WO2021220707A1 - 蓄電デバイス用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、及び蓄電デバイス - Google Patents

蓄電デバイス用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、及び蓄電デバイス Download PDF

Info

Publication number
WO2021220707A1
WO2021220707A1 PCT/JP2021/013909 JP2021013909W WO2021220707A1 WO 2021220707 A1 WO2021220707 A1 WO 2021220707A1 JP 2021013909 W JP2021013909 W JP 2021013909W WO 2021220707 A1 WO2021220707 A1 WO 2021220707A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage device
power storage
polymer
mass
parts
Prior art date
Application number
PCT/JP2021/013909
Other languages
English (en)
French (fr)
Inventor
卓哉 中山
巧治 大塚
翔大 黒角
真希 前川
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to EP21797392.4A priority Critical patent/EP4144772A4/en
Priority to US17/997,344 priority patent/US20230275231A1/en
Priority to KR1020227040802A priority patent/KR20230002961A/ko
Priority to JP2022517570A priority patent/JPWO2021220707A1/ja
Priority to CN202180031168.7A priority patent/CN115485885A/zh
Publication of WO2021220707A1 publication Critical patent/WO2021220707A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • C08F212/10Styrene with nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/10Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/12Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/10Copolymers of styrene with conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D125/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Coating compositions based on derivatives of such polymers
    • C09D125/02Homopolymers or copolymers of hydrocarbons
    • C09D125/04Homopolymers or copolymers of styrene
    • C09D125/08Copolymers of styrene
    • C09D125/10Copolymers of styrene with conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D125/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Coating compositions based on derivatives of such polymers
    • C09D125/02Homopolymers or copolymers of hydrocarbons
    • C09D125/04Homopolymers or copolymers of styrene
    • C09D125/08Copolymers of styrene
    • C09D125/14Copolymers of styrene with unsaturated esters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/20Copolymer characterised by the proportions of the comonomers expressed as weight or mass percentages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a binder composition for a power storage device, a slurry for a power storage device electrode containing the binder composition and an active material, a power storage device electrode formed by applying and drying the slurry on a current collector, and the like.
  • the present invention relates to a power storage device provided with a power storage device electrode.
  • a power storage device having a high voltage and a high energy density has been required as a power source for driving an electronic device.
  • a lithium ion battery, a lithium ion capacitor, and the like are expected.
  • the electrodes used in such a power storage device are manufactured by applying a composition (slurry for a power storage device electrode) containing an active material and a polymer functioning as a binder to the surface of a current collector and drying it.
  • a composition slurry for a power storage device electrode
  • the properties required for the polymer used as a binder include the ability to bond the active materials to each other, the ability to adhere the active material to the current collector, the abrasion resistance in the process of winding the electrodes, and the subsequent cutting. Examples include powder drop resistance in which fine powder of the active material does not fall off from the coated / dried composition coating film (hereinafter, also referred to as “active material layer”).
  • the temperature inside the vehicle may reach a high temperature of 50 ° C. or higher in the summer, so that the power storage device is required to have durability under high temperatures.
  • Patent Documents 1 and 2 do not have sufficient characteristics at high temperatures, and further improvement is required for application to a power storage device as a drive power source for an electric vehicle. rice field.
  • a power storage device electrode having excellent charge / discharge durability characteristics at a high temperature by improving the adhesion at a high temperature and reducing the internal resistance.
  • a binder composition for a power storage device is provided.
  • some aspects of the present invention provide a slurry for a power storage device electrode containing the binder composition.
  • some aspects of the present invention provide a power storage device electrode having excellent charge / discharge durability characteristics at high temperatures by improving adhesion at high temperatures and reducing internal resistance.
  • some aspects of the present invention provide a power storage device having excellent charge / discharge durability characteristics at high temperatures.
  • the present invention has been made to solve at least a part of the above-mentioned problems, and can be realized as any of the following aspects.
  • One aspect of the binder composition for a power storage device according to the present invention is Containing the polymer (A) and the liquid medium (B),
  • the polymer (A) is: 15 to 60 parts by mass of the repeating unit (a1) derived from the conjugated diene compound. It contains 35 to 75 parts by mass of a repeating unit (a2) derived from an aromatic vinyl compound and 1 to 10 parts by mass of a repeating unit (a3) derived from an unsaturated carboxylic acid.
  • the tan ⁇ (100 ° C.) may be 0.1 or less.
  • binder composition for a power storage device Only one peak top of the tan ⁇ may be present in the temperature range of 0 ° C. to 60 ° C.
  • the polymer (A) is a polymer particle, and the polymer (A) is a polymer particle.
  • the number average particle diameter of the polymer particles may be 50 nm or more and 500 nm or less.
  • the liquid medium (B) may be water.
  • One aspect of the slurry for power storage device electrodes according to the present invention is It contains a binder composition for a power storage device according to any one of the above embodiments, and an active material.
  • a silicon material may be contained as the active material.
  • One aspect of the power storage device electrode is A current collector and an active material layer formed by applying and drying a slurry for a power storage device electrode according to any one of the above on the surface of the current collector are provided.
  • One aspect of the power storage device is The storage device electrode of the above-described embodiment is provided.
  • the adhesion can be improved and the internal resistance can be reduced at a high temperature, so that the power storage device electrode having excellent charge / discharge durability characteristics at a high temperature can be obtained.
  • the binder composition for a power storage device according to the present invention exerts the above-mentioned effect particularly when the power storage device electrode contains a material having a large occlusion of lithium as an active material, for example, a carbon material such as graphite or a silicon material.
  • a material having a large lithium occlusion can be used as the active material of the power storage device electrode, the battery performance is also improved.
  • FIG. 1 is a diagram showing the relationship between the measurement temperature and tan ⁇ in the dynamic viscoelasticity measurement of the film prepared in Example 5.
  • (meth) acrylic acid- in the present specification is a concept that includes both “acrylic acid-” and “methacrylic acid-”.
  • -(meth) acrylate is a concept that includes both “-acrylate” and “-methacrylate”.
  • (meth) acrylamide is a concept that includes both “acrylamide” and “methacrylamide”.
  • under high temperature means an environment in a temperature range of approximately 40 ° C to 80 ° C.
  • the binder composition for power storage device contains a polymer (A) and a liquid medium (B).
  • the polymer (A) contains 15 to 60 parts by mass of the repeating unit (a1) derived from the conjugated diene compound and is aromatic, assuming that the total of the repeating units contained in the polymer (A) is 100 parts by mass. It contains 35 to 75 parts by mass of a repeating unit (a2) derived from a vinyl compound and 1 to 10 parts by mass of a repeating unit (a3) derived from an unsaturated carboxylic acid.
  • the binder composition for a power storage device is for producing a power storage device electrode (active material layer) having improved binding ability between active materials, adhesion ability between the active material and the current collector, and powder drop resistance. It can also be used as a material for forming a protective film for suppressing a short circuit caused by dendrites generated during charging and discharging.
  • a power storage device electrode active material layer
  • the binder composition for a power storage device will be described in detail.
  • the binder composition for a power storage device contains a polymer (A).
  • the polymer (A) is a repeating unit (a1) derived from a conjugated diene compound when the total of the repeating units contained in the polymer (A) is 100 parts by mass (hereinafter, simply “repeating unit (a1)”. ) ”) Is 15 to 60 parts by mass, the repeating unit (a2) derived from an aromatic vinyl compound (hereinafter, also simply referred to as“ repeating unit (a2) ”) is 35 to 75 parts by mass, and unsaturated.
  • repeating unit (a3) derived from a carboxylic acid (hereinafter, also simply referred to as “repeating unit (a3)”).
  • the polymer (A) may contain a repeating unit derived from another monomer copolymerizable therewith, in addition to the repeating unit.
  • the polymer (A) contained in the binder composition for a power storage device may be in the form of latex dispersed in the liquid medium (B), or may be dissolved in the liquid medium (B). Although it may be in a state, it is preferably in the form of latex dispersed in the liquid medium (B).
  • the stability of a slurry for a power storage device electrode hereinafter, also simply referred to as “slurry” produced by mixing with an active material. Is preferable, and the applicability of the slurry to the current collector is good.
  • the content ratio of the repeating unit (a1) derived from the conjugated diene compound is 15 to 60 parts by mass when the total of the repeating units contained in the polymer (A) is 100 parts by mass.
  • the lower limit of the content ratio of the repeating unit (a1) is preferably 20 parts by mass, more preferably 25 parts by mass.
  • the upper limit of the content ratio of the repeating unit (a1) is preferably 57 parts by mass, more preferably 55 parts by mass.
  • the polymer (A) contains the repeating unit (a1) in the above range, the dispersibility of the active material and the filler is improved, and a uniform active material layer and a protective film can be produced. Structural defects are eliminated, and good charge / discharge characteristics are exhibited. In addition, elasticity can be imparted to the polymer (A) that coats the surface of the active material, and the adhesion can be improved by expanding and contracting the polymer (A), so that it exhibits good charge / discharge durability characteristics. become.
  • the conjugated diene compound is not particularly limited, but 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-chlor-1,3-butadiene and the like can be used. One or more selected from these can be used. Of these, 1,3-butadiene is particularly preferable.
  • Repeating unit (a2) derived from an aromatic vinyl compound The content ratio of the repeating unit (a2) derived from the aromatic vinyl compound is 35 to 75 parts by mass when the total of the repeating units contained in the polymer (A) is 100 parts by mass.
  • the lower limit of the content ratio of the repeating unit (a2) is preferably 38 parts by mass, more preferably 40 parts by mass.
  • the upper limit of the content ratio of the repeating unit (a2) is preferably 72 parts by mass, and more preferably 70 parts by mass.
  • the aromatic vinyl compound is not particularly limited, and examples thereof include styrene, ⁇ -methylstyrene, p-methylstyrene, vinyltoluene, chlorostyrene, divinylbenzene, and one or more selected from these. Can be used.
  • the content ratio of the repeating unit (a3) derived from the unsaturated carboxylic acid is 1 to 10 parts by mass when the total of the repeating units contained in the polymer (A) is 100 parts by mass.
  • the lower limit of the content ratio of the repeating unit (a3) is preferably 1.2 parts by mass, and more preferably 1.5 parts by mass.
  • the upper limit of the content ratio of the repeating unit (a3) is preferably 9 parts by mass, more preferably 8 parts by mass.
  • the unsaturated carboxylic acid is not particularly limited, and examples thereof include monocarboxylic acids and dicarboxylic acids (including anhydrides) such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, fumaric acid, and itaconic acid. , One or more selected from these can be used.
  • the unsaturated carboxylic acid it is preferable to use one or more selected from acrylic acid, methacrylic acid, and itaconic acid.
  • the polymer (A) may contain repeating units derived from other monomers copolymerizable with the repeating units (a1) to (a3) in addition to the repeating units (a1) to (a3).
  • Such repeating units include, for example, a repeating unit (a4) derived from (meth) acrylamide (hereinafter, also simply referred to as “repeating unit (a4)”), and a repeating unit derived from an unsaturated carboxylic acid ester having a hydroxyl group.
  • the polymer (A) may contain a repeating unit (a4) derived from (meth) acrylamide.
  • the content ratio of the repeating unit (a4) is preferably 0 to 10 parts by mass when the total of the repeating units contained in the polymer (A) is 100 parts by mass.
  • the lower limit of the content ratio of the repeating unit (a4) is preferably 1 part by mass, more preferably 2 parts by mass.
  • the upper limit of the content ratio of the repeating unit (a4) is preferably 8 parts by mass, and more preferably 5 parts by mass.
  • the polymer (A) contains the repeating unit (a4) in the above range, the dispersibility of the active material or the filler in the slurry may be improved. In addition, the flexibility of the obtained active material layer becomes appropriate, and the adhesion between the current collector and the active material layer may be improved. Further, since the bonding ability between active materials containing a carbon material such as graphite or a silicon material can be enhanced, an active material layer having better flexibility and adhesion to a current collector may be obtained.
  • the (meth) acrylamide is not particularly limited, but is limited to acrylamide, methacrylamide, N-isopropylacrylamide, N, N-dimethylacrylamide, N, N-dimethylmethacrylicamide, N, N-diacetoneacrylamide, N, N-diacetonemethacryl.
  • the polymer (A) may contain a repeating unit (a5) derived from an unsaturated carboxylic acid ester having a hydroxyl group.
  • the content ratio of the repeating unit (a5) is preferably 0 to 10 parts by mass when the total of the repeating units contained in the polymer (A) is 100 parts by mass.
  • the lower limit of the content ratio of the repeating unit (a5) is preferably 0.5 parts by mass, and more preferably 1 part by mass.
  • the upper limit of the content ratio of the repeating unit (a5) is preferably 8 parts by mass, and more preferably 5 parts by mass.
  • the polymer (A) contains the repeating unit (a5) in the above range, it is easy to prepare a slurry in which the active material is well dispersed without agglutinating the active material when producing the slurry described later. May become.
  • the polymer (A) in the active material layer produced by applying and drying the slurry has a nearly uniform distribution, so that it may be possible to produce a power storage device electrode having very few binding defects. That is, there are cases where the binding ability between active materials and the adhesion ability between the active material layer and the current collector can be dramatically improved.
  • the unsaturated carboxylic acid ester having a hydroxyl group is not particularly limited, but is limited to 2-hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and (meth) acrylic.
  • 2-hydroxyethyl (meth) acrylate and glycerin mono (meth) acrylate are preferable.
  • the polymer (A) may contain a repeating unit (a6) derived from an unsaturated carboxylic acid ester (excluding the unsaturated carboxylic acid ester having a hydroxyl group).
  • the content ratio of the repeating unit (a6) is preferably 0 to 20 parts by mass when the total of the repeating units contained in the polymer (A) is 100 parts by mass.
  • the lower limit of the content ratio of the repeating unit (a6) is preferably 1 part by mass, more preferably 2 parts by mass.
  • the upper limit of the content ratio of the repeating unit (a6) is preferably 18 parts by mass, more preferably 15 parts by mass.
  • the affinity between the polymer (A) and the electrolytic solution becomes good, and the binder becomes an electric resistance component in the power storage device. In some cases, it is possible to suppress an increase in resistance and prevent a decrease in adhesion due to excessive absorption of the electrolytic solution.
  • (meth) acrylic acid ester can be preferably used.
  • Specific examples of the (meth) acrylic acid ester include, for example, methyl (meth) acrylic acid, ethyl (meth) acrylic acid, n-propyl (meth) acrylic acid, isopropyl (meth) acrylic acid, and n (meth) acrylic acid.
  • methyl (meth) acrylate one or more selected from methyl (meth) acrylate, ethyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate is preferable, and methyl (meth) acrylate is particularly preferable. ..
  • the polymer (A) may contain a repeating unit (a7) derived from an ⁇ , ⁇ -unsaturated nitrile compound.
  • the content ratio of the repeating unit (a7) is preferably 0 to 10 parts by mass when the total of the repeating units contained in the polymer (A) is 100 parts by mass.
  • the lower limit of the content ratio of the repeating unit (a7) is preferably 0.5 parts by mass, more preferably 1 part by mass.
  • the upper limit of the content ratio of the repeating unit (a7) is preferably 8 parts by mass, more preferably 5 parts by mass.
  • the polymer (A) contains the repeating unit (a7) in the above range, it is possible to reduce the dissolution of the polymer (A) in the electrolytic solution, and it is possible to suppress the deterioration of the adhesion due to the electrolytic solution. In some cases. In addition, it may be possible to suppress an increase in internal resistance due to the polymer component dissolved in the power storage device becoming an electrical resistance component.
  • the ⁇ , ⁇ -unsaturated nitrile compound is not particularly limited, and examples thereof include acrylonitrile, methacrylonitrile, ⁇ -chloroacrylonitrile, ⁇ -ethylacrylonitrile, vinylidene cyanide, and the like, and are selected from these 1 More than seeds can be used. Among these, one or more selected from the group consisting of acrylonitrile and methacrylonitrile is preferable, and acrylonitrile is particularly preferable.
  • the polymer (A) may contain a repeating unit (a8) derived from a compound having a sulfonic acid group.
  • the content ratio of the repeating unit (a8) is preferably 0 to 10 parts by mass when the total of the repeating units contained in the polymer (A) is 100 parts by mass.
  • the lower limit of the content ratio of the repeating unit (a8) is preferably 0.5 parts by mass, and more preferably 1 part by mass.
  • the upper limit of the content ratio of the repeating unit (a8) is preferably 8 parts by mass, and more preferably 5 parts by mass.
  • the compound having a sulfonic acid group is not particularly limited, but is vinyl sulfonic acid, styrene sulfonic acid, allyl sulfonic acid, sulfoethyl (meth) acrylate, sulfopropyl (meth) acrylate, sulfobutyl (meth) acrylate, 2-acrylamide-2.
  • examples thereof include compounds such as -methylpropanesulfonic acid, 2-hydroxy-3-acrylamidepropanesulfonic acid, 3-allyloxy-2-hydroxypropanesulfonic acid, and alkali salts thereof, and one selected from these. The above can be used.
  • the polymer (A) may contain a repeating unit derived from a cationic monomer.
  • the cationic monomer is not particularly limited, but is at least one monomer selected from the group consisting of a secondary amine (salt), a tertiary amine (salt) and a quaternary ammonium salt. Is preferable.
  • Specific examples of these cationic monomers are not particularly limited, but are 2- (dimethylamino) ethyl (meth) acrylate, dimethylaminoethyl (meth) acrylate methyl quaternary chloride quaternary salt, and 2- (meth) acrylate.
  • the measurement sample in this dynamic viscoelasticity measurement is a film of the polymer (A).
  • the polymer (A) was dried at 40 ° C. for 24 hours to prepare a uniform film having a thickness of 1.0 ⁇ 0.3 mm, and this film was dried at 160 ° C. in a vacuum dryer. After drying for 30 minutes, it was cut into strips of 10 mm ⁇ 10 mm.
  • the measurement sample is fixed on a parallel plate (product name "PP-12") using the following dynamic viscoelasticity measuring device, and measurement is performed in a temperature range of ⁇ 70 ° C. to 180 ° C. under the following measurement conditions.
  • -Measurement conditions shear mode, measurement frequency 1 Hz, temperature rise speed 0.1 ° C / min
  • -Dynamic viscoelasticity measuring device Model "MCR 301" manufactured by Antonio Par
  • the value of "tan ⁇ (100 ° C.) / tan ⁇ (Tp) ⁇ 100" of the polymer (A) used in the present embodiment is 10 or less, preferably 9 or less, and more preferably 8 or less. be. Further, the value of "tan ⁇ (100 ° C.) / tan ⁇ (Tp) ⁇ 100" of the polymer (A) used in the present embodiment is preferably 0.5 or more, more preferably 1 or more. Especially preferably, it is 2 or more.
