WO2021217891A1 - 一种定向无源自驱动薄膜及其制备方法 - Google Patents

一种定向无源自驱动薄膜及其制备方法 Download PDF

Info

Publication number
WO2021217891A1
WO2021217891A1 PCT/CN2020/101983 CN2020101983W WO2021217891A1 WO 2021217891 A1 WO2021217891 A1 WO 2021217891A1 CN 2020101983 W CN2020101983 W CN 2020101983W WO 2021217891 A1 WO2021217891 A1 WO 2021217891A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving
orientation
film
derived
area
Prior art date
Application number
PCT/CN2020/101983
Other languages
English (en)
French (fr)
Inventor
王萌
王宁
仇明侠
何铁锋
张良静
项炳锡
Original Assignee
深圳技术大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳技术大学 filed Critical 深圳技术大学
Publication of WO2021217891A1 publication Critical patent/WO2021217891A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00134Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems comprising flexible or deformable structures
    • B81C1/00158Diaphragms, membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00349Creating layers of material on a substrate

Definitions

  • the invention relates to the field of micro-nano manufacturing, in particular to a directional non-derivative driving film and a preparation method thereof.
  • the purpose of the present invention is to provide an oriented non-driven film and its preparation method, aiming to solve the existing complicated process method in the preparation of oriented non-driven artificial structure problem.
  • a method for preparing an orientation-free driving film which comprises the following steps:
  • the directional non-derived driving pattern includes a plurality of directional non-derived driving pattern units connected end to end;
  • Each of the orientation-derived drive pattern units includes: a drive area with a gradually increasing width, a constriction area connected to the drive area and gradually reduced in width, wherein the length of the drive area is longer than the length of the constriction area long.
  • the substrate is one of a glass plate, a quartz plate, and a silicon plate.
  • the orientation is derived from the method for preparing a driving film, wherein the metal film is a titanium film.
  • the orientation is derived from the method for preparing the driving film, wherein the thickness of the titanium film is 20-200 nm.
  • the method for preparing the orientation-free driving film wherein the deposition process used to deposit the metal film on the substrate is an ion sputtering deposition process, an electron beam evaporation deposition process, a thermal evaporation deposition process, and a laser pulse deposition process.
  • Process one of magnetron sputtering deposition process.
  • the method for preparing the orientation-free driving film wherein the laser writing technology is a laser direct writing technology
  • the writing parameters of the laser direct writing technology are: laser power 1-10 mW; laser pulse width 0.1-10 ms.
  • the directional non-derived manufacturing method of the driving film wherein the etching solution of the wet etching is a hydrogen fluoride solution.
  • the orientation is derived from the manufacturing method of the driving film, wherein the wet etching time is 10-60 min.
  • the orientation-derived driving pattern unit further includes: a strip-shaped robust area on one side of the driving area and the shrinking area.
  • An oriented non-derived driving film is prepared by adopting the method for preparing the oriented non-derived driving film as described above.
  • the present invention uses laser writing technology to make the surface orientation of the acceptor metal film not derived from the sudden change of the driving pattern property, and obtain anisotropic anti-etching orientation not derived from the driving pattern, thereby realizing selective etching;
  • wet etching the orientation-free driving film with overhanging edges is prepared, the whole preparation process does not require a mask, and the preparation process is very simple and convenient.
  • FIG. 1 shows the orientation-free driving pattern in the preparation method of the orientation-free driving film according to the present invention.
  • Fig. 2 is a schematic diagram of the structure of the oriented non-derived driving film according to the present invention.
  • the invention provides a directional non-derived driving film and a preparation method thereof.
  • the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, but not used to limit the present invention.
  • the present invention provides a method for preparing an orientation-free driving film, which includes the following steps:
  • the directional non-derived driving pattern includes a plurality of directional non-derived driving pattern units connected end to end;
  • Each of the orientation-free driving pattern units includes: a driving area 1 with a gradually increasing width, a constriction area 2 connected with the driving area 1 and gradually decreasing in width, wherein the length of the driving area 1 is longer than that of the The length of the contraction zone 2 is long.
  • Laser direct writing technology has high resolution, low cost, and high flexibility.
  • laser direct writing is generally used for two-dimensional processing at present.
  • the three-dimensional suspended cutting structure performs better in droplet transportation, which is conducive to long-distance transportation of droplets.
  • the present invention develops a new type of three-dimensional structure by combining laser direct writing technology and wet etching technology to realize long-distance transportation of droplets.
  • the present invention is based on the laser engraving technology combined with the wet etching method to prepare an anisotropic patterned surface film with overhanging edges, wherein the laser engraving technology is mainly to make the etching properties of the metal film surface abrupt by laser scanning, Therefore, the surface of the metal thin film is formed with an anti-etching orientation source pattern, and the wet etching is mainly to etch the metal material that is not subjected to the etching resistance orientation but not sourced from the drive pattern protection, thereby forming the upper surface
  • the cantilever cut structure wider than the bottom surface can effectively restrict the flow of droplets in non-target directions.
  • the present invention does not need a mask in the entire processing process, directly writes the pre-processed prototype structure on the metal film, and then performs subsequent wet etching. The method is very simple and convenient.
  • the orientation-free driving pattern of the present invention can also be referred to as an anisotropic pattern, and its purpose is to selectively etch the orientation-free driving pattern inscribed to form an orientation-free driving structure.
  • the orientation-derived driving pattern of the present invention includes a plurality of end-to-end connected orientation-derived driving pattern units; each of the orientation-derived driving pattern units includes: a driving area with a gradually increasing width 1.
  • the shape of the drive zone 1 may be a triangle, and the contraction zone 2 is also a triangle, wherein the base of the triangle of the drive zone 1 is connected to the base of the triangle of the contraction zone 2, and the height of the triangle of the drive zone 1 is longer than that of the contraction zone.
