WO2021218691A1 - 显示面板及其制作方法、显示装置 - Google Patents

显示面板及其制作方法、显示装置 Download PDF

Info

Publication number
WO2021218691A1
WO2021218691A1 PCT/CN2021/088251 CN2021088251W WO2021218691A1 WO 2021218691 A1 WO2021218691 A1 WO 2021218691A1 CN 2021088251 W CN2021088251 W CN 2021088251W WO 2021218691 A1 WO2021218691 A1 WO 2021218691A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
light
auxiliary electrode
metal
substrate
Prior art date
Application number
PCT/CN2021/088251
Other languages
English (en)
French (fr)
Inventor
程磊磊
Original Assignee
京东方科技集团股份有限公司
合肥鑫晟光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥鑫晟光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/630,666 priority Critical patent/US20220255036A1/en
Publication of WO2021218691A1 publication Critical patent/WO2021218691A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/818Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/814Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/824Cathodes combined with auxiliary electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K50/865Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. light-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission

Definitions

  • the present disclosure belongs to the field of display technology, and specifically relates to a display panel and a manufacturing method thereof, and a display device.
  • An Organic Light-Emitting Diode (OLED) display panel includes a plurality of pixel units, and each pixel unit is provided with a light-emitting device (ie, an organic electroluminescent diode).
  • the light-emitting device may include an anode, a light-emitting layer, and a cathode, wherein the light-emitting side of the light-emitting layer is close to the cathode.
  • the thickness of the cathode of the light-emitting device needs to be as small as possible.
  • the thickness of the cathode decreases, the resistivity of the cathode increases (so the power consumption of the OLED also increases).
  • Some embodiments of the present disclosure provide a display panel, a manufacturing method of the display panel, and a display device.
  • a first aspect of the present disclosure provides a display panel including:
  • each pixel unit includes a light emitting device, the light emitting device includes a first electrode, a light emitting layer, and a first electrode, a light emitting layer, and a first electrode sequentially arranged on the side of the substrate Two electrodes; and
  • the auxiliary electrode layer is arranged on the side of the plurality of pixel units away from the substrate.
  • the auxiliary electrode layer includes a light-transmitting area and an electrode area.
  • the orthographic projection of the light-transmitting area on the substrate at least covers all The orthographic projection of the light-emitting layer on the substrate, the light-transmitting area includes a transparent structure, the electrode area includes an auxiliary electrode, and the auxiliary electrode is electrically connected to the second electrode;
  • the material of the auxiliary electrode includes a metal
  • the material of the transparent structure includes a metal oxide
  • the metal oxide and the metal have the same element, and the metal oxide is obtained by oxidizing the metal.
  • the material of the auxiliary electrode includes tantalum
  • the material of the transparent structure includes tantalum oxide
  • the tantalum oxide includes at least one of tantalum trioxide and tantalum pentoxide
  • the side of the transparent structure close to the plurality of pixel units and the side of the auxiliary electrode close to the plurality of pixel units are located on the same plane.
  • a light shielding layer is included between any adjacent two of the plurality of pixel units, and the auxiliary electrode is used as the light shielding layer.
  • the display panel further includes: an encapsulation layer disposed on a side of the auxiliary electrode layer away from the substrate.
  • the auxiliary electrode layer has a grid shape, the grid includes a plurality of meshes distributed in an array and a plurality of grid lines crossing each other to define the plurality of meshes.
  • the transparent structure of each pixel unit is located in one of the plurality of meshes, and the orthographic projection of each of the plurality of grid lines on the substrate is located in the transparent The structure is outside the orthographic projection on the substrate.
  • the auxiliary electrode is in direct contact with the second electrode.
  • the first electrode is an anode
  • the second electrode is a cathode
  • the first electrode is a reflective electrode.
  • a second aspect of the present disclosure provides a manufacturing method of a display panel, the method including:
  • a plurality of pixel units are fabricated on one side of the substrate, wherein each pixel unit includes a light emitting device, and the light emitting device includes a first electrode, a light emitting layer, and a first electrode, a light emitting layer, and a first electrode sequentially disposed on the side of the substrate.
  • the light emitting device includes a first electrode, a light emitting layer, and a first electrode, a light emitting layer, and a first electrode sequentially disposed on the side of the substrate.
  • An auxiliary electrode layer is fabricated on the side of the plurality of pixel units away from the substrate, wherein the auxiliary electrode layer includes a light-transmitting area and an electrode area, and the orthographic projection of the light-transmitting area on the substrate at least covers all The orthographic projection of the light-emitting layer on the substrate;
  • a transparent structure is made in the light-transmitting area, an auxiliary electrode is made in the electrode area, and the auxiliary electrode is electrically connected to the second electrode;
  • the material of the auxiliary electrode includes a metal
  • the material of the transparent structure includes a metal oxide
  • the metal oxide and the metal have the same element, and the metal oxide is obtained by oxidizing the metal.
  • forming a transparent structure in the light-transmitting area forming an auxiliary electrode in the electrode area system, and electrically connecting the auxiliary electrode and the second electrode includes:
  • the part of the metal corresponding to the electrode region is used as the auxiliary electrode, and the part of the metal corresponding to the light-transmitting region is converted into a metal oxide to form the transparent structure.
  • patterning the metal according to the positions of the light-transmitting area and the electrode area includes:
  • the photoresist Using a mask, through an exposure process and a development process, the photoresist only covers the part of the metal corresponding to the electrode area.
  • converting the part of the metal corresponding to the light-transmitting region into a metal oxide includes:
  • An oxidizing agent is used to perform an oxidation process on a portion of the metal corresponding to the light-transmitting region.
  • the oxidant includes hydrogen peroxide.
  • electrically connecting the auxiliary electrode with the second electrode includes:
  • the auxiliary electrode is in direct contact with the second electrode.
  • a third aspect of the present disclosure provides a display device including the display panel according to any one of the embodiments of the first aspect of the present disclosure.
  • FIG. 1 is a schematic structural diagram of a display panel according to an embodiment of the present disclosure (for example, a top view of a plurality of pixel units P arranged in an array of the display panel);
  • FIG. 2 is a schematic structural diagram of a display panel according to an embodiment of the present disclosure (for example, a top view of an auxiliary electrode layer of the display panel);
  • FIG. 3 is a schematic cross-sectional view of a display panel (for example, taken along line AA' of FIG. 2) according to an embodiment of the present disclosure
  • FIG. 4 is a flowchart of a manufacturing method of a display panel according to an embodiment of the present disclosure
  • Fig. 5 is a flowchart of step 3 in Fig. 4.
  • FIG. 6 is a schematic diagram of a manufacturing method of a display panel according to an embodiment of the present disclosure.
  • the auxiliary electrode is usually arranged on the cover plate of the OLED display panel and arranged opposite to the light emitting device.
  • the auxiliary electrode needs to be aligned with the cathode (for example, overlap each other in a direction perpendicular to the substrate 1), so the auxiliary electrode is prone to fall off or the auxiliary electrode is not well aligned with the cathode.
  • the auxiliary electrode is usually arranged in the layer where the gate of the backplane is located or the layer where the source is located, and the auxiliary electrode is connected to the cathode of the light-emitting device through a process of forming a via hole. In this case, the process of forming the via holes is likely to generate particles as impurities, which may reduce the display quality of the display panel.
  • some embodiments of the present disclosure provide a display panel in which an auxiliary electrode can be directly formed on the second electrode (for example, the cathode) of the light emitting device ,
  • the auxiliary electrode does not reduce the light-emitting rate of the light-emitting device. In this way, the problem that the auxiliary electrode falls off or is poorly aligned with the second electrode and cannot increase the light output rate of the light emitting device is avoided.
  • FIG. 1 is a top view of the light-emitting layer of the display panel and the following film layers
  • FIG. 2 is a top view of the auxiliary electrode layer of the display panel
  • FIG. 3 is a part of the display panel (for example, one pixel unit P) along the A schematic cross-sectional view taken along the line AA'.
  • the display panel may include a substrate 1, a plurality of pixel units P, and an auxiliary electrode layer 3.
  • the plurality of pixel units P are arranged on one side of the substrate 1, and each pixel unit P includes a light emitting device 2.
  • the light emitting device 2 may include a first electrode 21, a light emitting layer 22 and a second electrode 23, for example.
