiment, and have the same action. It may be replaced with any step that occurs.
 以下、実施例によって本発明を詳細に説明するが、本発明はこれらに限定されない。
用いた各成分の詳細を示す。
[F粒子]
 F粒子1:TFE単位、NAH単位及びPPVE単位を、この順に97.9モル%、0.1モル%、2.0モル%含み、カルボニル基含有基を主鎖炭素数1×10個あたり1000個有するFポリマー1(溶融温度:300℃)からなる粒子(D50:2.1μm)
 F粒子2:TFE単位及びPPVE単位を、この順に97.5モル%、2.5モル%含み、酸素含有極性基を有さないポリマー(溶融温度305℃)からなる粒子(D50:1.8μm)
 F粒子3:非熱溶融性のポリテトラフルオロエチレンからなる非溶融性粒子(D50:0.3μm)
[液状分散媒(液状化合物)]
 NMP:N-メチル-2-ピロリドン
 Tol:トルエン
[芳香族性樹脂(芳香族ポリマー)のワニス]
 ワニス1:エポキシ化した多官能フェノール樹脂に、アクリル酸を反応させた後、側鎖に存在する水酸基にフタル酸無水物を付加させたカルボキシル基含有フェノール樹脂(芳香族性樹脂1、酸価:80mgKOH/g)のワニス(溶媒:Tol、固形分量:65質量%)
 ワニス2:芳香族ポリアミドイミド(PAI1)の前駆体(酸価:50mgKOH/g)を含む水ワニス
[無機粒子]
 粒子1:板状かつ鱗片状の窒化ホウ素粒子(D50:14.6μm、新モース硬度:2)
 粒子2:球状の炭化ホウ素粒子(D50:12.2μm、新モース硬度:14)
[増粘ポリマー]
 増粘ポリマー1:カルボキシメチルセルロース(分子量:350000、熱分解温度:300℃)
 増粘ポリマー2:ヒドロキシエチルセルロース(住友精化社製「HEC CF-Y」)[樹脂フィルム]
 ポリイミドフィルム1:厚さ25μmの芳香族性ポリイミドフィルム(PI Advanced Materials社製「FG-100」)
Hereinafter, the present invention will be described in detail by way of examples, but the present invention is not limited thereto.
Details of each component used are shown.
[F particle]
F particle 1: Contains 97.9 mol%, 0.1 mol%, and 2.0 mol% of TFE units, NAH units, and PPVE units in this order, and contains carbonyl group-containing groups per 1 × 10 6 main chain carbon atoms. Particles (D50: 2.1 μm) composed of 1000 F-polymer 1 (melting temperature: 300 ° C.)
F particle 2: Particles (D50: 1.8 μm) composed of a polymer (melting temperature 305 ° C.) containing 97.5 mol% and 2.5 mol% of TFE units and PPVE units in this order and having no oxygen-containing polar group. )
F particle 3: Non-meltable particle (D50: 0.3 μm) made of non-heat-meltable polytetrafluoroethylene
[Liquid dispersion medium (liquid compound)]
NMP: N-methyl-2-pyrrolidone Tol: Toluene [Aromatic resin (aromatic polymer) varnish]
Alligator 1: A carboxyl group-containing phenol resin (aromatic resin 1, acid value: 1, which is obtained by reacting an epoxidized polyfunctional phenol resin with an acrylic acid and then adding a phthalic acid anhydride to a hydroxyl group existing in a side chain. 80 mgKOH / g) varnish (solvent: Tol, solid content: 65% by mass)
Varnish 2: Water varnish containing a precursor (acid value: 50 mgKOH / g) of aromatic polyamide-imide (PAI1) [inorganic particles]
Particle 1: Plate-like and scaly boron nitride particles (D50: 14.6 μm, new Mohs hardness: 2)
Particle 2: Spherical boron carbide particles (D50: 12.2 μm, new Mohs hardness: 14)
[Thickening polymer]
Thickening polymer 1: Carboxymethyl cellulose (molecular weight: 350,000, pyrolysis temperature: 300 ° C)
Thickening polymer 2: Hydroxyethyl cellulose ("HEC CF-Y" manufactured by Sumitomo Seika Chemical Co., Ltd.) [Resin film]
Polyimide film 1: Aromatic polyimide film with a thickness of 25 μm (“FG-100” manufactured by PI Advanced Materials)
《態様1の実施例及び評価》
1-1.組成物の製造例
[例1-1]
 (1)F粒子1とワニス1とNMPとを、円筒形の撹拌槽と、この撹拌槽の内壁面の内側で回転する、複数の孔が形成された円筒部を有する回転部位とを備える撹拌機の撹拌槽内に入れ、回転部位を高速回転させて混合して、F粒子1(30質量部)、芳香族性樹脂1(20質量部)、Tol(10質量部)、NMP(30質量部)を含む組成物1-1(粘度:10000mPa・s)を得た。
 (2)ポットに、組成物1とワニス1とを投入し、振り混ぜて、F粒子1(30質量部)、芳香族性樹脂1(80質量部)、Tol(40質量部)及びNMP(60質量部)を含む液状組成物1-1(粘度:400mPa・s)を得た。
 組成物1-1及び液状組成物1-1は、25℃にて30日保管した後も凝集物が視認されず、分散性に優れていた。
<< Examples and Evaluations of Aspect 1 >>
1-1. Production Example of Composition [Example 1-1]
(1) Stirring of F particles 1, varnish 1, and NMP with a cylindrical stirring tank and a rotating portion having a cylindrical portion having a plurality of holes formed inside the inner wall surface of the stirring tank. Put it in the stirring tank of the machine, rotate the rotating part at high speed and mix it, F particle 1 (30 parts by mass), aromatic resin 1 (20 parts by mass), Tol (10 parts by mass), NMP (30 parts by mass) Part) was obtained as a composition 1-1 (viscosity: 10000 mPa · s).
(2) The composition 1 and the varnish 1 are put into a pot and shaken to shake F particles 1 (30 parts by mass), aromatic resin 1 (80 parts by mass), Tol (40 parts by mass) and NMP (20 parts by mass). A liquid composition 1-1 (viscosity: 400 mPa · s) containing 60 parts by mass) was obtained.
The composition 1-1 and the liquid composition 1-1 were excellent in dispersibility, with no visible agglomerates even after storage at 25 ° C. for 30 days.
[例1-2]
 (1)F粒子1をF粒子2に変更する以外は例1-1の(1)と同様にして、組成物1-2を得た。
 (2)組成物1を組成物2に変更する以外は例1-1の(2)と同様にして、液状組成物1-2を得た。
 組成物1-2及び液状組成物1-2は、25℃にて30日保管した後も凝集物が視認され、再分散の操作を要した。
[例1-3]
 ポットに、F粒子2(30質量部)、芳香族性樹脂1(80質量部)、Tol(40質量部)及びNMP(60質量部)を投入し、ジルコニアボールを投入した。その後、150rpmにて1時間、ポットを転がして、液状組成物の調製を試みたが粘調になり、均一な分散液が直接得られなかった。
[Example 1-2]
(1) Composition 1-2 was obtained in the same manner as in (1) of Example 1-1 except that F particle 1 was changed to F particle 2.
(2) A liquid composition 1-2 was obtained in the same manner as in (2) of Example 1-1 except that the composition 1 was changed to the composition 2.
