WO2021218019A1 - 纳米驱油剂及其制备方法、应用 - Google Patents
纳米驱油剂及其制备方法、应用 Download PDFInfo
- Publication number
- WO2021218019A1 WO2021218019A1 PCT/CN2020/118019 CN2020118019W WO2021218019A1 WO 2021218019 A1 WO2021218019 A1 WO 2021218019A1 CN 2020118019 W CN2020118019 W CN 2020118019W WO 2021218019 A1 WO2021218019 A1 WO 2021218019A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nano
- oil
- displacing agent
- water
- modified
- Prior art date
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 29
- 238000006073 displacement reaction Methods 0.000 title claims abstract description 21
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 73
- 239000002086 nanomaterial Substances 0.000 claims abstract description 55
- 229920003169 water-soluble polymer Polymers 0.000 claims abstract description 30
- 239000004094 surface-active agent Substances 0.000 claims abstract description 25
- 239000006185 dispersion Substances 0.000 claims abstract description 12
- 239000007788 liquid Substances 0.000 claims abstract description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical class [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 26
- 239000012452 mother liquor Substances 0.000 claims description 22
- 229920000642 polymer Polymers 0.000 claims description 21
- 238000003756 stirring Methods 0.000 claims description 19
- 239000011259 mixed solution Substances 0.000 claims description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 15
- -1 carboxylic acid compounds Chemical class 0.000 claims description 10
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical class [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 claims description 10
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical class O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 claims description 9
- 239000000377 silicon dioxide Substances 0.000 claims description 9
- 239000003945 anionic surfactant Substances 0.000 claims description 8
- 239000003093 cationic surfactant Substances 0.000 claims description 8
- 150000002191 fatty alcohols Chemical class 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 8
- 239000002736 nonionic surfactant Substances 0.000 claims description 8
- 229920002401 polyacrylamide Polymers 0.000 claims description 7
- 239000002904 solvent Substances 0.000 claims description 6
- 238000011549 displacement method Methods 0.000 claims description 5
- 239000002280 amphoteric surfactant Substances 0.000 claims description 4
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 3
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 claims description 3
- 239000004354 Hydroxyethyl cellulose Substances 0.000 claims description 3
- 229920002125 Sokalan® Polymers 0.000 claims description 3
- 239000000440 bentonite Substances 0.000 claims description 3
- 229910000278 bentonite Inorganic materials 0.000 claims description 3
- 239000008103 glucose Substances 0.000 claims description 3
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 claims description 3
- 239000000230 xanthan gum Substances 0.000 claims description 3
- 229920001285 xanthan gum Polymers 0.000 claims description 3
- 235000010493 xanthan gum Nutrition 0.000 claims description 3
- 229940082509 xanthan gum Drugs 0.000 claims description 3
- HVCOBJNICQPDBP-UHFFFAOYSA-N 3-[3-[3,5-dihydroxy-6-methyl-4-(3,4,5-trihydroxy-6-methyloxan-2-yl)oxyoxan-2-yl]oxydecanoyloxy]decanoic acid;hydrate Chemical class O.OC1C(OC(CC(=O)OC(CCCCCCC)CC(O)=O)CCCCCCC)OC(C)C(O)C1OC1C(O)C(O)C(O)C(C)O1 HVCOBJNICQPDBP-UHFFFAOYSA-N 0.000 claims description 2
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 claims description 2
- 229920001577 copolymer Polymers 0.000 claims description 2
- 238000007865 diluting Methods 0.000 claims description 2
- 238000010790 dilution Methods 0.000 claims description 2
- 239000012895 dilution Substances 0.000 claims description 2
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 claims description 2
- 235000019387 fatty acid methyl ester Nutrition 0.000 claims description 2
- 238000010907 mechanical stirring Methods 0.000 claims description 2
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 claims 1
- XFHJDMUEHUHAJW-UHFFFAOYSA-N n-tert-butylprop-2-enamide Chemical compound CC(C)(C)NC(=O)C=C XFHJDMUEHUHAJW-UHFFFAOYSA-N 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 18
- 150000003839 salts Chemical class 0.000 abstract description 12
- 239000002244 precipitate Substances 0.000 abstract description 5
- 229910021389 graphene Inorganic materials 0.000 description 19
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 14
- 238000012360 testing method Methods 0.000 description 12
- 230000000694 effects Effects 0.000 description 9
- 238000002156 mixing Methods 0.000 description 7
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 7
- 239000011780 sodium chloride Substances 0.000 description 7
- 238000005189 flocculation Methods 0.000 description 6
- 230000016615 flocculation Effects 0.000 description 6
- 238000011056 performance test Methods 0.000 description 6
- 239000002135 nanosheet Substances 0.000 description 5
- 238000011084 recovery Methods 0.000 description 5
- 230000009471 action Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 125000001165 hydrophobic group Chemical group 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229920000536 2-Acrylamido-2-methylpropane sulfonic acid Polymers 0.000 description 2
- XHZPRMZZQOIPDS-UHFFFAOYSA-N 2-Methyl-2-[(1-oxo-2-propenyl)amino]-1-propanesulfonic acid Chemical compound OS(=O)(=O)CC(C)(C)NC(=O)C=C XHZPRMZZQOIPDS-UHFFFAOYSA-N 0.000 description 2
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920000056 polyoxyethylene ether Polymers 0.000 description 2
