WO2020137879A1 - Powder liquid dispersion, layered product, and printed base board - Google Patents

Powder liquid dispersion, layered product, and printed base board Download PDF

Info

Publication number
WO2020137879A1
WO2020137879A1 PCT/JP2019/050087 JP2019050087W WO2020137879A1 WO 2020137879 A1 WO2020137879 A1 WO 2020137879A1 JP 2019050087 W JP2019050087 W JP 2019050087W WO 2020137879 A1 WO2020137879 A1 WO 2020137879A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
polymer
layer
powder dispersion
polyimide
Prior art date
Application number
PCT/JP2019/050087
Other languages
French (fr)
Japanese (ja)
Inventor
渉 笠井
細田 朋也
敦美 山邊
達也 寺田
創太 結城
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to CN201980086572.7A priority Critical patent/CN113227232B/en
Priority to KR1020217023131A priority patent/KR20210110621A/en
Priority to JP2020563199A priority patent/JP7363818B2/en
Publication of WO2020137879A1 publication Critical patent/WO2020137879A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/082Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • C08J3/091Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids characterised by the chemical constitution of the organic liquid
    • C08J3/096Nitrogen containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/07Aldehydes; Ketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • C08L33/16Homopolymers or copolymers of esters containing halogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material

Definitions

  • the present invention relates to a powder dispersion containing a tetrafluoroethylene-based polymer powder and a polyimide precursor or polyimide in a predetermined amount, a laminate having a layer formed from the dispersion, and a printed circuit board.
  • Tetrafluoroethylene-based polymers such as polytetrafluoroethylene (PTFE) have excellent physical properties such as chemical resistance, water/oil repellency, heat resistance, and electrical properties, and are suitable for use in powders, powder dispersions, films, etc. , And various uses of the physical properties are known.
  • PTFE polytetrafluoroethylene
  • a dispersion liquid obtained by further mixing various materials with a powder dispersion liquid containing a powder of tetrafluoroethylene-based polymer. Is being considered.
  • Patent Document 1 a metal-clad laminate is produced using a powder dispersion liquid containing such powder and a polyimide precursor.
  • ⁇ Tetrafluoroethylene-based polymers generally have low affinity with other various materials such as polyimide precursor or polyimide. For this reason, the above-mentioned powder dispersion is still insufficient in its state stability (dispersibility, viscosity, thixotropy, etc.). If the content of tetrafluoroethylene-based polymer in the powder dispersion is increased (relatively lower content of polyimide) in order to form a layer (coating film) with more excellent electrical properties, its state stability will decrease. However, the present inventors have found that there is a problem that the physical properties of the layer (coating film) deteriorate.
  • the inventors of the present invention have made extensive studies to solve such a problem in a powder dispersion liquid containing a tetrafluoroethylene-based polymer powder and a polyimide precursor or polyimide and having a high content of the former. As a result, they have found that the adjustment of the content and mass ratio of each polymer and the blending of the (meth)acrylate polymer is effective. Further, from the powder dispersion in this case, powder falling is suppressed at the time of forming the layer (coating film), a layer (coating film) having excellent surface smoothness and low water absorption is formed. It was found that the adhesiveness and UV processability are excellent.
  • the present invention is an invention made on the basis of such findings, the object thereof is excellent in dispersibility, powder falling is less likely to occur at the time of forming a layer (coating film), and the smoothness of the surface of the obtained layer (coating film).
  • a powder dispersion capable of improving the properties and UV processability, and a laminate and a printed circuit board obtained by using the powder dispersion.
  • the present invention has the following aspects. ⁇ 1> Tetrafluoroethylene-based polymer powder, (meth)acrylate-based polymer, polyimide precursor or polyimide, and polar organic solvent are contained, and the content of the tetrafluoroethylene-based polymer is 10 to 60% by mass. And a powder dispersion liquid in which the mass ratio of the content of the polyimide precursor or the polyimide to the content of the tetrafluoroethylene-based polymer is 0.3 or less. ⁇ 2> The powder dispersion according to ⁇ 1> above, wherein the ratio is 0.005 or more and 0.1 or less.
  • ⁇ 7> The powder dispersion liquid according to any one of ⁇ 1> to ⁇ 6>, wherein the (meth)acrylate-based polymer includes a unit based on (meth)acrylate having a fluoroalkyl group or a fluoroalkenyl group.
  • the polar organic solvent is a cyclic ester, a cyclic ketone or a cyclic amide.
  • ⁇ 10> Any one of the above items ⁇ 1> to ⁇ 9>, further containing an inorganic filler, wherein the mass ratio of the content of the inorganic filler to the content of the tetrafluoroethylene-based polymer is 0.3 or less.
  • the tetrafluoroethylene-based polymer is a tetrafluoroethylene-based polymer containing units based on units based on perfluoro(alkyl vinyl ether), or polytetrafluoroethylene having a number average molecular weight of 200,000 or less, The powder dispersion liquid according to any one of 1> to ⁇ 10>.
  • the tetrafluoroethylene-based polymer has a polar functional group containing a unit based on perfluoro(alkyl vinyl ether), or a unit based on perfluoro(alkyl vinyl ether) based on all units.
  • ⁇ 13> A laminate having a metal substrate layer and a polymer layer which is provided on the surface of the metal substrate layer and is formed from the powder dispersion liquid according to any one of the above ⁇ 1> to ⁇ 12>.
  • ⁇ 14> A printed circuit board obtained by processing the metal substrate layer of the laminate of ⁇ 13> above into a patterned circuit.
  • the powder dispersion liquid which is excellent in dispersibility, and is hard to generate
  • D50 of powder is a particle size distribution of powder measured by a laser diffraction/scattering method, and a cumulative curve is calculated by setting the total volume of particles constituting the powder (hereinafter, also referred to as “powder particles”) as 100%. , The particle diameter at the point where the cumulative volume becomes 50% on the cumulative curve (volume-based cumulative 50% diameter).
  • Powder D90 is the point where the particle size distribution of powder is measured by the laser diffraction/scattering method, the cumulative volume is calculated with the total volume of the powder particle group as 100%, and the cumulative volume becomes 90% on the cumulative curve. Is the particle size (volume-based cumulative 90% size).
  • D50 and D90 of the powder are the volume-based cumulative 50% diameter and the volume-based cumulative 90% diameter of the powder particles, respectively.
  • the “melt viscosity of the polymer” is based on ASTM D 1238, and a sample of the polymer (2 g) which had been heated for 5 minutes at the measurement temperature in advance using a flow tester and a die of 2 ⁇ -8L was loaded with 0.7 MPa. It is the value measured by holding at the measurement temperature at.
  • the “viscosity of the powder dispersion” is a value measured for the powder dispersion using a B-type viscometer at room temperature (25° C.) and a rotation speed of 30 rpm. The measurement is repeated 3 times, and the average value of the measured values of 3 times is taken.
  • Thixo ratio of powder dispersion is a value obtained by dividing viscosity ⁇ 1 of powder dispersion measured at a rotation speed of 30 rpm by viscosity ⁇ 2 of powder dispersion measured at a rotation speed of 60 rpm. ( ⁇ 1 / ⁇ 2 ).
  • the “unit” in a polymer may be an atomic group formed directly from a monomer by a polymerization reaction, and the polymer obtained by the polymerization reaction may be treated by a predetermined method to convert an atomic group in which a part of the structure is converted. May be Further, a unit based on the monomer A is also referred to as a monomer A unit.
  • the powder dispersion liquid (present dispersion liquid) of the present invention is also referred to as a powder containing a tetrafluoroethylene-based polymer (hereinafter also referred to as “F polymer”) and a (meth)acrylate-based polymer (hereinafter referred to as “A polymer”). ), a polyimide precursor or polyimide (hereinafter, also collectively referred to as “PI”), and a polar organic solvent. It can be said that the powder is dispersed in a polar organic solvent.
  • This dispersion has an F polymer content of 10 to 60% by mass, and the ratio of the PI content to the F polymer content by mass is 0.3 or less. That is, it can be said that the present dispersion liquid is a dispersion liquid containing the A polymer, which has a high content of the F polymer and a low content of the PI.
  • This dispersion has excellent state stability such as dispersibility, viscosity, and thixotropy, does not easily fall off when forming a layer (coating film), has excellent surface smoothness, adhesiveness, and UV processability, and has excellent water absorption.
  • the reason for forming the low layer (coating film) is not always clear, but it is considered as follows.
  • the surface tension of the polar organic solvent is reduced because the A polymer is highly soluble or dispersible in the polar organic solvent.
  • the dispersion medium in the present invention is in a state of being easily wetted with the F polymer, and it is considered that a high content of the F polymer powder was highly dispersed.
  • PI is a small amount component, has a high degree of freedom in the dispersion medium, and is considered to easily interact with each polymer. For this reason, the present dispersion has excellent state stability.
  • Such a powder dispersion is applied to the surface of a metal substrate and heated to form a polymer layer containing an F polymer (hereinafter, also referred to as “F layer”) on the surface of the metal substrate layer to obtain a laminate. ..
  • F layer an F polymer
  • the PI uniformly present in the powder dispersion liquid functions as a binder and suppresses the powder from falling off (powder drop) due to the formation of the F layer, and as a result, the F layer having high surface smoothness is formed.
  • PI is uniformly present in the F layer as it is, it is considered that the F layer having excellent adhesiveness and UV processability and having a low water absorption rate was formed. The effects as described above are remarkably exhibited in a preferred embodiment of the present invention described later.
  • the D50 of the powder in the present invention is preferably 0.05 to 6 ⁇ m, more preferably 0.05 to 3 ⁇ m. Within this range, the fluidity and dispersibility of the powder will be good, and the electrical properties (low dielectric constant, etc.) and heat resistance of the F layer will be most easily exhibited.
  • the D90 of the powder is preferably 8 ⁇ m or less, more preferably 5 ⁇ m or less. Within this range, the fluidity and dispersibility of the powder will be good, and the electrical properties (low dielectric constant, etc.) and heat resistance of the F layer will be most easily exhibited.
  • the loosely packed bulk density of the powder is preferably 0.08 to 0.5 g/mL.
  • the close packing bulk density of the powder is preferably 0.1 to 0.8 g/mL. When the loosely packed bulk density or the densely packed bulk density is within the above range, the powder is excellent in handleability.
  • the powder in the present invention may contain a resin other than the F polymer, and is preferably composed of the F polymer.
  • the content of the F polymer in the powder is preferably 80% by mass or more, more preferably 100% by mass.
  • the resin include aromatic polyester, polyamideimide, thermoplastic polyimide, polyphenylene ether, and polyphenylene oxide.
  • the F polymer in the present invention is a polymer containing a unit (TFE unit) based on tetrafluoroethylene (TFE).
  • the F polymer is a homopolymer (PTFE) composed of TFE units, a copolymer (PFA) containing TFE units and units (PAVE units) based on perfluoro(alkyl vinyl ether) (PAVE), TFE units and hexafluoropropylene (HFP).
  • PTFE homopolymer
  • PFA copolymer
  • PAVE units perfluoro(alkyl vinyl ether)
  • HFP hexafluoropropylene
  • Copolymers containing units based on (HFP units) (FEP) or copolymers containing units based on TFE and units based on fluoroalkylethylene (FAE) (FAE units) are preferred.
  • PTFE also includes a polymer containing an extremely small amount of a unit other than the TFE unit.
  • the polymer containing an extremely small amount of other units preferably contains 99.5 mol% or more, and more preferably 99.9 mol% or more of TFE units based on all the units contained in the polymer.
  • the melt viscosity of the polymer at 380° C. is preferably 1 ⁇ 10 2 to 1 ⁇ 10 8 Pa ⁇ s, more preferably 1 ⁇ 10 3 to 1 ⁇ 10 6 Pa ⁇ s.
  • Such polymers include low molecular weight PTFE.
  • Low-molecular-weight PTFE is obtained by irradiating high-molecular-weight PTFE (melt viscosity is about 1 ⁇ 10 9 to 1 ⁇ 10 10 Pa ⁇ s) with radiation (International Publication No. 2018/026012, International Publication No. 2018). No. /026017, etc.), and PTFE obtained by using a chain transfer agent in the production of PTFE by polymerizing TFE (JP 2009-1745 A, WO 2010/114033). And a polymer described in JP-A-2005-232082), which has a core-shell structure composed of a core portion and a shell portion, and in which only the shell portion has the above melt viscosity. (Polymers described in Japanese Patent Publication No. 2005-527652, International Publication No. 2016/170918, Japanese Patent Laid-Open No. 09-087334, etc.) may be used.
  • F polymers also include polymers containing other units than TFE units.
  • the polymer containing other units preferably contains more than 0.5 mol% of other units with respect to the total units of the polymer.
  • Such other units are preferably PAVE units, HFP units, FAE units or units having a functional group described later.
  • the F polymer preferably has at least one functional group selected from the group consisting of a carbonyl group-containing group, a hydroxy group, an epoxy group, an oxetanyl group, an amino group, a nitrile group and an isocyanate group.
  • the carbonyl group-containing group includes an amide group.
  • the functional group may be contained in a unit forming the F polymer, may be contained in an end group of the polymer main chain, or may be introduced into the F polymer by plasma treatment or the like.
  • the F polymer having the above functional group in the terminal group of the polymer main chain include F polymers having a functional group as the terminal group derived from a polymerization initiator, a chain transfer agent and the like.
  • the functional group is preferably a hydroxy group or a carbonyl group-containing group, more preferably a carbonyl-containing group, more preferably a carbonate group, a carboxy group, a haloformyl group, an alkoxycarbonyl group or an acid anhydride residue, and a carboxy group or an acid anhydride. Residues are more preferred.
  • the F polymer is preferably a polymer containing TFE units, PAVE units, HFP units or FAE units, and units having a functional group.
  • the unit having a functional group is preferably a unit based on a monomer having a functional group.
  • a monomer having a hydroxy group or a carbonyl group-containing group is preferable, a monomer having an acid anhydride residue or a carboxy group is more preferable, and a cyclic monomer having an acid anhydride residue is further preferable.
  • the cyclic monomer include itaconic anhydride, citraconic anhydride, 5-norbornene-2,3-dicarboxylic anhydride (also known as hymic anhydride; hereinafter also referred to as “NAH”) or maleic anhydride. Is preferred.
  • CF 2 ⁇ CFOCF 3 CF 2 ⁇ CFOCF 2 CF 3 , CF 2 ⁇ CFOCF 2 CF 2 CF 3 , CF 2 ⁇ CFO(CF 2 ) 8 F
  • PPVE is preferable.
  • As FAE CH 2 ⁇ CH(CF 2 ) 2 F, CH 2 ⁇ CH(CF 2 ) 3 F, CH 2 ⁇ CH(CF 2 ) 4 F, CH 2 ⁇ CF(CF 2 ) 3 H, CH 2 ⁇ CF(CF 2 ) 4 H, CH 2 ⁇ CH(CF 2 ) 4 F or CH 2 ⁇ CH(CF 2 ) 2 F is preferred.
  • the TFE unit is preferably contained in an amount of 90 to 99 mol %
  • the PAVE unit, the HFP unit or the FAE unit is contained in an amount of 0.5 to 9.97 mol% based on all units contained in the F polymer.
  • the unit having a functional group is contained in an amount of 0.01 to 3 mol %.
  • the melting temperature of the F polymer is preferably 250 to 380°C, more preferably 280 to 350°C. Specific examples of the F polymer include the polymers described in WO2018/16644.
  • Suitable examples of the F polymer include a tetrafluoroethylene-based polymer containing a unit based on perfluoro(alkyl vinyl ether), or PTFE having a number average molecular weight of 200,000 or less.
  • the number average molecular weight of PTFE is a value calculated based on the following formula (1).
  • Mn 2.1 ⁇ 10 10 ⁇ Hc ⁇ 5.16 (1)
  • Mn represents the number average molecular weight of the PTFE
  • ⁇ Hc represents the crystallization calorie (cal/g) of the PTFE measured by the differential scanning calorimetry.
  • the Mn of PTFE is preferably 10 or less, more preferably 50,000 or less.
  • the Mn of PTFE is preferably 10,000 or more.
  • a tetrafluoroethylene-based polymer having a functional group containing a unit based on perfluoro(alkyl vinyl ether) or a unit based on perfluoro(alkyl vinyl ether) is 2.0 to
  • An example is a tetrafluoroethylene-based polymer containing 5.0 mol% and having no functional group.
  • the F polymer of this embodiment not only is the powder excellent in dispersion stability, but it is also easy for the F polymer to be densely and uniformly distributed in the F layer formed from the present dispersion liquid.
  • fine spherulites are easily formed in the F layer, and the adhesiveness with other components is likely to increase. As a result, the F layer having the high physical properties of each of the three components is more likely to be formed.
  • the former polymer contains 90 to 99 mol% of TFE units, 0.5 to 9.97 mol% of PAVE units, and 0.01 to 3 mol% of units based on a monomer having a functional group, based on all units. It is preferable to contain each of them.
  • the content of PAVE units in the latter polymer is preferably 2.1 mol% or more, more preferably 2.2 mol% or more, based on all units.
  • the latter polymer is composed of only TFE units and PAVE units, and preferably contains 95.0 to 98.0 mol% of TFE units and 2.0 to 5.0 mol% of PAVE units based on all units. ..
  • the latter polymer does not have a functional group means that the polymer has less than 500 functional groups per 1 ⁇ 10 6 carbon atoms constituting the polymer main chain.
  • Means The number of the functional groups is preferably 100 or less, more preferably 50 or less.
  • the lower limit of the number of functional groups is usually 0.
  • the latter polymer may be produced by using a polymerization initiator, a chain transfer agent, or the like that does not generate a functional group as a terminal group of the polymer chain, and has an F polymer having a functional group (a polar functional group derived from the polymerization initiator).
  • F polymer having a group in the terminal group of the main chain of the polymer) may be fluorinated. Examples of the fluorination method include a method using fluorine gas (see JP-A-2019-194314).
  • the polar organic solvent in the present invention is a compound that is liquid at 25°C, and may be an aqueous solvent or a non-aqueous solvent.
  • the polar organic solvent is preferably an amide, an alcohol, a sulfoxide, an ester, a ketone or a glycol ether, more preferably an ester, a ketone or an amide, still more preferably a cyclic ester, a cyclic ketone or a cyclic amide.
  • the A polymer in the present invention has a high interaction with these polar organic solvents, and thus the layer (coating film) formability (thixo ratio, adhesiveness, transparency, etc.) of the powder dispersion is easily improved.
  • the polar organic solvent may be used alone or in combination of two or more.
  • polar organic solvent examples include methanol, ethanol, isopropanol, N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, diethyl ether, dioxane, ethyl lactate, ethyl acetate. , Butyl acetate, ⁇ -butyrolactone, methyl ethyl ketone, methyl isopropyl ketone, cyclopentanone, cyclohexanone, ethylene glycol monoisopropyl ether, cellosolve (methyl cellosolve, ethyl cellosolve, etc.).
  • the polar organic solvent is preferably a compound having a boiling point of 80 to 275°C, more preferably a compound having a boiling point of 125 to 250°C. Within this range, when the polar organic solvent is distilled off from the powder dispersion by heating, the volatilization of the polar organic solvent and the decomposition and flow of the A polymer effectively proceed.
  • the polar organic solvent is preferably N-methyl-2-pyrrolidone, ⁇ -butyrolactone, cyclohexanone or cyclopentanone, more preferably cyclohexanone or N-methyl-2-pyrrolidone.
  • the A polymer in the present invention is a polymer containing an acrylate or methacrylate unit.
  • the A polymer is a polymer other than the F polymer.
  • the polymer A preferably contains a unit based on a (meth)acrylate having a hydroxyl group, an oxyalkylene group or a thermally decomposable group (hereinafter, also referred to as “unit H”), and has a hydroxyl group or an oxyalkylene group (meth). More preferably it comprises units based on acrylates. Examples of such (meth)acrylate include compounds represented by the following formulas (1) to (3).
  • X H is a hydrogen atom or a methyl group.
  • Q 1 is a polyoxyalkylene group, preferably a polyoxyethylene group or a polyoxypropylene group, and more preferably a polyoxyethylene group.
  • R 1 is a hydrogen atom, an alkyl group or an aryl group, preferably a hydrogen atom, a methyl group, a nonyl group, a lauryl group, a stearyl group, a phenyl group, a stearylphenyl group, a laurylphenyl group or a nonylphenyl group, and a hydrogen atom or A methyl group is more preferred.
  • R 2 is a hydrogen atom, an alkyl group or an aryl group, and at least one of the three R 2 is an aryl group.
  • R 2 is preferably an alkyl group having 1 to 6 carbon atoms or a phenyl group, more preferably a methyl group or a phenyl group.
  • R 31 is a hydrogen atom or an alkoxy group, preferably a hydrogen atom or an alkoxy group having 1 to 3 carbon atoms, and more preferably a hydrogen atom.
  • the A polymer containing units based on such (meth)acrylate not only promotes the dispersion of the F polymer in the powder dispersion and the interaction with PI, but also heats the powder dispersion to form a layer (coating film). Since it is easily decomposed when it is formed, it is particularly easy to improve the layer (coating film) formability of the powder dispersion liquid.
  • the A polymer preferably contains a unit (hereinafter, also referred to as “unit F”) based on a (meth)acrylate having a fluoroalkyl group or a fluoroalkenyl group.
  • unit F a unit based on a (meth)acrylate having a fluoroalkyl group or a fluoroalkenyl group.
  • (meth)acrylate include compounds represented by the following formula F.
  • Formula F: CH 2 CX F C(O)O-Q F- R F
  • X F is a hydrogen atom, a chlorine atom or a methyl group.
  • Q F is a methylene group, an ethylene group, an oxyethylene group or an oxybutylene group.
  • R F is a polyfluoroalkyl group having 1 to 6 carbon atoms or a polyfluoroalkyl group having 3 to 6 carbon atoms containing an etheric oxygen atom
  • Q F is preferably a methylene group or an ethylene group.
  • R F is a polyfluoroalkenyl group having 4 to 12 carbon atoms
  • Q F is preferably an oxyethylene group or an oxybutylene group.
  • R F is a polyfluoroalkyl group having 1 to 6 carbon atoms, a polyfluoroalkyl group having 3 to 6 carbon atoms containing an etheric oxygen atom, or a polyfluoroalkenyl group having 4 to 12 carbon atoms.
  • R F is, - (CF 2) 4 F or - (CF 2) 6 F are more preferred, - (CF 2 ) 6 F is particularly preferred.
  • the A polymer containing units based on such (meth)acrylate promotes the dispersion of the F polymer in the powder dispersion liquid and the interaction with PI, and therefore it is particularly easy to improve the dispersibility of the powder dispersion liquid.
  • the amount of the unit H with respect to all units contained in the A polymer is preferably 5 to 60 mol%, more preferably 5 to 45 mol%, and further preferably 10 to 30 mol%.
  • the amount of the unit F with respect to all the units contained in the A polymer is preferably 40 to 95 mol%, more preferably 55 to 95 mol%, and further preferably 70 to 90 mol%.
  • the polymer A may be composed of only the unit H and the unit F, and may further include an additional unit other than the unit H and the unit F as long as the effects of the present invention are not impaired.
  • the fluorine content of the A polymer in the present invention is preferably 10 to 60% by mass, more preferably 20 to 50% by mass, and further preferably 25 to 45% by mass.
  • the dispersibility of the powder dispersion is excellent.
  • the upper limit of the fluorine content is in the above range, the affinity of the A polymer for each component of the powder dispersion will be balanced, so that the layer (coating film) formability will be improved in addition to the dispersibility of the powder dispersion.
  • Cheap For example, the F layer is characterized by high wettability and excellent surface smoothness and adhesiveness.
  • the fluorine content of the A polymer can be calculated from the type of monomer used in its synthesis and the charged amount thereof.
  • the PI in the present invention is a polyimide precursor or polyimide.
  • the polyimide precursor is a compound that is imidized to form a polyimide when the F polymer (powder) is baked.
  • an aromatic polyimide obtained by reacting a tetracarboxylic dianhydride and a diamine is preferable, and at least one of the tetracarboxylic dianhydride and the diamine is an aromatic polyimide having an aromatic ring (semi-aromatic polyimide or A wholly aromatic polyimide) is more preferable, and an aromatic polyimide obtained by reacting an aromatic tetracarboxylic dianhydride and a diamine is further preferable.
  • the aromatic polyimide has an absorptivity for ultraviolet rays having a wavelength of 355 nm which is generally used in a UV laser, the UV processability of the obtained F layer is further improved. Further, when the F layer is formed, aromatic rings having high planarity are likely to be laminated, so that the mechanical strength and heat resistance of the F layer are also improved.
  • aromatic tetracarboxylic dianhydrides include pyromellitic dianhydride, 3,3′4,4′-biphenyltetracarboxylic dianhydride, and 2,2′,3,3′-biphenyltetracarboxylic dianhydride.
  • aliphatic tetracarboxylic dianhydride examples include ethylene tetracarboxylic dianhydride, butane tetracarboxylic dianhydride, meso-butane-1,2,3,4-tetracarboxylic dianhydride, 3,3′ ,4,4'-biscyclohexanetetracarboxylic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 1, 2,4,5-Cyclohexanetetracarboxylic dianhydride, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, bicyclo[2.2.2]oct -7-ene-2,3,5,6-tetracarboxylic dianhydride, 4-(2,5-dioxotetrahydrofuran-3-yl)-1,
  • aromatic diamines examples include o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, 3,3′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 3,3′- Diaminodiphenylmethane, 3,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylmethane, 3,3′-diaminodiphenyldifluoromethane, 4,4′-diaminodiphenyldifluoromethane, 3,3′-diaminodiphenylsulfone, 3, 4'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfide, 3,4'-
  • the aromatic polyimide is preferably a semi-aromatic or wholly aromatic polyimide obtained by reacting an aromatic tetracarboxylic dianhydride with an aromatic diamine and/or an aliphatic diamine, and an aromatic tetracarboxylic dianhydride.
  • a wholly aromatic polyimide obtained by reacting with an aromatic diamine is more preferable.
  • the aromatic tetracarboxylic dianhydride include 3,3′,4,4′-biphenyltetracarboxylic dianhydride, 3,3′,4,4′-benzophenone tetracarboxylic dianhydride, and 3,3′.
  • At least one selected from the group consisting of',4,4'-biphenyl ether tetracarboxylic dianhydride, 3,3',4,4'-diphenylsulfone tetracarboxylic dianhydride and pyromellitic dianhydride Is preferred.
  • the aromatic diamine is selected from the group consisting of o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, 3,3′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether, and 3,4′-diaminodiphenyl ether. At least one selected is preferable. If the PI contains at least these monomers, the UV processability of the F layer can be further improved, and the F layer can be provided with excellent heat resistance and low water absorption required when it is used as a printed board. ..
  • the logarithmic viscosity ( ⁇ ihn) of PI in the present invention is preferably 0.2 to 3 dL/g, more preferably 0.5 to 2 dL/g.
  • the logarithmic viscosity is a value represented by the following formula.
  • Formula: ⁇ ihn [ln( ⁇ / ⁇ 0)]/C
  • is a solution prepared by dissolving PI in N-methyl-2-pyrrolidone (NMP) so that the concentration becomes 0.5 g/dL, and the solution is prepared at about 30° C.
  • PI (30 ⁇ 0.01 C) is the value measured with an Ubbelohde viscometer, ⁇ 0 is the value measured with the same viscosity of the same solvent at the same temperature, and C is the concentration of 0.5 g/dL.
  • the logarithmic viscosity (intrinsic viscosity) of PI correlates with the molecular weight of PI. If the logarithmic viscosity of PI is within the above range, the molecular weight and viscosity of PI will be appropriate, and the effect of suppressing the sedimentation of PI powder will be suitably exerted, and the dispersibility of the powder in the powder dispersion liquid will be good.
  • PI suitably functions as a binder, and the effect of preventing powder falling during formation of the F layer is further improved.
  • the ratio (content) of the powder (F polymer) in the present dispersion liquid is 10% by mass or more, more preferably 25% by mass or more, and further preferably 30% by mass or more.
  • the above ratio is 60% by mass or less, and more preferably 50% by mass or less. Within this range, it is easy to form an F layer having excellent surface smoothness, electrical characteristics and heat resistance.
  • the proportion (content) of the polar organic solvent in this dispersion is preferably 30 to 70% by mass, more preferably 40 to 60% by mass. Within this range, the coatability of the powder dispersion is excellent and the layer formability is likely to be improved.
  • the mass ratio of the content of the A polymer to the content of the powder (F polymer) is preferably 0.02 to 0.15, more preferably 0.05 to 0.12. Within this range, the dispersibility of the powder dispersion is further improved, and the physical properties (electrical properties, adhesiveness, surface smoothness, etc.) of the F layer are more easily improved.
  • the mass ratio of the content of PI to the content of the powder (F polymer) is 0.3 or less, preferably 0.1 or less, more preferably less than 0.1, and 0.1. 09 or less is more preferable, and 0.05 or less is particularly preferable.
  • the mass ratio is preferably 0.005 or more, more preferably 0.01 or more.
  • the range of the mass ratio is preferably 0.005 or more and less than 0.1, more preferably 0.01 to 0.09, and further preferably 0.01 to 0.05. In this range, the sedimentation of the powder is suppressed, so that the dispersibility of the powder dispersion liquid is further improved, and further, the powder falling prevention effect in the F layer and the UV processability imparting effect in the F layer are more easily improved.
  • the content and mass ratio of the powder (F polymer), A polymer and PI are set within the above ranges, so that the generation of powder falling during the formation of the F layer can be effectively suppressed and the F layer can be effectively prevented.
  • various physical properties smoothness, electrical characteristics, heat resistance, low water absorption
  • the present dispersion liquid may contain other materials as long as the effects of the present invention are not impaired. Other materials may or may not dissolve in the powder dispersion. Examples of such other materials include non-curable resins and inorganic fillers. Examples of the non-curable resin include non-melting resins such as cured products of curable resins, thermoplastic resins, and heat-melting resins such as heat-melting cured products of curable resins.
  • thermoplastic resin polyester resin, polyolefin resin, styrene resin, polycarbonate, polyarylate, polysulfone, polyallylsulfone, aromatic polyamide, aromatic polyetheramide, polyphenylene sulfide, polyallyl ether ketone, polyamideimide, liquid crystallinity
  • thermoplastic polyimide liquid crystalline polyester, liquid crystalline polyesteramide or polyphenylene ether is preferable.
  • the inorganic filler examples include a nitride filler and an inorganic oxide filler, and a boron nitride filler, beryllia (an oxide of beryllium), a silica filler or a metal oxide (cerium oxide, alumina, soda alumina, magnesium oxide, zinc oxide). , Titanium oxide, etc.) filler is preferred.
  • the present dispersion contains a (meth)acrylate polymer and a polyimide precursor or polyimide, which can be said to be a polar polymer, and has excellent liquid physical properties (viscosity, thixo ratio, etc.) and excellent dispersibility even if it contains an inorganic filler. .. Further, when the F layer is formed from it, not only is the inorganic filler less likely to fall off, but an F layer in which it is evenly distributed is likely to be formed.
  • the shape of the inorganic filler may be granular, non-granular (scaly, layered), or fibrous, and it is preferable to use an inorganic filler having a fine structure.
  • Specific examples of the inorganic filler having such a fine structure include spherical inorganic fillers and fibrous inorganic fillers.
  • the average particle size of the former inorganic filler is preferably 0.001 to 3 ⁇ m, more preferably 0.01 to 1 ⁇ m. In this case, the inorganic filler is more excellent in dispersibility in the powder dispersion liquid, and is more likely to be uniformly distributed in the F layer.
  • the length is the fiber length and the diameter is the fiber diameter.
  • the fiber length is preferably 1 to 10 ⁇ m.
  • the fiber diameter is preferably 0.01 to 1 ⁇ m.
  • the present dispersion liquid contains an inorganic filler, its content is preferably 0.1 or less in terms of mass ratio to the content of the F polymer.
  • At least a part of the surface of the inorganic filler may be coated (surface treated) with an organic material, an inorganic material (however, it is an inorganic material different from the inorganic material forming the inorganic filler), or both.
  • Organic substances used for such coating treatment include polyhydric alcohols (trimethylolethane, pentaerythritol, propylene glycol, etc.), saturated fatty acids (stearic acid, lauric acid, etc.), their esters, alkaneamines, amines (trimethylamine, triethylamine). Etc.), paraffin wax, silane coupling agent, silicone, and polysiloxane.
  • the inorganic substance used for such coating treatment include oxides, hydroxides, hydrated oxides or phosphates of aluminum, silicon, zirconium, tin, titanium, antimony and the like.
  • the inorganic filler to be contained in this dispersion may be determined according to the physical properties imparted to the F layer to be formed.
  • the present dispersion liquid preferably contains a spherical silica filler as the inorganic filler.
  • the average particle diameter of the spherical silica filler is preferably smaller than the average particle diameter (D50) of the F polymer powder.
  • the F polymer powder has an average particle size of 0.2 to 3 ⁇ m
  • the spherical silica filler has an average particle size of 0.01 to 0.1 ⁇ m.
  • the content of the spherical silica filler in this case is preferably 0.01 to 0.1 in terms of mass ratio to the mass content of the F polymer.
  • inorganic fillers include silica fillers having an average particle diameter of 1 ⁇ m or less which are surface-treated with an aminosilane coupling agent (manufactured by Admatechs Co., Ltd., “Admafine” series, etc.), and esters such as propylene glycol dicaprate.
  • the ratio by mass of the content of the inorganic filler to the content of the powder (F polymer) in the present dispersion is preferably 0.3 or less, and more preferably 0.1 or less. preferable.
  • the above ratio is preferably 0.01 or more.
  • the range of the above ratio is preferably 0.01 to 0.3, more preferably 0.01 to 0.1. Within this range, the physical properties of the individual inorganic fillers are likely to be highly exhibited in the F layer.
  • such other materials include thixotropic agents, antifoaming agents, reactive alkoxysilanes, dehydrating agents, plasticizers, weathering agents, antioxidants, heat stabilizers, lubricants, antistatic agents, and whitening agents.
  • examples also include agents, colorants, conductive agents, release agents, surface treatment agents, viscosity modifiers, and flame retardants.
  • the viscosity of the present dispersion is preferably 50 to 1000 mPa ⁇ s, more preferably 75 to 500 mPa ⁇ s. In this case, not only the dispersibility of the powder dispersion is excellent, but also the coatability and the miscibility with the varnish of different polymers are excellent.
  • the thixo ratio of this dispersion is preferably 1.0 to 2.2, more preferably 1.4 to 2.0. In this case, not only is the dispersibility of the powder dispersion excellent, but the coatability of the powder dispersion is also good, and the homogeneity of the F layer is likely to be improved. In addition, the powder dispersion has a higher mixing property with the varnish of different polymers.
  • the laminate of the present invention has a metal substrate layer and a layer (F layer) provided on the surface of the metal substrate layer and formed from the powder dispersion liquid.
  • the material of the metal substrate layer include copper, copper alloy, stainless steel, nickel, nickel alloy (including 42 alloy), aluminum, aluminum alloy, titanium, and titanium alloy.
  • the metal substrate layer is preferably composed of a metal foil such as rolled copper foil or electrolytic copper foil. The surface of such a metal foil may be subjected to rust-preventing treatment (oxide coating of chromate or the like) or roughening treatment.
  • the metal foil may have any thickness as long as it can exhibit a sufficient function in the use of the laminate.
  • the thickness of the metal foil is not less than the ten-point average roughness of the surface thereof, and is preferably 2 to 40 ⁇ m.
  • a metal foil with a carrier comprising a carrier copper foil (thickness: 10 to 35 ⁇ m) and an ultrathin copper foil (thickness: 2 to 5 ⁇ m) laminated on the carrier copper foil via a release layer. May be used. Further, the thickness of the metal foil is preferably larger than the thickness of the F resin layer.
  • the ten-point average roughness of the surface of the metal foil is preferably 0.2 to 1.5 ⁇ m. In this case, the adhesiveness with the F layer tends to be good.
  • the metal foil may have any thickness as long as it can exhibit its function in the intended use of the laminate.
  • the surface of the metal foil may be treated with a silane coupling agent. In this case, the entire surface of the metal foil may be treated with the silane coupling agent, or a part of the surface of the metal foil may be treated with the silane coupling agent.
  • the laminate of the present invention has the F layer on at least one surface of the metal substrate layer. That is, the laminate may have the F layer on only one side of the metal substrate layer, or may have the F layer on both sides of the metal substrate layer.
  • the warp rate of the laminate is preferably 25% or less, more preferably 7% or less. In this case, the handleability when processing the laminated body into a printed board and the transmission characteristics of the obtained printed board are excellent.
  • the dimensional change rate of the laminate is preferably ⁇ 1% or less, more preferably ⁇ 0.2% or less. In this case, it is easy to process the laminated body into a printed board and further to make it into multiple layers.
  • the water contact angle of the surface of the F layer is preferably 70 to 100°, more preferably 70 to 90°. In this case, the adhesiveness between the F layer and another substrate is more excellent.
  • the thickness of the F layer is preferably 1 to 50 ⁇ m, more preferably 5 to 15 ⁇ m. Within this range, it is easy to balance the electrical characteristics when the laminated body is processed into a printed circuit board and the suppression of warpage of the laminated body.
  • the composition and thickness of the two F layers are preferably the same from the viewpoint of suppressing warpage of the laminate.
  • the thickness of the F layer is preferably 25 ⁇ m or less, more preferably 20 ⁇ m or less.
  • the thickness of the F layer is preferably 1 ⁇ m or more.
  • the dispersion contains the respective contents of the F polymer and the PI within a predetermined range, and even when the F layer having an arbitrary thickness is formed, a dense layer of the TFE polymer in which the PI is uniformly dispersed can be formed. As a result, it is possible to form an F layer having an arbitrary thickness having heat resistance, chemical resistance, and electric characteristics.
  • the relative dielectric constant of the F layer is preferably 2.0 to 3.5, more preferably 2.0 to 3.0. In this case, the laminated body can be preferably used for a printed circuit board or the like that requires a low dielectric constant.
  • the dielectric loss tangent of the F layer is preferably 0.003 or less.
  • the powder dispersion is preferably applied to the metal substrate by coating.
  • the coating method may be any method as long as it forms a stable wet film (liquid coating) of the powder dispersion liquid on the surface of the metal substrate after coating, such as a spray method, a roll coating method, a spin coating method, a gravure coating method, The microgravure coating method, gravure offset method, knife coating method, kiss coating method, bar coating method, die coating method, fountain Mayer bar method, and slot die coating method can be mentioned.
  • a spray method a roll coating method
  • a spin coating method a gravure coating method
  • the microgravure coating method, gravure offset method, knife coating method, kiss coating method, bar coating method, die coating method, fountain Mayer bar method, and slot die coating method can be mentioned.
  • the temperature in the low temperature region (hereinafter, also referred to as “dry region”) is preferably 80° C.
  • the temperature of the drying region means the temperature of the atmosphere during the drying.
  • the holding at the temperature in the low temperature region may be performed in one step, or may be performed in two or more steps at different temperatures.
  • Examples of the method for maintaining the temperature in the low temperature region include a method using an oven, a method using a ventilation drying furnace, and a method of irradiating heat rays such as infrared rays.
  • the atmosphere for maintaining the temperature in the low temperature region may be either under normal pressure or under reduced pressure.
  • the atmosphere may be any of an oxidizing gas atmosphere, a reducing gas atmosphere, and an inert gas atmosphere.
  • the inert gas include helium gas, neon gas, argon gas, and nitrogen gas, and nitrogen gas is preferable.
  • the reducing gas include hydrogen gas. Oxygen gas is mentioned as an oxidizing gas.
  • the atmosphere for maintaining the temperature in the low temperature region is preferably an atmosphere containing oxygen gas from the viewpoint of promoting the oxidative decomposition of the A polymer and further improving the adhesiveness of the F layer.
  • the oxygen gas concentration (volume basis) in the atmosphere containing oxygen gas is preferably 1 ⁇ 10 2 to 3 ⁇ 10 5 ppm, more preferably 0.5 ⁇ 10 3 to 1 ⁇ 10 4 ppm. Within this range, it is easy to balance the oxidative decomposition of the A polymer and the suppression of oxidation of the metal substrate.
  • the time for maintaining the temperature in the low temperature region is preferably 0.1 to 10 minutes, more preferably 0.5 to 5 minutes.
  • the F polymer is further fired in the temperature region (hereinafter, also referred to as “firing region”) exceeding the holding temperature in the low temperature region to form the F layer on the surface of the metal substrate.
  • the temperature of the firing region means the temperature of the atmosphere during firing. It is considered that the formation of the F layer in the present invention proceeds because the powder particles are closely packed and the F polymer is fused. If the powder dispersion contains a thermofusible resin, an F layer made of a mixture of an F polymer and a soluble resin is formed. If the powder dispersion contains a thermosetting resin, the F polymer and the thermosetting resin are formed. An F layer composed of the cured product of is formed.
  • Examples of the firing method include a method using an oven, a method using a ventilation drying furnace, and a method of irradiating with heat rays such as infrared rays.
  • pressure may be applied with a heating plate, a heating roll, or the like.
  • a heating method a method of irradiating with far infrared rays is preferable because it can be fired in a short time and the far infrared ray furnace is relatively compact.
  • the heating method may be a combination of infrared heating and hot air heating.
  • the effective wavelength band of far infrared rays is preferably 2 to 20 ⁇ m, and more preferably 3 to 7 ⁇ m from the viewpoint of promoting uniform fusion of the F polymer.
  • the atmosphere during firing may be either under normal pressure or under reduced pressure.
  • the atmosphere during firing may be any of an oxidizing gas atmosphere, a reducing gas atmosphere, and an inert gas atmosphere. From the viewpoint of suppressing the oxidative deterioration of the metal substrate and the F layer to be formed, the reducing property is reduced.
  • a gas atmosphere or an inert gas atmosphere is preferred.
  • the inert gas include helium gas, neon gas, argon gas, and nitrogen gas, and nitrogen gas is preferable.
  • the reducing gas include hydrogen gas. Oxygen gas is mentioned as an oxidizing gas.
  • the atmosphere for firing is preferably a gas atmosphere composed of an inert gas and having a low oxygen gas concentration, and more preferably a gas atmosphere composed of nitrogen gas and having an oxygen gas concentration (volume basis) of less than 500 ppm.
  • the oxygen gas concentration (volume basis) is particularly preferably 300 ppm or less.
  • the oxygen gas concentration (volume basis) is usually 1 ppm or more. Within this range, further oxidative decomposition of the A polymer is suppressed, and the hydrophilicity of the F layer is easily improved.
  • the temperature of the firing region is preferably 250 to 400°C, more preferably 300 to 380°C.
  • the time of maintaining the temperature in the firing region is preferably 30 seconds to 5 minutes, more preferably 1 to 2 minutes.
  • the laminate of the present invention may be surface-treated on the surface of the F layer in order to control the linear expansion of the F layer and further improve the adhesiveness of the F layer.
  • annealing treatment corona discharge treatment, atmospheric pressure plasma treatment, vacuum plasma treatment, UV ozone treatment, excimer treatment, chemical etching, silane coupling treatment, fine surface roughening treatment, etc.
  • the temperature in the annealing treatment is preferably 120 to 180°C.
  • the pressure in the annealing treatment is preferably 0.005 to 0.015 MPa.
  • the annealing time is preferably 30 to 120 minutes.
  • Examples of the plasma irradiation device in the plasma treatment include a high frequency induction system, a capacitive coupling type electrode system, a corona discharge electrode-plasma jet system, a parallel plate type, a remote plasma type, an atmospheric pressure plasma type and an ICP type high density plasma type. ..
  • Examples of the gas used for the plasma treatment include oxygen gas, nitrogen gas, rare gas (argon or the like), hydrogen gas, ammonia gas and the like, and rare gas, hydrogen gas or nitrogen gas is preferable.
  • Specific examples of the gas used for the plasma treatment include argon gas, a mixed gas of hydrogen gas and nitrogen gas, and a mixed gas of hydrogen gas, nitrogen gas, and argon gas.
  • the surface of the F layer has excellent adhesiveness, so that it can be easily and firmly bonded to another substrate.
  • substrates include a heat resistant resin film, a prepreg that is a precursor of a fiber reinforced resin plate, a laminate having a heat resistant resin film layer, and a laminate having a prepreg layer.
  • the prepreg is a sheet-like substrate in which a base material (tow, woven cloth, etc.) of reinforcing fibers (glass fiber, carbon fiber, etc.) is impregnated with a thermosetting resin or a thermoplastic resin.
  • the heat resistant resin film is a film containing at least one kind of heat resistant resin, and may be a single layer film or a multilayer film.
  • heat resistant resin examples include polyimide, polyarylate, polysulfone, polyallylsulfone, aromatic polyamide, aromatic polyetheramide, polyphenylene sulfide, polyallyl ether ketone, polyamideimide, liquid crystalline polyester, liquid crystalline polyesteramide. ..
  • the pressing temperature is preferably not higher than the melting temperature of the F polymer, more preferably 120 to 300°C.
  • the pressing temperature is preferably 310 to 400°C.
  • the hot pressing is particularly preferably performed at a vacuum degree of 20 kPa or less from the viewpoint of suppressing air bubble inclusion and suppressing deterioration due to oxidation. Further, during hot pressing, it is preferable to raise the temperature after reaching the above vacuum degree.
  • the F layer is softened, that is, pressure-bonded in a state having a certain degree of fluidity and adhesiveness, which may cause bubbles.
  • the pressure in the hot press is preferably 0.2 to 10 MPa from the viewpoint of firmly adhering the F layer and the substrate while suppressing damage to the substrate.
  • the laminate of the present invention and the multilayer laminate thereof can be used as a flexible copper-clad laminate or a rigid copper-clad laminate for manufacturing a printed board.
  • the printed circuit board of the present invention is, for example, a method of processing a metal substrate in the laminate of the present invention into a conductor circuit (pattern circuit) having a predetermined pattern by etching or the like, or an electrolytic plating method (semi-additive method) of the laminate of the present invention. (SAP method), modified semi-additive method (MSAP method), etc.) can be used to produce a printed circuit board from the laminate of the present invention.
  • an interlayer insulating film may be formed on the pattern circuit, and a conductor circuit may be further formed on the interlayer insulating film.
  • the interlayer insulating film may be formed by the present dispersion liquid.
  • a solder resist may be laminated on the pattern circuit.
  • the solder resist may be formed by the present dispersion liquid.
  • a coverlay film may be laminated on the pattern circuit.
  • the present invention is not limited to the configurations of the above-described embodiments.
  • the powder dispersion liquid, the laminate, and the printed circuit board of the present invention may have other arbitrary configurations added in the configurations of the above-described embodiments, respectively, and may be replaced with any configuration exhibiting the same function. It may have been done.
  • F polymer 1 a copolymer containing 98.0 mol%, 0.1 mol% and 1.9 mol% of units based on TFE, units based on NAH and units based on PPVE in this order (melting temperature: 300° C., 380 Melt viscosity at °C: 3 ⁇ 10 5 Pa ⁇ s)
  • F polymer 2 polymer containing 98.0 mol% and 2.0 mol% of units based on TFE and units based on PPVE in this order (melting temperature: 305° C., melt viscosity at 380° C.: 3 ⁇ 10 5 Pa.
  • -Powder 1 Powder 1 made of F polymer 1 having D50 of 2.6 ⁇ m and D90 of 7.1 ⁇ m
  • -Powder 2 Powder 2 made of F polymer 2 having D50 of 3.5 ⁇ m and D90 of 9.2 ⁇ m
  • D50 and D90 were measured by dispersing the powder in water using a laser diffraction/scattering type particle size distribution measuring device (“LA-920 measuring device” manufactured by Horiba Ltd.).
  • the copolymer is a nonionic fluoropolyol (weight average molecular weight: about 10,000).
  • powder dispersion (Example 1) First, 47 parts by mass of NMP, 2.5 parts by mass of A polymer, and 50 parts by mass of powder 1 were put into a pot, and then zirconia balls were put into the pot. Then, the pot was rolled under the condition of 150 rpm ⁇ 1 hour to disperse the powder 1 to obtain a mixed liquid. Next, a polyimide varnish was added to this mixed solution while stirring the stirrer at a rotation speed of 500 rpm so that the amount of the polyimide (solid content) in the powder dispersion was 0.5% by mass, Powder dispersion A was prepared. The mass ratio of the content of polyimide (PI) to the content of powder 1 (F polymer 1) is 0.01.
  • Example 2 Powder dispersion B (Example 2), powder dispersion C (Example 3), powder dispersion D (Example 4), in the same manner as in Example 1 except that the type and amount (blending ratio) of each component were changed.
  • Powder dispersion E (Example 5), powder dispersion F (Example 6) and powder dispersion G (Example 7) were obtained.
  • the components of each powder dispersion are summarized in Table 1 below.
  • the F-layer-coated copper foil was irradiated with a UV-YAG laser having a wavelength of 355 nm so as to circulate on a circle having a diameter of 100 ⁇ m.
  • a UV-YAG laser having a wavelength of 355 nm so as to circulate on a circle having a diameter of 100 ⁇ m.
  • circular through holes were formed in the copper foil with the F layer.
  • the laser output was 1.5 W
  • the laser focus diameter was 25 ⁇ m
  • the number of turns on the circumference was 16, and the oscillation frequency was 40 kHz.
  • a piece of copper foil with an F layer including a through hole was cut out and hardened with a thermosetting epoxy resin.
  • Example 8 Powder dispersion A is applied to the roughened surface of the same copper foil using a Mayer bar to form a wet film on the roughened surface, and the mixture is passed through a ventilation drying oven (furnace temperature: 100°C) for 1.5 minutes. The solvent was volatilized to form a coating layer. Further, the powder 1 (F-polymer 1) was passed through a far-infrared furnace (furnace temperature 370° C.) for 1 minute to melt and fire the powder 1 (F-polymer 1) to form an F layer (thickness: 4 ⁇ m) containing the F-polymer 1 on the surface. A copper foil with an F layer was obtained.
  • the surface of the F layer of the copper foil with the F layer was subjected to plasma treatment (output: 4.5 kW, introduced gas: argon gas, introduced gas flow rate: 50 cm 3 /min, pressure: 50 mTorr, treatment time: 2 minutes).
  • FR-4 as a prepreg (“GEA-67N 0.2t (HAN)” manufactured by Hitachi Chemical Co., Ltd.) on the surface of the F layer of the copper foil with the F layer after plasma treatment; reinforcing fiber: glass fiber, matrix resin: epoxy resin , Thickness: 0.2 mm) and vacuum hot pressed (press temperature: 185° C., press pressure: 3.0 MPa, press time: 60 minutes) to obtain a laminate having a cured product layer of prepreg. .. In the solder heat resistance test of floating this laminate on the solder bath, the phenomenon of swelling at the interface between the F layer and the cured product layer (swelling phenomenon) and the F layer The phenomenon that the copper foil floated (floating phenomenon) did not occur.
  • the powder dispersions A to D and the copper foil with the F layer obtained by using these were excellent in various properties. Further, when the dispersant A and the dispersant D were compared with each other, redispersion was possible, but the powder dispersion A was superior. It is considered that this is because the powder 1 contained in the powder dispersion A has a functional group, so that the interaction with the polyimide is enhanced and the dispersibility is further improved.
  • the powder When comparing the copper foil with the F layer, in the copper foil with the F layer using the powder dispersion E, the powder easily fell off (powdered) during the formation of the F layer and adhered to the roll.
  • the copper foil with the F layer using the powder dispersion liquid A to which polyimide was added it is considered that the polyimide became a binder for the powder particles and the falling of the powder was suppressed.
  • the copper foil with the F layer using the powder dispersion E did not contain a polyimide capable of absorbing light in the UV wavelength range, and thus the transmittance at 355 nm was 90%. Therefore, most of the UV laser is transmitted, and it is considered that the UV processability is deteriorated.
  • the laminate manufactured from the powder dispersion A shows good results in a solder heat resistance test. It had heat resistance and chemical resistance.
  • a powder dispersion A′ For 100 parts by mass of the powder dispersion A, 1 part by mass of titanium oxide (particle size: 0.25 ⁇ m; “Taipec CR-50-2” manufactured by Ishihara Sangyo Co., Ltd.) coated with alumina and polyol. was further blended to prepare a powder dispersion A′.
  • the handleability of the powder dispersion A′ (the evaluation results of “3-1.” to “3-3.” above) was equivalent to that of the powder dispersion A.
  • the 355 nm transmittance of the F layer of the copper foil with the F layer obtained by using this powder dispersion A′ was less than 5%, and it was confirmed that its UV absorption was further improved.
  • Example 9 On one side of a 50 ⁇ m-thick polyimide film (SKC Kolon PI, “FS-200”) 2, the powder dispersion A is applied by die coating, and it is placed in a ventilation drying furnace (furnace temperature: 140° C.) for 3 minutes. It was allowed to pass and the solvent was volatilized to form a coating layer. Furthermore, the powder dispersion liquid A was similarly coated on the other surface of the polyimide film 2 and the solvent was volatilized to form a coating layer.
  • a ventilation drying furnace furnace temperature: 140° C.
  • this polyimide film 2 having coating layers formed on both sides is passed through a far-infrared furnace (furnace temperature: 370° C.) for 20 minutes, and the powder 1 is melted and fired to form the F layer 3 containing the polymer 1 on the polyimide.
  • a film A having both surfaces of the film (PI layer) 2 was obtained.
  • the thickness of each F layer was 25 ⁇ m.
  • a film E was obtained in the same manner as in Example 9 except that the powder dispersion E was used instead of the powder dispersion A.
  • Electrolytic copper foil manufactured by Fukuda Metal Foil & Powder Co., Ltd., "CF-T49A-DS-HD2-12" 4 is placed on both sides of each film A and E, and pressed under vacuum at 340°C for 20 minutes.
  • a double-sided copper-clad laminate 1 was obtained. Except that the laser output was 1.5 W, the laser focus diameter was 25 ⁇ m, the number of revolutions on the circumference was 16 times, and the oscillation frequency was 40 kHz, each was performed in the same manner as in “3-7.
  • the double-sided copper clad laminate 1 was irradiated with a UV-YAG laser to form circular through holes 5.
  • FIG. 1 and 2 are photomicrographs of cross-sections around the through hole 5 in each double-sided copper-clad laminate 1.
  • the double-sided copper clad laminate 1 obtained from the film A since the F layer 3 contains polyimide, the UV processability is good. Therefore, as shown in the micrograph of FIG. 1, the degree of deterioration of the F layer 3 and the polyimide film (PI layer) 2 due to UV was suppressed around the through hole 5.
  • the double-sided copper-clad laminate 1 obtained from the film E since the F layer 3 does not contain polyimide, the UV irradiation time had to be lengthened to form the through holes 5. Therefore, as shown in the micrograph of FIG. 2, the degree of deterioration of the F layer 3 and the polyimide film (PI layer) 2 due to UV was great around the through hole 5.
  • the layer obtained by using the dispersant of the present invention has excellent electrical characteristics and UV processability, a laminate having such a layer is processed into an antenna part, a printed circuit board, an aircraft part, an automobile part, etc. Can be used.
  • Double-sided copper clad laminate 2... Polyimide film (PI layer), 3... F layer, 4... Electrolytic copper foil, 5... Through hole, A, E... Film

