WO2022220169A1 - 蓄電デバイス用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、及び蓄電デバイス - Google Patents

蓄電デバイス用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、及び蓄電デバイス Download PDF

Info

Publication number
WO2022220169A1
WO2022220169A1 PCT/JP2022/017002 JP2022017002W WO2022220169A1 WO 2022220169 A1 WO2022220169 A1 WO 2022220169A1 JP 2022017002 W JP2022017002 W JP 2022017002W WO 2022220169 A1 WO2022220169 A1 WO 2022220169A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage device
polymer
electricity storage
mass
tan
Prior art date
Application number
PCT/JP2022/017002
Other languages
English (en)
French (fr)
Inventor
卓哉 中山
基央 疇地
Original Assignee
株式会社Eneosマテリアル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Eneosマテリアル filed Critical 株式会社Eneosマテリアル
Priority to CN202280028087.6A priority Critical patent/CN117178389A/zh
Priority to US18/555,156 priority patent/US20240194881A1/en
Priority to JP2023514614A priority patent/JPWO2022220169A1/ja
Priority to KR1020237038659A priority patent/KR20230173131A/ko
Priority to EP22788094.5A priority patent/EP4325605A1/en
Publication of WO2022220169A1 publication Critical patent/WO2022220169A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention provides a binder composition for an electricity storage device, a slurry for an electricity storage device electrode containing the binder composition and an active material, an electricity storage device electrode formed by coating and drying the slurry on a current collector, and the The present invention relates to an electricity storage device having an electricity storage device electrode.
  • Lithium ion batteries, lithium ion capacitors, and the like are expected as such power storage devices.
  • Electrodes used in such electricity storage devices are manufactured by applying a composition (slurry for electricity storage device electrodes) containing an active material and a polymer functioning as a binder to the surface of a current collector and drying the composition.
  • a composition slurry for electricity storage device electrodes
  • Properties required for a polymer used as a binder include bonding ability between active materials and adhesion ability between an active material and a current collector.
  • active material layer when cutting the applied and dried composition coating film (hereinafter also referred to as “active material layer”), powder drop resistance, etc., which prevents fine powder of the active material from falling off from the active material layer.
  • Such a binder material develops good adhesion and reduces the internal resistance of the battery caused by the binder material, so that good charge/discharge characteristics can be imparted to the electricity storage device.
  • an electricity storage device electrode is manufactured that has excellent repeated charge-discharge characteristics by reducing internal resistance and excellent charge-discharge durability characteristics at high temperatures by improving adhesion.
  • a binder composition for an electric storage device capable of being used e.g., a slurry for an electricity storage device electrode containing the binder composition.
  • some aspects of the present invention provide an electricity storage device that is excellent in repeated charge/discharge characteristics and excellent in charge/discharge endurance characteristics at high temperatures.
  • the present invention has been made to solve at least part of the above problems, and can be implemented as any of the following aspects.
  • One aspect of the binder composition for an electricity storage device is containing a polymer (A) and a liquid medium (B),
  • the polymer (A) is 15 to 60% by mass of repeating units (a1) derived from a conjugated diene compound; 1 to 30% by mass of repeating units (a2) derived from an unsaturated carboxylic acid; contains
  • the dynamic viscoelasticity tan ⁇ (loss modulus/storage modulus) of the polymer (A) has one peak top (tan ⁇ 1) in the range of -50 ° C. or more and less than 15 ° C., and 15 ° C. or more and less than 85 ° C. and one (tan ⁇ 3) in the range of 85° C. or higher and 150° C. or lower.
  • the three peak intensities of tan ⁇ can satisfy the relationships of the following formulas (1) and (2). Peak intensity of tan ⁇ 2 / peak intensity of tan ⁇ 1 ⁇ 1.0 (1) Peak intensity of tan ⁇ 3/peak intensity of tan ⁇ 2 ⁇ 1.0 (2)
  • the polymer (A) may further contain 35 to 75% by mass of repeating units (a3) derived from an aromatic vinyl compound,
  • the total amount of the repeating unit (a1), the repeating unit (a2) and the repeating unit (a3) may be 80% by mass or more.
  • the polymer (A) may further contain at least one of repeating units (a4) derived from an unsaturated carboxylic acid ester and repeating units (a5) derived from an ⁇ , ⁇ -unsaturated nitrile compound,
  • the total amount of the repeating unit (a1), the repeating unit (a2), the repeating unit (a4) and the repeating unit (a5) may be 65% by mass or more.
  • the electrolyte swelling rate is , from 150% to 450%.
  • the polymer (A) may be polymer particles, The polymer particles may have a number average particle diameter of 50 nm or more and 500 nm or less.
  • the liquid medium (B) can be water.
  • One aspect of the electricity storage device electrode slurry according to the present invention is It contains the binder composition for an electricity storage device according to any one of the above aspects and an active material.
  • a silicon material can be contained as the active material.
  • One aspect of the electricity storage device electrode according to the present invention is A current collector, and an active material layer formed by coating and drying the slurry for a power storage device electrode of any one of the above aspects on the surface of the current collector.
  • One aspect of the electricity storage device according to the present invention is The electricity storage device electrode of the above aspect is provided.
  • the binder composition for an electricity storage device since the internal resistance can be reduced, the repeated charge/discharge characteristics are excellent.
  • the binder composition for an electricity storage device according to the present invention it is possible to improve the adhesiveness, so that it is possible to manufacture an electricity storage device electrode having excellent charge/discharge durability characteristics at high temperatures.
  • the binder composition for an electric storage device according to the present invention exhibits the above effect particularly when the electric storage device electrode contains a material having a large lithium storage capacity as an active material, such as a carbon material such as graphite or a silicon material. As described above, since a material having a large lithium storage capacity can be used as the active material of the electrode of the electric storage device, the battery performance is also improved.
  • FIG. 1 is a diagram showing the relationship between measurement temperature and tan ⁇ in the dynamic viscoelasticity measurement of the film produced in Example 11.
  • FIG. 1 is a diagram showing the relationship between measurement temperature and tan ⁇ in the dynamic viscoelasticity measurement of the film produced in Example 11.
  • (Meth)acrylic acid in this specification is a concept that includes both “acrylic acid” and “methacrylic acid”.
  • -(meth)acrylate is a concept that includes both “-acrylate” and “-methacrylate”.
  • (meth)acrylamide is a concept that includes both “acrylamide” and “methacrylamide.”
  • under high temperature refers to an environment with a temperature range of approximately 40°C to 80°C.
  • a binder composition for an electricity storage device contains a polymer (A) and a liquid medium (B).
  • the polymer (A) contains 15 to 60% by mass of repeating units (a1) derived from a conjugated diene compound, and non- It contains 1 to 30% by mass of repeating units (a2) derived from saturated carboxylic acid.
  • the polymer (A) has at least three peak tops of tan ⁇ (loss modulus/storage modulus) of dynamic viscoelasticity, and each peak top is 1 in the range of ⁇ 50° C. or more and less than 15° C. (also referred to as "tan ⁇ 1" in this specification), 1 in the range of 15 ° C.
  • the binder composition for an electricity storage device is used for producing an electricity storage device electrode (active material layer) with improved bonding ability between active materials, adhesion ability between an active material and a current collector, and resistance to falling powder. It can also be used as a material for forming a protective film for suppressing a short circuit caused by dendrites that occur during charging and discharging.
  • active material layer an electricity storage device electrode
  • a protective film for suppressing a short circuit caused by dendrites that occur during charging and discharging.
  • the binder composition for electrical storage devices contains the polymer (A).
  • the polymer (A) has a repeating unit (a1) derived from a conjugated diene compound (hereinafter simply referred to as “repeating unit (a1 )”.) and 1 to 30% by mass of repeating units (a2) derived from an unsaturated carboxylic acid (hereinafter also simply referred to as “repeating units (a2)”).
  • the polymer (A) may contain, in addition to the repeating units, repeating units derived from other monomers copolymerizable therewith.
  • the polymer (A) contained in the electricity storage device binder composition according to the present embodiment may be in the form of latex dispersed in the liquid medium (B), or dissolved in the liquid medium (B). Although it may be in a state, it is preferably in the form of latex dispersed in the liquid medium (B).
  • the stability of the electricity storage device electrode slurry (hereinafter also simply referred to as "slurry") prepared by mixing with the active material. is favorable, and the coating property of the slurry to the current collector is improved, which is preferable.
  • the particle shape of the polymer (A) is easily maintained during the production of the electricity storage device electrode, and the penetration of the electrolyte solution inside the electrode is improved. increases, and the Li ion conductivity improves. As a result, the internal resistance can be reduced, so that it is easy to obtain an electricity storage device electrode that is excellent in repeated charge/discharge characteristics.
  • Repeating Unit Constituting Polymer (A) 1.1.1.1.
  • Repeating unit (a1) derived from conjugated diene compound The content of the repeating unit (a1) derived from the conjugated diene compound is 15 to 60% by mass when the total of repeating units contained in the polymer (A) is 100% by mass.
  • the lower limit of the content of repeating units (a1) is preferably 17% by mass, more preferably 20% by mass.
  • the upper limit of the content of the repeating unit (a1) is preferably 57% by mass, more preferably 55% by mass.
  • the conjugated diene compound is not particularly limited, but includes 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-chloro-1,3-butadiene, and the like. and one or more selected from these can be used. Among these, 1,3-butadiene is particularly preferred.
  • Repeating unit (a2) derived from unsaturated carboxylic acid The content of repeating units (a2) derived from unsaturated carboxylic acid is 1 to 30% by mass when the total of repeating units contained in polymer (A) is 100% by mass.
  • the lower limit of the content of repeating units (a2) is preferably 3% by mass, more preferably 5% by mass.
  • the upper limit of the content of repeating units (a2) is preferably 27% by mass, more preferably 25% by mass.
  • the unsaturated carboxylic acid is not particularly limited, but includes monocarboxylic acids and dicarboxylic acids (including anhydrides) such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, fumaric acid, and itaconic acid. One or more selected from these can be used. As the unsaturated carboxylic acid, it is preferable to use one or more selected from acrylic acid, methacrylic acid, and itaconic acid.
  • the polymer (A) may contain, in addition to the repeating units (a1) to (a2), repeating units derived from other monomers copolymerizable therewith.
  • Such repeating units include, for example, a repeating unit (a3) derived from an aromatic vinyl compound (hereinafter also simply referred to as "repeating unit (a3)"), an unsaturated carboxylic acid ester (an unsaturated carboxylic acid ester having a hydroxyl group described later).
  • repeating units (a4) derived from saturated carboxylic acid esters (hereinafter also simply referred to as “repeating units (a5)
  • the polymer (A) may contain repeating units (a3) derived from an aromatic vinyl compound.
  • the content of the repeating units (a3) derived from the aromatic vinyl compound is preferably 35 to 75% by mass when the total of the repeating units contained in the polymer (A) is 100% by mass.
  • the lower limit of the content of repeating units (a3) is preferably 38% by mass, more preferably 40% by mass.
  • the upper limit of the content of repeating units (a3) is preferably 72% by mass, more preferably 70% by mass.
  • the polymer (A) contains the repeating unit (a3) in the above range, fusion between the polymers (A) dispersed in the electrode can be suppressed, and the permeability of the electrolytic solution can be improved. In some cases, it shows a repeated charge-discharge characteristic. Furthermore, it may exhibit good binding power to graphite or the like used as an active material, and an electricity storage device electrode having excellent adhesion can be obtained.
  • the aromatic vinyl compound is not particularly limited, but includes styrene, ⁇ -methylstyrene, p-methylstyrene, vinyltoluene, chlorostyrene, divinylbenzene and the like, and one or more selected from these are used. be able to.
  • the total repeating units contained in the polymer (A) is 100% by mass, and the repeating unit (a1) , the total amount of the repeating unit (a2) and the repeating unit (a3) is preferably at least 80% by mass, more preferably at least 83% by mass.
  • the total amount of the repeating unit (a1), the repeating unit (a2) and the repeating unit (a3) is within the above range, the dispersibility of the active material and the filler is improved, and the polymer (A ) can be prevented from being fused together, and the adhesion and electrolyte permeability are improved. As a result, good repeated charge/discharge characteristics and good charge/discharge endurance characteristics are exhibited.
  • the polymer (A) may contain a repeating unit (a4) derived from an unsaturated carboxylic acid ester.
  • the content of the repeating unit (a4) is preferably 0 to 60% by mass when the total of the repeating units contained in the polymer (A) is taken as 100% by mass.
  • the lower limit of the content of the repeating unit (a4) is preferably 1% by mass, more preferably 2% by mass.
  • the upper limit of the content of repeating units (a4) is preferably 55% by mass, more preferably 50% by mass.
  • the affinity between the polymer (A) and the electrolytic solution is improved, and the binder becomes an electrical resistance component in the electricity storage device. It may be possible to suppress the increase in resistance. In addition, it may be possible to prevent deterioration of adhesion due to excessive absorption of the electrolytic solution.
  • (meth)acrylic acid esters can be preferably used.
  • Specific examples of (meth)acrylic acid esters include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, and n-(meth)acrylate.
  • methyl (meth)acrylate, ethyl (meth)acrylate, n-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, cyclohexyl (meth)acrylate, and ethylene glycol di(meth)acrylate It is preferably one or more selected from, and particularly preferably methyl (meth)acrylate.
  • the polymer (A) may contain repeating units (a5) derived from an ⁇ , ⁇ -unsaturated nitrile compound.
  • the content of the repeating unit (a5) is preferably 0 to 60% by mass when the total of the repeating units contained in the polymer (A) is taken as 100% by mass.
  • the lower limit of the content of repeating units (a5) is preferably 0.5% by mass, more preferably 1% by mass.
  • the upper limit of the content of repeating units (a5) is preferably 55% by mass, more preferably 50% by mass.
  • the polymer (A) contains the repeating unit (a5) in the above range, it is possible to reduce the dissolution of the polymer (A) in the electrolytic solution, and it is possible to suppress the deterioration of the adhesion due to the electrolytic solution. Sometimes. In addition, it may be possible to suppress an increase in internal resistance due to the polymer component dissolved in the electricity storage device becoming an electrical resistance component.
  • ⁇ , ⁇ -unsaturated nitrile compound examples include, but are not limited to, acrylonitrile, methacrylonitrile, ⁇ -chloroacrylonitrile, ⁇ -ethylacrylonitrile, vinylidene cyanide and the like, and at least one selected from among these. can be used. Among these, at least one selected from the group consisting of acrylonitrile and methacrylonitrile is preferred, and acrylonitrile is particularly preferred.
  • the polymer (A) contains at least one of repeating units (a4) derived from an unsaturated carboxylic acid ester and repeating units (a5) derived from an ⁇ , ⁇ -unsaturated nitrile compound, in the polymer (A)
  • the total amount of the repeating unit (a1), the repeating unit (a2), the repeating unit (a4) and the repeating unit (a5) is 65% by mass or more when the total of the repeating units contained in is 100% by mass. is preferred, and 68% by mass or more is more preferred.
  • the total amount of the repeating unit (a1), the repeating unit (a2), the repeating unit (a4) and the repeating unit (a5) is within the above range, the dispersibility of the active material and the filler is improved and the dispersion in the electrode is improved. It is possible to suppress the fusion between the polymers (A) formed thereon, and the adhesion and the permeability of the electrolytic solution may be improved. As a result, good repeated charge/discharge characteristics and good charge/discharge endurance characteristics are exhibited.
  • the polymer (A) may contain repeating units (a6) derived from (meth)acrylamide.
  • the content of the repeating unit (a6) is preferably 0 to 10% by mass when the total of the repeating units contained in the polymer (A) is taken as 100% by mass.
  • the lower limit of the content of the repeating unit (a6) is preferably 1% by mass, more preferably 2% by mass.
  • the upper limit of the content of repeating units (a6) is preferably 8% by mass, more preferably 5% by mass.
  • the flexibility of the resulting active material layer may be moderate, and the adhesion between the current collector and the active material layer may be improved. Furthermore, since the bonding ability between active materials containing a carbon material such as graphite or a silicon material can be enhanced, an active material layer having better flexibility and adhesion to a current collector may be obtained.
  • (Meth)acrylamide is not particularly limited, but acrylamide, methacrylamide, N-isopropylacrylamide, N,N-dimethylacrylamide, N,N-dimethylmethacrylamide, N,N-diethylacrylamide, N,N-diethylmethacrylamide amide, N,N-dimethylaminopropyl acrylamide, N,N-dimethylaminopropyl methacrylamide, N-methylol acrylamide, N-methylol methacrylamide, diacetone acrylamide, maleic acid amide, acrylamide tert-butylsulfonic acid and the like. , one or more selected from these can be used.
  • the polymer (A) may contain a repeating unit (a7) derived from an unsaturated carboxylic acid ester having a hydroxyl group.
  • the content of the repeating unit (a7) is preferably 0 to 20% by mass when the total of the repeating units contained in the polymer (A) is taken as 100% by mass.
  • the lower limit of the content of the repeating unit (a7) is preferably 1% by mass, more preferably 2% by mass.
  • the upper limit of the content of the repeating unit (a7) is preferably 15% by mass, more preferably 10% by mass.
  • the polymer (A) contains the repeating unit (a7) in the above range, the slurry in which the active material is well dispersed without agglomeration of the active material when producing a slurry for an electricity storage device electrode, which will be described later. may be easier to make.
  • the polymer (A) in the active material layer produced by applying and drying the slurry for the electricity storage device electrode is distributed nearly uniformly, so that an electricity storage device electrode with very few binding defects can be produced. There is that is, in some cases, the bonding ability between active materials and the adhesion ability between the active material layer and the current collector can be dramatically improved.
  • the unsaturated carboxylic acid ester having a hydroxyl group is not particularly limited, but (meth)acrylic acid-hydroxymethyl, (meth)acrylic acid 2-hydroxyethyl, (meth)acrylic acid 2-hydroxypropyl, (meth)acrylic acid 3-hydroxypropyl, 4-hydroxybutyl (meth)acrylate, 5-hydroxypentyl (meth)acrylate, 6-hydroxyhexyl (meth)acrylate, glycerin mono(meth)acrylate, glycerin di(meth)acrylate, etc. and one or more selected from these can be used.
  • the polymer (A) may contain repeating units (a8) derived from a compound having a sulfonic acid group.
  • the content of the repeating unit (a8) is preferably 0 to 10% by mass when the total of the repeating units contained in the polymer (A) is taken as 100% by mass.
  • the lower limit of the content of repeating units (a8) is preferably 0.5% by mass, more preferably 1% by mass.
  • the upper limit of the content of the repeating unit (a8) is preferably 8% by mass, more preferably 5% by mass.
  • the compound having a sulfonic acid group is not particularly limited, but vinylsulfonic acid, styrenesulfonic acid, allylsulfonic acid, sulfoethyl (meth)acrylate, sulfopropyl (meth)acrylate, sulfobutyl (meth)acrylate, 2-acrylamide-2 -methylpropanesulfonic acid, 2-hydroxy-3-acrylamidopropanesulfonic acid, compounds such as 3-allyloxy-2-hydroxypropanesulfonic acid, salts thereof, and the like, one or more selected from among these can be used.
  • Polymer (A) may contain a repeating unit derived from a cationic monomer.
  • the cationic monomer is not particularly limited, but is at least one monomer selected from the group consisting of secondary amines (salts), tertiary amines (salts) and quaternary ammonium salts. is preferred.
  • cationic monomers are not particularly limited, but 2-(dimethylamino)ethyl (meth)acrylate, dimethylaminoethyl (meth)acrylate methyl chloride quaternary salt, 2-(meth)acrylate (Diethylamino)ethyl, 3-(dimethylamino)propyl (meth)acrylate, 3-(diethylamino)propyl (meth)acrylate, 4-(dimethylamino)phenyl (meth)acrylate, 2-(meth)acrylate [(3,5-Dimethylpyrazolyl)carbonylamino]ethyl, 2-(0-[1'-methylpropylideneamino]carboxyamino)ethyl (meth)acrylate, 2-(1-aziridinyl)acrylate (meth)acrylate Ethyl, methacryloylcholine chloride, tris(2-acryloyloxyethyl)isocyan
  • a measurement sample in this dynamic viscoelasticity measurement is a film of the polymer (A).
  • a film of polymer (A) is prepared by drying polymer (A) at 40° C. for 24 hours to produce a uniform film with a thickness of 1.0 ⁇ 0.3 mm, which is dried in a vacuum dryer at 160° C. , dried for 30 minutes, and then cut into strips of 10 mm x 10 mm.
  • the measurement sample is fixed on a parallel plate (product name “PP-12”) and measured in the temperature range of ⁇ 70° C. to 180° C. under the following measurement conditions.
  • PP-12 parallel plate
  • the polymer (A) used in the present embodiment exhibits high viscosity at a temperature of tan ⁇ 1, and it is believed that this high viscosity can ensure adhesion. It also indicates that the polymer (A) is highly crosslinked at a temperature of tan ⁇ 3, that is, the polymer (A) is hard. Since the polymer (A) is hard, it is possible to maintain the particle shape without crushing unlike other binders during electrode preparation, and it is thought that the permeability of the electrolyte to the active material can be increased. Furthermore, at the temperature of tan ⁇ 2, the polymer forming tan ⁇ 2 is compatible with the polymer forming tan ⁇ 1 and the polymer forming tan ⁇ 3, respectively.
  • the polymer (A) used in the present embodiment can reduce the internal resistance by increasing the permeability of the electrolyte solution into the active material, so that an electrode exhibiting good repeated charge-discharge characteristics can be produced. be able to.
  • the polymer (A) used in the present embodiment can improve adhesion, it is possible to produce an electrode exhibiting good charge-discharge durability characteristics at high temperatures.
  • the term "destroyed particles” refers to the case where the interface between adjacent particles cannot be confirmed due to pressure bonding.
  • the tan ⁇ 1 in the dynamic viscoelasticity measurement of the polymer (A) is in the temperature range of -50 ° C. or more and less than 15 ° C., preferably in the temperature range of -40 ° C. or more and 10 ° C. or less, -35 ° C. or more 5 °C or less is more preferable.