  • the temperature Tp (° C.) of the peak top of tan ⁇ in the dynamic viscoelasticity measurement of the polymer (A) is preferably 0 ° C. to 60 ° C., more preferably 5 ° C. to 55 ° C., particularly preferably 10 ° C. to 50 ° C. It is preferably present in the temperature range of. Further, it is preferable that one peak top exists in the above temperature range. The presence of one Tp in the above temperature range indicates that the viscosity is high in the same temperature range. It is considered that due to this high viscosity, the high binding force of the polymer (A) can be maintained in the same temperature range, and good adhesion can be exhibited.
  • Examples of the method for adjusting the temperature Tp at the peak top of tan ⁇ include a method for adjusting the monomer composition at the time of polymerization of the polymer (A).
  • the tan ⁇ (Tp) of the polymer (A) is preferably 0.4 to 1.5, more preferably 0.5 to 1.2, and particularly preferably 0.6 to 1.0.
  • the fact that the tan ⁇ (Tp) of the polymer (A) is in the above range indicates that the polymer (A) is not too hard and has a sufficient binding force for retaining the electrode structure.
  • Examples of the method for adjusting tan ⁇ (Tp) include changing the glass transition temperature and gel content of the polymer (A), or changing the method of adding the monomer during the polymerization of the polymer (A).
  • the tan ⁇ (100 ° C.) of the polymer (A) at 100 ° C. is preferably 0.1 or less, more preferably 0.09 or less, and particularly preferably 0.08 or less.
  • the fact that the tan ⁇ (100 ° C.) of the polymer (A) is in the above range indicates that the degree of cross-linking of the polymer (A) is high. As a result, it is possible to maintain the particle shape of the binder component when the electrode is produced, and the fluidity of the electrolytic solution between the active materials is not hindered, so that it is easy to obtain a power storage device electrode with reduced internal resistance.
  • the electrolytic solution swelling degree of the polymer (A) is preferably 100 to 200% by mass, more preferably 110 to 190% by mass, and particularly preferably 120 to 180% by mass.
  • the degree of swelling of the electrolytic solution is within the above range, the polymer (A) can swell appropriately with respect to the electrolytic solution.
  • the solvated lithium ion can easily reach the active material, the internal resistance of the electrode can be reduced, and better charge / discharge characteristics can be realized.
  • the degree of swelling of the electrolytic solution is within the above range, a large volume change does not occur, so that the adhesion is excellent.
  • the degree of swelling of the electrolytic solution of the polymer (A) can be measured by the method described in Examples described later.
  • the number average particle size of the particles is preferably 50 nm or more and 500 nm or less, more preferably 60 nm or more and 450 nm or less, and particularly preferably 70 nm or more and 400 nm or less. Is.
  • the number average particle diameter of the particles of the polymer (A) is within the above range, the particles of the polymer (A) are likely to be adsorbed on the surface of the active material. Particles can also follow and move. As a result, migration can be suppressed, so that deterioration of electrical characteristics may be reduced.
  • the number average particle size of the particles of the polymer (A) can be calculated from the average value of the particle size obtained from the images of 50 particles observed by a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • Examples of the transmission electron microscope include "H-7650” manufactured by Hitachi High-Technologies Corporation.
  • the method for producing the polymer (A) is not particularly limited, but is, for example, an emulsification polymerization method carried out in the presence of a known emulsifier (surfactant), chain transfer agent, polymerization initiator and the like. Can be by.
  • a known emulsifier surfactant
  • chain transfer agent chain transfer agent
  • polymerization initiator the compounds described in Japanese Patent No. 5999399 can be used.
  • the emulsion polymerization method for synthesizing the polymer (A) may be carried out by one-step polymerization or by multi-step polymerization of two-step polymerization or more.
  • the mixture of the above monomers is preferably prepared at 40 to 80 ° C. in the presence of an appropriate emulsifier, chain transfer agent, polymerization initiator and the like. It can be carried out by emulsion polymerization for 4 to 36 hours.
  • the polymer (A) is synthesized by two-stage polymerization
  • the ratio of the monomer used for the first-stage polymerization is the total mass of the monomer (the total mass of the monomer used for the first-stage polymerization and the mass of the monomer used for the second-stage polymerization). On the other hand, it is preferably in the range of 20 to 100% by mass, and more preferably in the range of 25 to 100% by mass.
  • the type of monomer used for the second-stage polymerization and its usage ratio may be the same as or different from the type of monomer used for the first-stage polymerization and its usage ratio.
  • the polymerization conditions at each stage are preferably as follows from the viewpoint of the dispersibility of the particles of the obtained polymer (A).
  • First-stage polymerization preferably a temperature of 40 to 80 ° C.: preferably a polymerization time of 2 to 36 hours: a polymerization conversion rate of preferably 50% by mass or more, more preferably 60% by mass or more.
  • Second-stage polymerization preferably a temperature of 40-80 ° C; preferably a polymerization time of 2-18 hours.
  • the polymerization reaction can proceed in a state where the dispersion stability of the particles of the obtained polymer (A) is good.
  • the total solid content concentration is preferably 48% by mass or less, and more preferably 45% by mass or less.
  • the pH is adjusted to 5 to 5 to 5 by adding a neutralizing agent to the polymerization mixture after the completion of emulsion polymerization. It is preferably adjusted to about 10.5, preferably 6 to 10, and more preferably 6.5 to 9.5.
  • the neutralizing agent used here is not particularly limited, and examples thereof include metal hydroxides such as sodium hydroxide and potassium hydroxide; ammonia and the like.
  • the content ratio of polymer (A) in the binder composition for a power storage device according to the present embodiment is preferably 10 to 100 parts by mass, more preferably 10 to 100 parts by mass, based on 100 parts by mass of the polymer component. It is preferably 20 to 95 parts by mass, and particularly preferably 25 to 90 parts by mass.
  • the polymer component includes a polymer (A), a polymer other than the polymer (A) described later, a thickener and the like.
  • the binder composition for a power storage device contains a liquid medium (B).
  • the liquid medium (B) is preferably an aqueous medium containing water, and more preferably water.
  • the aqueous medium may contain a non-aqueous medium other than water. Examples of this non-aqueous medium include amide compounds, hydrocarbons, alcohols, ketones, esters, amine compounds, lactones, sulfoxides, sulfone compounds, and the like, and one or more selected from these may be used. Can be done.
  • an aqueous medium as the liquid medium (B) in the binder composition for a power storage device according to the present embodiment, the degree of adverse effect on the environment is reduced, and the safety for the handling operator is also increased.
  • the content ratio of the non-aqueous medium contained in the aqueous medium is preferably 10 parts by mass or less, more preferably 5 parts by mass or less, and particularly preferably not substantially contained in 100 parts by mass of the aqueous medium.
  • substantially free means that a non-aqueous medium is not intentionally added as a liquid medium, and the non-aqueous medium is inevitably mixed when preparing a binder composition for a power storage device. It may include a medium.
  • the binder composition for a power storage device according to the present embodiment may contain additives other than the above-mentioned components, if necessary.
  • additives include polymers other than the polymer (A), preservatives, thickeners and the like.
  • the binder composition for a power storage device may contain a polymer other than the polymer (A).
  • a polymer other than the polymer (A) include, but are not limited to, an acrylic polymer containing an unsaturated carboxylic acid ester or a derivative thereof as a constituent unit, a fluoropolymer such as PVDF (polyvinylidene fluoride), and the like. These polymers may be used alone or in combination of two or more. By containing these polymers, flexibility and adhesion may be further improved.
  • the binder composition for power storage devices according to this embodiment may contain preservatives. By containing the preservative, it may be possible to suppress the growth of bacteria, mold and the like to generate foreign substances when the binder composition for a power storage device is stored. Specific examples of the preservative include compounds described in Japanese Patent No. 5477610.
  • the binder composition for a power storage device according to the present embodiment may contain a thickener. By containing the thickener, the coatability of the slurry and the charge / discharge characteristics of the obtained power storage device may be further improved.
  • the thickener include cellulose compounds such as carboxymethyl cellulose, methyl cellulose, and hydroxypropyl cellulose; poly (meth) acrylic acid; the cellulose compound or the ammonium salt or alkali metal salt of the poly (meth) acrylic acid; polyvinyl.
  • Polyvinyl alcohol-based (co) polymers such as alcohol, modified polyvinyl alcohol, and ethylene-vinyl alcohol copolymers; copolymers of unsaturated carboxylic acids such as (meth) acrylic acid, maleic acid, and fumaric acid and vinyl esters. Examples thereof include water-soluble polymers such as saponified products.
  • alkali metal salts of carboxymethyl cellulose, alkali metal salts of poly (meth) acrylic acid and the like are preferable.
  • Examples of commercially available products of these thickeners include alkali metal salts of carboxymethyl cellulose such as CMC1120, CMC1150, CMC2200, CMC2280, and CMC2450 (all manufactured by Daicel Corporation).
  • the content ratio of the thickener is 5 parts by mass or less with respect to 100 parts by mass of the total solid content of the binder composition for a power storage device. It is preferably 0.1 to 3 parts by mass, and more preferably 0.1 to 3 parts by mass.
  • the pH of the binder composition for a power storage device according to the present embodiment is preferably 5 to 10, more preferably 6 to 9.5, and particularly preferably 6.5 to 9.
  • the pH is within the above range, it is possible to suppress the occurrence of problems such as insufficient leveling property and liquid dripping, and it becomes easy to manufacture a power storage device electrode having both good electrical characteristics and adhesion. ..
  • PH in the present specification refers to physical properties measured as follows. It is a value measured in accordance with JIS Z8802: 2011 with a pH meter using a glass electrode calibrated with a neutral phosphate standard solution and a borate standard solution as a pH standard solution at 25 ° C. Examples of such a pH meter include “HM-7J” manufactured by DKK-TOA CORPORATION and "D-51” manufactured by HORIBA, Ltd.
  • the pH of the binder composition for a power storage device is affected by the monomer composition constituting the polymer (A), but it is not determined only by the monomer composition. .. That is, it is generally known that the pH of the binder composition for a power storage device changes depending on the polymerization conditions and the like even if the monomer composition is the same, and the examples of the present specification show an example thereof. Not too much.
  • the polymer composition is the same, there are cases where all unsaturated carboxylic acids are added to the polymerization reaction solution from the beginning and then other monomers are added in sequence, and cases where monomers other than unsaturated carboxylic acids are added.
  • the amount of carboxy groups derived from the unsaturated carboxylic acid exposed on the surface of the obtained polymer is different from that in the case where the mixture is charged into the polymerization reaction solution and the unsaturated carboxylic acid is finally added. It is considered that the pH of the binder composition for a power storage device is significantly different even if the order in which the monomers are added is changed by the polymerization method.
  • the slurry for power storage device according to the embodiment of the present invention contains the above-mentioned binder composition for power storage device.
  • the above-mentioned binder composition for a power storage device can also be used as a material for producing a protective film for suppressing a short circuit caused by dendrites generated during charging and discharging, and has a binding ability between active materials and It can also be used as a material for producing a power storage device electrode (active material layer) having improved adhesion ability between the active material and the current collector and powder drop resistance.
  • a slurry for a power storage device for producing a protective film (hereinafter, also referred to as a “slurry for a protective film”) and a slurry for a power storage device for producing an active material layer of a power storage device electrode (hereinafter, “power storage device”). It is also referred to as “slurry for electrodes”).
  • Protective film slurry is used to apply this to the surface of the electrode or separator or both, and then dry it to form a protective film on the surface of the electrode or separator or both. It refers to a dispersion liquid.
  • the protective film slurry according to the present embodiment may be composed only of the binder composition for a power storage device described above, or may further contain an inorganic filler. Hereinafter, each component contained in the protective film slurry according to the present embodiment will be described in detail. Since the binder composition for the power storage device is as described above, the description thereof will be omitted.
  • the slurry for a protective film according to the present embodiment can improve the toughness of the protective film by containing the inorganic filler.
  • the inorganic filler it is preferable to use at least one kind of particles selected from the group consisting of silica, titanium oxide (titania), aluminum oxide (alumina), zirconium oxide (zirconia), and magnesium oxide (magnesia).
  • titanium oxide or aluminum oxide is preferable from the viewpoint of further improving the toughness of the protective film.
  • rutile-type titanium oxide is more preferable.
  • the average particle size of the inorganic filler is preferably 1 ⁇ m or less, more preferably 0.1 to 0.8 ⁇ m.
  • the average particle size of the inorganic filler is preferably larger than the average pore size of the separator which is a porous film. This can reduce damage to the separator and prevent the inorganic filler from clogging the microporous separator.
  • the protective film slurry according to the present embodiment preferably contains 0.1 to 20 parts by mass of the above-mentioned binder composition for a power storage device in terms of solid content with respect to 100 parts by mass of the inorganic filler. More preferably, it is contained in an amount of about 10 parts by mass.
  • the content ratio of the binder composition for a power storage device is within the above range, the balance between the toughness of the protective film and the permeability of lithium ions is improved, and as a result, the resistance increase rate of the obtained power storage device is further reduced. Can be done.
  • a liquid medium may be further added to the slurry for the protective film according to the present embodiment.
  • the amount of the liquid medium added can be adjusted as necessary so that the optimum slurry viscosity can be obtained according to the coating method and the like. Examples of such a liquid medium include the materials described in the above section “1.2. Liquid medium (B)”.
  • Slurry for power storage device electrodes is a dispersion liquid used to form an active material layer on the surface of a current collector by applying it to the surface of a current collector and then drying it. Say that.
  • the slurry for a power storage device electrode according to the present embodiment contains the above-mentioned binder composition for a power storage device and an active material.
  • a slurry for a power storage device electrode often contains a binder component such as an SBR-based copolymer and a thickener such as carboxymethyl cellulose in order to improve adhesion.
  • the slurry for the power storage device electrode according to the present embodiment can improve the adhesion even when only the above-mentioned polymer (A) is contained as a polymer component.
  • the slurry for the power storage device electrode according to the present embodiment may contain a polymer other than the polymer (A) or a thickener in order to further improve the adhesion.
  • the components contained in the slurry for the power storage device electrode according to the present embodiment will be described.
  • Polymer (A) The composition, physical properties, production method, etc. of the polymer (A) are as described above, and thus the description thereof will be omitted.
  • the content ratio of the polymer component in the slurry for the power storage device electrode according to the present embodiment is preferably 1 to 8 parts by mass, more preferably 1 to 7 parts by mass, and particularly, with respect to 100 parts by mass of the active material. It is preferably 1.5 to 6 parts by mass.
  • the polymer component includes a polymer (A), a polymer other than the polymer (A) added as needed, a thickener, and the like.
  • active material examples include carbon materials, silicon materials, oxides containing lithium atoms, lead compounds, tin compounds, arsenic compounds, antimony compounds, and aluminum compounds.
  • conductive polymers such as polyacene, a X B Y O Z (where, a is an alkali metal or a transition metal, at least one B is selected cobalt, nickel, aluminum, tin, transition metals manganese, O is Represents an oxygen atom, X, Y and Z are numbers in the range of 1.10>X> 0.05, 4.00>Y> 0.85 and 5.00>Z> 1.5, respectively.)
  • Examples thereof include the represented composite metal oxide and other metal oxides. Specific examples of these include compounds described in Japanese Patent No. 5999399.
  • the slurry for the power storage device electrode according to the present embodiment can be used when producing any power storage device electrode of the positive electrode and the negative electrode, and is preferably used for both the positive electrode and the negative electrode.
  • Lithium iron phosphate has a fine primary particle size and is known to be a secondary aggregate thereof. When charging and discharging are repeated, the aggregation collapses in the active material layer, causing the active materials to dissociate from each other. It is considered that one of the factors is that the conductive network inside the active material layer is easily broken due to the peeling from the current collector.
  • the storage device electrode produced by using the storage device electrode slurry according to the present embodiment even when lithium iron phosphate is used as the positive electrode active material, the above-mentioned problems do not occur and good electricity is obtained. Can show specific characteristics. It is considered that the reason for this is that the polymer (A) can firmly bind lithium iron phosphate, and at the same time, it can maintain a state in which lithium iron phosphate is firmly bound even during charging and discharging. ..
  • the active material exemplified above contains a silicon material. Since the silicon material has a large occlusion amount of lithium per unit weight as compared with other active materials, the storage capacity of the obtained power storage device can be increased by containing the silicon material as the negative electrode active material. As a result, the output and energy density of the power storage device can be increased.
  • the negative electrode active material is more preferably a mixture of a silicon material and a carbon material. Since the volume change of carbon material due to charge and discharge is smaller than that of silicon material, the influence of volume change of silicon material can be mitigated by using a mixture of silicon material and carbon material as the negative electrode active material, and the active material. The adhesion ability between the layer and the current collector can be further improved.
  • silicon When silicon (Si) is used as an active material, silicon has a high capacity, but causes a large volume change when it occludes lithium. For this reason, the silicon material is pulverized by repeated expansion and contraction, causing peeling from the current collector and dissociation between the active materials, and the conductive network inside the active material layer is easily broken. Due to this property, the charge / discharge durability characteristics of the power storage device are extremely deteriorated in a short time.
  • the power storage device electrode produced by using the storage device electrode slurry according to the present embodiment can exhibit good electrical characteristics without causing the above-mentioned problems even when a silicon material is used. can.