  • the first electrode 21, the light-emitting layer 22, and the second electrode 23 may be sequentially disposed on the substrate 1.
  • the light emitting device 2 may adopt a top emission structure or a bottom emission structure, which can be designed according to actual product requirements.
  • the light emitting device 2 adopts a top emission structure, that is, the light emitting side of the light emitting layer 22 is the side close to the second electrode 23.
  • the first electrode 21 may be an anode
  • the second electrode 23 may be a cathode.
  • the first electrode 21 is used as an anode and the second electrode 23 is used as a cathode as an example.
  • the auxiliary electrode layer 3 may be disposed on the side of the plurality of pixel units P away from the substrate 1.
  • the auxiliary electrode layer 3 may include a light-transmitting area S1 and an electrode area (which may also be called a non-light-transmitting area) S2.
  • the light-transmitting area S1 of the auxiliary electrode layer 3 corresponds to the position of the light-emitting layer 22 of the light-emitting device 2 (for example, in the vertical
  • the light-transmitting area S1 and the light-emitting layer 22 of each pixel unit P overlap each other or completely overlap each other in the direction of the substrate 1).
  • the orthographic projection of the light-transmitting area S1 on the substrate 1 covers (for example, completely covers) the orthographic projection of the light-emitting layer 22 on the substrate 1, and the remaining positions of the auxiliary electrode layer 3 are electrode regions.
  • S2 as shown in Figure 3.
  • the light-transmitting area S1 of the auxiliary electrode layer 3 includes a transparent structure (which may also be referred to as a transparent electrode) 31, and the electrode area S2 of the auxiliary electrode layer 3 includes an auxiliary electrode 32.
  • the positions of the plurality of transparent structures 31 in FIG. 2 are respectively It corresponds to the positions of the plurality of light-emitting layers 22 in FIG. 1. In other words, the plurality of transparent structures 31 in FIG.
  • each auxiliary electrode 32 of the auxiliary electrode layer 3 is electrically connected to the second electrode 23 of the corresponding light-emitting device 2 (for example, each auxiliary electrode 32 of the auxiliary electrode layer 3 is in direct contact with the second electrode 23 of the corresponding light-emitting device 2) Therefore, each auxiliary electrode 32 can reduce the impedance of the corresponding second electrode 23, thereby reducing the power consumption of the corresponding light-emitting device 2.
  • the material of each auxiliary electrode 32 includes metal
  • the material of each transparent structure 31 includes metal oxide.
  • the metal oxide of each transparent structure 31 and the metal of each auxiliary electrode 32 have the same element, and the metal oxide forming each transparent structure 31 is obtained by oxidizing the metal forming each auxiliary electrode 32.
  • each transparent structure 31 that is, each light-transmitting area S1 in the auxiliary electrode layer 3 on the substrate 1 covers the corresponding light-emitting device 2 in the light-emitting layer 22 on the substrate 1.
  • Orthographic projection that is, the area of each light-transmitting area S1 may be greater than or equal to the area of the corresponding light-emitting layer 22, so as to avoid blocking the light emitted by the light-emitting layer 22.
  • the auxiliary electrode layer 3 is directly disposed on the second electrode 23 of the light emitting device 2. Therefore, it is possible to avoid arranging the auxiliary electrodes 32 on the cover plate, and prevent each auxiliary electrode 32 from being separated from the corresponding second electrode 23 or each auxiliary electrode 32 is poorly aligned with the corresponding second electrode 23, and the corresponding light emitting device cannot be improved. The problem of light output rate. In addition, the process of forming a via hole is not required to connect each auxiliary electrode 32 with the corresponding second electrode 23.
  • the auxiliary electrode layer 3 includes a light-transmitting area S1 and an electrode area S2, the position of the light-transmitting area S1 of the auxiliary electrode layer 3 can transmit the light emitted by the light-emitting layer 22, and the electrode of the auxiliary electrode layer 3
  • the area S2 includes an auxiliary electrode 32, which is used to reduce the resistivity of the second electrode 23. Therefore, the resistivity of the second electrode 23 can be reduced without affecting the light output rate of the light-emitting device 2.
  • the material of each auxiliary electrode 32 of the auxiliary electrode layer 3 is metal
  • the material of each transparent structure 31 of the auxiliary electrode layer 3 is metal oxide obtained by oxidation of the metal. Things.
  • the material of each auxiliary electrode 32 may include multiple metals.
  • the material of each auxiliary electrode 32 may be metal tantalum (Ta).
  • the material of each transparent structure 31 includes tantalum oxide. Tantalum oxide has a transparent property and can transmit the light emitted by each light-emitting layer 22.
  • each transparent structure 31 may be tantalum trioxide (Ta 2 O 3 ) and tantalum pentoxide (Ta 2 O 5 ). At least one.
  • Ta 2 O 5 also has stable corrosion resistance, so each transparent structure 31 can also protect the corresponding light emitting device 2.
  • the material of each auxiliary structure 32 may also include other metals, and the material of each transparent structure 31 may also include other metal oxides, as long as the metal oxide has transparency.
  • auxiliary electrode layer 3 a side of each transparent structure 31 close to the plurality of pixel units P and a side of the corresponding auxiliary electrode 32 close to the plurality of pixel units P Located on the same plane (ie, flush with each other). That is, the thickness of each transparent structure 31 (e.g., the size in the direction perpendicular to the substrate 1) is the same as the thickness of the corresponding (or adjacent) auxiliary electrode 32. In this way, the upper surface of each transparent structure 31 (that is, the surface away from the plurality of pixel units P) and the upper surface of each auxiliary electrode 32 (that is, the surface away from the plurality of pixel units P) form a flat plane . Therefore, the auxiliary electrode layer 3 can also be used as a flat layer to fill the top of the light-emitting device 2 to make it flat, and to protect the light-emitting device 2.
  • each auxiliary electrode 32 in the auxiliary electrode layer 3 has the same structure (that is, each auxiliary electrode 32 Used as the light-shielding layer).
  • each auxiliary electrode 32 is formed of metal and is opaque; in addition, each auxiliary electrode 32 is disposed in the peripheral area of the corresponding light-emitting layer 22.
  • each auxiliary electrode 32 can be connected to each second electrode 23 to reduce the impedance of each second electrode 23, and on the other hand, it can also be used as a light shielding layer between the plurality of pixel units P. The light emitted by adjacent pixel units P is prevented from crosstalking with each other.
  • the display panel provided by this embodiment may further include an encapsulation layer 7, which is arranged on the side of the auxiliary electrode layer 3 away from the substrate 1 for encapsulating the display panel to prevent moisture. It enters into the inside of each light-emitting device 2 to cause damage to each light-emitting device 2.
  • the packaging layer 7 can adopt various types of conventional packaging methods, and the packaging layer 7 can include various types of conventional packaging materials, and the packaging methods and packaging materials can be selected according to actual product requirements.
  • the display panel provided by this embodiment further includes an interlayer insulating layer 5 disposed on the side of the substrate 1 close to the encapsulation layer 7 (or auxiliary electrode layer 3), and the interlayer insulating layer 5
  • a thin film transistor 4 is provided in.
  • the first electrode (for example, anode) 21 of each light-emitting device 2 passes through a via hole V (Via, which is located above the thin film transistor 4 shown in FIG. 3) and the thin film transistor 4 (for example, , The source or drain of the thin film transistor 4) is connected.
  • a pixel definition layer (PDL) 6 is further provided on the side of the interlayer insulating layer 5 facing away from the substrate 1 and between any two adjacent light emitting devices 2 of the light emitting devices 2 of the plurality of pixel units P. That is, each light emitting device 2 is provided in the pixel definition layer 6.
  • the thin film transistor 4 may include a plurality of known components, such as a gate electrode, which is arranged on the side of the substrate 1 close to the packaging layer 7; and the gate electrode includes an active layer (Activa area); A gate insulating layer is included between the active layer and the gate; the active layer is provided with a drain (Drain Electrode) and a source (Source Electrode) on the side of the active layer away from the gate insulating layer, and the drain and the source are arranged in the same layer; An interlayer insulating layer is included between the electrode (or source electrode) and the source electrode.
  • a gate electrode which is arranged on the side of the substrate 1 close to the packaging layer 7; and the gate electrode includes an active layer (Activa area); A gate insulating layer is included between the active layer and the gate; the active layer is provided with a drain (Drain Electrode) and a source (Source Electrode) on the side of the active layer away from the gate insulating layer, and the drain and the source are arranged in the same layer; An inter
  • the active layer is composed of a semiconductor material
  • the semiconductor material may be, for example, amorphous silicon, polysilicon, organic semiconductor material, etc., which is not limited herein.
