WO2021215515A1 - 液晶ディスプレイ保護板、並びに、曲面付き液晶ディスプレイ保護板とその製造方法 - Google Patents

液晶ディスプレイ保護板、並びに、曲面付き液晶ディスプレイ保護板とその製造方法 Download PDF

Info

Publication number
WO2021215515A1
WO2021215515A1 PCT/JP2021/016367 JP2021016367W WO2021215515A1 WO 2021215515 A1 WO2021215515 A1 WO 2021215515A1 JP 2021016367 W JP2021016367 W JP 2021016367W WO 2021215515 A1 WO2021215515 A1 WO 2021215515A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal display
resin
protective plate
value
Prior art date
Application number
PCT/JP2021/016367
Other languages
English (en)
French (fr)
Inventor
侑史 大澤
正晴 山野
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to EP21793087.4A priority Critical patent/EP4141525A4/en
Priority to JP2022517103A priority patent/JPWO2021215515A1/ja
Priority to CN202180029785.3A priority patent/CN115485611A/zh
Publication of WO2021215515A1 publication Critical patent/WO2021215515A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133308Support structures for LCD panels, e.g. frames or bezels
    • G02F1/133331Cover glasses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133638Waveplates, i.e. plates with a retardation value of lambda/n
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/40Materials having a particular birefringence, retardation

Definitions

  • the present invention relates to a liquid crystal display protective plate, a liquid crystal display protective plate with a curved surface, and a method for manufacturing the same.
  • a protective plate may be provided on the front side thereof in order to prevent scratches on the surface.
  • this protective plate is referred to as a "liquid crystal display protective plate”.
  • the liquid crystal display protective plate includes a resin plate composed of at least one thermoplastic resin layer and, if necessary, a cured film formed on at least one surface of the resin plate.
  • Patent Document 1 discloses a scratch-resistant resin plate that includes a methacrylic resin plate and a cured film formed on at least one of the surfaces thereof and is suitable as a display window protective plate for a portable information terminal (Patent Document 1). Claims 1, 2, 7, paragraph 0010, etc.).
  • Patent Document 2 describes a polycarbonate system for a liquid crystal display cover, which includes a laminated plate in which a methacrylic resin layer is laminated on one surface of a polycarbonate resin layer, and a cured film formed on the methacrylic resin layer of the laminated plate. A resin laminate is disclosed (claim 1, paragraph 0008, etc.).
  • the liquid crystal display protective plate is installed on the front side (viewer side) of the liquid crystal display, and the viewer sees the screen of the liquid crystal display through this protective plate.
  • the liquid crystal display protective plate hardly changes the polarization property of the light emitted from the liquid crystal display, the angle formed by the polarization axis of the emitted light and the transmission axis of the polarizing filter when the screen is viewed through a polarizing filter such as polarized sunglasses.
  • the screen may become dark and the visibility of the image may decrease (blackout phenomenon).
  • Patent Document 3 comprises a scratch-resistant resin plate having a cured film formed on at least one surface of the resin plate, and has an in-plane retardation value (also referred to as “Re value”) of 85 to 300 nm.
  • a liquid crystal display protective plate is disclosed (claim 1).
  • a liquid crystal display protective plate with a curved surface matching the shape is used for a display having a curved surface.
  • a cured film is formed on a flat resin plate obtained by extrusion molding, if necessary, and then thermoforming such as press molding, vacuum forming, and pressure molding is performed to obtain a curved liquid crystal display protective plate.
  • the resin plate contained in the liquid crystal display protective plate preferably has a Re value within a preferable range both before and after thermoforming, and the variation in the Re value is small.
  • Patent Document 4 It is an object of Patent Document 4 to provide a resin laminate (resin plate) which is excellent in thermoformability or printability at a low temperature and suppresses the occurrence of coloring and color unevenness after thermoforming.
  • an acrylic resin layer is laminated on at least one surface of a polycarbonate resin layer by coextrusion molding, and the heat shrinkage rate in the width direction is -10 to 0%, and the heat shrinkage rate in the extrusion direction is A resin laminate having a Re value of 0 to 10% and a Re value of 1500 nm or less is disclosed (claim 1).
  • Patent Document 4 since the polycarbonate-based resin has a terminal structure derived from a specific monovalent phenol, the glass transition temperature of the polycarbonate-based resin is lowered, and thermoformability at a low temperature is made possible (paragraph 0018). ..
  • the resin laminate described in Patent Document 4 preferably has a hard coat layer on the acrylic resin layer (claim 7).
  • the resin plate is preferably a laminated plate in which a methacrylic resin layer is laminated on at least one surface of the polycarbonate resin layer (claim 6 of Patent Document 3, paragraph 096 of Patent Document 4). ).
  • the birefringence of the polycarbonate-based resin layer can be adjusted by adjusting the molding conditions according to the thickness of the resin plate, and the Re value of the liquid crystal display protective plate can be adjusted within a suitable range. Yes (paragraph 0036 of Patent Document 3, etc.).
  • FIG. 7 shows an image diagram showing the relationship between stress and birefringence, and the relationship between orientation birefringence, stress birefringence, and photoelastic coefficient.
  • the polycarbonate-based resin used in Patent Documents 3 and 4 has a very large absolute value of photoelastic coefficient of 90 ⁇ 10-12 / Pa, and the Re value changes with a slight stress. Therefore, when a polycarbonate resin is used, it is difficult to obtain an optically uniform liquid crystal display protective plate. For example, when observing the liquid crystal display protective plate on the liquid crystal screen through a polarizing filter, color unevenness may be observed due to the variation in the Re value. In particular, after thermoforming, the Re value of the resin plate tends to vary greatly due to the residual stress generated in the thermoforming cooling process.
  • the methacrylic resin used in Patent Document 1 has a small absolute value of photoelastic coefficient of 3.2 ⁇ 10-12 / Pa, and the Re value does not easily change due to stress. Therefore, when a methacrylic resin is used, an optically uniform liquid crystal display protective plate can be obtained.
  • the absolute value of the orientation birefringence of the methacrylic resin is as small as 4.0 ⁇ 10 -4 , the Re value of the obtained liquid crystal display protective plate tends to be as small as about 20 nm, although it depends on the thickness.
  • the Re value of the liquid crystal display protective plate when the Re value of the liquid crystal display protective plate is larger than the preferable range, the difference in light transmittance of each wavelength in the visible light region becomes large when visually recognized through a polarizing filter, and various colors can be seen. Visibility may be reduced (colored phenomenon).
  • the present invention has been made in view of the above circumstances, and the in-plane retardation value (Re value) is within a preferable range both before and after thermoforming, and the in-plane retardation value (Re value). ) Is small, and a liquid crystal display protective plate that can suppress deterioration of visibility such as color unevenness, blackout, and coloring when observing the liquid crystal display protective plate on the liquid crystal screen through a polarizing filter.
