WO2021218361A1 - 显示基板、其制备方法及显示装置 - Google Patents

显示基板、其制备方法及显示装置 Download PDF

Info

Publication number
WO2021218361A1
WO2021218361A1 PCT/CN2021/078745 CN2021078745W WO2021218361A1 WO 2021218361 A1 WO2021218361 A1 WO 2021218361A1 CN 2021078745 W CN2021078745 W CN 2021078745W WO 2021218361 A1 WO2021218361 A1 WO 2021218361A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
pixel defining
light
emitting
defining layer
Prior art date
Application number
PCT/CN2021/078745
Other languages
English (en)
French (fr)
Inventor
梅文海
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/628,145 priority Critical patent/US20230039681A1/en
Publication of WO2021218361A1 publication Critical patent/WO2021218361A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/173Passive-matrix OLED displays comprising banks or shadow masks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a display substrate, a preparation method thereof, and a display device.
  • OLED Organic Light Emitting Diode
  • the embodiments of the present disclosure provide a display substrate, including:
  • the pixel defining layer is located on one side of the base substrate, and the pixel defining layer has a plurality of opening regions;
  • the light-emitting functional layer is located in the opening area; wherein,
  • the portion of the pixel defining layer that is in contact with the light-emitting function layer has the property of switching between hydrophilicity and hydrophobicity under changes in external conditions.
  • the pixel defining layer includes:
  • the first pixel defining layer includes a plurality of pixel defining structures that surround each of the opening regions and are independent of each other, and the pixel defining structures are in contact with the light-emitting function layer;
  • the second pixel defining layer is located on a side of the first pixel defining layer away from the base substrate and covering a plurality of the pixel defining structures, and the second pixel defining layer has a structure that exposes each of the opening regions
  • the second pixel defining layer is configured to insulate adjacent pixel defining structures from each other.
  • the thickness of the pixel defining structure is greater than the thickness of the light-emitting function layer.
  • the first pixel defining layer is converted from hydrophilicity to hydrophobicity, or from hydrophobicity to hydrophilicity under ultraviolet light irradiation.
  • the material of the first pixel defining layer is azobenzene, spiropyran, cinnamic acid, titanium dioxide or vanadium pentoxide; the second pixel defining layer
  • the material of the layer is an insulating material.
  • the thickness of the first pixel defining layer is 100 nm to 200 nm, and the thickness of the second pixel defining layer is 50 nm to 150 nm.
  • the light-emitting function layer includes a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer that are stacked.
  • the hole injection layer and the electron transport layer are hydrophilic, and the hole transport layer and the light-emitting layer are hydrophilic. Hydrophobicity.
  • the material of the light-emitting layer is a quantum dot material.
  • an embodiment of the present disclosure also provides a display device, including the above-mentioned display substrate provided by the embodiment of the present disclosure.
  • an embodiment of the present disclosure also provides a method for preparing a display substrate, including:
  • the hydrophilic and hydrophobic properties of the portion of the pixel defining layer that is in contact with a light-emitting functional layer to be formed are adjusted to be the same as that of the light-emitting functional layer to be formed.
  • the hydrophilic and hydrophobic properties of the light-emitting functional layer are opposite.
  • forming a pixel defining layer with a plurality of opening regions on the base substrate specifically includes:
  • the first photoresist layer is stripped to remove the first photoresist layer and the first pixel defining material layer above the first photoresist layer to form a region surrounding each of the openings and independent of each other
  • a plurality of pixel defining structures of, each of the pixel defining structures constitutes the first pixel defining layer
  • the insulating material film layer is patterned to expose each of the opening regions to form the second pixel defining layer; the second pixel defining layer covers a plurality of the pixel defining structures, and the second pixel defining layer
  • the structure is a grid structure exposing each of the opening regions, and the second pixel defining layer is configured to insulate adjacent pixel defining structures from each other.
  • forming a light-emitting functional layer in each of the opening regions specifically includes:
  • An ink-jet printing process is used to form a hydrophilic electron transport layer on the side of the light-emitting layer away from the base substrate.
  • FIG. 1 is a schematic top view of a display substrate provided by an embodiment of the disclosure
  • 2A is a schematic diagram of a structure of a display substrate provided by an embodiment of the disclosure.
  • FIG. 2B is a schematic diagram of a top view structure of a pixel defining layer provided by an embodiment of the disclosure
  • FIG. 3 is a schematic structural diagram of a light-emitting functional layer provided by an embodiment of the disclosure.
  • FIG. 4 is a schematic diagram of another structure of a display substrate provided by an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of a structure of a display substrate provided by an embodiment of the disclosure to form a light-emitting function layer when no external condition processing is performed;
  • FIG. 6 is a schematic diagram of another structure for forming a light-emitting functional layer on a display substrate provided by an embodiment of the disclosure when no external condition processing is performed;
  • FIG. 7A is a schematic diagram of the hydrophobicity conversion of the material of the first pixel defining layer in the display substrate provided by the embodiment of the disclosure.
  • FIG. 7B is a schematic diagram of another hydrophobic conversion principle of the first pixel defining layer material in the display substrate provided by an embodiment of the disclosure.
  • FIG. 7C is another schematic diagram of the hydrophobicity conversion of the first pixel defining layer material in the display substrate provided by the embodiment of the disclosure.
  • FIG. 8 is a schematic diagram of a structure of a display substrate provided by an embodiment of the disclosure when irradiated with ultraviolet light;
  • FIG. 9 is a schematic diagram of another structure when the display substrate provided by an embodiment of the disclosure is placed in a dark place;
  • FIG. 10 is a schematic flowchart of a method for manufacturing a display substrate provided by an embodiment of the disclosure.
  • FIG. 11 is a schematic diagram of another flow chart of a method for manufacturing a display substrate provided by an embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram of another flow chart of a method for preparing a display substrate provided by an embodiment of the disclosure.
  • FIG. 13A-FIG. 13I are respectively schematic cross-sectional views of the method for manufacturing the display substrate provided by the embodiments of the disclosure after performing each step;
  • FIG. 14 is a schematic structural diagram of a display device provided by an embodiment of the disclosure.
  • the film forming methods of the light-emitting layer in the OLED display mainly include the evaporation method and the inkjet printing method.
  • the application of film formation by evaporation method in the preparation of small-size OLED displays is relatively mature, while film formation by inkjet printing method is considered to be large due to its fast film formation rate, high material utilization rate, and large size.
  • a pixel defining layer needs to be made on the substrate to define the area where each pixel is located, and then the light-emitting functional layer is made in the specific opening area of the corresponding pixel by using an inkjet printing process.
  • FIG. 1 is a schematic view of the top structure of the display substrate
  • FIG. 2A is a schematic cross-sectional view along the AA direction in FIG.
  • the pixel defining layer 2 located on the side of the base substrate 1, the pixel defining layer 2 has a plurality of opening areas 3, the opening areas 3 include the light-emitting function layer 4, the part of the pixel defining layer 2 that is in contact with the light-emitting function layer 4 (section A pixel defining layer 21 (described in detail later) has the property of switching between hydrophilicity and hydrophobicity under changes in external conditions.
  • the part of the pixel defining layer 2 that is in contact with the light-emitting function layer 4 is set to have the property of switching between hydrophilicity and hydrophobicity under the change of external conditions, so that the light-emitting is formed.
  • the film layers of the functional layer 4 are inconsistent with the affinity and hydrophobicity of the film layers of the light-emitting functional layer 4, for example, when the hydrophilic light-emitting functional layer 4 is formed, the pixel defining layer 2 is treated with external conditions to emit light. The part in contact with the functional layer 4 is converted to hydrophobicity.
  • the pixel defining layer 2 is processed under external conditions to make the part in contact with the light-emitting functional layer 4 to be hydrophilic, so that The light-emitting function layer 4 formed in the opening area 3 does not climb to the inner wall of the pixel defining layer 2 to ensure that the film thickness of the light-emitting function layer 4 formed in the opening area 3 is uniform, and the display effect of the display panel and the life of the light-emitting device are improved.
  • the base substrate of the above-mentioned display substrate is a base substrate including a plurality of anodes (or cathodes) corresponding to each opening area one-to-one. Generally, one is deposited on the base substrate first.
  • the conductive film layer is patterned to form multiple anodes (or cathodes), and then a layer of pixel defining film layer is spin-coated on the base substrate on which multiple anodes (or cathodes) are formed, and then the pixels are defined
  • the film layer is patterned to form a pixel defining layer exposing a plurality of the anode (or cathode), the exposed anode (or cathode) area is the open area, and then the light-emitting function layer, cathode (or anode) and subsequent film layers are formed Preparation;
  • the anode (or cathode) material includes a transparent conductive material or a semi-transparent conductive material or a metal conductive material.