  • the reason for this is that the polymer (A) can firmly bind the silicon material, and at the same time, the polymer (A) expands and contracts even if the silicon material expands in volume due to occlusion of lithium, resulting in silicon. It is considered that this is because the material can be maintained in a tightly bound state.
  • the content ratio of the silicon material in 100% by mass of the active material is preferably 1% by mass or more, more preferably 2 to 50% by mass, further preferably 3 to 45% by mass, and 10%. It is particularly preferable to set it to 40% by mass.
  • the content ratio of the silicon material in 100% by mass of the active material is within the above range, a power storage device having an excellent balance between the improvement of the output and energy density of the power storage device and the charge / discharge durability characteristics can be obtained.
  • the shape of the active material is preferably particulate.
  • the average particle size of the active material is preferably 0.1 to 100 ⁇ m, more preferably 1 to 20 ⁇ m.
  • the average particle size of the active material means a volume average particle size calculated from the particle size distribution measured by using a particle size distribution measuring device based on a laser diffraction method. Examples of such a laser diffraction type particle size distribution measuring device include the HORIBA LA-300 series and the HORIBA LA-920 series (all manufactured by HORIBA, Ltd.).
  • a liquid medium may be further added to the slurry for the power storage device electrode according to the present embodiment in addition to the amount brought in from the binder composition for the power storage device.
  • the liquid medium to be added may be the same as or different from the liquid medium (B) contained in the binder composition for the power storage device, but may be different from the above "1.2. Liquid medium (B)". It is preferable to select and use from the liquid media exemplified in 1.
  • the content ratio of the liquid medium (including the amount brought in from the binder composition for the power storage device) in the slurry for the power storage device electrode according to the present embodiment is the solid content concentration in the slurry (the total of the components other than the liquid medium in the slurry).
  • the ratio of the mass to the total mass of the slurry; the same shall apply hereinafter) is preferably 30 to 70% by mass, and more preferably 40 to 60% by mass.
  • a conductivity-imparting agent may be further added to the slurry for the power storage device electrode according to the present embodiment for the purpose of imparting conductivity and buffering the volume change of the active material due to the inflow and outflow of lithium ions.
  • the conductivity-imparting agent examples include activated carbon, acetylene black, ketjen black, furnace black, graphite, carbon fiber, and carbon such as fullerene.
  • acetylene black or ketjen black can be preferably used.
  • the content ratio of the conductivity-imparting agent is preferably 20 parts by mass or less, more preferably 1 to 15 parts by mass, and particularly preferably 2 to 10 parts by mass with respect to 100 parts by mass of the active material.
  • a pH adjuster and / or a corrosion inhibitor may be further added to the slurry for the power storage device electrode according to the present embodiment for the purpose of suppressing corrosion of the current collector according to the type of the active material.
  • Examples of the pH adjuster include hydrochloric acid, phosphoric acid, sulfuric acid, acetic acid, formic acid, ammonium phosphate, ammonium sulfate, ammonium acetate, ammonium formate, ammonium chloride, sodium hydroxide, potassium hydroxide and the like.
  • sulfuric acid, ammonium sulfate, sodium hydroxide, and potassium hydroxide are preferable. Further, it can be selected and used from the neutralizing agents described in the method for producing the polymer (A).
  • Corrosion inhibitors include ammonium metavanadate, sodium metavanadate, potassium metavanadate, ammonium metatungstate, sodium metatungstate, potassium metatungstate, ammonium paratungstate, sodium paratungstate, potassium paratungstate, molybdate.
  • Ammonium, sodium molybdate, potassium molybdate and the like can be mentioned, and among these, ammonium paratungstate, ammonium metavanadate, sodium metavanadate, potassium metavanadate and ammonium molybdate are preferable.
  • Cellulose fibers may be further added to the slurry for the power storage device electrode according to the present embodiment.
  • the adhesion of the active material to the current collector may be improved. It is considered that the fibrous cellulose fibers can prevent the active materials from falling off and improve the adhesion to the current collector by fibrously binding the adjacent active materials to each other by line adhesion or line contact.
  • the average fiber length of the cellulose fibers can be selected from a wide range of 0.1 to 1000 ⁇ m, for example, preferably 1 to 750 ⁇ m, more preferably 1.3 to 500 ⁇ m, still more preferably 1.4 to 250 ⁇ m, and particularly preferably 1. It is 8 to 25 ⁇ m.
  • the average fiber length is within the above range, the surface smoothness (coating film uniformity) is good, and the adhesion of the active material to the current collector may be improved.
  • the fiber length of the cellulose fiber may be uniform, and the coefficient of variation of the fiber length ([standard deviation of fiber length / average fiber length] ⁇ 100) is, for example, preferably 0.1 to 100, more preferably 0. It is 5 to 50, particularly preferably 1 to 30.
  • the maximum fiber length of the cellulose fiber is, for example, preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less, still more preferably 200 ⁇ m or less, still more preferably 100 ⁇ m or less, and particularly preferably 50 ⁇ m or less.
  • the average fiber length of the cellulose fibers is preferably 0.01 to 5 times, more preferably 0.02 to 3 times, and particularly preferably 0.03 to 2 times, the average thickness of the active material layer.
  • the average fiber diameter of the cellulose fibers is preferably 1 nm to 10 ⁇ m, more preferably 5 nm to 2.5 ⁇ m, still more preferably 20 nm to 700 nm, and particularly preferably 30 nm to 200 nm.
  • the cellulose fiber is preferably a cellulose nanofiber having an average fiber diameter of nanometer size (for example, a cellulose nanofiber having an average fiber diameter of about 10 nm to 500 nm, preferably about 25 nm to 250 nm).
  • the fiber diameter of the cellulose fiber is also uniform, and the coefficient of variation of the fiber diameter ([standard deviation of fiber diameter / average fiber diameter] ⁇ 100) is preferably 1 to 80, more preferably 5 to 60, and particularly preferably 10 to. It is 50.
  • the maximum fiber diameter of the cellulose fiber is preferably 30 ⁇ m or less, more preferably 5 ⁇ m or less, and particularly preferably 1 ⁇ m or less.
  • the ratio (aspect ratio) of the average fiber length to the average fiber diameter of the cellulose fiber is, for example, preferably 10 to 5000, more preferably 20 to 3000, and particularly preferably 50 to 2000.
  • the aspect ratio is within the above range, the adhesion of the active material to the current collector is good, and the surface smoothness (coating film uniformity) of the electrode may be good without weakening the breaking strength of the fibers. be.
  • the material of the cellulose fiber may be formed of a polysaccharide having a ⁇ -1,4-glucan structure.
  • the cellulose fiber include cellulose fiber derived from higher plants (for example, wood fiber (for example, wood pulp such as coniferous tree and broadleaf tree), bamboo fiber, sugar cane fiber, seed hair fiber (for example, cotton linter, bombax cotton, capoc, etc.), etc.
  • Gin skin fibers eg, hemp, corn, honey, etc.
  • leaf fibers eg, Manila hemp, New Zealand hemp, etc.
  • animal-derived cellulose fibers eg, squirrel cellulose, etc.
  • Cellulose fibers derived from bacteria for example, cellulose contained in Natade Coco
  • chemically synthesized cellulose fibers for example, rayon, cellulose ester (for example, cellulose acetate), cellulose ether (for example, hydroxyethyl cellulose (HEC)), (Hydroxyalkyl cellulose such as hydroxypropyl cellulose, cellulose derivative such as methyl cellulose, alkyl cellulose such as ethyl cellulose, etc.
  • These cellulose fibers may be used alone or in combination of two or more.
  • cellulose fibers derived from higher plants for example, wood fibers (wood pulp such as coniferous trees and broadleaf trees) and seed hair fibers (cotton linters) Pulp-derived cellulose fibers such as pulp) are preferred.
  • the method for producing the cellulose fiber is not particularly limited, and a conventional method, for example, Japanese Patent Application Laid-Open No. 60-19921, Japanese Patent Application Laid-Open No. 2011-26760, Japanese Patent Application Laid-Open No. 2012-25833, is used depending on the target fiber length and fiber diameter.
  • a conventional method for example, Japanese Patent Application Laid-Open No. 60-19921, Japanese Patent Application Laid-Open No. 2011-26760, Japanese Patent Application Laid-Open No. 2012-25833, is used depending on the target fiber length and fiber diameter.
  • the methods described in JP-A-2012-36517, JP-A-2012-36518, JP-A-2014-181421, etc. may be used.
  • the slurry for power storage device electrode according to the present embodiment is produced by any method as long as it contains the above-mentioned binder composition for power storage device and active material. You may. From the viewpoint of more efficiently and inexpensively producing a slurry having better dispersibility and stability, an active material and an optional additive component used as necessary are added to the binder composition for a power storage device, and these are mixed. It is preferable to manufacture by Specific examples of the manufacturing method include the methods described in Japanese Patent No. 5999399.
  • the power storage device electrode according to an embodiment of the present invention includes a current collector, an active material layer formed by applying and drying the above-mentioned storage device electrode slurry on the surface of the current collector. Is provided. Such a power storage device electrode is formed by applying the above-mentioned slurry for a power storage device electrode to the surface of a current collector such as a metal foil to form a coating film, and then drying the coating film to form an active material layer. Can be manufactured. In the power storage device electrode produced in this manner, an active material layer containing the above-mentioned polymer (A), an active material, and an optional component added as needed is bonded onto a current collector. Therefore, it is possible to have excellent adhesion and reduce internal resistance at high temperatures. As a result, the power storage device electrode according to the present embodiment exhibits good charge / discharge durability characteristics at high temperatures.
  • the current collector is not particularly limited as long as it is made of a conductive material, and examples thereof include the current collector described in Japanese Patent No. 5999399.
  • the content ratio of the silicon element in 100 parts by mass of the active material layer is preferably 2 to 30 parts by mass, and 2 to 20 parts by mass. Is more preferable, and 3 to 10 parts by mass is particularly preferable.
  • the content of the silicon element in the active material layer is within the above range, in addition to improving the storage capacity of the power storage device produced by using the silicon element, an active material layer having a uniform distribution of silicon elements can be obtained. ..
  • the content of the silicon element in the active material layer can be measured by, for example, the method described in Japanese Patent No. 5999399.
  • the power storage device according to the embodiment of the present invention can be manufactured according to a conventional method by providing the above-mentioned power storage device electrode, further containing an electrolytic solution, and using parts such as a separator.
  • a specific manufacturing method for example, a negative electrode and a positive electrode are overlapped with each other via a separator, and the negative electrode and the positive electrode are stored in a battery container by winding or folding according to the shape of the battery, and an electrolytic solution is injected into the battery container.
  • the method of sealing the battery can be mentioned.
  • the shape of the battery can be an appropriate shape such as a coin type, a cylindrical type, a square type, or a laminated type.
  • the electrolytic solution may be in the form of a liquid or a gel, and depending on the type of the active material, a known electrolytic solution used in the power storage device that effectively exhibits the function as a battery may be selected.
  • the electrolytic solution can be a solution in which the electrolyte is dissolved in a suitable solvent. Examples of these electrolytes and solvents include compounds described in Japanese Patent No. 5999399.
  • the above-mentioned power storage device can be applied to lithium ion secondary batteries, electric double layer capacitors, lithium ion capacitors, etc. that require discharge at a large current density.
  • a lithium ion secondary battery is particularly preferable.
  • known members for a lithium ion secondary battery, an electric double layer capacitor, and a lithium ion capacitor can be used as members other than the binder composition for the power storage device. Is.
  • Binder Composition for Power Storage Device A binder composition for power storage device containing the polymer (A) was obtained by one-step polymerization as shown below.
  • the reactor comprises 400 parts by mass of water, 15 parts by mass of 1,3-butadiene, 70 parts by mass of styrene, 5 parts by mass of methyl methacrylate, 5 parts by mass of acrylic nitrile, 3 parts by mass of itaconic acid, and 2 parts by mass of acrylic acid.
  • a monomer mixture 0.1 part by mass of tert-dodecyl mercaptan as a chain transfer agent, 2 parts by mass of sodium alkyldiphenyl ether disulfonate as an emulsifier, and 0.2 part by mass of potassium persulfate as a polymerization initiator were charged and stirred. While polymerizing at 70 ° C. for 12 hours, the polymerization was carried out at 75 ° C. for 12 hours, and the reaction was completed with a polymerization conversion rate of 98%.
  • the unreacted monomer was removed from the particle dispersion of the polymer (A) thus obtained, and after concentration, a 10% aqueous sodium hydroxide solution and water were added to obtain a solid content concentration of 20% by mass and a pH of 8.
  • a binder composition for a power storage device containing 0 particles of the polymer (A) was obtained.
  • the insoluble matter was separated by filtration through a 300 mesh wire mesh, and then the weight (Y (g)) of the residue obtained by evaporating and removing the dissolved EC / DEC / EMC was measured. Further, after the EC / DEC / EMC adhering to the surface of the insoluble matter (film) separated by the above filtration was absorbed by paper and removed, the weight (Z (g)) of the insoluble matter (film) was measured. ..
  • a slurry for a power storage device electrode containing 5% by mass of Si in the negative electrode active material by stirring and mixing at 1800 rpm for 5 minutes and further under reduced pressure (about 2.5 ⁇ 10 4 Pa) at 1800 rpm for 1.5 minutes.
  • C / Si 95/5) was prepared.
  • a stirring defoaming machine manufactured by Shinky Co., Ltd., trade name "Awatori Rentaro" was used at 200 rpm for 2 minutes.
  • a positive slurry was prepared by stirring and mixing at 1800 rpm for 5 minutes and further under reduced pressure (about 2.5 ⁇ 10 4 Pa) at 1800 rpm for 1.5 minutes.
  • This positive electrode slurry was uniformly applied to the surface of the current collector made of aluminum foil by the doctor blade method so that the film thickness after removing the solvent was 80 ⁇ m, and heated at 120 ° C. for 20 minutes to remove the solvent. ..
  • a counter electrode positive electrode was obtained by press working with a roll press machine so that the density of the active material layer was 3.0 g / cm 3.
  • a separator made of a polypropylene porous film punched to a diameter of 24 mm (manufactured by Cellguard Co., Ltd., trade name "Cellguard # 2400") was placed, and further, 500 ⁇ L of an electrolytic solution was injected so as not to allow air to enter, and then the above A lithium ion battery cell (storage device) was assembled by placing a positive electrode produced in 1 above, punched and molded into a diameter of 16.16 mm, and sealing the exterior body of the bipolar coin cell with a screw.
  • Capacity retention rate (%) (Discharge capacity in the 100th cycle) / (Discharge capacity in the 1st cycle) (3) (Evaluation criteria) ⁇ 5 points: Capacity retention rate is 95% or more. -4 points: Capacity retention rate is 90% or more and less than 95%. -3 points: Capacity retention rate is 85% or more and less than 90%. -2 points: Capacity retention rate is 80% or more and less than 85%. -1 point: Capacity retention rate is 75% or more and less than 80%. -0 points: Capacity retention rate is less than 75%.
  • Resistance increase rate (%) ((Discharge capacity at 101st cycle-100 discharge capacity at 100th cycle) / (Discharge capacity at 0th cycle-1 Discharge capacity at 1st cycle)) x 100 (4) (Evaluation criteria)
  • ⁇ 5 points Resistance increase rate is 100% or more and less than 150%.
  • ⁇ 4 points Resistance increase rate is 150% or more and less than 200%.
  • ⁇ 3 points Resistance increase rate is 200% or more and less than 250%.
  • ⁇ 1 point Resistance increase rate is 300% or more and less than 350%.
  • ⁇ 0 points Resistance increase rate is 350% or more.
  • “1C” indicates a current value at which a cell having a certain electric capacity is discharged with a constant current and the discharge is completed in 1 hour.
  • “0.1C” means a current value at which the discharge ends over 10 hours
  • “10C” means a current value at which the discharge ends over 0.1 hours.
  • a slurry for a power storage device electrode was prepared in the same manner as in Example 1 except that the binder composition for a power storage device prepared above was used, and a power storage device electrode and a power storage device were produced, respectively. It was evaluated in the same manner as 1.
  • Example 10 In Example 4, the thickener was CMC (trade name "CMC2200", manufactured by Daicel Co., Ltd.) in an amount of 0.9 parts by mass and CNF (manufactured by Daicel Co., Ltd., trade name "Serish KY-100G", fiber diameter 0.
  • CMC trade name "CMC2200", manufactured by Daicel Co., Ltd.
  • CNF manufactured by Daicel Co., Ltd., trade name "Serish KY-100G” fiber diameter 0.
  • a slurry for a power storage device electrode was prepared in the same manner as in Example 4 except that the amount was set to 0.1 part by mass (07 ⁇ m), and a power storage device electrode and a power storage device were respectively prepared and evaluated in the same manner as in Example 1 above. The results are shown in Table 2 below.
  • Example 11 In Example 4, the thickener was added to 0.8 parts by mass of CMC (trade name "CMC2200", manufactured by Daicel Co., Ltd.) and CNF (manufactured by Daicel Co., Ltd., trade name "Serish KY-100G", fiber diameter 0.
  • a slurry for a power storage device electrode was prepared in the same manner as in Example 4 except that the amount was set to 0.2 parts by mass (07 ⁇ m), and a power storage device electrode and a power storage device were prepared, respectively, and evaluated in the same manner as in Example 1 above. The results are shown in Table 2 below.
  • Table 1 shows the polymer compositions used in Examples 1 to 9 and Comparative Examples 1 to 6, the measurement results of each physical property, and the evaluation results.
  • Table 2 shows the composition of the polymer components used in Examples 10 to 11 and the evaluation results.
  • the slurry for the power storage device electrode prepared by using the binder composition for the power storage device according to the present invention shown in Examples 1 to 9 is the slurry for the power storage device electrode of Comparative Examples 1 to 6.
  • a power storage device electrode capable of binding active materials to each other and having good charge / discharge durability characteristics at a high temperature was obtained.
  • the polymer (A) contained in the binder compositions of Examples 1 to 9 shown in Table 1 above has a temperature Tp at the peak top of tan ⁇ (as compared with the cases of Comparative Examples 1 to 6).
  • the slurry for the current collector electrode prepared by using the binder composition for the current collector according to the present invention shown in Examples 10 and 11 contains the CNF of the thickener. It was found that even when used in combination, the active materials can be suitably bonded to each other, and the adhesion between the active material layer and the current collector can be maintained well.
  • the present invention is not limited to the above embodiment, and various modifications are possible.
  • the present invention includes substantially the same configurations as those described in the embodiments (eg, configurations with the same function, method and result, or configurations with the same purpose and effect).
  • the present invention also includes a configuration in which a non-essential part of the configuration described in the above embodiment is replaced with another configuration.
  • the present invention also includes a configuration that exhibits the same effects as the configuration described in the above embodiment or a configuration that can achieve the same object.
  • the present invention also includes a configuration in which a known technique is added to the configuration described in the above embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