  • the display panel may further include multiple rows of gate lines G extending in the row direction and multiple columns of data lines D extending in the column direction. The multiple rows of gate lines G and multiple columns of data lines D intersect to define the Multiple pixel units P.
  • the cross-sectional view of each pixel unit P of the display panel may be different from the cross-sectional view shown in FIG. 3, for example, may include 3 thin film transistors, which may be designed according to actual product requirements, and is not limited herein.
  • each pixel unit P may sequentially include a substrate 1, a thin film transistor 4, an interlayer insulating layer 5, a pixel defining layer 6 and a light emitting device 2 as shown in FIG. 3.
  • the auxiliary electrode layer 3 may have the shape of a grid (as shown in FIG. 2), and the grid includes a plurality of meshes distributed in an array (ie, each transparent structure 31 in FIG. 2). ) And a plurality of grid lines crossing each other to define the plurality of meshes (ie, the respective band-shaped portions of the auxiliary electrode 32 in FIG. 2 in the horizontal and vertical directions) so as to be perpendicular to the In the direction of the substrate 1, the plurality of meshes overlap with the light-emitting layers 22 of the plurality of pixel electrodes P, respectively.
  • each pixel unit P is located in one of the plurality of meshes, and the orthographic projection of each of the plurality of grid lines on the substrate 1 is located in the transparent structure in the In addition to the orthographic projection on the substrate 1, so that the multiple grid lines do not reduce the light output rate of each pixel unit P and prevent the light output of each pixel unit P from crosstalking with each other.
  • the auxiliary electrode 32 may directly contact the second electrode 23, thereby reducing the impedance of the second electrode 23 more effectively.
  • the first electrode 21 may be an anode
  • the second electrode 23 may be a cathode, thereby realizing a top emission structure.
  • the first electrode 21 (for example, the anode) may be a reflective electrode.
  • the reflective electrode has a reflectivity of greater than or equal to 90% for the light emitted from the corresponding light-emitting layer 22, which can effectively improve The utilization rate of the light emitted by the light-emitting layer 22 improves the display brightness of the display panel.
  • this embodiment also provides a method for manufacturing a display panel.
  • the method may include the following steps S1 to S3.
  • Step S1 making a substrate 1.
  • the substrate 1 may include various types of substrates, such as glass substrates, silicon substrates, etc., which are not limited herein.
  • Step S2 The plurality of pixel units P are fabricated on one side of the substrate 1, wherein each pixel unit P includes a light emitting device 2, and the light emitting device 2 includes first electrodes sequentially arranged on the side of the substrate 1. (E.g., anode) 21, light emitting layer 22, and second electrode (e.g., cathode) 23.
  • first electrodes sequentially arranged on the side of the substrate 1. (E.g., anode) 21, light emitting layer 22, and second electrode (e.g., cathode) 23.
  • the method may further include sequentially forming a thin film transistor 4 and an interlayer insulating layer 5 on the substrate 1, and making a through hole in the interlayer insulating layer 5.
  • the thin film transistor 4 is connected to the first electrode 21.
  • the method may further include preparing a PDL layer 6 on the interlayer insulating layer 5, wherein the PDL layer 6 exposes the second electrode 23, and using inkjet printing technology, in the PDL layer 6 and in the PDL layer 6
  • the light-emitting layer 22 is printed between the first electrode 21 and the second electrode 23.
  • the printing materials of each light-emitting layer 22 can respectively display three colors of red (R), green (G), and blue (B) to realize color display.
  • Step S3. Fabricate an auxiliary electrode layer 3 on the side of the plurality of pixel units P away from the substrate 1.
  • the auxiliary electrode layer 3 includes a light-transmitting area S1 and an electrode area S2.
  • the orthographic projection of the light-transmitting area S1 on the substrate 1 at least covers The orthographic projection of the light emitting layer 22 of the light emitting device 2 on the substrate 1.
  • making the auxiliary electrode layer 3 may include making a transparent structure 31 in each light-transmitting area S1, making an auxiliary electrode 32 in each electrode area S2, and electrically connecting the auxiliary electrode 32 with the second electrode 23 of the corresponding light-emitting device 2 Connection (for example, direct contact).
  • step S3 may include the following steps S31 to S33.
  • Step S31 coating the side of the second electrode 22 in the light emitting device 2 of the plurality of pixel units P away from the substrate 1 with metal.
  • a layer of metal is coated on the side of each second electrode 22 away from the substrate 1 (the layer of metal finally forms the auxiliary electrode layer 3), and the coated metal is formed
  • the metal of the auxiliary electrode 32 may be coated with metal Ta, for example.
  • Step S32 According to the positions of the light-transmitting area S1 and the electrode area S2 of the auxiliary electrode layer 3 to be formed, pattern the coated metal so that the metal includes a portion corresponding to the light-transmitting area and a portion corresponding to the light-transmitting area. Part of the electrode area.
  • a photoresist 8 is coated on the side of the layer of metal away from the substrate 1.
  • a mask is used to block the part of the photoresist 8 corresponding to the light-emitting layer 22, and the remaining part is exposed to light, through the exposure process and the development process ,
  • the part of the photoresist 8 that is not illuminated that is, the part of the photoresist 8 corresponding to the light-emitting layer 22 (that is, the light-transmitting area S1 or the transparent structure 31) will be removed, and the part of the photoresist 8 that is illuminated That is, the part of the photoresist 8 corresponding to the electrode area S2 or the auxiliary electrode 32 will remain. That is to say, the photoresist 8 is only left on each part of the layer of metal corresponding to the electrode region S2 or the auxiliary electrode 32.
  • the photoresist in this embodiment can be a positive type or a negative type. Accordingly, the mask used needs to be changed according to the positive type and the negative type.
  • the above description is based on the positive type. Take glue as an example. Positive glue and negative glue can be selected according to needs, and there is no limitation here.
  • Step S33 the part of the layer of metal corresponding to the light-transmitting area S1 of the auxiliary electrode layer 3 reacts with the oxidizing agent to be converted into a metal oxide to form a transparent structure 31, and the layer of metal corresponds to the electrode of the auxiliary electrode layer 3.
  • the part of the area S2 serves as the auxiliary electrode 32.
  • the display panel shown in part (b) in FIG. 6 is immersed in an oxidizing agent to perform an oxidation process on each exposed portion of the layer of metal. Since there is no photoresist 8 in each part of the metal corresponding to the hair layer 22 (that is, the light-transmitting area S1 as shown in FIG. 3), the oxidant will react with the metal in these parts to oxidize the metal into a transparent metal oxide. ⁇ , thereby forming each transparent structure 31. The rest of the metal (ie, the electrode region S2 as shown in FIG. 3) is covered by the photoresist 8. The photoresist 8 will protect these parts of the metal from reacting with the oxidant.
  • the material properties of the part of the layer of metal corresponding to the electrode area are not changed, and the metal of these parts can be directly used as the auxiliary electrode 32 to connect with the second electrode 23 of the corresponding light-emitting device 2.
  • the oxidant is hydrogen peroxide
  • the opaque metal tantalum (Ta) can be oxidized with hydrogen peroxide to form a colorless and transparent tantalum oxide (tantalum trioxide or tantalum pentoxide).
  • the transparent structure 31 and the auxiliary electrode 32 can be directly formed in different regions of the same layer of metal using photoresist and oxidant, without the need for high-precision processes such as alignment processes or hollow etching processes, thereby
  • the manufacturing process of the display panel can be simplified, problems such as poor alignment of each auxiliary electrode 32 and the corresponding second electrode 23 can be avoided, and the impedance of the corresponding second electrode 23 can be effectively reduced.
  • the manufacturing method provided in this embodiment may further include manufacturing an encapsulation layer 7 on the side of the auxiliary electrode layer 3 away from the substrate 1.
  • an evaporation technique or a chemical vapor deposition (Chemical Vapor Deposition, CVD) process can be used to form the encapsulation layer 7.
  • the material of the encapsulation layer 7 may be a known material used to block water vapor and oxygen from entering the inside of the light emitting device (for example, OLED).
  • an embodiment of the present disclosure also provides a display device, which includes the above-mentioned display panel.
  • the display device may further include a touch panel located on the light emitting side of the display panel.
  • the display device can be any product or component with a display function, such as a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, a navigator, and so on.
  • the other components of the display device can be selected by those of ordinary skill in the art according to actual product requirements, which will not be repeated here, and should not be used as a limitation to the present disclosure.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本公开提供一种显示面板及其制作方法和一种显示装置。该显示面板包括:基底;多个像素单元,其设置在所述基底的一侧,每个像素单元包括一发光器件,所述发光器件包括依次设置在所述基底的所述一侧上的第一电极、发光层和第二电极;以及辅助电极层,其设置在所述多个像素单元背离所述基底的一侧,所述辅助电极层包括透光区和电极区,所述透光区在所述基底上的正投影至少覆盖所述发光层在所述基底上的正投影,所述透光区包括透明结构,所述电极区包括辅助电极,所述辅助电极与所述第二电极电连接;其中,所述辅助电极的材料包括金属,所述透明结构的材料包括金属氧化物,所述金属氧化物与所述金属具有同种元素,所述金属氧化物由所述金属氧化得到。