In the composition 1-2 and the liquid composition 1-2, aggregates were visually recognized even after storage at 25 ° C. for 30 days, and a redispersion operation was required.
[Example 1-3]
F particles 2 (30 parts by mass), aromatic resin 1 (80 parts by mass), Tol (40 parts by mass) and NMP (60 parts by mass) were put into the pot, and zirconia balls were put into the pot. Then, the pot was rolled at 150 rpm for 1 hour to try to prepare a liquid composition, but the liquid composition became viscous, and a uniform dispersion could not be directly obtained.
1-2.凸部付き基材の製造例
 Fポリマー1のフィルムと電解銅箔(福田金属箔粉工業社製、「CF-T49A-DS-HD2」)との積層体において、電解銅箔のフィルムと反対側の表面に、液状組成物1-1を塗布して、積層体上に塗膜を形成した。この塗膜を80℃で10分間乾燥して乾燥被膜(厚さ:50μm)を得た。
 次に、所定パターンの開口を有する露光マスクを使用して、紫外線(積算光量:150mJ/cm)を乾燥被膜に照射した。次に、紫外線照射後の乾燥被膜を1.0質量%の炭酸ナトリウム水溶液で現像して、凸部を形成した。
 この凸部を光学顕微鏡で確認した結果、凸部からの粒子の脱落は確認されなかった。また、凸部の鉛筆硬度は4Hであり、ワニス1のみから形成した凸部の鉛筆硬度と同等であった。
1-2. Example of manufacturing a base material with a convex portion In a laminate of an F polymer 1 film and an electrolytic copper foil (manufactured by Fukuda Metal Foil Powder Industry Co., Ltd., "CF-T49A-DS-HD2"), the opposite side of the electrolytic copper foil film. The liquid composition 1-1 was applied to the surface of the laminate to form a coating film on the laminate. This coating film was dried at 80 ° C. for 10 minutes to obtain a dry film (thickness: 50 μm).
Next, the dry film was irradiated with ultraviolet rays (integrated light intensity: 150 mJ / cm 2 ) using an exposure mask having a predetermined pattern of openings. Next, the dry film after irradiation with ultraviolet rays was developed with a 1.0% by mass aqueous sodium carbonate solution to form convex portions.
As a result of confirming this convex portion with an optical microscope, no dropout of particles from the convex portion was confirmed. The pencil hardness of the convex portion was 4H, which was equivalent to the pencil hardness of the convex portion formed only from the varnish 1.
1-3.フィルムの製造例
 液状組成物1-1を電解銅箔(福田金属箔粉工業社製、「CF-T49A-DS-HD2」)に塗布して塗膜を形成し、この塗膜を80℃で10分間乾燥して乾燥被膜(厚さ:50μm)を得た。
 次に、露光マスクを使用することなく、紫外線を乾燥被膜の全体に照射した。なお、紫外線の積算光量を150mJ/cmとした。次に、電解銅箔を塩化第二鉄水溶液でエッチングしてフィルムを得た。SPDR(スプリットポスト誘電体共振器)及びネットワークアナライザーを使用して、このフィルムの10MHzにおける電気特性を測定した結果、誘電率は3以下、誘電正接は0.05以下であり、電気特性に優れていた。
1-3. Example of Film Production A liquid composition 1-1 is applied to an electrolytic copper foil (manufactured by Fukuda Metal Foil Powder Industry Co., Ltd., "CF-T49A-DS-HD2") to form a coating film, and this coating film is applied at 80 ° C. It was dried for 10 minutes to obtain a dry film (thickness: 50 μm).
Next, ultraviolet rays were applied to the entire dry film without using an exposure mask. The integrated amount of ultraviolet rays was set to 150 mJ / cm 2 . Next, the electrolytic copper foil was etched with an aqueous ferric chloride solution to obtain a film. As a result of measuring the electrical characteristics of this film at 10 MHz using an SPDR (split post dielectric resonator) and a network analyzer, the dielectric constant is 3 or less and the dielectric loss tangent is 0.05 or less, which are excellent in electrical characteristics. rice field.
《態様2の実施例及び評価》
2-1.液状組成物の製造例
[例2-1]
 まず、ポットに、ワニス2と増粘ポリマー1と水を投入し混合した。さらに、ポットに、F粒子1を投入して混合し、組成物を調製した。続いて、プラネタリーミキサーに調整した組成物を投入し、混練して、F粒子1(40質量部)、PAI1(0.4質量部)、増粘ポリマー1(0.6質量部)及び水(29質量部)を含む練粉2-1を得た。練粉2-1は、塊状かつ粘土状であった。
 練粉2-1に、水を複数回に分けて添加して撹拌し、円筒形の撹拌槽と、この撹拌槽の内壁面の内側で回転する、複数の孔が形成された円筒部を有する回転部位とを備える撹拌機の撹拌槽内に入れ、回転部位を7500rpmにて30秒高速回転させて混合した。これにより、F粒子1(40質量部)、PAI1(0.4質量部)、増粘ポリマー1(0.6質量部)及び水(59質量部)を含む液状組成物2-1(粘度:300mPa・s)を得た。
 なお、液状組成物2-1におけるF粒子に対する増粘ポリマーの含有量の比は、0.015である。
<< Examples and Evaluations of Aspect 2 >>
2-1. Production Example of Liquid Composition [Example 2-1]
First, varnish 2, thickening polymer 1 and water were put into a pot and mixed. Further, F particle 1 was put into a pot and mixed to prepare a composition. Subsequently, the prepared composition was put into a planetary mixer, kneaded, and F particles 1 (40 parts by mass), PAI 1 (0.4 parts by mass), thickening polymer 1 (0.6 parts by mass) and water. A kneaded powder 2-1 containing (29 parts by mass) was obtained. The kneaded powder 2-1 was lumpy and clay-like.
Water is added to the kneaded powder 2-1 in a plurality of times and stirred, and has a cylindrical stirring tank and a cylindrical portion having a plurality of holes formed which rotates inside the inner wall surface of the stirring tank. It was placed in a stirring tank of a stirrer equipped with a rotating portion, and the rotating portion was rotated at a high speed of 7500 rpm for 30 seconds to mix. As a result, the liquid composition 2-1 (viscosity:) containing F particles 1 (40 parts by mass), PAI 1 (0.4 parts by mass), thickening polymer 1 (0.6 parts by mass) and water (59 parts by mass). 300 mPa · s) was obtained.
The ratio of the content of the thickening polymer to the F particles in the liquid composition 2-1 is 0.015.
[例2-2]