  • the existence of one tan ⁇ 1 in the above temperature range indicates that the viscosity is high in the same temperature range. It is believed that this high viscosity allows the polymer (A) to maintain a high binding strength in the same temperature range, thereby exhibiting good adhesion.
  • the tan ⁇ 2 in the dynamic viscoelasticity measurement of the polymer (A) is in the temperature range of 15 ° C. or higher and lower than 85 ° C., preferably in the temperature range of 20 ° C. or higher and 80 ° C. or lower, and 25 ° C. or higher and 75 ° C. or lower. It is more preferable to be in the temperature range. Moreover, it is preferable that one tan ⁇ 2 exists within the above temperature range. The presence of one tan ⁇ 2 in the above temperature range indicates that a polymer compatibilizing the polymer forming tan ⁇ 1 and the polymer forming tan ⁇ 3 is formed in the same temperature range. It is considered that the high compatibility of the polymer (A) in the same temperature range enables the maintenance of the particle structure of the polymer (A), thereby ensuring the adhesion and the reduction of the internal resistance.
  • the tan ⁇ 3 in the dynamic viscoelasticity measurement of the polymer (A) is in the temperature range of 85 ° C. or higher and 150 ° C. or lower, preferably in the temperature range of 90 ° C. or higher and 140 ° C. or lower, and 95 ° C. or higher and 135 ° C. or lower. It is more preferable to be in the temperature range. Moreover, it is preferable that one tan ⁇ 3 exists within the above temperature range. The presence of one tan ⁇ 3 in the above temperature range indicates that a high Tg polymer is formed in the same temperature range. It is believed that the high Tg polymer component of the polymer (A) in the same temperature range allows the polymer (A) to develop hardness and reduce the internal resistance.
  • Examples of methods for adjusting the peak top temperature of tan ⁇ in the dynamic viscoelasticity measurement of the polymer (A) include a method of adjusting the monomer composition during polymerization of the polymer (A).
  • the peak intensity of tan ⁇ 1 in the dynamic viscoelasticity measurement of the polymer (A) is preferably 0.01 to 0.15, more preferably 0.01 to 0.125, and particularly preferably 0.01 to 0.1.
  • the fact that the tan ⁇ 1 peak intensity of polymer (A) is within the above range indicates that polymer (A) is viscous but not too hard and has sufficient binding power to hold the electrode structure.
  • the peak intensity of tan ⁇ 2 in the dynamic viscoelasticity measurement of the polymer (A) is preferably 0.05 to 0.2, more preferably 0.06 to 0.19, and particularly preferably 0.07 to 0.18.
  • the fact that the peak intensity of tan ⁇ 2 of the polymer (A) is within the above range indicates that the polymer (A) has sufficient hardness to suppress fusion between particles while having viscosity. ing.
  • the peak intensity of tan ⁇ 3 in dynamic viscoelasticity measurement of the polymer (A) is preferably 0.05 to 0.5, more preferably 0.07 to 0.45, and particularly preferably 0.1 to 0.4.
  • the fact that the peak intensity of tan ⁇ 3 of the polymer (A) is within the above range indicates that the polymer (A) has hardness sufficient to suppress fusion between particles.
  • the peak intensity of tan ⁇ 1, the peak intensity of tan ⁇ 2, and the peak intensity of tan ⁇ 3 in the dynamic viscoelasticity measurement of the polymer (A) preferably satisfy the relationships of the following formulas (1) and (2).
  • the peak intensity of tan ⁇ 1, the peak intensity of tan ⁇ 2, and the peak intensity of tan ⁇ 3 in the dynamic viscoelasticity measurement of the polymer (A) satisfy the relationships of the above formulas (1) and (2), which means that the polymer (A ) has a good balance between viscosity and hardness, that is, it has a binding force necessary for the electrode structure, and it is possible to suppress fusion between particles.
  • the peak intensity of tan ⁇ 1, the peak intensity of tan ⁇ 2, and the peak intensity of tan ⁇ 3 in the dynamic viscoelasticity measurement of the polymer (A) are It is preferable to satisfy the relationship of peak intensity of tan ⁇ 1 ⁇ peak intensity of tan ⁇ 2 ⁇ peak intensity of tan ⁇ 3. Satisfying this relationship means that the polymer (A) has a good balance between viscosity and hardness, that is, it has the necessary binding force for the electrode structure, and it is possible to suppress fusion between particles. It can be inferred that this indicates that
  • the number average particle size of the particles is preferably 50 nm or more and 500 nm or less, more preferably 60 nm or more and 450 nm or less, and particularly preferably 70 nm or more and 400 nm or less. is.
  • the number average particle diameter of the particles of the polymer (A) is within the above range, the particles of the polymer (A) are likely to be adsorbed on the surface of the active material. particles can also follow and move. As a result, migration can be suppressed, and deterioration of electrical characteristics can be reduced in some cases.
  • the number average particle size of the particles of the polymer (A) can be calculated from the average value of particle sizes obtained from images of 50 particles observed with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • Examples of transmission electron microscopes include "H-7650” manufactured by Hitachi High-Technologies Corporation.
  • the polymer (A) is a particle, it is preferably a single particle separated by two or more different phases. When there are multiple phases, each phase may be mutually bonded by chemical bonding or physically adsorbed. It also preferably forms a three-phase onion-like conformation.
  • the phase at the center of the particle has tan ⁇ 1, the intermediate phase has tan ⁇ 2, and the outermost phase has tan ⁇ 3. Satisfying this relationship means that the polymer (A) has a good balance between viscosity and hardness, that is, it has the necessary binding force for the electrode structure, and it is possible to suppress fusion between particles. It can be inferred that this indicates that
  • the swelling degree of the polymer (A) in the electrolytic solution is preferably 150 to 450 mass %, more preferably 160 to 440 mass %, and particularly preferably 170 to 430 mass %.
  • the electrolyte solution swelling degree is within the above range, the polymer (A) can swell moderately with respect to the electrolyte solution.
  • the solvated lithium ions can easily reach the active material, the internal resistance of the electrode can be reduced, and better repeated charge-discharge characteristics can be achieved.
  • the degree of swelling of the electrolytic solution is within the above range, the adhesion is excellent because a large volume change does not occur.
  • the electrolyte solution swelling degree of the polymer (A) can be measured by the method described in Examples below.
  • the particles of polymer (A) preferably retain their particle shape.
  • the number of broken particles of the polymer (A) in the negative electrode coating layer is preferably 30 or less, more preferably 20 or less, and particularly preferably 10 per 100 particles of the polymer (A). less than or equal to
  • the number of broken particles of the polymer (A) is within the above range, the number of particles of the polymer (A) retaining the particle shape in the negative electrode coating layer is sufficiently large, so that binding with the active material is achieved. can be maintained, and a conductive path for the electrolytic solution can be formed. That is, since the separation of the active materials can be suppressed and the conductive network inside the active material layer can be maintained, an electricity storage device negative electrode having excellent charge/discharge durability characteristics even at high temperatures can be obtained.
  • the method for producing the polymer (A) is not particularly limited, but for example, an emulsion polymerization method carried out in the presence of a known emulsifier (surfactant), chain transfer agent, polymerization initiator, etc. can depend on As the emulsifier (surfactant), chain transfer agent, and polymerization initiator, compounds described in Japanese Patent No. 5999399 and the like can be used.
  • the emulsion polymerization method for synthesizing the polymer (A) may be a one-stage polymerization or a multi-stage polymerization of two or more stages.
  • the mixture of the above monomers is preferably subjected to It can be by emulsion polymerization for 4 to 36 hours.
  • the polymer (A) is synthesized by two-stage polymerization
  • the ratio of the monomers used in the first-stage polymerization is the total mass of monomers (the sum of the mass of the monomers used in the first-stage polymerization and the mass of the monomers used in the second-stage polymerization). On the other hand, it is preferably in the range of 20 to 99% by mass, more preferably in the range of 25 to 99% by mass.
  • the types and proportions of the monomers used in the second-stage polymerization may be the same as or different from the types and proportions of the monomers used in the first-stage polymerization.
  • the polymerization conditions at each stage are preferably as follows. - First-stage polymerization; preferably temperature of 40 to 80°C; polymerization time of preferably 2 to 36 hours; polymerization conversion rate of preferably 50% by mass or more, more preferably 60% by mass or more. • Second-stage polymerization; preferably temperature of 40 to 80°C; polymerization time of preferably 2 to 18 hours.
  • polymer (A) is synthesized by three-stage polymerization
  • the ratio of the monomers used in the first-stage polymerization is the total mass of the monomers (the mass of the monomers used in the first-stage polymerization and the mass of the monomers used in the second-stage polymerization and the third-stage polymerization It is preferably in the range of 20 to 100% by mass, more preferably in the range of 25 to 100% by mass, based on the total mass of the monomers used in (1).
  • the types and proportions of the monomers used in the second-stage polymerization may be the same as or different from the types and proportions of the monomers used in the first-stage polymerization.
  • the types and proportions of monomers used in the third-stage polymerization are the types and proportions of monomers used in the first-stage polymerization, and the types and proportions of monomers used in the second-stage polymerization. may be the same as or different from.
  • the polymerization conditions at each stage are preferably as follows. - First-stage polymerization; preferably temperature of 40 to 80°C; polymerization time of preferably 2 to 36 hours; polymerization conversion rate of preferably 50% by mass or more, more preferably 60% by mass or more. • Second-stage polymerization; preferably temperature of 40 to 80°C; polymerization time of preferably 2 to 18 hours. - Third stage polymerization; preferably temperature of 40 to 80°C; polymerization time of preferably 2 to 9 hours.
  • the polymerization reaction can proceed in a state in which the obtained polymer (A) particles have good dispersion stability.
  • the total solid content concentration is preferably 48% by mass or less, more preferably 45% by mass or less.
  • a neutralizing agent is added to the polymerization mixture after the emulsion polymerization is completed to adjust the pH to 4.5. It is preferable to adjust to about 10.5, preferably 5 to 10, more preferably 5.5 to 9.5.
  • the neutralizing agent used here is not particularly limited, but examples thereof include metal hydroxides such as sodium hydroxide and potassium hydroxide; ammonia and the like.
  • the content ratio of the polymer (A) in the binder composition for an electricity storage device according to the present embodiment is preferably 10 to 100% by mass in 100% by mass of the polymer component, and more It is preferably 20 to 95% by mass, particularly preferably 25 to 90% by mass.
  • the polymer component includes the polymer (A), a polymer other than the polymer (A) described below, a thickener, and the like.
  • the binder composition for electrical storage devices according to this embodiment contains a liquid medium (B).
  • the liquid medium (B) is preferably an aqueous medium containing water, more preferably water.
  • the aqueous medium can contain a non-aqueous medium other than water. Examples of the non-aqueous medium include amide compounds, hydrocarbons, alcohols, ketones, esters, amine compounds, lactones, sulfoxides, sulfone compounds, etc., and one or more selected from these can be used. can be done.
  • the binder composition for an electricity storage device according to the present embodiment has a lower degree of adverse effects on the environment and a higher level of safety for workers handling it.
  • the content of the non-aqueous medium contained in the aqueous medium is preferably 10% by mass or less, more preferably 5% by mass or less, in 100% by mass of the aqueous medium. preferable.
  • substantially does not contain means that a non-aqueous medium is not intentionally added as a liquid medium, and the non-aqueous medium that is inevitably mixed when preparing the binder composition for an electricity storage device It may contain a medium.
  • the binder composition for an electricity storage device according to the present embodiment can contain additives other than the components described above, if necessary.
  • additives include polymers other than the polymer (A), preservatives, thickeners, and the like.
  • the binder composition for an electricity storage device may contain a polymer other than the polymer (A).
  • a polymer other than the polymer (A) examples include, but are not particularly limited to, acrylic polymers containing unsaturated carboxylic acid esters or derivatives thereof as constitutional units, fluorine-based polymers such as PVDF (polyvinylidene fluoride), and the like. These polymers may be used singly or in combination of two or more. By containing these polymers, flexibility and adhesion may be further improved.
  • the binder composition for an electricity storage device may contain an antiseptic. By containing a preservative, it may be possible to suppress the growth of bacteria, mold, and the like and the generation of foreign matter when the binder composition for an electricity storage device is stored.
  • antiseptics include compounds described in Japanese Patent No. 5477610 and the like.
  • the binder composition for an electricity storage device according to the present embodiment may contain a thickener. By containing a thickener, it may be possible to further improve the applicability of the slurry and the charge/discharge characteristics of the obtained electricity storage device.
  • thickeners include cellulose compounds such as carboxymethyl cellulose, methyl cellulose, and hydroxypropyl cellulose; poly(meth)acrylic acid; the cellulose compound or the ammonium salt or alkali metal salt of the poly(meth)acrylic acid; polyvinyl polyvinyl alcohol-based (co)polymers such as alcohol, modified polyvinyl alcohol, and ethylene-vinyl alcohol copolymers; Water-soluble polymers such as saponified products can be mentioned. Among these, alkali metal salts of carboxymethylcellulose, alkali metal salts of poly(meth)acrylic acid, and the like are preferable.
  • Examples of commercial products of these thickeners include alkali metal salts of carboxymethylcellulose such as CMC1120, CMC1150, CMC2200, CMC2280, and CMC2450 (manufactured by Daicel Corporation).
  • the binder composition for an electricity storage device contains a thickener
  • the content of the thickener is 5% by mass or less with respect to 100% by mass of the total solid content of the binder composition for an electricity storage device. preferably 0.1 to 3% by mass.
  • pH of binder composition for electricity storage device The pH of the electricity storage device binder composition according to the present embodiment is preferably 5-10, more preferably 6-9.5, and particularly preferably 6.5-9. When the pH is within the above range, it is possible to suppress the occurrence of problems such as insufficient leveling and liquid dripping, and it becomes easy to manufacture an electricity storage device electrode that achieves both good electrical properties and adhesion. .
  • pH refers to a physical property measured as follows. It is a value measured in accordance with JIS Z8802:2011 at 25°C with a pH meter using a glass electrode calibrated with a neutral phosphate standard solution and a borate standard solution as pH standard solutions. Examples of such a pH meter include “HM-7J” manufactured by Toa DKK Co., Ltd. and “D-51” manufactured by Horiba, Ltd.
  • the pH of the binder composition for an electricity storage device is affected by the composition of the monomers constituting the polymer (A), it should be added that it is not determined only by the composition of the monomers. . That is, it is generally known that the pH of the binder composition for an electricity storage device changes depending on the polymerization conditions and the like even if the monomer composition is the same, and the examples of the present specification show an example thereof. Not too much.
  • the amount of carboxyl groups derived from the unsaturated carboxylic acid exposed on the surface of the resulting polymer is different.
  • the pH of the binder composition for electricity storage devices varies greatly even by changing the order of adding the monomers in the polymerization method.
  • An electricity storage device slurry according to an embodiment of the present invention contains the aforementioned electricity storage device binder composition.
  • the above-described binder composition for electricity storage devices can be used as a material for producing a protective film for suppressing short circuits caused by dendrites that occur during charging and discharging, and the binding ability and It can also be used as a material for producing an electricity storage device electrode (active material layer) with improved adhesion between the active material and current collector and improved resistance to falling powder.
  • an electricity storage device slurry for producing a protective film hereinafter also referred to as “protective film slurry”
  • an electricity storage device slurry for producing an active material layer of an electricity storage device electrode hereinafter, “electricity storage device (also referred to as “electrode slurry”).
  • Slurry for protective film is applied to the surfaces of electrodes and/or separators, and then dried to form protective films on the surfaces of electrodes and/or separators. It refers to a dispersion liquid.
  • the protective film slurry according to the present embodiment may be composed only of the above-described electrical storage device binder composition, and may further contain an inorganic filler.
  • each component contained in the protective film slurry according to the present embodiment will be described in detail.
  • description is abbreviate
  • the protective film slurry according to the present embodiment can improve the toughness of the protective film by containing an inorganic filler.
  • an inorganic filler at least one inorganic oxide particle selected from the group consisting of silica, titanium oxide (titania), aluminum oxide (alumina), zirconium oxide (zirconia), and magnesium oxide (magnesia) can be used. preferable.
  • titanium oxide particles or aluminum oxide particles are preferable from the viewpoint of further improving the toughness of the protective film.
  • rutile-type titanium oxide is more preferable.
  • the average particle size of the inorganic filler is preferably 1 ⁇ m or less, more preferably 0.1 to 0.8 ⁇ m.
  • the average particle size of the inorganic filler is preferably larger than the average pore size of the separator, which is a porous membrane. This can reduce damage to the separator and prevent the inorganic filler from clogging the micropores of the separator.
  • the protective film slurry according to the present embodiment preferably contains 0.1 to 20 parts by mass of the above-described binder composition for an electricity storage device in terms of solid content with respect to 100 parts by mass of the inorganic filler. It is more preferable to contain up to 10 parts by mass.
  • the content of the binder composition for an electricity storage device is within the above range, the balance between the toughness of the protective film and the lithium ion permeability is improved, and as a result, the resistance increase rate of the obtained electricity storage device is further reduced. can be done.
  • a liquid medium may be added in addition to the amount brought in from the binder composition for an electricity storage device.
  • the amount of the liquid medium to be added can be adjusted as necessary so as to obtain the optimum slurry viscosity according to the coating method and the like. Examples of such a liquid medium include the materials described in the section "1.2. Liquid medium (B)" above.
  • Slurry for power storage device electrodes is a dispersion liquid used to form an active material layer on the surface of a current collector by applying it to the surface of a current collector and then drying it. Say things.
  • the electricity storage device electrode slurry according to the present embodiment contains the above-described electricity storage device binder composition and an active material.
  • a slurry for electricity storage device electrodes often contains a binder component such as an SBR-based copolymer and a thickener such as carboxymethyl cellulose in order to improve adhesion.
  • the slurry for electricity storage device electrodes according to the present embodiment can improve adhesion even when it contains only the polymer (A) described above as a polymer component.
  • the slurry for electricity storage device electrodes according to the present embodiment may contain a polymer other than the polymer (A) and a thickener in order to further improve adhesion.
  • components contained in the slurry for electricity storage device electrodes according to the present embodiment will be described.
  • Polymer (A) The composition, physical properties, production method, and the like of the polymer (A) are as described above, so the explanation is omitted.
  • the content of the polymer component in the electricity storage device electrode slurry according to the present embodiment is preferably 0.5 to 10 parts by mass, more preferably 1 to 8 parts by mass, with respect to 100 parts by mass of the active material. , more preferably 1 to 7 parts by mass, and particularly preferably 1.5 to 6 parts by mass.
  • the polymer component includes the polymer (A), a polymer other than the polymer (A) added as necessary, a thickener, and the like.
  • active materials used in the electricity storage device electrode slurry according to the present embodiment include carbon materials, silicon materials, oxides containing lithium atoms, lead compounds, tin compounds, arsenic compounds, antimony compounds, aluminum compounds, Conductive polymer such as polyacene, A X B Y O Z (where A is an alkali metal or transition metal, B is at least one selected from transition metals such as cobalt, nickel, aluminum, tin and manganese, O is represents an oxygen atom, and X, Y and Z are numbers in the ranges of 1.10>X>0.05, 4.00>Y>0.85 and 5.00>Z>1.5, respectively). and other metal oxides. Specific examples of these include compounds described in Japanese Patent No. 5999399 and the like.
  • the power storage device electrode slurry according to the present embodiment can be used for producing both positive and negative power storage device electrodes, and is preferably used for both positive and negative electrodes.
  • Lithium iron phosphate has a fine primary particle size and is known to be a secondary aggregate. It is considered that one of the factors is that it causes peeling from the current collector and that the conductive network inside the active material layer is easily broken.
  • the electricity storage device electrode produced using the electricity storage device electrode slurry according to the present embodiment is favorable without causing the above-described problems even when lithium iron phosphate is used as the positive electrode active material. electrical characteristics.
  • the reason for this is thought to be that the polymer (A) can strongly bind lithium iron phosphate and at the same time maintain the state in which lithium iron phosphate is strongly bound even during charging and discharging. .
  • the silicon material has a larger lithium absorption amount per unit weight than other active materials, the inclusion of the silicon material as the negative electrode active material can increase the power storage capacity of the resulting power storage device. As a result, the output and energy density of the electricity storage device can be increased.
  • the negative electrode active material is more preferably a mixture of a silicon material and a carbon material. Since the volume change of the carbon material due to charging and discharging is smaller than that of the silicon material, by using a mixture of the silicon material and the carbon material as the negative electrode active material, the effect of the volume change of the silicon material can be mitigated, and the active material can be Adhesion ability between the layer and the current collector can be further improved.