- 229940051841 polyoxyethylene ether Drugs 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 2
- 229940006186 sodium polystyrene sulfonate Drugs 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229920002126 Acrylic acid copolymer Polymers 0.000 description 1
- KWIUHFFTVRNATP-UHFFFAOYSA-N Betaine Natural products C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 1
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 description 1
- KWIUHFFTVRNATP-UHFFFAOYSA-O N,N,N-trimethylglycinium Chemical compound C[N+](C)(C)CC(O)=O KWIUHFFTVRNATP-UHFFFAOYSA-O 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 229920006322 acrylamide copolymer Polymers 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 229960003237 betaine Drugs 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 230000001112 coagulating effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000003311 flocculating effect Effects 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid group Chemical group C(CCCCCCC\C=C/CCCCCCCC)(=O)O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 229920001464 poly(sodium 4-styrenesulfonate) Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 125000001453 quaternary ammonium group Chemical class 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/58—Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/58—Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
- C09K8/584—Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids characterised by the use of specific surfactants
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/58—Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
- C09K8/588—Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids characterised by the use of specific polymers
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2208/00—Aspects relating to compositions of drilling or well treatment fluids
- C09K2208/10—Nanoparticle-containing well treatment fluids
Definitions
- the application relates to a nano oil-displacing agent and a preparation method and application thereof, and belongs to the technical field of oil field exploitation.
- nano-displacing agent As a new type of oil-displacing agent, nano-displacing agent has great advantages compared with traditional chemical oil-displacing agent, such as high specific surface area, excellent biocompatibility, and high oil recovery.
- the general functional nanomaterial itself has a certain charge, and it is easy to flocculate and precipitate in a high-salt environment, making it impossible to inject.
- amphiphilic graphene oxide as a functional nanomaterial, has a good oil displacement effect, but its high-temperature salt resistance stability is extremely poor.
- the electrical spatial repulsion formed by the adsorbed PSS molecules on the surface of amphiphilic graphene oxide exceeds the attraction effect, thereby stabilizing the stability of amphiphilic graphene oxide in salt water.
- the amount of PSS used to stabilize nanomaterials is extremely large, which is 100 times the amount of nanomaterials; the salinity (salinity) of the system is increased, and the amount of PSS needs to be increased; the sulfonic acid group in PSS has A large amount of electric charge is easily adsorbed on the inlet end of the core (similar to surfactants), making it difficult for nanomaterials to stabilize. In some cases, they cannot play a role in deep formations. In severe cases, nanomaterials aggregate and block the ports; there is no oil displacement related data, and the effect unknown.
- a nano oil-displacing agent is provided.
- the nano-oil-displacing agent is a temperature- and salt-tolerant oil-displacing agent, which ensures that the functional nano-dispersion is not in a certain temperature and salinity range. Flocculation and precipitation; and the water-soluble polymer can slowly decompose under the conditions of high temperature and high salt, and at the same time release the nano material, so that the functional nano material can play a role.
- a nano oil-displacing agent comprising: nano material, surfactant, water-soluble polymer and solvent;
- the water-soluble polymer is wrapped around the nano material.
- the water-soluble polymer presents a disordered network structure in water, and nanomaterials are filled therein.
- the network structure prevents the nanomaterials from moving freely and prevents them from coagulating under salt water conditions and blocking the core ports.
- a nano oil-displacing agent is composed of a nano material, a surfactant, a water-soluble polymer and a solvent; the water-soluble polymer is coated around the nano material.
- the content of each component is:
- the solvent is water.
- the nano material is selected from any one of modified graphene oxide, modified nano silica, modified titanium dioxide, and modified bentonite.
- the modified graphene oxide includes nano amphiphilic graphene oxide.
- Modified graphene oxide refers to grafting different groups on the surface of graphene oxide to achieve different effects.
- the nano amphiphilic graphene oxide is grafted with a hydrophobic group on one side of the graphene oxide and a hydrophilic group on the other side (or no group, because the graphene oxide itself has a large number of hydrophilic groups).
- the modified nano-silica is nano-silica modified by fatty alcohol and its derivatives
- the modified titanium dioxide is modified titanium dioxide modified by fatty alcohol and its derivatives
- the modified bentonite is bentonite modified by fatty alcohol and its derivatives
- the fatty alcohol and its derivatives include any one of carboxylic acid compounds, amine compounds, ethoxy compounds, amide compounds, fatty acid methyl ester compounds, and glycolipid compounds.