Abstract

[Problem] To provide a powder liquid dispersion that has excellent dispersibility, has less powder fall-off when used to form a layer (coating film), and allows improvement of the smoothness and UV workability of a surface of the obtained layer (coating film); and a layered product and printed base board obtained by using the powder liquid dispersion. [Solution] The powder liquid dispersion according to the present invention contains: a powder of a tetrafluoroethylene polymer; a (meth)acrylate polymer; a polyimide precursor or a polyimide; and a polar organic solvent, wherein the contained amount of the tetrafluoroethylene polymer is 10-60 mass%, and the ratio by mass of the contained amount of the polyimide precursor or polyimide with respect to the contained amount of the tetrafluoroethylene polymer is 0.3 or less.

Description

パウダー分散液、積層体及びプリント基板Powder dispersion, laminate and printed circuit board
 本発明は、テトラフルオロエチレン系ポリマーのパウダーと、ポリイミド前駆体又はポリイミドとを、所定量で含むパウダー分散液、かかる分散液から形成される層を有する積層体及びプリント基板に関する。 The present invention relates to a powder dispersion containing a tetrafluoroethylene-based polymer powder and a polyimide precursor or polyimide in a predetermined amount, a laminate having a layer formed from the dispersion, and a printed circuit board.
 ポリテトラフルオロエチレン(PTFE)等のテトラフルオロエチレン系ポリマーは、耐薬品性、撥水撥油性、耐熱性、電気特性等の物性に優れており、パウダー、パウダー分散液、フィルム等の使用形態と、その物性を活用した種々の用途とが知られている。
 近年では、電気特性と耐熱性とに優れたプリント基板に加工可能な金属張積層体を作製する際に、テトラフルオロエチレン系ポリマーのパウダーを含むパウダー分散液に、各種材料を更に混合した分散液が検討されている。特許文献1では、かかるパウダーとポリイミド前駆体とを含むパウダー分散液を用いて、金属張積層体を作製している。
Tetrafluoroethylene-based polymers such as polytetrafluoroethylene (PTFE) have excellent physical properties such as chemical resistance, water/oil repellency, heat resistance, and electrical properties, and are suitable for use in powders, powder dispersions, films, etc. , And various uses of the physical properties are known.
In recent years, when preparing a metal-clad laminate that can be processed into a printed circuit board having excellent electrical characteristics and heat resistance, a dispersion liquid obtained by further mixing various materials with a powder dispersion liquid containing a powder of tetrafluoroethylene-based polymer. Is being considered. In Patent Document 1, a metal-clad laminate is produced using a powder dispersion liquid containing such powder and a polyimide precursor.
特開2017-078102号公報JP, 2017-078102, A
 テトラフルオロエチレン系ポリマーは、ポリイミド前駆体又はポリイミド等の他の各種材料との親和性が総じて低い。このため、上記パウダー分散液は、その状態安定性(分散性、粘度、チキソ性等)が未だ充分とは言えない。より電気特性に優れた層(塗膜)を形成するために、パウダー分散液におけるテトラフルオロエチレン系ポリマーの含有量を高める(相対的にポリイミドの含有量を低める)と、その状態安定性が低下し、層(塗膜)の物性が低下する課題があることを、本発明者らは知見している。 ▽Tetrafluoroethylene-based polymers generally have low affinity with other various materials such as polyimide precursor or polyimide. For this reason, the above-mentioned powder dispersion is still insufficient in its state stability (dispersibility, viscosity, thixotropy, etc.). If the content of tetrafluoroethylene-based polymer in the powder dispersion is increased (relatively lower content of polyimide) in order to form a layer (coating film) with more excellent electrical properties, its state stability will decrease. However, the present inventors have found that there is a problem that the physical properties of the layer (coating film) deteriorate.
 本発明者らは、テトラフルオロエチレン系ポリマーのパウダーとポリイミド前駆体又はポリイミドとを含み、前者の含有量が高いパウダー分散液における、かかる課題を解決すべく鋭意検討を重ねた。その結果、それぞれのポリマーの含有量及び質量比と、(メタ)アクリレート系ポリマーの配合との調整が有効であることを知見した。さらに、この場合のパウダー分散液からは、層(塗膜)形成時に粉落ちが抑制され、表面の平滑性に優れ、吸水率の低い層(塗膜)が形成され、層(塗膜)の接着性及びUV加工性が優れることを知見した。 The inventors of the present invention have made extensive studies to solve such a problem in a powder dispersion liquid containing a tetrafluoroethylene-based polymer powder and a polyimide precursor or polyimide and having a high content of the former. As a result, they have found that the adjustment of the content and mass ratio of each polymer and the blending of the (meth)acrylate polymer is effective. Further, from the powder dispersion in this case, powder falling is suppressed at the time of forming the layer (coating film), a layer (coating film) having excellent surface smoothness and low water absorption is formed. It was found that the adhesiveness and UV processability are excellent.
 すなわち、本発明は、かかる知見に基づいてなされた発明であり、その目的は、分散性に優れ、層(塗膜)形成時に粉落ちが生じにくく、得られる層(塗膜)の表面の平滑性及びUV加工性を向上し得るパウダー分散液、並びにかかるパウダー分散液を使用して得られる積層体及びプリント基板の提供にある。 That is, the present invention is an invention made on the basis of such findings, the object thereof is excellent in dispersibility, powder falling is less likely to occur at the time of forming a layer (coating film), and the smoothness of the surface of the obtained layer (coating film). Disclosed is a powder dispersion capable of improving the properties and UV processability, and a laminate and a printed circuit board obtained by using the powder dispersion.
 本発明は、下記の態様を有する。
 <1> テトラフルオロエチレン系ポリマーのパウダーと、(メタ)アクリレート系ポリマーと、ポリイミド前駆体又はポリイミドと、極性有機溶媒とを含み、前記テトラフルオロエチレン系ポリマーの含有量が10~60質量%であり、前記テトラフルオロエチレン系ポリマーの含有量に対する前記ポリイミド前駆体又はポリイミドの含有量の質量での比が0.3以下である、パウダー分散液。
 <2> 前記比が、0.005以上0.1以下である、上記<1>のパウダー分散液。
 <3> 前記ポリイミド前駆体又はポリイミドを、濃度0.5g/dLとなるように、N-メチル-2-ピロリドンに溶解して溶液を調製したとき、該溶液の30℃における対数粘度が0.2~3dL/gである、上記<1>又は<2>のパウダー分散液。
 <4> 前記ポリイミド前駆体又はポリイミドが、芳香族テトラカルボン酸二無水物とジアミンとを反応させてなる、芳香族ポリイミド前駆体又は芳香族ポリイミドである、上記<1>~<3>のいずれかのパウダー分散液。
 <5> 前記テトラフルオロエチレン系ポリマーの含有量に対する前記(メタ)アクリレート系ポリマーの含有量の質量での比が0.02~0.15である、上記<1>~<4>のいずれかのパウダー分散液。
 <6> 前記(メタ)アクリレート系ポリマーは、水酸基又はオキシアルキレン基を有する(メタ)アクリレートに基づく単位を含む、上記<1>~<5>のいずれかのパウダー分散液。
 <7> 前記(メタ)アクリレート系ポリマーは、フルオロアルキル基又はフルオロアルケニル基を有する(メタ)アクリレートに基づく単位を含む、上記<1>~<6>のいずれかのパウダー分散液。
 <8> 前記極性有機溶媒が、環状エステル、環状ケトン又は環状アミドである、上記<1>~<7>のいずれかのパウダー分散液。
 <9> さらに、無機フィラーを含む、上記<1>~<8>のいずれかのパウダー分散液。
 <10> さらに、無機フィラーを含み、前記テトラフルオロエチレン系ポリマーの含有量に対する前記無機フィラーの含有量の質量での比が0.3以下である、上記<1>~<9>のいずれかのパウダー分散液。
 <11> 前記テトラフルオロエチレン系ポリマーが、ペルフルオロ(アルキルビニルエーテル)に基づく単位に基づく単位を含むテトラフルオロエチレン系ポリマー、又は、数平均分子量が20万以下であるポリテトラフルオロエチレンである、上記<1>~<10>のいずれかのパウダー分散液。
 <12> 前記テトラフルオロエチレン系ポリマーが、ペルフルオロ(アルキルビニルエーテル)に基づく単位を含む極性官能基を有するテトラフルオロエチレン系ポリマー、又は、ペルフルオロ(アルキルビニルエーテル)に基づく単位を全単位に対して2.0~5.0モル%含む極性官能基を有さないテトラフルオロエチレン系ポリマーである、上記<1>~<11>のいずれかのパウダー分散液。
 <13> 金属基板層と、該金属基板層の表面に設けられ、上記<1>~<12>のいずれかのパウダー分散液から形成されたポリマー層とを有する、積層体。
 <14> 上記<13>の積層体が有する前記金属基板層がパターン回路に加工されてなる、プリント基板。
The present invention has the following aspects.
<1> Tetrafluoroethylene-based polymer powder, (meth)acrylate-based polymer, polyimide precursor or polyimide, and polar organic solvent are contained, and the content of the tetrafluoroethylene-based polymer is 10 to 60% by mass. And a powder dispersion liquid in which the mass ratio of the content of the polyimide precursor or the polyimide to the content of the tetrafluoroethylene-based polymer is 0.3 or less.
<2> The powder dispersion according to <1> above, wherein the ratio is 0.005 or more and 0.1 or less.
<3> When a solution was prepared by dissolving the polyimide precursor or polyimide in N-methyl-2-pyrrolidone so that the concentration was 0.5 g/dL, the logarithmic viscosity at 30° C. of the solution was 0. The powder dispersion liquid according to the above <1> or <2>, which is 2 to 3 dL/g.
<4> Any of the above <1> to <3>, wherein the polyimide precursor or polyimide is an aromatic polyimide precursor or aromatic polyimide obtained by reacting an aromatic tetracarboxylic dianhydride and a diamine. Kano powder dispersion.
<5> Any one of the above <1> to <4>, wherein the mass ratio of the content of the (meth)acrylate polymer to the content of the tetrafluoroethylene polymer is 0.02 to 0.15. Powder dispersion.
<6> The powder dispersion liquid according to any one of the above <1> to <5>, wherein the (meth)acrylate-based polymer contains a unit based on a (meth)acrylate having a hydroxyl group or an oxyalkylene group.
<7> The powder dispersion liquid according to any one of <1> to <6>, wherein the (meth)acrylate-based polymer includes a unit based on (meth)acrylate having a fluoroalkyl group or a fluoroalkenyl group.
<8> The powder dispersion liquid according to any one of <1> to <7>, wherein the polar organic solvent is a cyclic ester, a cyclic ketone or a cyclic amide.
<9> The powder dispersion liquid according to any one of <1> to <8>, further containing an inorganic filler.
<10> Any one of the above items <1> to <9>, further containing an inorganic filler, wherein the mass ratio of the content of the inorganic filler to the content of the tetrafluoroethylene-based polymer is 0.3 or less. Powder dispersion.
<11> The tetrafluoroethylene-based polymer is a tetrafluoroethylene-based polymer containing units based on units based on perfluoro(alkyl vinyl ether), or polytetrafluoroethylene having a number average molecular weight of 200,000 or less, The powder dispersion liquid according to any one of 1> to <10>.
<12> The tetrafluoroethylene-based polymer has a polar functional group containing a unit based on perfluoro(alkyl vinyl ether), or a unit based on perfluoro(alkyl vinyl ether) based on all units. The powder dispersion liquid according to any one of the above items <1> to <11>, which is a tetrafluoroethylene-based polymer having 0 to 5.0 mol% and having no polar functional group.
<13> A laminate having a metal substrate layer and a polymer layer which is provided on the surface of the metal substrate layer and is formed from the powder dispersion liquid according to any one of the above <1> to <12>.
<14> A printed circuit board obtained by processing the metal substrate layer of the laminate of <13> above into a patterned circuit.
 本発明によれば、分散性に優れ、層(塗膜)形成時に粉落ちが生じにくいパウダー分散液、並びに表面の平滑性及びUV加工性に優れる層(塗膜)を有する積層体及びプリント基板が提供される。 ADVANTAGE OF THE INVENTION According to this invention, the powder dispersion liquid which is excellent in dispersibility, and is hard to generate|occur|produce powder at the time of layer (coating film) formation, and the layered product and printed circuit board which have the layer (coating film) excellent in surface smoothness and UV processability Will be provided.
フィルムAから得られた両面銅張積層体における貫通孔の周辺の断面を撮影した顕微鏡写真である。It is the microscope picture which image|photographed the cross section of the periphery of the through-hole in the double-sided copper clad laminated body obtained from the film A. フィルムEから得られた両面銅張積層体における貫通孔の周辺の断面を撮影した顕微鏡写真である。It is the microscope picture which image|photographed the cross section of the periphery of the through-hole in the double-sided copper clad laminated body obtained from the film E.
 以下の用語は、以下の意味を有する。
 「パウダーのD50」は、レーザー回折・散乱法によってパウダーの粒度分布を測定し、パウダーを構成する粒子(以下、「パウダー粒子」とも記す。)の集団の全体積を100%として累積カーブを求め、その累積カーブ上で累積体積が50%となる点の粒子径(体積基準累積50%径)である。
 「パウダーのD90」は、レーザー回折・散乱法によってパウダーの粒度分布を測定し、パウダー粒子の集団の全体積を100%として累積カーブを求め、その累積カーブ上で累積体積が90%となる点の粒子径(体積基準累積90%径)である。
 つまり、パウダーのD50及びD90は、それぞれ、パウダー粒子の体積基準累積50%径及び体積基準累積90%径である。
 「ポリマーの溶融粘度」は、ASTM D 1238に準拠し、フローテスター及び2Φ-8Lのダイを用い、予め測定温度にて5分間加熱しておいたポリマーの試料(2g)を0.7MPaの荷重にて測定温度に保持して測定した値である。
 「パウダー分散液の粘度」は、B型粘度計を用いて、室温下(25℃)で回転数が30rpmの条件下でパウダー分散液について測定される値である。測定を3回繰り返し、3回分の測定値の平均値とする。
 「パウダー分散液のチキソ比」は、回転数が30rpmの条件で測定されるパウダー分散液の粘度ηを、回転数が60rpmの条件で測定されるパウダー分散液の粘度ηで除した値(η/η)である。
 ポリマーにおける「単位」は、重合反応によってモノマーから直接形成された原子団であってもよく、重合反応によって得られたポリマーを所定の方法で処理して、構造の一部が変換された原子団であってもよい。また、モノマーAに基づく単位をモノマーA単位とも記す。
The following terms have the following meanings.
“D50 of powder” is a particle size distribution of powder measured by a laser diffraction/scattering method, and a cumulative curve is calculated by setting the total volume of particles constituting the powder (hereinafter, also referred to as “powder particles”) as 100%. , The particle diameter at the point where the cumulative volume becomes 50% on the cumulative curve (volume-based cumulative 50% diameter).
"Powder D90" is the point where the particle size distribution of powder is measured by the laser diffraction/scattering method, the cumulative volume is calculated with the total volume of the powder particle group as 100%, and the cumulative volume becomes 90% on the cumulative curve. Is the particle size (volume-based cumulative 90% size).
That is, D50 and D90 of the powder are the volume-based cumulative 50% diameter and the volume-based cumulative 90% diameter of the powder particles, respectively.
The “melt viscosity of the polymer” is based on ASTM D 1238, and a sample of the polymer (2 g) which had been heated for 5 minutes at the measurement temperature in advance using a flow tester and a die of 2Φ-8L was loaded with 0.7 MPa. It is the value measured by holding at the measurement temperature at.
The “viscosity of the powder dispersion” is a value measured for the powder dispersion using a B-type viscometer at room temperature (25° C.) and a rotation speed of 30 rpm. The measurement is repeated 3 times, and the average value of the measured values of 3 times is taken.
“Thixo ratio of powder dispersion” is a value obtained by dividing viscosity η 1 of powder dispersion measured at a rotation speed of 30 rpm by viscosity η 2 of powder dispersion measured at a rotation speed of 60 rpm. (Η 12 ).
The “unit” in a polymer may be an atomic group formed directly from a monomer by a polymerization reaction, and the polymer obtained by the polymerization reaction may be treated by a predetermined method to convert an atomic group in which a part of the structure is converted. May be Further, a unit based on the monomer A is also referred to as a monomer A unit.
 本発明のパウダー分散液(本分散液)は、テトラフルオロエチレン系ポリマー(以下、「Fポリマー」とも記す。)を含むパウダーと、(メタ)アクリレート系ポリマー(以下、「Aポリマー」とも記す。)と、ポリイミド前駆体又はポリイミド(以下、まとめて「PI」とも記す。)と、極性有機溶媒とを含む。上記パウダーは、極性有機溶媒中に分散しているとも言える。
 本分散液は、Fポリマーの含有量が10~60質量%であり、Fポリマーの含有量に対するPIの含有量の質量での比が0.3以下である。つまり、本分散液は、Fポリマーの含有量が高くPIの含有量が低い、Aポリマーを含む分散液であるとも言える。
The powder dispersion liquid (present dispersion liquid) of the present invention is also referred to as a powder containing a tetrafluoroethylene-based polymer (hereinafter also referred to as “F polymer”) and a (meth)acrylate-based polymer (hereinafter referred to as “A polymer”). ), a polyimide precursor or polyimide (hereinafter, also collectively referred to as “PI”), and a polar organic solvent. It can be said that the powder is dispersed in a polar organic solvent.
This dispersion has an F polymer content of 10 to 60% by mass, and the ratio of the PI content to the F polymer content by mass is 0.3 or less. That is, it can be said that the present dispersion liquid is a dispersion liquid containing the A polymer, which has a high content of the F polymer and a low content of the PI.
 本分散液が、分散性、粘度、チキソ性等の状態安定性に優れ、層(塗膜)形成時に粉落ちしにくく、表面の平滑性と接着性とUV加工性とに優れ、吸水率の低い層(塗膜)を形成する理由は、必ずしも明確ではないが、以下の様に考えられる。
 Aポリマーが極性有機溶媒に高度に溶解するか分散するため、極性有機溶媒の表面張力は低下する。これにより、本発明における分散媒は、Fポリマーと濡れやすい状態になるため、高含有量のFポリマーのパウダーが高度に分散したと考えられる。また、PIは、少量成分であり、分散媒中で自由度の高い状態にあり、それぞれのポリマーと相互作用しやすいと考えられる。かかる理由により、本分散液は、状態安定性に優れている。
This dispersion has excellent state stability such as dispersibility, viscosity, and thixotropy, does not easily fall off when forming a layer (coating film), has excellent surface smoothness, adhesiveness, and UV processability, and has excellent water absorption. The reason for forming the low layer (coating film) is not always clear, but it is considered as follows.
The surface tension of the polar organic solvent is reduced because the A polymer is highly soluble or dispersible in the polar organic solvent. As a result, the dispersion medium in the present invention is in a state of being easily wetted with the F polymer, and it is considered that a high content of the F polymer powder was highly dispersed. Further, PI is a small amount component, has a high degree of freedom in the dispersion medium, and is considered to easily interact with each polymer. For this reason, the present dispersion has excellent state stability.
 かかるパウダー分散液を、例えば、金属基板の表面に付与及び加熱し、Fポリマーを含むポリマー層(以下、「F層」とも記す。)を金属基板層の表面に形成すると、積層体が得られる。この際、パウダー分散液に均一に存在するPIがバインダーとして機能し、F層の形成に伴うパウダーの脱落(粉落ち)を抑制すると考えられ、結果、表面の平滑性の高いF層が形成されたと考えられる。また、PIは、そのままF層中に均一に存在するため、接着性とUV加工性とに優れ、吸水率の低いF層が形成されたと考えられる。
 以上のような効果は、後述する本発明の好ましい態様において、顕著に発現する。
Such a powder dispersion is applied to the surface of a metal substrate and heated to form a polymer layer containing an F polymer (hereinafter, also referred to as “F layer”) on the surface of the metal substrate layer to obtain a laminate. .. At this time, it is considered that the PI uniformly present in the powder dispersion liquid functions as a binder and suppresses the powder from falling off (powder drop) due to the formation of the F layer, and as a result, the F layer having high surface smoothness is formed. It is thought that Further, since PI is uniformly present in the F layer as it is, it is considered that the F layer having excellent adhesiveness and UV processability and having a low water absorption rate was formed.
The effects as described above are remarkably exhibited in a preferred embodiment of the present invention described later.
 本発明におけるパウダーのD50は、0.05~6μmが好ましく、0.05~3μmがより好ましい。この範囲において、パウダーの流動性と分散性とが良好となり、F層の電気特性(低誘電率等)や耐熱性が最も発現しやすい。パウダーのD90は、8μm以下が好ましく、5μm以下がさらに好ましい。この範囲において、パウダーの流動性と分散性とが良好となり、F層の電気特性(低誘電率等)や耐熱性が最も発現しやすい。
 パウダーの疎充填嵩密度は、0.08~0.5g/mLが好ましい。パウダーの密充填嵩密度は、0.1~0.8g/mLが好ましい。疎充填嵩密度又は密充填嵩密度が上記範囲にある場合、パウダーのハンドリング性が優れる。
The D50 of the powder in the present invention is preferably 0.05 to 6 μm, more preferably 0.05 to 3 μm. Within this range, the fluidity and dispersibility of the powder will be good, and the electrical properties (low dielectric constant, etc.) and heat resistance of the F layer will be most easily exhibited. The D90 of the powder is preferably 8 μm or less, more preferably 5 μm or less. Within this range, the fluidity and dispersibility of the powder will be good, and the electrical properties (low dielectric constant, etc.) and heat resistance of the F layer will be most easily exhibited.
The loosely packed bulk density of the powder is preferably 0.08 to 0.5 g/mL. The close packing bulk density of the powder is preferably 0.1 to 0.8 g/mL. When the loosely packed bulk density or the densely packed bulk density is within the above range, the powder is excellent in handleability.
 本発明におけるパウダーは、Fポリマー以外の樹脂を含んでいてもよく、Fポリマーからなるのが好ましい。パウダーにおけるFポリマーの含有量は、80質量%以上が好ましく、100質量%がより好ましい。
 上記樹脂としては、芳香族ポリエステル、ポリアミドイミド、熱可塑性ポリイミド、ポリフェニレンエーテル、ポリフェニレンオキシドが挙げられる。
The powder in the present invention may contain a resin other than the F polymer, and is preferably composed of the F polymer. The content of the F polymer in the powder is preferably 80% by mass or more, more preferably 100% by mass.
Examples of the resin include aromatic polyester, polyamideimide, thermoplastic polyimide, polyphenylene ether, and polyphenylene oxide.
 本発明におけるFポリマーは、テトラフルオロエチレン(TFE)に基づく単位(TFE単位)を含むポリマーである。
 Fポリマーは、TFE単位からなるホモポリマー(PTFE)、TFE単位とペルフルオロ(アルキルビニルエーテル)(PAVE)に基づく単位(PAVE単位)とを含むコポリマー(PFA)、TFE単位とヘキサフルオロプロピレン(HFP)に基づく単位(HFP単位)とを含むコポリマー(FEP)又はTFE単位とフルオロアルキルエチレン(FAE)に基づく単位(FAE単位)とを含むコポリマーが好ましい。
The F polymer in the present invention is a polymer containing a unit (TFE unit) based on tetrafluoroethylene (TFE).
The F polymer is a homopolymer (PTFE) composed of TFE units, a copolymer (PFA) containing TFE units and units (PAVE units) based on perfluoro(alkyl vinyl ether) (PAVE), TFE units and hexafluoropropylene (HFP). Copolymers containing units based on (HFP units) (FEP) or copolymers containing units based on TFE and units based on fluoroalkylethylene (FAE) (FAE units) are preferred.
 PTFEは、TFE単位以外の他の単位を極微量含むポリマーも包含される。他の単位を極微量含むポリマーは、このポリマーに含まれる全単位に対して、TFE単位を、99.5モル%以上含むのが好ましく、99.9モル%以上含むのがより好ましい。
 また、かかるポリマーの380℃における溶融粘度は、1×10~1×10Pa・sが好ましく、1×10~1×10Pa・sがより好ましい。
 かかるポリマーとしては、低分子量のPTFEが挙げられる。
PTFE also includes a polymer containing an extremely small amount of a unit other than the TFE unit. The polymer containing an extremely small amount of other units preferably contains 99.5 mol% or more, and more preferably 99.9 mol% or more of TFE units based on all the units contained in the polymer.
The melt viscosity of the polymer at 380° C. is preferably 1×10 2 to 1×10 8 Pa·s, more preferably 1×10 3 to 1×10 6 Pa·s.
Such polymers include low molecular weight PTFE.
 低分子量のPTFEは、高分子量のPTFE(溶融粘度が1×10~1×1010Pa・s程度)に放射線を照射して得られるPTFE(国際公開第2018/026012号、国際公開第2018/026017号等に記載のポリマー)であってもよく、TFEを重合してPTFEを製造する際に連鎖移動剤を用いて得られるPTFE(特開2009-1745号公報、国際公開第2010/114033号、特開2015-232082号公報等に記載のポリマー)であってもよく、コア部分とシェル部分とからなるコア-シェル構造を有するポリマーであって、シェル部分のみが上記溶融粘度を有するPTFE(特表2005-527652号公報、国際公開第2016/170918号、特開平09-087334号公報等に記載のポリマー)であってもよい。 Low-molecular-weight PTFE is obtained by irradiating high-molecular-weight PTFE (melt viscosity is about 1×10 9 to 1×10 10 Pa·s) with radiation (International Publication No. 2018/026012, International Publication No. 2018). No. /026017, etc.), and PTFE obtained by using a chain transfer agent in the production of PTFE by polymerizing TFE (JP 2009-1745 A, WO 2010/114033). And a polymer described in JP-A-2005-232082), which has a core-shell structure composed of a core portion and a shell portion, and in which only the shell portion has the above melt viscosity. (Polymers described in Japanese Patent Publication No. 2005-527652, International Publication No. 2016/170918, Japanese Patent Laid-Open No. 09-087334, etc.) may be used.
 Fポリマーは、TFE単位以外の他の単位を含むポリマーも包含される。他の単位を含むポリマーは、このポリマーの全単位に対して、他の単位を0.5モル%超含むのが好ましい。かかる他の単位は、PAVE単位、HFP単位、FAE単位又は後述する官能基を有する単位が好ましい。
 Fポリマーは、カルボニル基含有基、ヒドロキシ基、エポキシ基、オキセタニル基、アミノ基、ニトリル基及びイソシアネート基からなる群から選択される少なくとも1種の官能基を有するのが好ましい。Fポリマーが上記官能基を有する場合、F層の接着性がより向上する。なお、カルボニル基含有基には、アミド基が含まれる。
