WO2021218632A1 - 排气颗粒捕集器及车辆 - Google Patents
排气颗粒捕集器及车辆 Download PDFInfo
- Publication number
- WO2021218632A1 WO2021218632A1 PCT/CN2021/087137 CN2021087137W WO2021218632A1 WO 2021218632 A1 WO2021218632 A1 WO 2021218632A1 CN 2021087137 W CN2021087137 W CN 2021087137W WO 2021218632 A1 WO2021218632 A1 WO 2021218632A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- filter
- channel
- flow
- exhaust
- flow channel
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/022—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/033—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
- F01N3/035—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
Definitions
- This application relates to the field of motor vehicle emissions, for example, to an exhaust particle trap and a vehicle.
- the exhaust particle trap is a wall-flow type, including multiple parallel flow channels 1'. Adjacent flow channels 1'are separated by porous and gas-permeable thin-walled ceramics.
- This structure causes the exhaust gas to enter through the open flow channel 1'after entering through the porous and ventilating
- the thin-walled ceramic enters the adjacent flow channel 1'with an open outlet and is discharged, and the particulate matter in the exhaust gas adheres to the wall surface of the thin-walled ceramic, achieving the purpose of capturing the particulate matter.
- the particulate matter in the exhaust is mainly carbon particles and ash.
- Carbon particles come from gasoline that is not fully burned, and ash comes from engine oil.
- Carbon particles can be disposed of by increasing the temperature of the exhaust gas.
- the combustion temperature must generally be above 550°C.
- the vehicle has to delay ignition, or even increase the speed, and the load increases.
- the ash is divided into non-combustible particles, which cannot be eliminated by high temperature, and will permanently exist in the particle trap, blocking part of the wall filter holes. The problem with exhaust particulate traps is that as the mileage increases, the filter holes are blocked and the exhaust back pressure rises. Frequent regeneration is required, which reduces the torque output of the engine and fuel economy.
- the present application provides an exhaust particle trap and a vehicle. Under the premise of meeting emission regulations, the deposition rate of carbon particles and ash in the exhaust gas in the exhaust particle trap is reduced, and the exhaust back pressure is prevented from rising sharply High, reduce the regeneration frequency, increase the output torque of the engine, and the performance of the whole vehicle is good.
- An exhaust particle trap which includes a filter channel, the filter channel includes a plurality of parallel and adjacent flow channels, the adjacent flow channels are separated by a porous filter wall, the plurality of flow channels include A plurality of first flow channels and a plurality of second flow channels, the inlet and outlet of the first flow channel are open alternatively, the inlets of the adjacent first flow channels are not opened at the same time, the inlet and the outlet of the second flow channel All open.
- the plurality of flow channels are uniformly distributed in the filter channel, and the plurality of second flow channels are evenly spaced and distributed in the filter channel.
- the plurality of flow channels are uniformly distributed in the filter channel, and the plurality of second flow channels are regularly distributed in the filter channel.
- the filter channel includes a strong airflow impingement area and a weak airflow impingement area, and the plurality of second flow channels are distributed in the weak airflow impingement area.
- the percentage of the cross-sectional area of the outlet to the cross-sectional area of the inlet is a, 0% ⁇ a ⁇ 100%.
- the porous filter wall is provided with a plurality of filter holes and a plurality of notches for direct passage of the exhaust gas.
- a plurality of filter holes are opened on the porous filter wall, and the plurality of filter holes include a plurality of first filter holes and a plurality of second filter holes, and The size of the second filter hole is larger than the size of the first filter hole.
- a three-way catalyst layer is provided on the porous filter wall.
- the porous filter wall is made of acicular mullite.
- a vehicle including the exhaust particle trap as described above.
- Figure 1 is a structural schematic diagram of a wall-flow exhaust particle trap
- FIG. 2 is a schematic structural diagram of an exhaust particle trap provided by an embodiment of the application.
- FIG. 3 is a schematic diagram of the distribution of a second flow channel in the filter channel according to an embodiment of the application
- FIG. 4 is a schematic diagram of the distribution of another second flow channel in the filter channel according to an embodiment of the application.
- FIG. 5 is a schematic diagram of the distribution of another second flow channel in the filter channel according to an embodiment of the application.
- FIG. 6 is a schematic diagram of the distribution of another second flow channel in the filter channel according to an embodiment of the application.
- the terms “center”, “upper”, “lower”, “left”, “right”, “vertical”, “horizontal”, “inner”, “outer”, etc. indicate the orientation or position The relationship is based on the orientation or position relationship shown in the drawings, which is only for the convenience of describing the application and simplifying the description, and does not indicate or imply that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, therefore It cannot be understood as a restriction on this application.
- the terms “first” and “second” are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance. Among them, the terms “first position” and “second position” are two different positions.
- the terms “installed”, “connected”, and “connected” should be understood in a broad sense.
- it can be a fixed connection or a detachable connection; it can be a mechanical connection.
- It can also be an electrical connection; it can be directly connected, or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
- the meaning of the above terms in this application can be understood according to the situation.