  • silicon When silicon (Si) is used as an active material, silicon has a high capacity, but causes a large volume change when absorbing lithium. For this reason, the silicon material is pulverized by repeated expansion and contraction, causing separation from the current collector and separation between the active materials, which tends to break the conductive network inside the active material layer. Due to this property, the charge/discharge endurance characteristics of the electricity storage device are extremely deteriorated in a short time.
  • the electricity storage device electrode produced using the electricity storage device electrode slurry according to the present embodiment exhibits good electrical characteristics without causing the above-described problems even when a silicon material is used. be able to.
  • the reason for this is that the polymer (A) can strongly bind the silicon material, and at the same time, even if the silicon material expands in volume due to the absorption of lithium, the polymer (A) expands and contracts to form silicon. It is thought that this is because the state in which the materials are firmly bound can be maintained.
  • the content of the silicon material in 100% by mass of the active material is preferably 1% by mass or more, more preferably 2 to 50% by mass, even more preferably 3 to 45% by mass. It is particularly preferable to set the content to 40% by mass.
  • the content ratio of the silicon material in 100% by mass of the active material is within the above range, an electricity storage device having an excellent balance between improvement in output and energy density of the electricity storage device and charge/discharge durability characteristics can be obtained.
  • the shape of the active material is preferably particulate.
  • the average particle size of the active material is preferably 0.1-100 ⁇ m, more preferably 1-20 ⁇ m.
  • the average particle size of the active material is the volume average particle size calculated from the particle size distribution measured using a particle size distribution measuring apparatus based on the principle of laser diffraction. Examples of such a laser diffraction particle size distribution analyzer include HORIBA LA-300 series and HORIBA LA-920 series (manufactured by HORIBA, Ltd.).
  • a liquid medium may be further added to the electricity storage device electrode slurry according to the present embodiment.
  • the liquid medium to be added may be the same as or different from the liquid medium (B) contained in the binder composition for an electricity storage device, but may be the liquid medium (B) of the above "1.2. Liquid medium (B)". It is preferable to select and use from among the liquid media exemplified in the section.
  • the content ratio of the liquid medium (including the amount brought in from the binder composition for an electricity storage device) in the electricity storage device electrode slurry according to the present embodiment is the solid content concentration in the slurry (total of components other than the liquid medium in the slurry).
  • the ratio of the mass to the total mass of the slurry (hereinafter the same) is preferably 30 to 70% by mass, more preferably 40 to 60% by mass.
  • a conductivity-imparting agent may be further added to the electricity storage device electrode slurry according to the present embodiment for the purpose of imparting conductivity and buffering the volume change of the active material due to the ingress and egress of lithium ions.
  • conductive agents include carbon such as activated carbon, acetylene black, ketjen black, furnace black, graphite, carbon fiber, fullerene, and carbon nanotube.
  • carbon such as activated carbon
  • acetylene black, ketjen black, or carbon nanotubes can be preferably used.
  • the content of the conductivity imparting agent is preferably 20 parts by mass or less, more preferably 1 to 15 parts by mass, and particularly preferably 2 to 10 parts by mass with respect to 100 parts by mass of the active material.
  • a pH adjuster and/or a corrosion inhibitor may be further added to the electricity storage device electrode slurry according to the present embodiment for the purpose of suppressing corrosion of the current collector depending on the type of the active material.
  • pH adjusters examples include hydrochloric acid, phosphoric acid, sulfuric acid, acetic acid, formic acid, ammonium phosphate, ammonium sulfate, ammonium acetate, ammonium formate, ammonium chloride, sodium hydroxide, potassium hydroxide and the like.
  • sulfuric acid, ammonium sulfate, sodium hydroxide and potassium hydroxide are preferred.
  • it can also be used by selecting from among the neutralizing agents described in the method for producing the polymer (A).
  • Corrosion inhibitors include ammonium metavanadate, sodium metavanadate, potassium metavanadate, ammonium metatungstate, sodium metatungstate, potassium metatungstate, ammonium paratungstate, sodium paratungstate, potassium paratungstate, molybdic acid.
  • Ammonium, sodium molybdate, potassium molybdate and the like can be mentioned, and among these, ammonium paratungstate, ammonium metavanadate, sodium metavanadate, potassium metavanadate and ammonium molybdate are preferred.
  • Cellulose fibers may be further added to the slurry for electricity storage device electrodes according to the present embodiment. Addition of cellulose fibers may improve the adhesion of the active material to the current collector. It is believed that the fibrous cellulose fibers bind the adjacent active materials together by line adhesion or line contact, thereby preventing the active materials from falling off and improving the adhesion to the current collector.
  • the average fiber length of cellulose fibers can be selected from a wide range of 0.1 to 1000 ⁇ m, for example, preferably 1 to 750 ⁇ m, more preferably 1.3 to 500 ⁇ m, still more preferably 1.4 to 250 ⁇ m, particularly preferably 1 .8 to 25 ⁇ m.
  • the surface smoothness coating film uniformity
  • the adhesion of the active material to the current collector may be improved.
  • the fiber length of the cellulose fiber may be uniform, and the coefficient of variation of the fiber length ([standard deviation of fiber length/average fiber length] ⁇ 100) is, for example, preferably 0.1 to 100, more preferably 0.1 to 100. 5 to 50, particularly preferably 1 to 30.
  • the maximum fiber length of cellulose fibers is, for example, preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less, even more preferably 200 ⁇ m or less, still more preferably 100 ⁇ m or less, and particularly preferably 50 ⁇ m or less.
  • the average fiber length of the cellulose fibers is preferably 0.01 to 5 times, more preferably 0.02 to 3 times, particularly preferably 0.03 to 2 times the average thickness of the active material layer.
  • the average fiber diameter of the cellulose fibers is preferably 1 nm to 10 ⁇ m, more preferably 5 nm to 2.5 ⁇ m, even more preferably 20 nm to 700 nm, particularly preferably 30 nm to 200 nm.
  • the cellulose fibers are preferably cellulose nanofibers with an average fiber diameter of nanometer size (for example, cellulose nanofibers with an average fiber diameter of about 10 nm to 500 nm, preferably about 25 nm to 250 nm).
  • the fiber diameter of the cellulose fiber is also uniform, and the coefficient of variation of the fiber diameter ([standard deviation of fiber diameter/average fiber diameter] ⁇ 100) is preferably 1 to 80, more preferably 5 to 60, and particularly preferably 10 to 50.
  • the maximum fiber diameter of the cellulose fibers is preferably 30 ⁇ m or less, more preferably 5 ⁇ m or less, and particularly preferably 1 ⁇ m or less.
  • the ratio (aspect ratio) of the average fiber length to the average fiber diameter of the cellulose fibers is, for example, preferably 10-5000, more preferably 20-3000, and particularly preferably 50-2000.
  • the aspect ratio is within the above range, the adhesion of the active material to the current collector may be improved, and the surface smoothness (coating film uniformity) of the electrode may be improved without weakening the breaking strength of the fiber. be.
  • the material of the cellulose fiber should be made of a polysaccharide having a ⁇ -1,4-glucan structure.
  • Cellulose fibers include, for example, cellulose fibers derived from higher plants (e.g., wood fibers (wood pulp of conifers, hardwoods, etc.), bamboo fibers, sugarcane fibers, seed hair fibers (e.g., cotton linter, bombax cotton, kapok, etc.).
  • ginskin fibers e.g., hemp, paper mulberry, mitsumata, etc.
  • leaf fibers e.g., Manila hemp, New Zealand hemp, etc.
  • animal-derived cellulose fibers e.g., sea squirt cellulose, etc.
  • cellulose fibers derived from bacteria e.g., cellulose contained in nata de coco
  • chemically synthesized cellulose fibers e.g., rayon, cellulose esters (cellulose acetate, etc.
  • cellulose ethers e.g., hydroxyethyl cellulose (HEC), hydroxyalkyl cellulose such as hydroxypropyl cellulose; cellulose derivatives such as alkyl cellulose such as methyl cellulose and ethyl cellulose; You may use these cellulose fibers individually by 1 type or in combination of 2 or more types.
  • cellulose fibers derived from higher plants such as wood fibers (wood pulp of conifers, broad-leaved trees, etc.) and seed hair fibers (cotton linter), are preferred because they are easy to prepare nanofibers having an appropriate aspect ratio.
  • the method for producing cellulose fibers is not particularly limited, and conventional methods such as JP-B-60-19921, JP-A-2011-26760, and JP-A-2012-25833 can be used depending on the desired fiber length and fiber diameter.
  • JP-A-2012-36517, JP-A-2012-36518, JP-A-2014-181421, etc. may be used.
  • the electricity storage device electrode slurry according to the present embodiment can be produced by any method as long as it contains the above-described electricity storage device binder composition and active material. may From the viewpoint of more efficiently and inexpensively producing a slurry having better dispersibility and stability, an active material and optional additive components used as necessary are added to a binder composition for an electricity storage device, and these are mixed. It is preferable to manufacture by A specific manufacturing method includes, for example, the method described in Japanese Patent No. 5999399 and the like.
  • An electricity storage device electrode includes a current collector, and an active material layer formed by coating and drying the above electricity storage device electrode slurry on the surface of the current collector. Be prepared.
  • Such an electricity storage device electrode is produced by applying the above electricity storage device electrode slurry to the surface of a current collector such as a metal foil to form a coating film, and then drying the coating film to form an active material layer. can be manufactured.
  • an active material layer containing the polymer (A), the active material, and optionally added optional components is bound to the surface of the current collector. Therefore, it is excellent in repetitive charge/discharge characteristics and also in charge/discharge durability characteristics at high temperatures.
  • the current collector is not particularly limited as long as it is made of a conductive material, and examples include the current collector described in Japanese Patent No. 5999399.
  • the content of silicon element in 100% by mass of the active material layer is preferably 2 to 30% by mass, more preferably 2 to 20% by mass. is more preferable, and 3 to 10% by mass is particularly preferable.
  • the content of silicon element in the active material layer is within the above range, the electric storage capacity of an electric storage device manufactured using the active material layer is improved, and in addition, an active material layer having a uniform distribution of silicon element can be obtained.
  • the content of silicon element in the active material layer can be measured by the method described in Japanese Patent No. 5999399, for example.
  • An electricity storage device includes the electricity storage device electrode described above, further contains an electrolytic solution, and can be manufactured by a conventional method using parts such as a separator.
  • a specific manufacturing method for example, the negative electrode and the positive electrode are superimposed with a separator interposed therebetween, and this is placed in a battery container by winding or folding according to the shape of the battery, and the electrolyte is injected into the battery container.
  • a method of sealing by pressing can be exemplified.
  • the shape of the battery can be an appropriate shape such as a coin shape, a cylindrical shape, a square shape, a laminate shape, or the like.
  • the electrolyte may be liquid or gel, and one that effectively functions as a battery may be selected from known electrolytes used in electricity storage devices according to the type of active material.
  • the electrolytic solution can be a solution of an electrolyte dissolved in a suitable solvent. Examples of such electrolytes and solvents include compounds described in Japanese Patent No. 5999399 and the like.
  • the power storage device described above can be applied to lithium ion secondary batteries, electric double layer capacitors, lithium ion capacitors, etc. that require high current density discharge.
  • lithium ion secondary batteries are particularly preferred.
  • members other than the electricity storage device binder composition may be known members for lithium ion secondary batteries, electric double layer capacitors, and lithium ion capacitors. is.
  • Binder Composition for Electricity Storage Device A binder composition for electricity storage device containing the polymer (A) was obtained by three-stage polymerization as shown below. A reactor was charged with 200 parts by mass of water, and a monomer mixture consisting of 10 parts by mass of 1,3-butadiene, 3 parts by mass of styrene, 2 parts by mass of acrylic acid, 3 parts by mass of methacrylic acid, and 2 parts by mass of methyl methacrylate.
  • 0.1 parts by weight of tert-dodecyl mercaptan as a chain transfer agent, 0.2 parts by weight of sodium dodecyldiphenyl ether disulfonate as an emulsifier, and 0.2 parts by weight of potassium persulfate as a polymerization initiator were charged, and stirred for 70 minutes. After polymerizing at °C for 10 hours, it was confirmed that the polymerization conversion rate was 90%. Next, 200 parts by mass of water, 5 parts by mass of 1,3-butadiene, 15 parts by mass of styrene, 1 part by mass of acrylic acid, 2 parts by mass of methacrylic acid, and 0.2 parts by mass of potassium persulfate were further added to the reactor.
  • the polymerization conversion rate was confirmed to be 90%.
  • the polymerization conversion rate was calculated according to the following measuring method. Then, 200 parts by mass of water, 30 parts by mass of styrene, 5 parts by mass of acrylic acid, 10 parts by mass of methacrylic acid, 5 parts by mass of methyl methacrylate, 2 parts by mass of acrylonitrile, 5 parts by mass of acrylamide, and 0.1 part by mass of potassium persulfate were added to the reactor. After adding 2 parts by mass and polymerizing at 80° C. for 4 hours, it was confirmed that the polymerization conversion rate was 98%.
  • the polymer (A) particle dispersion thus obtained is concentrated by removing unreacted monomers, 2.5% aqueous sodium hydroxide solution is added, and water is removed using an evaporator.
  • a binder composition for an electricity storage device containing particles of the polymer (A) having a solid content concentration of 40% by mass and a pH of 8.0 was obtained.
  • the weight (Y (g)) of the residue obtained by removing the dissolved EC:DEC:EMC by evaporation was measured. Further, EC:DEC:EMC adhering to the surface of the insoluble matter (film) separated by the above filtration was removed by being absorbed by paper, and then the weight (Z (g)) of the insoluble matter (film) was measured. .
  • the peak top of tan ⁇ on the low temperature side (tan ⁇ 1) was observed at 14° C. and its value was 0.05.
  • the peak top of tan ⁇ on the medium temperature side (tan ⁇ 2) was observed at 75° C. and its value was 0.18.
  • the peak top of tan ⁇ on the high temperature side (tan ⁇ 3) was observed at 135°C, and its value was 0.35.
  • Evaluation criteria are as follows. Table 1 shows the evaluation results. (Evaluation criteria) - When the number of broken particles is 10 or less, the interface of the polymer particles is excellent because it is very difficult to be pressure-bonded. - When the number of broken particles is 11 or more and 20 or less, the interface of the polymer particles is less likely to be pressure-bonded. - When the number of broken particles is 21 or more and 30 or less, the interface between the polymer particles that are pressed together is observed, but can be used. - If the number of broken particles is 31 or more, many interfaces between the polymer particles that are pressure-bonded can be observed, and cannot be used.
  • a binder for electrochemical device electrodes (manufactured by Kureha Co., Ltd., product name “KF”) is added to a biaxial planetary mixer (manufactured by Primix Co., Ltd., product name “TK Hibismix 2P-03”).
  • Polymer #1120 4 parts by mass (solid content conversion value), conductive aid (manufactured by Denka Co., Ltd., trade name "Denka Black 50% pressed product”) 3.0 parts by mass, positive electrode active material with an average particle diameter of 5 ⁇ m 100 parts by mass of LiCoO 2 (manufactured by Hayashi Kasei Co., Ltd.) (solid content conversion value) and 36 parts by mass of N-methylpyrrolidone (NMP) were added and stirred at 60 rpm for 2 hours.
  • solid content conversion value solid content conversion value
  • NMP N-methylpyrrolidone
  • a stirring and defoaming machine manufactured by Thinky Co., Ltd., trade name "Awatori Mixer" was used at 200 rpm for 2 minutes. , 1800 rpm for 5 minutes, and further under reduced pressure (about 2.5 ⁇ 10 4 Pa) at 1800 rpm for 1.5 minutes to prepare a positive electrode slurry.
  • This positive electrode slurry was uniformly applied to the surface of a current collector made of aluminum foil by a doctor blade method so that the film thickness after solvent removal was 80 ⁇ m, and the solvent was removed by heating at 120° C. for 20 minutes. .
  • a counter electrode positive electrode was obtained by pressing with a roll press so that the density of the active material layer was 3.0 g/cm 3 .
  • Capacity retention rate (%) (Discharge capacity at 100th cycle)/(Discharge capacity at 1st cycle) (5) (Evaluation criteria) ⁇ 5 points: Capacity retention rate is 95% or more. - 4 points: The capacity retention rate is 90% or more and less than 95%. - 3 points: Capacity retention is 85% or more and less than 90%. - 2 points: Capacity retention is 80% or more and less than 85%. - 1 point: The capacity retention rate is 75% or more and less than 80%. - 0 point: Capacity retention rate is less than 75%.
  • Resistance increase rate (%) (100th cycle discharge capacity - 101st cycle discharge capacity) / (0th cycle discharge capacity - 1st cycle discharge capacity) x 100 (6) (Evaluation criteria) ⁇ 5 points: The resistance increase rate is 100% or more and less than 150%.
  • the resistance increase rate is 150% or more and less than 200%.
  • - 3 points The resistance increase rate is 200% or more and less than 250%.
  • 2 points The resistance increase rate is 250% or more and less than 300%.
  • - 1 point The resistance increase rate is 300% or more and less than 350%.
  • - 0 point The resistance increase rate is 350% or more.
  • 1C in the measurement conditions indicates a current value at which a cell having a certain electric capacity is discharged at a constant current and discharge ends in one hour.
  • 0.1 C means a current value at which discharge ends in 10 hours
  • 10 C means a current value at which discharge ends in 0.1 hour.
  • binder composition for electricity storage device (1) Preparation of binder composition for electricity storage device” above, the type and amount of each monomer are shown in Table 1 below. Binder compositions for electricity storage devices containing polymer particles having a solid concentration of 40% by mass were obtained in the same manner as described in Table 3, and each physical property was evaluated.
  • FIG. 1 shows a graph representing the relationship between the measurement temperature and tan ⁇ in the dynamic viscoelasticity measurement of the film prepared in Example 11.
  • Example 2 Furthermore, in the same manner as in Example 1 above, except that the binder composition for an electricity storage device prepared above was used, a slurry for an electricity storage device electrode was prepared, an electricity storage device electrode and an electricity storage device were produced, respectively, and the above Example It was evaluated in the same manner as 1.
  • Example 13 In Example 5, the thickener was 0.9 parts by mass of CMC (trade name “CMC2200”, manufactured by Daicel Corporation) and CNF (trade name “Celish KY-100G”, manufactured by Daicel Corporation, with a fiber diameter of 0.9 parts by weight.
  • a power storage device electrode slurry was prepared in the same manner as in Example 5 except that the slurry was 0.1 part by mass, and a power storage device electrode and a power storage device were produced and evaluated in the same manner as in Example 1 above. The results are shown in Table 4 below.
  • Example 14 In Example 5, the thickener was 0.8 parts by mass of CMC (trade name “CMC2200”, manufactured by Daicel Corporation) and CNF (trade name “Selish KY-100G”, manufactured by Daicel Corporation, fiber diameter 0.8 parts).
  • a power storage device electrode slurry was prepared in the same manner as in Example 5 except that the slurry was 0.2 parts by mass, and a power storage device electrode and a power storage device were produced and evaluated in the same manner as in Example 1 above. The results are shown in Table 4 below.
  • Tables 1 to 3 below show the compositions of the polymers used in Examples 1 to 12 and Comparative Examples 1 to 9, the results of measurement of physical properties, and the results of evaluation.
  • Table 4 below shows the composition of the polymer components used in Examples 13 and 14 and the results of each evaluation. The numerical values representing the polymer compositions shown in Tables 1 to 4 below represent parts by mass.
  • the electricity storage device electrode slurries prepared using the electricity storage device binder compositions according to the present invention shown in Examples 1 to 12 are the same as those of Comparative Examples 1 to 9.
  • the active materials were preferably bound together, and the fusion between the particles in the electrode was suppressed, so that the internal resistance was able to be reduced.
  • an electricity storage device electrode was obtained that exhibits good charge/discharge durability at high temperatures.
  • the polymer (A) contained in the binder compositions for electricity storage devices of Examples 1 to 12 shown in Tables 1 and 2 above had a tan ⁇ 1 exists in the range of ⁇ 50° C. or more and less than 15° C., which suggests that the viscosity is high.
  • one tan ⁇ 2 exists in the range of 15° C. or more and less than 85° C., suggesting that the degree of cross-linking of the polymer on the medium temperature side increases.
  • one tan ⁇ 3 exists in the range of 85° C. or more and 150° C. or less, which suggests that the hardness of the polymer on the high temperature side increases.
  • the permeability of the electrolyte between the active materials was not hindered, and the resistance was low. .
  • the electricity storage device electrode slurries prepared using the electricity storage device binder compositions according to the present invention shown in Examples 13 and 14 contained CNF as a thickener. It has been found that even when used in combination, the active materials can be preferably bound to each other, and the adhesion between the active material layer and the current collector can be maintained satisfactorily.
  • the present invention is not limited to the above embodiments, and various modifications are possible.
  • the present invention includes configurations substantially the same as the configurations described in the embodiments (for example, configurations with the same function, method and result, or configurations with the same purpose and effect).
  • the present invention also includes configurations in which non-essential portions of the configurations described in the above embodiments are replaced with other configurations.
  • the present invention also includes a configuration that achieves the same effects or achieves the same purpose as the configurations described in the above embodiments.
  • the present invention also includes configurations obtained by adding known techniques to the configurations described in the above embodiments.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