  • the height of the triangle in zone 2 for example, the height of the triangle in the drive zone 1 is 3-7 times the height of the triangle in the contraction zone 2.
  • a plurality of the directional non-derived driving pattern units are finally connected to form a row of oriented non-derived driving patterns. For example, the first constriction area not derived from the driving pattern unit is connected to the second non-driven pattern unit.
  • the second constriction area free from the driving pattern unit is connected to the third driving area free from the driving pattern unit, and so on to form a row of oriented non-driven pattern units.
  • the multi-column orientation source driving patterns are arranged side by side to form a complete orientation source driving pattern.
  • orientation of the present invention does not originate from the head and tail of the driving pattern unit and the direction of the width change of the driving area or the contraction area, and is relative to the droplet movement direction set during the pattern design.
  • the driving zone 1 will generate a driving force to drive the droplets to drive the kinetic energy of the converted droplets.
  • the contraction zone 2 is an inevitable droplet pattern design for achieving long-range driving of the droplets.
  • the state reset link will cause the droplet to decelerate.
  • the present invention designs the shape and length ratio of the driving zone 1 and the contraction zone 2 so that the kinetic energy of the droplet is not 0 when passing through the contraction zone 2, and then the droplet enters the next driving zone connected to the contraction zone to be re-driven. , So continue to circulate, the droplet can be driven all the time.
  • the present invention performs wet etching on the metal film written with the orientation-free driving pattern to obtain the orientation-free driving film with the structure as shown in FIG. 2.
  • the orientation-free driving structure of the present invention has the following advantages in self-driving long-distance transportation: 1.
  • the orientation-free driving film has sharp overhanging edges, which can
  • the droplet has a restraining and pinning effect in the non-target direction, and promotes the flow of the droplet in the target direction; 2.
  • the orientation of the present invention does not have the Laplace pressure caused by the anisotropic characteristics of the driving pattern, which will form a pair of The directional driving force of the droplet.
  • the invention can convert the excess surface energy of the droplet into the kinetic energy at the contraction zone 2 to break the pinning, and realize the controllable directional long-distance transportation of the droplet.
  • a thin film with an anisotropic patterned surface with dangling edges can be prepared by laser engraving technology combined with a wet etching method to realize long-distance transportation of liquid droplets.
  • the substrate of the present invention is a substrate that can be corroded in an etching solution. After the etching solution completes the etching of the metal film, it will further resist the orientation of the etching from the substrate under the driving pattern. By controlling the etching time, the orientation of the cantilever structure (cantilever structure) can be obtained. Derived from driving film.
  • the substrate is one of a glass plate, a quartz plate, and a silicon plate. Specifically, the substrate is one of substrates such as a glass slide, a silicon wafer, and a glass slide.
  • the material of the metal thin film in the present invention is a material that can be etched by laser to form an etch-resistant orientation-free driving pattern layer (heterostructure layer), and can be etched by wet etching.
  • the metal thin film is a titanium thin film (Ti thin film).
  • the titanium film can form etch-resistant titanium dioxide (TiO 2 ) on the surface of the titanium film during the laser writing process, that is, the surface of the titanium film has the etch-resistant orientation of the titanium dioxide material.
  • the patterned layer is driven to achieve selective etching.
  • the orientation prepared by the present invention is not derived from the super-hydrophilic properties of the surface of the driving film, so that the surface droplets are continuous in a long distance, and the attraction between the droplet molecules enables the droplets to be directed continuously.
  • the direction that is driven flows.
  • the thickness of the titanium film is 20-200 nm.
  • the thickness of the Ti film deposited on the substrate is 20-200nm, and the orientation-free driving film with dangling edges can be prepared.
  • the deposition process used for depositing the metal thin film on the substrate is an ion sputtering deposition process, an electron beam evaporation deposition process, a thermal evaporation deposition process, a laser pulse deposition process, and magnetron sputtering.
  • the purpose of the deposition process in the present invention is to prepare a layer of metal film on the substrate. It is understandable that the metal film can also be prepared by other physical vapor deposition processes.
  • the laser engraving technology of the present invention aims to engrave the anti-etching orientation on the metal thin film by a laser scanning method without a driving pattern.
  • the laser writing technology is a laser direct writing technology.
  • the laser direct writing technology has the characteristics of high flexibility and multi-scale processing, so it can increase the diversity of orientation-free driving patterns and realize the diversity of droplet manipulation.
  • the present invention can also use other laser writing systems, and is not limited to laser direct writing technology.
  • the invention can control the width of the upper surface of the cantilever structure by controlling the writing parameters.
  • the writing parameters of the laser direct writing technology are: laser power 1-10 mW; laser pulse width 0.1-10 ms.
  • the writing parameters of the laser direct writing technology are: laser power 4mW; laser pulse width 1ms, which can optimize the driving effect of the prepared orientation-free driving film on the droplets.
  • the present invention also finds that the width of the upper surface of the cantilever structure is directly related to the laser parameters, and the change is not obvious after wet etching, which further shows that the laser direct writing technology has excellent controllability.
  • the present invention selects appropriate laser writing power when laser writing, so as to achieve the purpose of laser control of the wettability of the sample surface.
  • the etching solution for wet etching is a hydrogen fluoride solution (HF solution).
  • HF solution hydrogen fluoride solution
  • the hydrogen fluoride solution is a dilute solution of HF with a mass percentage of 4% to 5%.
  • the hydrogen fluoride solution can etch the metal film, and can also corrode the substrate to a certain extent.
  • the invention utilizes the HF diluent to have the characteristics of isotropic etching on the substrate, and can prepare the directional non-derived drive structure with the shape of a suspended beam. Specifically, the etching solution first etches the metal thin film and then resists the directional etching. The substrate underneath the driving pattern is etched so as to obtain the directional driving structure with the shape of a suspended beam.