- the exhaust particle trap provided by this embodiment can be connected to the exhaust passage of the combustion chamber of the engine, and the exhaust gas generated after the fuel combustion in the engine does work enters the exhaust particle trap through the exhaust passage to be filtered, so that The concentration of particulate matter in the exhaust gas is discharged after complying with emission regulations.
- the exhaust particle trap includes a casing, the inner cavity of the casing is connected with the exhaust passage of the combustion chamber, the inner cavity of the casing is a filter passage, and the filter passage includes a plurality of parallel and adjacent flow passages.
- the flow passage extends The direction is consistent with the filter channel, and the adjacent flow channels are separated by porous filter walls.
- the flow channel includes a first flow channel 1 and a second flow channel 2.
- the inlet and outlet of the first flow channel 1 are open alternatively, that is, only the inlet of the first flow channel 1 is open or only the outlet is open.
- the inlets of adjacent first flow channels 1 are not open at the same time, that is, in any two adjacent first flow channels 1, only one inlet is open. After the exhaust gas enters the first flow channel 1 with an open inlet, it needs to pass through the porous filter wall to enter the adjacent first flow channel 1 with an open outlet to be discharged. Both the inlet and the outlet of the second runner 2 are open.
- the runner is divided into a first runner 1 and a second runner 2, and exhaust gas can enter the first runner 1 and/or the second runner 2 with an open inlet.
- exhaust gas can enter the first flow channel 1 with an open inlet.
- it enters the adjacent first flow channel 1 and/or the second flow channel 2 through the porous filter wall of the first flow channel 1, and the particulate matter in the exhaust gas is filtered and left in the first flow channel.
- the filtered exhaust gas is discharged through the first flow channel 1 and/or the second flow channel 2 with an open outlet.
- the inlets and outlets of the second runner are open.
- the exhaust particulate trap of this embodiment includes a second flow channel 2 with an open inlet and an open outlet, which serves as a fast flow channel for exhaust gas, which counteracts the flow through the second flow channel.
- the exhaust filtration degree of duct 2 is relatively small, thereby reducing the overall exhaust filtration degree, preventing excessive trapping and filtering of particulate matter, slowing down the accumulation speed of carbon particles and ash on the porous filter wall, and avoiding exhaust back pressure. Rapid increase, reduce regeneration frequency, and ultimately reduce engine torque output loss, improve vehicle performance and user comfort.
- the setting number and distribution position of the second runner 2 also need to be adjusted accordingly, so as to appropriately capture carbon particles while meeting emission regulations.
- the cross-section of the filter channel is circular, and a plurality of flow channels with rectangular cross-sections are evenly distributed in the filter channel.
- the flow channel with a hollow circle represents the first flow channel 1 with only the inlet open
- the flow channel with a solid circle represents the first flow channel 1 with only the outlet open
- the flow channel with the letter A represents the inlet and The second runner 2 with open outlets. It can be seen that the second flow channels 2 are evenly spaced and distributed in the filter channel, so that the filtering effect of multiple filter channels is close to the same, and the exhaust gas flowing through any position in the filter channel can be filtered.
- the second flow channel 2 can also be regularly distributed in the filter channel, which is convenient for processing and shaping. Similar to Figure 3, in Figures 4 and 5, the flow channel with a hollow circle represents the first flow channel 1 with only the inlet open, and the flow channel with a solid circle represents the first flow channel 1 with only the outlet open.
- the flow channel with the letter A indicates the second flow channel 2 with both the inlet and the outlet open. Referring to Fig. 4, in the horizontal direction and the vertical direction, the second runners 2 are evenly arranged at equal intervals.
- one second flow channel 2 is set every 7 first flow channels 1; along the vertical direction, the first flow channel 1 and the second flow channel 2 are alternately arranged at intervals, in the first flow channel 1 and the second flow channel 2.
- the total cross-sectional area of the second flow channel 2 accounts for 12.5% of the total cross-sectional area of the filter channel (that is, the number of second flow channels 2 accounts for 12.5% of the total number of flow channels).
- the second runners 2 are evenly arranged at equal intervals.
- one second runner 2 is arranged after every three first runners 1; in the vertical direction, the first runner 1 and the second runner 2 are arranged at intervals, in the first runner 1 and the second runner 2
- the cross-sectional area of the second flow channel 2 is equal
- the total cross-sectional area of the second flow channel 2 accounts for 25% of the total cross-sectional area of the filter channel (that is, the number of the second flow channel 2 accounts for 25% of the total flow channel).
- the distribution of the second flow channel 2 can also be set according to a certain rule, so that the total cross-sectional area of the second flow channel 2 accounts for 50% of the total cross-sectional area of the filter channel or other values.
- the above exhaust particle traps with different distributions of the second runner 2 can be used to test for different vehicle models, so as to meet emission regulations while obtaining a suitable filtering effect, so that the carbon particle concentration in the filtered exhaust It is about 60%-95% of the value specified in the emission regulations. If the concentration of carbon particles is much smaller than the specified value, it indicates that the exhaust particle trap is over-captured. The deposition rate of carbon particles and ash on the porous filter wall in the exhaust particle trap is too fast, and the exhaust back pressure is fast. Increased, the regeneration frequency is high; if the concentration of carbon particles is higher than the specified value or close to the specified value, it may cause emission non-compliance.