高温下での、密着性を向上させ、かつ、内部抵抗を低減させることで、高温下での充放電耐久特性に優れる蓄電デバイス電極を製造可能な蓄電デバイス用バインダー組成物を提供する。 本発明に係る蓄電デバイス用バインダー組成物は、重合体(A)と、液状媒体(B)と、を含有し、前記重合体(A)中に含まれる繰り返し単位の合計を100質量部としたときに、前記重合体(A)が、共役ジエン化合物に由来する繰り返し単位(a1)を15~60質量部、芳香族ビニル化合物に由来する繰り返し単位(a2)を35~75質量部、及び不飽和カルボン酸に由来する繰り返し単位(a3)を1~10質量部含有し、前記重合体(A)の動的粘弾性測定におけるtanδ(損失弾性率/貯蔵弾性率)のピークトップをtanδ(Tp)、100℃でのtanδをtanδ(100℃)としたときに、下記式(1)の関係を満たす。 tanδ(100℃)/tanδ(Tp)×100≦10 (1)

Description

蓄電デバイス用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、及び蓄電デバイス
 本発明は、蓄電デバイス用バインダー組成物、該バインダー組成物と活物質とを含有する蓄電デバイス電極用スラリー、該スラリーを集電体上に塗布及び乾燥させて形成された蓄電デバイス電極、及び該蓄電デバイス電極を備えた蓄電デバイスに関する。
 近年、電子機器の駆動用電源として、高電圧かつ高エネルギー密度を有する蓄電デバイスが要求されている。このような蓄電デバイスとしては、リチウムイオン電池やリチウムイオンキャパシタなどが期待されている。
 このような蓄電デバイスに使用される電極は、活物質と、バインダーとして機能する重合体とを含有する組成物(蓄電デバイス電極用スラリー)を集電体の表面に塗布及び乾燥させることにより製造される。バインダーとして使用される重合体に要求される特性としては、活物質同士の結合能力及び活物質と集電体との密着能力、電極を巻き取る工程における耐擦性、その後の裁断などによっても、塗布・乾燥された組成物塗膜(以下、「活物質層」ともいう。)から活物質の微粉などが脱落しない粉落ち耐性などを挙げることができる。このようなバインダー材料が良好な密着性を発現させて、該バインダー材料に起因する電池の内部抵抗を低減させることで、蓄電デバイスに良好な充放電特性を付与することができる。
 なお、上記の活物質同士の結合能力及び活物質と集電体との密着能力、並びに粉落ち耐性については、性能の良否がほぼ比例関係にあることが経験上明らかになっている。したがって、本明細書では、以下これらを包括して「密着性」という用語を用いて表す場合がある。
 さらに近年、環境負荷低減を目的として、蓄電デバイスを搭載する電気自動車の研究開発が盛んに行われている。蓄電デバイスを電気自動車用駆動電源として搭載する場合、夏場では車内の温度が50℃以上の高温に達することもあるため、蓄電デバイスには高温下での耐久性が求められる。
 こうした背景の下、蓄電デバイスの充放電耐久特性を向上すべく、種々のバインダー材料が提案されている(例えば、特許文献1~2参照)。
国際公開第2015/012366号 特開2017-126456号公報
 しかしながら、上記特許文献1~2に開示されているバインダー材料は、高温下での特性が十分でなく、電気自動車用駆動電源としての蓄電デバイスに適用するためには、更なる改良が求められていた。
 そこで、本発明に係る幾つかの態様は、高温下での、密着性を向上させ、かつ、内部抵抗を低減させることで、高温下での充放電耐久特性に優れる蓄電デバイス電極を製造可能な蓄電デバイス用バインダー組成物を提供する。また、本発明に係る幾つかの態様は、該バインダー組成物を含有する蓄電デバイス電極用スラリーを提供する。また、本発明に係る幾つかの態様は、高温下での、密着性を向上させ、かつ、内部抵抗を低減させることで、高温下での充放電耐久特性に優れる蓄電デバイス電極を提供する。さらに、本発明に係る幾つかの態様は、高温下での充放電耐久特性に優れる蓄電デバイスを提供する。
 本発明は上述の課題の少なくとも一部を解決するためになされたものであり、以下のいずれかの態様として実現することができる。
 本発明に係る蓄電デバイス用バインダー組成物の一態様は、
 重合体(A)と、液状媒体(B)と、を含有し、
 前記重合体(A)中に含まれる繰り返し単位の合計を100質量部としたときに、前記重合体(A)が、
 共役ジエン化合物に由来する繰り返し単位(a1)を15~60質量部、
 芳香族ビニル化合物に由来する繰り返し単位(a2)を35~75質量部、及び
 不飽和カルボン酸に由来する繰り返し単位(a3)を1~10質量部含有し、
 前記重合体(A)の動的粘弾性測定におけるtanδ(損失弾性率/貯蔵弾性率)のピークトップをtanδ(Tp)、100℃でのtanδをtanδ(100℃)としたときに、下記式(1)の関係を満たす。
 tanδ(100℃)/tanδ(Tp)×100≦10   (1)
 前記蓄電デバイス用バインダー組成物の一態様において、
 前記tanδ(100℃)が0.1以下であってもよい。
 前記蓄電デバイス用バインダー組成物のいずれかの態様において、
 前記tanδのピークトップが0℃~60℃の温度範囲に一本のみ存在してもよい。
 前記蓄電デバイス用バインダー組成物のいずれかの態様において、
 前記重合体(A)が重合体粒子であり、
 前記重合体粒子の数平均粒子径が50nm以上500nm以下であってもよい。
 前記蓄電デバイス用バインダー組成物のいずれかの態様において、
 前記液状媒体(B)が水であってもよい。
 本発明に係る蓄電デバイス電極用スラリーの一態様は、
 前記いずれかの態様の蓄電デバイス用バインダー組成物と、活物質と、を含有する。
 前記蓄電デバイス電極用スラリーの一態様において、
 前記活物質としてケイ素材料を含有してもよい。
 前記蓄電デバイス電極の一態様は、
 集電体と、前記集電体の表面に前記いずれかの態様の蓄電デバイス電極用スラリーが塗布及び乾燥されて形成された活物質層と、を備える。
 前記蓄電デバイスの一態様は、
 前記態様の蓄電デバイス電極を備える。
 本発明に係る蓄電デバイス用バインダー組成物によれば、高温下での、密着性を向上させ、かつ、内部抵抗を低減させることができるので、高温下での充放電耐久特性に優れる蓄電デバイス電極を製造することができる。本発明に係る蓄電デバイス用バインダー組成物は、蓄電デバイス電極が活物質としてリチウム吸蔵量の大きい材料、例えばグラファイトのような炭素材料やケイ素材料を含有する場合に特に上記の効果を発揮する。このように、蓄電デバイス電極の活物質としてリチウム吸蔵量の大きい材料を使用できるので、電池性能も向上する。
図1は、実施例5で作成したフィルムの動的粘弾性測定における、測定温度とtanδの関係を表す図である。
 以下、本発明に係る好適な実施形態について詳細に説明する。なお、本発明は、下記に記載された実施形態のみに限定されるものではなく、本発明の要旨を変更しない範囲において実施される各種の変形例も含むものとして理解されるべきである。
 なお、本明細書における「(メタ)アクリル酸~」とは、「アクリル酸~」及び「メタクリル酸~」の双方を包括する概念である。同様に「~(メタ)アクリレート」とは、「~アクリレート」及び「~メタクリレート」の双方を包括する概念である。同様に「(メタ)アクリルアミド」とは、「アクリルアミド」及び「メタクリルアミド」の双方を包括する概念である。
 本明細書において、「A~B」のように記載された数値範囲は、数値Aを下限値として含み、かつ、数値Bを上限値として含むものとして解釈される。
 本明細書において、「高温下」とは、概ね40℃~80℃の温度範囲の環境をいう。
 1.蓄電デバイス用バインダー組成物
 本発明の一実施形態に係る蓄電デバイス用バインダー組成物は、重合体(A)と、液状媒体(B)と、を含有する。重合体(A)は、該重合体(A)中に含まれる繰り返し単位の合計を100質量部としたときに、共役ジエン化合物に由来する繰り返し単位(a1)を15~60質量部、芳香族ビニル化合物に由来する繰り返し単位(a2)を35~75質量部、及び不飽和カルボン酸に由来する繰り返し単位(a3)を1~10質量部含有する。また、前記重合体(A)の動的粘弾性測定におけるtanδ(損失弾性率/貯蔵弾性率)のピークトップをtanδ(Tp)、100℃でのtanδをtanδ(100℃)としたときに、下記式(1)の関係を満たす。
 tanδ(100℃)/tanδ(Tp)×100≦10   (1)
 本実施形態に係る蓄電デバイス用バインダー組成物は、活物質同士の結合能力及び活物質と集電体との密着能力並びに粉落ち耐性を向上させた蓄電デバイス電極(活物質層)を作製するための材料として使用することもできるし、充放電に伴って発生するデンドライトに起因する短絡を抑制するための保護膜を形成するための材料として使用することもできる。以下、本実施形態に係る蓄電デバイス用バインダー組成物に含まれる各成分について詳細に説明する。
 1.1.重合体(A)
 本実施形態に係る蓄電デバイス用バインダー組成物は、重合体(A)を含有する。重合体(A)は、該重合体(A)中に含まれる繰り返し単位の合計を100質量部としたときに、共役ジエン化合物に由来する繰り返し単位(a1)(以下、単に「繰り返し単位(a1)」ともいう。)を15~60質量部、芳香族ビニル化合物に由来する繰り返し単位(a2)(以下、単に「繰り返し単位(a2)」ともいう。)を35~75質量部、及び不飽和カルボン酸に由来する繰り返し単位(a3)(以下、単に「繰り返し単位(a3)」ともいう。)を1~10質量部含有する。また、重合体(A)は、前記繰り返し単位の他に、それと共重合可能な他の単量体に由来する繰り返し単位を含有してもよい。
 本実施形態に係る蓄電デバイス用バインダー組成物に含まれる重合体(A)は、液状媒体(B)中に分散されたラテックス状であってもよいし、液状媒体(B)中に溶解された状態であってもよいが、液状媒体(B)中に分散されたラテックス状であることが好ましい。重合体(A)が液状媒体(B)中に分散されたラテックス状であると、活物質と混合して作製される蓄電デバイス電極用スラリー(以下、単に「スラリー」ともいう。)の安定性が良好となり、またスラリーの集電体への塗布性が良好となるため好ましい。
 以下、重合体(A)を構成する繰り返し単位、重合体(A)の物性、製造方法の順に説明する。
 1.1.1.重合体(A)を構成する繰り返し単位
 1.1.1.1.共役ジエン化合物に由来する繰り返し単位(a1)
 共役ジエン化合物に由来する繰り返し単位(a1)の含有割合は、重合体(A)中に含まれる繰り返し単位の合計を100質量部としたときに、15~60質量部である。繰り返し単位(a1)の含有割合の下限は、好ましくは20質量部であり、より好ましくは25質量部である。繰り返し単位(a1)の含有割合の上限は、好ましくは57質量部であり、より好ましくは55質量部である。重合体(A)が繰り返し単位(a1)を前記範囲で含有することにより、活物質やフィラーの分散性が良好となり、均一な活物質層や保護膜の作製が可能となるため、電極板の構造欠陥がなくなり、良好な充放電特性を示すようになる。また、活物質の表面を被覆した重合体(A)に伸縮性を付与することができ、重合体(A)が伸縮することで密着性を向上できるので、良好な充放電耐久特性を示すようになる。
 共役ジエン化合物としては、特に限定されないが、1,3-ブタジエン、2-メチル-1,3-ブタジエン、2,3-ジメチル-1,3-ブタジエン、2-クロル-1,3-ブタジエン等を挙げることができ、これらの中から選択される1種以上を使用することができる。これらの中でも、1,3-ブタジエンが特に好ましい。
 1.1.1.2.芳香族ビニル化合物に由来する繰り返し単位(a2)
 芳香族ビニル化合物に由来する繰り返し単位(a2)の含有割合は、重合体(A)中に含まれる繰り返し単位の合計を100質量部としたときに、35~75質量部である。繰り返し単位(a2)の含有割合の下限は、好ましくは38質量部であり、より好ましくは40質量部である。繰り返し単位(a2)の含有割合の上限は、好ましくは72質量部であり、より好ましくは70質量部である。重合体(A)が繰り返し単位(a2)を前記範囲で含有することにより、活物質として用いられるグラファイト等に対して良好な結着力を示すようになり、柔軟性及び密着性に優れた蓄電デバイス電極が得られる。
 芳香族ビニル化合物としては、特に限定されないが、スチレン、α-メチルスチレン、p-メチルスチレン、ビニルトルエン、クロルスチレン、ジビニルベンゼン等を挙げることができ、これらの中から選択される1種以上を使用することができる。
 1.1.1.3.不飽和カルボン酸に由来する繰り返し単位(a3)
 不飽和カルボン酸に由来する繰り返し単位(a3)の含有割合は、重合体(A)中に含まれる繰り返し単位の合計を100質量部としたときに、1~10質量部である。繰り返し単位(a3)の含有割合の下限は、好ましくは1.2質量部であり、より好ましくは1.5質量部である。繰り返し単位(a3)の含有割合の上限は、好ましくは9質量部であり、より好ましくは8質量部である。重合体(A)が繰り返し単位(a3)を前記範囲で含有することにより、活物質やフィラーの分散性が良好となる。また、活物質として用いられるケイ素材料との親和性を向上させ、該ケイ素材料の膨潤を抑制することで良好な充放電耐久特性を示すようになる。
 不飽和カルボン酸としては、特に限定されないが、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、フマル酸、イタコン酸等の、モノカルボン酸及びジカルボン酸(無水物を含む。)を挙げることができ、これらの中から選択される1種以上を使用することができる。不飽和カルボン酸としては、アクリル酸、メタクリル酸、及びイタコン酸から選択される1種以上を使用することが好ましい。
 1.1.1.4.その他の繰り返し単位
 重合体(A)は、前記繰り返し単位(a1)~(a3)の他に、これらと共重合可能な他の単量体に由来する繰り返し単位を含有してもよい。このような繰り返し単位としては、例えば、(メタ)アクリルアミドに由来する繰り返し単位(a4)(以下、単に「繰り返し単位(a4)」ともいう。)、水酸基を有する不飽和カルボン酸エステルに由来する繰り返し単位(a5)(以下、単に「繰り返し単位(a5)」ともいう。)、不飽和カルボン酸エステル(前記水酸基を有する不飽和カルボン酸エステルを除く。)に由来する繰り返し単位(a6)(以下、単に「繰り返し単位(a6)」ともいう。)、α,β-不飽和ニトリル化合物に由来する繰り返し単位(a7)(以下、単に「繰り返し単位(a7)」ともいう。)、スルホン酸基を有する化合物に由来する繰り返し単位(a8)(以下、単に「繰り返し単位(a8)」ともいう。)、カチオン性単量体に由来する繰り返し単位等が挙げられる。
<(メタ)アクリルアミドに由来する繰り返し単位(a4)>
 重合体(A)は、(メタ)アクリルアミドに由来する繰り返し単位(a4)を含有してもよい。繰り返し単位(a4)の含有割合は、重合体(A)中に含まれる繰り返し単位の合計を100質量部としたときに、0~10質量部であることが好ましい。繰り返し単位(a4)の含有割合の下限は、好ましくは1質量部であり、より好ましくは2質量部である。繰り返し単位(a4)の含有割合の上限は、好ましくは8質量部であり、より好ましくは5質量部である。重合体(A)が繰り返し単位(a4)を前記範囲で含有することにより、活物質やフィラーのスラリー中の分散性が良好となる場合がある。また、得られる活物質層の柔軟性が適度となり、集電体と活物質層との密着性が向上する場合がある。さらに、グラファイトのような炭素材料やケイ素材料を含有する活物質同士の結合能力を高めることができるため、柔軟性や集電体に対する密着性がより良好な活物質層が得られる場合がある。
 (メタ)アクリルアミドとしては、特に限定されないが、アクリルアミド、メタクリルアミド、N-イソプロピルアクリルアミド、N,N-ジメチルアクリルアミド、N,N-ジメチルメタクリルアミド、N,N-ジエチルアクリルアミド、N,N-ジエチルメタクリルアミド、N,N-ジメチルアミノプロピルアクリルアミド、N,N-ジメチルアミノプロピルメタクリルアミド、N-メチロールアクリルアミド、N-メチロールメタクリルアミド、ジアセトンアクリルアミド、マレイン酸アミド、アクリルアミドtert-ブチルスルホン酸等を挙げることができ、これらの中から選択される1種以上を使用することができる。
<水酸基を有する不飽和カルボン酸エステルに由来する繰り返し単位(a5)>
 重合体(A)は、水酸基を有する不飽和カルボン酸エステルに由来する繰り返し単位(a5)を含有してもよい。繰り返し単位(a5)の含有割合は、重合体(A)中に含まれる繰り返し単位の合計を100質量部としたときに、0~10質量部であることが好ましい。繰り返し単位(a5)の含有割合の下限は、好ましくは0.5質量部であり、より好ましくは1質量部である。繰り返し単位(a5)の含有割合の上限は、好ましくは8質量部であり、より好ましくは5質量部である。重合体(A)が繰り返し単位(a5)を前記範囲で含有することにより、後述するスラリーを作製する際に、活物質を凝集させることなく、活物質が良好に分散されたスラリーを作製しやすくなる場合がある。これにより、スラリーを塗布・乾燥して作製された活物質層中の重合体(A)が均一に近い分布となるので、結着欠陥が非常に少ない蓄電デバイス電極を作製できる場合がある。すなわち、活物質同士の結合能力及び活物質層と集電体との密着能力を飛躍的に向上できる場合がある。
 水酸基を有する不飽和カルボン酸エステルとしては、特に限定されないが、(メタ)アクリル酸2-ヒドロキシメチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸5-ヒドロキシペンチル、(メタ)アクリル酸6-ヒドロキシヘキシル、グリセリンモノ(メタ)アクリレート、グリセリンジ(メタ)アクリレート等が挙げられ、これらの中から選択される1種以上を使用することができる。中でも、(メタ)アクリル酸2-ヒドロキシエチル、グリセリンモノ(メタ)アクリレートが好ましい。
<不飽和カルボン酸エステルに由来する繰り返し単位(a6)>
 重合体(A)は、不飽和カルボン酸エステル(前記水酸基を有する不飽和カルボン酸エステルを除く。)に由来する繰り返し単位(a6)を含有してもよい。繰り返し単位(a6)の含有割合は、重合体(A)中に含まれる繰り返し単位の合計を100質量部としたときに、0~20質量部であることが好ましい。繰り返し単位(a6)の含有割合の下限は、好ましくは1質量部であり、より好ましくは2質量部である。繰り返し単位(a6)の含有割合の上限は、好ましくは18質量部であり、より好ましくは15質量部である。重合体(A)が繰り返し単位(a6)を前記範囲で含有することにより、重合体(A)と電解液との親和性が良好となり、蓄電デバイス中でバインダーが電気抵抗成分となることによる内部抵抗の上昇を抑制するとともに、電解液を過大に吸収することによる密着性の低下を防ぐことができる場合がある。