  • the organic electroluminescent device since the organic electroluminescent device has two types of bottom emission and top emission, the transparent anode (or cathode) and the reflective cathode (or The anode) structure forms a bottom-emitting device structure, and vice versa, a transparent cathode (or anode) and a reflective anode (or cathode) structure form a top-emitting device structure. Therefore, depending on the device structure, the choice of anode (or cathode) material is also different, usually ITO, Ag, NiO, Al, graphene and other high work function transparent or semi-transparent materials.
  • FIG. Layer 44 In specific implementation, in the above-mentioned display substrate provided by the embodiment of the present disclosure, as shown in FIG. Layer 44.
  • a hole injection layer 41 is first formed on the base substrate 1, and then a hole transport layer 42, a light emitting layer 43, and an electron transport layer 44 are sequentially formed
  • the electron transport layer 44 is first formed on the base substrate 1, and then the light emitting layer 43, the hole transport layer 42, and the hole injection layer 41 are sequentially formed .
  • the light-emitting functional layer 4 may also include an electron injection layer.
  • the light-emitting functional layer 4 includes the hole injection layer 41, the hole transport layer 42, the light emitting layer 43, and the electron injection layer.
  • the transport layer 44 is described as an example.
  • the light-emitting layer includes at least: a red light-emitting layer, a green light-emitting layer, and a blue light-emitting layer.
  • a white light-emitting layer may also be included, which depends on the arrangement of specific pixels, which is not specifically limited here.
  • the material of the light-emitting layer may be a quantum dot material.
  • the quantum dot materials can be binary, ternary or multi-element quantum dot luminescent materials, which are not listed here.
  • the hole injection layer 41 and the electron transport layer 44 are generally hydrophilic, and the hole transport layer 42 and the light-emitting layer 43 generally are Hydrophobicity.
  • the embodiment of the present disclosure adopts an inkjet printing process to form the hole injection layer 41, the hole transport layer 42, the light emitting layer 43, and the electron transport layer 44, the hole injection layer 41, the hole transport layer 42, the light emitting layer 43 and The corresponding ink state (ie liquid) of the electron transport layer 44 and the hydrophilicity and hydrophobicity of the solid after each drying remain unchanged.
  • the liquid hole injection layer 41 and the electron transport layer 44 are hydrophilic, and the solid hole injection layer 41 And the electron transport layer 44 are still hydrophilic; the liquid hole transport layer 42 and the light-emitting layer 43 are hydrophobic, and the solid hole transport layer 42 and the light-emitting layer 43 are still hydrophobic.
  • the thickness of each layer of the light-emitting functional layer is easily formed when the inkjet printing process is used to form each layer of the light-emitting function layer.
  • a non-uniform thin film (thick on both sides and thin in the middle) easily forms a thin film in the middle of the opening area, which will cause breakdown due to high voltage in the final device. Therefore, the present disclosure provides a pixel defining layer, which can make the thickness of each film layer of the formed light-emitting function layer uniform, and improve the light-emitting efficiency and lifespan of the display device.
  • hydrophilicity refers to the property of having an affinity for water
  • hydrophobicity refers to the property of having the ability to repel water.
  • the pixel defining layer provided by the embodiments of the present disclosure can make the film thickness of the formed light-emitting function layer uniform.
  • FIG. 2B is a schematic top view of the structure of the pixel defining layer.
  • the pixel defining layer 2 may include a first pixel defining layer 21, And the second pixel defining layer 22 on the side of the first pixel defining layer 21 away from the base substrate 1.
  • the first pixel defining layer 21 includes a plurality of pixel defining structures 01 that surround each opening area 3 and are independent of each other, and the pixel defining structures 01 are in contact with the light-emitting function layer 4. Specifically, since the first pixel defining layer 21 is a part in contact with the light-emitting function layer 4, the first pixel defining layer 21 has the property of switching between hydrophilicity and hydrophobicity under changes in external conditions. Generally, most of the materials that can switch between hydrophilicity and hydrophobicity are semiconductor materials, that is, the material of the first pixel defining layer 21 is a semiconductor material, and the semiconductor material has a certain conductivity.
  • the first pixel defining layer 21 is in contact with both the anode and the cathode, the first pixel defining layer 21 is likely to cause shorts between adjacent opening regions 3 (ie, sub-pixels), resulting in pixels and pixels. Leakage occurred between.
  • the first pixel defining layer 21 is configured to include a plurality of pixel defining structures 01 that surround each opening area 3 and are independent of each other, so that no shorts occur between adjacent opening areas 3 problem;
  • the second pixel defining layer 22 covers a plurality of pixel defining structures 01, the second pixel defining layer 22 has a grid-like structure exposing each opening area 3, and the second pixel defining layer 22 is used for
  • the adjacent pixel defining structures 01 are insulated from each other.
  • the cathode is generally a structure provided on the entire surface. That is, the cathode covers the first pixel defining layer 21, and the problem of shorts still occurs between adjacent opening regions 3.
  • the embodiment of the present disclosure further forms a second pixel defining layer 22 on the side of the first pixel defining layer 21 away from the base substrate 1 to insulate adjacent pixel defining structures 01 from each other.
  • the cathode may also be an independently arranged structure, which is not limited in the present disclosure.
  • FIG. 4 only illustrates a part of the structure in FIG. In the direction of 2, the thickness D1 of the pixel defining structure 01 is greater than the thickness D2 of the light-emitting functional layer 4, so that each film layer forming the light-emitting functional layer 4 by the inkjet printing process can be located in the pixel defining structure 01. Since the film layers of the light-emitting functional layer 4 are inconsistent in affinity and hydrophobicity, each film layer forming the light-emitting functional layer 4 can use the first pixel defining layer 21 to switch between hydrophilicity and hydrophobicity under external conditions.
  • the first pixel defining layer 21 is converted to hydrophobicity under external conditions.
  • the first pixel defining layer 21 is converted to hydrophilicity under external conditions, so that the film layers of the light-emitting function layer 4 will not climb to the inner wall of the first pixel defining layer 21, and ensure that the film layers of the light-emitting function layer 4 are formed. Uniform film thickness.
  • the first pixel defining layer 21 can be converted from hydrophilic to hydrophobic under ultraviolet light irradiation, or the first pixel defining layer 21 can be converted from hydrophilicity to hydrophobic under ultraviolet light irradiation. It can also be converted from hydrophobic to hydrophilic. This feature will be described in detail later in conjunction with specific materials.
  • the material of the first pixel defining layer 21 may be azobenzene, spiropyran, cinnamic acid, titanium dioxide or vanadium pentoxide.
  • the five exemplified materials are all in a neutral state without being processed by external conditions, and are neither hydrophilic nor hydrophobic;
  • the material of the second pixel defining layer 22 is an insulating material, such as insulating materials such as SiO and SiN.
  • the material of the first pixel defining layer 21 is titanium dioxide
  • the material of the second pixel defining layer 22 is SiO as an example.
  • the titanium dioxide is in a neutral state without external condition processing.
  • the hole injection layer 41 is formed by the ink printing process, since the hole injection layer 41 is hydrophilic, the hydrophilic hole injection layer 41 will climb to the inner wall of the first pixel defining layer 21 due to the Maganni effect, resulting in the formation of
  • the hole injection layer 41 is thin in the middle and thick on both sides, resulting in uneven film thickness of the hole injection layer 41, which affects the efficiency and lifetime of the display device.
  • FIG. 6 the difference between FIG. 6 and FIG.
  • the hydrophobic film layer such as the hole transport layer 42 is formed by the inkjet printing process. Since the hole transport layer 42 is hydrophobic, the hydrophobic hole transports The layer 42 will also climb to the inner wall of the first pixel defining layer 21 due to the Maganni effect, resulting in a phenomenon that the hole transport layer 42 is thin in the middle and thick on both sides, and the thickness of the hole transport layer 42 formed is uneven. Affect the efficiency and life of the display device.
  • the present disclosure converts the first pixel defining layer 21 into hydrophilicity or hydrophobicity by processing under external conditions.
  • the hydrophilicity and hydrophobicity of the formed light-emitting functional layer 4 is opposite to that of the first pixel defining layer 21, so that the formed light-emitting functional layer 4 can be made uniform and improve the efficiency and life of the light-emitting device.
  • the external conditions mentioned in the embodiments of the present disclosure may be: ultraviolet light irradiation, visible light irradiation (such as blue light), heating, dark room placement, and the like.
  • the film formed by using azobenzene exhibits a cis structure under ultraviolet light hv 1 (for example, the wavelength is 365 nm), and the greater the polarity, the hydrophilic state of the surface can be achieved, and the contact angle with water It can reach 15 degrees; after the ultraviolet light is irradiated, the azobenzene film is heated ( ⁇ ) or irradiated with visible light hv 2 (such as blue light), the azobenzene can be transformed into a trans structure, and the polarity becomes smaller, showing hydrophobic characteristics.
  • the contact angle with water reaches 70 degrees.
  • the spiropyran exhibits hydrophobicity after being irradiated with ultraviolet light hv 1 , and causes chemical bonds to break and exhibits hydrophilicity after heating ( ⁇ ) or visible light hv 2 irradiation.