  • the present invention finds that the wet etching time will affect the etching effect, that is, too long etching time will lead to over etching, and too short etching time will lead to insufficient etching. In an implementation manner of the present invention, the wet etching time is 10-60 minutes.
  • the time of the wet etching is 20 minutes, and an orientation-free driving structure with a uniform morphology and a suspended beam shape can be obtained.
  • the etching solution completes the 50nm metal film in an etching time of 15 minutes, and continues to etch for 5 minutes.
  • the anti-etching orientation does not originate from the substrate under the driving pattern to etch, and a uniform morphology with a dangling beam shape is obtained.
  • the orientation is not derived from the driving structure.
  • the orientation-free driving pattern unit further includes: a strip-shaped robust area 3 located on one side of the driving area and the contraction area.
  • the robust area 3 can form a robust layer after the wet etching is completed, and the robust layer is used to improve the robustness of the directional drive of the droplets, prevent the droplets from collapsing in the non-target direction, thereby realizing the self-driving directional transportation capability of the liquid And robustness.
  • the robust area 3 changes according to the shape of the side of the driving pattern without the orientation, for example, the width of the robust area 3 from the side of the driving pattern is the same.
  • the robust area 3 of the present invention has a long strip shape.
  • the robust region 3 and the orientation are not derived from the periodic distribution of the driving pattern, and an anti-etching pattern is formed on the metal film.
  • the present invention provides an oriented non-derived driving film, which is prepared by the method for preparing the oriented non-derived driving film as described above.
  • the orientation-derived driving film includes: a substrate 4, a metal thin film layer 5 on the substrate 4, and the orientation-derived driving pattern layer 6 on the metal thin film layer 5.
  • the orientation-free driving pattern layer 6 and the metal thin film layer 5 form an anisotropic structure with orientation-free driving on the substrate 4.
  • robust zone 3 corresponds to a robust layer
  • driving zone 1 corresponds to a driving layer with a gradually increasing width
  • shrinking zone 2 corresponds to a shrinking layer with a decreasing width
  • the length of the driving layer is longer than the length of the shrinking layer.
  • the anisotropic structure has a dangling edge, that is, the width of the upper surface is wider than the width of the lower bottom surface, and the interface is wedge-shaped.
  • a trapezoidal groove is formed between the robust layer and the driving layer and the shrinking layer.
  • the metal thin film layer 5 may be a titanium thin film layer
  • the orientation-free driving pattern layer 6 may be a titanium dioxide layer, which provides a strong hydrophilic surface.
  • the orientation-free driving film of the present invention is based on an asymmetric anisotropic structure, combined with Laplace pressure and strong hydrophilicity of the surface, and the liquid can be on the surface. It flows spontaneously along any target direction designed, with relatively fast speed, long distance transmission and high robustness.
  • Step 1 Deposit a layer of 50nm Ti film on the glass substrate by magnetron sputtering deposition process.
  • Step 2 Use the laser direct writing technology to write the orientation-free driving pattern on the 50nm metal Ti film to obtain a patterned film.
  • the writing parameters of the laser direct writing technology are: laser power 4mW; laser pulse width 1ms.
  • Step 3 Immerse the obtained patterned film in a 4.5% HF diluent for 20 minutes to obtain an orientation-free driving film.
  • Step 4 When the water mist is sprayed on the surface of the prepared film without driving the film, the droplets can move in the direction shown by the dashed arrow as shown in Figure 1 to achieve long-distance transport.
  • the 50nm Ti film can be completely etched in about 15 minutes, while the TiO 2 pattern obtained by laser oxidation is retained. Since the HF diluent has an isotropic etching effect on the glass, the sample is continuously immersed in the etching solution, and the glass substrate at the bottom of the TiO 2 pattern begins to be etched away. By controlling the etching time of the HF diluent (for example, etching Etched for 5 min) to obtain a structure as shown in Figure 1 with a uniform morphology and overhanging edges.
  • Step 1 Deposit a layer of 200nm Ti film on the glass substrate by magnetron sputtering deposition process.
  • Step 2 Use the laser direct writing technology to write the orientation-free driving pattern on the 200nm metal Ti film to obtain a patterned film.
  • the writing parameters of the laser direct writing technology are: laser power 4mW; laser pulse width 1ms.
  • Step 3 Immerse the obtained patterned film in an HF diluent with a mass fraction of 4.5% for 100 minutes to obtain an orientation-free driving film.
  • Step 4 When the water mist is sprayed on the surface of the prepared film without driving the film, the droplets can move in the direction shown by the dashed arrow as shown in Figure 1 to achieve long-distance transport.
  • Step 1 Deposit a layer of 20nm Ti film on the glass substrate by magnetron sputtering deposition process.
  • Step 2 Use the laser direct writing technology to write the orientation-free driving pattern on the 20nm metal Ti film to obtain a patterned film.
  • the writing parameters of the laser direct writing technology are: laser power 4mW; laser pulse width 1ms.
  • Step 3 Immerse the obtained patterned film in an HF diluent with a mass fraction of 4.5% for 10 minutes to obtain an orientation-free driving film.
  • Step 4 When the water mist is sprayed on the surface of the prepared film without driving the film, the droplets can move in the direction shown by the dashed arrow as shown in Figure 1 to achieve long-distance transport.
  • the present invention uses an asymmetric anisotropic structure to spontaneously drive the droplet.
  • the droplet spreading ability caused by the hydrophilicity of the structure surface itself, the Laplace pressure caused by the asymmetric structure morphology, and the controllable anisotropic wetting of the droplets by the overhanging edge structure formed by etching
  • the combination of factors can convert the excess surface energy of the liquid into kinetic energy at the advancing edge, thereby breaking the pinning phenomenon in the conventional technology, and realizing the self-driven, controllable and directional long-distance transportation of the liquid droplets.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • ing And Chemical Polishing (AREA)
  • Micromachines (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明提供了一种定向无源自驱动薄膜及其制备方法。所述定向无源自驱动薄膜的制备方法,包括步骤:在基底上沉积金属薄膜;采用激光刻写技术在金属薄膜上刻写定向无源自驱动图案;对刻写有定向无源自驱动图案的金属薄膜进行湿法刻蚀,得到定向无源自驱动薄膜;所述定向无源自驱动图案包括多个首尾连接的定向无源自驱动图案单元;每个所述定向无源自驱动图案单元包括:宽度逐渐增大的驱动区、与所述驱动区连接且宽度逐渐减小的收缩区,其中所述驱动区的长度比所述收缩区的长度长。本发明通过激光刻写技术结合湿法刻蚀方法,制备得到具有悬切边缘的定向无源自驱动薄膜,整个制备过程不需要掩模,制备工艺十分简单、方便。