- the surfactant is selected from any one of anionic surfactants, cationic surfactants, nonionic surfactants, and amphoteric surfactants.
- the anionic surfactant is selected from any one of sulfonate anionic surfactants and sulfate anionic surfactants;
- the cationic surface activity is selected from any one of quaternary ammonium salt type cationic surfactants, heterocyclic type cationic surfactants, and amine salt type cationic surfactants;
- the nonionic surfactant is selected from any one of polyoxyethylene type nonionic surfactants and polyol type nonionic surfactants;
- amphoteric surfactant is selected from any one of betaine type surfactants and amino acid type surfactants.
- the water-soluble polymer includes acrylic acid polymer, acrylamide polymer, acrylic acid and acrylamide copolymer, 2-acrylamido-2-methylpropanesulfonic acid polymer, xanthan gum, hydroxyethyl cellulose, hard At least one of glucose.
- a preparation method of a nano oil-displacing agent comprising the following steps:
- the purpose of adding a surfactant is to improve the surface charge of the nanomaterial dispersion so that it is not easy to flocculate and precipitate in the polymer.
- step b) the purpose of adding polymer is to increase the steric hindrance between the amphiphilic graphene oxide and prevent its flocculation.
- step a) a surfactant is added to the nanomaterial dispersion liquid, and the mixture is stirred and mixed I to obtain the mixed solution;
- the mass ratio of the surface active agent to the nanomaterial in the nanomaterial dispersion is 1-100:1-20.
- the conditions of the stirring and mixing I are: rotating speed 100-500 r/min; time 1-30 min.
- the upper limit of the rotation speed is independently selected from 200r/min, 300r/min, 400r/min, 500r/min; the lower limit of the rotation speed is independently selected from 100r/min, 200r/min, 300r/min, 400r/min.
- the upper limit of the stirring time is independently selected from 5min, 10min, 15min, 20min, 30min, 40min, 50min; the lower limit of the stirring time is independently selected from 1min, 5min, 10min, 15min, 20min, 30min, 40min.
- step b) the water-soluble polymer is added to the solvent to obtain a mother liquor containing the water-soluble polymer, and the concentration of the mother liquor is 500-50000 mg/L.
- the upper limit of the mother liquor concentration is independently selected from 1000 mg/L, 5000 mg/L, 10000 mg/L, 20000 mg/L, 30000 mg/L, 40000 mg/L, and 50000 mg/L;
- the lower limit of the mother liquor concentration is independently selected from 500 mg/L , 1000mg/L, 5000mg/L, 10000mg/L, 20000mg/L, 30000mg/L, 40000mg/L.
- step c) adding the mother liquor to the mixed solution, stirring and mixing II, to obtain the nano oil-displacing agent;
- the mass ratio of the mother liquor to the mixed solution is 50-5000:1-10.
- the conditions of the stirring and mixing II are: time 3-60 min; rotation speed 100-1000 r/min.
- the upper limit of the stirring time is independently selected from 5min, 10min, 15min, 20min, 30min, 40min, 50min, 60min; the lower limit of the stirring time is independently selected from 3min, 5min, 10min, 15min, 20min , 30min, 40min, 50min.
- the upper limit of the speed is independently selected from 200r/min, 300r/min, 400r/min, 500r/min, 700r/min, 900r/min, 1000r/min; the lower limit of the speed is independently selected from 100r/min , 200r/min, 300r/min, 400r/min, 500r/min, 700r/min, 900r/min.
- an oil displacement method which uses a nano oil displacement agent for oil displacement
- the nano oil-displacing agent is selected from any one of the nano-oil-displacing agent described in any one of the above or the nano-oil-displacing agent obtained by the preparation method of any one of the above.
- the nano-oil-displacing agent is diluted and stirred to obtain a treated nano-oil-displacing agent
- the treated nano-oil-displacing agent is injected into the oil layer for oil-displacing.
- the dilution and stirring treatment includes: diluting the concentration of the nano-oil-displacing agent to 100-5000 mg/L; mechanical stirring under the condition of 100-1000 r/min for 1-60 min.
- the temperature-resistant salt-resistant nano-oil-displacing agent provided by this application guarantees that the functional nano-dispersed liquid will not flocculate and precipitate within a certain temperature and salinity range (temperature ⁇ 90°C, total salinity: ⁇ 100000ppm);
- the water-soluble polymer itself has a certain viscosity, which can increase the oil-water two-phase fluidity ratio, and expand the spread area is beneficial to improve the oil-displacing effect.
- the material is carried into deeper and smaller pores, making it easier for functional nanomaterials to function.