  • the purpose is to provide.
  • the present invention provides the following [1] to [13], a liquid crystal display protective plate, a curved liquid crystal display protective plate, and a method for manufacturing the same.
  • a flat resin plate in which a base material layer is laminated on both sides of the phase difference adjusting layer is included.
  • the phase difference adjusting layer is the absolute value of photoelastic coefficient (C A) is 10.0 ⁇ 10 -12 / Pa or less, and the width 20 mm, length 40 mm, a test piece having a thickness of 1 mm, the glass transition temperature Absolute value of orientation birefringence ( ⁇ n A ) obtained by uniaxially stretching at a rate of 3 mm / min at a higher temperature of 10 ° C.
  • the test piece Contains a transparent thermoplastic resin (A) of 10.0 ⁇ 10 -4 to 100.0 ⁇ 10 -4.
  • the base layer is the absolute value of photoelastic coefficient (C B) is 10.0 ⁇ 10-12 / Pa or less, and the width 20 mm, length 40 mm, a test piece having a thickness of 1 mm, than the glass transition temperature
  • C B photoelastic coefficient
  • the absolute value of orientation birefringence ( ⁇ n B ) obtained by uniaxially stretching at a rate of 3 mm / min at a high temperature of 10 ° C.
  • the flat resin plate is the liquid crystal display protective plate according to [1], wherein the standard deviation of the in-plane retardation value (Re value) within the range of 17 cm in width and 22 cm in length is 15.0 nm or less. [3] When the flat resin plate is heated to a temperature of Tg B or more and Tg A or less, the absolute value of the rate of change of the in-plane retardation value (Re value) after heating with respect to before heating is 50% or less. , [1] or [2] liquid crystal display protective plate.
  • the transparent thermoplastic resin (A) contains an aromatic vinyl monomer unit and contains. Transparent thermoplastic resin content of the aromatic vinyl monomer units in (A) and V [wt%], when the thickness of the phase difference adjusting layer was T A [mm], the following formula (1)
  • the liquid crystal display protective plate according to any one of [1] to [5] which has a cured film on at least one of the outermost surfaces.
  • a resin plate having a curved surface in which base material layers are laminated on both sides of the phase difference adjusting layer is included.
  • the phase difference adjusting layer is the absolute value of photoelastic coefficient (C A) is 10.0 ⁇ 10 -12 / Pa or less, and the width 20 mm, length 40 mm, a test piece having a thickness of 1 mm, the glass transition temperature Absolute value of orientation birefringence ( ⁇ n A ) obtained by uniaxially stretching at a rate of 3 mm / min at a higher temperature of 10 ° C. and measuring the in-plane retardation value of the central portion of the test piece.
  • the base layer is the absolute value of photoelastic coefficient (C B) is 10.0 ⁇ 10 -12 / Pa or less, and the width 20 mm, length 40 mm, a test piece having a thickness of 1 mm, than the glass transition temperature
  • C B photoelastic coefficient
  • the absolute value of orientation birefringence ( ⁇ n B ) obtained by uniaxially stretching at a rate of 3 mm / min at a high temperature of 10 ° C. and measuring the in-plane retardation value of the central portion of the test piece is Contains a transparent thermoplastic resin (B) that is less than 10.0 ⁇ 10 -4
  • Tg A glass transition temperature of the retardation adjusting layer
  • Tg B > Tg B.
  • the thickness of the phase difference adjusting layer T A the total thickness of the base layer was T B, a T A ⁇ T B, A liquid crystal display protective plate with a curved surface, wherein the in-plane retardation value of the resin plate having a curved surface is 50 to 330 nm.
  • the resin plate having a curved surface is the liquid crystal display protective plate with a curved surface according to [8], wherein the standard deviation of the in-plane retardation value within the range of 17 cm in width and 22 cm in length is 25.0 nm or less.
  • the transparent thermoplastic resin (A) contains an aromatic vinyl monomer unit and contains. Transparent thermoplastic resin content of the aromatic vinyl monomer units in (A) and V [wt%], when the thickness of the phase difference adjusting layer was T A [mm], the following formula (1)
  • the in-plane retardation value (Re value) is within a preferable range both before and after thermoforming, the variation in the in-plane retardation value (Re value) is small, and the polarizing filter is used. It is possible to provide a liquid crystal display protective plate capable of suppressing deterioration of visibility such as color unevenness, blackout, and coloring when observing the liquid crystal display protective plate on the liquid crystal screen through the screen.
  • the terms "film”, “sheet”, or “plate” are used, depending on the thickness, but there is no clear distinction between them.
  • the "resin plate” referred to in the present specification shall include a “resin film” and a “resin sheet”.
  • the glass transition temperature of a general material is represented by "Tg”.
  • the present invention relates to a liquid crystal display protective plate.
  • the liquid crystal display protective plate can be suitably used for protecting the liquid crystal display and the touch panel display in which the liquid crystal display and the touch panel are combined.
  • the liquid crystal display protective plate of the present invention includes a flat resin plate in which base material layers are laminated on both sides of the phase difference adjusting layer.
  • the flat resin plate is preferably an extruded plate.
  • the liquid crystal display protective plate of the present invention can be thermally molded to produce a liquid crystal display protective plate with a curved surface.
  • the curved liquid crystal display protective plate of the present invention includes a resin plate having a curved surface in which base material layers are laminated on both sides of a retardation adjusting layer, and further includes a cured film as required.
  • the resin plate having a curved surface is a thermoformed plate obtained by thermoforming a flat resin plate.
  • the liquid crystal display protective plate and the liquid crystal display protective plate with a curved surface of the present invention may have a cured film on at least one of the outermost surfaces, if necessary.
  • the phase difference adjusting layer contains a transparent thermoplastic resin (A) having specific optical characteristics, and the base material layer is transparent having specific optical characteristics. Includes thermoplastic resin (B).
  • Tg A glass transition temperature of the phase difference adjusting layer
  • Tg B glass transition temperature of the substrate layer
  • the in-plane retardation value (also referred to as “Re value”) of the flat resin plate and the resin plate having a curved surface is 50 to 330 nm.
  • the flat resin plate preferably has a standard deviation of the Re value within a range of 17 cm in width and 22 cm in length of 15.0 nm or less.
  • the absolute value of the rate of change of the Re value after heating with respect to that before heating is preferably 50% or less.
  • the standard deviation of the Re value within the range of 17 cm in width and 22 cm in length is preferably 25.0 nm or less.
  • the resin plate having a curved surface preferably has a standard deviation of the Re value within a range of 17 cm in width and 22 cm in length of 25.0 nm or less.