  • cinnamic acid appears hydrophilic after being irradiated with ultraviolet light hv 1 , and dimerizes after being irradiated with visible light hv 2, showing hydrophobicity.
  • titanium dioxide exhibits hydrophilicity after being irradiated with ultraviolet light, and becomes hydrophobic after being placed in a dark room for 24 hours.
  • vanadium pentoxide appears hydrophilic after being irradiated with ultraviolet light, and becomes hydrophobic after being placed in a dark room for 24 hours.
  • the material of the first pixel defining layer 21 is titanium dioxide (TiO 2 ), and the material of the second pixel defining layer 22 is SiO as an example.
  • the titanium dioxide Under ultraviolet light (UV irradiation), the titanium dioxide The conversion is in a state where the surface is hydrophilic, so it is possible to irradiate the first pixel defining layer 21 with UV before forming the hydrophobic hole transport layer 42 and the light emitting layer 43.
  • the material of the first pixel defining layer 21 is titanium dioxide (TiO2) and the material of the second pixel defining layer 22 being SiO as an example, the structure of FIG.
  • FIG. 9 is placed in a dark place (e.g., placed for 24 hours), The titanium dioxide transforms into a hydrophobic state. Therefore, the structure of FIG. 9 can be placed in a dark place before the hydrophilic hole injection layer 41 and the electron transport layer 44 are formed, so that the first pixel defining layer 21 is hydrophobic.
  • the above five materials for making the first pixel defining layer provided in the embodiments of the present disclosure all have reversible changes in affinity and hydrophobicity under external conditions. Specifically, how to use the reversible change characteristics to form a light-emitting functional layer with inconsistent affinity and hydrophobicity Each film layer will be described in detail in the subsequent preparation method.
  • the thickness of the first pixel defining layer 21 may be 100 nm to 200 nm, and the thickness of the second pixel defining layer 22 may be 50 nm to 150 nm.
  • the thickness of the light-emitting function layer 4 can be 100nm-200nm. During production, it is only necessary to ensure that the thickness of the first pixel defining layer 21 is greater than the thickness of the light-emitting function layer 4. That's it.
  • embodiments of the present disclosure also provide a method for preparing a display substrate, as shown in FIG. 10, including:
  • each film layer in the light-emitting functional layer in each opening area Before forming each film layer in the light-emitting functional layer in each opening area, adjust the hydrophilicity and hydrophobicity of the part of the pixel defining layer that is in contact with a light-emitting functional layer to be formed to the hydrophilic and hydrophobic properties of the light-emitting functional layer to be formed The performance is opposite.
  • the method for preparing the above-mentioned display substrate provided by the embodiment of the present disclosure is that the part of the pixel defining layer that is in contact with the light-emitting function layer is set to have the ability to switch between hydrophilicity and hydrophobicity under changes in external conditions, so that the formation of
  • the film layers of the light-emitting functional layer are inconsistent with their affinity and hydrophobicity, for example, when a hydrophilic light-emitting functional layer is formed, the pixel defining layer is processed under external conditions to make contact with the light-emitting functional layer
  • the pixel defining layer is processed under external conditions to make the part in contact with the light-emitting functional layer hydrophilic, so that the light-emitting function formed in the opening area can be made hydrophilic.
  • the layer does not climb to the inner wall of the pixel defining layer, so that the film thickness of the light-emitting function layer formed in the opening area is uniform, and the display effect of the display panel
  • forming a pixel defining layer with multiple opening regions on a base substrate specifically includes:
  • S1101 Form a first photoresist on a base substrate, and form a patterned first photoresist layer after exposing and developing the first photoresist; specifically, as shown in FIG. 13A, an anode is formed A first photoresist is formed on the base substrate 1, and a patterned first photoresist layer 5 is formed after exposing and developing the first photoresist.
  • the first photoresist layer is stripped to remove the first photoresist layer and the first pixel defining material layer above the first photoresist layer to form a plurality of independent pixel defining structures surrounding each opening area ,
  • Each pixel defining structure constitutes a first pixel defining layer; specifically, as shown in FIG. 13C, the first photoresist layer 5 is stripped to remove the first photoresist layer 5 and the upper part of the first photoresist layer 5
  • the titanium dioxide material layer 6 forms a plurality of pixel defining structures 01 that surround each opening area 3 and are independent of each other, and each of the pixel defining structures 01 constitutes the first pixel defining layer 21.
  • the second pixel defining layer covers a plurality of pixel defining structures, and the structure of the second pixel defining layer is a grid exposing each opening area
  • the second pixel defining layer is configured to insulate adjacent pixel defining structures; specifically, as shown in FIG. 13E, the insulating material film layer 7 is patterned to expose each opening area 3 to form a multi
  • the pixel defining structure 01 is a second pixel defining layer 22 of a grid-like structure.
  • forming a light-emitting functional layer in each opening area specifically includes:
  • the base substrate on which the second pixel defining layer is formed is processed under the first external conditions to make the first pixel defining layer hydrophobic; specifically, since the thin film formed by azobenzene is exposed to ultraviolet light (such as wavelength It is hydrophilic under the irradiation of 365nm) and hydrophobic under the irradiation of heating or visible light (such as blue light). Therefore, the base substrate 1 on which the second pixel defining layer 22 is formed is processed under the first external condition, that is, The base substrate 1 on which the second pixel defining layer 22 is formed is heated or irradiated with visible light (such as blue light) for 1-30 minutes to make the first pixel defining layer 21 hydrophobic.
  • visible light such as blue light
  • an inkjet printing process is used to form a hydrophilic hole injection layer in each opening area; specifically, as shown in FIG. 13F, an inkjet printing process is used to form a hydrophilic hole in each opening area 3. Injection layer 41.
  • the base substrate on which the light-emitting layer is formed under the first external condition to make the first pixel defining layer hydrophobic specifically, the base substrate 1 on which the light-emitting layer 43 is formed is subjected to the first external condition.
  • the processing is performed under the following conditions, that is, heating or irradiating the base substrate 1 with visible light (such as 436 nm blue light) for 1-30 minutes on the base substrate 1 formed with the light-emitting layer 43 to make the first pixel defining layer 21 hydrophobic.
  • a metal material such as aluminum is deposited as a cathode to complete the preparation of the OLED device.
  • the material of the light-emitting layer of the present disclosure can be a quantum dot material, that is, a QLED device is formed.
  • the embodiments of the present disclosure are all described by using inkjet printing technology to form the light-emitting functional layer as an example.
  • the present disclosure The technical solution is applicable to other light-emitting functional layers formed by evaporation processes, which is not limited in the present disclosure.
  • the first photoresist is exposed in a positive manner, but in specific implementations, it may also be in a reverse manner.
  • the first photoresist is exposed, and the specific exposure method is selected according to actual application conditions, which is not specifically limited here.
  • the patterning process may only include a photolithography process, or may include a photolithography process and an etching step, and may also include printing, inkjet, etc.
  • Other processes used to form predetermined patterns photolithography process refers to the process of forming patterns using photoresist, mask, exposure machine, etc., including film formation, exposure, development and other processes.
  • the corresponding patterning process can be selected according to the structure formed in the present disclosure.
  • embodiments of the present disclosure also provide a display device, including the display substrate in the above-mentioned embodiments. Since the principle of solving the problem of the display device is similar to that of the aforementioned display substrate, the implementation of the display device can refer to the implementation of the aforementioned display substrate, and the repetition will not be repeated.
  • the display device provided by the embodiment of the present disclosure, as shown in FIG. 14, the display device can be: any mobile phone, tablet computer, television, monitor, notebook computer, digital photo frame, navigator, etc., with display function Products or components are not limited here.
  • the above-mentioned display substrate, the preparation method thereof and the display device provided by the embodiments of the present disclosure by setting the part of the pixel defining layer in contact with the light-emitting function layer to have the property of switching between hydrophilicity and hydrophobicity under changes in external conditions In this way, when the film layers of the light-emitting functional layer are formed, the affinity and hydrophobicity of each film of the light-emitting functional layer are inconsistent.
  • the part in contact with the light-emitting functional layer is converted into hydrophobicity.
  • the pixel defining layer is processed under external conditions to make the part in contact with the light-emitting functional layer hydrophilic, so that the opening area can be made hydrophilic.
  • the formed light-emitting function layer does not climb to the inner wall of the pixel defining layer, so that the film thickness of the light-emitting function layer formed in the opening area is uniform, and the display effect of the display panel and the life of the light-emitting device are improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本公开提供了一种显示基板、其制备方法及显示装置,通过将像素界定层中与发光功能层接触的部分设置成具有在外部条件变化下在亲水性与疏水性之间转换的性能,这样在形成发光功能层的各膜层时,由于发光功能层的各膜层亲、疏水性不一致,如在形成亲水性的发光功能层时,将像素界定层在外部条件处理下使与发光功能层接触的部分转换呈疏水性,在形成疏水性的发光功能层时,将像素界定层在外部条件处理下使与发光功能层接触的部分转换呈亲水性,从而可以使开口区域内形成的发光功能层不会向像素界定层内壁攀爬,保证开口区域内形成的发光功能层膜厚均一,提高显示面板的显示效果和发光器件的寿命。