- the particulate matter (PN) emission of the 1.6L engine at low temperature start meets the emission regulations, and the particulate matter in the filtered exhaust at this time is 35% of the project target.
- PN particulate matter
- its performance is more sensitive to changes in back pressure. As the amount of capture increases, back pressure increases, pumping loss increases, fuel consumption increases, and engine power decreases.
- exhaust particulate traps with the total cross-sectional area of the second runner 2 accounting for 12.5% and 25% of the total cross-sectional area of the filter channel, the number of particulates in the filtered exhaust is 80% of the project target.
- the second flow channel 2 can also be arranged and distributed in the weak air flow impact area according to the strong air flow impact area and the weak air flow impact area in the filter channel.
- the strong airflow impact area is the area where the exhaust gas in the filter channel is likely to flow through or the area where the exhaust flow rate and flow is large
- the weak airflow impact area is the area where the exhaust gas in the filter channel is relatively unlikely to flow through or the exhaust flow rate. And areas with low traffic. Do not set or less set the second flow channel 2 in the area with high probability of air flow in the filter channel to avoid insufficient capture under small load conditions (such as the start-up phase), and set the second channel in the area with low air flow probability in the filter channel.
- Two runners 2 in order to achieve a suitable capture effect, while meeting emission regulations, without excessive capture.
- simulation or testing can be used to obtain the velocity or flow rate of the exhaust airflow at multiple locations in the filter channel during a crankshaft working cycle, or the magnitude of the impact force of the exhaust airflow on multiple locations in the filter channel .
- this is a related technology, and the simulation method will not be repeated.
- the flow channel with a hollow circle in the figure represents the first flow channel 1 with only the inlet open
- the flow channel with a solid circle represents the first flow channel 1 with only the outlet open
- the runner means the second runner 2 with both the inlet and the outlet open.
- the area circled by the ellipse is the area where the exhaust gas flow in the simulated filter channel is likely to flow through.
- the second runner 2 is set in the area outside the elliptical coil. .
- the number and density of the channels 2 is lower than that of the second flow channel 2 in the weak air flow impingement area.
- the adjacent flow channels of the second flow channel 2 are the first flow channels 1 with closed openings and open outlets.
- the adjacent flow channel of the second flow channel 2 may also be the first flow channel 1 with an open opening and a closed outlet.
- Figures 3 and 6 both use circles to represent the cross-section of the filter channel.
- Figures 4 and 5 show the distribution law of the second flow channel 2 more vividly. A rectangle is used to represent the partial cross-section of the filter channel.
- the flow channel is set as Very dense, it can be considered that Figures 4 and 5 are a small part of the circular cross-section of the entire filter channel.
- the cross-sectional area of the outlet can be adjusted accordingly.
- the percentage of the cross-sectional area of the outlet to the cross-sectional area of the inlet is a, 0% ⁇ a ⁇ 100%, by setting different sizes And the shape of the outlet to adjust the flow path, flow rate and filtration degree of the exhaust airflow to adapt to different models and engines.
- the cross-sectional area of the outlet may account for 50% of the cross-sectional area of the inlet, the cross-section of the inlet is rectangular, and the cross-section of the outlet is rectangular, triangular, trapezoidal, prismatic or circular, etc., which is not limited here.
- An on-off valve can also be set in the second runner 2 to control the opening, closing and opening degree of the on-off valves in the second runner 2 at different positions and different numbers according to different vehicle types or driving conditions, so as to meet emission regulations. At the same time, a suitable trapping effect is achieved.
- the cross-sections of the first runner 1 and the second runner 2 shown in the figure are rectangular, and the cross-sectional areas of the first runner 1 and the second runner 2 are the same.
- the first runner can be adjusted accordingly for different models and engines.
- the cross-sectional shape (such as circle, triangle, etc.), cross-sectional area and extension direction (such as S-shaped extension) of the first flow channel 1 and the second flow channel 2 respectively, and they are respectively for the first flow channel 1 and the second flow channel 2
- the shape of the outlet and its corresponding inlet may also be different.
- filter holes and gaps can also be provided on the porous filter wall.
- the size of the filter hole refers to the setting of the exhaust particulate trap, and the filter hole plays a role in filtering the particulate matter in the exhaust gas.
- the size of the gap is much larger than the size of the filter hole.
- the gap does not filter the particulate matter in the exhaust gas, but allows the exhaust gas to pass through directly.
- the gap serves as a fast passage for the exhaust gas. Under the premise of meeting the emission regulations, it reduces and slows the impact on carbon particles.
- the trapped volume can avoid the rapid rise of exhaust back pressure and reduce the frequency of regeneration.
- the filter holes opened on the porous filter wall can be divided into two types, namely the first filter hole and the second filter hole.
- the size of the first filter hole refers to the setting of the exhaust particle trap.
- the size of the second filter hole is larger than that of the first filter hole, that is, the filtering effect of the second filter hole is worse than that of the first filter hole, thereby reducing and slowing the capture of carbon particles, avoiding the rapid rise of exhaust back pressure and reducing the frequency of regeneration.