F polymers also include polymers containing other units than TFE units. The polymer containing other units preferably contains more than 0.5 mol% of other units with respect to the total units of the polymer. Such other units are preferably PAVE units, HFP units, FAE units or units having a functional group described later.
The F polymer preferably has at least one functional group selected from the group consisting of a carbonyl group-containing group, a hydroxy group, an epoxy group, an oxetanyl group, an amino group, a nitrile group and an isocyanate group. When the F polymer has the above functional group, the adhesiveness of the F layer is further improved. The carbonyl group-containing group includes an amide group.
 上記官能基は、Fポリマーを構成する単位に含まれてもよく、ポリマー主鎖の末端基に含まれてもよく、プラズマ処理等によりFポリマーに導入してもよい。ポリマー主鎖の末端基に上記官能基が含まれるFポリマーとしては、重合開始剤、連鎖移動剤等に由来する末端基として官能基を有するFポリマーが挙げられる。
 上記官能基は、ヒドロキシ基又はカルボニル基含有基が好ましく、カルボニル含有基がより好ましく、カーボネート基、カルボキシ基、ハロホルミル基、アルコキシカルボニル基又は酸無水物残基がより好ましく、カルボキシ基又は酸無水物残基がさらに好ましい。
 Fポリマーは、TFE単位と、PAVE単位、HFP単位又はFAE単位と、官能基を有する単位とを含むポリマーが好ましい。
The functional group may be contained in a unit forming the F polymer, may be contained in an end group of the polymer main chain, or may be introduced into the F polymer by plasma treatment or the like. Examples of the F polymer having the above functional group in the terminal group of the polymer main chain include F polymers having a functional group as the terminal group derived from a polymerization initiator, a chain transfer agent and the like.
The functional group is preferably a hydroxy group or a carbonyl group-containing group, more preferably a carbonyl-containing group, more preferably a carbonate group, a carboxy group, a haloformyl group, an alkoxycarbonyl group or an acid anhydride residue, and a carboxy group or an acid anhydride. Residues are more preferred.
The F polymer is preferably a polymer containing TFE units, PAVE units, HFP units or FAE units, and units having a functional group.
 官能基を有する単位は、官能基を有するモノマーに基づく単位が好ましい。
 官能基を有するモノマーとしては、ヒドロキシ基又はカルボニル基含有基を有するモノマーが好ましく、酸無水物残基又はカルボキシ基を有するモノマーがより好ましく、酸無水物残基を有する環状モノマーがさらに好ましい。
 環状モノマーとしては、無水イタコン酸、無水シトラコン酸、5-ノルボルネン-2,3-ジカルボン酸無水物(別称:無水ハイミック酸;以下、「NAH」とも記す。)又は無水マレイン酸が挙げられ、NAHが好ましい。
The unit having a functional group is preferably a unit based on a monomer having a functional group.
As the monomer having a functional group, a monomer having a hydroxy group or a carbonyl group-containing group is preferable, a monomer having an acid anhydride residue or a carboxy group is more preferable, and a cyclic monomer having an acid anhydride residue is further preferable.
Examples of the cyclic monomer include itaconic anhydride, citraconic anhydride, 5-norbornene-2,3-dicarboxylic anhydride (also known as hymic anhydride; hereinafter also referred to as “NAH”) or maleic anhydride. Is preferred.
 PAVEとしては、CF=CFOCF、CF=CFOCFCF、CF=CFOCFCFCF(PPVE)、CF=CFOCFCFCFCF、CF=CFO(CFFが挙げられ、PPVEが好ましい。
 FAEとしては、CH=CH(CFF、CH=CH(CFF、CH=CH(CFF、CH=CF(CFH、CH=CF(CFHが挙げられ、CH=CH(CFF又はCH=CH(CFFが好ましい。
 この場合、Fポリマーに含まれる全単位に対して、TFE単位は90~99モル%含まれるのが好ましく、PAVE単位、HFP単位又はFAE単位は0.5~9.97モル%含まれるのが好ましく、官能基を有する単位は0.01~3モル%含まれるのが好ましい。
 この場合、Fポリマーの溶融温度は、250~380℃が好ましく、280~350℃がより好ましい。
 かかるFポリマーの具体例としては、国際公開第2018/16644号に記載のポリマーが挙げられる。
As PAVE, CF 2 ═CFOCF 3 , CF 2 ═CFOCF 2 CF 3 , CF 2 ═CFOCF 2 CF 2 CF 3 (PPVE), CF 2 ═CFOCF 2 CF 2 CF 2 CF 3 , CF 2 ═CFO(CF 2 ) 8 F is mentioned, PPVE is preferable.
As FAE, CH 2 ═CH(CF 2 ) 2 F, CH 2 ═CH(CF 2 ) 3 F, CH 2 ═CH(CF 2 ) 4 F, CH 2 ═CF(CF 2 ) 3 H, CH 2 ═CF(CF 2 ) 4 H, CH 2 ═CH(CF 2 ) 4 F or CH 2 ═CH(CF 2 ) 2 F is preferred.
In this case, the TFE unit is preferably contained in an amount of 90 to 99 mol %, and the PAVE unit, the HFP unit or the FAE unit is contained in an amount of 0.5 to 9.97 mol% based on all units contained in the F polymer. Preferably, the unit having a functional group is contained in an amount of 0.01 to 3 mol %.
In this case, the melting temperature of the F polymer is preferably 250 to 380°C, more preferably 280 to 350°C.
Specific examples of the F polymer include the polymers described in WO2018/16644.
 Fポリマーの好適な態様としては、ペルフルオロ(アルキルビニルエーテル)に基づく単位を含むテトラフルオロエチレン系ポリマー、又は、数平均分子量が20万以下であるPTFEが挙げられる。
 なお、上記PTFEの数平均分子量は、下式(1)に基づいて算出される値である。
 Mn = 2.1×1010×ΔHc-5.16 ・・・ (1)
 式(1)中、Mnは、上記PTFEの数平均分子量を、ΔHcは、示差走査熱量分析法により測定される前記PTFEの結晶化熱量(cal/g)を、それぞれ示す。
 上記PTFEのMnは、10以下が好ましく、5万以下がより好ましい。上記PTFEのMnは、1万以上が好ましい。
Suitable examples of the F polymer include a tetrafluoroethylene-based polymer containing a unit based on perfluoro(alkyl vinyl ether), or PTFE having a number average molecular weight of 200,000 or less.
The number average molecular weight of PTFE is a value calculated based on the following formula (1).
Mn=2.1×10 10 ×ΔHc −5.16 (1)
In the formula (1), Mn represents the number average molecular weight of the PTFE, and ΔHc represents the crystallization calorie (cal/g) of the PTFE measured by the differential scanning calorimetry.
The Mn of PTFE is preferably 10 or less, more preferably 50,000 or less. The Mn of PTFE is preferably 10,000 or more.
 Fポリマーのより好適な態様としては、ペルフルオロ(アルキルビニルエーテル)に基づく単位を含む官能基を有するテトラフルオロエチレン系ポリマー、又は、ペルフルオロ(アルキルビニルエーテル)に基づく単位を全単位に対して2.0~5.0モル%含む官能基を有さないテトラフルオロエチレン系ポリマーが挙げられる。
 この態様のFポリマーは、そのパウダーが分散安定性に優れるだけでなく、本分散液から形成されるF層において、緻密かつ均一に分布しやすい。さらに、F層において微小球晶を形成しやすく、他の成分との密着性が高まりやすい。その結果、3成分それぞれの物性を高度に具備したF層が、より形成されやすい。
As a more preferable embodiment of the F polymer, a tetrafluoroethylene-based polymer having a functional group containing a unit based on perfluoro(alkyl vinyl ether) or a unit based on perfluoro(alkyl vinyl ether) is 2.0 to An example is a tetrafluoroethylene-based polymer containing 5.0 mol% and having no functional group.
In the F polymer of this embodiment, not only is the powder excellent in dispersion stability, but it is also easy for the F polymer to be densely and uniformly distributed in the F layer formed from the present dispersion liquid. In addition, fine spherulites are easily formed in the F layer, and the adhesiveness with other components is likely to increase. As a result, the F layer having the high physical properties of each of the three components is more likely to be formed.
 前者のポリマーは、全単位に対して、TFE単位を90~99モル%、PAVE単位を0.5~9.97モル%及び官能基を有するモノマーに基づく単位を0.01~3モル%、それぞれ含有するのが好ましい。
 後者のポリマーにおけるPAVE単位の含有量は、全単位に対して、2.1モル%以上が好ましく、2.2モル%以上がより好ましい。
 後者のポリマーは、TFE単位及びPAVE単位のみからなり、全単位に対して、TFE単位を95.0~98.0モル%、PAVE単位を2.0~5.0モル%含有するのが好ましい。
The former polymer contains 90 to 99 mol% of TFE units, 0.5 to 9.97 mol% of PAVE units, and 0.01 to 3 mol% of units based on a monomer having a functional group, based on all units. It is preferable to contain each of them.
The content of PAVE units in the latter polymer is preferably 2.1 mol% or more, more preferably 2.2 mol% or more, based on all units.
The latter polymer is composed of only TFE units and PAVE units, and preferably contains 95.0 to 98.0 mol% of TFE units and 2.0 to 5.0 mol% of PAVE units based on all units. ..
 なお、後者のポリマーが官能基を有さないとは、ポリマー主鎖を構成する炭素原子数の1×10個あたりに対して、ポリマーが有する官能基の数が、500個未満であることを意味する。上記官能基の数は、100個以下が好ましく、50個以下がより好ましい。上記官能基の数の下限は、通常、0個である。
 後者のポリマーは、ポリマー鎖の末端基として官能基を生じない、重合開始剤や連鎖移動剤等を使用して製造してもよく、官能基を有するFポリマー(重合開始剤に由来する極性官能基をポリマーの主鎖の末端基に有するFポリマー等)をフッ素化処理して製造してもよい。フッ素化処理の方法としては、フッ素ガスを使用する方法(特開2019-194314号公報等を参照)が挙げられる。
The latter polymer does not have a functional group means that the polymer has less than 500 functional groups per 1×10 6 carbon atoms constituting the polymer main chain. Means The number of the functional groups is preferably 100 or less, more preferably 50 or less. The lower limit of the number of functional groups is usually 0.
The latter polymer may be produced by using a polymerization initiator, a chain transfer agent, or the like that does not generate a functional group as a terminal group of the polymer chain, and has an F polymer having a functional group (a polar functional group derived from the polymerization initiator). F polymer having a group in the terminal group of the main chain of the polymer) may be fluorinated. Examples of the fluorination method include a method using fluorine gas (see JP-A-2019-194314).
 本発明における極性有機溶媒は、25℃で液体の化合物であり、水性溶媒であってもよく、非水性溶媒であってもよい。
 極性有機溶媒は、アミド、アルコール、スルホキシド、エステル、ケトン又はグリコールエーテルが好ましく、エステル、ケトン又はアミドがより好ましく、環状エステル、環状ケトン又は環状アミドがさらに好ましい。本発明におけるAポリマーは、これらの極性有機溶媒との相互作用が高く、よってパウダー分散液の層(塗膜)形成性(チキソ比、接着性、透明性等)が向上しやすい。極性有機溶媒は、1種を単独で使用してもよく、2種以上を併用してもよい。
The polar organic solvent in the present invention is a compound that is liquid at 25°C, and may be an aqueous solvent or a non-aqueous solvent.
The polar organic solvent is preferably an amide, an alcohol, a sulfoxide, an ester, a ketone or a glycol ether, more preferably an ester, a ketone or an amide, still more preferably a cyclic ester, a cyclic ketone or a cyclic amide. The A polymer in the present invention has a high interaction with these polar organic solvents, and thus the layer (coating film) formability (thixo ratio, adhesiveness, transparency, etc.) of the powder dispersion is easily improved. The polar organic solvent may be used alone or in combination of two or more.
 極性有機溶媒の具体例としては、メタノール、エタノール、イソプロパノール、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、ジメチルスルホキシド、ジエチルエーテル、ジオキサン、乳酸エチル、酢酸エチル、酢酸ブチル、γ-ブチロラクトン、メチルエチルケトン、メチルイソプロピルケトン、シクロペンタノン、シクロヘキサノン、エチレングリコールモノイソプロピルエーテル、セロソルブ(メチルセロソルブ、エチルセロソルブ等)が挙げられる。
 極性有機溶媒は、沸点が80~275℃の化合物がより好ましく、沸点が125~250℃の化合物がさらに好ましい。この範囲において、パウダー分散液から極性有機溶媒を加熱留去させた際、極性有機溶媒の揮発とAポリマーの分解及び流動とが効果的に進行する。
 かかる極性有機溶媒は、N-メチル-2-ピロリドン、γ-ブチロラクトン、シクロヘキサノン又はシクロペンタノンが好ましく、シクロヘキサノン又はN-メチル-2-ピロリドンがより好ましい。
Specific examples of the polar organic solvent include methanol, ethanol, isopropanol, N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, diethyl ether, dioxane, ethyl lactate, ethyl acetate. , Butyl acetate, γ-butyrolactone, methyl ethyl ketone, methyl isopropyl ketone, cyclopentanone, cyclohexanone, ethylene glycol monoisopropyl ether, cellosolve (methyl cellosolve, ethyl cellosolve, etc.).
The polar organic solvent is preferably a compound having a boiling point of 80 to 275°C, more preferably a compound having a boiling point of 125 to 250°C. Within this range, when the polar organic solvent is distilled off from the powder dispersion by heating, the volatilization of the polar organic solvent and the decomposition and flow of the A polymer effectively proceed.
The polar organic solvent is preferably N-methyl-2-pyrrolidone, γ-butyrolactone, cyclohexanone or cyclopentanone, more preferably cyclohexanone or N-methyl-2-pyrrolidone.
 本発明におけるAポリマーは、アクリレート又はメタクリレートの単位を含むポリマーである。なお、Aポリマーは、Fポリマー以外のポリマーである。
 Aポリマーは、水酸基、オキシアルキレン基又は熱分解性基を有する(メタ)アクリレートに基づく単位(以下、「単位H」とも記す。)を含むのが好ましく、水酸基又はオキシアルキレン基を有する(メタ)アクリレートに基づく単位を含むのがより好ましい。
 かかる(メタ)アクリレートとしては、下式(1)~(3)で表される化合物が挙げられる。
 式(1):CH=CXC(O)O-Q-R
 式(2):CH=CXC(O)OC(-R
 式(3):CH=CXC(O)OC(-R31)(-R32
 式中の記号は、以下の意味を示す。
 Xは、水素原子又はメチル基である。
 Qは、ポリオキシアルキレン基であり、ポリオキシエチレン基又はポリオキシプロピレン基が好ましく、ポリオキシエチレン基がより好ましい。
 Rは、水素原子、アルキル基又はアリール基であり、水素原子、メチル基、ノニル基、ラウリル基、ステアリル基、フェニル基、ステアリルフェニル基、ラウリルフェニル基又はノニルフェニル基が好ましく、水素原子又はメチル基がより好ましい。
 Rは、水素原子、アルキル基又はアリール基であり、3個のRの少なくとも1個は、アリール基である。Rは、炭素数1~6のアルキル基又はフェニル基が好ましく、メチル基又はフェニル基がより好ましい。
 R31は、水素原子又はアルコキシ基であり、水素原子又は炭素数1~3のアルコキシ基が好ましく、水素原子がより好ましい。
 2個のR32は、共同してアルキレン基を形成している。
The A polymer in the present invention is a polymer containing an acrylate or methacrylate unit. The A polymer is a polymer other than the F polymer.
The polymer A preferably contains a unit based on a (meth)acrylate having a hydroxyl group, an oxyalkylene group or a thermally decomposable group (hereinafter, also referred to as “unit H”), and has a hydroxyl group or an oxyalkylene group (meth). More preferably it comprises units based on acrylates.
Examples of such (meth)acrylate include compounds represented by the following formulas (1) to (3).
Formula (1): CH 2 =CX H C(O)O-Q 1 -R 1
Formula (2): CH 2 =CX H C(O)OC(-R 2 ) 3
Formula (3): CH 2 =CX H C(O)OC(-R 31 )(-R 32 ) 2
The symbols in the formulas have the following meanings.
X H is a hydrogen atom or a methyl group.
Q 1 is a polyoxyalkylene group, preferably a polyoxyethylene group or a polyoxypropylene group, and more preferably a polyoxyethylene group.
R 1 is a hydrogen atom, an alkyl group or an aryl group, preferably a hydrogen atom, a methyl group, a nonyl group, a lauryl group, a stearyl group, a phenyl group, a stearylphenyl group, a laurylphenyl group or a nonylphenyl group, and a hydrogen atom or A methyl group is more preferred.
R 2 is a hydrogen atom, an alkyl group or an aryl group, and at least one of the three R 2 is an aryl group. R 2 is preferably an alkyl group having 1 to 6 carbon atoms or a phenyl group, more preferably a methyl group or a phenyl group.
R 31 is a hydrogen atom or an alkoxy group, preferably a hydrogen atom or an alkoxy group having 1 to 3 carbon atoms, and more preferably a hydrogen atom.
The two R 32 s together form an alkylene group.
 かかる(メタ)アクリレートに基づく単位を含むAポリマーは、パウダー分散液中のFポリマーのパウダーの分散とPIに対する相互作用とを促すだけでなく、パウダー分散液を加熱して層(塗膜)を形成する際には分解しやすいため、パウダー分散液の層(塗膜)形成性を特に向上させやすい。 The A polymer containing units based on such (meth)acrylate not only promotes the dispersion of the F polymer in the powder dispersion and the interaction with PI, but also heats the powder dispersion to form a layer (coating film). Since it is easily decomposed when it is formed, it is particularly easy to improve the layer (coating film) formability of the powder dispersion liquid.
 上記化合物の具体例としては、CH=C(CH)C(O)O-(CHCHO)10-H、CH=C(CH)C(O)O-(CHCHO)23-H、CH=C(CH)C(O)O-(CHCHO)23-CH、CH=C(CH)C(O)O-(CHCHO)66-CH、CH=C(CH)C(O)O-(CHCHO)90-CH、CH=C(CH)C(O)O-(CHCHO)120-CH、CH=C(CH)C(O)O-(CHCHO)30-(CH12H、CH=C(CH)C(O)O-(CHCHO)・(CHCH(CH)O)-Ph、CH=C(CH)C(O)OCHPh、CH=C(CH)C(O)OCH(CH)Ph、CH=C(CH)C(O)OCH<Nb、CH=CHC(O)O-(CHCHO)10-H、CH=CHC(O)O-(CHCHO)23-H、CH=CHC(O)O-(CHCHO)23-CH、CH=CHC(O)O-(CHCHO)66-CH、CH=CHC(O)O-(CHCHO)90-CH、CH=CHC(O)O-(CHCHO)120-CH、CH=CHC(O)O-(CHCHO)30-(CH12H、CH=CHC(O)O-(CHCHO)・(CHCH(CH)O)-Ph、CH=CHC(O)OCHPh、CH=CHC(O)OCH(CH)Ph、CH=CHC(O)OCH<Nbが挙げられる。なお、上記化合物中、Phはフェニル基を、-CH<Nbはイソボルニル基を、示す。 Specific examples of the above compound include CH 2 ═C(CH 3 )C(O)O—(CH 2 CH 2 O) 10 —H, CH 2 ═C(CH 3 )C(O)O—(CH 2 CH 2 O) 23 -H, CH 2 =C(CH 3 )C(O)O-(CH 2 CH 2 O) 23 -CH 3 , CH 2 =C(CH 3 )C(O)O-(CH 2 CH 2 O) 66 —CH 3 , CH 2 ═C(CH 3 )C(O)O—(CH 2 CH 2 O) 90 —CH 3 , CH 2 ═C(CH 3 )C(O)O— (CH 2 CH 2 O) 120 -CH 3 , CH 2 =C(CH 3 )C(O)O-(CH 2 CH 2 O) 30 -(CH 2 ) 12 H, CH 2 =C(CH 3 ). C(O)O—(CH 2 CH 2 O) 6 ·(CH 2 CH(CH 3 )O) 5 —Ph, CH 2 ═C(CH 3 )C(O)OCH 2 Ph, CH 2 ═C( CH 3 )C(O)OCH(CH 3 )Ph, CH 2 ═C(CH 3 )C(O)OCH<Nb, CH 2 ═CHC(O)O—(CH 2 CH 2 O) 10 —H, CH 2 ═CHC(O)O—(CH 2 CH 2 O) 23 —H, CH 2 ═CHC(O)O—(CH 2 CH 2 O) 23 —CH 3 , CH 2 ═CHC(O)O— (CH 2 CH 2 O) 66 —CH 3 , CH 2 ═CHC(O)O—(CH 2 CH 2 O) 90 —CH 3 , CH 2 ═CHC(O)O—(CH 2 CH 2 O) 120 —CH 3 , CH 2 ═CHC(O)O—(CH 2 CH 2 O) 30 —(CH 2 ) 12 H, CH 2 ═CHC(O)O—(CH 2 CH 2 O) 6 ·(CH 2 CH(CH 3 )O) 5 -Ph, CH 2 ═CHC(O)OCH 2 Ph, CH 2 ═CHC(O)OCH(CH 3 )Ph, CH 2 ═CHC(O)OCH<Nb. In the above compounds, Ph represents a phenyl group and —CH<Nb represents an isobornyl group.
 また、Aポリマーは、フルオロアルキル基又はフルオロアルケニル基を有する(メタ)アクリレートに基づく単位(以下、「単位F」とも記す。)を含むのが好ましい。
 かかる(メタ)アクリレートとしては、下式Fで表される化合物が挙げられる。
 式F:CH=CXC(O)O-Q-R
 式中の記号は、以下の意味を示す。
 Xは、水素原子、塩素原子又はメチル基である。
 Qは、メチレン基、エチレン基、オキシエチレン基又はオキシブチレン基である。ただし、Rが炭素数1~6のポリフルオロアルキル基又はエーテル性酸素原子を含む炭素数3~6のポリフルオロアルキル基である場合には、Qはメチレン基又はエチレン基が好ましい。また、Rが炭素数4~12のポリフルオロアルケニル基である場合には、Qはオキシエチレン基又はオキシブチレン基が好ましい。
 Rは、炭素数1~6のポリフルオロアルキル基、エーテル性酸素原子を含む炭素数3~6のポリフルオロアルキル基又は炭素数4~12のポリフルオロアルケニル基である。
 Rとしては、-(CFF、-(CFF、-CFOCFCFOCFCF、-CF(CF)OCFCFCF、-CF(CF)C(=C(CF)(CF(CF)又は-C(CF)C(=C(CF(CF)が好ましく、-(CFF、-(CFF、-CFOCFCFOCFCF又は-CF(CF)OCFCFCFがより好ましい。中でも、F層の物性(濡れ性、接着性、平滑性等)が更に優れる観点から、Rは、-(CFF又は-(CFFがさらに好ましく、-(CFFが特に好ましい。
Further, the A polymer preferably contains a unit (hereinafter, also referred to as “unit F”) based on a (meth)acrylate having a fluoroalkyl group or a fluoroalkenyl group.
Examples of such (meth)acrylate include compounds represented by the following formula F.
Formula F: CH 2 =CX F C(O)O-Q F- R F
The symbols in the formulas have the following meanings.
X F is a hydrogen atom, a chlorine atom or a methyl group.
Q F is a methylene group, an ethylene group, an oxyethylene group or an oxybutylene group. However, when R F is a polyfluoroalkyl group having 1 to 6 carbon atoms or a polyfluoroalkyl group having 3 to 6 carbon atoms containing an etheric oxygen atom, Q F is preferably a methylene group or an ethylene group. Further, when R F is a polyfluoroalkenyl group having 4 to 12 carbon atoms, Q F is preferably an oxyethylene group or an oxybutylene group.
R F is a polyfluoroalkyl group having 1 to 6 carbon atoms, a polyfluoroalkyl group having 3 to 6 carbon atoms containing an etheric oxygen atom, or a polyfluoroalkenyl group having 4 to 12 carbon atoms.
R F includes —(CF 2 ) 4 F, —(CF 2 ) 6 F, —CF 2 OCF 2 CF 2 OCF 2 CF 3 , —CF(CF 3 )OCF 2 CF 2 CF 3 , —CF(CF 3) C (= C (CF 3) 2) (CF (CF 3) 2) or -C (CF 3) C (= C (CF (CF 3) 2) 2) is preferable, - (CF 2) 4 More preferred is F, -(CF 2 ) 6 F, -CF 2 OCF 2 CF 2 OCF 2 CF 3 or -CF(CF 3 )OCF 2 CF 2 CF 3 . Among them, the physical properties of the F layer (wettability, adhesiveness, smoothness, etc.) from the viewpoint of further excellent, R F is, - (CF 2) 4 F or - (CF 2) 6 F are more preferred, - (CF 2 ) 6 F is particularly preferred.
 かかる(メタ)アクリレートに基づく単位を含むAポリマーは、パウダー分散液中のFポリマーのパウダーの分散とPIに対する相互作用を促すため、特に、パウダー分散液の分散性を向上させやすい。 The A polymer containing units based on such (meth)acrylate promotes the dispersion of the F polymer in the powder dispersion liquid and the interaction with PI, and therefore it is particularly easy to improve the dispersibility of the powder dispersion liquid.
 上記化合物の具体例としては、CH=C(CH)C(O)OCHCH(CFF、CH=CHC(O)OCHCH(CFF、CH=C(CH)C(O)OCHCH(CFF、CH=CClC(O)OCHCH(CFF、CH=C(CH)C(O)OCHCHCHCHOCF(CF)C(=C(CF)(CF(CF)、CH=C(CH)C(O)OCHCHCHCHOC(CF)C(=C(CF(CF)が挙げられる。 Specific examples of the above compound include CH 2 ═C(CH 3 )C(O)OCH 2 CH 2 (CF 2 ) 6 F, CH 2 ═CHC(O)OCH 2 CH 2 (CF 2 ) 6 F, CH. 2 = C (CH 3) C (O) OCH 2 CH 2 (CF 2) 4 F, CH 2 = CClC (O) OCH 2 CH 2 (CF 2) 4 F, CH 2 = C (CH 3) C ( O) OCH 2 CH 2 CH 2 CH 2 OCF (CF 3) C (= C (CF 3) 2) (CF (CF 3) 2), CH 2 = C (CH 3) C (O) OCH 2 CH 2 CH 2 CH 2 OC (CF 3 ) C (= C (CF (CF 3) 2) 2) can be mentioned.
 Aポリマーに含まれる全単位に対する単位Hの量は、5~60モル%が好ましく、5~45モル%がより好ましく、10~30モル%がさらに好ましい。
 Aポリマーに含まれる全単位に対する単位Fの量は、40~95モル%が好ましく、55~95モル%がより好ましく、70~90モル%がさらに好ましい。
 Aポリマーに含まれる全単位に対する各単位の量が上記範囲であれば、パウダー分散液の分散性がより向上し、F層の各種物性がバランスよく発現する。
 Aポリマーは、単位H及び単位Fのみからなっていてもよく、本発明の効果を損なわない範囲において、単位H及び単位F以外の追加の単位をさらに含んでいてもよい。
The amount of the unit H with respect to all units contained in the A polymer is preferably 5 to 60 mol%, more preferably 5 to 45 mol%, and further preferably 10 to 30 mol%.
The amount of the unit F with respect to all the units contained in the A polymer is preferably 40 to 95 mol%, more preferably 55 to 95 mol%, and further preferably 70 to 90 mol%.
When the amount of each unit with respect to all the units contained in the A polymer is within the above range, the dispersibility of the powder dispersion liquid is further improved, and various physical properties of the F layer are well-balanced.
The polymer A may be composed of only the unit H and the unit F, and may further include an additional unit other than the unit H and the unit F as long as the effects of the present invention are not impaired.
 本発明におけるAポリマーのフッ素含有量は、10~60質量%が好ましく、20~50質量%がより好ましく、25~45質量%がさらに好ましい。フッ素含有量の下限が上記範囲にあれば、パウダー分散液の分散性が優れる。フッ素含有量の上限が上記範囲にあれば、パウダー分散液の各成分に対するAポリマーの親和性がバランスするため、パウダー分散液の分散性に加えて、その層(塗膜)形成性が向上しやすい。例えば、F層は、濡れ性が高く、表面の平滑性と接着性とに優れる特徴がある。Aポリマーのフッ素含有量は、その合成に際するモノマーの種類と、その仕込量から計算できる。 The fluorine content of the A polymer in the present invention is preferably 10 to 60% by mass, more preferably 20 to 50% by mass, and further preferably 25 to 45% by mass. When the lower limit of the fluorine content is within the above range, the dispersibility of the powder dispersion is excellent. If the upper limit of the fluorine content is in the above range, the affinity of the A polymer for each component of the powder dispersion will be balanced, so that the layer (coating film) formability will be improved in addition to the dispersibility of the powder dispersion. Cheap. For example, the F layer is characterized by high wettability and excellent surface smoothness and adhesiveness. The fluorine content of the A polymer can be calculated from the type of monomer used in its synthesis and the charged amount thereof.
 本発明におけるPIは、ポリイミド前駆体又はポリイミドである。ポリイミド前駆体は、Fポリマー(パウダー)の焼成時にイミド化して、ポリイミドとなる化合物である。
 ポリイミドとしては、テトラカルボン酸二無水物とジアミンとを反応させてなる芳香族ポリイミドが好ましく、テトラカルボン酸二無水物及びジアミンの少なくとも一方が芳香族環を有する芳香族ポリイミド(半芳香族ポリイミド又は全芳香族ポリイミド)がより好ましく、芳香族テトラカルボン酸二無水物とジアミンとを反応させてなる芳香族ポリイミドがさらに好ましい。
 芳香族ポリイミドは、UVレーザーにおいて一般的な波長355nmの紫外線に対する吸収性を有するため、得られるF層のUV加工性がより向上する。また、F層を形成する際に、平面性の高い芳香族環同士が積層した状態となりやすいため、F層の機械的強度や耐熱性も向上する。
PI in the present invention is a polyimide precursor or polyimide. The polyimide precursor is a compound that is imidized to form a polyimide when the F polymer (powder) is baked.
As the polyimide, an aromatic polyimide obtained by reacting a tetracarboxylic dianhydride and a diamine is preferable, and at least one of the tetracarboxylic dianhydride and the diamine is an aromatic polyimide having an aromatic ring (semi-aromatic polyimide or A wholly aromatic polyimide) is more preferable, and an aromatic polyimide obtained by reacting an aromatic tetracarboxylic dianhydride and a diamine is further preferable.