- Fig. 1 is a schematic diagram of the structure of a nano-oil-displacing agent and a schematic diagram of its action process in an embodiment of this application;
- Figure 2 is a scanning electron micrograph of a nano-oil-displacing agent solution in an embodiment of the application
- FIG. 3 is a scanning electron micrograph of the nano-oil-displacing agent in a solid deposition state in an embodiment of the application
- Figure 4 is a graph showing the stability of the nano-oil-displacing agent in one embodiment of the application in a high-temperature and high-salt (70°C, 10% wt. NaCl, 1% wt. CaCl 2 ) state for 24 hours;
- Figure 5 is a photo of the stability of the nano oil-displacing agent in one embodiment of the application under high temperature and high salt (70°C, 1% wt. NaCl, 0.1% wt. CaCl 2 ) for 5 days, 10 days, and 30 days;
- Fig. 6 is a diagram of core displacement data of nano-oil displacement agent in an embodiment of this application.
- step 3 Add 1-100 parts of the polymer mother liquor obtained in step 3 to the intermediate mixture of step 2, at a speed of 100-1000 revolutions per minute, and stir for 3-60 minutes to obtain a high-temperature, salt-tolerant nano-oil-displacing agent (addition The purpose of the polymer: to increase the steric hindrance between the amphiphilic graphene oxide and prevent its flocculation).
- the functional nanomaterial in step one can be nano amphiphilic graphene oxide, modified nano silica, modified titanium dioxide, nano bentonite, etc.
- the surfactant in step one can be an anionic surfactant, cationic surfactant, nonionic surfactant or amphoteric surfactant.
- the water-soluble polymer in step two includes acrylic acid polymer, acrylamide polymer, copolymer of acrylic acid and acrylamide, 2-acrylamido-2-methylpropanesulfonic acid polymer, xanthan gum, hydroxyethyl At least one of cellulose and hard glucose.
- the preparation method of the modified graphene oxide nanosheets adopts the preparation method commonly used in the prior art, and a common preparation method is introduced below: see references: Luo D, Zhang F, Zheng H, et al. Electrostatic-attraction-induced high internal phase emulsion for large-scale synthesis of amphiphilic Janus nanosheets[J].Chemical Communications,2019.;
- the preparation method of modified titanium dioxide adopts the preparation method commonly used in the prior art.
- a common preparation method is introduced below: see references: Feng Xiaoyu, Hou Jirui, Cheng Tingting, et al. Preparation and flooding of oleic acid-modified nano-TiO2 Oil performance evaluation[J]. Oilfield Chemistry, 2019..
- the preparation method of modified silica adopts the preparation method commonly used in the prior art.
- a common preparation method is introduced below: see reference: Wang Wei. Preparation and modification of nano silica for flooding [D ].China University of Petroleum).
- modified bentonite adopts the preparation method commonly used in the prior art, and a common preparation method is introduced below: see reference: Sun Hongliang, Zhu Lizhong. Cetyl trimethyl quaternary ammonium salt-ethyl mercaptan ammonium salt Study on the adsorption performance of composite modified bentonite[J].Acta Scientiae Circumstantiae,2010,30(5):1037-1042.
- modified graphene oxide nanosheets are grafted with different groups on the surface of graphene oxide to achieve different effects.
- Amphiphilic graphene oxide only represents the grafting of hydrophobic groups on one side of graphene oxide and grafting on the other side. Graft hydrophilic groups (or not graft groups, because graphene oxide itself has a large number of hydrophilic groups). Therefore, the modified graphene oxide nanosheets contain nano amphiphilic graphene oxide.
- step 3 Add 1000 parts by mass of the polymer mother liquor obtained in step 2 to 1 part by mass of the mixed solution in step 1, at a speed of 500 revolutions per minute, and stir for 30 minutes to obtain a high-temperature salt-tolerant nano-oil-displacing agent, which is recorded as a sample 1#.
- sample 1# the ratio of the mass fractions of nano-material nanometer amphiphilic graphene oxide, anionic surfactant sodium lauryl sulfate, and polyacrylamide is 1:5:10.
- step 3 Add 2000 parts by mass of the polymer mother liquor obtained in step 2 to 1 part by mass of the mixed solution in step 1, at a speed of 500 rpm, stirring for 30 minutes, to obtain a high-temperature salt-tolerant nano-oil-displacing agent, which is recorded as a sample 2#.
- sample 2# the ratio of mass fractions of nano-material modified nano-silica, cationic surfactant cetyltrimethylammonium bromide, and water-soluble sodium polystyrene sulfonate is 1:10:12.
- step 3 Take 1000 parts by mass of the polymer mother liquor obtained in step 2 and add it to 1 part by mass of the mixed solution in step 1, at a speed of 500 revolutions per minute, and stir for 30 minutes to obtain a high-temperature, salt-tolerant nano-oil-displacing agent, which is recorded as a sample 3#.
- sample 3# the ratio of mass fractions of nano-material modified nano-titanium dioxide, non-ionic surfactant octylphenol polyoxyethylene ether, and water-soluble polymer polyacrylamide is 2:5:20.