Description

一种定向无源自驱动薄膜及其制备方法 技术领域
本发明涉及微纳制造领域,尤其涉及一种定向无源自驱动薄膜及其制备方法。
背景技术
自然界中存在许多具有各向异性表面结构的生物,其表面表现出典型的对液体操控的方向性的差异,比如沙漠甲虫,蜘蛛丝,仙人掌和猪笼草,由于其表面上特殊的微纳结构进而展现了优良的定向输运能力。
近年来,表面微结构的构筑引起了广泛的研究兴趣。主要是受到上述生物微纳结构的启发,目前国内外已有的仿生集水技术,例如,目前基于沙漠甲壳虫,仙人掌和猪笼草的集水原理设计微纳米结构,已经实现了前所未有的液滴生长和运输;有研究成功制造了具有可控纺锤体几何形状的人造蜘蛛丝,并显示出优异的集水能力;已经实现在人造猪笼草表面把水从内侧定向输送到外侧。然而,从微纳米加工的角度讲,在设计和制造仿生结构则相对比较复杂,而且加工灵活性比较低,开发能够超越大自然并能灵活精准的实现定向无源自驱动、长距离输运的人工结构是目前面临的主要问题。
因此,现有技术还有待发展。
发明内容
鉴于上述现有技术的不足之处,本发明的目的在于提供一种定向无源自驱动薄膜及其制备方法,旨在解决现有在制备定向无源自驱动的人工结构时的工艺方法复杂的问题。
为了达到上述目的,本发明采取了以下技术方案:
一种定向无源自驱动薄膜的制备方法,其中,包括步骤:
在基底上沉积金属薄膜;
采用激光刻写技术在金属薄膜上刻写定向无源自驱动图案;
对刻写有定向无源自驱动图案的金属薄膜进行湿法刻蚀,得到定向无源自驱动薄膜;
所述定向无源自驱动图案包括多个首尾连接的定向无源自驱动图案单元;
每个所述定向无源自驱动图案单元包括:宽度逐渐增大的驱动区、与所述驱动区连接且宽度逐渐减小的收缩区,其中所述驱动区的长度比所述收缩区的长度长。
所述的定向无源自驱动薄膜的制备方法,其中,所述基底为玻璃片、石英片、硅片中的一种。
所述的定向无源自驱动薄膜的制备方法,其中,所述金属薄膜为钛薄膜。
所述的定向无源自驱动薄膜的制备方法,其中,所述钛薄膜的厚度为20-200nm。
所述的定向无源自驱动薄膜的制备方法,其中,所述在基底上沉积金属薄膜所采用的沉积工艺为离子溅射沉积工艺、电子束蒸发沉积工艺、热蒸镀沉积工艺、激光脉冲沉积工艺、磁控溅射沉积工艺中的一种。
所述的定向无源自驱动薄膜的制备方法,其中,所述激光刻写技术为激光直写技术;
所述激光直写技术的刻写参数为:激光功率1-10mW;激光脉宽0.1-10ms。
所述的定向无源自驱动薄膜的制备方法,其中,所述湿法刻蚀的刻蚀液为氟化氢溶液。
所述的定向无源自驱动薄膜的制备方法,其中,所述湿法刻蚀的时间为10-60min。
所述的定向无源自驱动薄膜的制备方法,其中,所述定向无源自驱动图案单元还包括:位于所述驱动区和所述收缩区一侧的条形稳健区。
一种定向无源自驱动薄膜,其中,采用如上所述的定向无源自驱动薄膜的制备方法制备得到。
有益效果:本发明通过激光刻写技术使受体金属薄膜表面定向无源自驱动图案性质突变,得到各向异性的抗刻蚀的定向无源自驱动图案,从而实现选择性刻蚀;然后再通过湿法刻蚀,制备得到具有悬切边缘的定向无源自驱动薄膜,整个制备过程不需要掩模,制备工艺十分简单、方便。
附图说明
图1为本发明所述定向无源自驱动薄膜的制备方法中的定向无源自驱动图案。
图2为本发明所述定向无源自驱动薄膜的结构示意图。
具体实施方式
本发明提供一种定向无源自驱动薄膜及其制备方法。为使本发明的目的、技术方案及效果更加清楚、明确,以下参照附图并举实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
请参阅图1,本发明提供一种定向无源自驱动薄膜的制备方法,其中,包括步骤:
在基底上沉积金属薄膜;
采用激光刻写技术在金属薄膜上刻写定向无源自驱动图案;
对刻写有定向无源自驱动图案的金属薄膜进行湿法刻蚀,得到定向无源自驱动薄膜;
所述定向无源自驱动图案包括多个首尾连接的定向无源自驱动图案单元;
每个所述定向无源自驱动图案单元包括:宽度逐渐增大的驱动区1、与所述驱动区1连接且宽度逐渐减小的收缩区2,其中所述驱动区1的长度比所述收缩区2的长度长。
激光直写技术具有分辨率高,成本低,灵活性高,但是目前激光直写一般用于二维加工。而三维悬切结构在液滴运输上的表现更为出色,有利于实现液滴的长程运输。基于此,本发明通过采用激光直写技术和湿法刻蚀技术结合,开发一种新型的三维立体结构,实现液滴的长程运输。
本发明基于激光刻写技术结合湿法刻蚀方法制备带有悬切边缘的各向异性图案化表面的薄膜,其中,所述激光刻写技术主要是通过激光扫描使金属薄膜表面的刻蚀性质突变,从而金属薄膜表面形成具有抗刻蚀的定向无源自驱动图案,所述湿法刻蚀主要是将未受到抗刻蚀的定向无源自驱动图案保护的金属材料进行刻蚀,从而形成上表面宽于下底面的悬切结构,能够对液滴在非目标方向流动有很好的限制作用。本发明在整个加工过程不需要掩模,直接将预加工雏形结构写于金属薄膜,然后再通过后续湿法刻蚀,方法十分简单、方便。