 F粒子1を、F粒子2に変更した以外は、例2-1と同様にして、F粒子2(40質量部)、PAI1(0.4質量部)、増粘ポリマー1(0.6質量部)及び水(59質量部)を含む液状組成物2-2(粘度:600mPa・s)を得た。
[例2-3]
 F粒子1(40質量部)を、F粒子1(20質量部)及びF粒子3(20質量部)に変更した以外は、例2-1と同様にして、F粒子1(20質量部)、F粒子3(20質量部)、PAI1(0.4質量部)、増粘ポリマー1(0.6質量部)及び水(59質量部)を含む液状組成物2-3(粘度:500mPa・s)を得た。
[Example 2-2]
F particle 2 (40 parts by mass), PAI 1 (0.4 parts by mass), thickening polymer 1 (0.6 mass by mass) in the same manner as in Example 2-1 except that F particle 1 was changed to F particle 2. Part) and water (59 parts by mass) were obtained as a liquid composition 2-2 (viscosity: 600 mPa · s).
[Example 2-3]
F particle 1 (20 parts by mass) in the same manner as in Example 2-1 except that F particle 1 (40 parts by mass) was changed to F particle 1 (20 parts by mass) and F particle 3 (20 parts by mass). , F particle 3 (20 parts by mass), PAI 1 (0.4 parts by mass), thickening polymer 1 (0.6 parts by mass) and water (59 parts by mass). s) was obtained.
[例2-4]
 ポットに、F粒子1とワニス2と増粘ポリマー1と水とを投入し、ジルコニアボールを投入した。その後、150rpmにて1時間、ポットを転がして、F粒子1(40質量部)、PAI1(0.4質量部)、増粘ポリマー1(0.6質量部)及び水(59質量部)を含む液状組成物2-4(粘度:900mPa・s)を得た。
[例2-5]
 ポットに、ワニス2と増粘ポリマー1と水を投入し混合する際の、増粘ポリマー1と水の量を、それぞれ2.6質量部、27質量部に変更した以外は、例2-1と同様にして、F粒子1(40質量部)、PAI1(0.4質量部)、増粘ポリマー1(2.6質量部)及び水(57質量部)を含む液状組成物2-5(粘度:1000mPa・s)を得た。
 なお、液状組成物2-5におけるF粒子に対する増粘ポリマーの含有量の比は、0.065である。
[Example 2-4]
F particles 1, varnish 2, thickening polymer 1 and water were put into the pot, and zirconia balls were put into the pot. Then, the pot was rolled at 150 rpm for 1 hour to add F particle 1 (40 parts by mass), PAI 1 (0.4 parts by mass), thickening polymer 1 (0.6 parts by mass) and water (59 parts by mass). A liquid composition containing 2-4 (viscosity: 900 mPa · s) was obtained.
[Example 2-5]
Example 2-1 except that the amounts of the thickening polymer 1 and water when the varnish 2 and the thickening polymer 1 and water were put into the pot and mixed were changed to 2.6 parts by mass and 27 parts by mass, respectively. Liquid composition 2-5 (similar to) containing F particles 1 (40 parts by mass), PAI 1 (0.4 parts by mass), thickening polymer 1 (2.6 parts by mass) and water (57 parts by mass). Viscosity: 1000 mPa · s) was obtained.
The ratio of the content of the thickening polymer to the F particles in the liquid composition 2-5 is 0.065.
[例2-6]
 ポットに、F粒子2とワニス2と増粘ポリマー1と水とを投入し、ジルコニアボールを投入した。その後、150rpmにて1時間、ポットを転がして、F粒子2(40質量部)、PAI1(0.4質量部)、増粘ポリマー1(2.6質量部)及び水(57質量部)を含む液状組成物2-6(粘度:3000mPa・s)を得た。
 なお、液状組成物2-6におけるF粒子に対する増粘ポリマーの含有量の比は、0.065である。
[Example 2-6]
F particles 2, varnish 2, thickening polymer 1 and water were put into the pot, and zirconia balls were put into the pot. Then, the pot was rolled at 150 rpm for 1 hour to add F particles 2 (40 parts by mass), PAI 1 (0.4 parts by mass), thickening polymer 1 (2.6 parts by mass) and water (57 parts by mass). A liquid composition containing 2-6 (viscosity: 3000 mPa · s) was obtained.
The ratio of the content of the thickening polymer to the F particles in the liquid composition 2-6 is 0.065.
[例2-7]
 まず、自転公転撹拌機にF粒子1を投入し、撹拌して事前分散した。さらに、自転公転撹拌機に、事前分散したF粒子1と、ワニス2と増粘ポリマー2と水を投入し、公転速度に対する自転速度の比を2として撹拌して、F粒子1(40質量部)、PAI1(0.4質量部)、増粘ポリマー2(0.6質量部)及び水(19質量部)を含む練粉2-7(温度を25℃、剪断速度を1s-1とするキャピログラフ測定による粘度:20000Pa・s)を得た。
 練粉2-7に、水を数回に分けて添加しながら、公転速度に対する自転速度の比を2として自転公転撹拌機で混合し、F粒子1(40質量部)、PAI1(0.4質量部)、増粘ポリマー2(0.6質量部)及び水(59質量部)を含む液状組成物2-7(粘度:400mPa・s)を得た。
 なお、液状組成物2-7におけるF粒子に対する増粘ポリマーの含有量の比は、0.015である。
 液状組成物2-7を製造してから泡立ちが消失するまでの時間は、液状組成物2-1を製造してから泡立ちが消失するまでの時間よりも短く、液状組成物7はハンドリング性に優れていた。
[Example 2-7]
First, F particles 1 were put into a rotation / revolution stirrer, stirred, and pre-dispersed. Further, the pre-dispersed F particles 1, the varnish 2, the thickening polymer 2, and water are put into the rotation / revolution stirrer, and the mixture is stirred with the ratio of the rotation speed to the revolution speed being 2, and the F particles 1 (40 parts by mass). ), PAI1 (0.4 parts by mass), thickening polymer 2 (0.6 parts by mass) and water (19 parts by mass). Viscosity measured by capillograph: 20000 Pa · s) was obtained.
While adding water to the kneaded powder 2-7 in several portions, the ratio of the rotation speed to the revolution speed was set to 2 and mixed with a rotation revolution stirrer, and F particles 1 (40 parts by mass) and PAI1 (0.4 by mass) were mixed. A liquid composition 2-7 (viscosity: 400 mPa · s) containing (by mass), thickening polymer 2 (0.6 parts by mass) and water (59 parts by mass) was obtained.
The ratio of the content of the thickening polymer to the F particles in the liquid composition 2-7 is 0.015.
The time from the production of the liquid composition 2-7 to the disappearance of foaming is shorter than the time from the production of the liquid composition 2-1 to the disappearance of foaming, and the liquid composition 7 is easy to handle. It was excellent.
2-2.積層体の製造例