 不飽和カルボン酸エステルの中でも、(メタ)アクリル酸エステルを好ましく使用することができる。(メタ)アクリル酸エステルの具体例としては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸n-アミル、(メタ)アクリル酸イソアミル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、ジ(メタ)アクリル酸エチレングリコール、ジ(メタ)アクリル酸プロピレングリコール、トリ(メタ)アクリル酸トリメチロールプロパン、テトラ(メタ)アクリル酸ペンタエリスリトール、ヘキサ(メタ)アクリル酸ジペンタエリスリトール、(メタ)アクリル酸アリル等が挙げられ、これらの中から選択される1種以上を使用することができる。中でも、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、及び(メタ)アクリル酸2-エチルヘキシルから選択される1種以上であることが好ましく、(メタ)アクリル酸メチルであることが特に好ましい。
<α,β-不飽和ニトリル化合物に由来する繰り返し単位(a7)>
 重合体(A)は、α,β-不飽和ニトリル化合物に由来する繰り返し単位(a7)を含有してもよい。繰り返し単位(a7)の含有割合は、重合体(A)中に含まれる繰り返し単位の合計を100質量部としたときに、0~10質量部であることが好ましい。繰り返し単位(a7)の含有割合の下限は、好ましくは0.5質量部であり、より好ましくは1質量部である。繰り返し単位(a7)の含有割合の上限は、好ましくは8質量部であり、より好ましくは5質量部である。重合体(A)が繰り返し単位(a7)を前記範囲で含有することにより、該重合体(A)の電解液への溶解を低減することが可能となり、電解液による密着性の低下を抑制できる場合がある。また、蓄電デバイス中で溶解した重合体成分が電気抵抗成分となることによる内部抵抗の上昇を抑制できる場合がある。
 α,β-不飽和ニトリル化合物としては、特に限定されないが、アクリロニトリル、メタクリロニトリル、α-クロルアクリロニトリル、α-エチルアクリロニトリル、シアン化ビニリデン等を挙げることができ、これらの中から選択される1種以上を使用することができる。これらの中でも、アクリロニトリル及びメタクリロニトリルよりなる群から選択される1種以上が好ましく、アクリロニトリルが特に好ましい。
<スルホン酸基を有する化合物に由来する繰り返し単位(a8)>
 重合体(A)は、スルホン酸基を有する化合物に由来する繰り返し単位(a8)を含有してもよい。繰り返し単位(a8)の含有割合は、重合体(A)中に含まれる繰り返し単位の合計を100質量部としたときに、0~10質量部であることが好ましい。繰り返し単位(a8)の含有割合の下限は、好ましくは0.5質量部であり、より好ましくは1質量部である。繰り返し単位(a8)の含有割合の上限は、好ましくは8質量部であり、より好ましくは5質量部である。
 スルホン酸基を有する化合物としては、特に限定されないが、ビニルスルホン酸、スチレンスルホン酸、アリルスルホン酸、スルホエチル(メタ)アクリレート、スルホプロピル(メタ)アクリレート、スルホブチル(メタ)アクリレート、2-アクリルアミド-2-メチルプロパンスルホン酸、2-ヒドロキシ-3-アクリルアミドプロパンスルホン酸、3-アリロキシ-2-ヒドロキシプロパンスルホン酸等の化合物、及びこれらのアルカリ塩等が挙げられ、これらの中から選択される1種以上を使用することができる。
<カチオン性単量体に由来する繰り返し単位>
 重合体(A)は、カチオン性単量体に由来する繰り返し単位を含有してもよい。カチオン性単量体としては、特に限定されないが、第二級アミン(塩)、第三級アミン(塩)及び第四級アンモニウム塩よりなる群から選択される少なくとも1種の単量体であることが好ましい。これらカチオン性単量体の具体例としては、特に限定されないが、(メタ)アクリル酸2-(ジメチルアミノ)エチル、ジメチルアミノエチル(メタ)アクリレート塩化メチル4級塩、(メタ)アクリル酸2-(ジエチルアミノ)エチル、(メタ)アクリル酸3-(ジメチルアミノ)プロピル、(メタ)アクリル酸3-(ジエチルアミノ)プロピル、(メタ)アクリル酸4-(ジメチルアミノ)フェニル、(メタ)アクリル酸2-[(3,5-ジメチルピラゾリル)カルボニルアミノ]エチル、(メタ)アクリル酸2-(0-[1’-メチルプロピリデンアミノ]カルボキシアミノ)エチル、(メタ)アクリル酸2-(1-アジリジニル)エチル、メタクロイルコリンクロリド、イソシアヌル酸トリス(2-アクリロイルオキシエチル)、2-ビニルピリジン、キナルジンレッド、1,2-ジ(2-ピリジル)エチレン、4’-ヒドラジノ-2-スチルバゾール二塩酸塩水和物、4-(4-ジメチルアミノスチリル)キノリン、1-ビニルイミダゾール、ジアリルアミン、ジアリルアミン塩酸塩、トリアリルアミン、ジアリルジメチルアンモニウムクロリド、ジクロルミド、N-アリルベンジルアミン、N-アリルアニリン、2,4-ジアミノ-6-ジアリルアミノ-1,3,5-トリアジン、N-trans-シンナミル-N-メチル-(1-ナフチルメチル)アミン塩酸塩、trans-N-(6,6-ジメチル-2-ヘプテン-4-イニル)-N-メチル-1-ナフチルメチルアミン塩酸塩等が挙げられ、これらの中から選択される1種以上を使用することができる。
 1.1.2.重合体(A)の物性
 1.1.2.1.動的粘弾性
 重合体(A)の動的粘弾性測定における、tanδ(損失弾性率/貯蔵弾性率)のピークトップをtanδ(Tp)、100℃でのtanδをtanδ(100℃)としたときに、下記式(1)の関係を満たす。
 tanδ(100℃)/tanδ(Tp)×100≦10   (1)
 この動的粘弾性測定における測定サンプルは、重合体(A)のフィルムである。重合体(A)のフィルムは、重合体(A)を40℃で24時間乾燥させて、1.0±0.3mmの厚みの均一なフィルムを作製し、このフィルムを真空乾燥機内で160℃、30分間乾燥させた後、10mm×10mmの短冊状に切り出したものである。次いで、下記の動的粘弾性測定装置を用いて、パラレルプレート(製品名「PP-12」)で測定サンプルを固定し、下記測定条件により-70℃~180℃の温度領域で測定する。
・測定条件:せん断モード、測定周波数1Hz、昇温スピード0.1℃/min
・動的粘弾性測定装置:Anton Paar社製、型式「MCR 301」
 本実施形態で使用される重合体(A)の“tanδ(100℃)/tanδ(Tp)×100”の値は、10以下であるが、好ましくは9以下であり、より好ましくは8以下である。また、本実施形態で使用される重合体(A)の“tanδ(100℃)/tanδ(Tp)×100”の値は、好ましくは0.5以上であり、より好ましくは1以上であり、特に好ましくは2以上である。重合体(A)の“tanδ(100℃)/tanδ(Tp)×100”の値が前記範囲内にあると、tanδのピークトップ温度付近の温度において粘性が高いことを示しており、この粘性の高さにより密着性を担保することができる、と発明者は推測している。また、100℃付近の温度において高架橋、すなわち重合体(A)が硬いことを示しており、重合体(A)が硬いことで、電極作成時に、他のバインダーのように潰れずに粒子形状を維持することができるため、電解液の導電パスを残すことができると考えられる。したがって、本実施形態で使用される重合体(A)は、高温下での、密着性を向上させ、かつ、内部抵抗を低減させることができるので、高温下での充放電耐久特性に優れる蓄電デバイス電極を製造することができる、と発明者は推測している。
 重合体(A)の動的粘弾性測定におけるtanδのピークトップの温度Tp(℃)は、好ましくは0℃~60℃、より好ましくは5℃~55℃、特に好ましくは10℃~50℃、の温度範囲に存在することが好ましい。また、ピークトップは、上記温度範囲に一本存在することが好ましい。上記温度範囲にTpが一本存在することは、同温度範囲において粘性が高いことを示している。この粘性の高さにより、同温度範囲における重合体(A)の高い結着力を維持することができ、良好な密着性を発現させることができると考えられる。
 tanδのピークトップの温度Tpの調整方法としては、重合体(A)重合時の単量体組成を調整する方法等が挙げられる。
 重合体(A)のtanδ(Tp)は、好ましくは0.4~1.5であり、より好ましくは0.5~1.2であり、特に好ましくは0.6~1.0である。重合体(A)のtanδ(Tp)が前記範囲にあることは、重合体(A)が、硬すぎず、電極構造の保持に十分な結着力を有することを示している。
 tanδ(Tp)の調整方法としては、重合体(A)のガラス転移温度やゲル含有量の変更、又は重合体(A)重合時の単量体添加方法の変更等が挙げられる。
 また、重合体(A)の100℃におけるtanδ(100℃)は、好ましくは0.1以下であり、より好ましくは0.09以下であり、特に好ましくは0.08以下である。重合体(A)のtanδ(100℃)が前記範囲にあることは、重合体(A)の架橋度が高いことを示している。その結果、電極作成時にバインダー成分の粒子形状を保つことが可能となり、活物質間の電解液の流動性が阻害されないため、内部抵抗が低減された蓄電デバイス電極が得られやすい。
 1.1.2.2.電解液膨潤度
 重合体(A)の電解液膨潤度は、好ましくは100~200質量%であり、より好ましくは110~190質量%であり、特に好ましくは120~180質量%である。電解液膨潤度が前記範囲内にあると、重合体(A)は電解液に対して適度に膨潤することができる。その結果、溶媒和したリチウムイオンが容易に活物質へ到達することができ、電極の内部抵抗を低減させて、より良好な充放電特性を実現できる。また、前記範囲内の電解液膨潤度であれば、大きな体積変化が発生しないため密着性にも優れる。重合体(A)の電解液膨潤度は、後述の実施例に記載された方法により測定することができる。
 1.1.2.3.数平均粒子径
 重合体(A)が粒子である場合、該粒子の数平均粒子径は、好ましくは50nm以上500nm以下であり、より好ましくは60nm以上450nm以下であり、特に好ましくは70nm以上400nm以下である。重合体(A)の粒子の数平均粒子径が前記範囲にあると、活物質の表面に重合体(A)の粒子が吸着しやすくなるので、活物質の移動に伴って重合体(A)の粒子も追従して移動することができる。その結果、マイグレーションすることを抑制できるので、電気的特性の劣化を低減できる場合がある。
 なお、重合体(A)の粒子の数平均粒子径は、透過型電子顕微鏡(TEM)により観察した粒子50個の画像より得られる粒子径の平均値から算出することができる。透過型電子顕微鏡としては、例えば株式会社日立ハイテク製の「H-7650」等が挙げられる。
 1.1.3.重合体(A)の製造方法
 重合体(A)の製造方法については、特に限定されないが、例えば公知の乳化剤(界面活性剤)、連鎖移動剤、重合開始剤などの存在下で行う乳化重合法によることができる。乳化剤(界面活性剤)、連鎖移動剤、及び重合開始剤としては、特許第5999399号公報等に記載された化合物を用いることができる。
 重合体(A)を合成するための乳化重合法は、一段重合で行ってもよく、二段重合以上の多段重合で行ってもよい。
 重合体(A)の合成を一段重合によって行う場合、上記の単量体の混合物を、適当な乳化剤、連鎖移動剤、重合開始剤などの存在下で、好ましくは40~80℃において、好ましくは4~36時間の乳化重合によることができる。
 重合体(A)の合成を二段重合によって行う場合、各段階の重合は以下のように設定することが好ましい。
 一段目重合に使用する単量体の使用割合は、単量体の全質量(一段目重合に使用する単量体の質量と二段目重合に使用する単量体の質量との合計)に対して、20~100質量%の範囲とすることが好ましく、25~100質量%の範囲とすることがより好ましい。一段目重合をこのような単量体の使用割合で行うことにより、分散安定性に優れ、凝集物が生じ難い重合体(A)の粒子を得ることができるとともに、蓄電デバイス用バインダー組成物の経時的な粘度上昇も抑制されることとなり好ましい。
 二段目重合に使用する単量体の種類及びその使用割合は、一段目重合に使用する単量体の種類及びその使用割合と同じであってもよく、異なっていてもよい。
 各段階の重合条件は、得られる重合体(A)の粒子の分散性の観点から、以下のようにすることが好ましい。
・一段目重合;好ましくは40~80℃の温度:好ましくは2~36時間の重合時間:好ましくは50質量%以上、より好ましくは60質量%以上の重合転化率。
・二段目重合;好ましくは40~80℃の温度;好ましくは2~18時間の重合時間。
 乳化重合における全固形分濃度を50質量%以下とすることにより、得られる重合体(A)の粒子の分散安定性が良好な状態で重合反応を進行させることができる。この全固形分濃度は、好ましくは48質量%以下であり、より好ましくは45質量%以下である。
 重合体(A)の合成を一段重合として行う場合であっても、二段重合法による場合であっても、乳化重合終了後には重合混合物に中和剤を添加することにより、pHを5~10.5程度、好ましくは6~10、より好ましくは6.5~9.5に調整することが好ましい。ここで使用する中和剤としては、特に限定されないが、例えば水酸化ナトリウム、水酸化カリウムなどの金属水酸化物;アンモニア等が挙げられる。上記のpH範囲に設定することにより、重合体(A)の安定性が良好となる。中和処理を行った後に、重合混合物を濃縮することにより、重合体(A)の良好な安定性を維持しながら固形分濃度を高くすることができる。
 1.1.4.重合体(A)の含有割合
 本実施形態に係る蓄電デバイス用バインダー組成物中の重合体(A)の含有割合は、重合体成分100質量部中、好ましくは10~100質量部であり、より好ましくは20~95質量部であり、特に好ましくは25~90質量部である。ここで、重合体成分には、重合体(A)、後述する重合体(A)以外の重合体、及び増粘剤等が含まれる。
 1.2.液状媒体(B)
 本実施形態に係る蓄電デバイス用バインダー組成物は、液状媒体(B)を含有する。液状媒体(B)としては、水を含有する水系媒体であることが好ましく、水であることがより好ましい。上記水系媒体には、水以外の非水系媒体を含有させることができる。この非水系媒体としては、例えばアミド化合物、炭化水素、アルコール、ケトン、エステル、アミン化合物、ラクトン、スルホキシド、スルホン化合物などを挙げることができ、これらの中から選択される1種以上を使用することができる。本実施形態に係る蓄電デバイス用バインダー組成物は、液状媒体(B)として水系媒体を使用することにより、環境に対して悪影響を及ぼす程度が低くなり、取扱作業者に対する安全性も高くなる。
 水系媒体中に含まれる非水系媒体の含有割合は、水系媒体100質量部中、10質量部以下であることが好ましく、5質量部以下であることがより好ましく、実質的に含有しないことが特に好ましい。ここで、「実質的に含有しない」とは、液状媒体として非水系媒体を意図的に添加しないという程度の意味であり、蓄電デバイス用バインダー組成物を調製する際に不可避的に混入する非水系媒体を含んでいてもよい。
 1.3.その他の添加剤
 本実施形態に係る蓄電デバイス用バインダー組成物は、必要に応じて上述した成分以外の添加剤を含有することができる。このような添加剤としては、例えば重合体(A)以外の重合体、防腐剤、増粘剤等が挙げられる。
 1.3.1.重合体(A)以外の重合体
 本実施形態に係る蓄電デバイス用バインダー組成物は、重合体(A)以外の重合体を含有してもよい。このような重合体としては、特に限定されないが、不飽和カルボン酸エステル又はこれらの誘導体を構成単位として含むアクリル系重合体、PVDF(ポリフッ化ビニリデン)等のフッ素系重合体等が挙げられる。これらの重合体は、1種単独で用いてもよく、2種以上併用してもよい。これらの重合体を含有することにより、柔軟性や密着性がより向上する場合がある。
 1.3.2.防腐剤
 本実施形態に係る蓄電デバイス用バインダー組成物は、防腐剤を含有してもよい。防腐剤を含有することにより、蓄電デバイス用バインダー組成物を貯蔵した際に、細菌や黴などが増殖して異物が発生することを抑制できる場合がある。防腐剤の具体例としては、特許第5477610号公報等に記載された化合物が挙げられる。
 1.3.3.増粘剤
 本実施形態に係る蓄電デバイス用バインダー組成物は、増粘剤を含有してもよい。増粘剤を含有することにより、スラリーの塗布性や得られる蓄電デバイスの充放電特性等をさらに向上できる場合がある。
 増粘剤の具体例としては、例えばカルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロース等のセルロース化合物;ポリ(メタ)アクリル酸;前記セルロース化合物又は前記ポリ(メタ)アクリル酸のアンモニウム塩もしくはアルカリ金属塩;ポリビニルアルコール、変性ポリビニルアルコール、エチレン-ビニルアルコール共重合体等のポリビニルアルコール系(共)重合体;(メタ)アクリル酸、マレイン酸、フマル酸等の不飽和カルボン酸とビニルエステルとの共重合体の鹸化物等の水溶性ポリマーを挙げることができる。これらの中でも、カルボキシメチルセルロースのアルカリ金属塩、ポリ(メタ)アクリル酸のアルカリ金属塩等が好ましい。
 これら増粘剤の市販品としては、例えばCMC1120、CMC1150、CMC2200、CMC2280、CMC2450(以上、株式会社ダイセル製)等のカルボキシメチルセルロースのアルカリ金属塩を挙げることができる。
 本実施形態に係る蓄電デバイス用バインダー組成物が増粘剤を含有する場合、増粘剤の含有割合は、蓄電デバイス用バインダー組成物の全固形分量100質量部に対して、5質量部以下であることが好ましく、0.1~3質量部であることがより好ましい。
 1.4.蓄電デバイス用バインダー組成物のpH
 本実施形態に係る蓄電デバイス用バインダー組成物のpHは、好ましくは5~10であり、より好ましくは6~9.5であり、特に好ましくは6.5~9である。pHが前記範囲内にあると、レベリング性不足や液ダレ等の問題の発生を抑制することができ、良好な電気的特性及び密着性を両立させた蓄電デバイス電極を製造することが容易となる。
 本明細書における「pH」とは、以下のようにして測定される物性をいう。25℃で、pH標準液として中性リン酸塩標準液及びほう酸塩標準液で校正したガラス電極を用いたpH計で、JIS Z8802:2011に準拠して測定した値である。このようなpH計としては、例えば東亜ディーケーケー株式会社製「HM-7J」や株式会社堀場製作所製「D-51」等が挙げられる。
 なお、蓄電デバイス用バインダー組成物のpHは、重合体(A)を構成する単量体組成に影響を受けることを否定しないが、単量体組成のみで定まるものではないことを付言しておく。すなわち、一般的に同じ単量体組成であっても重合条件等で蓄電デバイス用バインダー組成物のpHが変化することが知られており、本願明細書の実施例はその一例を示しているに過ぎない。
 例えば、同じ単量体組成であっても、重合反応液に最初から不飽和カルボン酸を全て仕込み、その後他の単量体を順次添加して加える場合と、不飽和カルボン酸以外の単量体を重合反応液へ仕込み、最後に不飽和カルボン酸を添加する場合とでは、得られる重合体の表面に露出する不飽和カルボン酸に由来するカルボキシ基の量は異なる。このように重合方法で単量体を加える順番を変更するだけでも、蓄電デバイス用バインダー組成物のpHは大きく異なると考えられる。
 2.蓄電デバイス用スラリー