本发明所述定向无源自驱动图案也可以称为各向异性图案,其目的是对刻写有定向无源自驱动图案的进行选择性刻蚀,形成定向无源自驱动结构。如图1所示,本发明所述定向无源自驱动图案包括多个首尾连接的定向无源自驱动图案单元;每个所述定向无源自驱动图案单元包括:宽度逐渐增大的驱动区1、与所述驱动区1连接且宽度逐渐减小的收缩区2,其中所述驱动区1的长度比所述收缩区2的长度长。具体地,所述驱动区1的形状可以是三角形,所述收缩区2也是三角形,其中,驱动区1三角形的底边与收缩区2三角形的底边连接,且驱动区1三角形的高长于收缩区2三角形的高,例如所述驱动区1三角形的高为所述收缩区2三角形的高的3-7倍。多个所述定向无源自驱动图案单元收尾连接形成一列定向无源自驱动图案,例如,第一无源自驱动图案单元的收缩区与第二无源自驱动图案单元的驱动区连接,第二无源自驱动图案单元的收缩区与第三无源自驱动图案单元的驱动区连接,以此类推形成一列定向无源自驱动图案。多列定向无源自驱动图案并列排布形成了完整的定向无源自驱动图案。
需要说明的是,本发明的定向无源自驱动图案单元的首尾以及驱动区或收缩区宽度变化的方向,均是相对图案设计时设定的液滴运动方向来说的。
所述驱动区1由于各向异性结构本身的特性会产生驱动力促使液滴向右驱动转化液滴的动能,所述收缩区2是为实现液滴的长程驱动的图案设计不可避免的液滴状态重置环节,会造成液滴减速。本发明通过设计驱动区1和收缩区2的形状和长度比例,使液滴在穿过收缩区2时动能不为0,随后液滴进入与所述收缩区连接的下一个驱动区被重新驱动,如此继续循环,液滴便可以一直被驱动。
本发明对刻写有定向无源自驱动图案的金属薄膜进行湿法刻蚀,得到如图2所示结构的定向无源自驱动薄膜。本发明的定向无源自驱动结构与目前已有的驱动结构相比,在自驱动长程运输方面有以下几点优势:1.所述定向无源自驱动薄膜具有尖锐的悬切边缘,能够对液滴在非目标方向存在抑制和钉扎作用,促进液滴在目标方向的流动;2.本发明所述定向无源自驱动图案的各向异性特性引发的拉普拉斯压强,会形成对液滴的定 向驱动力。本发明能够最大限度的将液滴多余的表面能量转换成在收缩区2处的动能来断开钉扎,实现液滴的可控定向长程运输。
本发明通过激光刻写技术结合湿法刻蚀方法能够制备得到带有悬切边缘的各向异性图案化表面的薄膜实现对液滴进行长程运输。
本发明所述基底是可在刻蚀液中腐蚀的基底。刻蚀液完成对金属薄膜的刻蚀后,会进一步对抗刻蚀的定向无源自驱动图案下方的基底进行刻蚀,通过控制刻蚀时间,即可得到具有悬梁结构(悬臂结构)的定向无源自驱动薄膜。在本发明的一个实现方式中,所述基底为玻璃片、石英片、硅片中的一种。具体地所述基底为载玻片、硅片、玻璃片等基片中的一种。
本发明中金属薄膜的材质是可以通过激光刻写形成抗刻蚀的定向无源自驱动图案层(异质结构层),并能通过湿法刻蚀可以进行刻蚀的材质。在本发明的一个实现方式中,所述金属薄膜为钛薄膜(Ti薄膜)。所述钛薄膜在激光刻写过程中能够在钛薄膜的表面形成抗刻蚀的二氧化钛(TiO 2),也就是说,所述钛薄膜的表面有所述二氧化钛材质的抗刻蚀的定向无源自驱动图案层,进而实现选择性刻蚀。而且,由于二氧化钛具有优异的亲水性,使本发明制备得到的定向无源自驱动薄膜表面的超亲水特性使得表面液滴长程连续,液滴分子间的引力使得液滴能够不间断的向被驱动的方向流动。
在本发明的一个实现方式中,其中,所述钛薄膜的厚度为20-200nm。经试验,基底上沉积的Ti薄膜的厚度在20-200nm,均可以制备得到具有悬切边缘的定向无源自驱动薄膜。
在本发明的一个实现方式中,所述在基底上沉积金属薄膜所采用的沉积工艺为离子溅射沉积工艺、电子束蒸发沉积工艺、热蒸镀沉积工艺、激光脉冲沉积工艺、磁控溅射沉积工艺中的一种。本发明中的沉积工艺其目的是在基底上制备一层金属薄膜,可以理解的是,金属薄膜还可以采用其他物理气相沉积工艺来制备。
本发明所述激光刻写技术其目的是通过激光扫描的方法在金属薄膜上刻写抗刻蚀的定向无源自驱动图案。在本发明的一个实现方式中,所述激光刻写技术为激光直写技 术。相比其他加工方式,激光直写技术具有灵活性高和可多尺度加工的特点,因此可增加定向无源自驱动图案的多样性,进而实现对液滴操控的多样性。本发明还可以采用其他激光刻写系统,并不限于激光直写技术。
本发明通过控制刻写参数可控制悬臂结构上表面的宽度。在本发明的一个实现方式中,所述激光直写技术的刻写参数为:激光功率1-10mW;激光脉宽0.1-10ms。进一步地,所述激光直写技术的刻写参数为:激光功率4mW;激光脉宽1ms,能够使制备得到的定向无源自驱动薄膜对液滴的驱动效果达到最佳。本发明还发现悬臂结构上表面宽度与激光参数直接相关,且湿法刻蚀后变化不明显,进一步说明所述激光直写技术具有优秀的可控性。本发明在激光刻写的时候选取合适的激光刻写功率,从而达到实现激光调控样品表面润湿性的目的。
在本发明的一个实现方式中,所述湿法刻蚀的刻蚀液为氟化氢溶液(HF溶液)。具体地,所述氟化氢溶液为质量百分数为4%-5%的HF稀释溶液。所述氟化氢溶液能够对金属薄膜进行刻蚀,也能够在一定程度上对基底进行腐蚀。