Description

显示基板、其制备方法及显示装置
相关申请的交叉引用
本公开要求在2020年04月29日提交中国专利局、申请号为202010354624.9、申请名称为“一种阵列基板、其制备方法及显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及显示技术领域,特别涉及一种显示基板、其制备方法及显示装置。
背景技术
有机发光二极管(Organic Light Emitting Diode,OLED)显示器具有低能耗、自发光、宽视角及响应速度快等优点,是当今显示器研究领域的热点之一,被认为是下一代显示技术。
发明内容
本公开实施例提供了一种显示基板,包括:
衬底基板;
像素界定层,位于所述衬底基板的一侧,所述像素界定层具有多个开口区域;
发光功能层,位于所述开口区域内;其中,
所述像素界定层中与所述发光功能层接触的部分具有在外部条件变化下在亲水性与疏水性之间转换的性能。
可选地,在本公开实施例提供的上述显示基板中,所述像素界定层包括:
第一像素界定层,包括围绕各所述开口区域且相互独立的多个像素界定结构,所述像素界定结构与所述发光功能层接触;
第二像素界定层,位于所述第一像素界定层远离所述衬底基板的一侧且覆盖多个所述像素界定结构,所述第二像素界定层的结构为具有露出各所述开口区域的网格状结构,所述第二像素界定层被配置为使相邻所述像素界定结构之间相互绝缘。
可选地,在本公开实施例提供的上述显示基板中,沿所述衬底基板指向所述像素界定层的方向,所述像素界定结构的厚度大于所述发光功能层的厚度。
可选地,在本公开实施例提供的上述显示基板中,所述第一像素界定层在紫外光照射下由亲水性转换为疏水性,或由疏水性转换为亲水性。
可选地,在本公开实施例提供的上述显示基板中,所述第一像素界定层的材料为偶氮苯、螺吡喃、肉桂酸、二氧化钛或五氧化二钒;所述第二像素界定层的材料为绝缘材料。
可选地,在本公开实施例提供的上述显示基板中,所述第一像素界定层的厚度为100nm-200nm,所述第二像素界定层的厚度为50nm-150nm。
可选地,在本公开实施例提供的上述显示基板中,所述发光功能层包括层叠设置的空穴注入层、空穴传输层、发光层、电子传输层。
可选地,在具体实施时,在本公开实施例提供的上述显示基板中,所述空穴注入层和所述电子传输层呈亲水性,所述空穴传输层和所述发光层呈疏水性。
可选地,在具体实施时,在本公开实施例提供的上述显示基板中,所述发光层的材料为量子点材料。
相应地,本公开实施例还提供了一种显示装置,包括本公开实施例提供的上述显示基板。
相应地,本公开实施例还提供了一种显示基板的制备方法,包括:
在衬底基板上形成具有多个开口区域的像素界定层;
在各所述开口区域内形成发光功能层;其中,所述像素界定层中与所述发光功能层接触的部分具有在外部条件变化下在亲水性与疏水性之间转换的 性能;
在各所述开口区域内形成所述发光功能层中的每一个膜层之前,将所述像素界定层中与将要形成的一个发光功能层接触的部分的亲疏水性能调整为与将要形成的一个发光功能层的亲疏水性能相反。
可选地,在具体实施时,在本公开实施例提供的上述制备方法中,在衬底基板上形成具有多个开口区域的像素界定层,具体包括:
在所述衬底基板上形成第一光刻胶,并对所述第一光刻胶进行曝光、显影后形成图形化的第一光刻胶层;
在形成有所述第一光刻胶层的衬底基板上形成第一像素界定材料层;
对所述第一光刻胶层进行剥离以除去所述第一光刻胶层和所述第一光刻胶层上方的第一像素界定材料层,以形成围绕各所述开口区域且相互独立的多个像素界定结构,各所述像素界定结构构成所述第一像素界定层;
在所述第一像素界定层远离所述衬底基板一侧形成绝缘材料膜层;
对所述绝缘材料膜层进行构图露出各所述开口区域,以形成所述第二像素界定层;所述第二像素界定层覆盖多个所述像素界定结构,所述第二像素界定层的结构为具有露出各所述开口区域的网格状结构,且所述第二像素界定层被配置为使相邻所述像素界定结构之间相互绝缘。
可选地,在具体实施时,在本公开实施例提供的上述制备方法中,在各所述开口区域内形成发光功能层,具体包括:
对形成有所述第二像素界定层的衬底基板在第一外部条件下进行处理,以使所述第一像素界定层呈疏水性;
采用喷墨打印工艺在各所述开口区域内形成具有亲水性的空穴注入层;
对形成有所述空穴注入层的衬底基板在第二外部条件下进行处理,以使所述第一像素界定层呈亲水性;
采用喷墨打印工艺在所述空穴注入层远离所述衬底基板一侧形成具有疏水性的空穴传输层;
采用喷墨打印工艺在所述空穴传输层远离所述衬底基板一侧形成具有疏 水性的发光层;
对形成有所述发光层的衬底基板在所述第一外部条件下进行处理,以使所述第一像素界定层呈疏水性;
采用喷墨打印工艺在所述发光层远离所述衬底基板一侧形成具有亲水性的电子传输层。
附图说明
图1为本公开实施例提供的显示基板的俯视示意图;
图2A为本公开实施例提供的显示基板的一种结构示意图;
图2B为本公开实施例提供的像素界定层的俯视结构示意图;
图3为本公开实施例提供的发光功能层的结构示意图;
图4为本公开实施例提供的显示基板的另一种结构示意图;
图5为本公开实施例提供的显示基板在未进行外部条件处理时形成发光功能层的一种结构示意图;
图6为本公开实施例提供的显示基板在未进行外部条件处理时形成发光功能层的另一种结构示意图;
图7A为本公开实施例提供的显示基板中第一像素界定层材料的一种疏水性转换原理图;
图7B为本公开实施例提供的显示基板中第一像素界定层材料的另一种疏水性转换原理图;
图7C为本公开实施例提供的显示基板中第一像素界定层材料的另一种疏水性转换原理图;
图8为本公开实施例提供的显示基板在紫外光照射时的一种结构示意图;
图9为本公开实施例提供的显示基板在黑暗处放置时的另一种结构示意图;
图10为本公开实施例提供的显示基板的制备方法的一种流程示意图;
图11为本公开实施例提供的显示基板的制备方法的另一种流程示意图;
图12为本公开实施例提供的显示基板的制备方法的另一种流程示意图;
图13A-图13I分别为本公开实施例提供的显示基板的制备方法在执行各步骤之后的截面示意图;
图14为本公开实施例提供的显示装置的结构示意图。
具体实施方式
目前,OLED显示器中发光层的成膜方式主要有蒸镀方式和喷墨打印方式。采用蒸镀方式成膜在制备小尺寸OLED显示器中的应用较为成熟,而采用喷墨打印方式成膜由于其成膜速率快、材料利用率较高、可以实现大尺寸化,被认为是大尺寸OLED显示器实现量产的重要方式。通常在制作发光功能层的各膜层时,需要在基板上制作像素界定层以限定各像素所在的区域,之后采用喷墨打印工艺在对应的像素特定的开口区域中制作发光功能层。
但是在打印发光功能层的多个膜层时由于马格兰尼效应(由于二种表面张力不同的液体介面之间存在张力的梯度而使质量移动的现象),容易形成厚度不均匀的薄膜(两边厚中间薄),从而在开口区域中间容易形成薄膜层,薄膜层在最终器件中会由于高电压而导致击穿。同时开口区域膜层的不均一容易降低器件的发光效率和寿命,因此如何在开口区域形成膜厚均一的发光功能层是OLED工艺中至关重要的一步。
为了使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开作进一步地详细描述,显然,所描述的实施例仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本公开保护的范围。
附图中各部件的形状和大小不反映真实比例,目的只是示意说明本公开内容。
下面结合附图,对本公开实施例提供的显示基板、其制备方法及显示装置的具体实施方式进行详细地说明。
本公开实施例提供的一种显示基板,如图1和图2A所示,图1为显示基 板的俯视结构示意图,图2A为图1中AA方向的截面示意图,该显示基板包括衬底基板1,位于衬底基板1一侧的像素界定层2,像素界定层2具有多个开口区域3,开口区域3内包括发光功能层4,像素界定层2中与发光功能层4接触的部分(第一像素界定层21,后面详细介绍)具有在外部条件变化下在亲水性与疏水性之间转换的性能。
本公开实施例提供的上述显示基板,通过将像素界定层2中与发光功能层4接触的部分设置成具有在外部条件变化下在亲水性与疏水性之间转换的性能,这样在形成发光功能层4的各膜层时,由于发光功能层4的各膜层亲、疏水性不一致,如在形成亲水性的发光功能层4时,将像素界定层2在外部条件处理下使与发光功能层4接触的部分转换呈疏水性,在形成疏水性的发光功能层4时,将像素界定层2在外部条件处理下使与发光功能层4接触的部分转换呈亲水性,从而可以使开口区域3内形成的发光功能层4不会向像素界定层2内壁攀爬,保证开口区域内3形成的发光功能层4膜厚均一,提高显示面板的显示效果和发光器件的寿命。