- a three-way catalyst layer is provided on the porous filter wall to catalyze the gaseous emissions in the exhaust stream. Since the present application can slow down the deposition rate of carbon particles and ash, it prevents the three-way catalyst layer from being affected by the increase in mileage. The coverage is too fast to have a catalytic effect.
- the components of the three-way catalyst layer are related technologies and will not be repeated.
- the material of the porous filter wall is acicular mullite.
- Acicular mullite is a three-dimensional network structure composed of acicular whiskers. It has material characteristics such as high strength, heat resistance and corrosion resistance, and has low filtration resistance (pressure drop) and high catalyst loading, which helps reduce Small exhaust back pressure.
- This embodiment also provides a vehicle, including the above-mentioned exhaust particle trap, which can appropriately trap carbon particles in the exhaust gas while meeting emission regulations, avoiding excessive trapping, and has high engine output torque. The performance of the whole vehicle is good.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Processes For Solid Components From Exhaust (AREA)
- Filtering Of Dispersed Particles In Gases (AREA)
Abstract
一种排气颗粒捕集器及车辆。排气颗粒捕集器包括过滤通道,过滤通道包括平行相邻的多个流道,相邻的流道之间通过多孔过滤壁相隔,多个流道包括多个第一流道(1)和多个第二流道(2),第一流道(1)的进口和出口择一敞开,相邻的第一流道(1)的进口不同时敞开,第二流道(2)的进口和出口均敞开。车辆包括排气颗粒捕集器。
Description
本申请要求在2020年04月27日提交中国专利局、申请号为202010343746.8的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
本申请涉及机动车辆排放领域,例如涉及一种排气颗粒捕集器及车辆。
随着排放法规加严,很多汽油机需要排气颗粒捕集器(Gasoline Particulate Filter,GPF)来捕集排放气流中的碳颗粒,以满足排放法规。如图1所示,排气颗粒捕集器为壁流式,包括多个并行的流道1’,相邻的流道1’之间由多孔透气的薄壁陶瓷相隔,当一个流道1’的进口封闭时,出口是敞开的,而且其相邻的流道1’的进口敞开,出口封闭,这样的结构就导致排气从进口敞开的流道1’中进入后必须通过多孔透气的薄壁陶瓷进入出口敞开的相邻流道1’排出,排气中的颗粒物附着在薄壁陶瓷的壁面上,达到了颗粒物捕集的目的。
排气中的颗粒物主要为碳颗粒和灰分。碳颗粒来源于未经充分燃烧的汽油,灰分来源于机油。碳颗粒可以通过增加排气温度等方式被处理掉。随着汽车行驶里程增加,碳颗粒沉积增多,需要定期采取GPF再生措施,燃烧附着的积碳,燃烧温度一般须达550℃以上,车辆不得不推迟点火,甚至提高转速,负荷增大,用户使用极其不便。而灰分为不可燃烧颗粒,不能被经过高温消除,将会永久存在于颗粒捕集器中,堵塞一部分壁面过滤孔。排气颗粒捕集器存在的问题是随行车里程增加,过滤孔堵塞、排气背压上升,需要频繁再生,降低发动机的扭矩输出及燃料经济性。
发明内容
本申请提供一种排气颗粒捕集器及车辆,在满足排放法规的前提下,降低排气中的碳颗粒及灰分在排气颗粒捕集器内的沉积速度,防止排气背压急剧升高,减少再生频率,使发动机的输出扭矩提高,整车性能良好。
提供一种一种排气颗粒捕集器,包括过滤通道,所述过滤通道包括平行相邻的多个流道,相邻的流道之间通过多孔过滤壁相隔,所述多个流道包括多个第一流道和多个第二流道,所述第一流道的进口和出口择一敞开,相邻的所述第一流道的进口不同时敞开,所述第二流道的进口和出口均敞开。
作为排气颗粒捕集器的一种可选方案,所述多个流道均匀分布于所述过滤通道内,且所述多个第二流道均匀地间隔分布于所述过滤通道内。
作为排气颗粒捕集器的一种可选方案,所述多个流道在所述过滤通道内均匀分布,所述多个第二流道呈规律地分布于所述过滤通道内。
作为排气颗粒捕集器的一种可选方案,所述过滤通道包括强气流冲击区域和弱气流冲击区域,所述多个第二流道分布于所述弱气流冲击区域。