本发明利用HF稀释液对基底具有各向同性刻蚀的特性,能够制备得到具有悬空梁形态的定向无源自驱动结构,具体是刻蚀液先对金属薄膜进行刻蚀再对抗刻蚀的定向无源自驱动图案下方的基底进行刻蚀,从而得到具有悬空梁形态的定向无源自驱动结构。本发明发现所述湿法刻蚀的时间会影响刻蚀的效果,即刻蚀时间过长则会导致刻蚀过度,刻蚀时间过短则会导致刻蚀不足。在本发明的一个实现方式中,所述湿法刻蚀的时间为10-60min。
进一步地,所述湿法刻蚀的时间为20min,可得到形貌均一且具有悬空梁形态的定向无源自驱动结构。具体地,刻蚀液在刻蚀时间为15min完成对50nm的金属薄膜,继续刻蚀5min抗刻蚀的定向无源自驱动图案下方的基底进行刻蚀,得到形貌均一且具有悬空梁形态的定向无源自驱动结构。
如图1所示,在本发明的一个实现方式中,所述定向无源自驱动图案单元还包括:位于所述驱动区和所述收缩区一侧的条形稳健区3。所述稳健区3能够在湿法刻蚀完成 后形成稳健层,所述稳健层用于提高液滴定向驱动的稳健性,防止液滴在非目标方向崩塌,从而实现液体的自驱动定向运输能力和稳健性。具体地,所述稳健区3根据所述定向无源自驱动图案的侧边的形状进行变化,例如所述稳健区3距离所述定向无源自驱动图案侧边的宽度相同。本发明所述稳健区3呈现出长条形。同样,所述稳健区3与所述定向无源自驱动图案周期性分布,在金属薄膜上形成抗刻蚀的图案。
如图2所示,本发明提供一种定向无源自驱动薄膜,其中,采用如上所述的定向无源自驱动薄膜的制备方法制备得到。具体地,所述定向无源自驱动薄膜包括:基底4、位于所述基底4上的金属薄膜层5、位于所述金属薄膜层5上的定向无源自驱动图案层6。也就是说,所述定向无源自驱动图案层6与金属薄膜层5在所述基底4上形成了具有定向无源自驱动的各向异性结构。对应于制备方法,稳健区3对应得到稳健层,驱动区1对应得到的宽度逐渐增加的驱动层,收缩区2对应得到宽度逐渐减小的收缩层,且驱动层的长度比收缩层的长度长,从而在基底4表面形成了不对称的各向异性形貌;同时所述各向异性结构具有悬切边缘,即上表面的宽度比下底面的宽度宽,其界面呈楔形。所述稳健层与所述驱动层和所述收缩层之间形成梯形的沟槽。进一步地,金属薄膜层5可以是钛薄膜层,所述定向无源自驱动图案层6可以是二氧化钛层,提供了强亲水性表面。
与传统的利用化学梯度产生各向异性表面相比,本发明定向无源自驱动薄膜是基于不对称的各向异性结构,结合拉普拉斯压强和表面的强亲水性,液体可在表面沿着设计的任意目标方向自发流动,速度相对较快,远输距离长,稳健性高。
下面通过具体地实施例对本发明的技术方案进行说明。
实施例1
步骤一:通过磁控溅射沉积工艺在玻璃基底上沉积一层50nm的Ti薄膜。
步骤二:通过激光直写技术将定向无源自驱动图案刻写在50nm金属Ti薄膜上,得到图案化的薄膜。其中,激光直写技术的刻写参数为:激光功率4mW;激光脉宽1ms。
步骤三:将得到的图案化的薄膜浸入质量分数为4.5%的HF稀释液中20min,得到 定向无源自驱动薄膜。
步骤四:当水雾喷到制备的定向无源自驱动薄膜表面,液滴能够沿着如图1所示虚线箭头所示方向移动,实现长程输运。
实验发现,50nm的Ti薄膜可以在大约15分钟的时间内被完全刻蚀,而激光氧化得到的TiO 2图案被保留。由于HF稀释液对玻璃具有各向同性的刻蚀作用,所以继续将样品浸入刻蚀液中,TiO 2图案底部的玻璃基底开始被刻蚀掉,通过控制HF稀释液的刻蚀时间(例如刻蚀5min),得到形貌均一并带有悬切边缘的如图1所示的结构。
实施例2
步骤一:通过磁控溅射沉积工艺在玻璃基底上沉积一层200nm的Ti薄膜。
步骤二:通过激光直写技术将定向无源自驱动图案刻写在200nm金属Ti薄膜上,得到图案化的薄膜。其中,激光直写技术的刻写参数为:激光功率4mW;激光脉宽1ms。
步骤三:将得到的图案化的薄膜浸入质量分数为4.5%的HF稀释液中100min,得到定向无源自驱动薄膜。
步骤四:当水雾喷到制备的定向无源自驱动薄膜表面,液滴能够沿着如图1所示虚线箭头所示方向移动,实现长程输运。
实施例3
步骤一:通过磁控溅射沉积工艺在玻璃基底上沉积一层20nm的Ti薄膜。
步骤二:通过激光直写技术将定向无源自驱动图案刻写在20nm金属Ti薄膜上,得到图案化的薄膜。其中,激光直写技术的刻写参数为:激光功率4mW;激光脉宽1ms。
步骤三:将得到的图案化的薄膜浸入质量分数为4.5%的HF稀释液中10min,得到定向无源自驱动薄膜。
步骤四:当水雾喷到制备的定向无源自驱动薄膜表面,液滴能够沿着如图1所示虚线箭头所示方向移动,实现长程输运。
与现有技术采用化学梯度产生的各向异性表面导致液滴存在运动速度慢和远输距离有限相比,本发明采用不对称的各向异性结构对液滴进行自发驱动,通过将各向异性 结构表面本身的亲水性导致的液滴铺展能力、不对称结构形貌导致的拉普拉斯压强、通过刻蚀形成的悬切边缘结构对液滴的可控各向异性润湿的三个因素结合,可将液体多余的表面能量转换成在前进边缘处的动能从而断开常规技术中的钉扎现象,实现液滴的自驱动可控定向长程运输。
可以理解的是,对本领域普通技术人员来说,可以根据本发明的技术方案及本发明构思加以等同替换或改变,而所有这些改变或替换都应属于本发明所附的权利要求的保护范围。