  • FIG. 1 and 2 are schematic cross-sectional views of the liquid crystal display protective plate of the first and second embodiments according to the present invention.
  • reference numerals 1 and 2 indicate a liquid crystal display protective plate
  • reference numeral 16 indicates a flat resin plate
  • reference numeral 21 indicates a retardation adjusting layer
  • reference numeral 22 indicates a base material layer
  • reference numeral 31 indicates a cured film.
  • the liquid crystal display protective plate 1 of the first embodiment is composed of a flat resin plate 16 having a three-layer structure in which a base material layer 22 is laminated on both sides of the retardation adjusting layer 21.
  • the liquid crystal display protective plate 2 of the second embodiment has a cured coating 31 formed on at least one surface of a flat resin plate 16 having a three-layer structure in which a base material layer 22 is laminated on both sides of a retardation adjusting layer 21. Is. In the example shown in FIG. 2, the cured coating 31 is formed on both sides of the flat resin plate 16.
  • the configuration of the liquid crystal display protective plate is not limited to the illustrated example, and the design can be appropriately changed as long as the gist of the present invention is not deviated.
  • a flat liquid crystal display protective plate as shown in FIGS. 1 and 2 can be thermoformed to manufacture a curved liquid crystal display protective plate.
  • the test piece was uniaxially stretched at a rate of 3 mm / min at a temperature 10 ° C. higher than the glass transition temperature at a stretching rate of 100%, and the in-plane retardation value of the central portion of the test piece after uniaxial stretching was measured and obtained.
  • Retadation is the phase difference between the light in the direction of the molecular main chain and the light in the direction perpendicular to it.
  • a polymer can be obtained in an arbitrary shape by heat melt molding, but it is known that retardation occurs due to stress generated in the process of heating and cooling and the orientation of molecules.
  • retardation occurs due to stress generated in the process of heating and cooling and the orientation of molecules.
  • “retamination” means in-plane retardation unless otherwise specified.
  • the Re value of the resin plate is represented by the following formula (i).
  • [Re value of resin plate] [birefringence ( ⁇ N)] ⁇ [thickness (d)] ...
  • Birefringence ( ⁇ N) is represented by the following equation (ii).
  • [Brefringence] [Stress birefringence] + [Orientation birefringence] ...
  • the stress birefringence and the orientation birefringence are represented by the following equations (iii) and (iv), respectively.
  • [Stress birefringence] [photoelastic coefficient (C)] ⁇ [stress] ...
  • FIG. 7 shows an image diagram showing the relationship between stress and birefringence, and the relationship between orientation birefringence, stress birefringence, and photoelastic coefficient.
  • the optical characteristics of the transparent thermoplastic resin (A) and the transparent thermoplastic resin (B) are specified by the photoelastic coefficient and orientation birefringence shown in FIG. 7 as a model.
  • the liquid crystal display protective plate and the liquid crystal display protective plate with a curved surface of the present invention include a phase difference adjusting layer containing the transparent thermoplastic resin (A) having the above-mentioned specific optical characteristics, so that the liquid crystal displayed on the liquid crystal screen through a polarizing filter.
  • the "Re value of the resin plate” is an average value of the Re values of about 110,000 birefringent pixels within the measurement range of 17 cm in width and 22 cm in length, unless otherwise specified.
  • the "standard deviation of the Re value of the resin plate” is the standard deviation of the Re value of about 110,000 birefringent pixels within the measurement range of 17 cm in width and 22 cm in length.
  • the average value and standard deviation of the Re value can be measured, for example, by using a retardation measuring device "WPA-100-L” manufactured by Photonic Lattice Co., Ltd., by the method described in the section [Example] below.
  • the Re value of the flat resin plate and the resin plate having a curved surface is 50 to 330 nm, preferably 70 to 250 nm, more preferably 80 to 200 nm, particularly preferably 90 to 150 nm, and most preferably 100 to 140 nm. If the Re value is less than the above lower limit, blackout may occur when observing the liquid crystal display protective plate on the liquid crystal screen through the polarizing filter, regardless of the relationship between the polarizing axis of the emitted light and the transmission axis of the polarizing filter. There is. If the Re value exceeds the above upper limit value, the difference in light transmittance of each wavelength in the visible light region becomes large when visually recognized through a polarizing filter, and various colors may be seen and the visibility may be deteriorated (coloring phenomenon). ..
  • the standard deviation of the Re value of the flat resin plate is preferably 15 nm or less, more preferably 10 nm or less, further preferably 7 nm or less, particularly preferably 5 nm or less, and most preferably 4 nm or less.
  • the standard deviation of the Re value of the resin plate having a curved surface is preferably 25.0 nm or less, more preferably 20.0 nm or less, particularly preferably 15.0 nm or less, and most preferably 10.0 nm or less.
  • the thermoforming temperature is preferably Tg B or more and Tg A or less, and more preferably Tg B or more and less than Tg A.
  • the absolute value of the rate of change of the Re value after heating with respect to that before heating is preferably 50% or less, more preferably 45% or less, still more preferably. It is 40% or less, particularly preferably 35% or less, and most preferably 30% or less.
  • the standard deviation of the Re value within the range of width 17 cm and length 22 cm is preferably 25.0 nm or less, more preferably 20.0 nm or less, particularly preferably. Is 15.0 nm or less, most preferably 10.0 nm or less.
  • the total thickness (d) of the flat resin plate and the resin plate having a curved surface is not particularly limited, and is preferably 0.2 to 4.5 mm, more preferably 0.3 to 4.0 mm, and particularly preferably 0.4 to. It is 3.0 mm. If it is too thin, the rigidity of the liquid crystal display protective plate may be insufficient, and if it is too thick, it may hinder the weight reduction of the liquid crystal display or the touch panel display including the liquid crystal display.
  • phase difference adjustment layer The flat resin plate and the resin plate having a curved surface include a retardation adjusting layer.
  • the phase difference adjusting layer is a layer that mainly determines the Re value of the liquid crystal display protective plate, and contains a transparent thermoplastic resin (A) having specific optical characteristics.
  • the absolute value of the photoelastic coefficient of the transparent thermoplastic resin (A) (C A) is a 10.0 ⁇ 10 -12 / Pa or less, preferably 8.0 ⁇ 10 -12 / Pa or less, more preferably 6 It is 0.0 ⁇ 10-12 / Pa or less, particularly preferably 5.0 ⁇ 10-12 / Pa or less, and most preferably 4.0 ⁇ 10-12 / Pa or less. If the absolute value of photoelastic coefficient (C A) is at more than the above upper limit, the stress-induced birefringence of residual stress generated during molding of the extrusion molding small (see FIG. 7.), A liquid crystal display protective plate The standard deviation of the Re value of can be reduced. As a result, when the liquid crystal display protective plate on the liquid crystal screen is observed through the polarizing filter, color unevenness due to variation in the Re value is suppressed, and visibility is improved.