需要说明的是,本公开实施例提供的上述显示基板的衬底基板是包括与各开口区域一一对应的多个阳极(或阴极)的衬底基板,一般是在衬底基板上先沉积一导电膜层,对该导电膜层进行构图形成多个阳极(或阴极),然后在形成有多个阳极(或阴极)的衬底基板上旋涂一层像素界定膜层,然后对该像素界定膜层进行构图形成露出多个所述阳极(或阴极)的像素界定层,露出的阳极(或阴极)区域即为开口区域,然后再进行发光功能层、阴极(或阳极)以及后续膜层的制备;具体地,该阳极(或阴极)材料包括透明导电材料或半透明导电材料或金属导电材料。本公开制作像素界定层的详细内容在后续介绍。
在具体实施时,在本公开实施例提供的上述显示基板中,由于有机电致发光器件有底发射和顶发射两种,通过设置具有透明性的阳极(或阴极)和反射性的阴极(或阳极)结构形成底发射的器件结构,反之通过透明阴极(或阳极)和反射阳极(或阴极)的结构形成顶发光的器件结构。因此根据器件 结构不同,阳极(或阴极)材料的选择也不同,通常是ITO、Ag、NiO、Al、石墨烯等高功函的透明或半透明材料。
在具体实施时,在本公开实施例提供的上述显示基板中,如图3所示,发光功能层4可以包括层叠设置的空穴注入层41、空穴传输层42、发光层43、电子传输层44。当本公开实施例提供的显示基板所述显示装置为正置结构时,先在衬底基板1上形成空穴注入层41,接着依次形成空穴传输层42、发光层43、电子传输层44;当本公开实施例提供的显示基板所述显示装置为倒置结构时,先在衬底基板1上形成电子传输层44,接着依次形成发光层43、空穴传输层42、空穴注入层41。当然,在具体实施时,发光功能层4还可以包括电子注入层,本公开实施例是以发光功能层4包括正置结构的空穴注入层41、空穴传输层42、发光层43和电子传输层44为例进行说明的。
具体地,本公开实施例提供的上述显示基板中,发光层至少包括:红色发光层、绿色发光层以及蓝色发光层。除此之外,还可以包括白的发光层,根据具体的像素的排列方式而定,在此不作具体限定。
在具体实施时,为了提高器件的发光效率,在本公开实施例提供的上述显示基板中,发光层的材料可以为量子点材料。量子点材料可以为二元、三元或多元量子点发光材料,在此不做一一列举。
在具体实施时,在本公开实施例提供的上述显示基板中,如图3所示,空穴注入层41和电子传输层44一般呈亲水性,空穴传输层42和发光层43一般呈疏水性。具体地,本公开实施例采用喷墨打印工艺形成空穴注入层41、空穴传输层42、发光层43和电子传输层44,空穴注入层41、空穴传输层42、发光层43和电子传输层44各自对应的墨水状态(即液态)和各自干燥之后的固态的亲疏水性不变,例如液态的空穴注入层41和电子传输层44呈亲水性,固态的空穴注入层41和电子传输层44仍呈亲水性;液态的空穴传输层42和发光层43呈疏水性,固态的空穴传输层42和发光层43仍呈疏水性。
具体地,由于空穴注入层、空穴传输层、发光层和电子传输层的亲、疏水性不一致,在采用喷墨打印工艺形成发光功能层的各个膜层时由于马格兰 尼效应,容易形成厚度不均匀的薄膜(两边厚中间薄),在开口区域中间容易形成薄膜层,在最终器件中会由于高电压而导致击穿。因此本公开提供了一种像素界定层,可以使形成的发光功能层的各个膜层膜厚均一,提高显示器件的发光效率和寿命。
具体地,亲水性是指对水具有亲合力的性能,疏水性是指对水具有排斥能力的性能。空穴注入层和电子传输层呈亲水性指的是:空穴注入层和电子传输层与水的接触角一般均小于50度;空穴传输层和发光层呈疏水性指的是:空穴传输层和发光层与水的接触角一般均大于120度。
下面对本公开实施例提供的像素界定层能够使形成的发光功能层的各个膜层膜厚均一进行详细介绍。
在具体实施时,在本公开实施例提供的上述显示基板中,如图2A和图2B所示,图2B为像素界定层的俯视结构示意图,像素界定层2可以包括第一像素界定层21,以及位于第一像素界定层21远离衬底基板1一侧的第二像素界定层22。
第一像素界定层21包括围绕各开口区域3且相互独立的多个像素界定结构01,像素界定结构01与发光功能层4接触。具体地,由于第一像素界定层21是与发光功能层4接触的部分,因此第一像素界定层21具有在外部条件变化下在亲水性与疏水性之间转换的性能。一般具有在亲水性与疏水性之间转换的性能的材料多数为半导体材料,即第一像素界定层21的材料为半导体材料,半导体材料具有一定的导电能力。又由于第一像素界定层21与阳极和阴极都是接触的,因此第一像素界定层21很有可能将相邻开口区域3(即子像素)之间发生短路(short),导致像素与像素之间发生漏电的现象。为了防止相邻子像素之间发生short,将第一像素界定层21设置成包括围绕各开口区域3且相互独立的多个像素界定结构01,从而相邻开口区域3之间不会发生short的问题;
如图2B所述,第二像素界定层22覆盖多个像素界定结构01,第二像素界定层22的结构为具有露出各开口区域3的网格状结构,且第二像素界定层 22用于使相邻像素界定结构01之间相互绝缘。具体地,由于第一像素界定层21的各个像素界定结构01是相互独立的,假设在形成第一像素界定层21之后直接形成发光功能层4和阴极时,由于阴极一般为整面设置的结构,即阴极覆盖第一像素界定层21,相邻开口区域3之间还是会发生short的问题。因此本公开实施例还在第一像素界定层21远离衬底基板1一侧形成第二像素界定层22,使相邻像素界定结构01之间相互绝缘。当然,在具体实施时,阴极也可以为独立设置的结构,本公开对此不作限定。
在具体实施时,在本公开实施例提供的上述显示基板中,如图4所示,为了清楚的示意,图4仅示意出了图2A中的部分结构,沿衬底基板1指向像素界定层2的方向,像素界定结构01的厚度D1大于发光功能层4的厚度D2,这样采用喷墨打印工艺形成发光功能层4的各膜层可以位于像素界定结构01内。由于发光功能层4的各膜层亲、疏水性不一致,因此形成发光功能层4的各膜层均可以利用第一像素界定层21在外部条件下能够在亲水性和疏水性之间转换的性能,如在发光功能层4的膜层为亲水性时,第一像素界定层21通过在外部条件下转换呈疏水性,在发光功能层4的膜层为疏水性时,第一像素界定层21通过在外部条件下转换呈亲水性,从而使发光功能层4的各膜层不会发生向第一像素界定层21内壁攀爬的现象,保证形成的发光功能层4的各膜层膜厚均一。
在具体实施时,在本公开实施例提供的上述显示基板中,第一像素界定层21在紫外光照射下可以由亲水性转换为疏水性,或第一像素界定层21在紫外光照射下也可以由疏水性转换为亲水性。该特性在后续结合特定的材料进行详细说明。
在具体实施时,在本公开实施例提供的上述显示基板中,第一像素界定层21的材料可以为偶氮苯、螺吡喃、肉桂酸、二氧化钛或五氧化二钒。举例的这五种材料在没有进行外部条件处理下均处于中性状态,既不亲水也不疏水;第二像素界定层22的材料为绝缘材料,如SiO、SiN等绝缘材料。
具体地,如图5所示,以第一像素界定层21的材料为二氧化钛、第二像 素界定层22的材料为SiO为例,在没有进行外部条件处理下二氧化钛处于中性状态,在采用喷墨打印工艺形成空穴注入层41时,由于空穴注入层41呈亲水性,亲水性的空穴注入层41由于马格兰尼效应会向第一像素界定层21的内壁攀爬,导致形成的空穴注入层41中间薄两侧厚的现象,从而形成的空穴注入层41的膜厚不均一,影响显示器件的效率和寿命。同样,如图6所示,图6与图5的区别仅在于采用喷墨打印工艺形成疏水性膜层如空穴传输层42,由于空穴传输层42呈疏水性,疏水性的空穴传输层42由于马格兰尼效应也会向第一像素界定层21的内壁攀爬,导致形成的空穴传输层42中间薄两侧厚的现象,从而形成的空穴传输层42的膜厚不均一,影响显示器件的效率和寿命。
因此,为了解决发光功能层4的各膜层由于亲疏水性不一致导致形成的膜层不均一的问题,本公开通过将第一像素界定层21在外部条件下进行处理转换成亲水性或疏水性,对应的使形成的发光功能层4的膜层的亲疏水性与第一像素界定层21的亲疏水性相反,从而可以使形成的发光功能层4的膜层均一,提高发光器件的效率和寿命。
具体地,本公开实施例所说的外部条件可以为:紫外光照射、可见光照射(如蓝光)、加热、暗室放置等。
具体地,如图7A所示,采用偶氮苯形成的薄膜在紫外光hv 1(如波长为365nm)照射下呈现顺式结构,极性变大可以达到表面亲水状态,与水的接触角可以达到15度;紫外光照射完成后,对该偶氮苯薄膜进行加热(△)或者可见光hv 2(如蓝光)照射,偶氮苯可以变成反式结构,极性变小呈现疏水特性,与水的接触角达到70度。
具体地,如图7B所示,螺吡喃在紫外光hv 1照射后呈现疏水性,在加热(△)或者可见光hv 2照射后导致化学键断裂,呈现亲水性。
具体地,如图7C所示,肉桂酸在紫外光hv 1照射后呈现亲水性,在可见光hv 2照射后发生二聚作用,呈现疏水性。
具体地,二氧化钛(TiO2)在紫外光照射后呈现亲水性,在暗室放置24 小时后呈现疏水性。