Claims (10)

  1. 一种定向无源自驱动薄膜的制备方法,其特征在于,包括步骤:
    在基底上沉积金属薄膜;
    采用激光刻写技术在金属薄膜上刻写定向无源自驱动图案;
    对刻写有定向无源自驱动图案的金属薄膜进行湿法刻蚀,得到定向无源自驱动薄膜;所述定向无源自驱动图案包括多个首尾连接的定向无源自驱动图案单元;
    每个所述定向无源自驱动图案单元包括:宽度逐渐增大的驱动区、与所述驱动区连接且宽度逐渐减小的收缩区,其中所述驱动区的长度比所述收缩区的长度长。
  2. 根据权利要求1所述的定向无源自驱动薄膜的制备方法,其特征在于,所述基底为玻璃片、石英片、硅片中的一种。
  3. 根据权利要求1所述的定向无源自驱动薄膜的制备方法,其特征在于,所述金属薄膜为钛薄膜。
  4. 根据权利要求3所述的定向无源自驱动薄膜的制备方法,其特征在于,所述钛薄膜的厚度为20-200nm。
  5. 根据权利要求1所述的定向无源自驱动薄膜的制备方法,其特征在于,所述在基底上沉积金属薄膜所采用的沉积工艺为离子溅射沉积工艺、电子束蒸发沉积工艺、热蒸镀沉积工艺、激光脉冲沉积工艺、磁控溅射沉积工艺中的一种。
  6. 根据权利要求1所述的定向无源自驱动薄膜的制备方法,其特征在于,所述激光刻写技术为激光直写技术;
    所述激光直写技术的刻写参数为:激光功率1-10mW;激光脉宽0.1-10ms。
  7. 根据权利要求1所述的定向无源自驱动薄膜的制备方法,其特征在于,所述湿法刻蚀的刻蚀液为氟化氢溶液。
  8. 根据权利要求1所述的定向无源自驱动薄膜的制备方法,其特征在于,所述湿法刻蚀的时间为10-60min。
  9. 根据权利要求1所述的定向无源自驱动薄膜的制备方法,其特征在于,所述定向无源自驱动图案单元还包括:位于所述驱动区和所述收缩区一侧的条形稳健区。
  10. 一种定向无源自驱动薄膜,其特征在于,采用如权利要求1-9任一所述的定向无源自驱动薄膜的制备方法制备得到。
PCT/CN2020/101983 2020-04-30 2020-07-15 一种定向无源自驱动薄膜及其制备方法 WO2021217891A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010360444.1A CN111606298B (zh) 2020-04-30 2020-04-30 一种定向无源自驱动薄膜及其制备方法
CN202010360444.1 2020-04-30

Publications (1)

Publication Number Publication Date
WO2021217891A1 true WO2021217891A1 (zh) 2021-11-04