 厚さが18μmの長尺の銅箔の表面に、バーコーターを用いて、液状組成物2-1を塗布して、ウェット膜を形成した。次いで、このウェット膜が形成された銅箔を、110℃にて5分間、乾燥炉に通して乾燥させ、ドライ膜を形成した。ドライ膜が形成された基材を、窒素オーブン中で、380℃にて3分間、加熱した。これにより、銅箔と、その表面にF粒子1の溶融焼成物及びPAI1を含む、成形物としての厚さが200μmのポリマー層とを有する積層体2-1を製造した。
 液状組成物2-1を、液状組成物2-2~2-7に変更した以外は、積層体2-1と同様にして、積層体2-2~2-7を得た。
2-2. Production Example of Laminated Liquid Composition 2-1 was applied to the surface of a long copper foil having a thickness of 18 μm using a bar coater to form a wet film. Next, the copper foil on which the wet film was formed was dried by passing it through a drying oven at 110 ° C. for 5 minutes to form a dry film. The substrate on which the dry film was formed was heated in a nitrogen oven at 380 ° C. for 3 minutes. As a result, a laminate 2-1 having a copper foil and a polymer layer having a thickness of 200 μm as a molded product containing a melt-fired product of F particles 1 and PAI1 on the surface thereof was produced.
Laminated bodies 2-2 to 2-7 were obtained in the same manner as in laminated body 2-1 except that the liquid composition 2-1 was changed to liquid compositions 2-2 to 2-7.
2-3.液状組成物の評価
<液状組成物の分散安定性>
 それぞれの液状組成物(18mL)を、をスクリュー管(内容積:30mL)に入れ、25℃にて14日静置した。静置前後の、スクリュー管中の液状組成物全体の高さと沈降層(分散層)の高さとから、以下の式により分散層率を算出し、下記の基準に従って、分散安定性を評価した。
 [評価基準]
 ◎:分散層率が80%以上である。
 〇:分散層率が70%以上80%未満である。
 △:分散層率が60%以上70%未満である。
 ×:分散層率が60%未満である。
2-3. Evaluation of liquid composition <Dispersion stability of liquid composition>
Each liquid composition (18 mL) was placed in a screw tube (internal volume: 30 mL) and allowed to stand at 25 ° C. for 14 days. From the height of the entire liquid composition in the screw tube and the height of the sedimentation layer (dispersion layer) before and after standing, the dispersion layer ratio was calculated by the following formula, and the dispersion stability was evaluated according to the following criteria.
[Evaluation criteria]
⊚: The dispersed layer ratio is 80% or more.
〇: The dispersed layer ratio is 70% or more and less than 80%.
Δ: The dispersed layer ratio is 60% or more and less than 70%.
X: The dispersed layer ratio is less than 60%.
2-4.積層体の評価
<積層体の電気特性>
 それぞれの積層体について、積層体の銅箔を塩化第二鉄水溶液でエッチングにより除去して単独のポリマー層であるシートを作製した。SPDR(スプリットポスト誘電体共振)法にて、作製したシートの誘電正接(測定周波数:10GHz)を測定し、下記の基準に従って評価した。
 [評価基準]
 〇:誘電正接が0.0010未満である。
 △:誘電正接が0.0010以上0.0025以下である。
 ×:誘電正接が0.0025超である。
 それぞれの評価結果を、まとめて表1に示す。
2-4. Evaluation of laminated body <Electrical characteristics of laminated body>
For each laminate, the copper foil of the laminate was removed by etching with an aqueous ferric chloride solution to prepare a sheet as a single polymer layer. The dielectric loss tangent (measurement frequency: 10 GHz) of the prepared sheet was measured by the SPDR (split post dielectric resonance) method and evaluated according to the following criteria.
[Evaluation criteria]
〇: The dielectric loss tangent is less than 0.0010.
Δ: The dielectric loss tangent is 0.0010 or more and 0.0025 or less.
X: The dielectric loss tangent is more than 0.0025.
The results of each evaluation are summarized in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 さらに、積層体2-3から得たシートは積層体2-1から得たシートに比較して折曲性に優れており、シート強度に優れていた。 Furthermore, the sheet obtained from the laminated body 2-3 was superior in bending property to the sheet obtained from the laminated body 2-1 and was excellent in sheet strength.
2-5.積層フィルムの製造例
 ロール・ツー・ロールプロセスにより、ポリイミドフィルム1の一方の面に、液状組成物2-7を小径グラビアリバース法で塗布し、通風乾燥炉(炉温150℃)に3分間で通過させて、水を除去してドライ膜を形成した。また、ポリイミドフィルム1の他方の面にも、同様に液状組成物2-7を塗布し、乾燥し、ドライ膜を形成した。
 次いで、両面にドライ膜が形成されたポリイミドフィルム1を、遠赤外線炉(炉内入口及び出口付近の炉温度300℃、中心付近の炉温度360℃)に5分間で通過させて、F粒子1を溶融焼成させた。
 これにより、ポリイミドフィルム1の両面にF粒子1の溶融焼成物及びPAI1を含むポリマー層(厚さ:25μm)を形成し、ポリマー層、ポリイミドフィルム層及びポリマー層がこの順に直接形成された積層体(積層フィルム2-1)をロール・ツー・ロールプロセスにより得た。
 積層フィルム2-1から矩形状(長さ100mm、幅10mm)の試験片を切り出し、試験片の長さ方向の一端から50mmの位置を固定し、引張り速度50mm/分、長さ方向の片端から試験片に対して90°で、ポリマー層とポリイミドフィルム層とを剥離させた。その際にかかる最大荷重は、15N/cm以上であり、積層フィルム2-1は層間密着性に優れていた。
 積層フィルム2-1から180mm角の四角い試験片を切り出し、試験片についてJIS C 6471:1995に規定される測定方法により線膨張係数を測定した結果、20ppm/℃未満であり、積層フィルム2-1は低線膨張性に優れていた。
2-5. Production Example of Laminated Film By roll-to-roll process, liquid composition 2-7 is applied to one surface of polyimide film 1 by the small-diameter gravure reverse method, and placed in a ventilation drying oven (furnace temperature 150 ° C.) in 3 minutes. It was allowed to pass and water was removed to form a dry film. Further, the liquid composition 2-7 was similarly applied to the other surface of the polyimide film 1 and dried to form a dry film.
Next, the polyimide film 1 having the dry film formed on both sides is passed through a far-infrared furnace (a furnace temperature of 300 ° C. near the inlet and outlet of the furnace and a furnace temperature of 360 ° C. near the center) in 5 minutes, and the F particles 1 are passed. Was melt-fired.
As a result, a polymer layer (thickness: 25 μm) containing the melt-fired product of F particles 1 and PAI1 is formed on both sides of the polyimide film 1, and the polymer layer, the polyimide film layer, and the polymer layer are directly formed in this order. (Laminated film 2-1) was obtained by a roll-to-roll process.