  • the absolute value of the orientation compound refraction ( ⁇ n A ) of the transparent thermoplastic resin (A) is 10.0 ⁇ 10 -4 to 100.0 ⁇ 10 -4 , preferably 20.0 ⁇ 10 -4 to 90. It is 0 ⁇ 10 -4 , more preferably 30.0 ⁇ 10 -4 to 70.0 ⁇ 10 -4 , and particularly preferably 35.0 ⁇ 10 -4 to 60.0 ⁇ 10 -4 .
  • the absolute value of the orientation birefringence ( ⁇ n A ) of the transparent thermoplastic resin (A) is within the above range, the Re value of the liquid crystal display protective plate can be controlled within an appropriate range. Since the orientation birefringence depends on the degree of orientation of the polymer, it is affected by manufacturing conditions such as molding conditions and stretching conditions. In the present specification, unless otherwise specified, "orientation birefringence" shall be measured by the method described in the section [Example] below.
  • Transparent thermoplastic resin (A) if a transparent thermoplastic resin which satisfies the range of photoelastic coefficient specified in the present invention (C A) and orientation birefringence ([Delta] n A), is not particularly limited.
  • the transparent thermoplastic resin (A) can contain one or more aromatic vinyl monomer units.
  • the aromatic vinyl monomer is not particularly limited, and styrene (St); nuclear alkyl substitutions such as 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-ethylstyrene, and 4-tert-butylstyrene.
  • Styrene ⁇ -methylstyrene, ⁇ -alkyl substituted styrene such as 4-methyl- ⁇ -methylstyrene and the like can be mentioned.
  • styrene (St) is preferable from the viewpoint of availability.
  • V ⁇ T A The content of the aromatic vinyl monomer units in the transparent thermoplastic resin (A) and V [wt%], the thickness of the phase difference adjusting layer and T A [mm].
  • These product (V ⁇ T A) preferably satisfies the following formula (1).
  • Transparent thermoplastic resin (A) the absolute value of photoelastic coefficient (C A) is small, the stress birefringence is substantially zero.
  • the transparent thermoplastic resin (A) contains an aromatic vinyl monomer unit such as a styrene (St) unit
  • the orientation birefringence ( ⁇ n A ) is an aromatic vinyl monomer unit in the transparent thermoplastic resin (A).
  • V ⁇ T A is strongly correlated with Re value of the liquid crystal display protection panel. If V ⁇ T A satisfies the above formula (1), it is possible to control the Re value of the liquid crystal display protective plate to a suitable range.
  • the transparent thermoplastic resin (A) includes, in addition to the aromatic vinyl monomer unit, a methacrylic acid ester unit such as a methyl methacrylate (MMA) unit; an acid anhydride unit such as a maleic anhydride unit; an acrylonitrile unit and the like. It may be a copolymer having a monomer unit of.
  • a methacrylic acid ester unit such as a methyl methacrylate (MMA) unit
  • an acid anhydride unit such as a maleic anhydride unit
  • an acrylonitrile unit and the like. It may be a copolymer having a monomer unit of.
  • Specific examples of the transparent thermoplastic resin (A) containing an aromatic vinyl monomer unit include methacrylic acid ester-styrene copolymer (MS resin); styrene-maleic anhydride copolymer (SMA resin); styrene-.
  • Methacrylic acid ester-maleic anhydride copolymer SMM resin
  • ⁇ StMM resin ⁇ -methylstyrene-maleic anhydride-methacrylic acid ester copolymer
  • AS resin acrylonitrile-styrene copolymer
  • acrylicimide resin etc.
  • Transparent thermoplastic resin (A) as long as it satisfies the range of photoelastic coefficient specified in the present invention (C A) and orientation birefringence ([Delta] n A), a resin containing no aromatic vinyl monomer unit There may be.
  • the transparent thermoplastic resin (A) containing no aromatic vinyl monomer unit includes a methacrylic acid ester unit such as a methyl methacrylate unit, a glutarimide unit, an N-substituted or unsubstituted maleimide unit, and a lactone ring unit. Examples include modified methacrylic resins containing at least one unit of choice. These can be used alone or in combination of two or more.
  • Transparent thermoplastic resin (A) is a resin containing an aromatic vinyl monomer unit satisfying the range of photoelastic coefficient (C A) and orientation birefringence ([Delta] n A) specified in the present invention, defined in the present invention or it may be a mixture of a photoelastic coefficient (C a) and does not contain an aromatic vinyl monomer unit satisfying the range of orientation birefringence ([Delta] n a) resin (modified methacrylic resin).
  • general methacrylic resins (non-modified methacrylic resins) and polycarbonate resins other than the above have a photoelastic coefficient and / or orientation birefringence outside the specified range of the present invention, and are transparent thermoplastic resins.
  • the polycarbonate resin has a very large absolute value of the photoelastic coefficient of 90 ⁇ 10-12 / Pa, and the Re value changes with a slight stress. Therefore, when a polycarbonate resin is used, it is difficult to obtain an optically uniform liquid crystal display protective plate. For example, when observing the liquid crystal display protective plate on the liquid crystal screen through a polarizing filter, color unevenness may be observed due to the variation in the Re value.
  • thermoforming step includes, for example, a step of heating the resin plate, a step of pressing the mold against the heated resin plate, a step of cooling the resin plate in the mold, and a step of taking out the cooled resin plate from the mold.
  • strain residual stress
  • a resin plate using a polycarbonate-based resin having a large absolute value of the photoelastic coefficient remarkable retardation unevenness occurs due to residual stress generated in the cooling process of thermoforming, and the Re value of the resin plate tends to vary widely.
  • the absolute value of the photoelastic coefficient of the methacrylic resin is as small as 3.2 ⁇ 10-12 / Pa, and the Re value is unlikely to change due to stress. Therefore, when a methacrylic resin is used, an optically uniform liquid crystal display protective plate can be obtained. However, since the absolute value of the orientation birefringence of the methacrylic resin is as small as 4.0 ⁇ 10 -4 , the Re value of the obtained liquid crystal display protective plate tends to be as small as about 20 nm, although it depends on the thickness.
  • the thickness of the phase difference adjusting layer (T A) is not particularly limited, preferably 0.05 ⁇ 3.0 mm, more preferably 0.05 ⁇ 0.5 mm, particularly preferably 0.1 ⁇ 0.3 mm, and most preferably Is 0.1 to 0.2 mm.