Since the aromatic polyimide has an absorptivity for ultraviolet rays having a wavelength of 355 nm which is generally used in a UV laser, the UV processability of the obtained F layer is further improved. Further, when the F layer is formed, aromatic rings having high planarity are likely to be laminated, so that the mechanical strength and heat resistance of the F layer are also improved.
 芳香族テトラカルボン酸二無水物としては、ピロメリット酸二無水物、3,3’4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、ベンゼン-1,2,3,4-テトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,3,2’,3’-ベンゾフェノンテトラカルボン酸二無水物、2,3,3’,4’-ベンゾフェノンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,2,4,5-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,6-ジクロルナフタレン-1,4,5,8-テトラカルボン酸二無水物、2,7-ジクロルナフタレン-1,4,5,8-テトラカルボン酸二無水物、2,3,6,7-テトラクロルナフタレン-1,4,5,8-テトラカルボン酸二無水物、フェナントレン-1,8,9,10-テトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)ジメチルシラン二無水物、ビス(3,4-ジカルボキシフェニル)メチルフェニルシラン二無水物、ビス(3,4-ジカルボキシフェニル)ジフェニルシラン二無水物、1,4-ビス(3,4-ジカルボキシフェニルジメチルシリル)ベンゼン二無水物、1,3-ビス(3,4-ジカルボキシフェニル)-1,1,3,3-テトラメチルジシクロヘキサン二無水物、p-フェニレンビス(トリメリット酸モノエステル酸無水物)、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物、2,2-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]ヘキサフルオロプロパン二無水物、2,2-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物、4,4-ビス(3,4-ジカルボキシフェノキシ)ジフェニルスルフィド二無水物が挙げられる。 Examples of aromatic tetracarboxylic dianhydrides include pyromellitic dianhydride, 3,3′4,4′-biphenyltetracarboxylic dianhydride, and 2,2′,3,3′-biphenyltetracarboxylic dianhydride. Anhydride, 2,3,3',4'-biphenyltetracarboxylic dianhydride, 3,3',4,4'-biphenylethertetracarboxylic dianhydride, 3,3',4,4'- Diphenylsulfone tetracarboxylic dianhydride, 2,2-bis(3,4-dicarboxyphenyl)propane dianhydride, 2,2-bis(2,3-dicarboxyphenyl)propane dianhydride, 1,1 -Bis(2,3-dicarboxyphenyl)ethane dianhydride, 1,1-bis(3,4-dicarboxyphenyl)ethane dianhydride, bis(2,3-dicarboxyphenyl)methane dianhydride, Bis(3,4-dicarboxyphenyl)methane dianhydride, bis(3,4-dicarboxyphenyl)sulfone dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, bis(3,3 4-dicarboxyphenyl)ether dianhydride, benzene-1,2,3,4-tetracarboxylic dianhydride, 3,3′,4,4′-benzophenone tetracarboxylic dianhydride, 2,3,3 2',3'-benzophenone tetracarboxylic dianhydride, 2,3,3',4'-benzophenone tetracarboxylic dianhydride, 1,2,5,6-naphthalene tetracarboxylic dianhydride, 2, 3,6,7-naphthalenetetracarboxylic dianhydride, 1,2,4,5-naphthalenetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 2,6- Dichloronaphthalene-1,4,5,8-tetracarboxylic dianhydride, 2,7-Dichloronaphthalene-1,4,5,8-tetracarboxylic dianhydride, 2,3,6,7- Tetrachlornaphthalene-1,4,5,8-tetracarboxylic dianhydride, phenanthrene-1,8,9,10-tetracarboxylic dianhydride, bis(3,4-dicarboxyphenyl)dimethylsilane dianhydride Substance, bis(3,4-dicarboxyphenyl)methylphenylsilane dianhydride, bis(3,4-dicarboxyphenyl)diphenylsilane dianhydride, 1,4-bis(3,4-dicarboxyphenyldimethylsilyl) ) Benzene dianhydride, 1,3-bis(3,4-dicarboxyphenyl)-1,1,3,3-tetramethyldicyclohexane dianhydride, p-phenylene bis(trimellitic acid monoester) Acid anhydride), 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride, 2,2-bis[4-(3,4-dicarboxyphenoxy)phenyl]hexafluoropropane dianhydride And 2,2-bis[4-(3,4-dicarboxyphenoxy)phenyl]propane dianhydride and 4,4-bis(3,4-dicarboxyphenoxy)diphenyl sulfide dianhydride.
 脂肪族テトラカルボン酸二無水物としては、エチレンテトラカルボン酸二無水物、ブタンテトラカルボン酸二無水物、メソ-ブタン-1,2,3,4-テトラカルボン酸二無水物、3,3’,4,4’-ビスシクロヘキサンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸無水物、1,1’-ビシクロヘキサン-3,3’,4,4’-テトラカルボン酸二無水物が挙げられる。 Examples of the aliphatic tetracarboxylic dianhydride include ethylene tetracarboxylic dianhydride, butane tetracarboxylic dianhydride, meso-butane-1,2,3,4-tetracarboxylic dianhydride, 3,3′ ,4,4'-biscyclohexanetetracarboxylic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 1, 2,4,5-Cyclohexanetetracarboxylic dianhydride, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, bicyclo[2.2.2]oct -7-ene-2,3,5,6-tetracarboxylic dianhydride, 4-(2,5-dioxotetrahydrofuran-3-yl)-1,2,3,4-tetrahydronaphthalene-1,2 -Dicarboxylic acid anhydride and 1,1'-bicyclohexane-3,3',4,4'-tetracarboxylic acid dianhydride.
 芳香族ジアミンとしては、o-フェニレンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、3,3’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルジフルオロメタン、4,4’-ジアミノジフェニルジフルオロメタン、3,3’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルフィド、3,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルケトン、3,4’-ジアミノジフェニルケトン、4,4’-ジアミノジフェニルケトン、2,2-ビス(3-アミノフェニル)プロパン、2,2-(3,4’-ジアミノジフェニル)プロパン、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(3-アミノフェニル)ヘキサフルオロプロパン、2,2-(3,4’-ジアミノジフェニル)ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、3,3’-[1,4-フェニレンビス(1-メチルエチリデン)]ビスアニリン、3,4’-[1,4-フェニレンビス(1-メチルエチリデン)]ビスアニリン、4,4’-[1,4-フェニレンビス(1-メチルエチリデン)]ビスアニリン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、ビス[4-(3-アミノフェノキシ)フェニル]スルフィド、ビス[4-(4-アミノフェノキシ)フェニル]スルフィド、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、1,3-ビス(4-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、1,5-ビス(4-アミノフェノキシ)ヘプタンが挙げられる。 Examples of aromatic diamines include o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, 3,3′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 3,3′- Diaminodiphenylmethane, 3,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylmethane, 3,3′-diaminodiphenyldifluoromethane, 4,4′-diaminodiphenyldifluoromethane, 3,3′-diaminodiphenylsulfone, 3, 4'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfide, 3,4'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl Ketone, 3,4'-diaminodiphenyl ketone, 4,4'-diaminodiphenyl ketone, 2,2-bis(3-aminophenyl)propane, 2,2-(3,4'-diaminodiphenyl)propane, 2, 2-bis(4-aminophenyl)propane, 2,2-bis(3-aminophenyl)hexafluoropropane, 2,2-(3,4′-diaminodiphenyl)hexafluoropropane, 2,2-bis(4 -Aminophenyl)hexafluoropropane, 1,3-bis(3-aminophenoxy)benzene, 1,4-bis(4-aminophenoxy)benzene, 3,3'-[1,4-phenylenebis(1-methyl) Ethylidene)]bisaniline, 3,4′-[1,4-phenylenebis(1-methylethylidene)]bisaniline, 4,4′-[1,4-phenylenebis(1-methylethylidene)]bisaniline, 2,2 -Bis[4-(3-aminophenoxy)phenyl]propane, 2,2-bis[4-(4-aminophenoxy)phenyl]propane, 2,2-bis[4-(3-aminophenoxy)phenyl]hexa Fluoropropane, 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane, bis[4-(3-aminophenoxy)phenyl]sulfide, bis[4-(4-aminophenoxy)phenyl]sulfide , Bis[4-(3-aminophenoxy)phenyl] sulfone, bis[4-(4-aminophenoxy)phenyl] sulfone, 1,3-bis(4-aminophenoxy)propane, 1,4-bis(4- Aminophenoxy)butane, 1,5-bis(4-aminophen) Noxyl) heptane.
 脂肪族ジアミンとしては、1,2-エチレンジアミン、1,2-ジアミノプロパン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,6-ヘキサメチレンジアミン、1,5-ジアミノペンタン、1,10-ジアミノデカン、1,2-ジアミノ-2-メチルプロパン、2,3-ジアミノ-2,3-ブタンジアミン、2-メチル-1,5-ジアミノペンタン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、1,4-ジアミノシクロヘキサン、4,4’-メチレンビス(シクロヘキシルアミン)、4,4’-メチレンビス(2-メチルシクロヘキシルアミン)が挙げられる。 As the aliphatic diamine, 1,2-ethylenediamine, 1,2-diaminopropane, 1,3-diaminopropane, 1,4-diaminobutane, 1,6-hexamethylenediamine, 1,5-diaminopentane, 1, 10-diaminodecane, 1,2-diamino-2-methylpropane, 2,3-diamino-2,3-butanediamine, 2-methyl-1,5-diaminopentane, 1,3-bis(aminomethyl)cyclohexane , 1,4-bis(aminomethyl)cyclohexane, 1,4-diaminocyclohexane, 4,4′-methylenebis(cyclohexylamine) and 4,4′-methylenebis(2-methylcyclohexylamine).
 芳香族ポリイミドとしては、芳香族テトラカルボン酸二無水物と芳香族ジアミン及び/又は脂肪族ジアミンとを反応させてなる半芳香族又は全芳香族ポリイミドが好ましく、芳香族テトラカルボン酸二無水物と芳香族ジアミンとを反応させてなる全芳香族ポリイミドがより好ましい。
 芳香族テトラカルボン酸二無水物としては、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、ピロメリット酸二無水物からなる群から選ばれる少なくとも1種が好ましい。一方、芳香族ジアミンとして、o-フェニレンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、3,3’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、及び3,4’-ジアミノジフェニルエーテルからなる群から選ばれる少なくとも1種が好ましい。
 これらのモノマーを少なくとも含むPIであれば、F層のUV加工性をより向上できるとともに、F層に対して、プリント基板として使用する際に要求される優れた耐熱性及び低吸水性を付与できる。
The aromatic polyimide is preferably a semi-aromatic or wholly aromatic polyimide obtained by reacting an aromatic tetracarboxylic dianhydride with an aromatic diamine and/or an aliphatic diamine, and an aromatic tetracarboxylic dianhydride. A wholly aromatic polyimide obtained by reacting with an aromatic diamine is more preferable.
Examples of the aromatic tetracarboxylic dianhydride include 3,3′,4,4′-biphenyltetracarboxylic dianhydride, 3,3′,4,4′-benzophenone tetracarboxylic dianhydride, and 3,3′. At least one selected from the group consisting of',4,4'-biphenyl ether tetracarboxylic dianhydride, 3,3',4,4'-diphenylsulfone tetracarboxylic dianhydride and pyromellitic dianhydride Is preferred. On the other hand, the aromatic diamine is selected from the group consisting of o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, 3,3′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether, and 3,4′-diaminodiphenyl ether. At least one selected is preferable.
If the PI contains at least these monomers, the UV processability of the F layer can be further improved, and the F layer can be provided with excellent heat resistance and low water absorption required when it is used as a printed board. ..
 また、本発明におけるPIの対数粘度(ηihn)は、0.2~3dL/gが好ましく、0.5~2dL/gがより好ましい。なお、対数粘度は、下式で表される値である。
 式:ηihn=[ln(η/η0)]/C
 式中、ηは、PIを濃度0.5g/dLとなるように、N-メチル-2-ピロリドン(NMP)に溶解して溶液を調製し、この溶液の約30℃(30±0.01℃)における粘度をウベローデ粘度計で測定した値であり、η0は、同溶媒の同温度における粘度を同粘度計で測定した値であり、Cは、濃度0.5g/dLである。
 ここで、PIの対数粘度(固有粘度)は、PIの分子量と相関している。
 PIの対数粘度が上記範囲であれば、PIの分子量及び粘度が適度になるため、PIのパウダーの沈降抑制効果が好適に発揮され、パウダーのパウダー分散液中での分散性が良好になるとともに、PIがバインダーとして好適に機能し、F層形成時における粉落ち防止効果がより向上する。
Further, the logarithmic viscosity (ηihn) of PI in the present invention is preferably 0.2 to 3 dL/g, more preferably 0.5 to 2 dL/g. The logarithmic viscosity is a value represented by the following formula.
Formula: ηihn=[ln(η/η0)]/C
In the formula, η is a solution prepared by dissolving PI in N-methyl-2-pyrrolidone (NMP) so that the concentration becomes 0.5 g/dL, and the solution is prepared at about 30° C. (30±0.01 C) is the value measured with an Ubbelohde viscometer, η0 is the value measured with the same viscosity of the same solvent at the same temperature, and C is the concentration of 0.5 g/dL.
Here, the logarithmic viscosity (intrinsic viscosity) of PI correlates with the molecular weight of PI.
If the logarithmic viscosity of PI is within the above range, the molecular weight and viscosity of PI will be appropriate, and the effect of suppressing the sedimentation of PI powder will be suitably exerted, and the dispersibility of the powder in the powder dispersion liquid will be good. , PI suitably functions as a binder, and the effect of preventing powder falling during formation of the F layer is further improved.
 本分散液中のパウダー(Fポリマー)の割合(含有量)は、10質量%以上であり、25質量%以上がより好ましく、30質量%以上がさらに好ましい。上記割合は、60質量%以下であり、50質量%以下がより好ましい。この範囲において、表面の平滑性と電気特性と耐熱性とに優れたF層を形成しやすい。
 本分散液中の極性有機溶媒の割合(含有量)は、30~70質量%が好ましく、40~60質量%がより好ましい。この範囲において、パウダー分散液の塗布性が優れ、かつ層形成性が向上しやすい。
 本分散液中において、パウダー(Fポリマー)の含有量に対するAポリマーの含有量の質量での比は、0.02~0.15が好ましく、0.05~0.12がより好ましい。この範囲において、パウダー分散液の分散性がより向上し、さらにF層の物性(電気特性、接着性、表面の平滑性等)がより向上しやすい。
The ratio (content) of the powder (F polymer) in the present dispersion liquid is 10% by mass or more, more preferably 25% by mass or more, and further preferably 30% by mass or more. The above ratio is 60% by mass or less, and more preferably 50% by mass or less. Within this range, it is easy to form an F layer having excellent surface smoothness, electrical characteristics and heat resistance.
The proportion (content) of the polar organic solvent in this dispersion is preferably 30 to 70% by mass, more preferably 40 to 60% by mass. Within this range, the coatability of the powder dispersion is excellent and the layer formability is likely to be improved.
In the present dispersion, the mass ratio of the content of the A polymer to the content of the powder (F polymer) is preferably 0.02 to 0.15, more preferably 0.05 to 0.12. Within this range, the dispersibility of the powder dispersion is further improved, and the physical properties (electrical properties, adhesiveness, surface smoothness, etc.) of the F layer are more easily improved.
 本分散液中において、パウダー(Fポリマー)の含有量に対するPIの含有量の質量での比は、0.3以下であり、0.1以下が好ましく、0.1未満がより好ましく、0.09以下がさらに好ましく、0.05以下が特に好ましい。
 上記質量の比は、0.005以上が好ましく、0.01以上がより好ましい。
 上記質量の比の範囲は、0.005以上0.1未満が好ましく、0.01~0.09がより好ましく、0.01~0.05がさらに好ましい。この範囲において、パウダーの沈降が抑制されるのでパウダー分散液の分散性がより向上し、さらにF層におけるパウダーの粉落ち防止効果及びF層のUV加工性付与効果もより向上しやすい。
 特に、本発明では、パウダー(Fポリマー)、Aポリマー及びPIの含有量や質量比を上記範囲に設定するので、F層形成時における粉落ちの発生が効果的に抑制されるとともに、F層において各種物性(平滑性、電気特性、耐熱性、低吸水性)が良好なバランスで発揮される。
In this dispersion, the mass ratio of the content of PI to the content of the powder (F polymer) is 0.3 or less, preferably 0.1 or less, more preferably less than 0.1, and 0.1. 09 or less is more preferable, and 0.05 or less is particularly preferable.
The mass ratio is preferably 0.005 or more, more preferably 0.01 or more.
The range of the mass ratio is preferably 0.005 or more and less than 0.1, more preferably 0.01 to 0.09, and further preferably 0.01 to 0.05. In this range, the sedimentation of the powder is suppressed, so that the dispersibility of the powder dispersion liquid is further improved, and further, the powder falling prevention effect in the F layer and the UV processability imparting effect in the F layer are more easily improved.
Particularly, in the present invention, the content and mass ratio of the powder (F polymer), A polymer and PI are set within the above ranges, so that the generation of powder falling during the formation of the F layer can be effectively suppressed and the F layer can be effectively prevented. In, various physical properties (smoothness, electrical characteristics, heat resistance, low water absorption) are exhibited in a good balance.
 本分散液は、本発明の効果を損なわない範囲で、他の材料を含んでいてもよい。他の材料は、パウダー分散液に溶解してもよく、溶解しなくてもよい。
 かかる他の材料は、非硬化性樹脂、無機フィラーが挙げられる。
 非硬化性樹脂としては、硬化性樹脂の硬化物等の非溶融性樹脂、熱可塑性樹脂、硬化性樹脂の熱溶融性の硬化物等の熱溶融性樹脂が挙げられる。
 熱可塑性樹脂としては、ポリエステル樹脂、ポリオレフィン樹脂、スチレン樹脂、ポリカーボネート、ポリアリレート、ポリスルホン、ポリアリルスルホン、芳香族ポリアミド、芳香族ポリエーテルアミド、ポリフェニレンスルファイド、ポリアリルエーテルケトン、ポリアミドイミド、液晶性ポリエステル、ポリフェニレンエーテルが挙げられ、熱可塑性ポリイミド、液晶性ポリエステル、液晶性ポリエステルアミド又はポリフェニレンエーテルが好ましい。
The present dispersion liquid may contain other materials as long as the effects of the present invention are not impaired. Other materials may or may not dissolve in the powder dispersion.
Examples of such other materials include non-curable resins and inorganic fillers.
Examples of the non-curable resin include non-melting resins such as cured products of curable resins, thermoplastic resins, and heat-melting resins such as heat-melting cured products of curable resins.
As the thermoplastic resin, polyester resin, polyolefin resin, styrene resin, polycarbonate, polyarylate, polysulfone, polyallylsulfone, aromatic polyamide, aromatic polyetheramide, polyphenylene sulfide, polyallyl ether ketone, polyamideimide, liquid crystallinity Examples thereof include polyester and polyphenylene ether, and thermoplastic polyimide, liquid crystalline polyester, liquid crystalline polyesteramide or polyphenylene ether is preferable.
 無機フィラーとしては、窒化物フィラー、無機酸化物フィラーが挙げられ、窒化ホウ素フィラー、べリリア(ベリリウムの酸化物)、シリカフィラー又は金属酸化物(酸化セリウム、アルミナ、ソーダアルミナ、酸化マグネシウム、酸化亜鉛、酸化チタン等)フィラーが好ましい。
 本分散液は、極性ポリマーとも言える、(メタ)アクリレート系ポリマーとポリイミド前駆体又はポリイミドとを含み、その液物性(粘度、チキソ比等)に優れ、無機フィラーを含んでいても分散性に優れる。また、それからF層を形成する際、無機フィラーが粉落ちしにくいだけでなく、それが均一に分布したF層が形成されやすい。
Examples of the inorganic filler include a nitride filler and an inorganic oxide filler, and a boron nitride filler, beryllia (an oxide of beryllium), a silica filler or a metal oxide (cerium oxide, alumina, soda alumina, magnesium oxide, zinc oxide). , Titanium oxide, etc.) filler is preferred.
The present dispersion contains a (meth)acrylate polymer and a polyimide precursor or polyimide, which can be said to be a polar polymer, and has excellent liquid physical properties (viscosity, thixo ratio, etc.) and excellent dispersibility even if it contains an inorganic filler. .. Further, when the F layer is formed from it, not only is the inorganic filler less likely to fall off, but an F layer in which it is evenly distributed is likely to be formed.
 無機フィラーの形状は、粒状であってもよく、非粒状(鱗片状、層状)であってもよく、繊維状であってもよく、微細構造を有する無機フィラーを使用するのが好ましい。
 かかる微細構造を有する無機フィラーの具体例としては、球状の無機フィラー、繊維状の無機フィラーが挙げられる。
 前者の無機フィラーの平均粒子径は、0.001~3μmが好ましく、0.01~1μmがより好ましい。この場合、無機フィラーは、パウダー分散液中の分散性により優れ、F層中においてより均一に分布しやすい。
 後者の無機フィラーにおいて、長さは繊維長であり、径は繊維径である。繊維長は、1~10μmが好ましい。繊維径は、0.01~1μmが好ましい。
 本分散液が無機フィラーを含む場合、その含有量は、Fポリマーの含有量に対して質量での比において0.1以下が好ましい。
The shape of the inorganic filler may be granular, non-granular (scaly, layered), or fibrous, and it is preferable to use an inorganic filler having a fine structure.
Specific examples of the inorganic filler having such a fine structure include spherical inorganic fillers and fibrous inorganic fillers.
The average particle size of the former inorganic filler is preferably 0.001 to 3 μm, more preferably 0.01 to 1 μm. In this case, the inorganic filler is more excellent in dispersibility in the powder dispersion liquid, and is more likely to be uniformly distributed in the F layer.
In the latter inorganic filler, the length is the fiber length and the diameter is the fiber diameter. The fiber length is preferably 1 to 10 μm. The fiber diameter is preferably 0.01 to 1 μm.
When the present dispersion liquid contains an inorganic filler, its content is preferably 0.1 or less in terms of mass ratio to the content of the F polymer.
 無機フィラーは、その表面の少なくとも一部が、有機物、無機物(ただし、無機フィラーを形成する無機物とは異なる無機物である。)、又は、その両方によって、被覆処理(表面処理)されていてもよい。
 かかる被覆処理に用いられる有機物としては、多価アルコール(トリメチロールエタン、ペンタエリストール、プロピレングリコール等)、飽和脂肪酸(ステアリン酸、ラウリン酸等)、そのエステル、アルカン―ルアミン、アミン(トリメチルアミン、トリエチルアミン等)、パラフィンワックス、シランカップリング剤、シリコーン、ポリシロキサンが挙げられる。
 かかる被覆処理に用いられる無機物としては、アルミニウム、ケイ素、ジルコニウム、スズ、チタニウム、アンチモン等の、酸化物、水酸化物、水和酸化物又はリン酸塩が挙げられる。
At least a part of the surface of the inorganic filler may be coated (surface treated) with an organic material, an inorganic material (however, it is an inorganic material different from the inorganic material forming the inorganic filler), or both. ..
Organic substances used for such coating treatment include polyhydric alcohols (trimethylolethane, pentaerythritol, propylene glycol, etc.), saturated fatty acids (stearic acid, lauric acid, etc.), their esters, alkaneamines, amines (trimethylamine, triethylamine). Etc.), paraffin wax, silane coupling agent, silicone, and polysiloxane.
Examples of the inorganic substance used for such coating treatment include oxides, hydroxides, hydrated oxides or phosphates of aluminum, silicon, zirconium, tin, titanium, antimony and the like.
 本分散液に含有させる無機フィラーは、形成されるF層に付与する物性に応じて決定すればよい。
 例えば、UV加工性を一層向上させつつ、その反りを高度に抑制したF層を形成する場合には、本分散液は、無機フィラーとして、球状のシリカフィラーを含むのが好ましい。
 この場合、球状のシリカフィラーの平均粒子径は、Fポリマーのパウダーの平均粒子径(D50)より小さいのが好ましい。具体的には、Fポリマーのパウダーの平均粒子径が0.2~3μmであり、球状のシリカフィラーの平均粒子径が0.01~0.1μmであるのが好ましい。また、この場合の球状のシリカフィラーの含有量は、Fポリマーの含有質量に対して質量での比において0.01~0.1が好ましい。かかる構成により、F層の表面におけるシリカフィラーの露出を抑制しつつ、シリカフィラーがF層中に均一分散したF層を容易に形成できる。
The inorganic filler to be contained in this dispersion may be determined according to the physical properties imparted to the F layer to be formed.
For example, in the case of forming the F layer in which the warp is highly suppressed while further improving the UV processability, the present dispersion liquid preferably contains a spherical silica filler as the inorganic filler.
In this case, the average particle diameter of the spherical silica filler is preferably smaller than the average particle diameter (D50) of the F polymer powder. Specifically, it is preferable that the F polymer powder has an average particle size of 0.2 to 3 μm, and the spherical silica filler has an average particle size of 0.01 to 0.1 μm. In addition, the content of the spherical silica filler in this case is preferably 0.01 to 0.1 in terms of mass ratio to the mass content of the F polymer. With such a configuration, it is possible to easily form the F layer in which the silica filler is uniformly dispersed in the F layer while suppressing the exposure of the silica filler on the surface of the F layer.
 かかる無機フィラーの好適な具体例としては、アミノシランカップリング剤で表面処理された平均粒子径1μm以下のシリカフィラー(アドマテックス社製、「アドマファイン」シリーズ等)、ジカプリン酸プロピレングリコール等のエステルで表面処理された平均粒子径0.1μm以下の酸化亜鉛(堺化学工業株式会社製、「FINEX」シリーズ等)、平均粒子径0.5μm以下かつ最大粒子径1μm未満の球状溶融シリカ(デンカ社製、「SFPグレード」等)、多価アルコール及び無機物で被覆処理された平均粒子径0.5μm以下のルチル型酸化チタン(石原産業社製、「タイペーク」シリーズ等)、アルキルシランで表面処理された平均粒子径0.1μm以下のルチル型酸化チタン(テイカ社製、「JMT」シリーズ等)が挙げられる。 Preferable specific examples of such inorganic fillers include silica fillers having an average particle diameter of 1 μm or less which are surface-treated with an aminosilane coupling agent (manufactured by Admatechs Co., Ltd., “Admafine” series, etc.), and esters such as propylene glycol dicaprate. Surface-treated zinc oxide having an average particle diameter of 0.1 μm or less (Sakai Chemical Industry Co., Ltd., “FINEX” series, etc.), spherical fused silica having an average particle diameter of 0.5 μm or less and a maximum particle diameter of less than 1 μm (manufactured by DENKA CORPORATION) , "SFP grade", etc.), rutile type titanium oxide with an average particle size of 0.5 μm or less coated with a polyhydric alcohol and an inorganic substance (Ishihara Sangyo Co., Ltd., "Taipeque" series, etc.), and surface-treated with alkylsilane. Examples thereof include rutile type titanium oxide having an average particle size of 0.1 μm or less (“JMT” series manufactured by Teika Co., Ltd.).