A rectangular (length 100 mm, width 10 mm) test piece is cut out from the laminated film 2-1 and fixed at a position 50 mm from one end in the length direction of the test piece, with a tensile speed of 50 mm / min and from one end in the length direction. The polymer layer and the polyimide film layer were peeled off at 90 ° to the test piece. The maximum load applied at that time was 15 N / cm or more, and the laminated film 2-1 was excellent in interlayer adhesion.
A 180 mm square test piece was cut out from the laminated film 2-1 and the linear expansion coefficient of the test piece was measured by the measuring method specified in JIS C 6471: 1995. As a result, it was less than 20 ppm / ° C., and the laminated film 2-1. Was excellent in low line expansion.
《態様3の実施例及び評価》
3-1.液状組成物の製造例
[例3-1]
 まず、F粒子1と粒子1との粉体混合物とNMPとをポットに投入して混合し、組成物を調製した。続いて、プラネタリーミキサーに、調製した組成物を投入し、混練して、F粒子1(20質量部)、粒子1(20質量部)及びNMP(30質量部)を含む練粉3-1を得た。練粉3-1は、塊状かつ粘土状であった。
 練粉3-1に、NMPを複数回に分けて添加して撹拌し、円筒形の撹拌槽と、この撹拌槽の内壁面の内側で回転する、複数の孔が形成された円筒部を有する回転部位とを備える撹拌機の撹拌槽内に入れ、回転部位を7500rpmにて30秒高速回転させて混合した。これにより、F粒子1(20質量部)、粒子1(20質量部)及びNMP(60質量部)を含む液状組成物3-1(粘度:500mPa・s)を得た。
<< Examples and Evaluations of Aspect 3 >>
3-1. Production Example of Liquid Composition [Example 3-1]
First, a powder mixture of F particles 1 and particles 1 and NMP were put into a pot and mixed to prepare a composition. Subsequently, the prepared composition is put into a planetary mixer, kneaded, and kneaded powder 3-1 containing F particles 1 (20 parts by mass), particles 1 (20 parts by mass) and NMP (30 parts by mass). Got The kneaded powder 3-1 was lumpy and clay-like.
NMP is added to the kneaded powder 3-1 in a plurality of times and stirred, and has a cylindrical stirring tank and a cylindrical portion having a plurality of holes formed which rotates inside the inner wall surface of the stirring tank. It was placed in a stirring tank of a stirrer equipped with a rotating portion, and the rotating portion was rotated at a high speed of 7500 rpm for 30 seconds to mix. As a result, a liquid composition 3-1 (viscosity: 500 mPa · s) containing F particle 1 (20 parts by mass), particle 1 (20 parts by mass) and NMP (60 parts by mass) was obtained.
[例3-2]
 F粒子1を、F粒子2に変更した以外は、例3-1と同様にして、F粒子2(20質量部)、粒子1(20質量部)及びNMP(60質量部)を含む液状組成物3-2(粘度:800mPa・s)を得た。
[例3-3]
 F粒子1(20質量部)を、F粒子1(10質量部)及びF粒子3(10質量部)に変更した以外は、例3-1と同様にして、F粒子1(10質量部)、F粒子2(10質量部)、粒子2(20質量部)及びNMP(60質量部)を含む液状組成物3-3(粘度:700mPa・s)を得た。
[Example 3-2]
Liquid composition containing F particle 2 (20 parts by mass), particle 1 (20 parts by mass) and NMP (60 parts by mass) in the same manner as in Example 3-1 except that F particle 1 was changed to F particle 2. A product 3-2 (viscosity: 800 mPa · s) was obtained.
[Example 3-3]
F particle 1 (10 parts by mass) in the same manner as in Example 3-1 except that F particle 1 (20 parts by mass) was changed to F particle 1 (10 parts by mass) and F particle 3 (10 parts by mass). , F particle 2 (10 parts by mass), particle 2 (20 parts by mass) and NMP (60 parts by mass) to obtain a liquid composition 3-3 (viscosity: 700 mPa · s).
[例3-4]
 F粒子1を、F粒子2に変更し、粒子1を、粒子2に変更した以外は、例3-1と同様にして、F粒子2(20質量部)、粒子2(20質量部)及びNMP(60質量部)を含む液状組成物3-4(粘度:2000mPa・s)を得た。
[例3-5]
 ポットに、F粒子2と粒子1とNMPとを投入し、ジルコニアボールを投入した。その後、150rpmにて1時間、ポットを転がして、F粒子2(20質量部)、粒子1(20質量部)及びNMP(60質量部)を含む液状組成物3-5(粘度:3000mPa・s)を得た。
[Example 3-4]
F particle 2 (20 parts by mass), particle 2 (20 parts by mass) and the same as in Example 3-1 except that F particle 1 was changed to F particle 2 and particle 1 was changed to particle 2. A liquid composition 3-4 (viscosity: 2000 mPa · s) containing NMP (60 parts by mass) was obtained.
[Example 3-5]
F particle 2, particle 1 and NMP were put into the pot, and zirconia balls were put into the pot. Then, the pot was rolled at 150 rpm for 1 hour to form a liquid composition 3-5 (viscosity: 3000 mPa · s) containing F particle 2 (20 parts by mass), particle 1 (20 parts by mass) and NMP (60 parts by mass). ) Was obtained.
3-2.積層体の製造例
 厚さが18μmの長尺の銅箔の表面に、バーコーターを用いて、液状組成物3-1を塗布して、ウェット膜を形成した。次いで、このウェット膜が形成された銅箔を、110℃にて5分間、乾燥炉に通して乾燥させ、ドライ膜を形成した。
 ドライ膜が形成された基材を、0.5MPaでドライ膜を押圧するように調整された、120℃に加熱された二対のロール間に通過させて、ドライ膜を押圧した。
 その後、さらに基材を、窒素オーブン中で、380℃にて3分間、加熱した。これにより、銅箔と、その表面にF粒子1の溶融焼成物及び粒子1を含む、成形物としての厚さが200μmのポリマー層とを有する積層体3-1を製造した。
 液状組成物3-1を、液状組成物3-2~3-5に変更した以外は、積層体3-1と同様にして、積層体3-2~3-5を得た。
3-2. Production Example of Laminated Liquid Composition 3-1 was applied to the surface of a long copper foil having a thickness of 18 μm using a bar coater to form a wet film. Next, the copper foil on which the wet film was formed was dried by passing it through a drying oven at 110 ° C. for 5 minutes to form a dry film.
The substrate on which the dry film was formed was passed between two pairs of rolls heated to 120 ° C., which were adjusted to press the dry film at 0.5 MPa, and pressed the dry film.