Description

显示面板及其制作方法、显示装置
相关申请的交叉引用
本申请要求于2020年4月26日提交的中国专利申请No.202010338397.0的优先权,该专利申请的全部内容通过引用方式合并于此。
技术领域
本公开属于显示技术领域,具体涉及一种显示面板及其制作方法、一种显示装置。
背景技术
有机电致发光二极管(Organic Light-Emitting Diode,OLED)显示面板包括多个像素单元,每个像素单元中设置有一发光器件(即,有机电致发光二极管)。该发光器件可以包括阳极、发光层和阴极,其中发光层的出光侧靠近阴极。为了提高OLED(即,发光器件)的出光率,发光器件的阴极的厚度需要尽可能小。但是随着阴极厚度的减小,阴极的电阻率随之增大(因此OLED的功耗也增大)。为了降低阴极的阻抗以降低OLED的功耗,需要使发光器件的阴极与辅助电极相接。因此,期望提供辅助电极的合适构造和合适设置方式,以提高发光器件的出光率和显示面板的显示质量。
发明内容
本公开的一些实施例提供了一种显示面板、一种显示面板的制造方法以及一种显示装置。
本公开的第一方面提供了一种显示面板,该显示面板包括:
基底;
多个像素单元,其设置在所述基底的一侧,每个像素单元包括一发光器件,所述发光器件包括依次设置在所述基底的所述一侧上的第一电极、发光层和第二电极;以及
辅助电极层,其设置在所述多个像素单元背离所述基底的一侧,所述辅助电极层包括透光区和电极区,所述透光区在所述基底上的正投影至少覆盖所述发光层在所述基底上的正投影,所述透光区包括透明结构,所述电极区包括辅助电极,所述辅助电极与所述第二电极电连接;其中,
所述辅助电极的材料包括金属,所述透明结构的材料包括金属氧化物,所述金属氧化物与所述金属具有同种元素,所述金属氧化物由所述金属氧化得到。
在一个实施例中,所述辅助电极的材料包括钽,所述透明结构的材料包括钽氧化物。
在一个实施例中,所述钽氧化物包括三氧化二钽和五氧化二钽中的至少一种
在一个实施例中,所述透明结构靠近所述多个像素单元的一侧与所述辅助电极靠近所述多个像素单元的一侧位于同一平面上。
在一个实施例中,所述多个像素单元中的任意相邻两个之间包括遮光层,并且所述辅助电极用作所述遮光层。
在一个实施例中,所述显示面板还包括:封装层,其设置在所述辅助电极层背离所述基底的一侧。
在一个实施例中,所述辅助电极层具有网格的形状,所述网格包括呈阵列分布的多个网孔和彼此交叉以限定出所述多个网孔的多条网格线。
在一个实施例中,每一个像素单元的所述透明结构位于所述多个网孔之一内,并且所述多条网格线中的每一条在所述基底上的正投影位于所述透明结构在所述基底上的正投影之外。
在一个实施例中,所述辅助电极与所述第二电极直接接触。
在一个实施例中,所述第一电极为阳极,并且所述第二电极为阴极。
在一个实施例中,所述第一电极为反射电极。
本公开的第二方面提供了一种显示面板的制作方法,该方法包括:
制作基底;
在所述基底的一侧制作多个像素单元,其中,每个像素单元包括一发光器件,所述发光器件包括依次设置在所述基底的所述一侧上的第一电极、发光层和第二电极;
在所述多个像素单元背离所述基底的一侧制作辅助电极层,其中,所述辅助电极层包括透光区和电极区,所述透光区在所述基底上的正投影至少覆盖所述发光层在所述基底上的正投影;以及
在所述透光区中制作透明结构,在所述电极区中制作辅助电极,且将所述辅助电极与所述第二电极电连接;其中,
所述辅助电极的材料包括金属,所述透明结构的材料包括金属氧化物,所述金属氧化物与所述金属具有同种元素,所述金属氧化物由所述金属氧化得到。
在一个实施例中,在所述透光区中制作透明结构,在所述电极区制中作辅助电极,且将所述辅助电极与所述第二电极电连接,包括:
在所述多个像素单元的第二电极背离所述基底的一侧涂覆所述金属;
按照所述透光区与所述电极区的位置,对所述金属进行图案化以使所述金属包括对应于所述透光区的部分和对应于所述电极区的部分;
以所述金属对应于所述电极区的部分作为所述辅助电极,并且使所述金属对应于所述透光区的部分转化为金属氧化物以形成所述透明结构。
在一个实施例中,按照所述透光区与所述电极区的位置,对所述金属进行图案化包括:
在所述金属背离所述基底的一侧涂覆光刻胶;以及
利用掩膜版,通过曝光工艺和显影工艺,使所述光刻胶仅覆盖所述金属对应于所述电极区的部分上。
在一个实施例中,使所述金属对应于所述透光区的部分转化为金属氧化物包括:
利用氧化剂来对所述金属对应于所述透光区的部分执行氧化工艺。
在一个实施例中,所述氧化剂包括双氧水。
在一个实施例中,将所述辅助电极与所述第二电极电连接包括:
使所述辅助电极与所述第二电极直接接触。
本公开的第三方面提供了一种显示装置,该显示装置包括根据本公开的第一方面的各个实施例中的任一个所述的显示面板。
附图说明
图1为根据本公开的实施例的显示面板的结构示意图(例如,该显示面板的呈阵列布置的多个像素单元P的俯视图);
图2为根据本公开的实施例的显示面板的结构示意图(例如,该显示面板的辅助电极层的俯视图);
图3为根据本公开的实施例的显示面板(例如,沿着图2的线AA’截取)的示意剖视图;
图4为根据本公开的实施例的显示面板的制作方法的流程图;
图5为图4中步骤3的流程图;以及
图6为根据本公开的实施例的显示面板的制作方法的示意图。
具体实施方式
为了使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开作进一步地详细描述。显然,所描述的实施例仅是本公开的部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本公开保护的范围。
附图中各部件的形状和大小不不一定反映真实比例,目的只是为了便于对本公开实施例的内容的理解。
除非另外定义,本公开使用的技术术语或者科学术语应当为本 公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的连接。“上”、“下”、“左”、“右”等术语仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
本发明构思的发明人发现,在现有技术中,辅助电极通常设置在OLED显示面板的盖板上,并且与发光器件相对设置。在这种情况下,辅助电极需要与阴极对齐(例如,在垂直于基底1的方向上彼此重叠)相接,因此辅助电极容易出现脱落或辅助电极与阴极对齐不佳等问题。在另一种设置方式中,辅助电极通常设置在背板的栅极所在的层或者源极所在的层中,并且通过形成过孔的工艺将辅助电极连接至发光器件的阴极。在这种情况下,形成过孔的工艺容易产生作为杂质的颗粒(particle),所述颗粒会降低显示面板的显示质量。
至少为了解决现有技术中存在的技术问题之一,本公开的一些实施例提供了一种显示面板,在该显示面板中能够直接在发光器件的第二电极(例如,阴极)上形成辅助电极,该辅助电极不降低发光器件的出光率。这样,避免了辅助电极因脱落或与第二电极对齐不佳而无法提高发光器件的出光率的问题。