  • the retardation adjusting layer may contain, in a small amount, one or more other polymers whose photoelastic coefficient and / or orientation birefringence is out of the scope of the transparent thermoplastic resin (A).
  • the types of other polymers are not particularly limited, and are generally non-modified methacrylic resins, polycarbonate resins, polyolefins such as polyethylene and polypropylene, polyamides, polyphenylene sulfides, polyether ether ketones, polyesters, polysulfones, and polyphenylene oxides. , Polycarbonates, polyetherimides, and other thermoplastic resins such as polyacetal; thermocurable resins such as phenolic resins, melamine resins, silicone resins, and epoxy resins.
  • a general non-denatured methacrylic resin is, for example, a resin composed of one or more kinds of methacrylic ester units.
  • the content of the transparent thermoplastic resin (A) in the retardation adjusting layer is preferably large, preferably 90% by mass or more, more preferably 95% by mass or more, and particularly preferably 98% by mass or more.
  • the content of the other polymer in the retardation adjusting layer is preferably 10% by mass or less, more preferably 5% by mass or less, and particularly preferably 2% by mass or less.
  • the phase difference adjusting layer can contain various additives, if necessary.
  • Additives include colorants, antioxidants, thermal degradation inhibitors, UV absorbers, light stabilizers, lubricants, mold release agents, polymer processing aids, antistatic agents, flame retardants, light diffusing agents, and matting agents. Examples thereof include rubber components (impact resistance modifiers) such as agents, core-shell particles and block copolymers, and phosphors.
  • the content of the additive can be appropriately set as long as the effect of the present invention is not impaired.
  • the content of the antioxidant is 0.01 to 1 part by mass
  • the content of the ultraviolet absorber is 0.01 to 3 parts by mass
  • the light stabilizer is 100 parts by mass with respect to 100 parts by mass of the constituent resin of the retardation adjusting layer.
  • the content is preferably 0.01 to 3 parts by mass, and the content of the lubricant is preferably 0.01 to 3 parts by mass.
  • the timing of addition may be during or after the polymerization of the transparent thermoplastic resin (A).
  • the phase difference adjusting layer may be a resin layer made of a resin composition containing a transparent thermoplastic resin (A) and a known rubber component (impact resistance modifier).
  • the rubber component include multi-layer polymer particles having a core-shell structure, a rubber-like polymer having a salami structure, and a block polymer.
  • the rubber component may contain a diene-based monomer unit, an alkyl acrylate-based monomer unit, and the like. From the viewpoint of the transparency of the phase difference adjusting layer, it is preferable that the difference between the refractive index of the rubber component and the refractive index of the transparent thermoplastic resin (A) as the main component is smaller.
  • the glass transition temperature (TgA) of the phase difference adjusting layer is not particularly limited as long as TgA> TgB is satisfied. It is preferably 90 to 170 ° C, more preferably 100 to 160 ° C, particularly preferably 110 to 155 ° C, and most preferably 130 to 155 ° C.
  • the "glass transition temperature (TgA) of the phase difference adjusting layer” is the total constituent material of the phase difference adjusting layer composed of one or more kinds of transparent thermoplastic resins (A) and, if necessary, one or more kinds of arbitrary components. The glass transition temperature.
  • Tg A and Tg B are preferably 5 to 70 ° C, more preferably 10 to 50 ° C, particularly preferably 15 to 45 ° C, and most preferably 20 to 40 ° C.
  • Tg A- Tg B is within the above range, the resin plate can be satisfactorily thermoformed while suppressing the change in the Re value of the resin plate, as described in detail below, and the obtained curved surface is further formed. It is possible to suppress the deformation of the liquid crystal display protective plate.
  • thermoforming can preferably be performed at a temperature of Tg B or more and Tg A or less. It is more preferable to perform thermoforming at a temperature of Tg B + 10 ° C. to Tg B + 30 ° C. Within this temperature range, the resin plate can be satisfactorily thermoformed into a desired shape, and the residual stress generated in the thermoforming cooling step can be suppressed to a small value. In this case, the change in the Re value can be suppressed, and the deformation of the obtained curved liquid crystal display protective plate can be suppressed. For example, when a reliability test of an in-vehicle display (for example, 1000 hours at 105 ° C. or 72 hours at 85 ° C. 85% RH) is carried out on a curved liquid crystal display protective plate, deformation due to release of residual stress is suppressed, which is preferable.
  • an in-vehicle display for example, 1000 hours at 105 ° C. or 72 hours at 85 ° C. 85% RH
  • thermoforming within the range of Tg B + 10 ° C. to Tg B + 30 ° C. and at a temperature lower than Tg A. If the temperature is less than Tg A, the stress and orientation of the phase difference adjusting layer are not released, so that the change in Re value and the deformation of the curved liquid crystal display protective plate are effectively suppressed, which is preferable.
  • Tg B + 10 ° C. it is difficult to thermoform the resin plate into a desired shape. Even in this temperature range, if a large load is applied or the molding time is lengthened, thermoforming can be performed into a desired shape, but a large molding stress is generated in the resin plate.
  • a reliability test of an in-vehicle display is carried out on a curved liquid crystal display protective plate obtained under these conditions, a large residual stress is released and there is a risk of large deformation.
  • the flat resin plate and the resin plate having a curved surface are laminated on both surfaces of the above-mentioned retardation adjusting layer, and include a base material layer having a glass transition temperature (Tg) lower than that of the retardation adjusting layer.
  • the base material layer can increase the overall thickness (d) of the resin plate and improve the rigidity of the resin plate.
  • the retardation adjusting layer may be cracked.
  • the retardation adjusting layer contains a brittle resin such as SMA resin and SMM resin
  • the retardation adjusting layer is liable to crack during thermoforming at the above temperature.
  • the temperature is Tg B or more and Tg A or less. Cracking of the phase difference adjusting layer can be effectively suppressed during thermoforming.
  • thermoforming heating step the surface temperature first rises and then the internal temperature rises.
  • the temperature of the internal retardation adjustment layer is less likely to rise than that of the base material layer on the surface. Therefore, it is possible to effectively suppress the change in the Re value after thermoforming with respect to that before thermoforming, as compared with heating a flat resin plate having a phase difference adjusting layer on the surface.
  • the base material layer is preferably a resin layer that does not affect the Re value of the liquid crystal display protective plate, and is a resin layer containing a transparent thermoplastic resin (B) having a sufficiently small photoelastic coefficient and orientation birefringence. Is preferable.
  • the composition and thickness of the base material layers laminated on both sides of the retardation adjusting layer may be the same or non-identical as long as each base material layer is a resin layer containing the transparent thermoplastic resin (B) having the above optical characteristics. ..