作为排气颗粒捕集器的一种可选方案,对于所述第二流道,出口的截面积占进口的截面积的百分比为a,0%<a≤100%。
作为排气颗粒捕集器的一种可选方案,所述多孔过滤壁上开设有多个过滤孔和供排气直接通过的多个缺口。
作为排气颗粒捕集器的一种可选方案,所述多孔过滤壁上开设有多个过滤孔,所述多个过滤孔包括多个第一过滤孔和多个第二过滤孔,所述第二过滤孔的尺寸大于所述第一过滤孔的尺寸。
作为排气颗粒捕集器的一种可选方案,所述多孔过滤壁上设置有三元催化剂层。
作为排气颗粒捕集器的一种可选方案,所述多孔过滤壁的材质为针状莫来石。
还提供一种车辆,包括如上所述的排气颗粒捕集器。
图1为一种壁流式排气颗粒捕集器的结构示意图;
图2为本申请实施例提供的一种排气颗粒捕集器的结构示意图;
图3为本申请实施例提供的一种第二流道在过滤通道中的分布示意图;
图4为本申请实施例提供的另一种第二流道在过滤通道中的分布示意图;
图5为本申请实施例提供的另一种第二流道在过滤通道中的分布示意图;
图6为本申请实施例提供的另一种第二流道在过滤通道中的分布示意图。
附图标记:
1’-流道;1-第一流道;2-第二流道。
下面将结合附图对本申请实施例的技术方案进行描述。
在本申请的描述中,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、仅用于描述目的,而不能理解为指示或暗示相对重要性。其中,术语“第一位置”和“第二位置”为两个不同的位置。
在本申请的描述中,除非另有规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。可以根据情况理解上述术语在本申请中的含义。
本实施例提供的排气颗粒捕集器,可与发动机的燃烧室的排气通道相连,发动机内的燃料燃烧做功后产生的排气由排气通道进入排气颗粒捕集器中过滤,使得排气中的颗粒物浓度符合排放法规后排出。
该排气颗粒捕集器包括壳体,壳体的内腔与燃烧室的排气通道相连,壳体的内腔为过滤通道,过滤通道包括平行相邻的多个流道,流道的延伸方向与过滤通道一致,相邻的流道之间通过多孔过滤壁相隔。如图2所示,流道包括第一流道1和第二流道2。第一流道1的进口和出口择一敞开,即第一流道1只进口敞开或只出口敞开。相邻第一流道1的进口不同时敞开,即任意两个相邻的第一流道1中,只有一个进口敞开。排气进入进口敞开的第一流道1后,需穿过多孔过滤壁进入相邻的出口敞开的第一流道1排出。第二流道2的进口和出口均敞开。
流道分为第一流道1和第二流道2,排气可进入进口敞开的第一流道1和/或第二流道2。排气进入进口敞开的第一流道1后,经第一流道1的多孔过滤壁进入相邻的第一流道1和/或第二流道2,排气中的颗粒物被过滤并留在第一流道1的多孔过滤壁上,被过滤后的排气经由出口敞开的第一流道1和/或第二流道2排出。第二流道的进出口均敞开,对于直接由第二流道2的进口进入第二流道2的排气,大部分的排气由第二流道2的出口直接排出,少部分的排气由第二流道2的多孔过滤壁进入相邻的第一流道1和/或第二流道2,该少部分的排气中的颗粒物被过滤并留在第二流道2的多孔过滤壁上,过滤后的该少部分排气由出口敞开的第一流道1和/或第二流道2排出。因此,对进入进口敞开的第一流道1的排气的过滤程度较大,而对直接进入第二流道2的排气的过滤程度较小。
与壁流式排气颗粒捕集器相比,本实施例的排气颗粒捕集器包括进口和出 口都敞开的第二流道2,以作为排气的快速流通通道,对流经第二流道2的排气过滤程度较小,从而使得整体排气的过滤程度减小,防止对颗粒物的过度捕集过滤,减缓碳颗粒及灰分在多孔过滤壁上的积累速度,避免排气背压的快速升高,减少再生频率,最终减少发动机的扭矩输出损失,提高整车性能及用户舒适度。
根据不同车型,如发动机的多项参数不同,第二流道2的设置数量和分布位置也需相应调整,以在满足排放法规的同时,对碳颗粒进行适度的捕集。
一实施例中,如图3所示,过滤通道的截面为圆形,多个截面为矩形的流道均匀分布于过滤通道内。图3中用带有空心圆圈的流道表示只进口敞开的第一流道1,用带有实心圆圈的流道表示只出口敞开的第一流道1,用带有字母A的流道表示进口和出口均敞开的第二流道2。可以看出,第二流道2均匀地间隔分布于过滤通道内,从而使得过滤通道多处的过滤效果接近一致,对流经过滤通道内任意位置的排气均能过滤到。
在另一实施例中,如图4和图5所示,第二流道2也可呈规律地分布于过滤通道内,方便加工成型。与图3类似,图4和图5中用带有空心圆圈的流道表示只进口敞开的第一流道1,用带有实心圆圈的流道表示只出口敞开的第一流道1,用带有字母A的流道表示进口和出口均敞开的第二流道2。参见图4,于水平方向和垂直方向上,第二流道2均匀等间隔设置。沿水平方向,每隔7个第一流道1设置1个第二流道2;沿垂直方向,第一流道1和第二流道2交替间隔设置,在第一流道1和第二流道2的横截面积相等的情况下,得到第二流道2的截面积总和占过滤通道总截面积的12.5%(即第二流道2的数量占总流道数量的12.5%)。参见图5,于水平方向和垂直方向上,第二流道2均匀等间隔设置。沿水平方向,每隔3个第一流道1后设置1个第二流道2;沿垂直方向,第一流道1和第二流道2间隔设置,在第一流道1和第二流道2的横截面积相等的情况下,得到第二流道2的截面积总和占过滤通道总截面积的25%(即第二流道2的数量占总流道数量的25%)。还可按照一定的规律设置第二流道2的分布,使得第二流道2的截面积总和占过滤通道总截面积的比例为如50%或其他数值。
可使用上述具有不同第二流道2分布情况的排气颗粒捕集器针对不同车型进行试验,以在满足排放法规的同时,得到合适的过滤效果,使得过滤后的排气中的碳颗粒浓度为排放法规规定数值的60%-95%左右。若碳颗粒浓度比规定数值小很多,则表明排气颗粒捕集器过度捕集,碳颗粒及灰分在排气颗粒捕集器内的多孔过滤壁上的沉积速度过快、排气背压快速升高,再生频率高;若碳颗粒浓度比规定数值大或接近规定值,则可能导致排放不合规。