内部抵抗を低減させることで繰り返し充放電特性に優れ、かつ、密着性を向上させることで高温下での充放電耐久特性に優れる蓄電デバイス電極を製造可能な蓄電デバイス用バインダー組成物を提供する。 本発明に係る蓄電デバイス用バインダー組成物は、重合体(A)と、液状媒体(B)と、を含有し、前記重合体(A)中に含まれる繰り返し単位の合計を100質量%としたときに、前記重合体(A)が、共役ジエン化合物に由来する繰り返し単位(a1)15~60質量%と、不飽和カルボン酸に由来する繰り返し単位(a2)1~30質量%と、を含有し、前記重合体(A)の動的粘弾性のtanδ(損失弾性率/貯蔵弾性率)のピークトップが、-50℃以上15℃未満の範囲に1個(tanδ1)あり、15℃以上85℃未満の範囲に1個(tanδ2)あり、85℃以上150℃以下の範囲に1個(tanδ3)ある。

Description

蓄電デバイス用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、及び蓄電デバイス
 本発明は、蓄電デバイス用バインダー組成物、該バインダー組成物と活物質とを含有する蓄電デバイス電極用スラリー、該スラリーを集電体上に塗布及び乾燥させて形成された蓄電デバイス電極、及び該蓄電デバイス電極を備えた蓄電デバイスに関する。
 近年、電子機器の駆動用電源として、高電圧かつ高エネルギー密度を有する蓄電デバイスが要求されている。このような蓄電デバイスとしては、リチウムイオン電池やリチウムイオンキャパシタなどが期待されている。
 このような蓄電デバイスに使用される電極は、活物質と、バインダーとして機能する重合体とを含有する組成物(蓄電デバイス電極用スラリー)を集電体の表面に塗布及び乾燥させることにより製造される。バインダーとして使用される重合体に要求される特性としては、活物質同士の結合能力及び活物質と集電体との密着能力が挙げられる。また、塗布・乾燥された組成物塗膜(以下、「活物質層」ともいう。)を裁断する際、活物質層から活物質の微粉などが脱落しない粉落ち耐性などを挙げることができる。このようなバインダー材料が良好な密着性を発現させて、該バインダー材料に起因する電池の内部抵抗を低減させることで、蓄電デバイスに良好な充放電特性を付与することができる。
 なお、上記の活物質同士の結合能力及び活物質と集電体との密着能力、並びに粉落ち耐性については、性能の良否がほぼ比例関係にあることが経験上明らかになっている。したがって、本明細書では、以下これらを包括して「密着性」という用語を用いて表す場合がある。
 更に近年、環境負荷低減を目的として、蓄電デバイスを搭載する電気自動車の研究開発が盛んに行われている。蓄電デバイスを電気自動車用駆動電源として搭載する場合、頻繁に充放電を繰り返すことができる高い入出力特性が求められており、そのためには抵抗を低くすることが重要である。また、夏場では車内の温度が50℃以上の高温に達することもあるため、蓄電デバイスには高温下での耐久性が求められる。
 こうした背景の下、蓄電デバイスの低抵抗化及び充放電耐久特性を向上すべく、種々のバインダー材料が提案されている(例えば、特許文献1~2参照)。
国際公開第2015/012366号 特開2017-126456号公報
 しかしながら、上記特許文献1~2に開示されているバインダー材料は、繰り返し充放電特性や高温下での耐久性が十分でなく、電気自動車用駆動電源としての蓄電デバイスに適用するためには、更なる改良が求められていた。
 そこで、本発明に係る幾つかの態様は、内部抵抗を低減させることで繰り返し充放電特性に優れ、かつ、密着性を向上させることで高温下での充放電耐久特性に優れる蓄電デバイス電極を製造可能な蓄電デバイス用バインダー組成物を提供する。また、本発明に係る幾つかの態様は、該バインダー組成物を含有する蓄電デバイス電極用スラリーを提供する。また、本発明に係る幾つかの態様は、内部抵抗を低減させることで繰り返し充放電特性に優れ、かつ、高温下での充放電耐久特性に優れる蓄電デバイス電極を提供する。更に、本発明に係る幾つかの態様は、繰り返し充放電特性に優れ、かつ、高温下での充放電耐久特性に優れる蓄電デバイスを提供する。
 本発明は上述の課題の少なくとも一部を解決するためになされたものであり、以下のいずれかの態様として実現することができる。
 本発明に係る蓄電デバイス用バインダー組成物の一態様は、
 重合体(A)と、液状媒体(B)と、を含有し、
 前記重合体(A)中に含まれる繰り返し単位の合計を100質量%としたときに、前記重合体(A)が、
 共役ジエン化合物に由来する繰り返し単位(a1)15~60質量%と、
 不飽和カルボン酸に由来する繰り返し単位(a2)1~30質量%と、
を含有し、
 前記重合体(A)の動的粘弾性のtanδ(損失弾性率/貯蔵弾性率)のピークトップが、-50℃以上15℃未満の範囲に1個(tanδ1)あり、15℃以上85℃未満の範囲に1個(tanδ2)あり、85℃以上150℃以下の範囲に1個(tanδ3)ある。
 前記蓄電デバイス用バインダー組成物の一態様において、
 前記3個のtanδのピーク強度が、下記式(1)及び下記式(2)の関係を満たすことができる。
 tanδ2のピーク強度/tanδ1のピーク強度≧1.0   (1)
 tanδ3のピーク強度/tanδ2のピーク強度≧1.0   (2)
 前記蓄電デバイス用バインダー組成物のいずれかの態様において、
 前記重合体(A)が、芳香族ビニル化合物に由来する繰り返し単位(a3)35~75質量%を更に含有してもよく、
 前記繰り返し単位(a1)、前記繰り返し単位(a2)及び前記繰り返し単位(a3)の合計量が80質量%以上であることができる。
 前記蓄電デバイス用バインダー組成物のいずれかの態様において、
 前記重合体(A)が、不飽和カルボン酸エステルに由来する繰り返し単位(a4)及びα,β-不飽和ニトリル化合物に由来する繰り返し単位(a5)の少なくとも一方を更に含有してもよく、
 前記繰り返し単位(a1)、前記繰り返し単位(a2)、前記繰り返し単位(a4)及び前記繰り返し単位(a5)の合計量が65質量%以上であることができる。
 前記蓄電デバイス用バインダー組成物のいずれかの態様において、
 前記重合体(A)を、体積分率1:1:1のエチレンカーボネートとジエチルカーボネートとエチルメチルカーボネートとからなる溶媒に、70℃、24時間の条件で浸漬させたときの電解液膨潤率が、150%以上450%以下であることができる。
 前記蓄電デバイス用バインダー組成物のいずれかの態様において、
 前記重合体(A)が重合体粒子であってもよく、
 前記重合体粒子の数平均粒子径が50nm以上500nm以下であることができる。
 前記蓄電デバイス用バインダー組成物のいずれかの態様において、
 前記液状媒体(B)が水であることができる。
 本発明に係る蓄電デバイス電極用スラリーの一態様は、
 前記いずれかの態様の蓄電デバイス用バインダー組成物と、活物質と、を含有する。
 前記蓄電デバイス電極用スラリーの一態様において、
 前記活物質としてケイ素材料を含有することができる。
 本発明に係る蓄電デバイス電極の一態様は、
 集電体と、前記集電体の表面に前記いずれかの態様の蓄電デバイス電極用スラリーが塗布及び乾燥されて形成された活物質層と、を備える。
 本発明に係る蓄電デバイスの一態様は、
 前記態様の蓄電デバイス電極を備える。
 本発明に係る蓄電デバイス用バインダー組成物によれば、内部抵抗を低減させることができるので繰り返し充放電特性に優れる。また、本発明に係る蓄電デバイス用バインダー組成物によれば、密着性を向上させることができるので高温下での充放電耐久特性に優れる蓄電デバイス電極を製造することができる。本発明に係る蓄電デバイス用バインダー組成物は、蓄電デバイス電極が活物質としてリチウム吸蔵量の大きい材料、例えばグラファイトのような炭素材料やケイ素材料を含有する場合に特に上記の効果を発揮する。このように、蓄電デバイス電極の活物質としてリチウム吸蔵量の大きい材料を使用できるので、電池性能も向上する。
図1は、実施例11で作製されたフィルムの動的粘弾性測定における、測定温度とtanδの関係を表す図である。
 以下、本発明に係る好適な実施形態について詳細に説明する。なお、本発明は、下記に記載された実施形態のみに限定されるものではなく、本発明の要旨を変更しない範囲において実施される各種の変形例も含むものとして理解されるべきである。
 なお、本明細書における「(メタ)アクリル酸~」とは、「アクリル酸~」及び「メタクリル酸~」の双方を包括する概念である。同様に「~(メタ)アクリレート」とは、「~アクリレート」及び「~メタクリレート」の双方を包括する概念である。同様に「(メタ)アクリルアミド」とは、「アクリルアミド」及び「メタクリルアミド」の双方を包括する概念である。
 本明細書において、「A~B」のように記載された数値範囲は、数値Aを下限値として含み、かつ、数値Bを上限値として含むものとして解釈される。
 本明細書において、「高温下」とは、概ね40℃~80℃の温度範囲の環境をいう。
 1.蓄電デバイス用バインダー組成物
 本発明の一実施形態に係る蓄電デバイス用バインダー組成物は、重合体(A)と、液状媒体(B)と、を含有する。重合体(A)は、該重合体(A)中に含まれる繰り返し単位の合計を100質量%としたときに、共役ジエン化合物に由来する繰り返し単位(a1)を15~60質量%、及び不飽和カルボン酸に由来する繰り返し単位(a2)を1~30質量%含有する。また、前記重合体(A)の動的粘弾性のtanδ(損失弾性率/貯蔵弾性率)のピークトップが少なくとも3個あり、各々のピークトップが、-50℃以上15℃未満の範囲に1個(本明細書において、「tanδ1」ともいう。)、15℃以上85℃未満の範囲に1個(本明細書において、「tanδ2」ともいう。)、85℃以上150℃以下の範囲に1個(本明細書において、「tanδ3」ともいう。)ある。
 本実施形態に係る蓄電デバイス用バインダー組成物は、活物質同士の結合能力及び活物質と集電体との密着能力並びに粉落ち耐性を向上させた蓄電デバイス電極(活物質層)を作製するための材料として使用することもできるし、充放電に伴って発生するデンドライトに起因する短絡を抑制するための保護膜を形成するための材料として使用することもできる。以下、本実施形態に係る蓄電デバイス用バインダー組成物に含まれる各成分について詳細に説明する。
 1.1.重合体(A)
 本実施形態に係る蓄電デバイス用バインダー組成物は、重合体(A)を含有する。重合体(A)は、該重合体(A)中に含まれる繰り返し単位の合計を100質量%としたときに、共役ジエン化合物に由来する繰り返し単位(a1)(以下、単に「繰り返し単位(a1)」ともいう。)を15~60質量%、及び不飽和カルボン酸に由来する繰り返し単位(a2)(以下、単に「繰り返し単位(a2)」ともいう。)を1~30質量%含有する。また、重合体(A)は、前記繰り返し単位の他に、それと共重合可能な他の単量体に由来する繰り返し単位を含有してもよい。
 本実施形態に係る蓄電デバイス用バインダー組成物に含まれる重合体(A)は、液状媒体(B)中に分散されたラテックス状であってもよいし、液状媒体(B)中に溶解された状態であってもよいが、液状媒体(B)中に分散されたラテックス状であることが好ましい。重合体(A)が液状媒体(B)中に分散されたラテックス状であると、活物質と混合して作製される蓄電デバイス電極用スラリー(以下、単に「スラリー」ともいう。)の安定性が良好となり、またスラリーの集電体への塗布性が良好となるため好ましい。更に、重合体(A)が液状媒体(B)中に分散されたラテックス状であると、蓄電デバイス電極作製時に重合体(A)の粒子形状が維持されやすく、電極内部における電解液の浸透性が高まり、Liイオン伝導性が向上する。これにより、内部抵抗を低減させることができるので、繰り返し充放電特性に優れた蓄電デバイス電極が得られやすい。
 以下、重合体(A)を構成する繰り返し単位、重合体(A)の物性、製造方法の順に説明する。
 1.1.1.重合体(A)を構成する繰り返し単位
 1.1.1.1.共役ジエン化合物に由来する繰り返し単位(a1)
 共役ジエン化合物に由来する繰り返し単位(a1)の含有割合は、重合体(A)中に含まれる繰り返し単位の合計を100質量%としたときに、15~60質量%である。繰り返し単位(a1)の含有割合の下限は、好ましくは17質量%であり、より好ましくは20質量%である。繰り返し単位(a1)の含有割合の上限は、好ましくは57質量%であり、より好ましくは55質量%である。重合体(A)が繰り返し単位(a1)を前記範囲で含有することにより、活物質やフィラーの分散性が良好となり、均一な活物質層や保護膜の作製が可能となる。このため、電極板の構造欠陥がなくなり、良好な繰り返し充放電特性を示すようになる。また、活物質の表面を被覆した重合体(A)に伸縮性を付与することができ、重合体(A)が伸縮することで密着性を向上できるので、良好な充放電耐久特性を示すようになる。
 共役ジエン化合物としては、特に限定されないが、1,3-ブタジエン、2-メチル-1,3-ブタジエン、2,3-ジメチル-1,3-ブタジエン、2-クロロ-1,3-ブタジエン等が挙げられ、これらの中から選択される1種以上を使用することができる。これらの中でも、1,3-ブタジエンが特に好ましい。
 1.1.1.2.不飽和カルボン酸に由来する繰り返し単位(a2)
 不飽和カルボン酸に由来する繰り返し単位(a2)の含有割合は、重合体(A)中に含まれる繰り返し単位の合計を100質量%としたときに、1~30質量%である。繰り返し単位(a2)の含有割合の下限は、好ましくは3質量%であり、より好ましくは5質量%である。繰り返し単位(a2)の含有割合の上限は、好ましくは27質量%であり、より好ましくは25質量%である。重合体(A)が繰り返し単位(a2)を前記範囲で含有することにより、活物質やフィラーの分散性が良好となる。また、活物質として用いられるケイ素材料との親和性を向上させ、該ケイ素材料の膨潤を抑制することで良好な充放電耐久特性を示すようになる。
 不飽和カルボン酸としては、特に限定されないが、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、フマル酸、イタコン酸等の、モノカルボン酸及びジカルボン酸(無水物を含む。)等が挙げられ、これらの中から選択される1種以上を使用することができる。不飽和カルボン酸としては、アクリル酸、メタクリル酸、イタコン酸から選択される1種以上を使用することが好ましい。
 1.1.1.3.その他の繰り返し単位
 重合体(A)は、前記繰り返し単位(a1)~(a2)の他に、これらと共重合可能な他の単量体に由来する繰り返し単位を含有してもよい。このような繰り返し単位としては、例えば、芳香族ビニル化合物に由来する繰り返し単位(a3)(以下、単に「繰り返し単位(a3)」ともいう。)、不飽和カルボン酸エステル(後述の水酸基を有する不飽和カルボン酸エステルを除く。)に由来する繰り返し単位(a4)(以下、単に「繰り返し単位(a4)」ともいう。)、α,β-不飽和ニトリル化合物に由来する繰り返し単位(a5)(以下、単に「繰り返し単位(a5)」ともいう。)、(メタ)アクリルアミドに由来する繰り返し単位(a6)(以下、単に「繰り返し単位(a6)」ともいう。)、水酸基を有する不飽和カルボン酸エステルに由来する繰り返し単位(a7)(以下、単に「繰り返し単位(a7)」ともいう。)、スルホン酸基を有する化合物に由来する繰り返し単位(a8)(以下、単に「繰り返し単位(a8)」ともいう。)、カチオン性単量体に由来する繰り返し単位等が挙げられる。
<芳香族ビニル化合物に由来する繰り返し単位(a3)>
 重合体(A)は、芳香族ビニル化合物に由来する繰り返し単位(a3)を含有してもよい。芳香族ビニル化合物に由来する繰り返し単位(a3)の含有割合は、重合体(A)中に含まれる繰り返し単位の合計を100質量%としたときに、35~75質量%であることが好ましい。繰り返し単位(a3)の含有割合の下限は、好ましくは38質量%であり、より好ましくは40質量%である。繰り返し単位(a3)の含有割合の上限は、好ましくは72質量%であり、より好ましくは70質量%である。重合体(A)が繰り返し単位(a3)を前記範囲で含有することにより、電極中に分散された重合体(A)同士の融着を抑制し、電解液の浸透性を向上できるため、良好な繰り返し充放電特性を示す場合がある。さらに、活物質として用いられるグラファイト等に対して良好な結着力を示す場合があり、密着性に優れた蓄電デバイス電極が得られる。
 芳香族ビニル化合物としては、特に限定されないが、スチレン、α-メチルスチレン、p-メチルスチレン、ビニルトルエン、クロロスチレン、ジビニルベンゼン等が挙げられ、これらの中から選択される1種以上を使用することができる。
 重合体(A)が芳香族ビニル化合物に由来する繰り返し単位(a3)を含有する場合、重合体(A)中に含まれる繰り返し単位の合計を100質量%としたときに、繰り返し単位(a1)、繰り返し単位(a2)及び繰り返し単位(a3)の合計量は、80質量%以上であることが好ましく、83質量%以上であることがより好ましい。繰り返し単位(a1)、繰り返し単位(a2)及び繰り返し単位(a3)の合計量が前記範囲であると、活物質やフィラーの分散性が良好となり、かつ、電極中に分散された重合体(A)同士の融着を抑制でき、密着性や電解液の浸透性が向上する。このため、良好な繰り返し充放電特性かつ良好な充放電耐久特性を示すようになる。
<不飽和カルボン酸エステル(後述の水酸基を有する不飽和カルボン酸エステルを除く。)に由来する繰り返し単位(a4)>
 重合体(A)は、不飽和カルボン酸エステルに由来する繰り返し単位(a4)を含有してもよい。繰り返し単位(a4)の含有割合は、重合体(A)中に含まれる繰り返し単位の合計を100質量%としたときに、0~60質量%であることが好ましい。繰り返し単位(a4)の含有割合の下限は、好ましくは1質量%であり、より好ましくは2質量%である。繰り返し単位(a4)の含有割合の上限は、好ましくは55質量%であり、より好ましくは50質量%である。重合体(A)が繰り返し単位(a4)を前記範囲で含有することにより、重合体(A)と電解液との親和性が良好となり、蓄電デバイス中でバインダーが電気抵抗成分となることによる内部抵抗の上昇を抑制できる場合がある。また、電解液を過大に吸収することによる密着性の低下を防ぐことができる場合がある。
 不飽和カルボン酸エステルの中でも、(メタ)アクリル酸エステルを好ましく使用することができる。(メタ)アクリル酸エステルの具体例としては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸n-アミル、(メタ)アクリル酸イソアミル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、ジ(メタ)アクリル酸エチレングリコール、ジ(メタ)アクリル酸プロピレングリコール、トリ(メタ)アクリル酸トリメチロールプロパン、テトラ(メタ)アクリル酸ペンタエリスリトール、ヘキサ(メタ)アクリル酸ジペンタエリスリトール、(メタ)アクリル酸アリル等が挙げられ、これらの中から選択される1種以上を使用することができる。中でも、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸シクロヘキシル、及びジ(メタ)アクリル酸エチレングリコールから選択される1種以上であることが好ましく、(メタ)アクリル酸メチルであることが特に好ましい。
<α,β-不飽和ニトリル化合物に由来する繰り返し単位(a5)>
 重合体(A)は、α,β-不飽和ニトリル化合物に由来する繰り返し単位(a5)を含有してもよい。繰り返し単位(a5)の含有割合は、重合体(A)中に含まれる繰り返し単位の合計を100質量%としたときに、0~60質量%であることが好ましい。繰り返し単位(a5)の含有割合の下限は、好ましくは0.5質量%であり、より好ましくは1質量%である。繰り返し単位(a5)の含有割合の上限は、好ましくは55質量%であり、より好ましくは50質量%である。重合体(A)が繰り返し単位(a5)を前記範囲で含有することにより、該重合体(A)の電解液への溶解を低減することが可能となり、電解液による密着性の低下を抑制できる場合がある。また、蓄電デバイス中で溶解した重合体成分が電気抵抗成分となることによる内部抵抗の上昇を抑制できる場合がある。
 α,β-不飽和ニトリル化合物としては、特に限定されないが、アクリロニトリル、メタクリロニトリル、α-クロロアクリロニトリル、α-エチルアクリロニトリル、シアン化ビニリデン等が挙げられ、これらの中から選択される1種以上を使用することができる。これらの中でも、アクリロニトリル及びメタクリロニトリルよりなる群から選択される1種以上が好ましく、アクリロニトリルが特に好ましい。
 重合体(A)が不飽和カルボン酸エステルに由来する繰り返し単位(a4)及びα,β-不飽和ニトリル化合物に由来する繰り返し単位(a5)の少なくとも一方を含有する場合、重合体(A)中に含まれる繰り返し単位の合計を100質量%としたときに、繰り返し単位(a1)、繰り返し単位(a2)、繰り返し単位(a4)及び繰り返し単位(a5)の合計量は、65質量%以上であることが好ましく、68質量%以上であることがより好ましい。繰り返し単位(a1)、繰り返し単位(a2)、繰り返し単位(a4)及び繰り返し単位(a5)の合計量が前記範囲であると、活物質やフィラーの分散性が良好となり、かつ、電極中に分散された重合体(A)同士の融着を抑制でき、密着性や電解液の浸透性が向上する場合がある。このため、良好な繰り返し充放電特性かつ良好な充放電耐久特性を示すようになる。
<(メタ)アクリルアミドに由来する繰り返し単位(a6)>
 重合体(A)は、(メタ)アクリルアミドに由来する繰り返し単位(a6)を含有してもよい。繰り返し単位(a6)の含有割合は、重合体(A)中に含まれる繰り返し単位の合計を100質量%としたときに、0~10質量%であることが好ましい。繰り返し単位(a6)の含有割合の下限は、好ましくは1質量%であり、より好ましくは2質量%である。繰り返し単位(a6)の含有割合の上限は、好ましくは8質量%であり、より好ましくは5質量%である。重合体(A)が繰り返し単位(a6)を前記範囲で含有することにより、スラリー中の活物質やフィラーの分散性が良好となる場合がある。また、得られる活物質層の柔軟性が適度となり、集電体と活物質層との密着性が向上する場合がある。さらに、グラファイトのような炭素材料やケイ素材料を含有する活物質同士の結合能力を高めることができるため、柔軟性や集電体に対する密着性がより良好な活物質層が得られる場合がある。