  • the orientation birefringence ( ⁇ n B ) of the transparent thermoplastic resin (B) is preferably small, preferably less than 10.0 ⁇ 10 -4 , more preferably 8.0 ⁇ 10 -4 or less, still more preferably 6.0. It is ⁇ 10 -4 or less, particularly preferably 4.0 ⁇ 10 -4 or less, and most preferably 2.0 ⁇ 10 -4 or less.
  • the absolute value of the orientation birefringence ( ⁇ n B ) of the transparent thermoplastic resin (B) is not more than the above upper limit value, the influence on the Re value of the resin plate is sufficiently small (see FIG. 7), and the resin.
  • the Re value of the plate can be well controlled within an appropriate range.
  • Transparent thermoplastic resin (B) if a transparent thermoplastic resin which satisfies the range of photoelastic coefficient specified in the present invention (C B) and orientation birefringence ([Delta] n B), are not particularly limited. Specific examples include a general non-denatured methacrylic resin (PM), a modified methacrylic resin modified with a glutarimide unit, an N-substituted or unsubstituted maleimide unit, a lactone ring unit, and a cycloolefin polymer (COP). ) Etc. can be mentioned.
  • the transparent thermoplastic resin (B) can be used alone or in combination of two or more.
  • the methacrylic resin (PM) is a homopolymer or copolymer containing a structural unit derived from one or more kinds of methacrylic acid esters. From the viewpoint of transparency, the content of the methacrylic ester monomer unit in the methacrylic resin (PM) is preferably 50% by mass or more, more preferably 80% by mass or more, and particularly preferably 90% by mass or more. , 100% by mass.
  • Preferred methacrylic acid esters include, for example, methyl methacrylate (MMA), ethyl methacrylate, butyl methacrylate, phenyl methacrylate, benzyl methacrylate, 2-ethylhexyl methacrylate, 2-hydroxyethyl methacrylate; monocyclic aliphatic methacrylate.
  • Carbide ester examples thereof include methacrylic acid polycyclic aliphatic hydrocarbon ester.
  • the methacrylic resin (PM) preferably contains MMA units, and the content of MMA units in the methacrylic resin (PM) is preferably 50% by mass or more, more preferably 80% by mass or more. , Particularly preferably 90% by mass or more, and may be 100% by mass.
  • the methacrylic resin (PM) may contain a structural unit derived from one or more other monomers other than the methacrylic acid ester.
  • Other monomers include methyl acrylate (MA), ethyl acrylate, butyl acrylate, cyclohexyl acrylate, phenyl acrylate, benzyl acrylate, 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate and the like.
  • MA is preferable from the viewpoint of transparency.
  • a copolymer of MMA and MA has excellent transparency and is preferable.
  • the content of MMA in this copolymer is preferably 80% by mass or more, more preferably 85% by mass or more, particularly preferably 90% by mass or more, and may be 100% by mass.
  • the methacrylic resin (PM) is preferably obtained by polymerizing one or more kinds of methacrylic acid esters containing MMA and, if necessary, other monomers.
  • a plurality of types of monomers usually, a plurality of types of monomers are mixed to prepare a monomer mixture, and then polymerization is performed.
  • the polymerization method is not particularly limited, and from the viewpoint of productivity, a radical polymerization method such as a massive polymerization method, a suspension polymerization method, a solution polymerization method, and an emulsion polymerization method is preferable.
  • thermoplastic resin (B) As a transparent thermoplastic resin (B), illustrated type as the transparent thermoplastic resin (A) Resins (specifically, MS resin, SMA resin, SMM resin, AS resin, modified methacrylic resin, etc.) may be used. Depending on the monomer composition or the modification rate, the type of resin exemplified as the transparent thermoplastic resin (A) may be used as the transparent thermoplastic resin (B).
  • Resins specifically, MS resin, SMA resin, SMM resin, AS resin, modified methacrylic resin, etc.
  • the type of resin exemplified as the transparent thermoplastic resin (A) may be used as the transparent thermoplastic resin (B).
  • the polycarbonate-based resin is not included in the transparent thermoplastic resin (B) because the photoelastic coefficient and the orientation birefringence are outside the specified range of the present invention.
  • the polycarbonate resin has a very large absolute value of the photoelastic coefficient of 90 ⁇ 10-12 / Pa, and the Re value changes with a slight stress. Therefore, when a polycarbonate resin is used, it is difficult to obtain an optically uniform liquid crystal display protective plate. For example, when observing the liquid crystal display protective plate on the liquid crystal screen through a polarizing filter, color unevenness may be observed due to the variation in the Re value. In particular, after thermoforming, the change in the Re value of the resin plate is large compared to before thermoforming, and the variation in the Re value of the resin plate tends to be large.
  • the glass transition temperature of the phase difference adjusting layer is Tg A (° C.) and the glass transition temperature of the substrate layer is Tg B (° C.)
  • the glass transition temperature (Tg B ) of the base material layer is not particularly limited as long as Tg A > Tg B is satisfied. It is preferably 80 to 160 ° C, more preferably 100 to 150 ° C, particularly preferably 110 to 140 ° C, and most preferably 110 to 130 ° C.
  • the "glass transition temperature (Tg B ) of the base material layer” is the glass of all the constituent materials of the base material layer composed of one or more kinds of transparent thermoplastic resins (B) and, if necessary, one or more kinds of arbitrary components. The transition temperature.
  • the total thickness (T B) of the base material layer is greater is designed than the thickness of the phase difference adjusting layer (T A).
  • the liquid crystal display protective plate of the present invention satisfies T A ⁇ T B.
  • the total thickness of the substrate layer (T B) is not particularly limited if it meets the T A ⁇ T B, is designed appropriately in accordance with the desired thickness and rigidity of the liquid crystal display protection panel.
  • T B is preferably 0.05 ⁇ 4.0 mm, more preferably 0.5 ⁇ 3.0 mm, particularly preferably 1.0 ⁇ 3.0 mm, and most preferably 1.5 ⁇ 2.5 mm.
  • T B / T A > 1, preferably T B / T A ⁇ 1.2, more preferably T B / T A ⁇ 1.5, and even more preferably T B / T A ⁇ 2. 0, particularly preferably T B / T a ⁇ 5.0, and most preferably T B / T a ⁇ 7.0. If the is the relationship T A and T B, are sufficiently large proportion of the total thickness of the base layer to the total thickness (d) of the resin plate (T B), the substrate layer during thermoforming curved molding Molding can be performed at a suitable temperature, which is preferable.
  • T B total thickness from the phase difference adjusting layer thickness of the substrate layer (T A)
  • Tg B glass transition temperature
  • Tg A glass transition temperature
  • the base material layer may contain, in a small amount, one or more other polymers whose photoelastic coefficient and / or orientation birefringence is out of the scope of the transparent thermoplastic resin (B).