- FIG. 1 The schematic diagram of the structure of the nano-oil-displacing agent provided by the present application is shown in Fig. 1. It can be seen from Fig. 1 that under the action of the surfactant, the water-soluble polymer is coated around the nano-material. It can also be seen from Figure 1 that under the action of high temperature and high salt, the polymer coated on the outermost layer of the nano-oil-displacing agent slowly degrades. During this period, the presence of the polymer can expand the spread and improve the oil recovery efficiency.
- the functional nanomaterials and surfactants can move freely, and the hydrophobic groups of the surfactants can carry the functional nanomaterials to search for oil droplets spontaneously, and the surfactants are enriched in the oil-water interface , Which can reduce the interfacial tension of the oil and water phases, and at the same time, the functional nanomaterials are fully in contact with the oil droplets to further play the oil displacement effect.
- the SEM image of sample 1# in the solution state is shown in Fig. 2, and the SEM image of sample 1# in the solid deposition state is shown in Fig. 3. From Figures 2 and 3, it can be seen that the water-soluble polymer has a disordered network structure in water, and nanomaterials are filled in it. The network structure hinders the free movement of the nanomaterials. Large steric hindrance to prevent flocculation of nanomaterials.
- the performance tests were performed on the samples 1# to 3# in the above-mentioned embodiments, and the test conditions were 70° C., 10% wt. NaCl, and 1% wt. CaCl 2.
- Samples 1# ⁇ 3# are all at 70°C, 1%wt.NaCl, 0.1%wt.CaCl 2 salinity, the nano dispersion does not flocculate and precipitate.
- sample 1# As a typical representative, the test results are shown in Fig. 4. It can be seen from Fig. 4 that sample 1 has basically no flocculation and particle growth tendency under high temperature and high salt for 24 hours.
- Viscosity performance test was carried out on samples 1# ⁇ 3# in the above-mentioned examples.
- the test conditions before adding polymer were: temperature 70°C and pure water preparation; after adding polymer, the test conditions were: temperature 70°C, 0.5%wt.NaCl Simulate water preparation.
- test results show that the viscosity increases significantly after adding the polymer, and the nano-oil displacement agent can expand the spread during the oil displacement process, thereby improving the oil recovery.
- the performance test was performed on the sample 1# in the above-mentioned embodiments, and the test conditions were 70° C., 1% wt. NaCl, and 0.1% wt. CaCl 2.
- test result It can be seen from Figure 5 that sample 1# is very stable within 5 days without any flocculation and precipitation at 70°C, 1% wt. NaCl, and 0.1% wt. CaCl 2 salinity. After 10 days, the The polymer slowly degrades, and there is a very small amount of particles suspended in the sample. After 30 days, the polymer is almost completely degraded and the nanoparticles are released. However, because there is no oil phase, the nanoparticles all sink under the action of gravity. bottom.