Family

ID=72194739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101983 WO2021217891A1 (zh) 2020-04-30 2020-07-15 一种定向无源自驱动薄膜及其制备方法

Country Status (2)

Country Link
CN (1) CN111606298B (zh)
WO (1) WO2021217891A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03218792A (ja) * 1990-01-24 1991-09-26 Kokushin Sangyo Kk 座席用シートクッション材及びその製造方法
CN102427083A (zh) * 2011-11-10 2012-04-25 中山大学 一种疏水疏油表面微结构及其制备方法
US8637346B1 (en) * 2012-12-04 2014-01-28 Gwangju Institute Of Science And Technology Method for manufacturing graphene nano array and field-effect transistor including the same
CN104341605A (zh) * 2014-09-26 2015-02-11 京东方科技集团股份有限公司 一种各向异性有机薄膜及其制备方法
CN106497048A (zh) * 2016-10-27 2017-03-15 中国科学院理化技术研究所 一种各向异性导电高分子复合薄膜的制备方法
CN107937915A (zh) * 2017-12-19 2018-04-20 深圳技术大学(筹) 一种基于激光直写技术的微液滴操控方法
CN110374963A (zh) * 2019-07-01 2019-10-25 大连理工大学 一种可实现液体长距离自驱动运输的结构

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4590542B2 (ja) * 2003-06-10 2010-12-01 国立大学法人九州工業大学 マイクロ液滴輸送デバイス
CN105938300B (zh) * 2016-04-27 2018-02-13 浙江工业大学 实现液滴自驱动的梯度润湿表面的制备方法及其设备
CN107740148A (zh) * 2017-10-27 2018-02-27 吉林大学 一种在铜基表面不加修饰快速制备仿生超疏水表面的方法
CN108579827B (zh) * 2018-04-16 2019-02-26 广东工业大学 一种长距离自发定向传输液滴的仿生结构及其加工方法
CN108823569A (zh) * 2018-07-03 2018-11-16 哈尔滨工业大学 液滴定向输运的特殊浸润性表面的制备方法
CN109849318B (zh) * 2019-01-22 2021-07-23 浙江工业大学 具有自润湿功能的表面及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03218792A (ja) * 1990-01-24 1991-09-26 Kokushin Sangyo Kk 座席用シートクッション材及びその製造方法
CN102427083A (zh) * 2011-11-10 2012-04-25 中山大学 一种疏水疏油表面微结构及其制备方法
US8637346B1 (en) * 2012-12-04 2014-01-28 Gwangju Institute Of Science And Technology Method for manufacturing graphene nano array and field-effect transistor including the same
CN104341605A (zh) * 2014-09-26 2015-02-11 京东方科技集团股份有限公司 一种各向异性有机薄膜及其制备方法
CN106497048A (zh) * 2016-10-27 2017-03-15 中国科学院理化技术研究所 一种各向异性导电高分子复合薄膜的制备方法
CN107937915A (zh) * 2017-12-19 2018-04-20 深圳技术大学(筹) 一种基于激光直写技术的微液滴操控方法
CN110374963A (zh) * 2019-07-01 2019-10-25 大连理工大学 一种可实现液体长距离自驱动运输的结构

Also Published As

Publication number Publication date
CN111606298A (zh) 2020-09-01
CN111606298B (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
CN107937915B (zh) 一种基于激光直写技术的微液滴操控方法
CN105189821B (zh) 纳米级结构的制造方法及使用该方法制造的纳米级结构
CN102496563B (zh) 一种单晶硅衬底上制备硅纳米线的方法
TWI549307B (zh) A method of manufacturing a light-absorbing substrate, and a method of manufacturing a mold for manufacturing a light-absorbing substrate
KR20140047154A (ko) 미세 요철 구조체, 건식 에칭용 열반응형 레지스트 재료, 몰드의 제조 방법 및 몰드
CN102856165B (zh) 一种简单制备有序v形纳米硅孔阵列的方法
CN104181769A (zh) 一种火山口型图形化蓝宝石衬底及其制备方法
CN103933902B (zh) 一种二元有序胶体晶体、金属纳米阵列及其制备方法
CN111312592B (zh) 一种三维自换行生长堆叠纳米线沟道及弹簧结构的制备方法
CN105372728A (zh) 具有拉曼增强性质的一维、二维或三维纳米间隙阵列及其制备方法
WO2021217891A1 (zh) 一种定向无源自驱动薄膜及其制备方法
CN111039253B (zh) 一种凹槽复合多凸起结构及其制备工艺
CN101823684B (zh) 一种仿蝴蝶磷翅分级多层非对称微纳结构的制备方法
CN106185792A (zh) 一种超疏水微纳复合结构的全参数可控制备方法
WO2019184035A1 (zh) 一种可控图案化电学器件的制备方法
JP6056294B2 (ja) パターンの形成方法
CN103022281A (zh) 一种纳米级图形化衬底的制造方法
CN103730488B (zh) 一种切割槽形成可控硅穿通结构及其方法
CN113213421B (zh) 大面阵纳米针结构制备方法及装置
CN106226865B (zh) 一种光子晶体中纳米直孔周期性阵列制备方法
US11860541B2 (en) Silicon-based nanowire, preparation method thereof, and thin film transistor
CN103972007B (zh) 一种TiO2纳米管三极型场发射电子源及其制备方法
CN109941960B (zh) 一种制备纳米孔阵列结构的方法
KR102109037B1 (ko) 다중배열전극을 이용한 유기 증착 마스크 제조 방법
KR102075064B1 (ko) 돌출전극부가 배열된 다중배열전극 및 이를 제조하는 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20933895

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20933895

Country of ref document: EP

Kind code of ref document: A1