  • the type of other polymer is not particularly limited, and is not particularly limited, such as polycarbonate resin, polyolefins such as polyethylene and polypropylene, polyamide, polyphenylene sulfide, polyether ether ketone, polyester, polysulfone, polyphenylene oxide, polyimide, polyetherimide, and polyacetal.
  • Other thermoplastic resins include thermocurable resins such as phenolic resins, melamine resins, silicone resins, and epoxy resins.
  • the content of the transparent thermoplastic resin (B) in the base material layer is preferably large, preferably 90% by mass or more, more preferably 95% by mass or more, and particularly preferably 98% by mass or more.
  • the content of the other polymer in the base material layer is preferably 10% by mass or less, more preferably 5% by mass or less, and particularly preferably 2% by mass or less.
  • the base material layer can contain various additives, if necessary. Examples of the types of additives and preferable addition amounts are the same as those of additives that can be used for the retardation adjustment layer. When another polymer and / or additive is added to the base material layer, the timing of addition may be during or after the polymerization of the transparent thermoplastic resin (B).
  • the base material layer may be a resin layer composed of a resin composition containing a transparent thermoplastic resin (B) and a known rubber component (impact resistance modifier).
  • a transparent thermoplastic resin (B) e.g., ethylene glycol dimethacrylate (ABS), ethylene glycol dimethacrylate (B), ethylene glycol dimethacrylate (B), ethylene glycol dimethacrylate (B), ethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate (B)-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co
  • the flat resin plate and the resin plate having a curved surface may have a resin layer other than the retardation adjusting layer and the base material layer.
  • the laminated structure of the resin plate includes a three-layer structure of a base material layer-a retardation adjustment layer-a base material layer; a four-layer structure of a base material layer-a retardation adjustment layer-a base material layer-another resin layer; a base material layer. -A four-layer structure of a phase difference adjusting layer-another resin layer-a base material layer and the like can be mentioned.
  • the liquid crystal display protective plate and the liquid crystal display protective plate with a curved surface of the present invention may have a cured film on at least one of the outermost surfaces, if necessary.
  • the timing of forming the cured film may be before or after the curved surface processing.
  • a curved surface may be processed after forming a cured film on at least one surface of the flat liquid crystal display protective plate, or at least the curved liquid crystal display protective plate obtained by processing the flat liquid crystal display protective plate into a curved surface.
  • a cured film may be formed on one surface.
  • the cured coating can function as a scratch resistant layer (hard coat layer) or a low reflective layer for the effect of improving visibility.
  • the cured film can be formed by a known method. Examples of the material of the cured film include inorganic, organic, organic-inorganic, and silicone-based materials, and organic-based and organic-inorganic-based materials are preferable from the viewpoint of productivity.
  • the inorganic cured film is formed by forming an inorganic material such as a metal oxide such as SiO 2 , Al 2 O 3 , TIO 2 , and ZrO 2 by vapor deposition such as vacuum deposition and sputtering. be able to.
  • an inorganic material such as a metal oxide such as SiO 2 , Al 2 O 3 , TIO 2 , and ZrO 2
  • vapor deposition such as vacuum deposition and sputtering.
  • a paint containing a resin such as a melamine resin, an alkyd resin, a urethane resin, and an acrylic resin is applied and heat-cured, or a paint containing a polyfunctional acrylic resin is applied. It can be formed by curing with ultraviolet rays.
  • the organic-inorganic cured film is coated with an ultraviolet curable hard coat paint containing inorganic ultrafine particles such as silica ultrafine particles having a photopolymerization-reactive functional group introduced on the surface and a curable organic component, and is irradiated with ultraviolet rays. It can be formed by polymerizing a curable organic component and a photopolymerization-reactive functional group of inorganic ultrafine particles. In this method, a network-like crosslinked coating film in which the inorganic ultrafine particles are chemically bonded to the organic matrix and dispersed in the organic matrix can be obtained.
  • inorganic ultrafine particles such as silica ultrafine particles having a photopolymerization-reactive functional group introduced on the surface and a curable organic component, and is irradiated with ultraviolet rays. It can be formed by polymerizing a curable organic component and a photopolymerization-reactive functional group of inorganic ultrafine particles.
  • the silicone-based cured film can be formed, for example, by polycondensing a partially hydrolyzed product such as carbon functional alkoxysilane, alkyltrialkoxysilane, and tetraalkoxysilane, or a material containing colloidal silica.
  • a partially hydrolyzed product such as carbon functional alkoxysilane, alkyltrialkoxysilane, and tetraalkoxysilane, or a material containing colloidal silica.
  • examples of the material coating method include various roll coats such as dip coat and gravure roll coat, flow coat, rod coat, blade coat, spray coat, die coat, and bar coat.
  • the thickness of the scratch resistant (hard coat property) cured film is preferably 2 to 30 ⁇ m, more preferably 5 to 20 ⁇ m. If it is too thin, the surface hardness will be insufficient, and if it is too thick, cracks may occur due to bending during the manufacturing process.
  • the thickness of the low-reflective cured film (low-reflective layer) is preferably 80 to 200 nm, more preferably 100 to 150 nm. If it is too thin or too thick, the low reflection performance may be insufficient.
  • liquid crystal display protective plate and the liquid crystal display protective plate with a curved surface of the present invention have known surface treatments such as an anti-glare layer, an anti-reflection layer, and an anti-fingerprint layer on the surface, if necessary.
  • Can have layers.
  • the method for manufacturing a flat liquid crystal display protective plate of the present invention is a step of forming a flat extruded resin plate in which a base material layer having a relatively low glass transition temperature (Tg) is laminated on both sides of a retardation adjusting layer (1). ).
  • the method for manufacturing a flat liquid crystal display protective plate with a cured film includes the above step (1) and a step (2) of forming a cured film on at least one surface of the obtained extruded resin plate.
  • the flat liquid crystal display protective plate is preferably molded by a coextrusion molding method.
  • a method for producing a flat extruded resin plate by a coextrusion molding method will be described.
  • FIG. 3 shows a schematic view of an extrusion molding apparatus including a T-die 11, first to third cooling rolls 12 to 14, and a pair of take-up rolls 15 as an embodiment.
  • the constituent resins of each layer are melt-kneaded using an extruder and co-extruded in a plate-like form from a T-die 11 having a wide discharge port in a desired laminated structure form.
  • Examples of the laminating method include a feed block method of laminating before the inflow of the T-die, a multi-manifold method of laminating inside the T-die, and the like.
  • the multi-manifold method is preferable from the viewpoint of improving the interfacial smoothness between layers.