 本分散液が無機フィラーを含む場合、本分散液中において、パウダー(Fポリマー)の含有量に対する無機フィラーの含有量の質量での比は、0.3以下が好ましく、0.1以下がより好ましい。
 上記比は、0.01以上が好ましい。
 上記比の範囲は、0.01~0.3が好ましく、0.01~0.1がより好ましい。この範囲において、個々の無機フィラーが有する物性が、F層において高度に発現しやすい。
When the present dispersion contains an inorganic filler, the ratio by mass of the content of the inorganic filler to the content of the powder (F polymer) in the present dispersion is preferably 0.3 or less, and more preferably 0.1 or less. preferable.
The above ratio is preferably 0.01 or more.
The range of the above ratio is preferably 0.01 to 0.3, more preferably 0.01 to 0.1. Within this range, the physical properties of the individual inorganic fillers are likely to be highly exhibited in the F layer.
 本発明における、かかる他の材料としては、チキソ性付与剤、消泡剤、反応性アルコキシシラン、脱水剤、可塑剤、耐候剤、酸化防止剤、熱安定剤、滑剤、帯電防止剤、増白剤、着色剤、導電剤、離型剤、表面処理剤、粘度調節剤、難燃剤も挙げられる。 In the present invention, such other materials include thixotropic agents, antifoaming agents, reactive alkoxysilanes, dehydrating agents, plasticizers, weathering agents, antioxidants, heat stabilizers, lubricants, antistatic agents, and whitening agents. Examples also include agents, colorants, conductive agents, release agents, surface treatment agents, viscosity modifiers, and flame retardants.
 本分散液の粘度は、50~1000mPa・sが好ましく、75~500mPa・sがより好ましい。この場合、パウダー分散液の分散性に優れるだけでなく、その塗工性や異種のポリマーのワニスとの混合性にも優れている。
 本分散液のチキソ比は、1.0~2.2が好ましく、1.4~2.0がより好ましい。この場合、パウダー分散液の分散性に優れるだけでなく、パウダー分散液の塗工性も良好であり、F層の均質性が向上しやすい。また、かかるパウダー分散液は、異種のポリマーのワニスとの混合性がより高まる。
The viscosity of the present dispersion is preferably 50 to 1000 mPa·s, more preferably 75 to 500 mPa·s. In this case, not only the dispersibility of the powder dispersion is excellent, but also the coatability and the miscibility with the varnish of different polymers are excellent.
The thixo ratio of this dispersion is preferably 1.0 to 2.2, more preferably 1.4 to 2.0. In this case, not only is the dispersibility of the powder dispersion excellent, but the coatability of the powder dispersion is also good, and the homogeneity of the F layer is likely to be improved. In addition, the powder dispersion has a higher mixing property with the varnish of different polymers.
 本分散液は、各種基板の表面に付与すれば、層(塗膜)形成時に粉落ちが生じるのを抑制しつつ、その表面の平滑性及びUV加工性に優れるF層を形成できる。
 本発明の積層体は、金属基板層と、この金属基板層の表面に設けられ、上記パウダー分散液から形成された層(F層)とを有する。
 金属基板層の材質としては、銅、銅合金、ステンレス鋼、ニッケル、ニッケル合金(42合金も含む。)、アルミニウム、アルミニウム合金、チタン、チタン合金が挙げられる。
 金属基板層は、圧延銅箔、電解銅箔等の金属箔で構成するのが好ましい。かかる金属箔の表面は、防錆処理(クロメート等の酸化物皮膜等)されていてもよく、粗化処理されていてもよい。
 金属箔の厚さは、積層体の用途において充分な機能が発揮できる厚さであればよい。金属箔の厚さは、その表面の十点平均粗さ以上の厚さであり、2~40μmが好ましい。金属箔として、キャリア銅箔(厚さ:10~35μm)と、剥離層を介してキャリア銅箔上に積層された極薄銅箔(厚さ:2~5μm)とからなるキャリア付金属箔を使用してもよい。また、金属箔の厚さは、F樹脂層の厚さより大きいのが好ましい。
When this dispersion is applied to the surface of various substrates, it is possible to form an F layer having excellent surface smoothness and UV processability while suppressing the occurrence of powder falling when forming a layer (coating film).
The laminate of the present invention has a metal substrate layer and a layer (F layer) provided on the surface of the metal substrate layer and formed from the powder dispersion liquid.
Examples of the material of the metal substrate layer include copper, copper alloy, stainless steel, nickel, nickel alloy (including 42 alloy), aluminum, aluminum alloy, titanium, and titanium alloy.
The metal substrate layer is preferably composed of a metal foil such as rolled copper foil or electrolytic copper foil. The surface of such a metal foil may be subjected to rust-preventing treatment (oxide coating of chromate or the like) or roughening treatment.
The metal foil may have any thickness as long as it can exhibit a sufficient function in the use of the laminate. The thickness of the metal foil is not less than the ten-point average roughness of the surface thereof, and is preferably 2 to 40 μm. As the metal foil, a metal foil with a carrier comprising a carrier copper foil (thickness: 10 to 35 μm) and an ultrathin copper foil (thickness: 2 to 5 μm) laminated on the carrier copper foil via a release layer. May be used. Further, the thickness of the metal foil is preferably larger than the thickness of the F resin layer.
 金属箔の表面の十点平均粗さは、0.2~1.5μmが好ましい。この場合、F層との接着性が良好となりやすい。
 金属箔の厚さは、積層体の用途において機能が発揮できる厚さであればよい。
 金属箔の表面は、シランカップリング剤により処理されていてもよい。この場合、金属箔の表面の全体がシランカップリング剤により処理されていてもよく、金属箔の表面の一部がシランカップリング剤により処理されていてもよい。
The ten-point average roughness of the surface of the metal foil is preferably 0.2 to 1.5 μm. In this case, the adhesiveness with the F layer tends to be good.
The metal foil may have any thickness as long as it can exhibit its function in the intended use of the laminate.
The surface of the metal foil may be treated with a silane coupling agent. In this case, the entire surface of the metal foil may be treated with the silane coupling agent, or a part of the surface of the metal foil may be treated with the silane coupling agent.
 本発明の積層体は、金属基板層の少なくとも一方の表面にF層を有する。つまり、積層体は、金属基板層の片面のみにF層を有していてもよく、金属基板層の両面にF層を有していてもよい。
 積層体の反り率は、25%以下が好ましく、7%以下がより好ましい。この場合、積層体をプリント基板に加工する際のハンドリング性と、得られるプリント基板の伝送特性とが優れる。
 積層体の寸法変化率は、±1%以下が好ましく、±0.2%以下がより好ましい。この場合、積層体をプリント基板に加工し、さらにそれを多層化しやすい。
The laminate of the present invention has the F layer on at least one surface of the metal substrate layer. That is, the laminate may have the F layer on only one side of the metal substrate layer, or may have the F layer on both sides of the metal substrate layer.
The warp rate of the laminate is preferably 25% or less, more preferably 7% or less. In this case, the handleability when processing the laminated body into a printed board and the transmission characteristics of the obtained printed board are excellent.
The dimensional change rate of the laminate is preferably ±1% or less, more preferably ±0.2% or less. In this case, it is easy to process the laminated body into a printed board and further to make it into multiple layers.
 F層の表面の水接触角は、70~100°が好ましく、70~90°がより好ましい。この場合、F層と他の基板との接着性がより優れる。上記範囲が下限値以上であれば、積層体をプリント基板に加工した際の電気特性がより優れる。
 F層の厚さは、1~50μmが好ましく、5~15μmがより好ましい。この範囲において、積層体をプリント基板に加工した際の電気特性と積層体の反り抑制とをバランスさせやすい。積層体が金属基板の両面にF層を有する場合、2つのF層の組成及び厚さは、積層体の反りを抑制する点から同じであるのが好ましい。
 F層の厚さの好適な態様としては、25μm以下が好ましく、20μm以下がより好ましい。また、F層の厚さは、1μm以上が好ましい。本分散液は、Fポリマー及びPIのそれぞれの含有量が所定の範囲にあり、任意の厚さのF層の形成においても、PIが均一に分散したTFE系ポリマーの緻密な層が形成できる。その結果、耐熱性と耐薬品性と電気特性とを具備した任意の厚さのF層を形成できる。
 F層の比誘電率は、2.0~3.5が好ましく、2.0~3.0がより好ましい。この場合、低誘電率が求められるプリント基板等に積層体を好適に使用できる。
 F層の誘電正接は、0.003以下が好ましい。
The water contact angle of the surface of the F layer is preferably 70 to 100°, more preferably 70 to 90°. In this case, the adhesiveness between the F layer and another substrate is more excellent. When the above range is at least the lower limit value, the electrical characteristics when the laminate is processed into a printed board will be more excellent.
The thickness of the F layer is preferably 1 to 50 μm, more preferably 5 to 15 μm. Within this range, it is easy to balance the electrical characteristics when the laminated body is processed into a printed circuit board and the suppression of warpage of the laminated body. When the laminate has F layers on both sides of the metal substrate, the composition and thickness of the two F layers are preferably the same from the viewpoint of suppressing warpage of the laminate.
The thickness of the F layer is preferably 25 μm or less, more preferably 20 μm or less. The thickness of the F layer is preferably 1 μm or more. The dispersion contains the respective contents of the F polymer and the PI within a predetermined range, and even when the F layer having an arbitrary thickness is formed, a dense layer of the TFE polymer in which the PI is uniformly dispersed can be formed. As a result, it is possible to form an F layer having an arbitrary thickness having heat resistance, chemical resistance, and electric characteristics.
The relative dielectric constant of the F layer is preferably 2.0 to 3.5, more preferably 2.0 to 3.0. In this case, the laminated body can be preferably used for a printed circuit board or the like that requires a low dielectric constant.
The dielectric loss tangent of the F layer is preferably 0.003 or less.
 パウダー分散液の金属基板への付与は、塗布による行うのが好ましい。
 塗布方法は、塗布後の金属基板の表面にパウダー分散液からなる安定したウェット膜(液状被膜)が形成される方法であればよく、スプレー法、ロールコート法、スピンコート法、グラビアコート法、マイクログラビアコート法、グラビアオフセット法、ナイフコート法、キスコート法、バーコート法、ダイコート法、ファウンテンメイヤーバー法、スロットダイコート法が挙げられる。
 パウダー分散液の塗布後、金属基板を加熱するに際しては、低温領域の温度に保持して、溶媒を留去(すなわち乾燥)するのが好ましい。低温領域(以下、「乾燥領域」とも記す。)の温度としては、80℃以上180℃未満が好ましく、120~170℃がより好ましい。乾燥領域の温度は、乾燥における雰囲気の温度を意味する。
 低温領域の温度での保持は、1段階で実施してもよく、異なる温度にて2段階以上で実施してもよい。
 低温領域の温度に保持する方法としては、オーブンを用いる方法、通風乾燥炉を用いる方法、赤外線等の熱線を照射する方法等が挙げられる。
The powder dispersion is preferably applied to the metal substrate by coating.
The coating method may be any method as long as it forms a stable wet film (liquid coating) of the powder dispersion liquid on the surface of the metal substrate after coating, such as a spray method, a roll coating method, a spin coating method, a gravure coating method, The microgravure coating method, gravure offset method, knife coating method, kiss coating method, bar coating method, die coating method, fountain Mayer bar method, and slot die coating method can be mentioned.
When the metal substrate is heated after applying the powder dispersion liquid, it is preferable to maintain the temperature in the low temperature region and distill off (ie, dry) the solvent. The temperature in the low temperature region (hereinafter, also referred to as “dry region”) is preferably 80° C. or higher and lower than 180° C., and more preferably 120 to 170° C. The temperature of the drying region means the temperature of the atmosphere during the drying.
The holding at the temperature in the low temperature region may be performed in one step, or may be performed in two or more steps at different temperatures.
Examples of the method for maintaining the temperature in the low temperature region include a method using an oven, a method using a ventilation drying furnace, and a method of irradiating heat rays such as infrared rays.
 低温領域の温度に保持する際の雰囲気は、常圧下、減圧下のいずれの状態であってよい。また、上記雰囲気は、酸化性ガス雰囲気、還元性ガス雰囲気、不活性ガス雰囲気のいずれであってもよい。
 不活性ガスとしては、ヘリウムガス、ネオンガス、アルゴンガス、窒素ガスが挙げられ、窒素ガスが好ましい。
 還元性ガスとしては、水素ガスが挙げられる。
 酸化性ガスとしては、酸素ガスが挙げられる。
The atmosphere for maintaining the temperature in the low temperature region may be either under normal pressure or under reduced pressure. The atmosphere may be any of an oxidizing gas atmosphere, a reducing gas atmosphere, and an inert gas atmosphere.
Examples of the inert gas include helium gas, neon gas, argon gas, and nitrogen gas, and nitrogen gas is preferable.
Examples of the reducing gas include hydrogen gas.
Oxygen gas is mentioned as an oxidizing gas.
 低温領域の温度に保持する際の雰囲気は、Aポリマーの酸化分解を促し、よりF層の接着性を向上させる観点から、酸素ガスを含む雰囲気が好ましい。
 酸素ガスを含む雰囲気における酸素ガス濃度(体積基準)は、1×10~3×10ppmが好ましく、0.5×10~1×10ppmがより好ましい。この範囲において、Aポリマーの酸化分解と、金属基板の酸化抑制とをバランスさせやすい。
 低温領域の温度に保持する時間は、0.1~10分間が好ましく、0.5~5分間がより好ましい。
The atmosphere for maintaining the temperature in the low temperature region is preferably an atmosphere containing oxygen gas from the viewpoint of promoting the oxidative decomposition of the A polymer and further improving the adhesiveness of the F layer.
The oxygen gas concentration (volume basis) in the atmosphere containing oxygen gas is preferably 1×10 2 to 3×10 5 ppm, more preferably 0.5×10 3 to 1×10 4 ppm. Within this range, it is easy to balance the oxidative decomposition of the A polymer and the suppression of oxidation of the metal substrate.
The time for maintaining the temperature in the low temperature region is preferably 0.1 to 10 minutes, more preferably 0.5 to 5 minutes.
 本発明の積層体の製造方法においては、さらに、低温領域での保持温度を超える温度領域(以下、「焼成領域」とも記す。)にて、Fポリマーを焼成させて金属基板の表面にF層を形成するのが好ましい。焼成領域の温度は、焼成における雰囲気の温度を意味する。
 本発明におけるF層の形成は、パウダー粒子が密にパッキングし、Fポリマーが融着して進行すると考えられる。なお、パウダー分散液が熱溶融性樹脂を含めば、Fポリマーと溶解性樹脂との混合物からなるF層が形成され、パウダー分散液が熱硬化性樹脂を含めば、Fポリマーと熱硬化性樹脂の硬化物とからなるF層が形成される。
In the method for producing a layered product of the present invention, the F polymer is further fired in the temperature region (hereinafter, also referred to as “firing region”) exceeding the holding temperature in the low temperature region to form the F layer on the surface of the metal substrate. Are preferably formed. The temperature of the firing region means the temperature of the atmosphere during firing.
It is considered that the formation of the F layer in the present invention proceeds because the powder particles are closely packed and the F polymer is fused. If the powder dispersion contains a thermofusible resin, an F layer made of a mixture of an F polymer and a soluble resin is formed. If the powder dispersion contains a thermosetting resin, the F polymer and the thermosetting resin are formed. An F layer composed of the cured product of is formed.
 焼成の方法としては、オーブンを用いる方法、通風乾燥炉を用いる方法、赤外線等の熱線を照射する方法等が挙げられる。F層の表面の平滑性を高めるために、加熱板、加熱ロール等で加圧してもよい。加熱の方法としては、短時間で焼成でき、遠赤外線炉が比較的コンパクトである点から、遠赤外線を照射する方法が好ましい。加熱の方法は、赤外線加熱と熱風加熱とを組み合わせてもよい。
 遠赤外線の有効波長帯は、Fポリマーの均質な融着を促す点から、2~20μmが好ましく、3~7μmがより好ましい。
Examples of the firing method include a method using an oven, a method using a ventilation drying furnace, and a method of irradiating with heat rays such as infrared rays. In order to improve the surface smoothness of the F layer, pressure may be applied with a heating plate, a heating roll, or the like. As a heating method, a method of irradiating with far infrared rays is preferable because it can be fired in a short time and the far infrared ray furnace is relatively compact. The heating method may be a combination of infrared heating and hot air heating.
The effective wavelength band of far infrared rays is preferably 2 to 20 μm, and more preferably 3 to 7 μm from the viewpoint of promoting uniform fusion of the F polymer.
 焼成における雰囲気は、常圧下、減圧下のいずれの状態であってよい。また、焼成における雰囲気は、酸化性ガス雰囲気、還元性ガス雰囲気、不活性ガス雰囲気のいずれであってもよく、金属基板及び形成されるF層のそれぞれの酸化劣化を抑制する観点から、還元性ガス雰囲気又は不活性ガス雰囲気が好ましい。
 不活性ガスとしては、ヘリウムガス、ネオンガス、アルゴンガス、窒素ガスが挙げられ、窒素ガスが好ましい。
 還元性ガスとしては、水素ガスが挙げられる。
 酸化性ガスとしては、酸素ガスが挙げられる。
The atmosphere during firing may be either under normal pressure or under reduced pressure. The atmosphere during firing may be any of an oxidizing gas atmosphere, a reducing gas atmosphere, and an inert gas atmosphere. From the viewpoint of suppressing the oxidative deterioration of the metal substrate and the F layer to be formed, the reducing property is reduced. A gas atmosphere or an inert gas atmosphere is preferred.
Examples of the inert gas include helium gas, neon gas, argon gas, and nitrogen gas, and nitrogen gas is preferable.
Examples of the reducing gas include hydrogen gas.
Oxygen gas is mentioned as an oxidizing gas.
 焼成における雰囲気は、不活性ガスから構成され酸素ガス濃度が低いガス雰囲気が好ましく、窒素ガスから構成され酸素ガス濃度(体積基準)が500ppm未満のガス雰囲気がより好ましい。酸素ガス濃度(体積基準)は、300ppm以下が特に好ましい。また、酸素ガス濃度(体積基準)は、通常、1ppm以上である。この範囲において、Aポリマーのさらなる酸化分解が抑制され、F層の親水性を向上させやすい。
 焼成領域の温度は、250~400℃が好ましく、300~380℃がより好ましい。
 焼成領域の温度に保持する時間は、30秒~5分間が好ましく、1~2分間がより好ましい。
The atmosphere for firing is preferably a gas atmosphere composed of an inert gas and having a low oxygen gas concentration, and more preferably a gas atmosphere composed of nitrogen gas and having an oxygen gas concentration (volume basis) of less than 500 ppm. The oxygen gas concentration (volume basis) is particularly preferably 300 ppm or less. The oxygen gas concentration (volume basis) is usually 1 ppm or more. Within this range, further oxidative decomposition of the A polymer is suppressed, and the hydrophilicity of the F layer is easily improved.
The temperature of the firing region is preferably 250 to 400°C, more preferably 300 to 380°C.
The time of maintaining the temperature in the firing region is preferably 30 seconds to 5 minutes, more preferably 1 to 2 minutes.
 本発明における積層体には、F層の線膨張を制御したり、F層の接着性をさらに改善したりするために、F層の表面に表面処理をしてもよい。
 F層の表面にする表面処理方法としては、アニール処理、コロナ放電処理、大気圧プラズマ処理、真空プラズマ処理、UVオゾン処理、エキシマ処理、ケミカルエッチング、シランカップリング処理、微粗面化処理等が挙げられる。
 アニール処理における温度は、120~180℃が好ましい。
 アニール処理における圧力は、0.005~0.015MPaが好ましい。
 アニール処理の時間は、30~120分間が好ましい。
The laminate of the present invention may be surface-treated on the surface of the F layer in order to control the linear expansion of the F layer and further improve the adhesiveness of the F layer.
As the surface treatment method for forming the surface of the F layer, annealing treatment, corona discharge treatment, atmospheric pressure plasma treatment, vacuum plasma treatment, UV ozone treatment, excimer treatment, chemical etching, silane coupling treatment, fine surface roughening treatment, etc. Can be mentioned.
The temperature in the annealing treatment is preferably 120 to 180°C.
The pressure in the annealing treatment is preferably 0.005 to 0.015 MPa.
The annealing time is preferably 30 to 120 minutes.
 プラズマ処理におけるプラズマ照射装置としては、高周波誘導方式、容量結合型電極方式、コロナ放電電極-プラズマジェット方式、平行平板型、リモートプラズマ型、大気圧プラズマ型、ICP型高密度プラズマ型等が挙げられる。
 プラズマ処理に用いるガスとしては、酸素ガス、窒素ガス、希ガス(アルゴン等)、水素ガス、アンモニアガス等が挙げられ、希ガス、水素ガス又は窒素ガスが好ましい。プラズマ処理に用いるガスの具体例としては、アルゴンガス、水素ガスと窒素ガスとの混合ガス、水素ガスと窒素ガスとアルゴンガスとの混合ガスが挙げられる。
Examples of the plasma irradiation device in the plasma treatment include a high frequency induction system, a capacitive coupling type electrode system, a corona discharge electrode-plasma jet system, a parallel plate type, a remote plasma type, an atmospheric pressure plasma type and an ICP type high density plasma type. ..
Examples of the gas used for the plasma treatment include oxygen gas, nitrogen gas, rare gas (argon or the like), hydrogen gas, ammonia gas and the like, and rare gas, hydrogen gas or nitrogen gas is preferable. Specific examples of the gas used for the plasma treatment include argon gas, a mixed gas of hydrogen gas and nitrogen gas, and a mixed gas of hydrogen gas, nitrogen gas, and argon gas.
 本発明の積層体において、F層の表面は、接着性に優れるため、他の基板と容易かつ強固に接合できる。
 他の基板としては、耐熱性樹脂フィルム、繊維強化樹脂板の前駆体であるプリプレグ、耐熱性樹脂フィルム層を有する積層体、プリプレグ層を有する積層体が挙げられる。
 プリプレグは、強化繊維(ガラス繊維、炭素繊維等)の基材(トウ、織布等)に熱硬化性樹脂又は熱可塑性樹脂を含浸させたシート状の基板である。
 耐熱性樹脂フィルムは、耐熱性樹脂の1種以上を含むフィルムであり、単層フィルムであっても多層フィルムであってもよい。
 耐熱性樹脂としては、ポリイミド、ポリアリレート、ポリスルホン、ポリアリルスルホン、芳香族ポリアミド、芳香族ポリエーテルアミド、ポリフェニレンスルフィド、ポリアリルエーテルケトン、ポリアミドイミド、液晶性ポリエステル、液晶性ポリエステルアミド等が挙げられる。
In the layered product of the present invention, the surface of the F layer has excellent adhesiveness, so that it can be easily and firmly bonded to another substrate.
Examples of other substrates include a heat resistant resin film, a prepreg that is a precursor of a fiber reinforced resin plate, a laminate having a heat resistant resin film layer, and a laminate having a prepreg layer.
The prepreg is a sheet-like substrate in which a base material (tow, woven cloth, etc.) of reinforcing fibers (glass fiber, carbon fiber, etc.) is impregnated with a thermosetting resin or a thermoplastic resin.
The heat resistant resin film is a film containing at least one kind of heat resistant resin, and may be a single layer film or a multilayer film.
Examples of the heat resistant resin include polyimide, polyarylate, polysulfone, polyallylsulfone, aromatic polyamide, aromatic polyetheramide, polyphenylene sulfide, polyallyl ether ketone, polyamideimide, liquid crystalline polyester, liquid crystalline polyesteramide. ..
 本発明の積層体において、F層の表面に他の基板を積層する方法としては、積層体と他の基板とを熱プレスする方法が挙げられる。
 他の基板がプリプレグである場合のプレス温度は、Fポリマーの溶融温度以下が好ましく、120~300℃がより好ましい。他の基板が耐熱性樹脂フィルムである場合のプレス温度は、310~400℃が好ましい。
 熱プレスは、気泡混入を抑制し、酸化による劣化を抑制する観点から、20kPa以下の真空度で行うのが特に好ましい。
 また、熱プレス時には上記真空度に到達した後に昇温することが好ましい。上記真空度に到達する前に昇温すると、F層が軟化した状態、すなわち一定程度の流動性、密着性がある状態にて圧着されてしまい、気泡の原因となる場合がある。
 熱プレスにおける圧力は、基板の破損を抑制しつつ、F層と基板とを強固に密着させる観点から、0.2~10MPaが好ましい。
In the laminate of the present invention, as a method of laminating another substrate on the surface of the F layer, a method of hot pressing the laminate and another substrate can be mentioned.
When the other substrate is a prepreg, the pressing temperature is preferably not higher than the melting temperature of the F polymer, more preferably 120 to 300°C. When the other substrate is a heat resistant resin film, the pressing temperature is preferably 310 to 400°C.
The hot pressing is particularly preferably performed at a vacuum degree of 20 kPa or less from the viewpoint of suppressing air bubble inclusion and suppressing deterioration due to oxidation.
Further, during hot pressing, it is preferable to raise the temperature after reaching the above vacuum degree. If the temperature is raised before reaching the above-mentioned degree of vacuum, the F layer is softened, that is, pressure-bonded in a state having a certain degree of fluidity and adhesiveness, which may cause bubbles.
The pressure in the hot press is preferably 0.2 to 10 MPa from the viewpoint of firmly adhering the F layer and the substrate while suppressing damage to the substrate.
 本発明の積層体やその多層積層体は、フレキシブル銅張積層板やリジッド銅張積層板として、プリント基板の製造に使用できる。
 本発明のプリント基板は、例えば、本発明の積層体における金属基板をエッチング等によって所定のパターンの導体回路(パターン回路)に加工する方法や、本発明の積層体を電解めっき法(セミアディティブ法(SAP法)、モディファイドセミアディティブ法(MSAP法)等)によってパターン回路に加工する方法を使用すれば、本発明の積層体からプリント基板を製造できる。
 プリント基板の製造においては、パターン回路を形成した後に、パターン回路上に層間絶縁膜を形成し、層間絶縁膜上にさらに導体回路を形成してもよい。層間絶縁膜は、本分散液によって形成してもよい。
 プリント基板の製造においては、パターン回路上にソルダーレジストを積層してもよい。ソルダーレジストは、本分散液によって形成してもよい。
 プリント基板の製造においては、パターン回路上にカバーレイフィルムを積層してもよい。
INDUSTRIAL APPLICABILITY The laminate of the present invention and the multilayer laminate thereof can be used as a flexible copper-clad laminate or a rigid copper-clad laminate for manufacturing a printed board.