具体实验中,采用搭载1.6L气道喷射自然吸气发动机的一车型,针对不使 用排气颗粒捕集器、使用相关技术中的汽车颗粒捕集器、以及使用上述不同第二流道2分布情况的排气颗粒捕集器等情况,分别进行全球轻型汽车测试循环(Worldwide Light-duty Test Cycle,WLTC)后,得到相应排气颗粒捕集器的捕集效果及再生频率。得到的实验结果为:不使用排气颗粒捕集器时,该1.6L发动机的颗粒物数量(Particle Number,PN)排放无法满足排放法规。使用相关技术中的汽车颗粒捕集器时,该1.6L发动机在低温启动时的颗粒物数量(PN)排放符合排放法规,且此时过滤后的排气中的颗粒物数量为工程目标的35%,为过度捕集过滤,但对于自然吸气发动机,其性能对背压变化比较敏感,随着捕集量增多,背压不断加大,泵气损失增加,油耗增加,发动机动力下降。使用第二流道2的截面积总和占过滤通道总截面积的比例分别为12.5%和25%的排气颗粒捕集器时,过滤后的排气中的颗粒物数量分别为工程目标的80%和102%,即使用第二流道2的截面积总和占过滤通道总截面积的比例为12.5%的排气颗粒捕集器时,既能满足排放法规,又不会过度捕集,减缓碳颗粒及灰分在多孔过滤壁上的积累速度,避免排气背压的快速升高,减少再生频率,最终减少发动机的扭矩输出损失。
第二流道2除上述的均匀间隔分布或规律分布外,还可根据过滤通道内的强气流冲击区域和弱气流冲击区域,将第二流道2设置分布于弱气流冲击区域。强气流冲击区域为过滤通道内的排气大概率流动经过的区域或排气流速和流量较大的区域,弱气流冲击区域为过滤通道内的排气相对小概率流动经过的区域或排气流速和流量较小的区域。在过滤通道内气流流动概率较大的区域不设置或少设置第二流道2,以避免小负荷工况(如起动阶段)捕集不足,在过滤通道内气流流动概率较小的区域设置第二流道2,以达到合适的捕集效果,满足排放法规的同时,不进行过度捕集。例如,对于四缸发动机,可采用模拟或测试的手段获得在曲轴一个工作循环中,排气气流在过滤通道内多处的流速或流量,或者排气气流对过滤通道内多处的冲击力大小,以得到过滤通道内排气流量大概率流经的区域,此为相关技术,模拟手段不再赘述。如图6所示,图中用带有空心圆圈的流道表示只进口敞开的第一流道1,用带有实心圆圈的流道表示只出口敞开的第一流道1,用带有字母A的流道表示进口和出口均敞开的第二流道2,椭圆线圈出的区域为模拟得到的过滤通道内排气流量大概率流经的区域,第二流道2设置在椭圆线圈之外的区域。
也可在过滤通道内的强气流冲击区域设置相对少量的第二流道2,在过滤通道内的弱气流冲击区域设置相对较多的第二流道2,即强气流冲击区域的第二流道2的设置数量和密度低于弱气流冲击区域的第二流道2。
图3-图6中,第二流道2的相邻流道均为开口关闭、出口敞开的第一流道1。在其他实施例中,第二流道2的相邻流道也可为开口敞开、出口关闭的第一流 道1。图3和图6都用圆形来表示过滤通道的截面,图4和图5为更形象地表示第二流道2的分布规律,采用矩形来表示过滤通道的部分截面,流道的设置是非常密集的,可以认为图4和图5是整个过滤通道的圆形截面中的一小部分。
对于第二流道2来说,根据不同车型及发动机,出口的截面积可相应调整,例如出口的截面积占进口的截面积的百分比为a,0%<a≤100%,通过设置不同尺寸及形状的出口来调节排气气流的流通路径、流速及过滤程度,以适应不同车型及发动机。例如,出口的截面积可占进口的截面积的50%,进口的截面为矩形,出口的截面为矩形、三角形、梯形、棱形或圆形等,在此不做限定。
还可在第二流道2内设置开关阀,根据不同车型或行车工况,控制不同位置和不同数量的第二流道2内的开关阀的开闭及开度,以在满足排放法规的同时,达到合适的捕集效果。
图中示出的第一流道1和第二流道2的截面均为矩形,且第一流道1和第二流道2的截面积相同,实际针对不同的车型及发动机,可相应分别调整第一流道1和第二流道2各自的截面形状(如圆形、三角形等)、截面积大小及延伸方向(如呈S形延伸)等,且分别对于第一流道1和第二流道2来说,出口与其对应的入口的形状也可不同。
除上述设置出口和进口均敞开的第二流道2作为排气的快速流通通道以减少捕集的策略外,还可在多孔过滤壁上设置过滤孔和缺口。过滤孔的尺寸参考排气颗粒捕集器设置,过滤孔起到对排气中的颗粒物过滤作用。缺口尺寸则比过滤孔尺寸大得多,缺口不对排气中的颗粒物过滤,而是允许排气直接通过,缺口作为排气的快速通道,在满足排放法规的前提下,减少和减缓对碳颗粒的捕集量,避免排气背压快速上升,减少再生频率。
除上述设置缺口外,还可将多孔过滤壁上开设的过滤孔分为两类,分别为第一过滤孔和第二过滤孔,第一过滤孔的尺寸参考排气颗粒捕集器设置,第二过滤孔的尺寸大于第一过滤孔,即第二过滤孔的过滤效果较第一过滤孔差,从而减少和减缓对碳颗粒的捕集量,避免排气背压快速上升,减少再生频率。
可选地,多孔过滤壁上设置有三元催化剂层,以对排气流中的气体排放物进行催化,由于本申请可减缓碳颗粒和灰分的沉积率,避免了随里程增加三元催化剂层被覆盖过快而无法起到催化作用。三元催化剂层的成分为相关技术,不再赘述。
可选地,多孔过滤壁的材质为针状莫来石。针状莫来石为针状晶须组成的三维网状结构,具有强度高、耐热性和耐腐蚀性等材料特性,且过滤阻力(压降)小、催化剂上载量高,有助于减小排气背压。
本实施例还提供一种车辆,包括上述的排气颗粒捕集器,在满足排放法规的同时,能够对排气中的碳颗粒进行适度捕集,避免过度捕集,发动机的输出扭矩高,整车性能良好。
Claims (10)
- 一种排气颗粒捕集器,包括过滤通道,所述过滤通道包括平行相邻的多个流道,相邻的流道之间通过多孔过滤壁相隔,所述多个流道包括多个第一流道(1)和多个第二流道(2),所述第一流道(1)的进口和出口择一敞开,相邻的第一流道(1)的进口不同时敞开,所述第二流道(2)的进口和出口均敞开。