 本発明の一実施形態に係る蓄電デバイス用スラリーは、上述の蓄電デバイス用バインダー組成物を含有するものである。上述の蓄電デバイス用バインダー組成物は、充放電に伴って発生するデンドライトに起因する短絡を抑制するための保護膜を作製するための材料として使用することもできるし、活物質同士の結合能力及び活物質と集電体との密着能力並びに粉落ち耐性を向上させた蓄電デバイス電極(活物質層)を作製するための材料として使用することもできる。そのため、保護膜を作製するための蓄電デバイス用スラリー(以下、「保護膜用スラリー」ともいう。)と、蓄電デバイス電極の活物質層を作製するための蓄電デバイス用スラリー(以下、「蓄電デバイス電極用スラリー」ともいう。)と、に分けて説明する。
 2.1.保護膜用スラリー
 「保護膜用スラリー」とは、これを電極又はセパレータの表面もしくはその両方に塗布した後、乾燥させて、電極又はセパレータの表面もしくはその両方に保護膜を作製するために用いられる分散液のことをいう。本実施形態に係る保護膜用スラリーは、上述した蓄電デバイス用バインダー組成物のみから構成されていてもよく、無機フィラーをさらに含有してもよい。以下、本実施形態に係る保護膜用スラリーに含まれる各成分について詳細に説明する。なお、蓄電デバイス用バインダー組成物については、上述した通りであるので説明を省略する。
 2.1.1.無機フィラー
 本実施形態に係る保護膜用スラリーは、無機フィラーを含有することにより、保護膜のタフネスを向上させることができる。無機フィラーとしては、シリカ、酸化チタン(チタニア)、酸化アルミニウム(アルミナ)、酸化ジルコニウム(ジルコニア)、及び酸化マグネシウム(マグネシア)よりなる群から選択される少なくとも1種の粒子を用いることが好ましい。これらの中でも、保護膜のタフネスをより向上させる観点から、酸化チタン又は酸化アルミニウムが好ましい。また、酸化チタンとしては、ルチル型の酸化チタンがより好ましい。
 無機フィラーの平均粒子径は、1μm以下であることが好ましく、0.1~0.8μmであることがより好ましい。なお、無機フィラーの平均粒子径は、多孔質膜であるセパレータの平均孔径よりも大きいことが好ましい。これにより、セパレータへのダメージを軽減し、無機フィラーがセパレータの微多孔に詰まることを防ぐことができる。
 本実施形態に係る保護膜用スラリーは、無機フィラー100質量部に対して、上述の蓄電デバイス用バインダー組成物が、固形分換算で0.1~20質量部含有されていることが好ましく、1~10質量部含有されていることがより好ましい。蓄電デバイス用バインダー組成物の含有割合が前記範囲であることにより、保護膜のタフネスとリチウムイオンの透過性とのバランスが良好となり、その結果、得られる蓄電デバイスの抵抗上昇率をより低減することができる。
 2.1.2.液状媒体
 本実施形態に係る保護膜用スラリーには、蓄電デバイス用バインダー組成物からの持ち込み分に加えて、さらに液状媒体を添加してもよい。液状媒体の添加量は、塗工方法等に応じて最適なスラリー粘度が得られるように、必要に応じて調整することができる。このような液状媒体としては、上記「1.2.液状媒体(B)」の項に記載されている材料が挙げられる。
 2.1.3.その他の成分
 本実施形態に係る保護膜用スラリーは、上記「1.3.その他の添加剤」の項に記載されている材料を必要に応じて適量用いることができる。
 2.2.蓄電デバイス電極用スラリー
 「蓄電デバイス電極用スラリー」とは、これを集電体の表面に塗布した後、乾燥させて、集電体表面上に活物質層を作製するために用いられる分散液のことをいう。本実施形態に係る蓄電デバイス電極用スラリーは、上述の蓄電デバイス用バインダー組成物と、活物質と、を含有する。
 一般的に、蓄電デバイス電極用スラリーは、密着性を向上させるために、SBR系共重合体などのバインダー成分と、カルボキシメチルセルロース等の増粘剤とを含有することが多い。一方、本実施形態に係る蓄電デバイス電極用スラリーは、重合体成分として上述した重合体(A)のみを含有する場合であっても密着性を向上させることができる。もちろん、本実施形態に係る蓄電デバイス電極用スラリーは、さらに密着性を向上させるために、重合体(A)以外の重合体や増粘剤を含有してもよい。以下、本実施形態に係る蓄電デバイス電極用スラリーに含まれる成分について説明する。
 2.2.1.重合体(A)
 重合体(A)の組成、物性、製造方法等については、上述した通りであるので説明を省略する。
 本実施形態に係る蓄電デバイス電極用スラリー中の重合体成分の含有割合は、活物質100質量部に対し、好ましくは1~8質量部であり、より好ましくは1~7質量部であり、特に好ましくは1.5~6質量部である。重合体成分の含有割合が前記範囲にあると、スラリー中の活物質の分散性が良好となり、スラリーの塗布性も優れたものとなる。ここで、重合体成分には、重合体(A)、必要に応じて添加される重合体(A)以外の重合体、及び増粘剤等が含まれる。
 2.2.2.活物質
 本実施形態に係る蓄電デバイス電極用スラリーに使用される活物質としては、例えば炭素材料、ケイ素材料、リチウム原子を含む酸化物、鉛化合物、錫化合物、砒素化合物、アンチモン化合物、アルミニウム化合物、ポリアセン等の導電性高分子、A(但し、Aはアルカリ金属又は遷移金属、Bはコバルト、ニッケル、アルミニウム、スズ、マンガン等の遷移金属から選択される少なくとも1種、Oは酸素原子を表し、X、Y及びZはそれぞれ1.10>X>0.05、4.00>Y>0.85、5.00>Z>1.5の範囲の数である。)で表される複合金属酸化物や、その他の金属酸化物等が挙げられる。これらの具体例としては、特許第5999399号公報等に記載された化合物が挙げられる。
 本実施形態に係る蓄電デバイス電極用スラリーは、正極及び負極のいずれの蓄電デバイス電極を作製する際にも使用することができ、正極及び負極の両方に使用することが好ましい。
 正極活物質としてリン酸鉄リチウムを使用する場合、充放電特性が十分ではなく密着性が劣るという課題があった。リン酸鉄リチウムは、微細な一次粒径を有し、その二次凝集体であることが知られており、充放電を繰り返す際に活物質層中で凝集が崩壊し活物質同士の乖離を引き起こし、集電体からの剥離や、活物質層内部の導電ネットワークが寸断されやすいことが要因の一つであると考えられる。
 しかしながら、本実施形態に係る蓄電デバイス電極用スラリーを用いて作製された蓄電デバイス電極では、正極活物質としてリン酸鉄リチウムを使用した場合でも上述のような問題が発生することなく、良好な電気的特性を示すことができる。この理由としては、重合体(A)がリン酸鉄リチウムを強固に結着できると同時に、充放電中においてもリン酸鉄リチウムを強固に結着させた状態を維持できるからであると考えられる。
 一方、負極を作製する場合には、上記例示した活物質の中でもケイ素材料を含有するものであることが好ましい。ケイ素材料は単位重量当たりのリチウムの吸蔵量がその他の活物質と比較して大きいことから、負極活物質としてのケイ素材料を含有することにより、得られる蓄電デバイスの蓄電容量を高めることができ、その結果、蓄電デバイスの出力及びエネルギー密度を高くすることができる。
 また、負極活物質としては、ケイ素材料と炭素材料の混合物であることがより好ましい。炭素材料は充放電に伴う体積変化がケイ素材料よりも小さいので、負極活物質としてケイ素材料と炭素材料の混合物を使用することにより、ケイ素材料の体積変化の影響を緩和することができ、活物質層と集電体との密着能力をより向上させることができる。
 シリコン(Si)を活物質として使用する場合、シリコンは、高容量である一方、リチウムを吸蔵する際に大きな体積変化を生じる。このため、ケイ素材料は膨張と収縮の繰り返しによって微粉化し、集電体からの剥離や、活物質同士の乖離を引き起こし、活物質層内部の導電ネットワークが寸断されやすいという性質がある。この性質により、蓄電デバイスの充放電耐久特性が短時間で極端に劣化してしまうのである。
 しかしながら、本実施形態に係る蓄電デバイス電極用スラリーを用いて作製された蓄電デバイス電極は、ケイ素材料を使用した場合でも上述のような問題が発生することなく、良好な電気的特性を示すことができる。この理由としては、重合体(A)がケイ素材料を強固に結着させることができると同時に、リチウムを吸蔵することによりケイ素材料が体積膨張しても重合体(A)が伸び縮みしてケイ素材料を強固に結着させた状態を維持できるからであると考えられる。
 活物質100質量%中に占めるケイ素材料の含有割合は、1質量%以上とすることが好ましく、2~50質量%とすることがより好ましく、3~45質量%とすることがさらに好ましく、10~40質量%とすることが特に好ましい。活物質100質量%中に占めるケイ素材料の含有割合が前記範囲内であると、蓄電デバイスの出力及びエネルギー密度の向上と充放電耐久特性とのバランスに優れた蓄電デバイスが得られる。
 活物質の形状としては、粒子状であることが好ましい。活物質の平均粒子径としては、0.1~100μmであることが好ましく、1~20μmであることがより好ましい。ここで、活物質の平均粒子径とは、レーザー回折法を測定原理とする粒度分布測定装置を用いて粒度分布を測定し、その粒度分布から算出される体積平均粒子径のことをいう。このようなレーザー回折式粒度分布測定装置としては、例えばHORIBA LA-300シリーズ、HORIBA LA-920シリーズ(以上、株式会社堀場製作所製)等が挙げられる。
 2.2.3.その他の成分
 本実施形態に係る蓄電デバイス電極用スラリーには、上述した成分以外に、必要に応じてその他の成分を添加してもよい。このような成分としては、例えば重合体(A)以外の重合体、増粘剤、液状媒体、導電付与剤、pH調整剤、腐食防止剤、セルロースファイバー等が挙げられる。重合体(A)以外の重合体及び増粘剤としては、上記「1.3.その他の添加剤」の項で例示した化合物の中から適宜選択して、同様の目的及び含有割合で用いることができる。
<液状媒体>
 本実施形態に係る蓄電デバイス電極用スラリーには、蓄電デバイス用バインダー組成物からの持ち込み分に加えて、液状媒体をさらに添加してもよい。添加される液状媒体は、蓄電デバイス用バインダー組成物に含まれていた液状媒体(B)と同種であってもよく、異なっていてもよいが、上記「1.2.液状媒体(B)」で例示した液状媒体の中から選択して使用されることが好ましい。
 本実施形態に係る蓄電デバイス電極用スラリーにおける液状媒体(蓄電デバイス用バインダー組成物からの持ち込み分を含む。)の含有割合は、スラリー中の固形分濃度(スラリー中の液状媒体以外の成分の合計質量がスラリーの全質量に占める割合をいう。以下同じ。)が、30~70質量%となる割合とすることが好ましく、40~60質量%となる割合とすることがより好ましい。
<導電付与剤>
 本実施形態に係る蓄電デバイス電極用スラリーには、導電性を付与するとともに、リチウムイオンの出入りによる活物質の体積変化を緩衝させることを目的として、導電付与剤をさらに添加してもよい。
 導電付与剤の具体例としては、活性炭、アセチレンブラック、ケッチェンブラック、ファーネスブラック、黒鉛、炭素繊維、フラーレン等のカーボンが挙げられる。これらの中でも、アセチレンブラック又はケッチェンブラックを好ましく使用することができる。導電付与剤の含有割合は、活物質100質量部に対して、好ましくは20質量部以下であり、より好ましくは1~15質量部であり、特に好ましくは2~10質量部である。
<pH調整剤・腐食防止剤>
 本実施形態に係る蓄電デバイス電極用スラリーには、活物質の種類に応じて集電体の腐食を抑制することを目的として、pH調整剤及び/又は腐食防止剤をさらに添加してもよい。
 pH調整剤としては、例えば、塩酸、リン酸、硫酸、酢酸、ギ酸、リン酸アンモニウム、硫酸アンモニウム、酢酸アンモニウム、ギ酸アンモニウム、塩化アンモニウム、水酸化ナトリウム、水酸化カリウム等を挙げることができ、これらの中でも、硫酸、硫酸アンモニウム、水酸化ナトリウム、水酸化カリウムが好ましい。また、重合体(A)の製造方法中に記載された中和剤の中から選択して使用することもできる。
 腐食防止剤としては、メタバナジン酸アンモニウム、メタバナジン酸ナトリウム、メタバナジン酸カリウム、メタタングステン酸アンモニウム、メタタングステン酸ナトリウム、メタタングステン酸カリウム、パラタングステン酸アンモニウム、パラタングステン酸ナトリウム、パラタングステン酸カリウム、モリブデン酸アンモニウム、モリブデン酸ナトリウム、モリブデン酸カリウム等を挙げることができ、これらの中でもパラタングステン酸アンモニウム、メタバナジン酸アンモニウム、メタバナジン酸ナトリウム、メタバナジン酸カリウム、モリブデン酸アンモニウムが好ましい。
<セルロースファイバー>
 本実施形態に係る蓄電デバイス電極用スラリーには、セルロースファイバーをさらに添加してもよい。セルロースファイバーを添加することにより、活物質の集電体に対する密着性を向上できる場合がある。繊維状のセルロースファイバーが線接着又は線接触によって隣接する活物質同士を繊維状結着させることにより、活物質の脱落を防止できるとともに、集電体に対する密着性を向上できると考えられる。
 セルロースファイバーの平均繊維長は、0.1~1000μmの広い範囲から選択でき、例えば、好ましくは1~750μm、より好ましくは1.3~500μm、さらに好ましくは1.4~250μm、特に好ましくは1.8~25μmである。平均繊維長が前記範囲であれば、表面平滑性(塗膜均一性)が良好となり、集電体に対する活物質の密着性が向上する場合がある。
 セルロースファイバーの繊維長は均一であってもよく、繊維長の変動係数([繊維長の標準偏差/平均繊維長]×100)は、例えば、好ましくは0.1~100、より好ましくは0.5~50、特に好ましくは1~30である。セルロースファイバーの最大繊維長は、例えば、好ましくは500μm以下、より好ましくは300μm以下、さらに好ましくは200μm以下、さらにより好ましくは100μm以下、特に好ましくは50μm以下である。
 セルロースファイバーの平均繊維長を活物質層の平均厚みに対して5倍以下とすると、表面平滑性(塗膜均一性)、及び活物質の集電体に対する密着性がさらに向上するため有利である。セルロースファイバーの平均繊維長は、活物質層の平均厚みに対して、好ましくは0.01~5倍、より好ましくは0.02~3倍、特に好ましくは0.03~2倍である。
 セルロースファイバーの平均繊維径は、好ましくは1nm~10μm、より好ましくは5nm~2.5μm、さらに好ましくは20nm~700nm、特に好ましくは30nm~200nmである。平均繊維径が前記範囲にあると、繊維の占有体積が大きくなりすぎず、活物質の充填密度を高めることができる場合がある。そのため、セルロースファイバーは、平均繊維径がナノメータサイズのセルロースナノファイバー(例えば、平均繊維径が10nm~500nm、好ましくは25nm~250nm程度のセルロースナノファイバー)であることが好ましい。
 セルロースファイバーの繊維径も均一であり、繊維径の変動係数([繊維径の標準偏差/平均繊維径]×100)は、好ましくは1~80、より好ましくは5~60、特に好ましくは10~50である。セルロースファイバーの最大繊維径は、好ましくは30μm以下、より好ましくは5μm以下、特に好ましくは1μm以下である。
 セルロースファイバーの平均繊維径に対する平均繊維長の比(アスペクト比)は、例えば、好ましくは10~5000、より好ましくは20~3000、特に好ましくは50~2000である。アスペクト比が前記範囲にあると、集電体に対する活物質の密着性が良好となるとともに、繊維の破断強度を弱めることなく、電極の表面平滑性(塗膜均一性)が良好となる場合がある。
 本発明において、平均繊維長、繊維長分布の標準偏差、最大繊維長、平均繊維径、繊維径分布の標準偏差、最大繊維径は、電子顕微鏡写真に基づいて測定した繊維(n=20程度)から算出した値であってもよい。
 セルロースファイバーの材質は、β-1,4-グルカン構造を有する多糖類で形成されていればよい。セルロースファイバーとしては、例えば、高等植物由来のセルロース繊維(例えば、木材繊維(針葉樹、広葉樹などの木材パルプなど)、竹繊維、サトウキビ繊維、種子毛繊維(例えば、コットンリンター、ボンバックス綿、カポックなど)、ジン皮繊維(例えば、麻、コウゾ、ミツマタなど)、葉繊維(例えば、マニラ麻、ニュージーランド麻など)などの天然セルロース繊維(パルプ繊維)など)、動物由来のセルロース繊維(例えば、ホヤセルロースなど)、バクテリア由来のセルロース繊維(例えば、ナタデココに含まれるセルロースなど)、化学的に合成されたセルロース繊維(例えば、レーヨン、セルロースエステル(セルロースアセテートなど)、セルロースエーテル(例えば、ヒドロキシエチルセルロース(HEC)、ヒドロキシプロピルセルロースなどのヒドロキシアルキルセルロース、メチルセルロース、エチルセルロースなどのアルキルセルロースなどのセルロース誘導体など)などが挙げられる。これらのセルロースファイバーは、1種単独で又は2種以上組み合わせて使用してもよい。
 これらのセルロースファイバーの中でも、適度なアスペクト比を有するナノファイバーを調製し易い点から、高等植物由来のセルロース繊維、例えば、木材繊維(針葉樹、広葉樹などの木材パルプなど)や種子毛繊維(コットンリンターパルプなど)などのパルプ由来のセルロース繊維が好ましい。
 セルロースファイバーの製造方法は、特に限定されず、目的の繊維長及び繊維径に応じて、慣用の方法、例えば、特公昭60-19921号公報、特開2011-26760号公報、特開2012-25833号公報、特開2012-36517号公報、特開2012-36518号公報、特開2014-181421号公報などに記載された方法を利用してもよい。
 2.2.4.蓄電デバイス電極用スラリーの調製方法
 本実施形態に係る蓄電デバイス電極用スラリーは、上述の蓄電デバイス用バインダー組成物及び活物質を含有するものである限り、どのような方法によって製造されたものであってもよい。より良好な分散性及び安定性を有するスラリーを、より効率的かつ安価に製造する観点から、蓄電デバイス用バインダー組成物に、活物質及び必要に応じて用いられる任意添加成分を加え、これらを混合することにより製造することが好ましい。具体的な製造方法としては、例えば、特許第5999399号公報等に記載された方法が挙げられる。
 3.蓄電デバイス電極
 本発明の一実施形態に係る蓄電デバイス電極は、集電体と、前記集電体の表面上に上述の蓄電デバイス電極用スラリーが塗布及び乾燥されて形成された活物質層と、を備えるものである。かかる蓄電デバイス電極は、金属箔などの集電体の表面に、上述の蓄電デバイス電極用スラリーを塗布して塗膜を形成し、次いで該塗膜を乾燥して活物質層を形成することにより製造することができる。このようにして製造された蓄電デバイス電極は、集電体上に、上述の重合体(A)及び活物質、さらに必要に応じて添加された任意成分を含有する活物質層が結着されてなるものであるため、高温下での、密着性に優れ、かつ、内部抵抗を低減させることができる。これにより、本実施形態に係る蓄電デバイス電極は、高温下において良好な充放電耐久特性を示す。
 集電体としては、導電性材料からなるものであれば特に制限されないが、例えば特許第5999399号公報等に記載された集電体が挙げられる。
 本実施形態に係る蓄電デバイス電極において、活物質としてケイ素材料を用いる場合、活物質層100質量部中のシリコン元素の含有割合は、2~30質量部であることが好ましく、2~20質量部であることがより好ましく、3~10質量部であることが特に好ましい。活物質層中のシリコン元素の含有量が前記範囲内であると、それを用いて作製される蓄電デバイスの蓄電容量が向上することに加え、シリコン元素の分布が均一な活物質層が得られる。