The printed circuit board of the present invention is, for example, a method of processing a metal substrate in the laminate of the present invention into a conductor circuit (pattern circuit) having a predetermined pattern by etching or the like, or an electrolytic plating method (semi-additive method) of the laminate of the present invention. (SAP method), modified semi-additive method (MSAP method), etc.) can be used to produce a printed circuit board from the laminate of the present invention.
In the production of a printed circuit board, after forming a pattern circuit, an interlayer insulating film may be formed on the pattern circuit, and a conductor circuit may be further formed on the interlayer insulating film. The interlayer insulating film may be formed by the present dispersion liquid.
In manufacturing a printed circuit board, a solder resist may be laminated on the pattern circuit. The solder resist may be formed by the present dispersion liquid.
In manufacturing a printed circuit board, a coverlay film may be laminated on the pattern circuit.
 以上、本発明のパウダー分散液、積層体及びプリント基板について説明したが、本発明は、上述した実施形態の構成に限定されない。
 例えば、本発明のパウダー分散液、積層体及びプリント基板は、それぞれ上前述した実施形態に構成において、他の任意の構成を追加してもよいし、同様の機能を発揮する任意の構成と置換されていてよい。
Although the powder dispersion liquid, the laminate, and the printed circuit board of the present invention have been described above, the present invention is not limited to the configurations of the above-described embodiments.
For example, the powder dispersion liquid, the laminate, and the printed circuit board of the present invention may have other arbitrary configurations added in the configurations of the above-described embodiments, respectively, and may be replaced with any configuration exhibiting the same function. It may have been done.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されない。
 1.各成分の準備
 [Fポリマー]
・Fポリマー1:TFEに基づく単位、NAHに基づく単位及びPPVEに基づく単位を、この順に98.0モル%、0.1モル%、1.9モル%含むコポリマー(溶融温度:300℃、380℃の溶融粘度:3×10Pa・s)
・Fポリマー2:TFEに基づく単位及びPPVEに基づく単位を、この順に98.0モル%及び2.0モル%含むポリマー(溶融温度:305℃、380℃の溶融粘度:3×10Pa・s)
 [パウダー]
・パウダー1:D50が2.6μm、D90が7.1μmである、Fポリマー1からなるパウダー1
・パウダー2:D50が3.5μm、D90が9.2μmである、Fポリマー2からなるパウダー2
 なお、D50及びD90は、レーザー回折・散乱式粒度分布測定装置(堀場製作所社製、「LA-920測定器」)を用い、パウダーを水中に分散させて測定した。
Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
1. Preparation of each component [F polymer]
F polymer 1: a copolymer containing 98.0 mol%, 0.1 mol% and 1.9 mol% of units based on TFE, units based on NAH and units based on PPVE in this order (melting temperature: 300° C., 380 Melt viscosity at ℃: 3×10 5 Pa·s)
F polymer 2: polymer containing 98.0 mol% and 2.0 mol% of units based on TFE and units based on PPVE in this order (melting temperature: 305° C., melt viscosity at 380° C.: 3×10 5 Pa. s)
[powder]
-Powder 1: Powder 1 made of F polymer 1 having D50 of 2.6 µm and D90 of 7.1 µm
-Powder 2: Powder 2 made of F polymer 2 having D50 of 3.5 µm and D90 of 9.2 µm
Incidentally, D50 and D90 were measured by dispersing the powder in water using a laser diffraction/scattering type particle size distribution measuring device (“LA-920 measuring device” manufactured by Horiba Ltd.).
 [PIのワニス]
・ポリイミド前駆体のワニス:3,3’4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)とp-フェニレンジアミン(PPD)との共重合体(モル比=1:1)を、濃度0.5g/dLとなるように、N-メチル-2-ピロリドン(NMP)に溶解した溶液
 このワニスを、ポリイミドの濃度が0.5g/dLとなるように、NMPで濃度調整した溶液の30℃における対数粘度は、2.0dL/gであった。
・ポリイミドのワニス:3,3’4,4’-ベンゾフェノンテトラカルボン酸二無水物と、2、4-ジアミノトルエンと、3,3’4,4’-ビフェニルテトラカルボン酸二無水物と、2、2-ビス{4-(4-アミノフェノキシ)フェニル}プロパンとのブロック共重合体(モル比=1:1:1:1)を、NMPに溶解した溶液
 このワニスを、ポリイミドの濃度が0.5g/dLとなるように、NMPで濃度調整した溶液の30℃における対数粘度は、1.2dL/gであった。
 [Aポリマー]
 CH=CHCOO(CHOCF(CF)(C(CF(CF)(=C(CF)とCH=CHCOO(CHCHO)OHとの共重合体(モル比=1:1)
 なお、かかる共重合体は、ノニオン性のフルオロポリオール(重量平均分子量:約10000)である。
[PI varnish]
Varnish of polyimide precursor: 3,3′4,4′-biphenyltetracarboxylic dianhydride (BPDA) and p-phenylenediamine (PPD) copolymer (molar ratio=1:1) A solution of N-methyl-2-pyrrolidone (NMP) dissolved in 0.5 g/dL of this varnish, the concentration of which was adjusted with NMP so that the polyimide concentration was 0.5 g/dL. The inherent viscosity at 0° C. was 2.0 dL/g.
-Polyimide varnish: 3,3'4,4'-benzophenone tetracarboxylic dianhydride, 2,4-diaminotoluene, 3,3'4,4'-biphenyltetracarboxylic dianhydride, and 2 , A solution obtained by dissolving a block copolymer with 2-bis{4-(4-aminophenoxy)phenyl}propane (molar ratio = 1:1:1:1) in NMP. The logarithmic viscosity at 30° C. of the solution whose concentration was adjusted with NMP to be 0.5 g/dL was 1.2 dL/g.
[A polymer]
CH 2 = CHCOO (CH 2) 4 OCF (CF 3) (C (CF (CF 3) 2) (= C (CF 3) 2) and CH 2 = CHCOO (CH 2 CH 2 O) co with 8 OH Polymer (molar ratio=1:1)
The copolymer is a nonionic fluoropolyol (weight average molecular weight: about 10,000).
 2.パウダー分散液の調製
 (例1)
 まず、47質量部のNMPと、2.5質量部のAポリマーと、50質量部のパウダー1とをポットに投入した後、ポット内にジルコニアボールを投入した。その後、150rpm×1時間の条件でポットをころがし、パウダー1を分散して、混合液を得た。
 次に、この混合液に、ポリイミドのワニスを、攪拌機を500rpmの回転数で撹拌しつつ、パウダー分散液中のポリイミド(固形分)の量が0.5質量%となるように添加して、パウダー分散液Aを調製した。
 なお、パウダー1(Fポリマー1)の含有量に対するポリイミド(PI)の含有量の質量での比は、0.01である。
2. Preparation of powder dispersion (Example 1)
First, 47 parts by mass of NMP, 2.5 parts by mass of A polymer, and 50 parts by mass of powder 1 were put into a pot, and then zirconia balls were put into the pot. Then, the pot was rolled under the condition of 150 rpm×1 hour to disperse the powder 1 to obtain a mixed liquid.
Next, a polyimide varnish was added to this mixed solution while stirring the stirrer at a rotation speed of 500 rpm so that the amount of the polyimide (solid content) in the powder dispersion was 0.5% by mass, Powder dispersion A was prepared.
The mass ratio of the content of polyimide (PI) to the content of powder 1 (F polymer 1) is 0.01.
 (例2~7)
 各成分の種類及び量(配合比率)を変更した以外は、例1と同様にして、パウダー分散液B(例2)、パウダー分散液C(例3)、パウダー分散液D(例4)、パウダー分散液E(例5)、パウダー分散液F(例6)及びパウダー分散液G(例7)を得た。それぞれのパウダー分散液の成分を、下表1にまとめて示す。
(Examples 2-7)
Powder dispersion B (Example 2), powder dispersion C (Example 3), powder dispersion D (Example 4), in the same manner as in Example 1 except that the type and amount (blending ratio) of each component were changed. Powder dispersion E (Example 5), powder dispersion F (Example 6) and powder dispersion G (Example 7) were obtained. The components of each powder dispersion are summarized in Table 1 below.
 3.測定及び評価(その1)
 3-1.調製時凝集性の評価
 各パウダー分散液を調製した直後に、パウダー分散液の分散性を目視で確認し、以下の基準に従って評価した。
 ○(良) :凝集が見られない。
 △(可) :ポット底部に沈殿は見られないが、側壁に細かな凝集物が付着している。
 ×(不可):ポット底部に凝集したパウダーが沈殿している。
3. Measurement and evaluation (1)
3-1. Evaluation of Cohesion during Preparation Immediately after preparing each powder dispersion, the dispersibility of the powder dispersion was visually confirmed and evaluated according to the following criteria.
○ (Good): No aggregation is observed.
Δ (Fair): No precipitation was observed at the bottom of the pot, but fine aggregates were attached to the side wall.
X (Not possible): Agglomerated powder is deposited at the bottom of the pot.
 3-2.保管後沈降性の評価
 各パウダー分散液を常温で1か月静置し、1か月後にポットの撹拌を行い、再分散の程度を目視で確認し、以下の基準に従って評価した。
 ○(良) :ポットの撹拌のみで、均一な分散となった。
 △(可) :均一な分散だが、凝集体が一部みられる。
 ×(不可):沈降した凝集体が固形物となり、分散しない。
3-2. Evaluation of Sedimentation Property after Storage Each powder dispersion was allowed to stand at room temperature for 1 month, and after 1 month, the pot was stirred, and the degree of redispersion was visually confirmed, and evaluated according to the following criteria.
◯ (Good): Uniform dispersion was achieved only by stirring the pot.
Δ (OK): Even dispersion, but some agglomerates.
X (Not possible): The sedimented aggregate becomes a solid and does not disperse.
 3-3.粉落ちの評価
 各パウダー分散液を、電解銅箔(福田金属箔粉工業社製、「CF-T49A-DS-HD2」、厚み:12μm、Rzjis:1.2μm)に、ダイコートによりロールツーロールで塗工して、液状被膜を形成した。この液状被膜を乾燥炉に、120℃×30分間で通過させて加熱により乾燥して、乾燥被膜を得た。得られた乾燥被膜の粉落ちについて、以下の基準に従って評価した。
 〇(良) :乾燥被膜の全面に粉落ちが見られない。
 △(可) :乾燥被膜の縁部に粉落ちが見られる。
 ×(不可):乾燥被膜の全面に粉落ちが見られる。
3-3. Evaluation of powder drop Each of the powder dispersions was roll-to-roll coated by die coating on an electrolytic copper foil (“Fukuda Metal Foil & Powder Co., Ltd., “CF-T49A-DS-HD2”, thickness: 12 μm, Rzjis: 1.2 μm). The coating was applied to form a liquid film. This liquid coating was passed through a drying oven at 120° C. for 30 minutes and dried by heating to obtain a dried coating. The powder drop of the obtained dry film was evaluated according to the following criteria.
◯ (Good): No powder falling is observed on the entire surface of the dry film.
Δ (Fair): Falling powder is seen at the edge of the dry film.
Poor (poor): Powder drop is observed on the entire surface of the dry film.
 3-4.吸水率の評価
 まず、上記で得られた乾燥被膜を、窒素オーブン下で380℃×15分間で加熱した。これにより、銅箔の表面にF層が形成されたF層付銅箔を得た。なお、F層の厚さは12μmであった。次に、F層付銅箔を、塩化第二鉄水溶液でエッチングし、銅箔を除去して、F層単体を得た。
 このF層を、ASTM D570に準拠して、50℃×48時間で予備乾燥した後、23℃の純水に24時間浸漬した。純水に浸漬する前後のF層の質量を測定し、以下の式に基づき、吸水率を求めた。
 吸水率(%)=(水浸漬後質量-予備乾燥後質量)/予備乾燥後質量×100
3-4. Evaluation of Water Absorption First, the dry film obtained above was heated at 380° C. for 15 minutes in a nitrogen oven. Thereby, an F layer-attached copper foil in which the F layer was formed on the surface of the copper foil was obtained. The thickness of the F layer was 12 μm. Next, the copper foil with the F layer was etched with an aqueous solution of ferric chloride to remove the copper foil to obtain a simple F layer.
This F layer was pre-dried at 50° C. for 48 hours according to ASTM D570, and then immersed in pure water at 23° C. for 24 hours. The mass of the F layer before and after the immersion in pure water was measured, and the water absorption rate was calculated based on the following formula.
Water absorption rate (%)=(mass after immersion in water−mass after preliminary drying)/mass after preliminary drying×100
 3-5.波長355nmの紫外線の透過率の測定
 F層について、波長355nmの紫外線の透過率を、分光光度計(株式会社島津製作所製、「UV-3600」)を使用して測定した。
 3-6.接着力の測定
 F層付銅箔を1cm幅に切り出し、引張試験機により銅箔をF層から、90°の角度で50mm/minの速度で剥離し、その際の接着力(kN/m)を測定した。
3-5. Measurement of transmittance of ultraviolet ray having wavelength of 355 nm With respect to the F layer, transmittance of ultraviolet ray having wavelength of 355 nm was measured using a spectrophotometer (“UV-3600” manufactured by Shimadzu Corporation).
3-6. Measurement of Adhesive Strength A copper foil with an F layer is cut out to a width of 1 cm, and the copper foil is peeled from the F layer by a tensile tester at an angle of 90° at a speed of 50 mm/min, and an adhesive force (kN/m) at that time Was measured.
 3-7.UV加工性の評価
 レーザー加工機(esi5330)を使用して、F層付銅箔に対して、直径100μmの円周上を周回するように、波長355nmのUV-YAGレーザーを照射した。これにより、F層付銅箔に円形の貫通孔を形成した。なお、レーザー出力は1.5W、レーザー焦点径を25μm、円周上の周回回数は16回、発振周波数は40kHzとした。
 その後、貫通孔を含むF層付銅箔の断片を切り出し、熱硬化性エポキシ樹脂で固めた。次いで、貫通孔の断面が露出するまで研磨し、貫通孔が形成された部分の断面を顕微鏡で観察した。
 そして、貫通孔が形成された部分の断面において、銅箔とF層との間における剥離の有無を確認し、以下の基準に従って評価した。
 ○:剥離は全く見られない。
 △:5μm未満の長さの剥離が見られる。
 ×:5μm以上の長さの剥離が見られる。
3-7. Evaluation of UV processability Using a laser processing machine (esi5330), the F-layer-coated copper foil was irradiated with a UV-YAG laser having a wavelength of 355 nm so as to circulate on a circle having a diameter of 100 μm. As a result, circular through holes were formed in the copper foil with the F layer. The laser output was 1.5 W, the laser focus diameter was 25 μm, the number of turns on the circumference was 16, and the oscillation frequency was 40 kHz.
Then, a piece of copper foil with an F layer including a through hole was cut out and hardened with a thermosetting epoxy resin. Then, polishing was performed until the cross section of the through hole was exposed, and the cross section of the portion where the through hole was formed was observed with a microscope.
Then, in the cross section of the portion where the through hole was formed, the presence or absence of peeling between the copper foil and the F layer was confirmed and evaluated according to the following criteria.
◯: No peeling is observed at all.
Δ: Peeling with a length of less than 5 μm is observed.
X: Peeling with a length of 5 μm or more is observed.
 3-8.誘電正接の測定
 ファブリペロー共振器及びベクトルネットワークアナライザ(キーコム社製)を使用して、F層付銅箔のF層について10GHzの誘電正接を測定した。
 以上の結果を、以下の表1に示す。
3-8. Measurement of dielectric loss tangent A Fabry-Perot resonator and a vector network analyzer (manufactured by Keycom) were used to measure the dielectric loss tangent at 10 GHz for the F layer of the copper foil with the F layer.
The above results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (例8)
 同じ銅箔の粗化表面にメイヤーバーを用いてパウダー分散液Aを塗布して、粗化表面にウェット膜を形成し、通風乾燥炉(炉温:100℃)に1.5分間、通過させて溶媒を揮発させて塗工層を形成させた。さらに、遠赤外線炉(炉温度370℃)に1分間で通過させ、パウダー1(Fポリマー1)を溶融焼成して、表面にFポリマー1を含むF層(厚さ:4μm)が形成されたF層付銅箔を得た。このF層付銅箔のF層の表面をプラズマ処理(出力:4.5kW、導入ガス:アルゴンガス、導入ガス流量:50cm/分間、圧力:50mTorr、処理時間:2分間)した。
(Example 8)
Powder dispersion A is applied to the roughened surface of the same copper foil using a Mayer bar to form a wet film on the roughened surface, and the mixture is passed through a ventilation drying oven (furnace temperature: 100°C) for 1.5 minutes. The solvent was volatilized to form a coating layer. Further, the powder 1 (F-polymer 1) was passed through a far-infrared furnace (furnace temperature 370° C.) for 1 minute to melt and fire the powder 1 (F-polymer 1) to form an F layer (thickness: 4 μm) containing the F-polymer 1 on the surface. A copper foil with an F layer was obtained. The surface of the F layer of the copper foil with the F layer was subjected to plasma treatment (output: 4.5 kW, introduced gas: argon gas, introduced gas flow rate: 50 cm 3 /min, pressure: 50 mTorr, treatment time: 2 minutes).
 プラズマ処理後のF層付銅箔のF層の表面に、プリプレグとしてFR-4(日立化成社製、「GEA-67N 0.2t(HAN)」;強化繊維:ガラス繊維、マトリックス樹脂:エポキシ樹脂、厚さ:0.2mm)を積層し、真空熱プレス(プレス温度:185℃、プレス圧力:3.0MPa、プレス時間:60分間)して、プリプレグの硬化物層を有する積層体を得た。
 この積層体は、はんだ浴に浮かべるはんだ耐熱性試験において、288℃のはんだ浴に5秒間、5回浮かべても、F層と硬化物層の界面に膨れる現象(膨れ現象)と、F層から銅箔が浮く現象(浮き現象)とが発生しなかった。
FR-4 as a prepreg (“GEA-67N 0.2t (HAN)” manufactured by Hitachi Chemical Co., Ltd.) on the surface of the F layer of the copper foil with the F layer after plasma treatment; reinforcing fiber: glass fiber, matrix resin: epoxy resin , Thickness: 0.2 mm) and vacuum hot pressed (press temperature: 185° C., press pressure: 3.0 MPa, press time: 60 minutes) to obtain a laminate having a cured product layer of prepreg. ..
In the solder heat resistance test of floating this laminate on the solder bath, the phenomenon of swelling at the interface between the F layer and the cured product layer (swelling phenomenon) and the F layer The phenomenon that the copper foil floated (floating phenomenon) did not occur.
 パウダー分散液A~D及びこれらを使用して得られたF層付銅箔は、各種特性に優れていた。また、分散剤Aと分散剤Dとを比較すると、いずれも再分散が可能であったが、パウダー分散液Aの方がより優れていた。これは、パウダー分散液Aに含まれるパウダー1が官能基を有していることで、ポリイミドとの相互作用が高まり、より分散性が向上したためであると考えられる。 The powder dispersions A to D and the copper foil with the F layer obtained by using these were excellent in various properties. Further, when the dispersant A and the dispersant D were compared with each other, redispersion was possible, but the powder dispersion A was superior. It is considered that this is because the powder 1 contained in the powder dispersion A has a functional group, so that the interaction with the polyimide is enhanced and the dispersibility is further improved.
 F層付銅箔を比較すると、パウダー分散液Eを使用したF層付銅箔では、F層形成時にパウダーが容易に脱落(粉落ち)し、ロールに付着していた。一方で、ポリイミドを添加したパウダー分散液Aを使用したF層付銅箔では、ポリイミドがパウダー粒子のつなぎとなり、パウダーの脱落が抑制されたと考えられる。
 また、パウダー分散液Eを使用したF層付銅箔は、UV波長域の光を吸収し得るポリイミドを含有しないため、355nmの透過率は90%となった。このため、UVレーザーの大半が透過するため、UV加工性が低下したと考えらえる。
When comparing the copper foil with the F layer, in the copper foil with the F layer using the powder dispersion E, the powder easily fell off (powdered) during the formation of the F layer and adhered to the roll. On the other hand, in the copper foil with the F layer using the powder dispersion liquid A to which polyimide was added, it is considered that the polyimide became a binder for the powder particles and the falling of the powder was suppressed.
In addition, the copper foil with the F layer using the powder dispersion E did not contain a polyimide capable of absorbing light in the UV wavelength range, and thus the transmittance at 355 nm was 90%. Therefore, most of the UV laser is transmitted, and it is considered that the UV processability is deteriorated.
 また、プリント基板材料の一態様である積層体(F層付銅箔とプリプレグの硬化物との積層体)において、パウダー分散液Aから製造した積層体は、はんだ耐熱性試験で良好な結果を示し、耐熱性と耐薬品性を具備していた。 Further, in a laminate (a laminate of a copper foil with an F layer and a cured product of a prepreg), which is one embodiment of a printed circuit board material, the laminate manufactured from the powder dispersion A shows good results in a solder heat resistance test. It had heat resistance and chemical resistance.
 さらに、パウダー分散液Aの100質量部に対して、アルミナとポリオールで被覆処理された酸化チタン(粒径:0.25μm;石原産業社製、「タイペーク CR-50-2」)の1質量部を、さらに配合してパウダー分散液A’を調製した。パウダー分散液A’の取扱性(上記「3-1.」~「3-3.」の評価結果)は、パウダー分散液Aと同等であった。このパウダー分散液A’を使用して得られるF層付銅箔のF層の355nm透過率は5%未満であり、そのUV吸収性がさらに向上していることを確認した。 Furthermore, for 100 parts by mass of the powder dispersion A, 1 part by mass of titanium oxide (particle size: 0.25 μm; “Taipec CR-50-2” manufactured by Ishihara Sangyo Co., Ltd.) coated with alumina and polyol. Was further blended to prepare a powder dispersion A′. The handleability of the powder dispersion A′ (the evaluation results of “3-1.” to “3-3.” above) was equivalent to that of the powder dispersion A. The 355 nm transmittance of the F layer of the copper foil with the F layer obtained by using this powder dispersion A′ was less than 5%, and it was confirmed that its UV absorption was further improved.
 4.フィルムの作製
 (例9)
 厚さ50μmのポリイミドフィルム(SKC Kolon PI社製、「FS-200」)2の一方の面に、パウダー分散液Aをダイコートで塗布し、通風乾燥炉(炉温:140℃)に3分間で通過させ、溶媒を揮発させて塗工層を形成した。さらに、ポリイミドフィルム2の他方の面にもパウダー分散液Aを、同様に塗工し、溶媒を揮発させて塗工層を形成した。さらに、この両面に塗工層が形成されたポリイミドフィルム2を遠赤外線炉(炉温度:370℃)に20分間で通過させ、パウダー1を溶融焼成して、ポリマー1を含むF層3をポリイミドフィルム(PI層)2の両面に有するフィルムAを得た。F層の厚さは、それぞれ25μmであった。
 (例10)
 パウダー分散液Aに代えて、パウダー分散液Eを使用した以外は、例9と同様にして、フィルムEを得た。
4. Production of film (Example 9)
On one side of a 50 μm-thick polyimide film (SKC Kolon PI, “FS-200”) 2, the powder dispersion A is applied by die coating, and it is placed in a ventilation drying furnace (furnace temperature: 140° C.) for 3 minutes. It was allowed to pass and the solvent was volatilized to form a coating layer. Furthermore, the powder dispersion liquid A was similarly coated on the other surface of the polyimide film 2 and the solvent was volatilized to form a coating layer. Further, this polyimide film 2 having coating layers formed on both sides is passed through a far-infrared furnace (furnace temperature: 370° C.) for 20 minutes, and the powder 1 is melted and fired to form the F layer 3 containing the polymer 1 on the polyimide. A film A having both surfaces of the film (PI layer) 2 was obtained. The thickness of each F layer was 25 μm.
(Example 10)
A film E was obtained in the same manner as in Example 9 except that the powder dispersion E was used instead of the powder dispersion A.
 5.測定及び評価(その2)
 各フィルムA、Eの両面に電解銅箔(福田金属箔粉工業株式会社製、「CF-T49A-DS-HD2-12」)4を配し、340℃にて20分間、真空下でプレスして両面銅張積層体1を得た。
 レーザー出力を1.5W、レーザー焦点径を25μm、円周上の周回回数を16回、発振周波数を40kHzとした以外は、上記「3-7.UV加工性の評価」と同様にして、各両面銅張積層体1に対してUV-YAGレーザーを照射して、円形の貫通孔5を形成した。
5. Measurement and evaluation (2)
Electrolytic copper foil (manufactured by Fukuda Metal Foil & Powder Co., Ltd., "CF-T49A-DS-HD2-12") 4 is placed on both sides of each film A and E, and pressed under vacuum at 340°C for 20 minutes. A double-sided copper-clad laminate 1 was obtained.
Except that the laser output was 1.5 W, the laser focus diameter was 25 μm, the number of revolutions on the circumference was 16 times, and the oscillation frequency was 40 kHz, each was performed in the same manner as in “3-7. The double-sided copper clad laminate 1 was irradiated with a UV-YAG laser to form circular through holes 5.
 各両面銅張積層体1における貫通孔5の周辺の断面を撮影した顕微鏡写真を、それぞれ図1、図2に示す。
 フィルムAから得られた両面銅張積層体1では、F層3がポリイミドを含むので、UV加工性が良好である。このため、図1の顕微鏡写真に示す通り、貫通孔5の周囲においてUVによるF層3及びポリイミドフィルム(PI層)2の劣化の程度が抑制された。
 一方、フィルムEから得られた両面銅張積層体1では、F層3がポリイミドを含まないため、貫通孔5を形成するのにUVの照射時間を長くせざるを得なかった。このため、図2の顕微鏡写真に示す通り、貫通孔5の周囲においてUVによるF層3及びポリイミドフィルム(PI層)2の劣化の程度が激しかった。
1 and 2 are photomicrographs of cross-sections around the through hole 5 in each double-sided copper-clad laminate 1.
In the double-sided copper clad laminate 1 obtained from the film A, since the F layer 3 contains polyimide, the UV processability is good. Therefore, as shown in the micrograph of FIG. 1, the degree of deterioration of the F layer 3 and the polyimide film (PI layer) 2 due to UV was suppressed around the through hole 5.
On the other hand, in the double-sided copper-clad laminate 1 obtained from the film E, since the F layer 3 does not contain polyimide, the UV irradiation time had to be lengthened to form the through holes 5. Therefore, as shown in the micrograph of FIG. 2, the degree of deterioration of the F layer 3 and the polyimide film (PI layer) 2 due to UV was great around the through hole 5.
 本発明の分散剤を使用して得られる層は、電気特性及びUV加工性に優れるため、かかる層を有する積層体は、アンテナ部品、プリント基板、航空機用部品、自動車用部品等に加工して使用できる。 Since the layer obtained by using the dispersant of the present invention has excellent electrical characteristics and UV processability, a laminate having such a layer is processed into an antenna part, a printed circuit board, an aircraft part, an automobile part, etc. Can be used.
 1…両面銅張積層体、2…ポリイミドフィルム(PI層)、3…F層、4…電解銅箔、5…貫通孔、A,E…フィルム 1... Double-sided copper clad laminate, 2... Polyimide film (PI layer), 3... F layer, 4... Electrolytic copper foil, 5... Through hole, A, E... Film