具体地,五氧化二钒(VO5)在紫外光照射后呈现亲水性,在暗室放置24小时后呈现疏水性。
具体地,如图8所示,以第一像素界定层21的材料为二氧化钛(TiO 2)、第二像素界定层22的材料为SiO为例,在紫外光照射下(UV照射)下,二氧化钛转换呈表面亲水的状态,因此可以在形成疏水性的空穴传输层42和发光层43之前,采用UV照射第一像素界定层21。如图9所示,以第一像素界定层21的材料为二氧化钛(TiO2)、第二像素界定层22的材料为SiO为例,将图9的结构在黑暗处放置(如放置24小时),二氧化钛转换呈表面疏水的状态,因此可以在形成亲水性的空穴注入层41和电子传输层44之前,将图9的结构在黑暗处放置,以使第一像素界定层21呈疏水性。
因此本公开实施例提供的上述五种制作第一像素界定层的材料均具有在外部条件下亲、疏水性可逆变化,具体如何采用该可逆变化的特性形成亲、疏水性不一致的发光功能层的各膜层,在后续制备方法中进行详细介绍。
在具体实施时,在本公开实施例提供的上述显示基板中,第一像素界定层21的厚度可以为100nm-200nm,第二像素界定层22的厚度可以为50nm-150nm。
在具体实施时,在本公开实施例提供的上述显示基板中,发光功能层4的厚度可以为100nm-200nm,在制作时,只要保证第一像素界定层21的厚度大于发光功能层4的厚度即可。
基于同一发明构思,本公开实施例还提供了一种显示基板的制备方法,如图10所示,包括:
S1001、在衬底基板上形成具有多个开口区域的像素界定层;
S1002、在各开口区域内形成发光功能层;其中,像素界定层中与发光功能层接触的部分具有在外部条件变化下在亲水性与疏水性之间转换的性能;
在各开口区域内形成发光功能层中的每一个膜层之前,将像素界定层中与将要形成的一个发光功能层接触的部分的亲疏水性能调整为与将要形成的 一个发光功能层的亲疏水性能相反。
本公开实施例提供的上述显示基板的制备方法,通过将像素界定层中与发光功能层接触的部分设置成具有在外部条件变化下在亲水性与疏水性之间转换的性能,这样在形成发光功能层的各膜层时,由于发光功能层的各膜层亲、疏水性不一致,如在形成亲水性的发光功能层时,将像素界定层在外部条件处理下使与发光功能层接触的部分转换呈疏水性,在形成疏水性的发光功能层时,将像素界定层在外部条件处理下使与发光功能层接触的部分转换呈亲水性,从而可以使开口区域内形成的发光功能层不会向像素界定层内壁攀爬,保证开口区域内形成的发光功能层膜厚均一,提高显示面板的显示效果和发光器件的寿命。
在具体实施时,在本公开实施例提供的上述制备方法中,如图11所示,在衬底基板上形成具有多个开口区域的像素界定层,具体包括:
S1101、在衬底基板上形成第一光刻胶,并对第一光刻胶进行曝光、显影后形成图形化的第一光刻胶层;具体地,如图13A所示,在形成有阳极的衬底基板1上形成第一光刻胶,并对第一光刻胶进行曝光、显影后形成图形化的第一光刻胶层5。
S1102、在形成有第一光刻胶层的衬底基板上形成第一像素界定材料层;具体地,如图13B所示,以在形成有第一光刻胶层5的衬底基板1上形成偶氮苯材料层6为例。
S1103、对第一光刻胶层进行剥离以除去第一光刻胶层和第一光刻胶层上方的第一像素界定材料层,以形成围绕各开口区域且相互独立的多个像素界定结构,各像素界定结构构成第一像素界定层;具体地,如图13C所示,对第一光刻胶层5进行剥离以除去第一光刻胶层5和第一光刻胶层5上方的二氧化钛材料层6,以形成围绕各开口区域3且相互独立的多个像素界定结构01,各像素界定结构01构成第一像素界定层21。
S1104、在第一像素界定层远离衬底基板一侧沉积绝缘材料膜层;具体地,如图13D所示,在第一像素界定层21远离衬底基板1一侧采用PECVD工艺 形成绝缘材料膜层7。
S1105、对绝缘材料膜层进行构图露出各开口区域,以形成第二像素界定层;第二像素界定层覆盖多个像素界定结构,第二像素界定层的结构为具有露出各开口区域的网格状结构,且第二像素界定层被配置为使相邻像素界定结构之间相互绝缘;具体地,如图13E所示,对绝缘材料膜层7进行构图露出各开口区域3,以形成覆盖多个像素界定结构01且为网格状结构的第二像素界定层22。
在具体实施时,在本公开实施例提供的上述制备方法中,如图12所示,在各开口区域内形成发光功能层,具体包括:
S1201、对形成有第二像素界定层的衬底基板在第一外部条件下进行处理,以使第一像素界定层呈疏水性;具体地,由于偶氮苯形成的薄膜在紫外光(如波长为365nm)照射下呈亲水性,在加热或者可见光(如蓝光)照射下呈疏水性,因此对形成有第二像素界定层22的衬底基板1在第一外部条件下进行处理,即对形成有第二像素界定层22的衬底基板1在加热或者可见光(如蓝光)照射1-30min,以使第一像素界定层21呈疏水性。
S1202、采用喷墨打印工艺在各开口区域内形成具有亲水性的空穴注入层;具体地,如图13F所示,采用喷墨打印工艺在各开口区域3内形成亲水性的空穴注入层41。
S1203、对形成有空穴注入层的衬底基板在第二外部条件下进行处理,以使第一像素界定层呈亲水性;具体地,对形成有空穴注入层41的衬底基板1在第二外部条件下进行处理,即对形成有空穴注入层41的衬底基板1在紫外光(如波长为365nm)照射下呈亲水性照射1-30min,以使第一像素界定层呈亲水性。
S1204、采用喷墨打印工艺在空穴注入层远离衬底基板一侧形成具有疏水性的空穴传输层;具体地,如图13G所示,采用喷墨打印工艺在空穴注入层41远离衬底基板一侧形成疏水性的空穴传输层42。
S1205、采用喷墨打印工艺在空穴传输层远离衬底基板一侧形成具有疏水 性的发光层;具体地,如图13H所示,在空穴传输层42远离衬底基板1一侧采用喷墨打印工艺形成疏水性的发光层43。
S1206、对形成有发光层的衬底基板在第一外部条件下进行处理,以使第一像素界定层呈疏水性;具体地,对形成有发光层43的衬底基板1在第一外部条件下进行处理,即对形成有发光层43的衬底基板1在加热或者可见光(如436nm的蓝光)照射1-30min,以使第一像素界定层21呈疏水性。
S1207、采用喷墨打印工艺在发光层远离衬底基板一侧形成具有亲水性的电子传输层;具体地,如图13I所示,在发光层43远离衬底基板1一侧采用喷墨打印工艺形成亲水性的电子传输层44,即形成本公开图2A所示的显示基板。
在具体实施时,对本公开图2A所示的显示基板进行退火后沉积铝等金属材料作为阴极,完成OLED器件的制备。
随着量子点技术的深入发展,电致量子点发光二极管的研究日益深入,量子效率不断提升,因此本公开的发光层的材料可以为量子点材料,即形成QLED器件。
在具体实施时,由于采用喷墨打印技术形成发光功能层可以达到制备高分辨率QLED器件,因此本公开实施例均是以采用喷墨打印技术形成发光功能层为例进行说明的,当然本公开的技术方案适用于其它如蒸镀工艺形成发光功能层,本公开对此不作限制。
需要说明的是,在本公开实施例提供的上述显示基板的制备方法中,在图13C,对第一光刻胶采用正胶的方式进行曝光,但在具体实施时也可以采用反胶的方式对第一光刻胶进行曝光,具体的曝光方式根据实际应用情况进行选择,在此不作具体限定。
需要说明的是,在本公开实施例提供的上述显示基板的制备方法中,构图工艺可只包括光刻工艺,或,可以包括光刻工艺以及刻蚀步骤,同时还可以包括打印、喷墨等其他用于形成预定图形的工艺;光刻工艺是指包括成膜、曝光、显影等工艺过程的利用光刻胶、掩模板、曝光机等形成图形的工 艺。在具体实施时,可根据本公开中所形成的结构选择相应的构图工艺。
基于同一发明构思,本公开实施例还提供了一种显示装置,包括上述实施例中的显示基板。由于该显示装置解决问题的原理与前述一种显示基板相似,因此该显示装置的实施可以参见前述显示基板的实施,重复之处不再赘述。
在具体实施时,本公开实施例提供的显示装置,如图14所示,该显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件,在此不作限定。
本公开实施例提供的上述显示基板、其制备方法及显示装置,通过将像素界定层中与发光功能层接触的部分设置成具有在外部条件变化下在亲水性与疏水性之间转换的性能,这样在形成发光功能层的各膜层时,由于发光功能层的各膜层亲、疏水性不一致,如在形成亲水性的发光功能层时,将像素界定层在外部条件处理下使与发光功能层接触的部分转换呈疏水性,在形成疏水性的发光功能层时,将像素界定层在外部条件处理下使与发光功能层接触的部分转换呈亲水性,从而可以使开口区域内形成的发光功能层不会向像素界定层内壁攀爬,保证开口区域内形成的发光功能层膜厚均一,提高显示面板的显示效果和发光器件的寿命。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (13)