 活物質層中のシリコン元素の含有量は、例えば、特許第5999399号公報等に記載された方法により測定することができる。
 4.蓄電デバイス
 本発明の一実施形態に係る蓄電デバイスは、上述の蓄電デバイス電極を備え、さらに電解液を含有し、セパレータなどの部品を用いて、常法に従って製造することができる。具体的な製造方法としては、例えば、負極と正極とをセパレータを介して重ね合わせ、これを電池形状に応じて巻く、折るなどして電池容器に収納し、該電池容器に電解液を注入して封口する方法などを挙げることができる。電池の形状は、コイン型、円筒型、角形、ラミネート型など、適宜の形状であることができる。
 電解液は、液状でもゲル状でもよく、活物質の種類に応じて、蓄電デバイスに用いられる公知の電解液の中から電池としての機能を効果的に発現するものを選択すればよい。電解液は、電解質を適当な溶媒に溶解した溶液であることができる。これらの電解質や溶媒については、例えば特許第5999399号公報等に記載された化合物が挙げられる。
 上述の蓄電デバイスは、大電流密度での放電が必要なリチウムイオン二次電池、電気二重層キャパシタやリチウムイオンキャパシタ等に適用可能である。これらの中でもリチウムイオン二次電池が特に好ましい。本実施形態に係る蓄電デバイス電極及び蓄電デバイスにおいて、蓄電デバイス用バインダー組成物以外の部材は、公知のリチウムイオン二次電池用、電気二重層キャパシタ用やリチウムイオンキャパシタ用の部材を用いることが可能である。
 5.実施例
 以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。実施例、比較例中の「部」及び「%」は、特に断らない限り質量基準である。
 5.1.実施例1
 5.1.1.蓄電デバイス用バインダー組成物の調製及び物性評価
(1)蓄電デバイス用バインダー組成物の調製
 以下に示すような一段重合により、重合体(A)を含有する蓄電デバイス用バインダー組成物を得た。反応器に、水400質量部と、1,3-ブタジエン15質量部、スチレン70質量部、メタクリル酸メチル5質量部、アクリルニトリル5質量部、イタコン酸3質量部、アクリル酸2質量部からなる単量体混合物と、連鎖移動剤としてtert-ドデシルメルカプタン0.1質量部と、乳化剤としてアルキルジフェニルエーテルジスルホン酸ナトリウム2質量部と、重合開始剤として過硫酸カリウム0.2質量部とを仕込み、攪拌しながら70℃で12時間重合した後、75℃で12時間重合させ、重合転化率98%で反応を終了した。このようにして得られた重合体(A)の粒子分散液から未反応単量体を除去し、濃縮後10%水酸化ナトリウム水溶液及び水を添加して、固形分濃度20質量%、pH8.0の、重合体(A)の粒子を含有する蓄電デバイス用バインダー組成物を得た。
(2)電解液膨潤度の測定
 上記で得られた重合体(A)を85℃の恒温槽で24時間乾燥させてフィルムを作製した。このフィルム1gを、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)及びエチルメチルカーボネート(EMC)からなる混合液(EC/DEC/EMC=1/1/1(容量比)、以下、この混合液を「EC/DEC/EMC」という。)20mL中に浸漬して、70℃において24時間振とうした。次いで、300メッシュの金網で濾過して不溶分を分離した後、溶解分のEC/DEC/EMCを蒸発除去して得た残存物の重量(Y(g))を測定した。また、上記の濾過で分離した不溶分(フィルム)の表面に付着したEC/DEC/EMCを紙に吸収させて取り除いた後、該不溶分(フィルム)の重量(Z(g))を測定した。下記式(2)によって電解液膨潤度を測定したところ、上記重合体(A)の電解液膨潤度は160質量%であった。
 電解液膨潤度(質量%)=(Z/(1-Y))×100   (2)
(3)数平均粒子径の測定
 上記で得られた蓄電デバイス用バインダー組成物を0.1wt%に希釈したラテックスをコロジオン支持膜上にピペットで1滴滴下し、さらに0.02wt%の四酸化オスミウム溶液をピペットでコロジオン支持膜上に1滴滴下し、12時間風乾させ試料を準備した。このようにして準備した試料を、透過型電子顕微鏡(TEM、株式会社日立ハイテク製、型番「H-7650」)を用いて、倍率を10K(倍率)で観察し、HITACHI EMIPのプログラムにより画像解析を実施し、ランダムに選択した50個の重合体(A)の粒子の数平均粒子径を算出した。測定結果を表1に示す。
(4)pHの測定
 上記で得られた蓄電デバイス用バインダー組成物について、pHメーター(株式会社堀場製作所製)を用いて25℃におけるpHを測定したところ、pH8.0であることを確認できた。
(5)動的粘弾性の測定
 上記で得られた重合体(A)を40℃で24時間乾燥させて、1.0±0.3mmの厚みの均一なフィルムを作製した。このフィルムを真空乾燥機内で160℃、30分間の乾燥を行った。真空乾燥機からこのフィルムを取り出し、10mm×10mmの短冊状に切り出したものを測定用サンプルとした。次いで、動的粘弾性測定装置(Anton Paar社製、型式「MCR 301」)を用いて、パラレルプレート(製品名「PP-12」)で測定サンプルを固定し、せん断モード、測定周波数1Hz、昇温スピード0.1℃/minの測定条件により-70℃~180℃の温度領域で動的粘弾性の測定を行った。その結果、tanδのピークトップ(tanδ-1)を55℃に観測し、その値は0.80であった。また、100℃のtanδ(tanδ-2)の値は、0.03であった。なお、下表1中では、tanδのピークトップを「tanδ-1」と表し、100℃のtanδを「tanδ-2」と表している。
 5.1.2.蓄電デバイス電極用スラリーの調製
(1)ケイ素材料(活物質)の合成
 粉砕した二酸化ケイ素粉末(平均粒子径10μm)と炭素粉末(平均粒子径35μm)の混合物を、温度を1100℃~1600℃の範囲に調整した電気炉中で、窒素気流下(0.5NL/分)、10時間の加熱処理を行い、組成式SiO(x=0.5~1.1)で表される酸化ケイ素の粉末(平均粒子径8μm)を得た。この酸化ケイ素の粉末300gをバッチ式加熱炉内に仕込み、真空ポンプにより絶対圧100Paの減圧を維持しながら、300℃/hの昇温速度にて室温(25℃)から1100℃まで昇温した。次いで、加熱炉内の圧力を2000Paに維持しつつ、メタンガスを0.5NL/分の流速にて導入しながら、1100℃、5時間の加熱処理(黒鉛被膜処理)を行った。黒鉛被膜処理終了後、50℃/hの降温速度で室温まで冷却することにより、黒鉛被膜酸化ケイ素の粉末約330gを得た。この黒鉛被膜酸化ケイ素は、酸化ケイ素の表面が黒鉛で被覆された導電性の粉末(活物質)であり、その平均粒子径は10.5μmであり、得られた黒鉛被膜酸化ケイ素の全体を100質量%とした場合の黒鉛被膜の割合は2質量%であった。
(2)蓄電デバイス電極用スラリーの調製
 二軸型プラネタリーミキサー(プライミクス株式会社製、商品名「TKハイビスミックス 2P-03」)に、増粘剤(商品名「CMC2200」、株式会社ダイセル製)を1質量部(固形分換算値、濃度2質量%の水溶液として添加)、重合体(A)を4質量部(固形分換算値、上記で得られた蓄電デバイス用バインダー組成物として添加)、負極活物質として結晶性の高いグラファイトである人造黒鉛(昭和電工マテリアルズ株式会社製、商品名「MAG」)90.25質量部(固形分換算値)、上記で得られた黒鉛被膜酸化ケイ素の粉末を4.75質量部(固形分換算値)、導電付与剤であるカーボン(デンカ株式会社製、アセチレンブラック)1質量部を投入し、60rpmで1時間攪拌を行い、ペーストを得た。得られたペーストに水を投入し、固形分濃度を48質量%に調整した後、攪拌脱泡機(株式会社シンキー製、商品名「泡とり練太郎」)を使用して、200rpmで2分間、1800rpmで5分間、さらに減圧下(約2.5×10Pa)において1800rpmで1.5分間攪拌混合することにより、負極活物質中にSiを5質量%含有する蓄電デバイス電極用スラリー(C/Si=95/5)を調製した。
 また、人造黒鉛と黒鉛被膜酸化ケイ素の粉末の使用量を調整した以外は蓄電デバイス電極用スラリー(C/Si=95/5)と同様にして、負極活物質中にSiを含有しない蓄電デバイス電極用スラリー(C/Si=100/0)を調製した。
 5.1.3.蓄電デバイスの製造及び評価
(1)蓄電デバイス電極(負極)の製造
 厚み20μmの銅箔よりなる集電体の表面に、上記で得られた蓄電デバイス電極用スラリー(C/Si=95/5又はC/Si=100/0)を、乾燥後の膜厚が80μmとなるようにドクターブレード法によって均一に塗布し、60℃で10分間乾燥し、次いで120℃で10分間乾燥処理した。その後、活物質層の密度が1.5g/cmとなるようにロールプレス機によりプレス加工することにより、蓄電デバイス電極(負極)を得た。
(2)負極塗工層の密着強度の評価
 上記で得られた蓄電デバイス電極の表面に、ナイフを用いて活物質層から集電体に達する深さまでの切り込みを2mm間隔で縦横それぞれ10本入れて碁盤目の切り込みを作った。この切り込みに幅18mmの粘着テープ(ニチバン(株)製、商品名「セロテープ」(登録商標)JIS Z1522に規定)を貼り付けて直ちに引き剥がし、活物質の脱落の程度を目視判定で評価した。評価基準は以下の通りである。評価結果を表1に示す。
(評価基準)
・5点:活物質層の脱落が0個である。
・4点:活物質層の脱落が1~5個である。
・3点:活物質層の脱落が6~20個である。
・2点:活物質層の脱落が21~40個である。
・1点:活物質層の脱落が41個以上である。
(3)対極(正極)の製造
 二軸型プラネタリーミキサー(プライミクス株式会社製、商品名「TKハイビスミックス 2P-03」)に、電気化学デバイス電極用バインダー(株式会社クレハ製、商品名「KFポリマー#1120」)4質量部(固形分換算値)、導電助剤(デンカ株式会社製、商品名「デンカブラック50%プレス品」)3.0質量部、正極活物質として平均粒子径5μmのLiCoO(ハヤシ化成株式会社製)100質量部(固形分換算値)及びN-メチルピロリドン(NMP)36質量部を投入し、60rpmで2時間攪拌を行った。得られたペーストにNMPを追加し、固形分濃度を65質量%に調整した後、攪拌脱泡機(株式会社シンキー製、商品名「泡とり練太郎」)を使用して、200rpmで2分間、1800rpmで5分間、さらに減圧下(約2.5×10Pa)において1800rpmで1.5分間攪拌混合することにより、正極用スラリーを調製した。アルミニウム箔よりなる集電体の表面に、この正極用スラリーを、溶媒除去後の膜厚が80μmとなるようにドクターブレード法によって均一に塗布し、120℃で20分間加熱して溶媒を除去した。その後、活物質層の密度が3.0g/cmとなるようにロールプレス機によりプレス加工することにより、対極(正極)を得た。
(4)リチウムイオン電池セルの組立て
 露点が-80℃以下となるようAr置換されたグローブボックス内で、上記で製造した負極を直径15.95mmに打ち抜き成形したものを、2極式コインセル(宝泉株式会社製、商品名「HSフラットセル」)上に載置した。次いで、直径24mmに打ち抜いたポリプロピレン製多孔膜からなるセパレータ(セルガード株式会社製、商品名「セルガード#2400」)を載置し、さらに、空気が入らないように電解液を500μL注入した後、上記で製造した正極を直径16.16mmに打ち抜き成形したものを載置し、前記2極式コインセルの外装ボディーをネジで閉めて封止することにより、リチウムイオン電池セル(蓄電デバイス)を組み立てた。ここで使用した電解液は、エチレンカーボネート/エチルメチルカーボネート=1/1(質量比)の溶媒に、LiPFを1モル/Lの濃度で溶解した溶液である。
(5)充放電サイクル特性の評価
 上記で製造した蓄電デバイスにつき、60℃に調温された恒温槽にて、定電流(1.0C)にて充電を開始し、電圧が4.2Vになった時点で引き続き定電圧(4.2V)にて充電を続行し、電流値が0.01Cとなった時点を充電完了(カットオフ)とした。その後、定電流(1.0C)にて放電を開始し、電圧が3.0Vになった時点を放電完了(カットオフ)とし、1サイクル目の放電容量を算出した。このようにして100回充放電を繰り返した。下記式(3)により容量保持率を計算し、下記の基準で評価した。評価結果を表1に示す。
 容量保持率(%)
 =(100サイクル目の放電容量)/(1サイクル目の放電容量)   (3)
(評価基準)
・5点:容量保持率が95%以上。
・4点:容量保持率が90%以上~95%未満。
・3点:容量保持率が85%以上~90%未満。
・2点:容量保持率が80%以上~85%未満。
・1点:容量保持率が75%以上~80%未満。
・0点:容量保持率が75%未満。
(6)高温での抵抗の評価
 上記で製造した蓄電デバイスにつき、60℃に調温された恒温槽にて、定電流(1.0C)にて充電を開始し、電圧が4.2Vになった時点で引き続き定電圧(4.2V)にて充電を続行し、電流値が0.01Cとなった時点を充電完了(カットオフ)とした。その後、定電流(0.05C)にて放電を開始し、電圧が3.0Vになった時点を放電完了(カットオフ)とし、0サイクル目の放電容量を算出した。さらに、定電流(1.0C)にて充電を開始し、電圧が4.2Vになった時点で引き続き定電圧(4.2V)にて充電を続行し、電流値が0.01Cとなった時点を充電完了(カットオフ)とした。その後、定電流(1.0C)にて放電を開始し、電圧が3.0Vになった時点を放電完了(カットオフ)とし、1サイクル目の放電容量を算出した。このようにして100回充放電を繰り返した。100回充放電を繰り返した後、0サイクル目と同様に充放電を行い、101回目の放電容量を評価し、下記式(4)により抵抗上昇率を算出し、下記の基準で評価した。
 抵抗上昇率(%)
=((101サイクル目の放電容量-100サイクル目の放電容量)/(0サイクル目の放電容量-1サイクル目の放電容量))×100   (4)
(評価基準)
・5点:抵抗上昇率が100%以上~150%未満。
・4点:抵抗上昇率が150%以上~200%未満。
・3点:抵抗上昇率が200%以上~250%未満。
・2点:抵抗上昇率が250%以上~300%未満。
・1点:抵抗上昇率が300%以上~350%未満。
・0点:抵抗上昇率が350%以上。
 なお、測定条件において「1C」とは、ある一定の電気容量を有するセルを定電流放電して1時間で放電終了となる電流値のことを示す。例えば「0.1C」とは、10時間かけて放電終了となる電流値のことであり、「10C」とは、0.1時間かけて放電終了となる電流値のことをいう。
 5.2.実施例2~9、比較例1~6
 上記「5.1.1.蓄電デバイス用バインダー組成物の調製及び物性評価 (1)蓄電デバイス用バインダー組成物の調製」において、各単量体の種類及び量、並びに乳化剤の量をそれぞれ下表1に記載の通りとした以外は同様にして、固形分濃度20質量%の重合体粒子を含有する蓄電デバイス用バインダー組成物をそれぞれ得て、各物性を評価した。なお、図1に、実施例5で作成したフィルムの動的粘弾性測定における、測定温度とtanδの関係を表すグラフを示す。
 さらに、上記で調製した蓄電デバイス用バインダー組成物を用いた以外は上記実施例1と同様にして、蓄電デバイス電極用スラリーをそれぞれ調製し、蓄電デバイス電極及び蓄電デバイスをそれぞれ作製し、上記実施例1と同様に評価した。
 5.3.実施例10
 実施例4において、増粘剤を、CMC(商品名「CMC2200」、株式会社ダイセル製)0.9質量部及びCNF(株式会社ダイセル社製、商品名「セリッシュKY-100G」、繊維径0.07μm)0.1質量部とした以外は、実施例4と同様にして蓄電デバイス電極用スラリーを調製し、蓄電デバイス電極及び蓄電デバイスをそれぞれ作製し、上記実施例1と同様に評価した。その結果を下表2に示す。
 5.4.実施例11
 実施例4において、増粘剤を、CMC(商品名「CMC2200」、株式会社ダイセル製)0.8質量部及びCNF(株式会社ダイセル社製、商品名「セリッシュKY-100G」、繊維径0.07μm)0.2質量部とした以外は、実施例4と同様にして蓄電デバイス電極用スラリーを調製し、蓄電デバイス電極及び蓄電デバイスをそれぞれ作製し、上記実施例1と同様に評価した。その結果を下表2に示す。
 5.5.評価結果
 下表1に、実施例1~9及び比較例1~6で使用した重合体組成、各物性測定結果、及び各評価結果を示す。下表2に、実施例10~11で使用した重合体成分組成、及び各評価結果を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 上表1における単量体の略称は、それぞれ以下の化合物を表す。
<共役ジエン化合物>
・BD:1,3-ブタジエン
<芳香族ビニル化合物>
・ST:スチレン
・DVB:ジビニルベンゼン
<不飽和カルボン酸>
・TA:イタコン酸
・AA:アクリル酸
・MAA:メタクリル酸
<(メタ)アクリルアミド>
・AAM:アクリルアミド
・MAM:メタクリルアミド
<水酸基を有する不飽和カルボン酸エステル>
・HEMA:メタクリル酸2-ヒドロキシエチル
・HEA:アクリル酸2-ヒドロキシエチル
<不飽和カルボン酸エステル>
・MMA:メタクリル酸メチル
・BA:アクリル酸ブチル
・2EHA:アクリル酸2-エチルヘキシル
・CHMA:メタクリル酸シクロヘキシル
・EDMA:エチレングリコールジメタクリレート
<α,β-不飽和ニトリル化合物>
・AN:アクリロニトリル
<スルホン酸基を有する化合物>
・NASS:スチレンスルホン酸ナトリウム
 上表1~上表2から明らかなように、実施例1~9に示した本発明に係る蓄電デバイス用バインダー組成物を用いて調製された蓄電デバイス電極用スラリーは、比較例1~6の場合と比較して、活物質同士を好適に結着させることができ、しかも高温下において良好な充放電耐久特性を有する蓄電デバイス電極が得られた。この理由としては、上表1に示す実施例1~9のバインダー組成物に含有される重合体(A)は、比較例1~6の場合と比較して、tanδのピークトップの温度Tp(℃)が0~60℃の範囲に一本であり、粘性が高くなるため、高い結着力を維持することができると推測される。さらに、重合体(A)の100℃でのtanδ(100℃)の値が低いことから、重合体の架橋度が高くなり、その結果電極作成時にバインダーの粒子形状を保つことが可能となる。これにより、活物質間の電解液の浸透性が阻害されずに、低抵抗となることができ、その結果良好な充放電耐久特性を示したものと推測される。
 また、上表2の結果から明らかなように、実施例10及び11に示した本発明に係る蓄電デバイス用バインダー組成物を用いて調製された蓄電デバイス電極用スラリーは、増粘剤のCNFを併用しても、活物質同士を好適に結着させることができ、しかも活物質層と集電体の密着性を良好に維持できることが判明した。
 本発明は、上記の実施形態に限定されるものではなく、種々の変形が可能である。本発明は、実施形態で説明した構成と実質的に同一の構成(例えば、機能、方法および結果が同一の構成、あるいは目的および効果が同一の構成)を包含する。また本発明は、上記の実施形態で説明した構成の本質的でない部分を他の構成に置き換えた構成を包含する。さらに本発明は、上記の実施形態で説明した構成と同一の作用効果を奏する構成または同一の目的を達成することができる構成をも包含する。さらに本発明は、上記の実施形態で説明した構成に公知技術を付加した構成をも包含する。
 