Claims (14)

  1.  テトラフルオロエチレン系ポリマーのパウダーと、(メタ)アクリレート系ポリマーと、ポリイミド前駆体又はポリイミドと、極性有機溶媒とを含み、前記テトラフルオロエチレン系ポリマーの含有量が10~60質量%であり、前記テトラフルオロエチレン系ポリマーの含有量に対する前記ポリイミド前駆体又はポリイミドの含有量の質量での比が0.3以下である、パウダー分散液。 A powder of a tetrafluoroethylene-based polymer, a (meth)acrylate-based polymer, a polyimide precursor or polyimide, and a polar organic solvent, and the content of the tetrafluoroethylene-based polymer is 10 to 60% by mass. A powder dispersion, wherein the ratio of the content of the polyimide precursor or the content of the polyimide to the content of the tetrafluoroethylene-based polymer is 0.3 or less.
  2.  前記比が、0.005以上0.1以下である、請求項1に記載のパウダー分散液。 The powder dispersion according to claim 1, wherein the ratio is 0.005 or more and 0.1 or less.
  3.  前記ポリイミド前駆体又はポリイミドを、濃度0.5g/dLとなるように、N-メチル-2-ピロリドンに溶解して溶液を調製したとき、該溶液の30℃における対数粘度が0.2~3dL/gである、請求項1又は2に記載のパウダー分散液。 When the solution was prepared by dissolving the polyimide precursor or the polyimide in N-methyl-2-pyrrolidone so as to have a concentration of 0.5 g/dL, the logarithmic viscosity at 30° C. of the solution was 0.2 to 3 dL. /G, The powder dispersion liquid according to claim 1 or 2.
  4.  前記ポリイミド前駆体又はポリイミドが、芳香族テトラカルボン酸二無水物とジアミンとを反応させてなる、芳香族ポリイミド前駆体又は芳香族ポリイミドである、請求項1~3のいずれか1項に記載のパウダー分散液。 4. The aromatic polyimide precursor or the aromatic polyimide obtained by reacting an aromatic tetracarboxylic dianhydride with a diamine, according to claim 1, wherein the polyimide precursor or the polyimide is an aromatic polyimide precursor or an aromatic polyimide. Powder dispersion.
  5.  前記テトラフルオロエチレン系ポリマーの含有量に対する前記(メタ)アクリレート系ポリマーの含有量の質量での比が0.02~0.15である、請求項1~4のいずれか1項に記載のパウダー分散液。 The powder according to any one of claims 1 to 4, wherein the mass ratio of the content of the (meth)acrylate polymer to the content of the tetrafluoroethylene polymer is 0.02 to 0.15. Dispersion.
  6.  前記(メタ)アクリレート系ポリマーは、水酸基又はオキシアルキレン基を有する(メタ)アクリレートに基づく単位を含む、請求項1~5のいずれか1項に記載のパウダー分散液。 The powder dispersion according to any one of claims 1 to 5, wherein the (meth)acrylate-based polymer includes a unit based on a (meth)acrylate having a hydroxyl group or an oxyalkylene group.
  7.  前記(メタ)アクリレート系ポリマーは、フルオロアルキル基又はフルオロアルケニル基を有する(メタ)アクリレートに基づく単位を含む、請求項1~6のいずれか1項に記載のパウダー分散液。 The powder dispersion according to any one of claims 1 to 6, wherein the (meth)acrylate-based polymer includes a unit based on a (meth)acrylate having a fluoroalkyl group or a fluoroalkenyl group.
  8.  前記極性有機溶媒が、環状エステル、環状ケトン又は環状アミドである、請求項1~7のいずれか1項に記載のパウダー分散液。 The powder dispersion according to any one of claims 1 to 7, wherein the polar organic solvent is a cyclic ester, a cyclic ketone or a cyclic amide.
  9.  さらに、無機フィラーを含む、請求項1~8のいずれか1項に記載のパウダー分散液。 The powder dispersion liquid according to any one of claims 1 to 8, which further comprises an inorganic filler.
  10.  さらに、無機フィラーを含み、前記テトラフルオロエチレン系ポリマーの含有量に対する前記無機フィラーの含有量の質量での比が0.3以下である、請求項1~9のいずれか1項に記載のパウダー分散液。 The powder according to any one of claims 1 to 9, further comprising an inorganic filler, wherein the mass ratio of the content of the inorganic filler to the content of the tetrafluoroethylene-based polymer is 0.3 or less. Dispersion.
  11.  前記テトラフルオロエチレン系ポリマーが、ペルフルオロ(アルキルビニルエーテル)に基づく単位に基づく単位を含むテトラフルオロエチレン系ポリマー、又は、数平均分子量が20万以下であるポリテトラフルオロエチレンである、請求項1~10のいずれか1項に記載のパウダー分散液。 11. The tetrafluoroethylene-based polymer is a tetrafluoroethylene-based polymer containing units based on units based on perfluoro(alkyl vinyl ether), or polytetrafluoroethylene having a number average molecular weight of 200,000 or less. The powder dispersion liquid according to any one of 1.
  12.  前記テトラフルオロエチレン系ポリマーが、ペルフルオロ(アルキルビニルエーテル)に基づく単位を含む極性官能基を有するテトラフルオロエチレン系ポリマー、又は、ペルフルオロ(アルキルビニルエーテル)に基づく単位を全単位に対して2.0~5.0モル%含む極性官能基を有さないテトラフルオロエチレン系ポリマーである、請求項1~11のいずれか1項に記載のパウダー分散液。 The tetrafluoroethylene-based polymer has a polar functional group containing a unit based on perfluoro(alkyl vinyl ether), or a unit based on perfluoro(alkyl vinyl ether) is 2.0 to 5 with respect to all units. The powder dispersion according to any one of claims 1 to 11, which is a tetrafluoroethylene-based polymer having a polar functional group content of 0.0 mol%.
  13.  金属基板層と、該金属基板層の表面に設けられ、請求項1~12のいずれか1項に記載のパウダー分散液から形成されたポリマー層とを有する、積層体。 A laminate having a metal substrate layer and a polymer layer provided on the surface of the metal substrate layer and formed from the powder dispersion liquid according to any one of claims 1 to 12.
  14.  請求項13に記載の積層体が有する前記金属基板層がパターン回路に加工されてなる、プリント基板。 A printed circuit board obtained by processing the metal substrate layer of the laminate according to claim 13 into a pattern circuit.
PCT/JP2019/050087 2018-12-27 2019-12-20 Powder liquid dispersion, layered product, and printed base board WO2020137879A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980086572.7A CN113227232B (en) 2018-12-27 2019-12-20 Powder dispersion, laminate, and printed board
KR1020217023131A KR20210110621A (en) 2018-12-27 2019-12-20 Powder dispersions, laminates and printed boards
JP2020563199A JP7363818B2 (en) 2018-12-27 2019-12-20 Powder dispersion, laminate and printed circuit board