图1至图3示出了根据本公开的一些实施例的显示面板。例如,图1为显示面板的发光层及其以下膜层的俯视图,图2为显示面板的辅助电极层的俯视图,图3为显示面板的一部分(例如,一个像素单元P)沿着图2的线AA’截取的示意剖视图。例如,该显示面板可以包括基底1、多个像素单元P和辅助电极层3。
例如,所述多个像素单元P设置在基底1的一侧,每个像素单 元P包括一发光器件2。参见图3,发光器件2例如可以包括第一电极21、发光层22和第二电极23。第一电极21、发光层22和第二电极23可以依次设置在基底1上。
需要说明的是,本实施例提供的显示面板中,发光器件2可以采用顶发射结构也可以采用底发射结构,这可以根据实际产品的需要来设计。在本公开的一个实施例中,发光器件2采用顶发射结构,即,发光层22的出光侧为其靠近第二电极23的一侧。若发光器件2采用顶发射结构,则第一电极21可以为阳极,第二电极23可以为阴极。以下皆以第一电极21为阳极、第二电极23为阴极为例进行说明。
进一步地,参见图1至图3,辅助电极层3可以设置在所述多个像素单元P背离基底1的一侧。辅助电极层3可以包括透光区S1和电极区(其也可以称为非透光区)S2,辅助电极层3的透光区S1对应发光器件2的发光层22的位置(例如,在垂直于基底1的方向上每一个像素单元P的透光区S1和发光层22互相重叠或完全重叠)。也即,对于每一个像素单元P,透光区S1在基底1上的正投影覆盖(例如,完全覆盖)发光层22在基底1上的正投影,辅助电极层3的其余位置则为电极区S2,如图3所示。例如,辅助电极层3的透光区S1包括透明结构(其也可以称为透明电极)31,辅助电极层3的电极区S2包括辅助电极32,图2中的多个透明结构31的位置分别对应于图1中的多个发光层22的位置。换言之,图2中的多个透明结构31可以与图1中的多个发光层22一一对应。辅助电极层3的每一个辅助电极32与对应的发光器件2的第二电极23电连接(例如,辅助电极层3的每一个辅助电极32与对应的发光器件2的第二电极23直接接触),从而每一个辅助电极32可以降低对应的第二电极23的阻抗,进而降低对应的发光器件2的功耗。例如,每一个辅助电极32的材料包括金属,每一个透明结构31的材料包括金属氧化物。例如,每一个透明结构31的金属氧化物和每一个辅助电极32的金属具有同种元素,形成每一个透明结构31的金属氧化物由形成每一个辅助电极32的金属氧化得到。
需要说明的是,辅助电极层3中的每一个透明结构31(也即每 一个透光区S1)在基底1上的正投影,覆盖对应的发光器件2中的发光层22在基底1上的正投影,即,每一个透光区S1的面积可以大于或等于对应的发光层22的面积,从而避免遮挡发光层22发出的光。
本实施例提供的显示面板,由于将辅助电极层3直接设置在发光器件2的第二电极23上。因此能够避免把辅助电极32设置在盖板上,避免每一个辅助电极32因脱离对应的第二电极23或每一个辅助电极32与对应的第二电极23对齐不佳而无法提高对应的发光器件的出光率的问题。此外,也无需形成过孔的工艺将每一个辅助电极32与对应的第二电极23相接。且对于每一个像素单元P,由于辅助电极层3包括透光区S1和电极区S2,辅助电极层3的透光区S1的位置可以将发光层22发出的光透射,辅助电极层3的电极区S2的位置包括辅助电极32,辅助电极32用以降低第二电极23的电阻率,因此能够在降低第二电极23的电阻率的基础下,不影响发光器件2的出光率。
可选地,在本实施例提供的显示面板中,辅助电极层3的每一个辅助电极32的材料为金属,辅助电极层3的每一个透明结构31的材料为该金属氧化得来的金属氧化物。通过这种设计可以降低工艺复杂度。具体地,每一个辅助电极32的材料可以包括多种金属,例如每一个辅助电极32的材料可以为金属钽(Ta),相应地,每一个透明结构31的材料包括钽氧化物。钽氧化物具有透明性质,可以将每一个发光层22发出的光透射。作为一种实施方式,若每一个辅助结构32的材料为Ta,则每一个透明结构31的材料可以为三氧化二钽(Ta 2O 3)和五氧化二钽(Ta 2O 5)中的至少一种。并且Ta 2O 5还具有稳定的抗腐蚀性,因此每一个透明结构31还能够保护对应的发光器件2。可替换地,每一个辅助结构32的材料还可以包括其他金属,并且每一个透明结构31的材料还可以包括其他金属氧化物,只要该金属氧化物具有透明性即可。
可选地,如图3所示,在辅助电极层3中,每一个透明结构31靠近所述多个像素单元P的一侧与对应的辅助电极32靠近所述多个像素单元P的一侧位于同一平面上(即,彼此齐平)。也就是说,每 一个透明结构31的厚度(例如,在垂直于基底1的方向上的尺寸)与对应的(或相邻的)辅助电极32的厚度相同。这样,各个透明结构31的上表面(即,远离所述多个像素单元P的表面)和各个辅助电极32的上表面(即,远离所述多个像素单元P的表面)形成一平坦的平面。从而辅助电极层3还可以作为一平坦层,用于填充发光器件2的上方使其平坦,以及保护发光器件2。
可选地,如图2和图3所示,所述多个像素单元P之间包括遮光层,遮光层与辅助电极层3中的各个辅助电极32为同一个结构(即,各个辅助电极32用作所述遮光层)。也就说,由于各个辅助电极32为金属形成,且具有不透光性;此外,每一个辅助电极32设置在对应的发光层22的周边区域。这样,各个辅助电极32一方面可以分别与各个第二电极23相接以减小各个第二电极23的阻抗,另一方面还可以作为所述多个像素单元P之间的遮光层,用于防止相邻的像素单元P发出的光彼此发生串扰。
可选地,如图3所示,本实施例提供的显示面板还可以包括封装层7,封装层7设置在辅助电极层3背离基底1的一侧,用于将显示面板封装,以防止水汽等进入各个发光器件2的内部从而对各个发光器件2产生损害。封装层7可以采用各种类型的常规封装方式,以及封装层7可以包括各种类型的常规封装材料,该封装方式和封装材料可以根据实际产品的需要来选择。
进一步地,如图1和图3所示,本实施例提供的显示面板还包括设置在基底1靠近封装层7(或辅助电极层3)一侧的层间绝缘层5,层间绝缘层5中设置有薄膜晶体管4。每一个发光器件2的第一电极(例如,阳极)21通过设置在层间绝缘层5中的过孔V(Via,其位于图3所示的薄膜晶体管4之上)与薄膜晶体管4(例如,薄膜晶体管4的源极或漏极)相连。在层间绝缘层5背离基底1的一侧、且在所述多个像素单元P的发光器件2的任意相邻两个发光器件2之间还设置有像素定义层(PDL)6。即,各个发光器件2设置在像素定义层6中。例如,薄膜晶体管4可以包括已知的多个组件,例如包括:栅极(Gate Electrode),栅极设置在基底1靠近封装层7一侧;栅 极之上包括有源层(Activa area);有源层与栅极之间包括栅极绝缘层;有源层背离栅极绝缘层一侧设置有漏极(Drain Electrode)和源极(Source Electrode),漏极和源极同层设置;漏极(或源极)和源极之间包括层间绝缘层。例如,有源层由半导体材料构成,该半导体材料例如可以为非晶硅、多晶硅、有机半导体材料等,在此不做限定。参见图1,显示面板还可以包括沿行方向延伸的多行栅线G,和沿列方向延伸的多列数据线D,多行栅线G和多列数据线D相交叉以限定出所述多个像素单元P。可替换地,显示面板的每一个像素单元P的剖视图可以不同于图3所示的剖视图,例如可以包括3个薄膜晶体管,这可以根据实际产品的需要来设计,在此不做限定。