 (メタ)アクリルアミドとしては、特に限定されないが、アクリルアミド、メタクリルアミド、N-イソプロピルアクリルアミド、N,N-ジメチルアクリルアミド、N,N-ジメチルメタクリルアミド、N,N-ジエチルアクリルアミド、N,N-ジエチルメタクリルアミド、N,N-ジメチルアミノプロピルアクリルアミド、N,N-ジメチルアミノプロピルメタクリルアミド、N-メチロールアクリルアミド、N-メチロールメタクリルアミド、ジアセトンアクリルアミド、マレイン酸アミド、アクリルアミドtert-ブチルスルホン酸等が挙げられ、これらの中から選択される1種以上を使用することができる。
<水酸基を有する不飽和カルボン酸エステルに由来する繰り返し単位(a7)>
 重合体(A)は、水酸基を有する不飽和カルボン酸エステルに由来する繰り返し単位(a7)を含有してもよい。繰り返し単位(a7)の含有割合は、重合体(A)中に含まれる繰り返し単位の合計を100質量%としたときに、0~20質量%であることが好ましい。繰り返し単位(a7)の含有割合の下限は、好ましくは1質量%であり、より好ましくは2質量%である。繰り返し単位(a7)の含有割合の上限は、好ましくは15質量%であり、より好ましくは10質量%である。重合体(A)が繰り返し単位(a7)を前記範囲で含有することにより、後述する蓄電デバイス電極用スラリーを作製する際に、活物質を凝集させることなく、活物質が良好に分散されたスラリーを作製しやすくなる場合がある。これにより、蓄電デバイス電極用スラリーを塗布及び乾燥させて作製された活物質層中の重合体(A)が均一に近い分布となるので、結着欠陥が非常に少ない蓄電デバイス電極を作製できる場合がある。すなわち、活物質同士の結合能力及び活物質層と集電体との密着能力を飛躍的に向上できる場合がある。
 水酸基を有する不飽和カルボン酸エステルとしては、特に限定されないが、(メタ)アクリル酸-ヒドロキシメチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸5-ヒドロキシペンチル、(メタ)アクリル酸6-ヒドロキシヘキシル、グリセリンモノ(メタ)アクリレート、及びグリセリンジ(メタ)アクリレート等が挙げられ、これらの中から選択される1種以上を使用することができる。
<スルホン酸基を有する化合物に由来する繰り返し単位(a8)>
 重合体(A)は、スルホン酸基を有する化合物に由来する繰り返し単位(a8)を含有してもよい。繰り返し単位(a8)の含有割合は、重合体(A)中に含まれる繰り返し単位の合計を100質量%としたときに、0~10質量%であることが好ましい。繰り返し単位(a8)の含有割合の下限は、好ましくは0.5質量%であり、より好ましくは1質量%である。繰り返し単位(a8)の含有割合の上限は、好ましくは8質量%であり、より好ましくは5質量%である。
 スルホン酸基を有する化合物としては、特に限定されないが、ビニルスルホン酸、スチレンスルホン酸、アリルスルホン酸、スルホエチル(メタ)アクリレート、スルホプロピル(メタ)アクリレート、スルホブチル(メタ)アクリレート、2-アクリルアミド-2-メチルプロパンスルホン酸、2-ヒドロキシ-3-アクリルアミドプロパンスルホン酸、3-アリロキシ-2-ヒドロキシプロパンスルホン酸等の化合物、及びこれらの塩等が挙げられ、これらの中から選択される1種以上を使用することができる。
<カチオン性単量体に由来する繰り返し単位>
 重合体(A)は、カチオン性単量体に由来する繰り返し単位を含有してもよい。カチオン性単量体としては、特に限定されないが、第二級アミン(塩)、第三級アミン(塩)及び第四級アンモニウム塩よりなる群から選択される少なくとも1種の単量体であることが好ましい。これらカチオン性単量体の具体例としては、特に限定されないが、(メタ)アクリル酸2-(ジメチルアミノ)エチル、ジメチルアミノエチル(メタ)アクリレート塩化メチル4級塩、(メタ)アクリル酸2-(ジエチルアミノ)エチル、(メタ)アクリル酸3-(ジメチルアミノ)プロピル、(メタ)アクリル酸3-(ジエチルアミノ)プロピル、(メタ)アクリル酸4-(ジメチルアミノ)フェニル、(メタ)アクリル酸2-[(3,5-ジメチルピラゾリル)カルボニルアミノ]エチル、(メタ)アクリル酸2-(0-[1’-メチルプロピリデンアミノ]カルボキシアミノ)エチル、(メタ)アクリル酸2-(1-アジリジニル)エチル、メタクロイルコリンクロリド、イソシアヌル酸トリス(2-アクリロイルオキシエチル)、2-ビニルピリジン、キナルジンレッド、1,2-ジ(2-ピリジル)エチレン、4’-ヒドラジノ-2-スチルバゾール二塩酸塩水和物、4-(4-ジメチルアミノスチリル)キノリン、1-ビニルイミダゾール、ジアリルアミン、ジアリルアミン塩酸塩、トリアリルアミン、ジアリルジメチルアンモニウムクロリド、ジクロルミド、N-アリルベンジルアミン、N-アリルアニリン、2,4-ジアミノ-6-ジアリルアミノ-1,3,5-トリアジン、N-trans-シンナミル-N-メチル-(1-ナフチルメチル)アミン塩酸塩、trans-N-(6,6-ジメチル-2-ヘプテン-4-イニル)-N-メチル-1-ナフチルメチルアミン塩酸塩等が挙げられ、これらの中から選択される1種以上を使用することができる。
 1.1.2.重合体(A)の物性
 1.1.2.1.動的粘弾性
 重合体(A)の動的粘弾性を測定したときに、tanδ(損失弾性率/貯蔵弾性率)のピークトップが少なくとも3個あり、-50℃以上15℃未満の範囲に1個(tanδ1)、15℃以上85℃未満の範囲に1個(tanδ2)、85℃以上150℃以下の範囲に1個(tanδ3)存在する。
 この動的粘弾性測定における測定サンプルは、重合体(A)のフィルムである。重合体(A)のフィルムは、重合体(A)を40℃で24時間乾燥させて、1.0±0.3mmの厚みの均一なフィルムを作製し、このフィルムを真空乾燥機内で160℃、30分間乾燥させた後、10mm×10mmの短冊状に切り出したものである。次いで、下記の動的粘弾性測定装置を用いて、パラレルプレート(製品名「PP-12」)で測定サンプルを固定し、下記測定条件により-70℃~180℃の温度領域で測定する。
・動的粘弾性測定装置:Anton Paar社製、型式「MCR 301」
・測定条件:せん断モード、測定周波数1.0Hz、昇温スピード5℃/min
 本実施形態で使用される重合体(A)は、tanδ1の温度において粘性が高いことを示しており、この粘性の高さにより密着性を担保することができると考えられる。また、tanδ3の温度において高架橋、すなわち重合体(A)が硬いことを示している。重合体(A)が硬いことで、電極作成時に他のバインダーのように潰れずに粒子形状を維持することができるため、活物質への電解液の浸透性を高めることができると考えられる。さらに、tanδ2の温度においては、tanδ2を形成するポリマーがtanδ1を形成するポリマー及びtanδ3を形成するポリマーのそれぞれと相溶性を持つ。このため、各ポリマー層に界面が生じにくくなり、プレス時にかかる応力によるtanδ3を形成するポリマー層の破壊(粒子構造の破壊)が起こらなくなる。すなわち、重合体(A)の粒子構造の維持が可能となるため、密着性と電解液の浸透性を担保することができると考えられる。このように、本実施形態で使用される重合体(A)は、活物質への電解液の浸透性を高めることで内部抵抗を低減できるので、良好な繰り返し充放電特性を示す電極を作製することができる。また、本実施形態で使用される重合体(A)は、密着性を向上できるので、高温下での良好な充放電耐久特性を示す電極を作製することができる。なお、本明細書において、破壊された粒子とは、隣り合う粒子との界面が圧着により確認不可の場合をいう。
 重合体(A)の動的粘弾性測定におけるtanδ1は、-50℃以上15℃未満の温度範囲にあるが、-40℃以上10℃以下の温度範囲にあることが好ましく、-35℃以上5℃以下の温度範囲にあることがより好ましい。また、tanδ1は、上記温度範囲に1個存在することが好ましい。上記温度範囲にtanδ1が1個存在することは、同温度範囲において粘性が高いことを示している。この粘性の高さにより、同温度範囲における重合体(A)の高い結着力を維持することができ、良好な密着性を発現できると考えられる。
 重合体(A)の動的粘弾性測定におけるtanδ2は、15℃以上85℃未満の温度範囲にあるが、20℃以上80℃以下の温度範囲にあることが好ましく、25℃以上75℃以下の温度範囲にあることがより好ましい。また、tanδ2は、上記温度範囲に1個存在することが好ましい。上記温度範囲にtanδ2が1個存在することは、同温度範囲において、tanδ1を形成するポリマー及びtanδ3を形成するポリマーを相溶化させるポリマーが形成されていることを示している。同温度範囲における重合体(A)の相溶性が高いことで、重合体(A)の粒子構造の維持が可能となり、密着性と内部抵抗の低減を担保することができると考えられる。
 重合体(A)の動的粘弾性測定におけるtanδ3は、85℃以上150℃以下の温度範囲にあるが、90℃以上140℃以下の温度範囲にあることが好ましく、95℃以上135℃以下の温度範囲にあることがより好ましい。また、tanδ3は、上記温度範囲に1個存在することが好ましい。上記温度範囲にtanδ3が1個存在することは、同温度範囲において高Tgのポリマーが形成されていることを示している。同温度範囲における重合体(A)の高Tgのポリマー成分が多いことで、重合体(A)の硬さを発現し、内部抵抗を低減できると考えられる。
 重合体(A)の動的粘弾性測定におけるtanδのピークトップの温度の調整方法としては、重合体(A)重合時の単量体組成を調整する方法等が挙げられる。
 重合体(A)の動的粘弾性測定におけるtanδ1のピーク強度は、好ましくは0.01~0.15であり、より好ましくは0.01~0.125であり、特に好ましくは0.01~0.1である。重合体(A)のtanδ1のピーク強度が前記範囲にあることは、重合体(A)が、粘性を有するが硬すぎず、電極構造の保持に十分な結着力を有することを示している。
 重合体(A)の動的粘弾性測定におけるtanδ2のピーク強度は、好ましくは0.05~0.2であり、より好ましくは0.06~0.19であり、特に好ましくは0.07~0.18である。重合体(A)のtanδ2のピーク強度が前記範囲にあることは、重合体(A)が、粘性を持ちつつも、粒子同士の融着を抑制するのに十分な硬さを有することを示している。
 重合体(A)の動的粘弾性測定におけるtanδ3のピーク強度は、好ましくは0.05~0.5であり、より好ましくは0.07~0.45であり、特に好ましくは0.1~0.4である。重合体(A)のtanδ3のピーク強度が前記範囲にあることは、重合体(A)が、粒子同士の融着を抑制するのに十分な硬さを有することを示している。
 重合体(A)の動的粘弾性測定におけるtanδ1のピーク強度、tanδ2のピーク強度、及びtanδ3のピーク強度は、下記式(1)及び下記式(2)の関係を満たすことが好ましい。
 tanδ2のピーク強度/tanδ1のピーク強度≧1.0   (1)
 tanδ3のピーク強度/tanδ2のピーク強度≧1.0   (2)
 重合体(A)の動的粘弾性測定におけるtanδ1のピーク強度、tanδ2のピーク強度、及びtanδ3のピーク強度が上記式(1)及び上記式(2)の関係を満たすことは、重合体(A)の粘性と硬さのバランスが良好であること、すなわち電極構造に必要な結着力を持つこと、かつ、粒子同士の融着を抑制することが可能であることを示していると推察できる。
 更に、重合体(A)の動的粘弾性測定におけるtanδ1のピーク強度、tanδ2のピーク強度、及びtanδ3のピーク強度は、
 tanδ1のピーク強度<tanδ2のピーク強度<tanδ3のピーク強度
の関係を満たすことが好ましい。この関係を満たすことは、重合体(A)の粘性と硬さのバランスが良好であること、すなわち電極構造に必要な結着力を持つこと、かつ、粒子同士の融着を抑制することが可能であることを示していると推察できる。
 重合体(A)の動的粘弾性測定におけるtanδのピーク強度の調整方法としては、重合体(A)のガラス転移温度やゲル含有量の変更、又は重合体(A)重合時の単量体添加方法の変更等が挙げられる。
 1.1.2.2.数平均粒子径
 重合体(A)が粒子である場合、該粒子の数平均粒子径は、好ましくは50nm以上500nm以下であり、より好ましくは60nm以上450nm以下であり、特に好ましくは70nm以上400nm以下である。重合体(A)の粒子の数平均粒子径が前記範囲にあると、活物質の表面に重合体(A)の粒子が吸着しやすくなるので、活物質の移動に伴って重合体(A)の粒子も追従して移動することができる。その結果、マイグレーションすることを抑制できるので、電気的特性の劣化を低減できる場合がある。
 なお、重合体(A)の粒子の数平均粒子径は、透過型電子顕微鏡(TEM)により観察した粒子50個の画像より得られる粒子径の平均値から算出することができる。透過型電子顕微鏡としては、例えば株式会社日立ハイテクノロジーズ製の「H-7650」等が挙げられる。
 重合体(A)が粒子である場合、2以上の異なる相で分離している単一粒子であることが好ましい。相が複数ある場合、各相は化学結合により相互結合されていてもよいし、物理的吸着されていてもよい。また、好ましくは3相の玉ねぎのような立体構造を形成する。
 3相である場合、粒子の中心にある相がtanδ1、中間相がtanδ2、最外相がtanδ3となることが好ましい。この関係を満たすことは、重合体(A)の粘性と硬さのバランスが良好であること、すなわち電極構造に必要な結着力を持つこと、かつ、粒子同士の融着を抑制することが可能であることを示していると推察できる。
 1.1.2.3.電解液膨潤度
 重合体(A)の電解液膨潤度は、好ましくは150~450質量%であり、より好ましくは160~440質量%であり、特に好ましくは170~430質量%である。電解液膨潤度が前記範囲内にあると、重合体(A)は電解液に対して適度に膨潤することができる。その結果、溶媒和したリチウムイオンが容易に活物質へ到達することができ、電極の内部抵抗を低減させて、より良好な繰り返し充放電特性を実現できる。また、前記範囲の電解液膨潤度であれば、大きな体積変化が発生しないため密着性にも優れる。重合体(A)の電解液膨潤度は、後述の実施例に記載された方法により測定することができる。
 1.1.2.4.負極塗工層中での重合体(A)の破壊粒子数
 負極塗工層中では、重合体(A)の粒子が粒子形状を保持していることが好ましい。負極塗工層中での重合体(A)の破壊粒子数は、重合体(A)の粒子100個あたり、好ましくは30個以下であり、より好ましくは20個以下であり、特に好ましくは10個以下である。重合体(A)の破壊粒子数が前記範囲内にあると、負極塗工層中で粒子形状を保持している重合体(A)の粒子数が十分に多いため、活物質との結着を維持できるとともに、電解液の導通パスを形成することができる。すなわち、活物質同士の乖離を抑制でき、活物質層内部の導電ネットワークを維持できるので、高温下においても充放電耐久特性に優れる蓄電デバイス負極が得られる。
 1.1.3.重合体(A)の製造方法
 重合体(A)の製造方法については、特に限定されないが、例えば公知の乳化剤(界面活性剤)、連鎖移動剤、重合開始剤などの存在下で行う乳化重合法によることができる。乳化剤(界面活性剤)、連鎖移動剤、及び重合開始剤としては、特許第5999399号公報等に記載された化合物を用いることができる。
 重合体(A)を合成するための乳化重合法は、一段重合で行ってもよく、二段重合以上の多段重合で行ってもよい。
 重合体(A)の合成を一段重合によって行う場合、上記の単量体の混合物を、適当な乳化剤、連鎖移動剤、重合開始剤などの存在下で、好ましくは40~80℃において、好ましくは4~36時間の乳化重合によることができる。
 重合体(A)の合成を二段重合によって行う場合、各段階の重合は以下のように設定することが好ましい。
 一段目重合に使用する単量体の使用割合は、単量体の全質量(一段目重合に使用する単量体の質量と二段目重合に使用する単量体の質量との合計)に対して、20~99質量%の範囲とすることが好ましく、25~99質量%の範囲とすることがより好ましい。一段目重合をこのような単量体の使用割合で行うことにより、分散安定性に優れ、凝集物が生じ難い重合体(A)の粒子を得ることができるとともに、蓄電デバイス用バインダー組成物の経時的な粘度上昇も抑制されることとなり好ましい。
 二段目重合に使用する単量体の種類及びその使用割合は、一段目重合に使用する単量体の種類及びその使用割合と同じであってもよく、異なっていてもよい。
 各段階の重合条件は、得られる重合体(A)の粒子の分散性の観点から、以下のようにすることが好ましい。
・一段目重合;好ましくは40~80℃の温度:好ましくは2~36時間の重合時間:好ましくは50質量%以上、より好ましくは60質量%以上の重合転化率。
・二段目重合;好ましくは40~80℃の温度;好ましくは2~18時間の重合時間。
 重合体(A)の合成を三段重合によって行う場合、各段階の重合は以下のように設定することが好ましい。
 一段目重合に使用する単量体の使用割合は、単量体の全質量(一段目重合に使用する単量体の質量と二段目重合に使用する単量体の質量と三段目重合に使用する単量体の質量との合計)に対して、20~100質量%の範囲とすることが好ましく、25~100質量%の範囲とすることがより好ましい。一段目重合をこのような単量体の使用割合で行うことにより、分散安定性に優れ、凝集物が生じ難い重合体(A)の粒子を得ることができるとともに、蓄電デバイス用バインダー組成物の経時的な粘度上昇も抑制されることとなり好ましい。
 二段目重合に使用する単量体の種類及びその使用割合は、一段目重合に使用する単量体の種類及びその使用割合と同じであってもよく、異なっていてもよい。
 三段目重合に使用する単量体の種類及びその使用割合は、一段目重合に使用する単量体の種類及びその使用割合、二段目重合に使用する単量体の種類及びその使用割合と同じであってもよく、異なっていてもよい。
 各段階の重合条件は、得られる重合体(A)の粒子の分散性の観点から、以下のようにすることが好ましい。
・一段目重合;好ましくは40~80℃の温度:好ましくは2~36時間の重合時間:好ましくは50質量%以上、より好ましくは60質量%以上の重合転化率。
・二段目重合;好ましくは40~80℃の温度;好ましくは2~18時間の重合時間。
・三段目重合;好ましくは40~80℃の温度;好ましくは2~9時間の重合時間。
 乳化重合における全固形分濃度を50質量%以下とすることにより、得られる重合体(A)の粒子の分散安定性が良好な状態で重合反応を進行させることができる。この全固形分濃度は、好ましくは48質量%以下であり、より好ましくは45質量%以下である。
 重合体(A)の合成を一段重合として行う場合であっても、多段重合法による場合であっても、乳化重合終了後には重合混合物に中和剤を添加することにより、pHを4.5~10.5程度、好ましくは5~10、より好ましくは5.5~9.5に調整することが好ましい。ここで使用する中和剤としては、特に限定されないが、例えば水酸化ナトリウム、水酸化カリウムなどの金属水酸化物;アンモニア等が挙げられる。上記のpH範囲に設定することにより、重合体(A)の安定性が良好となる。中和処理を行った後に、重合混合物を濃縮することにより、重合体(A)の良好な安定性を維持しながら固形分濃度を高くすることができる。
 1.1.4.重合体(A)の含有割合
 本実施形態に係る蓄電デバイス用バインダー組成物中の重合体(A)の含有割合は、重合体成分100質量%中、好ましくは10~100質量%であり、より好ましくは20~95質量%であり、特に好ましくは25~90質量%である。ここで、重合体成分には、重合体(A)、後述する重合体(A)以外の重合体、及び増粘剤等が含まれる。
 1.2.液状媒体(B)
 本実施形態に係る蓄電デバイス用バインダー組成物は、液状媒体(B)を含有する。液状媒体(B)としては、水を含有する水系媒体であることが好ましく、水であることがより好ましい。上記水系媒体には、水以外の非水系媒体を含有させることができる。この非水系媒体としては、例えばアミド化合物、炭化水素、アルコール、ケトン、エステル、アミン化合物、ラクトン、スルホキシド、スルホン化合物などを挙げることができ、これらの中から選択される1種以上を使用することができる。本実施形態に係る蓄電デバイス用バインダー組成物は、液状媒体(B)として水系媒体を使用することにより、環境に対して悪影響を及ぼす程度が低くなり、取扱作業者に対する安全性も高くなる。
 水系媒体中に含まれる非水系媒体の含有割合は、水系媒体100質量%中、10質量%以下であることが好ましく、5質量%以下であることがより好ましく、実質的に含有しないことが特に好ましい。ここで、「実質的に含有しない」とは、液状媒体として非水系媒体を意図的に添加しないという程度の意味であり、蓄電デバイス用バインダー組成物を調製する際に不可避的に混入する非水系媒体を含んでいてもよい。
 1.3.その他の添加剤
 本実施形態に係る蓄電デバイス用バインダー組成物は、必要に応じて上述した成分以外の添加剤を含有することができる。このような添加剤としては、例えば重合体(A)以外の重合体、防腐剤、増粘剤等が挙げられる。
 1.3.1.重合体(A)以外の重合体
 本実施形態に係る蓄電デバイス用バインダー組成物は、重合体(A)以外の重合体を含有してもよい。このような重合体としては、特に限定されないが、不飽和カルボン酸エステル又はこれらの誘導体を構成単位として含むアクリル系重合体、PVDF(ポリフッ化ビニリデン)等のフッ素系重合体等が挙げられる。これらの重合体は、1種単独で用いてもよく、2種以上併用してもよい。これらの重合体を含有することにより、柔軟性や密着性がより向上する場合がある。
 1.3.2.防腐剤
 本実施形態に係る蓄電デバイス用バインダー組成物は、防腐剤を含有してもよい。防腐剤を含有することにより、蓄電デバイス用バインダー組成物を貯蔵した際に、細菌や黴などが増殖して異物が発生することを抑制できる場合がある。防腐剤の具体例としては、特許第5477610号公報等に記載された化合物が挙げられる。
 1.3.3.増粘剤
 本実施形態に係る蓄電デバイス用バインダー組成物は、増粘剤を含有してもよい。増粘剤を含有することにより、スラリーの塗布性や得られる蓄電デバイスの充放電特性等をさらに向上できる場合がある。