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2018-245153 2018-12-27
JP2018245153 2018-12-27
JP2019071909 2019-04-04
JP2019-071909 2019-04-04
JP2019154856 2019-08-27
JP2019-154856 2019-08-27
JP2019165649 2019-09-11
JP2019-165649 2019-09-11

Publications (1)

Publication Number Publication Date
WO2020137879A1 true WO2020137879A1 (en) 2020-07-02

Family

ID=71127764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050087 WO2020137879A1 (en) 2018-12-27 2019-12-20 Powder liquid dispersion, layered product, and printed base board

Country Status (4)

Country Link
JP (1) JP7363818B2 (en)
KR (1) KR20210110621A (en)
CN (1) CN113227232B (en)
WO (1) WO2020137879A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022019223A1 (en) * 2020-07-21 2022-01-27 Agc株式会社 Dispersion, composite particles, and method for producing composite particles
WO2022045237A1 (en) * 2020-08-31 2022-03-03 Agc株式会社 Liquid composition and base material with protrusions
WO2022153931A1 (en) * 2021-01-13 2022-07-21 Agc株式会社 Method for producing liquid composition and composition
WO2023189795A1 (en) * 2022-03-29 2023-10-05 日鉄ケミカル&マテリアル株式会社 Dispersion composition, fluororesin film, metal-clad laminated board, and method for producing same
US11781004B2 (en) 2019-11-04 2023-10-10 3M Innovative Properties Company Electronic telecommunications articles comprising crosslinked fluoropolymers and methods
US11866602B2 (en) 2018-06-12 2024-01-09 3M Innovative Properties Company Fluoropolymer compositions comprising fluorinated additives, coated substrates and methods

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06172745A (en) * 1992-12-04 1994-06-21 Riken Corp Oil-free sealing composition used in helium or nitrogen gas atmosphere
JPH11209548A (en) * 1998-01-20 1999-08-03 Asahi Glass Co Ltd Fluorine-containing resin composition
JP2012082329A (en) * 2010-10-13 2012-04-26 Sony Chemical & Information Device Corp Polyamic acid varnish, polyimide varnish, method for producing these, and connection structure
JP2015034289A (en) * 2013-07-09 2015-02-19 宇部興産株式会社 Polyimide-containing mixed powder agglomerate and compact using the same
JP2018002980A (en) * 2016-07-08 2018-01-11 三菱鉛筆株式会社 Polyimide precursor solution composition and polyimide film using the same
WO2018016644A1 (en) * 2016-07-22 2018-01-25 旭硝子株式会社 Liquid composition, and method for manufacturing film and layered body using same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6299943B2 (en) * 2013-06-11 2018-03-28 宇部興産株式会社 Laminated tube
CN107429028B (en) * 2015-04-01 2020-06-23 三菱铅笔株式会社 Non-aqueous dispersion of fluorine-containing resin, product containing the same, and method for producing the same
JP7093608B2 (en) 2015-10-19 2022-06-30 三菱鉛筆株式会社 Fluorine-based resin-containing polyimide precursor solution composition, polyimide using the same, polyimide film, and a method for producing them.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06172745A (en) * 1992-12-04 1994-06-21 Riken Corp Oil-free sealing composition used in helium or nitrogen gas atmosphere
JPH11209548A (en) * 1998-01-20 1999-08-03 Asahi Glass Co Ltd Fluorine-containing resin composition
JP2012082329A (en) * 2010-10-13 2012-04-26 Sony Chemical & Information Device Corp Polyamic acid varnish, polyimide varnish, method for producing these, and connection structure
JP2015034289A (en) * 2013-07-09 2015-02-19 宇部興産株式会社 Polyimide-containing mixed powder agglomerate and compact using the same
JP2018002980A (en) * 2016-07-08 2018-01-11 三菱鉛筆株式会社 Polyimide precursor solution composition and polyimide film using the same
WO2018016644A1 (en) * 2016-07-22 2018-01-25 旭硝子株式会社 Liquid composition, and method for manufacturing film and layered body using same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11866602B2 (en) 2018-06-12 2024-01-09 3M Innovative Properties Company Fluoropolymer compositions comprising fluorinated additives, coated substrates and methods
US11781004B2 (en) 2019-11-04 2023-10-10 3M Innovative Properties Company Electronic telecommunications articles comprising crosslinked fluoropolymers and methods
WO2022019223A1 (en) * 2020-07-21 2022-01-27 Agc株式会社 Dispersion, composite particles, and method for producing composite particles
WO2022045237A1 (en) * 2020-08-31 2022-03-03 Agc株式会社 Liquid composition and base material with protrusions
CN115996990A (en) * 2020-08-31 2023-04-21 Agc株式会社 Liquid composition and substrate with convex portion
WO2022153931A1 (en) * 2021-01-13 2022-07-21 Agc株式会社 Method for producing liquid composition and composition
WO2023189795A1 (en) * 2022-03-29 2023-10-05 日鉄ケミカル&マテリアル株式会社 Dispersion composition, fluororesin film, metal-clad laminated board, and method for producing same

Also Published As

Publication number Publication date
JPWO2020137879A1 (en) 2021-11-11
TW202039677A (en) 2020-11-01
JP7363818B2 (en) 2023-10-18
CN113227232B (en) 2023-06-06
KR20210110621A (en) 2021-09-08
CN113227232A (en) 2021-08-06

Similar Documents

Publication Publication Date Title
WO2020137879A1 (en) Powder liquid dispersion, layered product, and printed base board
TWI824049B (en) Dispersions
JP7196914B2 (en) METAL FOIL WITH RESIN, METHOD FOR MANUFACTURING LAMINATED BOARD, LAMINATED BOARD AND PRINTED BOARD
JP7371681B2 (en) Liquid composition, powder, and method for producing powder
WO2019131805A1 (en) Dispersion, metal laminate plate, and production method for printed board
JPWO2019235439A1 (en) Dispersion liquid, method for manufacturing metal foil with resin, and method for manufacturing printed circuit board
WO2021075504A1 (en) Non-aqueous dispersion liquid, and method for producing laminate
JP2020180245A (en) Powder dispersion liquid, manufacturing method of laminate, laminate and manufacturing method of printed circuit board
CN112203844B (en) Method for producing resin-coated metal foil and resin-coated metal foil
JP2021091858A (en) Liquid composition and method for producing laminate
CN112703107A (en) Laminate, printed board, and method for producing same
JP2021075030A (en) Laminate, method for producing laminate, sheet and printed circuit board
JP2020070401A (en) Dispersion liquid
JP7468520B2 (en) Liquid Composition
WO2021039735A1 (en) Film, method for producing film, metal-clad laminate, and coated metal conductor
TWI837258B (en) Powder dispersions, laminates and printed circuit boards
JP2020083990A (en) Manufacturing method of composite, and composite
JP7452534B2 (en) Powder dispersion liquid, method for manufacturing powder dispersion liquid, and method for manufacturing resin-coated substrate
JP2020093196A (en) Method of manufacturing treated metal substrate
WO2021200630A1 (en) Multilayer film, method for producing same, metal-clad laminate, and method for producing printed wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19904996

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020563199

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217023131

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19904996

Country of ref document: EP

Kind code of ref document: A1