The substrate was then further heated in a nitrogen oven at 380 ° C. for 3 minutes. As a result, a laminate 3-1 having a copper foil and a polymer layer having a thickness of 200 μm as a molded product containing a melt-fired product of F particles 1 and particles 1 on the surface thereof was produced.
Laminated bodies 3-2 to 3-5 were obtained in the same manner as in laminated body 3-1 except that the liquid composition 3-1 was changed to liquid compositions 3-2 to 3-5.
3-3.液状組成物の評価
<液状組成物の分散安定性>
 それぞれの液状組成物(18mL)を、をスクリュー管(内容積:30mL)に入れ、25℃にて14日静置した。静置前後の、スクリュー管中の液状組成物全体の高さと沈降層(分散層)の高さとから、以下の式により分散層率を算出し、下記の基準に従って、分散安定性を評価した。
 [評価基準]
 〇:分散層率が80%以上である。
 △:分散層率が60%以上80%未満である。
 ×:分散層率が60%未満である。
3-3. Evaluation of liquid composition <Dispersion stability of liquid composition>
Each liquid composition (18 mL) was placed in a screw tube (internal volume: 30 mL) and allowed to stand at 25 ° C. for 14 days. From the height of the entire liquid composition in the screw tube and the height of the sedimentation layer (dispersion layer) before and after standing, the dispersion layer ratio was calculated by the following formula, and the dispersion stability was evaluated according to the following criteria.
[Evaluation criteria]
〇: The dispersed layer ratio is 80% or more.
Δ: The dispersed layer ratio is 60% or more and less than 80%.
X: The dispersed layer ratio is less than 60%.
3-4.積層体の評価
 3-4-1.積層体の線膨張性
 それぞれの積層体について、積層体の銅箔を塩化第二鉄水溶液でエッチングにより除去して単独のポリマー層であるシートを作製した。作製したシートから180mm角の四角い試験片を切り出し、JIS C 6471:1995に規定される測定方法にしたがって、25℃以上260℃以下の範囲における、試験片の線膨張係数を測定し、下記の基準に従って評価した。
 [評価基準]
 〇:線膨張係数が50ppm/℃以下である。
 △:線膨張係数が50ppm/℃超75ppm/℃以下である。
 ×:線膨張係数が75ppm/℃超である。
3-4. Evaluation of laminated body 3-4-1. Linear Expansion of Laminates For each laminate, the copper foil of the laminate was removed by etching with an aqueous ferric chloride solution to prepare a sheet as a single polymer layer. A 180 mm square test piece is cut out from the prepared sheet, and the coefficient of linear expansion of the test piece is measured in the range of 25 ° C. or higher and 260 ° C. or lower according to the measurement method specified in JIS C 6471: 1995. Evaluated according to.
[Evaluation criteria]
〇: The coefficient of linear expansion is 50 ppm / ° C or less.
Δ: The coefficient of linear expansion is more than 50 ppm / ° C and 75 ppm / ° C or less.
X: The coefficient of linear expansion is over 75 ppm / ° C.
 3-4-2.積層体の熱伝導性
 それぞれの積層体について、積層体の銅箔を塩化第二鉄水溶液でエッチングにより除去して単独のポリマー層であるシートを作製した。作製したシートの中心部から10mm×10mm角の試験片を切り出し、その面内方向における熱伝導率(W/m・K)を測定し、下記の基準に従って評価した。
 [評価基準]
 〇:熱伝導率が5W/m・K以上である。
 ×:熱伝導率が5W/m・K未満である。
 それぞれの評価結果を、まとめて表2に示す。
3-4-2. Thermal conductivity of the laminate For each laminate, the copper foil of the laminate was removed by etching with an aqueous solution of ferric chloride to prepare a sheet as a single polymer layer. A 10 mm × 10 mm square test piece was cut out from the center of the prepared sheet, and the thermal conductivity (W / m · K) in the in-plane direction was measured and evaluated according to the following criteria.
[Evaluation criteria]
〇: The thermal conductivity is 5 W / m · K or more.
X: The thermal conductivity is less than 5 W / m · K.
The results of each evaluation are summarized in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 さらに、積層体3-3から得たシートは積層体3-1から得たシートに比較して折曲性に優れており、シート強度に優れていた。 Further, the sheet obtained from the laminated body 3-3 was superior in bending property as compared with the sheet obtained from the laminated body 3-1 and was excellent in sheet strength.
 本発明の方法で製造される液状組成物は、分散安定性、均一性及び取扱い性に優れる。
 態様1の製造方法で得られる液状組成物は、例えば、ソルダーレジスト組成物、多層プリント配線板の貫通孔又は凹部の穴埋めに用いられる充填材料としても有用である。
 態様2又は態様3の方法で得られる液状組成物からは低線膨張性、熱伝導性、電気特性等の物性に優れた成形物を形成できる。このため、かかる液状組成物は、フィルム、繊維強化フィルム、プリプレグ、金属積層板(樹脂付金属箔)等に容易に加工できる。得られる加工物品は、アンテナ部品、プリント基板、航空機用部品、自動車用部品、スポーツ用具、食品工業用品、すべり軸受け等の材料として使用できる。
The liquid composition produced by the method of the present invention is excellent in dispersion stability, uniformity and handleability.
The liquid composition obtained by the production method of Aspect 1 is also useful as, for example, a solder resist composition, a filling material used for filling through holes or recesses in a multilayer printed wiring board.
From the liquid composition obtained by the method of Aspect 2 or Aspect 3, a molded product having excellent physical properties such as low linear expansion property, thermal conductivity, and electrical properties can be formed. Therefore, such a liquid composition can be easily processed into a film, a fiber reinforced film, a prepreg, a metal laminated plate (metal foil with resin), or the like. The obtained processed article can be used as a material for antenna parts, printed circuit boards, aircraft parts, automobile parts, sports equipment, food industry supplies, slip bearings, and the like.