 増粘剤の具体例としては、例えばカルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロース等のセルロース化合物;ポリ(メタ)アクリル酸;前記セルロース化合物又は前記ポリ(メタ)アクリル酸のアンモニウム塩もしくはアルカリ金属塩;ポリビニルアルコール、変性ポリビニルアルコール、エチレン-ビニルアルコール共重合体等のポリビニルアルコール系(共)重合体;(メタ)アクリル酸、マレイン酸、フマル酸等の不飽和カルボン酸とビニルエステルとの共重合体の鹸化物等の水溶性ポリマーを挙げることができる。これらの中でも、カルボキシメチルセルロースのアルカリ金属塩、ポリ(メタ)アクリル酸のアルカリ金属塩等が好ましい。
 これら増粘剤の市販品としては、例えばCMC1120、CMC1150、CMC2200、CMC2280、CMC2450(以上、株式会社ダイセル製)等のカルボキシメチルセルロースのアルカリ金属塩を挙げることができる。
 本実施形態に係る蓄電デバイス用バインダー組成物が増粘剤を含有する場合、増粘剤の含有割合は、蓄電デバイス用バインダー組成物の全固形分量100質量%に対して、5質量%以下であることが好ましく、0.1~3質量%であることがより好ましい。
 1.4.蓄電デバイス用バインダー組成物のpH
 本実施形態に係る蓄電デバイス用バインダー組成物のpHは、好ましくは5~10であり、より好ましくは6~9.5であり、特に好ましくは6.5~9である。pHが前記範囲内にあると、レベリング性不足や液ダレ等の問題の発生を抑制することができ、良好な電気的特性及び密着性を両立させた蓄電デバイス電極を製造することが容易となる。
 本明細書における「pH」とは、以下のようにして測定される物性をいう。25℃で、pH標準液として中性リン酸塩標準液及びほう酸塩標準液で校正したガラス電極を用いたpH計で、JIS Z8802:2011に準拠して測定した値である。このようなpH計としては、例えば東亜ディーケーケー株式会社製「HM-7J」や株式会社堀場製作所製「D-51」等が挙げられる。
 なお、蓄電デバイス用バインダー組成物のpHは、重合体(A)を構成する単量体組成に影響を受けることを否定しないが、単量体組成のみで定まるものではないことを付言しておく。すなわち、一般的に同じ単量体組成であっても重合条件等で蓄電デバイス用バインダー組成物のpHが変化することが知られており、本願明細書の実施例はその一例を示しているに過ぎない。
 例えば、同じ単量体組成であっても、重合反応液に最初から不飽和カルボン酸を全て仕込み、その後他の単量体を順次添加して加える場合と、不飽和カルボン酸以外の単量体を重合反応液へ仕込み、最後に不飽和カルボン酸を添加する場合とでは、得られる重合体の表面に露出する不飽和カルボン酸に由来するカルボキシ基の量は異なる。このように重合方法で単量体を加える順番を変更するだけでも、蓄電デバイス用バインダー組成物のpHは大きく異なると考えられる。
 2.蓄電デバイス用スラリー
 本発明の一実施形態に係る蓄電デバイス用スラリーは、上述の蓄電デバイス用バインダー組成物を含有するものである。上述の蓄電デバイス用バインダー組成物は、充放電に伴って発生するデンドライトに起因する短絡を抑制するための保護膜を作製するための材料として使用することもできるし、活物質同士の結合能力及び活物質と集電体との密着能力並びに粉落ち耐性を向上させた蓄電デバイス電極(活物質層)を作製するための材料として使用することもできる。そのため、保護膜を作製するための蓄電デバイス用スラリー(以下、「保護膜用スラリー」ともいう。)と、蓄電デバイス電極の活物質層を作製するための蓄電デバイス用スラリー(以下、「蓄電デバイス電極用スラリー」ともいう。)と、に分けて説明する。
 2.1.保護膜用スラリー
 「保護膜用スラリー」とは、これを電極又はセパレータの表面もしくはその両方に塗布した後、乾燥させて、電極又はセパレータの表面もしくはその両方に保護膜を作製するために用いられる分散液のことをいう。本実施形態に係る保護膜用スラリーは、上述した蓄電デバイス用バインダー組成物のみから構成されていてもよく、無機フィラーをさらに含有してもよい。以下、本実施形態に係る保護膜用スラリーに含まれる各成分について詳細に説明する。なお、蓄電デバイス用バインダー組成物については、上述した通りであるので説明を省略する。
 2.1.1.無機フィラー
 本実施形態に係る保護膜用スラリーは、無機フィラーを含有することにより、保護膜のタフネスを向上させることができる。無機フィラーとしては、シリカ、酸化チタン(チタニア)、酸化アルミニウム(アルミナ)、酸化ジルコニウム(ジルコニア)、及び酸化マグネシウム(マグネシア)よりなる群から選択される少なくとも1種の無機酸化物粒子を用いることが好ましい。これらの中でも、保護膜のタフネスをより向上させる観点から、酸化チタン粒子又は酸化アルミニウム粒子が好ましい。また、酸化チタンとしては、ルチル型の酸化チタンがより好ましい。
 無機フィラーの平均粒子径は、1μm以下であることが好ましく、0.1~0.8μmであることがより好ましい。なお、無機フィラーの平均粒子径は、多孔質膜であるセパレータの平均孔径よりも大きいことが好ましい。これにより、セパレータへのダメージを軽減し、無機フィラーがセパレータの微多孔に詰まることを防ぐことができる。
 本実施形態に係る保護膜用スラリーは、無機フィラー100質量部に対して、上述の蓄電デバイス用バインダー組成物が、固形分換算で0.1~20質量部含有されていることが好ましく、1~10質量部含有されていることがより好ましい。蓄電デバイス用バインダー組成物の含有割合が前記範囲であることにより、保護膜のタフネスとリチウムイオンの透過性とのバランスが良好となり、その結果、得られる蓄電デバイスの抵抗上昇率をより低減することができる。
 2.1.2.液状媒体
 本実施形態に係る保護膜用スラリーには、蓄電デバイス用バインダー組成物からの持ち込み分に加えて、更に液状媒体を添加してもよい。液状媒体の添加量は、塗工方法等に応じて最適なスラリー粘度が得られるように、必要に応じて調整することができる。このような液状媒体としては、上記「1.2.液状媒体(B)」の項に記載した材料が挙げられる。
 2.1.3.その他の成分
 本実施形態に係る保護膜用スラリーは、上記「1.3.その他の添加剤」の項に記載した材料を必要に応じて適量用いることができる。
 2.2.蓄電デバイス電極用スラリー
 「蓄電デバイス電極用スラリー」とは、これを集電体の表面に塗布した後、乾燥させて、集電体表面上に活物質層を作製するために用いられる分散液のことをいう。本実施形態に係る蓄電デバイス電極用スラリーは、上述の蓄電デバイス用バインダー組成物と、活物質と、を含有する。
 一般的に、蓄電デバイス電極用スラリーは、密着性を向上させるために、SBR系共重合体等のバインダー成分と、カルボキシメチルセルロース等の増粘剤とを含有することが多い。一方、本実施形態に係る蓄電デバイス電極用スラリーは、重合体成分として上述した重合体(A)のみを含有する場合であっても密着性を向上させることができる。もちろん、本実施形態に係る蓄電デバイス電極用スラリーは、更に密着性を向上させるために、重合体(A)以外の重合体や増粘剤を含有してもよい。以下、本実施形態に係る蓄電デバイス電極用スラリーに含まれる成分について説明する。
 2.2.1.重合体(A)
 重合体(A)の組成、物性、製造方法等については、上述した通りであるので説明を省略する。
 本実施形態に係る蓄電デバイス電極用スラリー中の重合体成分の含有割合は、活物質100質量部に対し、好ましくは0.5~10質量部であり、より好ましくは1~8質量部であり、さらに好ましくは1~7質量部であり、特に好ましくは1.5~6質量部である。重合体成分の含有割合が前記範囲にあると、スラリー中の活物質の分散性が良好となり、スラリーの塗布性も優れたものとなる。ここで、重合体成分には、重合体(A)、必要に応じて添加される重合体(A)以外の重合体、及び増粘剤等が含まれる。
 2.2.2.活物質
 本実施形態に係る蓄電デバイス電極用スラリーに使用される活物質としては、例えば炭素材料、ケイ素材料、リチウム原子を含む酸化物、鉛化合物、錫化合物、砒素化合物、アンチモン化合物、アルミニウム化合物、ポリアセン等の導電性高分子、A(但し、Aはアルカリ金属又は遷移金属、Bはコバルト、ニッケル、アルミニウム、スズ、マンガン等の遷移金属から選択される少なくとも1種、Oは酸素原子を表し、X、Y及びZはそれぞれ1.10>X>0.05、4.00>Y>0.85、5.00>Z>1.5の範囲の数である。)で表される複合金属酸化物や、その他の金属酸化物等が挙げられる。これらの具体例としては、特許第5999399号公報等に記載された化合物が挙げられる。
 本実施形態に係る蓄電デバイス電極用スラリーは、正極及び負極のいずれの蓄電デバイス電極を作製する際にも使用することができ、正極及び負極の両方に使用することが好ましい。
 正極活物質としてリン酸鉄リチウムを使用する場合、充放電特性が十分ではなく密着性が劣るという課題があった。リン酸鉄リチウムは、微細な一次粒径を有し、その二次凝集体であることが知られており、充放電を繰り返す際に活物質層中で凝集が崩壊し活物質同士の乖離を引き起こし、集電体からの剥離や、活物質層内部の導電ネットワークが寸断されやすいことが要因の一つであると考えられる。
 この点において、本実施形態に係る蓄電デバイス電極用スラリーを用いて作製された蓄電デバイス電極は、正極活物質としてリン酸鉄リチウムを使用した場合でも上述のような問題が発生することなく、良好な電気的特性を示すことができる。この理由としては、重合体(A)がリン酸鉄リチウムを強固に結着できると同時に、充放電中においてもリン酸鉄リチウムを強固に結着させた状態を維持できるからであると考えられる。
 一方、負極を作製する場合には、上記例示した活物質の中でもケイ素材料を含有するものであることが好ましい。ケイ素材料は単位重量当たりのリチウムの吸蔵量がその他の活物質と比較して大きいことから、負極活物質としてのケイ素材料を含有することにより、得られる蓄電デバイスの蓄電容量を高めることができ、その結果、蓄電デバイスの出力及びエネルギー密度を高くすることができる。
 また、負極活物質としては、ケイ素材料と炭素材料の混合物であることがより好ましい。炭素材料は充放電に伴う体積変化がケイ素材料よりも小さいので、負極活物質としてケイ素材料と炭素材料の混合物を使用することにより、ケイ素材料の体積変化の影響を緩和することができ、活物質層と集電体との密着能力をより向上させることができる。
 シリコン(Si)を活物質として使用する場合、シリコンは、高容量である一方、リチウムを吸蔵する際に大きな体積変化を生じる。このため、ケイ素材料は膨張と収縮の繰り返しによって微粉化し、集電体からの剥離や、活物質同士の乖離を引き起こし、活物質層内部の導電ネットワークが寸断されやすいという性質がある。この性質により、蓄電デバイスの充放電耐久特性が短時間で極端に劣化してしまうのである。
 この点において、本実施形態に係る蓄電デバイス電極用スラリーを用いて作製された蓄電デバイス電極は、ケイ素材料を使用した場合でも上述のような問題が発生することなく、良好な電気的特性を示すことができる。この理由としては、重合体(A)がケイ素材料を強固に結着させることができると同時に、リチウムを吸蔵することによりケイ素材料が体積膨張しても重合体(A)が伸び縮みしてケイ素材料を強固に結着させた状態を維持できるからであると考えられる。
 活物質100質量%中に占めるケイ素材料の含有割合は、1質量%以上とすることが好ましく、2~50質量%とすることがより好ましく、3~45質量%とすることが更に好ましく、10~40質量%とすることが特に好ましい。活物質100質量%中に占めるケイ素材料の含有割合が前記範囲であると、蓄電デバイスの出力及びエネルギー密度の向上と充放電耐久特性とのバランスに優れた蓄電デバイスが得られる。
 活物質の形状は、粒子状であることが好ましい。活物質の平均粒子径は、0.1~100μmであることが好ましく、1~20μmであることがより好ましい。ここで、活物質の平均粒子径とは、レーザー回折法を測定原理とする粒度分布測定装置を用いて粒度分布を測定し、その粒度分布から算出される体積平均粒子径のことをいう。このようなレーザー回折式粒度分布測定装置としては、例えばHORIBA LA-300シリーズ、HORIBA LA-920シリーズ(以上、株式会社堀場製作所製)等が挙げられる。
 2.2.3.その他の成分
 本実施形態に係る蓄電デバイス電極用スラリーには、上述した成分以外に、必要に応じてその他の成分を添加してもよい。このような成分としては、例えば重合体(A)以外の重合体、増粘剤、液状媒体、導電付与剤、pH調整剤、腐食防止剤、セルロースファイバー等が挙げられる。重合体(A)以外の重合体及び増粘剤としては、上記「1.3.その他の添加剤」の項で例示した化合物の中から適宜選択して、同様の目的及び含有割合で用いることができる。
<液状媒体>
 本実施形態に係る蓄電デバイス電極用スラリーには、蓄電デバイス用バインダー組成物からの持ち込み分に加えて、液状媒体を更に添加してもよい。添加される液状媒体は、蓄電デバイス用バインダー組成物に含まれていた液状媒体(B)と同種であってもよく、異なってもよいが、上記「1.2.液状媒体(B)」の項で例示した液状媒体の中から選択して使用されることが好ましい。
 本実施形態に係る蓄電デバイス電極用スラリーにおける液状媒体(蓄電デバイス用バインダー組成物からの持ち込み分を含む。)の含有割合は、スラリー中の固形分濃度(スラリー中の液状媒体以外の成分の合計質量がスラリーの全質量に占める割合をいう。以下同じ。)が、30~70質量%となる割合とすることが好ましく、40~60質量%となる割合とすることがより好ましい。
<導電付与剤>
 本実施形態に係る蓄電デバイス電極用スラリーには、導電性を付与するとともに、リチウムイオンの出入りによる活物質の体積変化を緩衝させることを目的として、導電付与剤を更に添加してもよい。
 導電付与剤の具体例としては、活性炭、アセチレンブラック、ケッチェンブラック、ファーネスブラック、黒鉛、炭素繊維、フラーレン、カーボンナノチューブ等のカーボンが挙げられる。これらの中でも、アセチレンブラック、ケッチェンブラック、又はカーボンナノチューブを好ましく使用することができる。導電付与剤の含有割合は、活物質100質量部に対して、好ましくは20質量部以下であり、より好ましくは1~15質量部であり、特に好ましくは2~10質量部である。
<pH調整剤・腐食防止剤>
 本実施形態に係る蓄電デバイス電極用スラリーには、活物質の種類に応じて集電体の腐食を抑制することを目的として、pH調整剤及び/又は腐食防止剤を更に添加してもよい。
 pH調整剤としては、例えば、塩酸、リン酸、硫酸、酢酸、ギ酸、リン酸アンモニウム、硫酸アンモニウム、酢酸アンモニウム、ギ酸アンモニウム、塩化アンモニウム、水酸化ナトリウム、水酸化カリウム等を挙げることができ、これらの中でも、硫酸、硫酸アンモニウム、水酸化ナトリウム、水酸化カリウムが好ましい。また、重合体(A)の製造方法中に記載した中和剤の中から選択して使用することもできる。
 腐食防止剤としては、メタバナジン酸アンモニウム、メタバナジン酸ナトリウム、メタバナジン酸カリウム、メタタングステン酸アンモニウム、メタタングステン酸ナトリウム、メタタングステン酸カリウム、パラタングステン酸アンモニウム、パラタングステン酸ナトリウム、パラタングステン酸カリウム、モリブデン酸アンモニウム、モリブデン酸ナトリウム、モリブデン酸カリウム等を挙げることができ、これらの中でもパラタングステン酸アンモニウム、メタバナジン酸アンモニウム、メタバナジン酸ナトリウム、メタバナジン酸カリウム、モリブデン酸アンモニウムが好ましい。
<セルロースファイバー>
 本実施形態に係る蓄電デバイス電極用スラリーには、セルロースファイバーを更に添加してもよい。セルロースファイバーを添加することにより、活物質の集電体に対する密着性を向上できる場合がある。繊維状のセルロースファイバーが線接着又は線接触によって隣接する活物質同士を繊維状結着させることにより、活物質の脱落を防止できるとともに、集電体に対する密着性を向上できると考えられる。
 セルロースファイバーの平均繊維長は、0.1~1000μmの広い範囲から選択でき、例えば、好ましくは1~750μm、より好ましくは1.3~500μm、更に好ましくは1.4~250μm、特に好ましくは1.8~25μmである。平均繊維長が前記範囲にあれば、表面平滑性(塗膜均一性)が良好となり、集電体に対する活物質の密着性が向上する場合がある。
 セルロースファイバーの繊維長は均一であってもよく、繊維長の変動係数([繊維長の標準偏差/平均繊維長]×100)は、例えば、好ましくは0.1~100、より好ましくは0.5~50、特に好ましくは1~30である。セルロースファイバーの最大繊維長は、例えば、好ましくは500μm以下、より好ましくは300μm以下、更に好ましくは200μm以下、更により好ましくは100μm以下、特に好ましくは50μm以下である。
 セルロースファイバーの平均繊維長を活物質層の平均厚みに対して5倍以下とすると、表面平滑性(塗膜均一性)、及び活物質の集電体に対する密着性が更に向上するため有利である。セルロースファイバーの平均繊維長は、活物質層の平均厚みに対して、好ましくは0.01~5倍、より好ましくは0.02~3倍、特に好ましくは0.03~2倍である。
 セルロースファイバーの平均繊維径は、好ましくは1nm~10μm、より好ましくは5nm~2.5μm、更に好ましくは20nm~700nm、特に好ましくは30nm~200nmである。平均繊維径が前記範囲にあると、繊維の占有体積が大きくなりすぎず、活物質の充填密度を高めることができる場合がある。そのため、セルロースファイバーは、平均繊維径がナノメートルサイズのセルロースナノファイバー(例えば、平均繊維径が10nm~500nm、好ましくは25nm~250nm程度のセルロースナノファイバー)であることが好ましい。
 セルロースファイバーの繊維径も均一であり、繊維径の変動係数([繊維径の標準偏差/平均繊維径]×100)は、好ましくは1~80、より好ましくは5~60、特に好ましくは10~50である。セルロースファイバーの最大繊維径は、好ましくは30μm以下、より好ましくは5μm以下、特に好ましくは1μm以下である。
 セルロースファイバーの平均繊維径に対する平均繊維長の比(アスペクト比)は、例えば、好ましくは10~5000、より好ましくは20~3000、特に好ましくは50~2000である。アスペクト比が前記範囲にあると、集電体に対する活物質の密着性が良好となるとともに、繊維の破断強度を弱めることなく、電極の表面平滑性(塗膜均一性)が良好となる場合がある。
 本発明において、平均繊維長、繊維長分布の標準偏差、最大繊維長、平均繊維径、繊維径分布の標準偏差、及び最大繊維径は、電子顕微鏡写真に基づいて測定した繊維(n=20程度)から算出した値であってもよい。
 セルロースファイバーの材質は、β-1,4-グルカン構造を有する多糖類で形成されていればよい。セルロースファイバーとしては、例えば、高等植物由来のセルロース繊維(例えば、木材繊維(針葉樹、広葉樹などの木材パルプなど)、竹繊維、サトウキビ繊維、種子毛繊維(例えば、コットンリンター、ボンバックス綿、カポックなど)、ジン皮繊維(例えば、麻、コウゾ、ミツマタなど)、葉繊維(例えば、マニラ麻、ニュージーランド麻など)などの天然セルロース繊維(パルプ繊維)など)、動物由来のセルロース繊維(例えば、ホヤセルロースなど)、バクテリア由来のセルロース繊維(例えば、ナタデココに含まれるセルロースなど)、化学的に合成されたセルロース繊維(例えば、レーヨン、セルロースエステル(セルロースアセテートなど)、セルロースエーテル(例えば、ヒドロキシエチルセルロース(HEC)、ヒドロキシプロピルセルロースなどのヒドロキシアルキルセルロース、メチルセルロース、エチルセルロースなどのアルキルセルロースなどのセルロース誘導体など))などが挙げられる。これらのセルロースファイバーは、1種単独で又は2種以上組み合わせて使用してもよい。
 これらのセルロースファイバーの中でも、適度なアスペクト比を有するナノファイバーを調製し易い点から、高等植物由来のセルロース繊維、例えば、木材繊維(針葉樹、広葉樹などの木材パルプなど)や種子毛繊維(コットンリンターパルプなど)などのパルプ由来のセルロース繊維が好ましい。
 セルロースファイバーの製造方法は、特に限定されず、目的の繊維長及び繊維径に応じて、慣用の方法、例えば、特公昭60-19921号公報、特開2011-26760号公報、特開2012-25833号公報、特開2012-36517号公報、特開2012-36518号公報、特開2014-181421号公報などに記載された方法を利用してもよい。
 2.2.4.蓄電デバイス電極用スラリーの調製方法
 本実施形態に係る蓄電デバイス電極用スラリーは、上述の蓄電デバイス用バインダー組成物及び活物質を含有するものである限り、どのような方法によって製造されたものであってもよい。より良好な分散性及び安定性を有するスラリーを、より効率的かつ安価に製造する観点から、蓄電デバイス用バインダー組成物に、活物質及び必要に応じて用いられる任意添加成分を加え、これらを混合することにより製造することが好ましい。具体的な製造方法としては、例えば特許第5999399号公報等に記載された方法が挙げられる。
 3.蓄電デバイス電極
 本発明の一実施形態に係る蓄電デバイス電極は、集電体と、前記集電体の表面に上述の蓄電デバイス電極用スラリーが塗布及び乾燥されて形成された活物質層と、を備えるものである。かかる蓄電デバイス電極は、金属箔などの集電体の表面に、上述の蓄電デバイス電極用スラリーを塗布して塗膜を形成し、次いで該塗膜を乾燥して活物質層を形成することにより製造することができる。このようにして製造された蓄電デバイス電極は、集電体の表面に、上述の重合体(A)、活物質、及び必要に応じて添加された任意成分を含有する活物質層が結着されてなるものであるため、繰り返し充放電特性に優れ、かつ、高温下での充放電耐久特性に優れている。
 集電体としては、導電性材料からなるものであれば特に制限されないが、例えば特許第5999399号公報等に記載された集電体が挙げられる。