- Sample 1# was diluted with oilfield mineralized water to 1000mg/L, and mechanically stirred at 500r/min for 60min to obtain a treated nano-oil-displacing agent.
- the treated nano-oil-displacing agent was injected into a natural sandstone core with a permeability of 200mD for testing.
- the specific data is shown in Figure 6. It can be seen from Figure 6 that after 1PV nano-oil-displacing agent flooding and squeezing the pressure for 7 days, followed by 2PV follow-up water flooding, the recovery factor can be comprehensively increased by 20.54%.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- Physics & Mathematics (AREA)
- Geochemistry & Mineralogy (AREA)
- Colloid Chemistry (AREA)
- Lubricants (AREA)
- Cosmetics (AREA)
Abstract
Description
样品 | 加聚合物前粘度/mPa·s | 加聚合物前粘度/mPa·s |
样品1 | 0.7 | 3.1 |
样品2 | 0.6 | 2.0 |
样品3 | 0.6 | 4.2 |
Claims (13)
- 一种纳米驱油剂,其特征在于,所述纳米驱油剂包括:纳米材料、表面活性剂、水溶性聚合物和溶剂;所述水溶性聚合物包覆在所述纳米材料的周围。
- 根据权利要求1所述的纳米驱油剂,其特征在于,在所述纳米驱油剂中,各组分的含量为:纳米材料1~20质量份;表面活性剂1~100质量份;水溶性聚合物10~500质量份。
- 根据权利要求1所述的纳米驱油剂,其特征在于,所述纳米材料选自改性氧化石墨烯、改性纳米二氧化硅、改性二氧化钛、改性膨润土中的任一种。
- 根据权利要求3所述的纳米驱油剂,其特征在于,所述改性纳米二氧化硅为经脂肪醇及其衍生物改性的纳米二氧化硅;所述改性二氧化钛为经脂肪醇及其衍生物改性的改性二氧化钛;所述改性膨润土为经脂肪醇及其衍生物改性的膨润土;其中,所述脂肪醇的衍生物包括羧酸类化合物、胺类化合物、乙氧基化合物、酰胺类化合物、脂肪酸甲酯类化合物、糖脂类化合物中的任一种。
- 根据权利要求1所述的纳米驱油剂,其特征在于,所述表面活性剂选自阴离子表面活性剂、阳离子表面活性剂、非离子表面活性剂、两性表面活性剂中的任一种。
- 根据权利要求1所述的纳米驱油剂,其特征在于,所述水溶性聚合物包括丙烯酸聚合物、丙烯酰胺聚合物、丙烯酸与丙烯酰胺共聚物、2-丙烯酰胺基-2-甲基丙磺酸聚合物、黄原胶、羟乙基纤维素、硬葡萄糖中的至少一种。
- 一种纳米驱油剂的制备方法,其特征在于,所述制备方法包括以下步骤:a)获得含有纳米材料和表面活性剂的混合溶液;b)获得含有水溶性聚合物的母液;c)将所述母液加入所述混合溶液中,得到所述纳米驱油剂。
- 根据权利要求7所述的制备方法,其特征在于,在步骤a)中,将表面活性剂加入纳米材料分散液中,搅拌混合Ⅰ,得到所述混合溶液;其中,所述表面活性剂与纳米材料分散液中的纳米材料的质量份数比为1~100:1~20。
- 根据权利要求7所述的制备方法,其特征在于,在步骤b)中,将所述水溶性聚合物加入溶剂中,得到含有水溶性聚合物的母液,所述母液的浓度为500~50000mg/L。
- 根据权利要求7所述的制备方法,其特征在于,在步骤c)中,将所述母液加入所述混合溶液,搅拌混合Ⅱ,得到所述纳米驱油剂;所述母液与混合溶液的质量份数比为50~5000:1~50。
- 一种驱油方法,其特征在于,所述驱油方法采用纳米驱油剂进行驱油;所述纳米驱油剂选自权利要求1至6中任一项所述的纳米驱油剂或权利要求7至10中任一项所述的制备方法得到的纳米驱油剂中的任一种。
- 根据权利要求11所述的驱油方法,其特征在于,将纳米驱油剂进行稀释搅拌处理,得到处理纳米驱油剂;将所述处理纳米驱油剂注入油层中进行驱油。
- 根据权利要求12所述的驱油方法,其特征在于,所述稀释搅拌处理包括:将所述纳米驱油剂的浓度稀释至100~5000mg/L;在100~1000r/min的条件下机械搅拌1~60min。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010366205.7A CN111423866A (zh) | 2020-04-30 | 2020-04-30 | 纳米驱油剂及其制备方法、应用 |
CN202010366205.7 | 2020-04-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021218019A1 true WO2021218019A1 (zh) | 2021-11-04 |
Family
ID=71552305
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/118019 WO2021218019A1 (zh) | 2020-04-30 | 2020-09-27 | 纳米驱油剂及其制备方法、应用 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111423866A (zh) |
WO (1) | WO2021218019A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113881415A (zh) * | 2021-11-05 | 2022-01-04 | 清华大学 | 一种纳米颗粒驱油剂及一种提高采收率的方法 |
CN114672297A (zh) * | 2022-01-21 | 2022-06-28 | 东营勤和工贸有限公司 | 无机硅钼驱油剂 |
CN114940893A (zh) * | 2022-07-04 | 2022-08-26 | 西南石油大学 | 一种增粘型纳米碳酸钙驱油剂及其制备方法 |
CN118344860A (zh) * | 2024-06-13 | 2024-07-16 | 江苏海洋大学 | 一种氨基酸-氧化石墨烯基清洁压裂液高效耐温剂的制备方法 |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111423866A (zh) * | 2020-04-30 | 2020-07-17 | 宁波锋成纳米科技有限公司 | 纳米驱油剂及其制备方法、应用 |
CN111849443A (zh) * | 2020-07-28 | 2020-10-30 | 宁波锋成先进能源材料研究院 | 一种污水净化或驱油用液相组合物及其制备方法、应用 |