Claims (15)

  1.  テトラフルオロエチレン系ポリマーの粒子と、芳香族樹脂又は新モース硬度が12以下の無機粒子の少なくとも一方と、液状化合物とを、薄膜旋回による撹拌機構か、又は、自転及び公転による撹拌機構を備えた槽内にて混合して、前記テトラフルオロエチレン系ポリマーの粒子と芳香族樹脂又は新モース硬度が12以下の無機粒子の少なくとも一方と前記液状化合物とを含む液状組成物を得る、液状組成物の製造方法。 The particles of the tetrafluoroethylene polymer, at least one of the aromatic resin or the inorganic particles having a new moth hardness of 12 or less, and the liquid compound are provided with a stirring mechanism by thin film swirling or a stirring mechanism by rotation and revolution. A liquid composition obtained by mixing in a tank to obtain a liquid composition containing the particles of the tetrafluoroethylene polymer, at least one of an aromatic resin or an inorganic particle having a new Morse hardness of 12 or less, and the liquid compound. Production method.
  2.  テトラフルオロエチレン系ポリマーの粒子と、芳香族性樹脂のワニスとを、円筒形の撹拌槽と、前記撹拌槽の内壁面の内側で回転する、複数の孔が形成された円筒部を有する回転部位とを備える撹拌機の前記撹拌槽内に入れ、前記回転部位の回転による遠心力によって、前記撹拌槽の内壁面に薄膜円筒状に拡げながら撹拌して、前記テトラフルオロエチレン系ポリマーと前記芳香族性樹脂を含む液状組成物を得る、請求項1に記載の製造方法。 A rotating portion having a cylindrical stirring tank and a cylindrical portion having a plurality of holes formed by rotating tetrafluoroethylene polymer particles and an aromatic resin varnish inside the inner wall surface of the stirring tank. The tetrafluoroethylene-based polymer and the aromatic The production method according to claim 1, wherein a liquid composition containing a sex resin is obtained.
  3.  前記テトラフルオロエチレン系ポリマーが、ペルフルオロ(アルキルビニルエーテル)に基づく単位を含む酸素含有極性基を有するテトラフルオロエチレン系ポリマーである、請求項2に記載の製造方法。 The production method according to claim 2, wherein the tetrafluoroethylene-based polymer is a tetrafluoroethylene-based polymer having an oxygen-containing polar group containing a unit based on perfluoro (alkyl vinyl ether).
  4.  前記芳香族性樹脂の質量に対する、前記テトラフルオロエチレン系ポリマーの粒子の質量の比が、0.5~10である、請求項2又は3に記載の製造方法。 The production method according to claim 2 or 3, wherein the ratio of the mass of the particles of the tetrafluoroethylene-based polymer to the mass of the aromatic resin is 0.5 to 10.
  5.  テトラフルオロエチレン系ポリマーの粒子と、芳香族性樹脂のワニスとを含み、前記テトラフルオロエチレン系ポリマーの粒子及び前記芳香族性樹脂の総含有量が50質量%以上であり、かつ、前記芳香族性樹脂に対する、前記テトラフルオロエチレン系ポリマーの粒子の含有量の質量比が0.5~10である、芳香族性樹脂のワニスと混合して使用される液状組成物。 The total content of the tetrafluoroethylene polymer particles and the aromatic resin is 50% by mass or more, and the aromatic resin contains particles of the tetrafluoroethylene polymer and a varnish of the aromatic resin. A liquid composition used by mixing with an aromatic resin varnish in which the mass ratio of the particle content of the tetrafluoroethylene-based polymer to the sex resin is 0.5 to 10.
  6.  テトラフルオロエチレン系ポリマーの粒子と、芳香族樹脂と、極性ビニル系ポリマー及び多糖類からなる群から選ばれる少なくとも1種の増粘ポリマーと、水とを、薄膜旋回による撹拌機構か、又は、自転及び公転による撹拌機構を備えた槽内にて混合して、前記テトラフルオロエチレン系ポリマーの粒子と前記芳香族樹脂と前記増粘ポリマーと前記水とを含む液状組成物を得る、請求項1に記載の製造方法。 A stirring mechanism by thin film swirling or rotation of tetrafluoroethylene polymer particles, an aromatic resin, at least one thickening polymer selected from the group consisting of polar vinyl polymers and polysaccharides, and water. To obtain a liquid composition containing the tetrafluoroethylene polymer particles, the aromatic resin, the thickening polymer, and water by mixing in a tank equipped with a stirring mechanism by revolution. The manufacturing method described.
  7.  前記テトラフルオロエチレン系ポリマーの粒子、前記芳香族樹脂、前記増粘ポリマー及び前記水を、薄膜旋回による撹拌機構か、又は、自転及び公転による撹拌機構を備えた槽内にて混合し、さらに水を混合して前記液状組成物を得る、請求項6に記載の製造方法。 The tetrafluoroethylene polymer particles, the aromatic resin, the thickening polymer, and the water are mixed in a tank equipped with a stirring mechanism by thin film swirling or a stirring mechanism by rotation and revolution, and further water is added. The production method according to claim 6, wherein the liquid composition is obtained by mixing the above-mentioned liquid composition.
  8.  前記テトラフルオロエチレン系ポリマーの粒子が、熱溶融性テトラフルオロエチレン系ポリマーの粒子と非熱溶融性テトラフルオロエチレン系ポリマーの粒子とを含む、請求項6又は7に記載の製造方法。 The production method according to claim 6 or 7, wherein the tetrafluoroethylene-based polymer particles include heat-meltable tetrafluoroethylene-based polymer particles and non-heat-meltable tetrafluoroethylene-based polymer particles.
  9.  前記芳香族樹脂が、芳香族ポリイミド、芳香族ポリアミドイミド、芳香族ポリエーテルイミド又はそれらの前駆体である、請求項6~8のいずれか1項に記載の製造方法。 The production method according to any one of claims 6 to 8, wherein the aromatic resin is aromatic polyimide, aromatic polyamideimide, aromatic polyetherimide or a precursor thereof.
  10.  さらに、無機粒子を薄膜旋回による撹拌機構か、又は、自転及び公転による撹拌機構を備えた槽内にて混合して、前記液状組成物を得る、請求項6~9のいずれか1項に記載の製造方法。 The liquid composition is obtained by mixing the inorganic particles in a stirring mechanism by swirling a thin film or in a tank equipped with a stirring mechanism by rotation and revolution, according to any one of claims 6 to 9. Manufacturing method.
  11.  テトラフルオロエチレン系ポリマーの粒子と、芳香族ポリマーと、極性ビニル系ポリマー及び多糖類からなる群から選ばれる少なくとも1種の増粘ポリマーと、水とを含み、前記テトラフルオロエチレン系ポリマーの粒子に対する前記増粘ポリマーの含有量の比が0.05以下であり、温度を25℃、剪断速度剪断速度を1s-1とするキャピログラフ測定による粘度が10000Pa・sから100000Pa・sである組成物。 For the particles of the tetrafluoroethylene-based polymer, which comprises particles of the tetrafluoroethylene-based polymer, an aromatic polymer, at least one thickening polymer selected from the group consisting of polar vinyl-based polymers and polysaccharides, and water. A composition having a thickening polymer content ratio of 0.05 or less, a viscosity of 10000 Pa · s to 100,000 Pa · s as measured by a capillograph with a temperature of 25 ° C. and a shear rate of 1s -1 .
  12.  テトラフルオロエチレン系ポリマーの粒子と、新モース硬度が12以下の無機粒子と、液状化合物とを、薄膜旋回させて混合して、前記テトラフルオロエチレン系ポリマーの粒子と前記無機粒子と前記液状化合物とを含む液状組成物を得る、請求項1に記載の製造方法。 The tetrafluoroethylene polymer particles, the inorganic particles having a new moth hardness of 12 or less, and the liquid compound are mixed by swirling a thin film to obtain the tetrafluoroethylene polymer particles, the inorganic particles, and the liquid compound. The production method according to claim 1, wherein a liquid composition containing the above is obtained.
  13.  前記テトラフルオロエチレン系ポリマーの粒子が、熱溶融性テトラフルオロエチレン系ポリマーの粒子と非熱溶融性テトラフルオロエチレン系ポリマーの粒子とを含む、請求項12に記載の製造方法。 The production method according to claim 12, wherein the tetrafluoroethylene-based polymer particles include heat-meltable tetrafluoroethylene-based polymer particles and non-heat-meltable tetrafluoroethylene-based polymer particles.
  14.  前記無機粒子が、窒化ホウ素粒子又はシリカ粒子である、請求項12又は13に記載の製造方法。 The production method according to claim 12 or 13, wherein the inorganic particles are boron nitride particles or silica particles.
  15.  前記液状組成物の粘度が、10000mPa・s以下である、請求項12~14のいずれか1項に記載の製造方法。 The production method according to any one of claims 12 to 14, wherein the viscosity of the liquid composition is 10,000 mPa · s or less.
PCT/JP2022/000323 2021-01-13 2022-01-07 Method for producing liquid composition and composition WO2022153931A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280009889.2A CN116724077A (en) 2021-01-13 2022-01-07 Method for producing liquid composition and composition
KR1020237022146A KR20230132449A (en) 2021-01-13 2022-01-07 Method and composition for producing liquid compositions
JP2022575562A JPWO2022153931A1 (en) 2021-01-13 2022-01-07