  1. 一种显示基板,其中,包括:
    衬底基板;
    像素界定层,位于所述衬底基板的一侧,所述像素界定层具有多个开口区域;
    发光功能层,位于所述开口区域内;其中,
    所述像素界定层中与所述发光功能层接触的部分具有在外部条件变化下在亲水性与疏水性之间转换的性能。
  2. 如权利要求1所述的显示基板,其中,所述像素界定层包括:
    第一像素界定层,包括围绕各所述开口区域且相互独立的多个像素界定结构,所述像素界定结构与所述发光功能层接触;
    第二像素界定层,位于所述第一像素界定层远离所述衬底基板的一侧且覆盖多个所述像素界定结构,所述第二像素界定层的结构为具有露出各所述开口区域的网格状结构,所述第二像素界定层被配置为使相邻所述像素界定结构之间相互绝缘。
  3. 如权利要求2所述的显示基板,其中,沿所述衬底基板指向所述像素界定层的方向,所述像素界定结构的厚度大于所述发光功能层的厚度。
  4. 如权利要求2所述的显示基板,其中,所述第一像素界定层在紫外光照射下由亲水性转换为疏水性,或由疏水性转换为亲水性。
  5. 如权利要求4所述的显示基板,其中,所述第一像素界定层的材料为偶氮苯、螺吡喃、肉桂酸、二氧化钛或五氧化二钒;所述第二像素界定层的材料为绝缘材料。
  6. 如权利要求2所述的显示基板,其中,所述第一像素界定层的厚度为100nm-200nm,所述第二像素界定层的厚度为50nm-150nm。
  7. 如权利要求1所述的显示基板,其中,所述发光功能层包括层叠设置的空穴注入层、空穴传输层、发光层、电子传输层。
  8. 如权利要求7所述的显示基板,其中,所述空穴注入层和所述电子传输层呈亲水性,所述空穴传输层和所述发光层呈疏水性。
  9. 如权利要求7所述的显示基板,其中,所述发光层的材料为量子点材料。
  10. 一种显示装置,其中,包括如权利要求1-9任一项所述的显示基板。
  11. 一种显示基板的制备方法,其中,包括:
    在衬底基板上形成具有多个开口区域的像素界定层;
    在各所述开口区域内形成发光功能层;其中,所述像素界定层中与所述发光功能层接触的部分具有在外部条件变化下在亲水性与疏水性之间转换的性能;
    在各所述开口区域内形成所述发光功能层中的每一个膜层之前,将所述像素界定层中与将要形成的一个发光功能层接触的部分的亲疏水性能调整为与将要形成的一个发光功能层的亲疏水性能相反。
  12. 如权利要求11所述的制备方法,其中,在衬底基板上形成具有多个开口区域的像素界定层,具体包括:
    在所述衬底基板上形成第一光刻胶,并对所述第一光刻胶进行曝光、显影后形成图形化的第一光刻胶层;
    在形成有所述第一光刻胶层的衬底基板上形成第一像素界定材料层;
    对所述第一光刻胶层进行剥离以除去所述第一光刻胶层和所述第一光刻胶层上方的第一像素界定材料层,以形成围绕各所述开口区域且相互独立的多个像素界定结构,各所述像素界定结构构成所述第一像素界定层;
    在所述第一像素界定层远离所述衬底基板一侧形成绝缘材料膜层;
    对所述绝缘材料膜层进行构图露出各所述开口区域,以形成所述第二像素界定层;所述第二像素界定层覆盖多个所述像素界定结构,所述第二像素界定层的结构为具有露出各所述开口区域的网格状结构,且所述第二像素界定层被配置为使相邻所述像素界定结构之间相互绝缘。
  13. 如权利要求12所述的制备方法,其中,在各所述开口区域内形成发 光功能层,具体包括:
    对形成有所述第二像素界定层的衬底基板在第一外部条件下进行处理,以使所述第一像素界定层呈疏水性;
    采用喷墨打印工艺在各所述开口区域内形成具有亲水性的空穴注入层;
    对形成有所述空穴注入层的衬底基板在第二外部条件下进行处理,以使所述第一像素界定层呈亲水性;
    采用喷墨打印工艺在所述空穴注入层远离所述衬底基板一侧形成具有疏水性的空穴传输层;
    采用喷墨打印工艺在所述空穴传输层远离所述衬底基板一侧形成具有疏水性的发光层;
    对形成有所述发光层的衬底基板在所述第一外部条件下进行处理,以使所述第一像素界定层呈疏水性;
    采用喷墨打印工艺在所述发光层远离所述衬底基板一侧形成具有亲水性的电子传输层。
PCT/CN2021/078745 2020-04-29 2021-03-02 显示基板、其制备方法及显示装置 WO2021218361A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/628,145 US20230039681A1 (en) 2020-04-29 2021-03-02 Display substrate and preparation method therefor, and display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010354624.9 2020-04-29
CN202010354624.9A CN113571668B (zh) 2020-04-29 2020-04-29 一种阵列基板、其制备方法及显示装置