例如,每一个像素单元P可以依次包括如图3所示的基底1、薄膜晶体管4、层间绝缘层5、像素限定层6和发光器件2。
在一些实施例中,所述辅助电极层3可以具有网格的形状(如图2所示),所述网格包括呈阵列分布的多个网孔(即,图2中的各个透明结构31)和彼此交叉以限定出所述多个网孔的多条网格线(即,图2中的辅助电极32在水平方向和竖直方向上的各个带状部分),以便在垂直于所述基底1的方向上所述多个网孔分别与所述多个像素电极P的发光层22分别重叠。每一个像素单元P的所述透明结构位于所述多个网孔之一内,并且所述多条网格线中的每一条在所述基底1上的正投影位于所述透明结构在所述基底1上的正投影之外,以便所述多条网格线不降低每一个像素单元P的出光率并且防止各个像素单元P的出光互相串扰。对于每一个像素电极P,所述辅助电极32与所述第二电极23可以直接接触,从而更有效地降低所述第二电极23的阻抗。对于每一个像素电极P,所述第一电极21可以为阳极,并且所述第二电极23可以为阴极,从而实现顶发射结构。对于每一个像素电极P,所述第一电极21(例如,阳极)可以为反射电极,例如,该反射电极对于对应的发光层22的出光的反射率大于或等于90%,这样可以有效地提高发光层22出光的利用率并且提高显示面板的显示亮度。
相应的,如图4所示,本实施例还提供一种显示面板的制作方 法,该方法可以包括以下步骤S1至步骤S3。
步骤S1、制作基底1。
例如,基底1可以包括各种类型的基底,例如玻璃基底、硅基底等,在此不做限定。
步骤S2、在基底1的一侧制作所述多个像素单元P,其中,每个像素单元P包括一发光器件2,该发光器件2包括依次设置在基底1的所述一侧的第一电极(例如,阳极)21、发光层22和第二电极(例如,阴极)23。
例如,在制作每个像素单元P的第一电极21之前,所述方法还可以包括在基底1上依次形成薄膜晶体管4和层间绝缘层5,并且在层间绝缘层5中制作通孔,使薄膜晶体管4与第一电极21相连接。之后,所述方法还可以包括在层间绝缘层5上制备PDL层6,其中,PDL层6使所述第二电极23暴露出来,并且使用喷墨打印技术,在PDL层6中并且在所述第一电极21和所述第二电极23之间打印所述发光层22。各个发光层22的打印材料可以分别显示红(R)绿(G)蓝(B)三色,以实现彩色显示。
步骤S3、在所述多个像素单元P背离基底1的一侧制作辅助电极层3,辅助电极层3包括透光区S1和电极区S2,透光区S1在基底1上的正投影至少覆盖发光器件2的发光层22在基底1上的正投影。例如,制作辅助电极层3可以包括在每一个透光区S1制作透明结构31,在每一个电极区S2制作辅助电极32,且将该辅助电极32与对应的发光器件2的第二电极23电连接(例如,直接接触)。
进一步地,如图5所示,步骤S3可以包括以下步骤S31至步骤S33。
步骤S31、在所述多个像素单元P的发光器件2中的第二电极22背离基底1的一侧涂覆金属。
例如,如图6中的部分(a)所示,在各个第二电极22背离基底1的一侧涂覆一层金属(该层金属最后形成辅助电极层3),所涂覆的金属为形成辅助电极32的金属,例如可以涂覆金属Ta。
步骤S32、按照要形成的辅助电极层3的透光区S1与电极区S2 的位置,对已涂覆的金属进行图案化以使所述金属包括对应于所述透光区的部分和对应于所述电极区的部分。
例如,如图6中的部分(a)所示,在所述一层金属背离基底1的一侧涂覆光刻胶8。
进一步地,如图6中的部分(b)所示,利用掩膜版(Mask),将光刻胶8对应发光层22的部分遮挡住,其余部分暴露在光照下,通过曝光工艺和显影工艺,在光刻胶8没有被光照的部分,也即光刻胶8对应发光层22(也即透光区S1或透明结构31)的部分将被去除,而光刻胶8中被光照的部分,即光刻胶8对应电极区S2或辅助电极32的部分将保留。也就是说,使光刻胶8仅保留在所述一层金属的对应于电极区S2或辅助电极32的各个部分上。
可选地,本实施例中的光刻胶可以为正性胶,也可以为负性胶,相应地,所使用的Mask也需要根据正性胶和负性胶相应改变,上述描述以正性胶为例。正性胶和负性胶可以根据需要选择,在此不做限定。
步骤S33、使所述一层金属对应于辅助电极层3的透光区S1的部分与氧化剂反应转化为金属氧化物,以形成透明结构31,所述一层金属对应于辅助电极层3的电极区S2的部分作为辅助电极32。
例如,如图6中的部分(c)所示,将图6中的部分(b)所示的显示面板浸入氧化剂中以对所述一层金属的暴露的各个部分执行氧化工艺。由于所述一层金属对应发层22的各个部分(即如图3所示的透光区S1)没有光刻胶8,因此氧化剂会与这些部分的金属反应,使金属氧化为透明的金属氧化物,从而形成各个透明结构31。而金属的其余部分(即如图3所示的电极区S2)由于被光刻胶8覆盖,光刻胶8会保护这些部分的金属,使其不与氧化剂反应。因此,所述一层金属的对应于电极区的部分的材料性质没有发生改变,这些部分的金属可以直接作为辅助电极32,以与对应的发光器件2的第二电极23相接。在一个实施例中,所述氧化剂为双氧水,不透光的金属钽(Ta)经双氧水氧化后可以形成无色透明的钽的氧化物(三氧化二钽或五氧化二钽)。
通过上述方式制作辅助电极层3,能够利用光刻胶与氧化剂直接在同一层金属的不同区域中形成透明结构31和辅助电极32,而无需对位工艺或镂空刻蚀工艺等高精度工艺,从而可以简化显示面板的制作工艺,可以避免每一个辅助电极32和对应的第二电极23对齐不佳等问题、并且可以有效地降低对应的第二电极23的阻抗。
可选地,本实施例提供的制作方法还可以包括在辅助电极层3背离基底1的一侧制作封装层7。例如,可以使用蒸镀技术或化学气相沉积(Chemical Vapour Deposition,CVD)工艺,形成封装层7。例如,封装层7的材料可以是用于阻挡水汽和氧气进入发光器件(例如,OLED)内部的已知材料。
相应地,本公开的实施例还提供一种显示装置,其包括上述的显示面板。此外,该显示装置还可以包括位于所述显示面板的出光侧的触摸面板。该显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。对于该显示装置的其它组成部分本领域的普通技术人员可以根据实际产品的需要来选择,在此不做赘述,也不应作为对本公开的限制。
应当理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离由所附的权利要求所限定的本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也属于本公开的保护范围。