CN114058342B (zh) * | 2020-08-05 | 2023-05-23 | 中国石油化工股份有限公司 | 一种改性氧化石墨烯纳米片增黏剂、驱油用聚合物体系及应用和油藏驱油方法 |
CN111909678A (zh) * | 2020-08-25 | 2020-11-10 | 大庆中联信实石油科技开发有限公司 | 一种高效纳米驱油剂及其制备方法 |
CN111944506B (zh) * | 2020-09-01 | 2023-02-21 | 宁波锋成先进能源材料研究院有限公司 | 一种降压增注活性剂及其制备方法 |
CN111944507B (zh) * | 2020-09-01 | 2023-04-14 | 宁波锋成先进能源材料研究院有限公司 | 一种纳米活性剂体系及其制备方法和应用 |
CN114106802B (zh) * | 2020-09-01 | 2023-06-30 | 宁波锋成先进能源材料研究院有限公司 | 组合物及其制备方法、应用 |
CN112300767B (zh) * | 2020-09-22 | 2022-04-05 | 山东大学 | 一种绿色靶向微胶囊及制备体系、制备方法和应用 |
CN112210358B (zh) * | 2020-10-23 | 2022-06-03 | 西南石油大学 | 一种纳米乳化驱油剂及其制备方法 |
CN112694580B (zh) * | 2020-12-30 | 2023-04-07 | 宁波锋成先进能源材料研究院有限公司 | 一种碳基纳米调剖剂及其制备方法 |
CN112795374A (zh) * | 2021-04-12 | 2021-05-14 | 山东聚星石油科技有限公司 | 耐温抗盐非均相纳米复合驱油体系及其制备方法和应用 |
CN113372896B (zh) * | 2021-06-02 | 2023-06-20 | 宁波锋成先进能源材料研究院有限公司 | 一种渗吸驱油剂及其制备方法 |
CN113583650B (zh) * | 2021-08-27 | 2022-08-23 | 山东新港化工有限公司 | 普通稠油油藏降粘复合驱用降粘驱油剂及其制备方法和应用 |
CN114106809A (zh) * | 2021-12-10 | 2022-03-01 | 宁波锋成先进能源材料研究院有限公司 | 一种聚合物驱增效剂及其制备方法及在低分子量聚合物增效体系中的应用 |
CN116676077A (zh) * | 2022-02-23 | 2023-09-01 | 中国石油天然气股份有限公司 | 一种基于片状颗粒材料的驱油剂及其制备方法与应用 |
CN115109573B (zh) * | 2022-04-25 | 2024-07-02 | 西安维克特睿油气技术有限公司 | 一种纳米渗吸驱油剂及其制备方法 |
CN116042201A (zh) * | 2022-11-29 | 2023-05-02 | 合肥全景泰益新材料科技有限公司 | 一种耐温耐盐复合驱油剂及其制备方法 |
CN116731266B (zh) * | 2023-08-14 | 2023-11-03 | 内蒙古大学 | 一种氧化石墨烯纳米片及其制备方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102464976A (zh) * | 2010-11-17 | 2012-05-23 | 中国石油化工股份有限公司 | 驱油用组合物及其制备方法 |
CN102464977A (zh) * | 2010-11-17 | 2012-05-23 | 中国石油化工股份有限公司 | 用于提高高温高盐油藏采收率的驱油方法 |
CN103725278A (zh) * | 2013-12-10 | 2014-04-16 | 郑州正佳能源环保科技有限公司 | 一种耐温、耐盐的纳米驱油剂的制备方法 |
CN104531118A (zh) * | 2014-12-25 | 2015-04-22 | 郑州正佳能源环保科技有限公司 | 一种智能纳米驱油剂的制备方法 |
EP3036304A1 (en) * | 2013-08-22 | 2016-06-29 | Baker Hughes Incorporated | Aqueous downhole fluids having charged nano-particles and polymers |
CN110937598A (zh) * | 2019-11-08 | 2020-03-31 | 宁波锋成先进能源材料研究院 | 改性氧化石墨烯及其制备方法、应用 |
CN111423866A (zh) * | 2020-04-30 | 2020-07-17 | 宁波锋成纳米科技有限公司 | 纳米驱油剂及其制备方法、应用 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101857801B (zh) * | 2010-06-13 | 2013-07-17 | 无锡维视科技有限公司 | 纳米驱油剂及其制备方法 |
US20140187451A1 (en) * | 2012-12-29 | 2014-07-03 | Yousef Tamsilian | Producing Nanostructure of Polymeric Core-Shell to Intelligent Control solubility of Hidrophilic Polymer during Polymer Flooding Process |
CN103334724B (zh) * | 2013-06-03 | 2015-09-09 | 中国石油天然气股份有限公司 | 纳米磁流体驱替开采油藏的方法及其井网结构 |
GB201507480D0 (en) * | 2015-04-30 | 2015-06-17 | Johnson Matthey Plc | Oil field chemical delivery fluids, methods for their use in the targeted delivery of oil field chemicals to subterranean hydrocarbon reservoirs and methods |
WO2017015120A1 (en) * | 2015-07-17 | 2017-01-26 | University Of Houston System | Surfactant for enhanced oil recovery |
CN109401742B (zh) * | 2018-11-02 | 2020-10-16 | 中国石油大学(华东) | 一种由高矿化度地层水配制而成的耐温耐盐泡沫调驱体系 |
CN110105936B (zh) * | 2019-05-20 | 2020-12-11 | 中国石油化工股份有限公司 | 适用于复杂油藏的耐温耐盐泡沫调驱体系及其制备方法和应用 |
-
2020
- 2020-04-30 CN CN202010366205.7A patent/CN111423866A/zh active Pending