Claims (9)

  1.  重合体(A)と、液状媒体(B)と、を含有し、
     前記重合体(A)中に含まれる繰り返し単位の合計を100質量部としたときに、前記重合体(A)が、
     共役ジエン化合物に由来する繰り返し単位(a1)を15~60質量部、
     芳香族ビニル化合物に由来する繰り返し単位(a2)を35~75質量部、及び
     不飽和カルボン酸に由来する繰り返し単位(a3)を1~10質量部含有し、
     前記重合体(A)の動的粘弾性測定におけるtanδ(損失弾性率/貯蔵弾性率)のピークトップをtanδ(Tp)、100℃でのtanδをtanδ(100℃)としたときに、下記式(1)の関係を満たす、蓄電デバイス用バインダー組成物。
     tanδ(100℃)/tanδ(Tp)×100≦10   (1)
  2.  前記tanδ(100℃)が0.1以下である、請求項1に記載の蓄電デバイス用バインダー組成物。
  3.  前記tanδのピークトップが0℃~60℃の温度範囲に一本のみ存在する、請求項1または請求項2に記載の蓄電デバイス用バインダー組成物。
  4.  前記重合体(A)が重合体粒子であり、
     前記重合体粒子の数平均粒子径が50nm以上500nm以下である、請求項1ないし請求項3のいずれか一項に記載の蓄電デバイス用バインダー組成物。
  5.  前記液状媒体(B)が水である、請求項1ないし請求項4のいずれか一項に記載の蓄電デバイス用バインダー組成物。
  6.  請求項1ないし請求項5のいずれか一項に記載の蓄電デバイス用バインダー組成物と、活物質と、を含有する蓄電デバイス電極用スラリー。
  7.  前記活物質としてケイ素材料を含有する、請求項6に記載の蓄電デバイス電極用スラリー。
  8.  集電体と、前記集電体の表面に請求項6または請求項7に記載の蓄電デバイス電極用スラリーが塗布及び乾燥されて形成された活物質層と、を備える蓄電デバイス電極。
  9.  請求項8に記載の蓄電デバイス電極を備える蓄電デバイス。
     
PCT/JP2021/013909 2020-04-28 2021-03-31 蓄電デバイス用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、及び蓄電デバイス WO2021220707A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP21797392.4A EP4144772A4 (en) 2020-04-28 2021-03-31 ENERGY STORAGE DEVICE BINDER COMPOSITION, ENERGY STORAGE DEVICE ELECTRODE SLURRY, ENERGY STORAGE DEVICE ELECTRODE AND ENERGY STORAGE DEVICE
US17/997,344 US20230275231A1 (en) 2020-04-28 2021-03-31 Binder composition for power storage device, slurry for power storage device electrode, power storage device electrode, and power storage device
KR1020227040802A KR20230002961A (ko) 2020-04-28 2021-03-31 축전 디바이스용 결합제 조성물, 축전 디바이스 전극용 슬러리, 축전 디바이스 전극 및 축전 디바이스
JP2022517570A JPWO2021220707A1 (ja) 2020-04-28 2021-03-31
CN202180031168.7A CN115485885A (zh) 2020-04-28 2021-03-31 蓄电装置用粘合剂组合物、蓄电装置电极用浆料、蓄电装置电极和蓄电装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-079329 2020-04-28
JP2020079329 2020-04-28

Publications (1)

Publication Number Publication Date
WO2021220707A1 true WO2021220707A1 (ja) 2021-11-04

Family

ID=78332375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/013909 WO2021220707A1 (ja) 2020-04-28 2021-03-31 蓄電デバイス用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、及び蓄電デバイス

Country Status (6)

Country Link
US (1) US20230275231A1 (ja)
EP (1) EP4144772A4 (ja)
JP (1) JPWO2021220707A1 (ja)
KR (1) KR20230002961A (ja)
CN (1) CN115485885A (ja)
WO (1) WO2021220707A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022114199A1 (ja) * 2020-11-30 2022-06-02 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び、非水系二次電池
WO2022163389A1 (ja) * 2021-01-29 2022-08-04 株式会社Eneosマテリアル 全固体二次電池用バインダー、全固体二次電池用バインダー組成物、全固体二次電池用スラリー、全固体二次電池用固体電解質シート及びその製造方法、並びに全固体二次電池及びその製造方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6019921B2 (ja) 1979-12-26 1985-05-18 アイテイ−テイ−・インダストリ−ズ・インコ−ポレ−テツド 微小繊維状セルロ−ズの製造方法
JP2011026760A (ja) 2009-06-26 2011-02-10 Daicel Chemical Industries Ltd 微小繊維及びその製造方法並びに不織布
JP2011108373A (ja) * 2009-11-12 2011-06-02 Nippon A&L Inc 電池電極用バインダー
JP2012025833A (ja) 2010-07-22 2012-02-09 Daicel Corp 繊維強化透明樹脂組成物及びその製造方法並びに透明シート
JP2012036518A (ja) 2010-08-04 2012-02-23 Daicel Corp セルロース繊維を含む不織布及びその製造方法並びにセパレータ
JP2012036517A (ja) 2010-08-04 2012-02-23 Daicel Corp セルロース繊維で構成された不織布及び蓄電素子用セパレータ
JP5477610B1 (ja) 2012-06-18 2014-04-23 Jsr株式会社 蓄電デバイス電極用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、および蓄電デバイス
JP2014181421A (ja) 2013-03-19 2014-09-29 Daicel Corp 微細セルロース繊維及びその製造方法並びに分散液
WO2015012366A1 (ja) * 2013-07-24 2015-01-29 日本エイアンドエル株式会社 電極用バインダー、電極用組成物及び電極シート
JP5999399B2 (ja) 2014-09-08 2016-09-28 Jsr株式会社 リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー、リチウムイオン二次電池電極、およびリチウムイオン二次電池
JP2017126456A (ja) * 2016-01-13 2017-07-20 日本エイアンドエル株式会社 電池電極用水系バインダー

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5547507B2 (ja) * 2009-02-03 2014-07-16 日本エイアンドエル株式会社 非水電解液二次電池電極用バインダー。
WO2014148064A1 (ja) * 2013-03-22 2014-09-25 日本ゼオン株式会社 リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極およびリチウムイオン二次電池
US10312521B2 (en) * 2014-11-25 2019-06-04 Zeon Corporation Binder for non-aqueous secondary battery, composition for non-aqueous secondary battery functional layer, functional layer for non-aqueous secondary battery, and non-aqueous secondary battery

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6019921B2 (ja) 1979-12-26 1985-05-18 アイテイ−テイ−・インダストリ−ズ・インコ−ポレ−テツド 微小繊維状セルロ−ズの製造方法
JP2011026760A (ja) 2009-06-26 2011-02-10 Daicel Chemical Industries Ltd 微小繊維及びその製造方法並びに不織布
JP2011108373A (ja) * 2009-11-12 2011-06-02 Nippon A&L Inc 電池電極用バインダー
JP2012025833A (ja) 2010-07-22 2012-02-09 Daicel Corp 繊維強化透明樹脂組成物及びその製造方法並びに透明シート
JP2012036518A (ja) 2010-08-04 2012-02-23 Daicel Corp セルロース繊維を含む不織布及びその製造方法並びにセパレータ
JP2012036517A (ja) 2010-08-04 2012-02-23 Daicel Corp セルロース繊維で構成された不織布及び蓄電素子用セパレータ
JP5477610B1 (ja) 2012-06-18 2014-04-23 Jsr株式会社 蓄電デバイス電極用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、および蓄電デバイス
JP2014181421A (ja) 2013-03-19 2014-09-29 Daicel Corp 微細セルロース繊維及びその製造方法並びに分散液
WO2015012366A1 (ja) * 2013-07-24 2015-01-29 日本エイアンドエル株式会社 電極用バインダー、電極用組成物及び電極シート
JP5999399B2 (ja) 2014-09-08 2016-09-28 Jsr株式会社 リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー、リチウムイオン二次電池電極、およびリチウムイオン二次電池
JP2017126456A (ja) * 2016-01-13 2017-07-20 日本エイアンドエル株式会社 電池電極用水系バインダー

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022114199A1 (ja) * 2020-11-30 2022-06-02 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び、非水系二次電池
WO2022163389A1 (ja) * 2021-01-29 2022-08-04 株式会社Eneosマテリアル 全固体二次電池用バインダー、全固体二次電池用バインダー組成物、全固体二次電池用スラリー、全固体二次電池用固体電解質シート及びその製造方法、並びに全固体二次電池及びその製造方法

Also Published As

Publication number Publication date
EP4144772A1 (en) 2023-03-08
US20230275231A1 (en) 2023-08-31
CN115485885A (zh) 2022-12-16
EP4144772A4 (en) 2023-09-27
JPWO2021220707A1 (ja) 2021-11-04
KR20230002961A (ko) 2023-01-05

Similar Documents

Publication Publication Date Title
WO2021220707A1 (ja) 蓄電デバイス用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、及び蓄電デバイス
JP7493913B2 (ja) 蓄電デバイス用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、及び蓄電デバイス
JP7493912B2 (ja) 蓄電デバイス用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、及び蓄電デバイス
WO2022039002A1 (ja) 蓄電デバイス用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、及び蓄電デバイス
WO2021029411A1 (ja) 蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス
WO2021039503A1 (ja) 蓄電デバイス用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、及び蓄電デバイス
WO2020226035A1 (ja) 蓄電デバイス用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、及び蓄電デバイス
WO2022220169A1 (ja) 蓄電デバイス用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、及び蓄電デバイス
JP7220216B2 (ja) 蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス
WO2021187407A1 (ja) 蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、及び蓄電デバイス
JP7220215B2 (ja) 蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス
JP2021039862A (ja) 蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、及び蓄電デバイス
JP2023049607A (ja) 蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、及び蓄電デバイス
WO2024058064A1 (ja) 蓄電デバイス用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、及び蓄電デバイス
JP2023049608A (ja) 蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、及び蓄電デバイス
JP2023049606A (ja) 非水系二次電池正極用組成物、非水系二次電池正極用スラリー、非水系二次電池用正極、及び非水系二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21797392

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022517570

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227040802

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021797392

Country of ref document: EP

Effective date: 20221128