Claims (18)

  1. 一种显示面板,包括:
    基底;
    多个像素单元,其设置在所述基底的一侧,每个像素单元包括一发光器件,所述发光器件包括依次设置在所述基底的所述一侧上的第一电极、发光层和第二电极;以及
    辅助电极层,其设置在所述多个像素单元背离所述基底的一侧,所述辅助电极层包括透光区和电极区,所述透光区在所述基底上的正投影至少覆盖所述发光层在所述基底上的正投影,所述透光区包括透明结构,所述电极区包括辅助电极,所述辅助电极与所述第二电极电连接;其中,
    所述辅助电极的材料包括金属,所述透明结构的材料包括金属氧化物,所述金属氧化物与所述金属具有同种元素,所述金属氧化物由所述金属氧化得到。
  2. 根据权利要求1所述的显示面板,其中,所述辅助电极的材料包括钽,所述透明结构的材料包括钽氧化物。
  3. 根据权利要求2所述的显示面板,其中,所述钽氧化物包括三氧化二钽和五氧化二钽中的至少一种
  4. 根据权利要求1-3中任一项所述的显示面板,其中,所述透明结构靠近所述多个像素单元的一侧与所述辅助电极靠近所述多个像素单元的一侧位于同一平面上。
  5. 根据权利要求1-4中任一项所述的显示面板,其中,所述多个像素单元中的任意相邻两个之间包括遮光层,并且所述辅助电极用作所述遮光层。
  6. 根据权利要求1-5中任一项所述的显示面板,还包括:封装层,其设置在所述辅助电极层背离所述基底的一侧。
  7. 根据权利要求1-6中任一项所述的显示面板,其中,所述辅助电极层具有网格的形状,所述网格包括呈阵列分布的多个网孔和彼此交叉以限定出所述多个网孔的多条网格线。
  8. 根据权利要求7所述的显示面板,其中,每一个像素单元的所述透明结构位于所述多个网孔之一内,并且所述多条网格线中的每一条在所述基底上的正投影位于所述透明结构在所述基底上的正投影之外。
  9. 根据权利要求1-8中任一项所述的显示面板,其中,所述辅助电极与所述第二电极直接接触。
  10. 根据权利要求1-9中任一项所述的显示面板,其中,所述第一电极为阳极,并且所述第二电极为阴极。
  11. 根据权利要求1-10中任一项所述的显示面板,其中,所述第一电极为反射电极。
  12. 一种显示面板的制作方法,包括:
    制作基底;
    在所述基底的一侧制作多个像素单元,其中,每个像素单元包括一发光器件,所述发光器件包括依次设置在所述基底的所述一侧上的第一电极、发光层和第二电极;
    在所述多个像素单元背离所述基底的一侧制作辅助电极层,其中,所述辅助电极层包括透光区和电极区,所述透光区在所述基底上的正投影至少覆盖所述发光层在所述基底上的正投影;以及
    在所述透光区中制作透明结构,在所述电极区中制作辅助电极, 且将所述辅助电极与所述第二电极电连接;其中,
    所述辅助电极的材料包括金属,所述透明结构的材料包括金属氧化物,所述金属氧化物与所述金属具有同种元素,所述金属氧化物由所述金属氧化得到。
  13. 根据权利要求12所述的制作方法,其中,在所述透光区中制作透明结构,在所述电极区制中作辅助电极,且将所述辅助电极与所述第二电极电连接,包括:
    在所述多个像素单元的第二电极背离所述基底的一侧涂覆所述金属;
    按照所述透光区与所述电极区的位置,对所述金属进行图案化以使所述金属包括对应于所述透光区的部分和对应于所述电极区的部分;
    以所述金属对应于所述电极区的部分作为所述辅助电极,并且使所述金属对应于所述透光区的部分转化为金属氧化物以形成所述透明结构。
  14. 根据权利要求13所述的制作方法,其中,按照所述透光区与所述电极区的位置,对所述金属进行图案化包括:
    在所述金属背离所述基底的一侧涂覆光刻胶;以及
    利用掩膜版,通过曝光工艺和显影工艺,使所述光刻胶仅覆盖所述金属对应于所述电极区的部分上。
  15. 根据权利要求13或14所述的制作方法,其中,使所述金属对应于所述透光区的部分转化为金属氧化物包括:
    利用氧化剂来对所述金属对应于所述透光区的部分执行氧化工艺。
  16. 根据权利要求15所述的制作方法,其中,所述氧化剂包括双氧水。
  17. 根据权利要求12-16中任一项所述的制作方法,其中,将所述辅助电极与所述第二电极电连接包括:
    使所述辅助电极与所述第二电极直接接触。
  18. 一种显示装置,包括根据权利要求1-11中任一项所述的显示面板。
PCT/CN2021/088251 2020-04-26 2021-04-20 显示面板及其制作方法、显示装置 WO2021218691A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/630,666 US20220255036A1 (en) 2020-04-26 2021-04-20 Display panel and manufacturing method thereof, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010338397.0A CN111477664B (zh) 2020-04-26 2020-04-26 一种显示面板及其制作方法、显示装置
CN202010338397.0 2020-04-26