- 2020-09-27 WO PCT/CN2020/118019 patent/WO2021218019A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102464976A (zh) * | 2010-11-17 | 2012-05-23 | 中国石油化工股份有限公司 | 驱油用组合物及其制备方法 |
CN102464977A (zh) * | 2010-11-17 | 2012-05-23 | 中国石油化工股份有限公司 | 用于提高高温高盐油藏采收率的驱油方法 |
EP3036304A1 (en) * | 2013-08-22 | 2016-06-29 | Baker Hughes Incorporated | Aqueous downhole fluids having charged nano-particles and polymers |
CN103725278A (zh) * | 2013-12-10 | 2014-04-16 | 郑州正佳能源环保科技有限公司 | 一种耐温、耐盐的纳米驱油剂的制备方法 |
CN104531118A (zh) * | 2014-12-25 | 2015-04-22 | 郑州正佳能源环保科技有限公司 | 一种智能纳米驱油剂的制备方法 |
CN110937598A (zh) * | 2019-11-08 | 2020-03-31 | 宁波锋成先进能源材料研究院 | 改性氧化石墨烯及其制备方法、应用 |
CN111423866A (zh) * | 2020-04-30 | 2020-07-17 | 宁波锋成纳米科技有限公司 | 纳米驱油剂及其制备方法、应用 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113881415A (zh) * | 2021-11-05 | 2022-01-04 | 清华大学 | 一种纳米颗粒驱油剂及一种提高采收率的方法 |
CN114672297A (zh) * | 2022-01-21 | 2022-06-28 | 东营勤和工贸有限公司 | 无机硅钼驱油剂 |
CN114672297B (zh) * | 2022-01-21 | 2023-08-22 | 东营勤和工贸有限公司 | 无机硅钼驱油剂 |
CN114940893A (zh) * | 2022-07-04 | 2022-08-26 | 西南石油大学 | 一种增粘型纳米碳酸钙驱油剂及其制备方法 |
CN118344860A (zh) * | 2024-06-13 | 2024-07-16 | 江苏海洋大学 | 一种氨基酸-氧化石墨烯基清洁压裂液高效耐温剂的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111423866A (zh) | 2020-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021218019A1 (zh) | 纳米驱油剂及其制备方法、应用 | |
Wu et al. | Silica-based amphiphilic Janus nanofluid with improved interfacial properties for enhanced oil recovery | |
CN112266775B (zh) | 一种原位纳米乳化剂的制备及油藏应用方法 | |
Yin et al. | Physicochemical properties and potential applications of silica-based amphiphilic Janus nanosheets for enhanced oil recovery | |
Agi et al. | Synthesis and application of rice husk silica nanoparticles for chemical enhanced oil recovery | |
CN102746841B (zh) | 一种油气田用添加纳米颗粒的复合泡沫体系及其制备方法 | |
CN104449631A (zh) | 强气润湿性纳米二氧化硅解水锁剂、其制备方法及岩石表面润湿反转的方法 | |
CN107353886B (zh) | 一种致密油藏防co2气窜的纳米复合材料及其制备方法 | |
CN107652963B (zh) | 一种天然气泡沫稳泡剂体系及其制备方法 | |
WO2017050024A1 (zh) | 一种油气田用新型无机微细颗粒强化泡沫体系及其制备方法 | |
WO2021098467A1 (zh) | 一种致密油藏增渗驱油体系及其制备与应用 | |
Wu et al. | Novel high-hydrophilic carbon dots from petroleum coke for boosting injection pressure reduction and enhancing oil recovery | |
WO2020211186A1 (zh) | 一种亲水疏油海绵及其制备方法和应用 | |
CN103525379A (zh) | 一种聚合物纳米二氧化硅抗温耐盐降失水剂及其制备方法 | |
CN108531153B (zh) | 一种耐高温石油树脂分散体堵剂及其制备方法与应用 | |
CN113372895B (zh) | 一种原油膨胀驱油剂及其制备方法和应用 | |
CN102093700A (zh) | 一种石墨烯/水性聚氨酯导电复合材料的制备方法 | |
CN109970050A (zh) | 改性石墨烯及改性石墨烯浆料的制备方法 | |
CN113122217A (zh) | 一种用于驱油的碳基两亲纳米流及制备方法 | |
CN100516164C (zh) | 一种抗高温高盐型纳米乳化降粘剂 | |
Raj et al. | An experimental investigation of MoS2 nanosheets stabilized foams for enhanced oil recovery application | |
CN103804553A (zh) | 一种石墨烯/聚氯乙烯复合材料的制备方法 | |
CN115109573A (zh) | 一种纳米渗吸驱油剂及其制备方法 | |
CN114507164A (zh) | 一种Gemini表面活性剂及制备方法、组合物及其应用 | |
CN113717708B (zh) | 一种油气井压裂用低成本纳米颗粒增强型氟碳助排剂 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20933045 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20933045 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22.05.2023) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20933045 Country of ref document: EP Kind code of ref document: A1 |