- 根据权利要求1所述的排气颗粒捕集器,其中,所述多个流道均匀分布于所述过滤通道内,且所述多个第二流道(2)均匀地间隔分布于所述过滤通道内。
- 根据权利要求1所述的排气颗粒捕集器,其中,所述多个流道在所述过滤通道内均匀分布,所述多个第二流道(2)呈规律地分布于所述过滤通道内。
- 根据权利要求1所述的排气颗粒捕集器,其中,所述过滤通道包括强气流冲击区域和弱气流冲击区域,所述多个第二流道(2)分布于所述弱气流冲击区域。
- 根据权利要求1-4任一项所述的排气颗粒捕集器,其中,对于所述第二流道(2),出口的截面积占进口的截面积的百分比为a,0%<a≤100%。
- 根据权利要求1所述的排气颗粒捕集器,其中,所述多孔过滤壁上开设有多个过滤孔和供排气直接通过的多个缺口。
- 根据权利要求1所述的排气颗粒捕集器,其中,所述多孔过滤壁上开设有多个过滤孔,所述多个过滤孔包括多个第一过滤孔和多个第二过滤孔,所述第二过滤孔的尺寸大于所述第一过滤孔的尺寸。
- 根据权利要求1所述的排气颗粒捕集器,其中,所述多孔过滤壁上设置有三元催化剂层。
- 根据权利要求1所述的排气颗粒捕集器,其中,所述多孔过滤壁的材质为针状莫来石。
- 一种车辆,包括如权利要求1-9任一项所述的排气颗粒捕集器。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010343746.8A CN111577424B (zh) | 2020-04-27 | 2020-04-27 | 一种排气颗粒捕集器及车辆 |
CN202010343746.8 | 2020-04-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021218632A1 true WO2021218632A1 (zh) | 2021-11-04 |
Family
ID=72122631
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/087137 WO2021218632A1 (zh) | 2020-04-27 | 2021-04-14 | 排气颗粒捕集器及车辆 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111577424B (zh) |
WO (1) | WO2021218632A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114151170A (zh) * | 2021-12-22 | 2022-03-08 | 天津大学合肥创新发展研究院 | 一种低流动阻力的颗粒捕集-换热集成芯体结构 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111577424B (zh) * | 2020-04-27 | 2022-01-14 | 中国第一汽车股份有限公司 | 一种排气颗粒捕集器及车辆 |
CN113550811B (zh) * | 2021-06-02 | 2022-05-20 | 内蒙古农业大学 | 一种柴油机排气颗粒物捕集器及其捕集方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005032954A1 (de) * | 2005-07-14 | 2007-01-18 | Arvinmeritor Emissions Technologies Gmbh | Partikelfilter für Abgase |
CN102625727A (zh) * | 2009-08-31 | 2012-08-01 | 康宁股份有限公司 | 微粒过滤器和过滤微粒物质的方法 |
CN104018916A (zh) * | 2013-02-28 | 2014-09-03 | 康宁股份有限公司 | 带有低深床的局部壁流式陶瓷过滤器 |
CN104334843A (zh) * | 2012-06-04 | 2015-02-04 | Hjs排放技术两合公司 | 设计为部分过滤器的颗粒过滤器 |
CN105317508A (zh) * | 2014-07-29 | 2016-02-10 | 现代自动车株式会社 | 柴油微粒过滤器 |
CN111577424A (zh) * | 2020-04-27 | 2020-08-25 | 中国第一汽车股份有限公司 | 一种排气颗粒捕集器及车辆 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4464185A (en) * | 1981-03-07 | 1984-08-07 | Nippon Soken, Inc. | Exhaust gas filter |
JP4172986B2 (ja) * | 2002-10-10 | 2008-10-29 | 日本碍子株式会社 | ハニカム構造体及びその製造方法並びに当該ハニカム構造体を用いた排ガス浄化システム |
US20080120968A1 (en) * | 2006-11-29 | 2008-05-29 | Douglas Munroe Beall | Partial wall-flow filter and diesel exhaust system and method |
JP6028710B2 (ja) * | 2013-10-22 | 2016-11-16 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置 |
CN210686091U (zh) * | 2019-10-09 | 2020-06-05 | 广东加南环保生物科技有限公司 | 用于小型柴油发动机排气后处理的催化器 |
-
2020