 本実施形態に係る蓄電デバイス電極において、活物質としてケイ素材料を用いる場合、活物質層100質量%中のシリコン元素の含有割合は、2~30質量%であることが好ましく、2~20質量%であることがより好ましく、3~10質量%であることが特に好ましい。活物質層中のシリコン元素の含有割合が前記範囲であると、それを用いて作製される蓄電デバイスの蓄電容量が向上することに加え、シリコン元素の分布が均一な活物質層が得られる。活物質層中のシリコン元素の含有量は、例えば特許第5999399号公報等に記載された方法により測定することができる。
 4.蓄電デバイス
 本発明の一実施形態に係る蓄電デバイスは、上述の蓄電デバイス電極を備え、更に電解液を含有し、セパレータなどの部品を用いて、常法に従って製造することができる。具体的な製造方法としては、例えば、負極と正極とをセパレータを介して重ね合わせ、これを電池形状に応じて巻く、折るなどして電池容器に収納し、該電池容器に電解液を注入して封口する方法などを挙げることができる。電池の形状は、コイン型、円筒型、角形、ラミネート型など、適宜の形状であることができる。
 電解液は、液状でもゲル状でもよく、活物質の種類に応じて、蓄電デバイスに用いられる公知の電解液の中から電池としての機能を効果的に発現するものを選択すればよい。電解液は、電解質を適当な溶媒に溶解した溶液であることができる。このような電解質や溶媒については、例えば特許第5999399号公報等に記載された化合物が挙げられる。
 上述の蓄電デバイスは、大電流密度での放電が必要なリチウムイオン二次電池、電気二重層キャパシタやリチウムイオンキャパシタ等に適用可能である。これらの中でもリチウムイオン二次電池が特に好ましい。本実施形態に係る蓄電デバイス電極及び蓄電デバイスにおいて、蓄電デバイス用バインダー組成物以外の部材は、公知のリチウムイオン二次電池用、電気二重層キャパシタ用やリチウムイオンキャパシタ用の部材を用いることが可能である。
 5.実施例
 以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。実施例、比較例中の「部」及び「%」は、特に断らない限り質量基準である。
 5.1.実施例1
 5.1.1.蓄電デバイス用バインダー組成物の調製及び物性評価
(1)蓄電デバイス用バインダー組成物の調製
 以下に示すような三段重合により、重合体(A)を含有する蓄電デバイス用バインダー組成物を得た。反応器に、水200質量部と、1,3-ブタジエン10質量部、スチレン3質量部、アクリル酸2質量部、メタクリル酸3質量部、及びメタクリル酸メチル2質量部からなる単量体混合物と、連鎖移動剤としてtert-ドデシルメルカプタン0.1質量部と、乳化剤としてドデシルジフェニルエーテルジスルホン酸ナトリウム0.2質量部と、重合開始剤として過硫酸カリウム0.2質量部とを仕込み、攪拌しながら70℃で10時間重合した後、重合転化率が90%であることを確認した。
 次いで、反応器に、水200質量部、1,3-ブタジエン5質量部、スチレン15質量部、アクリル酸1質量部、メタクリル酸2質量部、及び過硫酸カリウム0.2質量部を更に添加し、75℃で4時間重合した後、重合転化率が90%であることを確認した。なお、重合転化率は下記の測定方法に従って算出した。
 次いで、反応器に水200質量部、スチレン30質量部、アクリル酸5質量部、メタクリル酸10質量部、メタクリル酸メチル5質量部、アクリロニトリル2質量部、アクリルアミド5質量部、及び過硫酸カリウム0.2質量部を更に添加し、80℃で4時間重合した後、重合転化率が98%であることを確認した。このようにして得られた重合体(A)の粒子分散液から未反応単量体を除去して濃縮し、2.5%水酸化ナトリウム水溶液を添加した後、エバポレーターを用いて水分を除去することにより、固形分濃度40質量%、pH8.0の、重合体(A)の粒子を含有する蓄電デバイス用バインダー組成物を得た。
<重合転化率の測定方法>
 所定時間、重合した反応溶液を抜き取り、あらかじめ重量を計測したアルミ皿(X(g))へ入れて反応溶液の重量(Y(g))を計量した。これを熱風乾燥機を用いて、155℃で15分間乾燥させた。アルミ皿を取り出し、放冷後、アルミ皿の重量(Z(g))を計量した。このようにして計量された重量X、Y、及びZの値から下記式(3)により重合転化率(%)を算出した。
 重合転化率(%)=((Z-X)/Y)×100   (3)
(2)数平均粒子径の測定
 上記で得られた蓄電デバイス用バインダー組成物を0.1wt%に希釈したラテックスをコロジオン支持膜上にピペットで1滴滴下し、更に0.02wt%の四酸化オスミウム溶液をピペットでコロジオン支持膜上に1滴滴下し、12時間風乾させ試料を準備した。このようにして準備した試料を、透過型電子顕微鏡(TEM、株式会社日立ハイテクノロジーズ製、型番「H-7650」)を用いて、倍率を10K(倍率)で観察し、HITACHI EMIPのプログラムにより画像解析を実施し、ランダムに選択した50個の重合体(A)の粒子の数平均粒子径を算出した。測定結果を表1に示す。なお、一の位は四捨五入して算出した。
(3)pHの測定
 上記で得られた蓄電デバイス用バインダー組成物について、pHメーター(株式会社堀場製作所製)を用いて25℃におけるpHを測定したところ、pH8.0であることを確認できた。
(4)電解液膨潤率の測定
 上記で得られた重合体(A)を85℃の恒温槽で24時間乾燥させてフィルムを作製した。このフィルム(サイズは1cm×1cm×0.1cm)約0.1gを、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)及びエチルメチルカーボネート(EMC)からなる混合液(EC:DEC:EMC=1:1:1(体積比)、以下この混合液を「EC:DEC:EMC」という。)20mL中に浸漬して、70℃において24時間振とうした。次いで、300メッシュの金網で濾過して不溶分を分離した後、溶解分のEC:DEC:EMCを蒸発除去して得た残存物の重量(Y(g))を測定した。また、上記の濾過で分離した不溶分(フィルム)の表面に付着したEC:DEC:EMCを紙に吸収させて取り除いた後、該不溶分(フィルム)の重量(Z(g))を測定した。下記式(4)によって電解液膨潤率を測定したところ、上記重合体(A)の電解液膨潤率は250質量%であった。なお、一の位は四捨五入して算出した。
 電解液膨潤率(質量%)=(Z/(1-Y))×100   (4)
(5)動的粘弾性の測定
 上記で得られた重合体(A)を40℃で24時間乾燥させて、1.0±0.3mmの厚みの均一なフィルムを作製した。このフィルムを真空乾燥機内で160℃、30分間の乾燥を行った。真空乾燥機からこのフィルムを取り出し、10mm×10mmの短冊状に切り出したものを測定用サンプルとした。次いで、動的粘弾性測定装置(Anton Paar社製、型式「MCR 301」)を用いて、パラレルプレート(製品名「PP-12」)で測定サンプルを固定し、せん断モード、測定周波数1.0Hz、昇温スピード5℃/minの測定条件により-70℃~180℃の温度領域で動的粘弾性の測定を行った。その結果、低温側のtanδのピークトップ(tanδ1)を14℃に観測し、その値は0.05であった。また、中温側のtanδのピークトップ(tanδ2)を75℃に観測し、その値は0.18であった。更に、高温側のtanδのピークトップ(tanδ3)を135℃に観測し、その値は0.35であった。
 5.1.2.蓄電デバイス電極用スラリーの調製
(1)ケイ素材料(活物質)の合成
 粉砕した二酸化ケイ素粉末(平均粒子径10μm)と炭素粉末(平均粒子径35μm)の混合物を、温度を1100℃~1600℃の範囲に調整した電気炉中で、窒素気流下(0.5NL/分)、10時間の加熱処理を行い、組成式SiO(x=0.5~1.1)で表される酸化ケイ素の粉末(平均粒子径8μm)を得た。この酸化ケイ素の粉末300gをバッチ式加熱炉内に仕込み、真空ポンプにより絶対圧100Paの減圧を維持しながら、300℃/hの昇温速度にて室温(25℃)から1100℃まで昇温した。次いで、加熱炉内の圧力を2000Paに維持しつつ、メタンガスを0.5NL/分の流速にて導入しながら、1100℃、5時間の加熱処理(黒鉛被膜処理)を行った。黒鉛被膜処理終了後、50℃/hの降温速度で室温まで冷却することにより、黒鉛被膜酸化ケイ素の粉末約330gを得た。この黒鉛被膜酸化ケイ素は、酸化ケイ素の表面が黒鉛で被覆された導電性の粉末(活物質)であり、その平均粒子径は10.5μmであり、得られた黒鉛被膜酸化ケイ素の全体を100質量%とした場合の黒鉛被膜の割合は2質量%であった。
(2)蓄電デバイス電極用スラリーの調製
 二軸型プラネタリーミキサー(プライミクス株式会社製、商品名「TKハイビスミックス 2P-03」)に、増粘剤(商品名「CMC2200」、株式会社ダイセル製)を1質量部(固形分換算値、濃度2質量%の水溶液として添加)、重合体(A)を4質量部(固形分換算値、上記で得られた蓄電デバイス用バインダー組成物として添加)、負極活物質として結晶性の高いグラファイトである人造黒鉛(昭和電工マテリアルズ株式会社製、商品名「MAG」)90.25質量部(固形分換算値)、上記で得られた黒鉛被膜酸化ケイ素の粉末を4.75質量部(固形分換算値)、導電付与剤であるカーボン(デンカ株式会社製、アセチレンブラック)1質量部を投入し、60rpmで1時間攪拌を行い、ペーストを得た。得られたペーストに水を投入し、固形分濃度を48質量%に調整した後、攪拌脱泡機(株式会社シンキー製、商品名「泡とり練太郎」)を使用して、200rpmで2分間、1800rpmで5分間、更に減圧下(約2.5×10Pa)において1800rpmで1.5分間攪拌混合することにより、負極活物質中にSiを5質量%含有する蓄電デバイス電極用スラリー(C/Si=95/5)を調製した。
 また、人造黒鉛と黒鉛被膜酸化ケイ素の粉末の使用量を調整した以外は蓄電デバイス電極用スラリー(C/Si=95/5)と同様にして、負極活物質中にSiを含有しない蓄電デバイス電極用スラリー(C/Si=100/0)を調製した。
 5.1.3.蓄電デバイスの製造及び評価
(1)蓄電デバイス電極(負極)の製造
 厚み20μmの銅箔よりなる集電体の表面に、上記で得られた蓄電デバイス電極用スラリー(C/Si=95/5又はC/Si=100/0)を、乾燥後の膜厚が80μmとなるようにドクターブレード法によって均一に塗布し、60℃で10分間乾燥し、次いで120℃で10分間乾燥処理した。その後、活物質層の密度が1.5g/cmとなるようにロールプレス機によりプレス加工することにより、蓄電デバイス電極(負極)を得た。
(2)負極塗工層での重合体(A)の破壊粒子数の評価
 上記で得られた蓄電デバイス電極(負極)の表面を走査型電子顕微鏡(SEM、日本電子株式会社製、型番「JSM-6360LA」)により重合体(A)の粒子を観察し、重合体(A)の粒子100個あたりのプレス加工により破壊された粒子個数を計測した。評価基準は以下の通りである。評価結果を表1に示す。
(評価基準)
・破壊された粒子個数が10個以下である場合、重合体粒子の界面が非常に圧着されにくく優秀である。
・破壊された粒子個数が11個以上20個以下である場合、重合体粒子の界面が圧着されにくく良好である。
・破壊された粒子個数が21個以上30個以下である場合、圧着されている重合体粒子の界面も認められるが使用可能である。
・破壊された粒子個数が31個以上である場合、圧着されている重合体粒子の界面が多数認められるため使用不可である。
(3)負極塗工層の密着強度の評価
 上記で得られた蓄電デバイス電極(負極)の表面に、ナイフを用いて活物質層から集電体に達する深さまでの切り込みを2mm間隔で縦横それぞれ10本入れて碁盤目の切り込みを作った。この切り込みに幅18mm、長さ18mmの粘着テープ(ニチバン(株)製、商品名「セロテープ」(登録商標)JIS Z 1522に規定)を貼り付けて直ちに引き剥がし、活物質の脱落の程度を目視判定で評価した。評価基準は以下の通りである。評価結果を表1に示す。
(評価基準)
・5点:活物質層の脱落が0個である。
・4点:活物質層の脱落が1~5個である。
・3点:活物質層の脱落が6~20個である。
・2点:活物質層の脱落が21~40個である。
・1点:活物質層の脱落が41個以上である。
(4)対極(正極)の製造
 二軸型プラネタリーミキサー(プライミクス株式会社製、商品名「TKハイビスミックス 2P-03」)に、電気化学デバイス電極用バインダー(株式会社クレハ製、商品名「KFポリマー#1120」)4質量部(固形分換算値)、導電助剤(デンカ株式会社製、商品名「デンカブラック50%プレス品」)3.0質量部、正極活物質として平均粒子径5μmのLiCoO(ハヤシ化成株式会社製)100質量部(固形分換算値)及びN-メチルピロリドン(NMP)36質量部を投入し、60rpmで2時間攪拌を行った。得られたペーストにNMPを追加し、固形分濃度を65質量%に調整した後、攪拌脱泡機(株式会社シンキー製、商品名「泡とり練太郎」)を使用して、200rpmで2分間、1800rpmで5分間、さらに減圧下(約2.5×10Pa)において1800rpmで1.5分間攪拌混合することにより、正極用スラリーを調製した。アルミニウム箔よりなる集電体の表面に、この正極用スラリーを、溶媒除去後の膜厚が80μmとなるようにドクターブレード法によって均一に塗布し、120℃で20分間加熱して溶媒を除去した。その後、活物質層の密度が3.0g/cmとなるようにロールプレス機によりプレス加工することにより、対極(正極)を得た。
(5)リチウムイオン電池セルの組立て
 露点が-80℃以下となるようにAr置換されたグローブボックス内で、上記で製造した負極を直径15.95mmに打ち抜き成形したものを、2極式コインセル(宝泉株式会社製、商品名「HSフラットセル」)上に載置した。次いで、直径24mmに打ち抜いたポリプロピレン製多孔膜からなるセパレータ(セルガード株式会社製、商品名「セルガード#2400」)を載置した。さらに、空気が入らないように電解液を500μL注入した後、上記で製造した正極を直径16.16mmに打ち抜き成形したものを載置し、前記2極式コインセルの外装ボディーをネジで閉めて封止することにより、リチウムイオン電池セル(蓄電デバイス)を組み立てた。ここで使用した電解液は、エチレンカーボネート:エチルメチルカーボネート=1:1(体積比)の溶媒に、LiPFを1モル/Lの濃度で溶解した溶液である。
(6)充放電サイクル特性の評価
 上記で製造した蓄電デバイスにつき、60℃に調温された恒温槽にて、定電流(1.0C)にて充電を開始し、電圧が4.2Vになった時点で引き続き定電圧(4.2V)にて充電を続行し、電流値が0.01Cとなった時点を充電完了(カットオフ)とした。その後、定電流(1.0C)にて放電を開始し、電圧が3.0Vになった時点を放電完了(カットオフ)とし、1サイクル目の放電容量を算出した。このようにして100回充放電を繰り返した。下記式(5)により容量保持率を計算し、下記の基準で評価した。評価結果を表1に示す。
 容量保持率(%)
 =(100サイクル目の放電容量)/(1サイクル目の放電容量)   (5)
(評価基準)
・5点:容量保持率が95%以上。
・4点:容量保持率が90%以上、95%未満。
・3点:容量保持率が85%以上、90%未満。
・2点:容量保持率が80%以上、85%未満。
・1点:容量保持率が75%以上、80%未満。
・0点:容量保持率が75%未満。
(7)高温での抵抗の評価
 上記で製造した蓄電デバイスにつき、60℃に調温された恒温槽にて、定電流(1.0C)にて充電を開始し、電圧が4.2Vになった時点で引き続き定電圧(4.2V)にて充電を続行し、電流値が0.01Cとなった時点を充電完了(カットオフ)とした。その後、定電流(0.05C)にて放電を開始し、電圧が3.0Vになった時点を放電完了(カットオフ)とし、0サイクル目の放電容量を算出した。更に、定電流(1.0C)にて充電を開始し、電圧が4.2Vになった時点で引き続き定電圧(4.2V)にて充電を続行し、電流値が0.01Cとなった時点を充電完了(カットオフ)とした。その後、定電流(1.0C)にて放電を開始し、電圧が3.0Vになった時点を放電完了(カットオフ)とし、1サイクル目の放電容量を算出した。このようにして100回充放電を繰り返した。100回充放電を繰り返した後、0サイクル目と同様に充放電を行い、101回目の放電容量を評価し、下記式(6)により抵抗上昇率を算出し、下記の基準で評価した。
 抵抗上昇率(%)
=(100サイクル目の放電容量-101サイクル目の放電容量)/(0サイクル目の放電容量-1サイクル目の放電容量)×100   (6)
(評価基準)
・5点:抵抗上昇率が100%以上、150%未満。
・4点:抵抗上昇率が150%以上、200%未満。
・3点:抵抗上昇率が200%以上、250%未満。
・2点:抵抗上昇率が250%以上、300%未満。
・1点:抵抗上昇率が300%以上、350%未満。
・0点:抵抗上昇率が350%以上。
 なお、測定条件において「1C」とは、ある一定の電気容量を有するセルを定電流放電して1時間で放電終了となる電流値のことを示す。例えば「0.1C」とは、10時間かけて放電終了となる電流値のことであり、「10C」とは、0.1時間かけて放電終了となる電流値のことをいう。
 5.2.実施例2~12、比較例1~9
 上記「5.1.1.蓄電デバイス用バインダー組成物の調製及び物性評価 (1)蓄電デバイス用バインダー組成物の調製」の項において、各単量体の種類及び量をそれぞれ下表1~下表3に記載の通りとした以外は同様にして、固形分濃度40質量%の重合体粒子を含有する蓄電デバイス用バインダー組成物をそれぞれ得て、各物性を評価した。なお、図1に、実施例11で作成したフィルムの動的粘弾性測定における、測定温度とtanδの関係を表すグラフを示した。
 更に、上記で調製した蓄電デバイス用バインダー組成物を用いた以外は上記実施例1と同様にして、蓄電デバイス電極用スラリーをそれぞれ調製し、蓄電デバイス電極及び蓄電デバイスをそれぞれ作製し、上記実施例1と同様に評価した。
 5.3.実施例13
 実施例5において、増粘剤を、CMC(商品名「CMC2200」、株式会社ダイセル製)0.9質量部及びCNF(商品名「セリッシュKY-100G」、株式会社ダイセル社製、繊維径0.07μm)0.1質量部とした以外は、実施例5と同様にして蓄電デバイス電極用スラリーを調製し、蓄電デバイス電極及び蓄電デバイスをそれぞれ作製し、上記実施例1と同様に評価した。その結果を下表4に示す。
 5.4.実施例14
 実施例5において、増粘剤を、CMC(商品名「CMC2200」、株式会社ダイセル製)0.8質量部及びCNF(商品名「セリッシュKY-100G」、株式会社ダイセル社製、繊維径0.07μm)0.2質量部とした以外は、実施例5と同様にして蓄電デバイス電極用スラリーを調製し、蓄電デバイス電極及び蓄電デバイスをそれぞれ作製し、上記実施例1と同様に評価した。その結果を下表4に示す。
 5.5.評価結果
 下表1~下表3に、実施例1~12及び比較例1~9で使用した重合体組成、各物性測定結果、及び各評価結果を示す。下表4に、実施例13、14で使用した重合体成分組成、及び各評価結果を示す。なお、下表1~下表4中に示された重合体組成を表す数値は、質量部を表す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 上表1~上表4における単量体及び増粘剤の略称は、それぞれ以下の化合物を表す。
<共役ジエン化合物>
・BD:1,3-ブタジエン
<不飽和カルボン酸>
・TA:イタコン酸
・AA:アクリル酸
・MAA:メタクリル酸
<芳香族ビニル化合物>
・ST:スチレン
・DVB:ジビニルベンゼン
<不飽和カルボン酸エステル>
・MMA:メタクリル酸メチル
・BA:アクリル酸ブチル
・2EHA:アクリル酸2-エチルヘキシル
・CHMA:メタクリル酸シクロヘキシル
・EDMA:エチレングリコールジメタクリレート
<α,β-不飽和ニトリル化合物>
・AN:アクリロニトリル
<(メタ)アクリルアミド>
・AAM:アクリルアミド
・MAM:メタクリルアミド
<水酸基を有する不飽和カルボン酸エステル>
・HEMA:メタクリル酸2-ヒドロキシエチル
・HEA:アクリル酸2-ヒドロキシエチル
<スルホン酸基を有する化合物>
・NASS:スチレンスルホン酸ナトリウム
<増粘剤>
・CMC:商品名「CMC2200」、株式会社ダイセル製、カルボキシメチルセルロースナトリウム
・CNF:商品名「セリッシュKY-100G」、株式会社ダイセル社製、微小繊維状セルロース、繊維径0.07μm
 上表1~上表3から明らかなように、実施例1~12に示した本発明に係る蓄電デバイス用バインダー組成物を用いて調製された蓄電デバイス電極用スラリーは、比較例1~9の場合と比較して、活物質同士を好適に結着させ、電極内の粒子同士の融着を抑制できたことで、内部抵抗を低減することができた。さらに、高温下において良好な充放電耐久特性を示す蓄電デバイス電極が得られた。上表1~上表2に示す実施例1~12の蓄電デバイス用バインダー組成物に含有される重合体(A)は、上表3に示す比較例1~9の場合と比較して、tanδ1が-50℃以上15℃未満の範囲に1個存在しており、これは粘性が高いことを示唆している。これにより、高い結着力を維持することができると推測される。また、tanδ2が15℃以上85℃未満の範囲に1個存在しており、これは中温側の重合体の架橋度が高くなることを示唆している。さらに、tanδ3が85℃以上150℃以下の範囲に1個存在しており、これは高温側の重合体の硬さが高くなることを示唆している。その結果、電極作成時にバインダーの粒子形状を保つことが可能となる。これにより、活物質間の電解液の浸透性が阻害されずに、低抵抗となることができ、その結果良好な繰り返し充放電特性や高温での良好な充放電耐久特性を示したと推測される。
 また、上表4の結果から明らかなように、実施例13及び14に示した本発明に係る蓄電デバイス用バインダー組成物を用いて調製された蓄電デバイス電極用スラリーは、増粘剤のCNFを併用しても、活物質同士を好適に結着させることができ、しかも活物質層と集電体の密着性を良好に維持できることが判明した。
 本発明は、上記の実施形態に限定されるものではなく、種々の変形が可能である。本発明は、実施形態で説明した構成と実質的に同一の構成(例えば、機能、方法および結果が同一の構成、あるいは目的および効果が同一の構成)を包含する。また本発明は、上記の実施形態で説明した構成の本質的でない部分を他の構成に置き換えた構成を包含する。さらに本発明は、上記の実施形態で説明した構成と同一の作用効果を奏する構成または同一の目的を達成することができる構成をも包含する。さらに本発明は、上記の実施形態で説明した構成に公知技術を付加した構成をも包含する。
 