Publications (1)

Publication Number Publication Date
WO2021218361A1 true WO2021218361A1 (zh) 2021-11-04

Family

ID=78158459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/078745 WO2021218361A1 (zh) 2020-04-29 2021-03-02 显示基板、其制备方法及显示装置

Country Status (3)

Country Link
US (1) US20230039681A1 (zh)
CN (1) CN113571668B (zh)
WO (1) WO2021218361A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023109943A1 (zh) * 2021-12-17 2023-06-22 纳晶科技股份有限公司 量子点复合材料、显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100062147A1 (en) * 2008-09-08 2010-03-11 Seiko Epson Corporation Film-formation method, method for manufacturing electro-optical device, electro-optical device, and electronic apparatus
CN107623082A (zh) * 2017-08-16 2018-01-23 上海天马微电子有限公司 一种有机电致发光显示面板及其制作方法、显示装置
CN107689390A (zh) * 2017-10-18 2018-02-13 京东方科技集团股份有限公司 像素界定层及其制造方法、显示基板、显示面板
CN108919605A (zh) * 2018-07-27 2018-11-30 京东方科技集团股份有限公司 光阻组合物、像素界定层、其制备方法及应用
CN109192875A (zh) * 2018-09-04 2019-01-11 京东方科技集团股份有限公司 背板及制造方法、显示基板及制造方法和显示装置
CN110622317A (zh) * 2019-05-16 2019-12-27 京东方科技集团股份有限公司 显示基板、制造显示基板的方法和显示设备
CN111599849A (zh) * 2020-05-29 2020-08-28 京东方科技集团股份有限公司 阵列基板、显示面板及显示装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102576997B1 (ko) * 2017-12-29 2023-09-12 삼성디스플레이 주식회사 디스플레이 장치 및 제조 방법
CN109100915B (zh) * 2018-08-23 2021-12-14 合肥鑫晟光电科技有限公司 一种光阻组合物、像素界定结构及其制作方法、显示面板

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100062147A1 (en) * 2008-09-08 2010-03-11 Seiko Epson Corporation Film-formation method, method for manufacturing electro-optical device, electro-optical device, and electronic apparatus
CN107623082A (zh) * 2017-08-16 2018-01-23 上海天马微电子有限公司 一种有机电致发光显示面板及其制作方法、显示装置
CN107689390A (zh) * 2017-10-18 2018-02-13 京东方科技集团股份有限公司 像素界定层及其制造方法、显示基板、显示面板
CN108919605A (zh) * 2018-07-27 2018-11-30 京东方科技集团股份有限公司 光阻组合物、像素界定层、其制备方法及应用
CN109192875A (zh) * 2018-09-04 2019-01-11 京东方科技集团股份有限公司 背板及制造方法、显示基板及制造方法和显示装置
CN110622317A (zh) * 2019-05-16 2019-12-27 京东方科技集团股份有限公司 显示基板、制造显示基板的方法和显示设备
CN111599849A (zh) * 2020-05-29 2020-08-28 京东方科技集团股份有限公司 阵列基板、显示面板及显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023109943A1 (zh) * 2021-12-17 2023-06-22 纳晶科技股份有限公司 量子点复合材料、显示装置

Also Published As

Publication number Publication date
CN113571668B (zh) 2023-08-29
US20230039681A1 (en) 2023-02-09
CN113571668A (zh) 2021-10-29

Similar Documents

Publication Publication Date Title
US11049917B2 (en) OLED display panel, a method for fabricating the same, and a display device
CN104576957B (zh) 有机电致发光显示设备及其制造方法
US7224115B2 (en) Display apparatus and method of manufacturing the same
CN102163617B (zh) 制造有机发光显示设备的方法
CN106449722B (zh) 印刷型顶发射电致发光显示器及其制备方法
WO2021103979A1 (zh) 显示面板、柔性显示屏和电子设备及显示面板的制备方法
JP2006140145A (ja) 有機電界発光表示装置
WO2015062297A1 (zh) 发光器件、阵列基板、显示装置及发光器件的制造方法
JP2005327674A (ja) 有機エレクトロルミネッセント表示素子、それを有する表示装置、及び、その製造方法
WO2019196679A1 (zh) 显示基板及其制备方法和显示装置
US20110227099A1 (en) Mask frame assembly for thin film deposition, organic light-emitting display device using the same, and method of manufacturing the organic light-emitting display device
TW201448181A (zh) 有機發光二極體顯示器及其製造方法
US9865663B2 (en) Organic light-emitting device
KR20100004341A (ko) 유기전계 발광소자, 유기전계 발광소자용 기판 및 그 제조방법
JP2023512500A (ja) ミラーを備えた有機発光ダイオード(oled)ディスプレイデバイス及びそれを作製するための方法
WO2021218361A1 (zh) 显示基板、其制备方法及显示装置
CN110752220A (zh) 一种显示基板及其制备方法和显示面板
US20220254847A1 (en) Display substrate and method of manufacturing the same, display panel, and display apparatus
JP2013077388A (ja) 有機エレクトロルミネッセンス素子及びその製造方法
CN111276636B (zh) 有机发光二极管显示器及其制造方法
JP6083122B2 (ja) 有機エレクトロルミネッセンス素子及びその製造方法
CN112599703B (zh) 显示基板及其制备方法、显示面板
JP4975137B2 (ja) 有機el素子および表示装置
KR101753773B1 (ko) 유기 발광 표시 장치 및 그 제조 방법
CN109994648A (zh) 显示面板及其制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21797581

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21797581

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26.06.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21797581

Country of ref document: EP

Kind code of ref document: A1