- 2020-04-27 CN CN202010343746.8A patent/CN111577424B/zh active Active
-
2021
- 2021-04-14 WO PCT/CN2021/087137 patent/WO2021218632A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005032954A1 (de) * | 2005-07-14 | 2007-01-18 | Arvinmeritor Emissions Technologies Gmbh | Partikelfilter für Abgase |
CN102625727A (zh) * | 2009-08-31 | 2012-08-01 | 康宁股份有限公司 | 微粒过滤器和过滤微粒物质的方法 |
CN104334843A (zh) * | 2012-06-04 | 2015-02-04 | Hjs排放技术两合公司 | 设计为部分过滤器的颗粒过滤器 |
CN104018916A (zh) * | 2013-02-28 | 2014-09-03 | 康宁股份有限公司 | 带有低深床的局部壁流式陶瓷过滤器 |
CN105317508A (zh) * | 2014-07-29 | 2016-02-10 | 现代自动车株式会社 | 柴油微粒过滤器 |
CN111577424A (zh) * | 2020-04-27 | 2020-08-25 | 中国第一汽车股份有限公司 | 一种排气颗粒捕集器及车辆 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114151170A (zh) * | 2021-12-22 | 2022-03-08 | 天津大学合肥创新发展研究院 | 一种低流动阻力的颗粒捕集-换热集成芯体结构 |
CN114151170B (zh) * | 2021-12-22 | 2023-09-19 | 天津大学合肥创新发展研究院 | 一种低流动阻力的颗粒捕集-换热集成芯体结构 |
Also Published As
Publication number | Publication date |
---|---|
CN111577424A (zh) | 2020-08-25 |
CN111577424B (zh) | 2022-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021218632A1 (zh) | 排气颗粒捕集器及车辆 | |
US20100170743A1 (en) | High-performance muffler assembly with multiple modes of operation | |
JP4008075B2 (ja) | 微粒子フィルターの制御方法および制御装置 | |
JP2012518115A (ja) | ターボ過給機付き往復動エンジンの排気マニホールド | |
EP1840348A1 (en) | EGR System for Engine | |
US10166500B2 (en) | Exhaust gas treating device, temperature raising method of catalyst, regeneration method of honeycomb structure, and ash removing method | |
KR100853583B1 (ko) | 내연 기관 엔진의 역류 제어 순환배기구 | |
KR20060136013A (ko) | 디젤엔진의 입자상물질 제거용 필터장치 | |
KR20070000043A (ko) | 디젤엔진의 입자상물질 제거용 필터장치 | |
JP7087722B2 (ja) | エンジンの排気装置 | |
US20090183508A1 (en) | Turbocharger protection systems and methods | |
JP2020002871A (ja) | エンジン | |
KR100745109B1 (ko) | 디젤엔진의 배기가스 정화장치용 필터장치 | |
JP2005299628A (ja) | ディーゼル機関のフィルタ再生制御装置 | |
CN106640451B (zh) | 消音器整合型汽油微粒过滤器 | |
JPS603420A (ja) | 内燃機関のパ−テイキユレ−ト・トラツプ | |
KR20060136014A (ko) | 디젤엔진의 배기가스 정화장치용 필터장치 | |
KR20110071315A (ko) | Egr 쿨러 | |
US11446599B2 (en) | Particulate filter and manufacturing method for same | |
CN109026405A (zh) | 用于车辆的进气控制装置 | |
JP2008025544A (ja) | 内燃機関の排気浄化装置 | |
JP2014084819A (ja) | 排圧調整バルブの制御装置 | |
US20190003359A1 (en) | Particulate filter | |
KR100307783B1 (ko) | 자동차의매연여과장치 | |
KR20200025777A (ko) | 배기 가스 필터 모듈 및 이를 구비한 배기 시스템 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21796874 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21796874 Country of ref document: EP Kind code of ref document: A1 |