Claims (11)

  1.  重合体(A)と、液状媒体(B)と、を含有し、
     前記重合体(A)中に含まれる繰り返し単位の合計を100質量%としたときに、前記重合体(A)が、
     共役ジエン化合物に由来する繰り返し単位(a1)15~60質量%と、
     不飽和カルボン酸に由来する繰り返し単位(a2)1~30質量%と、
    を含有し、
     前記重合体(A)の動的粘弾性のtanδ(損失弾性率/貯蔵弾性率)のピークトップが、-50℃以上15℃未満の範囲に1個(tanδ1)あり、15℃以上85℃未満の範囲に1個(tanδ2)あり、85℃以上150℃以下の範囲に1個(tanδ3)ある、蓄電デバイス用バインダー組成物。
  2.  前記3個のtanδのピーク強度が、下記式(1)及び下記式(2)の関係を満たす、請求項1に記載の蓄電デバイス用バインダー組成物。
     tanδ2のピーク強度/tanδ1のピーク強度≧1.0   (1)
     tanδ3のピーク強度/tanδ2のピーク強度≧1.0   (2)
  3.  前記重合体(A)が、芳香族ビニル化合物に由来する繰り返し単位(a3)35~75質量%を更に含有し、
     前記繰り返し単位(a1)、前記繰り返し単位(a2)及び前記繰り返し単位(a3)の合計量が80質量%以上である、請求項1又は請求項2に記載の蓄電デバイス用バインダー組成物。
  4.  前記重合体(A)が、不飽和カルボン酸エステルに由来する繰り返し単位(a4)及びα,β-不飽和ニトリル化合物に由来する繰り返し単位(a5)の少なくとも一方を更に含有し、
     前記繰り返し単位(a1)、前記繰り返し単位(a2)、前記繰り返し単位(a4)及び前記繰り返し単位(a5)の合計量が65質量%以上である、請求項1又は請求項2に記載の蓄電デバイス用バインダー組成物。
  5.  前記重合体(A)を、体積分率1:1:1のエチレンカーボネートとジエチルカーボネートとエチルメチルカーボネートとからなる溶媒に、70℃、24時間の条件で浸漬させたときの電解液膨潤率が、150%以上450%以下である、請求項1ないし請求項4のいずれか一項に記載の蓄電デバイス用バインダー組成物。
  6.  前記重合体(A)が重合体粒子であり、
     前記重合体粒子の数平均粒子径が50nm以上500nm以下である、請求項1ないし請求項5のいずれか一項に記載の蓄電デバイス用バインダー組成物。
  7.  前記液状媒体(B)が水である、請求項1ないし請求項6のいずれか一項に記載の蓄電デバイス用バインダー組成物。
  8.  請求項1ないし請求項7のいずれか一項に記載の蓄電デバイス用バインダー組成物と、活物質と、を含有する蓄電デバイス電極用スラリー。
  9.  前記活物質としてケイ素材料を含有する、請求項8に記載の蓄電デバイス電極用スラリー。
  10.  集電体と、前記集電体の表面に請求項8又は請求項9に記載の蓄電デバイス電極用スラリーが塗布及び乾燥されて形成された活物質層と、を備える蓄電デバイス電極。
  11.  請求項10に記載の蓄電デバイス電極を備える蓄電デバイス。
     
PCT/JP2022/017002 2021-04-15 2022-04-01 蓄電デバイス用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、及び蓄電デバイス WO2022220169A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202280028087.6A CN117178389A (zh) 2021-04-15 2022-04-01 蓄电设备用粘结剂组合物、蓄电设备电极用浆料、蓄电设备电极和蓄电设备
US18/555,156 US20240194881A1 (en) 2021-04-15 2022-04-01 Binder composition for power storage devices, slurry for power storage device electrodes, power storage device electrode, and power storage device
JP2023514614A JPWO2022220169A1 (ja) 2021-04-15 2022-04-01
KR1020237038659A KR20230173131A (ko) 2021-04-15 2022-04-01 축전 디바이스용 결합제 조성물, 축전 디바이스 전극용 슬러리, 축전 디바이스 전극 및 축전 디바이스
EP22788094.5A EP4325605A1 (en) 2021-04-15 2022-04-01 Binder composition for power storage devices, slurry for power storage device electrodes, power storage device electrode, and power storage device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021068904 2021-04-15
JP2021-068904 2021-04-15

Publications (1)

Publication Number Publication Date
WO2022220169A1 true WO2022220169A1 (ja) 2022-10-20

Family

ID=83639741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/017002 WO2022220169A1 (ja) 2021-04-15 2022-04-01 蓄電デバイス用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、及び蓄電デバイス

Country Status (7)

Country Link
US (1) US20240194881A1 (ja)
EP (1) EP4325605A1 (ja)
JP (1) JPWO2022220169A1 (ja)
KR (1) KR20230173131A (ja)
CN (1) CN117178389A (ja)
TW (1) TW202302672A (ja)
WO (1) WO2022220169A1 (ja)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6019921B2 (ja) 1979-12-26 1985-05-18 アイテイ−テイ−・インダストリ−ズ・インコ−ポレ−テツド 微小繊維状セルロ−ズの製造方法
JP2011026760A (ja) 2009-06-26 2011-02-10 Daicel Chemical Industries Ltd 微小繊維及びその製造方法並びに不織布
JP2011171181A (ja) * 2010-02-19 2011-09-01 Nippon A&L Inc 電池電極用組成物
JP2012025833A (ja) 2010-07-22 2012-02-09 Daicel Corp 繊維強化透明樹脂組成物及びその製造方法並びに透明シート
JP2012036517A (ja) 2010-08-04 2012-02-23 Daicel Corp セルロース繊維で構成された不織布及び蓄電素子用セパレータ
JP2012036518A (ja) 2010-08-04 2012-02-23 Daicel Corp セルロース繊維を含む不織布及びその製造方法並びにセパレータ
WO2013183717A1 (ja) * 2012-06-07 2013-12-12 日本ゼオン株式会社 負極スラリー組成物、リチウムイオン二次電池負極及びリチウムイオン二次電池
JP5477610B1 (ja) 2012-06-18 2014-04-23 Jsr株式会社 蓄電デバイス電極用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、および蓄電デバイス
JP2014181421A (ja) 2013-03-19 2014-09-29 Daicel Corp 微細セルロース繊維及びその製造方法並びに分散液
WO2015012366A1 (ja) 2013-07-24 2015-01-29 日本エイアンドエル株式会社 電極用バインダー、電極用組成物及び電極シート
JP5999399B2 (ja) 2014-09-08 2016-09-28 Jsr株式会社 リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー、リチウムイオン二次電池電極、およびリチウムイオン二次電池
WO2017038383A1 (ja) * 2015-08-28 2017-03-09 Jsr株式会社 粘着剤用組成物及び粘着フィルム、並びに蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、保護膜用スラリー及び蓄電デバイス
JP2017126456A (ja) * 2016-01-13 2017-07-20 日本エイアンドエル株式会社 電池電極用水系バインダー

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6019921B2 (ja) 1979-12-26 1985-05-18 アイテイ−テイ−・インダストリ−ズ・インコ−ポレ−テツド 微小繊維状セルロ−ズの製造方法
JP2011026760A (ja) 2009-06-26 2011-02-10 Daicel Chemical Industries Ltd 微小繊維及びその製造方法並びに不織布
JP2011171181A (ja) * 2010-02-19 2011-09-01 Nippon A&L Inc 電池電極用組成物
JP2012025833A (ja) 2010-07-22 2012-02-09 Daicel Corp 繊維強化透明樹脂組成物及びその製造方法並びに透明シート
JP2012036517A (ja) 2010-08-04 2012-02-23 Daicel Corp セルロース繊維で構成された不織布及び蓄電素子用セパレータ
JP2012036518A (ja) 2010-08-04 2012-02-23 Daicel Corp セルロース繊維を含む不織布及びその製造方法並びにセパレータ
WO2013183717A1 (ja) * 2012-06-07 2013-12-12 日本ゼオン株式会社 負極スラリー組成物、リチウムイオン二次電池負極及びリチウムイオン二次電池
JP5477610B1 (ja) 2012-06-18 2014-04-23 Jsr株式会社 蓄電デバイス電極用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、および蓄電デバイス
JP2014181421A (ja) 2013-03-19 2014-09-29 Daicel Corp 微細セルロース繊維及びその製造方法並びに分散液
WO2015012366A1 (ja) 2013-07-24 2015-01-29 日本エイアンドエル株式会社 電極用バインダー、電極用組成物及び電極シート
JP5999399B2 (ja) 2014-09-08 2016-09-28 Jsr株式会社 リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー、リチウムイオン二次電池電極、およびリチウムイオン二次電池
WO2017038383A1 (ja) * 2015-08-28 2017-03-09 Jsr株式会社 粘着剤用組成物及び粘着フィルム、並びに蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、保護膜用スラリー及び蓄電デバイス
JP2017126456A (ja) * 2016-01-13 2017-07-20 日本エイアンドエル株式会社 電池電極用水系バインダー

Also Published As

Publication number Publication date
EP4325605A1 (en) 2024-02-21
JPWO2022220169A1 (ja) 2022-10-20
KR20230173131A (ko) 2023-12-26
US20240194881A1 (en) 2024-06-13
TW202302672A (zh) 2023-01-16
CN117178389A (zh) 2023-12-05

Similar Documents

Publication Publication Date Title
JP7493913B2 (ja) 蓄電デバイス用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、及び蓄電デバイス
JP7493912B2 (ja) 蓄電デバイス用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、及び蓄電デバイス
WO2021220707A1 (ja) 蓄電デバイス用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、及び蓄電デバイス
JP7220215B2 (ja) 蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス
US20230312906A1 (en) Power storage device binder composition, power storage device electrode slurry, power storage device electrode, and power storage device
WO2021029411A1 (ja) 蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス
WO2022220169A1 (ja) 蓄電デバイス用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、及び蓄電デバイス
WO2021039503A1 (ja) 蓄電デバイス用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、及び蓄電デバイス
EP3968417A1 (en) Binder composition for electricity storage devices, slurry for electricity storage device electrodes, electricity storage device electrode, and electricity storage device
JP7220216B2 (ja) 蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス
WO2021187407A1 (ja) 蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、及び蓄電デバイス
WO2023021941A1 (ja) 蓄電デバイス用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、及び蓄電デバイス
JP2023049607A (ja) 蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、及び蓄電デバイス
WO2024058064A1 (ja) 蓄電デバイス用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、及び蓄電デバイス
JP2023049608A (ja) 蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、及び蓄電デバイス
WO2024166941A1 (ja) 蓄電デバイス用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、及び蓄電デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22788094

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023514614

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18555156

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20237038659

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237038659

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2022788094

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022788094

Country of ref document: EP

Effective date: 20231115