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2021003198 2021-01-13
JP2021-003198 2021-01-13
JP2021-053569 2021-03-26
JP2021-053568 2021-03-26
JP2021053568 2021-03-26
JP2021053569 2021-03-26
JP2021-153688 2021-09-21
JP2021153688 2021-09-21

Publications (1)

Publication Number Publication Date
WO2022153931A1 true WO2022153931A1 (en) 2022-07-21

Family

ID=82446287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000323 WO2022153931A1 (en) 2021-01-13 2022-01-07 Method for producing liquid composition and composition

Country Status (4)

Country Link
JP (1) JPWO2022153931A1 (en)
KR (1) KR20230132449A (en)
TW (1) TW202237710A (en)
WO (1) WO2022153931A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024075610A1 (en) * 2022-10-03 2024-04-11 Agc株式会社 Water-based composition, and method for producing laminate using water-based composition
WO2024075609A1 (en) * 2022-10-03 2024-04-11 Agc株式会社 Aqueous dispersion

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005142572A (en) * 2003-11-05 2005-06-02 E I Du Pont De Nemours & Co Polyimide-based composition derived partially from (micro powdered) fluoropolymer and useful as electronic substrate, and related method and composition
JP2010090304A (en) * 2008-10-09 2010-04-22 Teijin Ltd Method for producing slurry, production system, and slurry molded article
JP2015138656A (en) * 2014-01-22 2015-07-30 アイシン化工株式会社 Paste composition for microporous layer formation, and method for manufacturing the same
JP2016060775A (en) * 2014-09-16 2016-04-25 国立大学法人九州工業大学 Solid insulator and method for producing the same
WO2016159061A1 (en) * 2015-03-31 2016-10-06 株式会社カネカ Method for manufacturing polyimide film and use thereof
WO2017022229A1 (en) * 2015-07-31 2017-02-09 日本ゼオン株式会社 Composite resin material, slurry, molded composite resin material, and process for producing slurry
WO2017135168A1 (en) * 2016-02-02 2017-08-10 三菱瓦斯化学株式会社 Resin composition, prepreg, metal foil-clad laminate, resin sheet, printed wiring board, and semiconductor device
JP2017197727A (en) * 2015-10-01 2017-11-02 三菱鉛筆株式会社 Fluororesin-containing thermosetting resin composition and cured product thereof, and adhesive composition for circuit boards
JP2018048233A (en) * 2016-09-20 2018-03-29 住友電気工業株式会社 Adhesive coating material and method for producing porous composite body
JP2020037661A (en) * 2018-09-05 2020-03-12 Agc株式会社 Fluororesin film, method for producing fluid dispersion and method for producing base material having fluororesin film
WO2020137879A1 (en) * 2018-12-27 2020-07-02 Agc株式会社 Powder liquid dispersion, layered product, and printed base board
WO2021221038A1 (en) * 2020-04-30 2021-11-04 Agc株式会社 Method for producing dispersion, paste, and kneaded powder

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6534848B2 (en) 2015-04-01 2019-06-26 三菱鉛筆株式会社 Nonaqueous dispersion of polytetrafluoroethylene
JP6722721B2 (en) 2018-06-20 2020-07-15 三井・ケマーズ フロロプロダクツ株式会社 Aqueous fluororesin coating composition

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005142572A (en) * 2003-11-05 2005-06-02 E I Du Pont De Nemours & Co Polyimide-based composition derived partially from (micro powdered) fluoropolymer and useful as electronic substrate, and related method and composition
JP2010090304A (en) * 2008-10-09 2010-04-22 Teijin Ltd Method for producing slurry, production system, and slurry molded article
JP2015138656A (en) * 2014-01-22 2015-07-30 アイシン化工株式会社 Paste composition for microporous layer formation, and method for manufacturing the same
JP2016060775A (en) * 2014-09-16 2016-04-25 国立大学法人九州工業大学 Solid insulator and method for producing the same
WO2016159061A1 (en) * 2015-03-31 2016-10-06 株式会社カネカ Method for manufacturing polyimide film and use thereof
WO2017022229A1 (en) * 2015-07-31 2017-02-09 日本ゼオン株式会社 Composite resin material, slurry, molded composite resin material, and process for producing slurry
JP2017197727A (en) * 2015-10-01 2017-11-02 三菱鉛筆株式会社 Fluororesin-containing thermosetting resin composition and cured product thereof, and adhesive composition for circuit boards
WO2017135168A1 (en) * 2016-02-02 2017-08-10 三菱瓦斯化学株式会社 Resin composition, prepreg, metal foil-clad laminate, resin sheet, printed wiring board, and semiconductor device
JP2018048233A (en) * 2016-09-20 2018-03-29 住友電気工業株式会社 Adhesive coating material and method for producing porous composite body
JP2020037661A (en) * 2018-09-05 2020-03-12 Agc株式会社 Fluororesin film, method for producing fluid dispersion and method for producing base material having fluororesin film
WO2020137879A1 (en) * 2018-12-27 2020-07-02 Agc株式会社 Powder liquid dispersion, layered product, and printed base board
WO2021221038A1 (en) * 2020-04-30 2021-11-04 Agc株式会社 Method for producing dispersion, paste, and kneaded powder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024075610A1 (en) * 2022-10-03 2024-04-11 Agc株式会社 Water-based composition, and method for producing laminate using water-based composition
WO2024075609A1 (en) * 2022-10-03 2024-04-11 Agc株式会社 Aqueous dispersion

Also Published As

Publication number Publication date
KR20230132449A (en) 2023-09-15
TW202237710A (en) 2022-10-01
JPWO2022153931A1 (en) 2022-07-21

Similar Documents

Publication Publication Date Title
WO2022153931A1 (en) Method for producing liquid composition and composition
WO2014115637A1 (en) Adhesive composition and adhesive sheet, and cured material and semiconductor device using same
WO2014199843A1 (en) Resin composition, resin sheet, and production method for semiconductor device
WO2022145333A1 (en) Aqueous dispersion and method for producing same
TW201835201A (en) Nonaqueous dispersion of fluorine-based resin heat cure resin composition containing fluorine-based resin using the same and the cured product thereof polyimide precursor solution composition
CN115996990B (en) Liquid composition and substrate with convex portion
WO2023068044A1 (en) Resin composition, cured product thereof, laminate using same, electrostatic chuck, and plasma processing device
JP2021143327A (en) Liquid composition and method for producing the same
CN115803390A (en) Powder composition and composite particle
CN116724077A (en) Method for producing liquid composition and composition
JP2021172714A (en) Liquid composition and sheet
JP2022061412A (en) Production method of liquid composition and production method of laminate
WO2022265033A1 (en) Viscoelastic body manufacturing method and viscoelastic body
JP2023053792A (en) Production method of laminate
KR20230145044A (en) Liquid composition, method for producing the same, and member for attaching the convex portion
JP2023152502A (en) Method for producing liquid composition and liquid composition
WO2023238506A1 (en) Method for producing dispersion liquid, dispersion liquid, and method for producing laminate
WO2024128167A1 (en) Method for storing dispersion liquid container, and dispersion liquid container
WO2024075610A1 (en) Water-based composition, and method for producing laminate using water-based composition
CN116635161A (en) Aqueous dispersion and method for producing same
WO2022138483A1 (en) Aqueous dispersion
JP2023075825A (en) Method for producing modified powder
JP2022108307A (en) Composition manufacturing method and composition
JP2022151685A (en) Material for processing nonoxide-based ceramic and laminated substrate
WO2022019223A1 (en) Dispersion, composite particles, and method for producing composite particles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22739340

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022575562

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280009889.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22739340

Country of ref document: EP

Kind code of ref document: A1