Publications (1)

Publication Number Publication Date
WO2021218691A1 true WO2021218691A1 (zh) 2021-11-04

Family

ID=71755826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/088251 WO2021218691A1 (zh) 2020-04-26 2021-04-20 显示面板及其制作方法、显示装置

Country Status (3)

Country Link
US (1) US20220255036A1 (zh)
CN (1) CN111477664B (zh)
WO (1) WO2021218691A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111477664B (zh) * 2020-04-26 2023-11-24 合肥鑫晟光电科技有限公司 一种显示面板及其制作方法、显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5400047A (en) * 1993-11-10 1995-03-21 Beesely; Dwayne E. High brightness thin film electroluminescent display with low OHM electrodes
CN104022139A (zh) * 2014-05-30 2014-09-03 京东方科技集团股份有限公司 一种有机电致发光显示面板及显示装置
CN104282724A (zh) * 2013-07-08 2015-01-14 三星显示有限公司 有机发光显示器件及制造有机发光显示器件的方法
CN106953026A (zh) * 2017-03-21 2017-07-14 京东方科技集团股份有限公司 显示面板及其制造方法、显示装置
US20190097167A1 (en) * 2017-09-25 2019-03-28 Boe Technology Group Co., Ltd. Oled panel and manufacturing method thereof
CN111477664A (zh) * 2020-04-26 2020-07-31 合肥鑫晟光电科技有限公司 一种显示面板及其制作方法、显示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI365005B (en) * 2008-01-04 2012-05-21 Chimei Innolux Corp Organic light emitting diode (oled) display devices, modules, and electronic devices
JP2010034079A (ja) * 2009-11-11 2010-02-12 Idemitsu Kosan Co Ltd アクティブ駆動型有機el発光装置およびその製造方法
CN105633297B (zh) * 2014-11-25 2018-04-20 乐金显示有限公司 透视有机发光显示装置及其制造方法
CN106206456B (zh) * 2016-08-10 2019-08-27 京东方科技集团股份有限公司 一种阵列基板的制作方法、阵列基板及显示装置
CN107170806A (zh) * 2017-05-26 2017-09-15 京东方科技集团股份有限公司 栅电极及其制作方法、阵列基板制作方法
EP3688810A4 (en) * 2017-09-26 2021-07-07 BOE Technology Group Co., Ltd. DISPLAY SUBSTRATE WITH ORGANIC LIGHT-EMITTING DIODES, DISPLAY DEVICE WITH ORGANIC LIGHT-EMITTING DIODES, AND METHOD FOR MANUFACTURING THE DISPLAY SUBSTRATE WITH ORGANIC LIGHT-EMITTING DIODES
KR102450339B1 (ko) * 2017-11-28 2022-10-04 엘지디스플레이 주식회사 유기 발광 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5400047A (en) * 1993-11-10 1995-03-21 Beesely; Dwayne E. High brightness thin film electroluminescent display with low OHM electrodes
CN104282724A (zh) * 2013-07-08 2015-01-14 三星显示有限公司 有机发光显示器件及制造有机发光显示器件的方法
CN104022139A (zh) * 2014-05-30 2014-09-03 京东方科技集团股份有限公司 一种有机电致发光显示面板及显示装置
CN106953026A (zh) * 2017-03-21 2017-07-14 京东方科技集团股份有限公司 显示面板及其制造方法、显示装置
US20190097167A1 (en) * 2017-09-25 2019-03-28 Boe Technology Group Co., Ltd. Oled panel and manufacturing method thereof
CN111477664A (zh) * 2020-04-26 2020-07-31 合肥鑫晟光电科技有限公司 一种显示面板及其制作方法、显示装置

Also Published As

Publication number Publication date
CN111477664A (zh) 2020-07-31
US20220255036A1 (en) 2022-08-11
CN111477664B (zh) 2023-11-24

Similar Documents

Publication Publication Date Title
US11056543B2 (en) Display panel and manufacturing method thereof
WO2016192256A1 (zh) 阵列基板及其制作方法、显示装置
WO2022111094A1 (zh) 显示基板及其制备方法、显示装置
WO2019233391A1 (zh) Oled基板及显示面板、显示装置
US11183111B2 (en) Pixel unit and method for manufacturing the same, and double-sided OLED display device
US11563064B2 (en) Array substrate, display device, and method for fabricating an array substrate
WO2021097690A1 (zh) 显示基板及其制作方法和显示装置
US20220115452A1 (en) Display Substrate, Display Panel, Display Device and Manufacturing Method of Display Panel
WO2020224010A1 (zh) Oled 显示面板及其制备方法
US20220293692A1 (en) Array substrate, method for manufacturing the same, display panel and display device
WO2023098293A1 (zh) 显示基板及其制作方法和显示装置
WO2022052194A1 (zh) 一种显示基板及相关装置
WO2020239071A1 (zh) 显示基板及其制作方法、显示面板和显示装置
EP4131398A1 (en) Display substrate and preparation method therefor, and display apparatus
US20230032598A1 (en) Display panel, display apparatus, and manufacturing method for display panel
WO2021218691A1 (zh) 显示面板及其制作方法、显示装置
WO2023039934A1 (zh) 显示面板及显示面板的制造方法、显示终端
WO2020177666A1 (zh) 像素单元及其制造方法、显示基板
CN216213464U (zh) 显示基板、显示装置
US20240016017A1 (en) Display panel and method for manufacturing same
US20230345772A1 (en) Display substrate and manufacturing method thereof, and display device
WO2022052193A1 (zh) 显示基板、显示装置及高精度金属掩模板
WO2023019603A1 (zh) 显示面板、显示面板的制作方法以及显示装置
CN113053974A (zh) Oled显示面板及其制备方法
CN113571668A (zh) 一种阵列基板、其制备方法及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21795448

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21795448

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23.06.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21795448

Country of ref document: EP

Kind code of ref document: A1