  • the molten thermoplastic resin laminate co-extruded from the T-die 11 is pressurized and cooled using the first to third cooling rolls 12 to 14.
  • the flat extruded resin plate 16 obtained after pressurization and cooling is taken up by a pair of take-up rolls 15.
  • the number of cooling rolls can be appropriately designed.
  • the configuration of the manufacturing apparatus can be appropriately redesigned as long as it does not deviate from the gist of the present invention.
  • the temperature of the entire resin on the third cooling roll 14 is defined as TX.
  • FIG. 3 schematically shows the measurement range of TX in the section of [Example].
  • the temperature of the resin on the production line can be measured by a known method.
  • TX the surface temperature of the resin on the third cooling roll 14 can be measured using a non-contact thermometer such as an infrared radiation thermometer.
  • molding is performed so that the Re value of the flat extruded resin plate is 50 to 330 nm.
  • molding is performed so that the standard deviation of the Re value within the range of a flat extruded resin plate having a width of 17 cm and a length of 22 cm is 25.0 nm or less.
  • the orientation of the molecules is generated, for example, by the stress during molding near the glass transition temperature of the polymer.
  • Step (2) In the step (2), on at least one surface of the flat liquid crystal display protective plate obtained in the step (1) or the liquid crystal display protective plate thermoformed in the step (3) described later, inorganic or by a known method. Form an organic cured film. Since the method for forming the cured film has been described above, it is omitted here.
  • a method for manufacturing a flat liquid crystal display protective plate and a flat liquid crystal display protective plate with a cured film can have steps other than the above, if necessary.
  • the flat liquid crystal display protective plate obtained in the step (1) is cured for the purpose of improving the adhesion of the cured film to the flat liquid crystal display protective plate.
  • Surface unevenness treatment such as primer treatment, sandblasting treatment, and solvent treatment; surface treatment such as corona discharge treatment, chromium acid treatment, ozone irradiation treatment, and surface oxidation treatment such as ultraviolet irradiation treatment on the surface forming the film. May be added.
  • the method for manufacturing a curved liquid crystal display protective plate of the present invention is as follows.
  • a cured film is formed on at least one surface of a flat liquid crystal display protective plate between steps (1) and (3), if necessary. It can have step (2).
  • step (3) a flat liquid crystal display protective plate with a cured film is thermoformed. Since the steps (1) and (2) have been described in the section [Manufacturing method of the liquid crystal display protective plate], they are omitted here.
  • Step (3) Shape processing such as curved surface processing on a flat liquid crystal display protective plate or a flat liquid crystal display protective plate with a cured film can be performed by known thermoforming such as press molding, vacuum forming, and pressure forming.
  • a flat liquid crystal display protective plate in which a base material layer is formed on both sides of a retardation adjusting layer is thermoformed at a temperature preferably Tg B super Tg A or less and less than TX.
  • the thermoforming temperature is TY. It is preferable that TX> TY and Tg B ⁇ TY ⁇ Tg A.
  • thermoforming at a temperature (TY) of Tg B or more and Tg A or less, more preferably to perform thermoforming at a temperature of more than Tg B and less than Tg A , and Tg B + 10 ° C. to Tg B +30. It is particularly preferable to perform thermoforming at a temperature of ° C.
  • the flat liquid crystal display protective plate can be satisfactorily thermoformed into a desired shape, and the residual stress generated in the thermoforming cooling step can be suppressed to a small value. In this case, the change in the Re value can be suppressed, and the deformation of the curved liquid crystal display protective plate obtained after thermoforming can be suppressed.
  • thermoforming is performed within the range of Tg B + 10 ° C. to Tg B + 30 ° C. and at a temperature lower than Tg A. If the temperature is less than Tg A, the stress and orientation of the phase difference adjusting layer are not released, so that the change in Re value and the deformation of the curved liquid crystal display protective plate are effectively suppressed, which is preferable.
  • Tg B + 10 ° C. it is difficult to thermoform the extruded resin plate into a desired shape. Even in this temperature range, if a large load is applied or the molding time is lengthened, thermoforming can be performed into a desired shape, but a large molding stress is generated in the resin plate.
  • a reliability test of an in-vehicle display is carried out on a curved liquid crystal display protective plate obtained under these conditions, a large residual stress is released and there is a risk of large deformation.
  • thermoforming at a temperature lower than Tg A of the constituent resin of the phase difference adjusting layer of the extruded resin plate.
  • Tg A the temperature of the constituent resin of the phase difference adjusting layer of the extruded resin plate
  • the extruded resin plate in the extrusion molding step It was found that if the thermoforming temperature is higher than the temperature at which the orientation is controlled, the orientation of the resin is relaxed and the Re value may be significantly reduced.
  • the orientation of the retardation adjusting layer, which contributes to the magnitude of the Re value is, for example, extrusion molding of a resin plate having an overall thickness of 3 mm under the condition of a second cooling roll speed of 0.75 m / min. If so, it was found that it was formed by the third cooling roll. That is, in the present invention, TX is synonymous with "the temperature at which the orientation of the retardation adjusting layer, which contributes to the magnitude of the Re value during cooling in the extrusion molding process, is fixed". Therefore, the temperature (TX) of the entire resin on the third cooling roll can be used as the lower limit value of the "temperature for controlling the orientation of the extruded resin plate in the extrusion molding process".
  • thermoforming When thermoforming is performed below TX, the resin temperature in the thermoforming step does not reach the resin temperature on the third cooling roll and the resin temperature on the upstream side of the third cooling roll. Under this condition, in the thermoforming process, the relaxation of the resin orientation is suppressed, the decrease in the Re value is effectively suppressed, and the visibility is reduced when the liquid crystal display protective plate on the liquid crystal screen is observed through the polarizing filter. Can be effectively suppressed.
  • the second cooling roll speed is co-extruded under the condition of more than 0.75 m / min, the orientation of the retardation adjusting layer may be formed between the third cooling roll and the take-up roll. Further, even when the total thickness of the extruded resin plate to be molded is made thicker than 3 mm, the orientation of the retardation adjusting layer may be formed between the third cooling roll and the take-up roll.
  • a flat liquid crystal display protective plate having base material layers formed on both sides of the retardation adjusting layer is thermoformed at a temperature of more than Tg B and less than Tg A and less than TX.
  • the retardation adjusting layer contains a brittle resin such as SMA resin and SMM resin
  • the surface temperature first rises and then the internal temperature rises.
  • the temperature of the internal retardation adjustment layer is less likely to rise than that of the base material layer on the surface. Therefore, it is possible to effectively suppress the change in the Re value after thermoforming with respect to that before thermoforming, as compared with heating a flat liquid crystal display protective plate having a phase difference adjusting layer on the surface.
  • step (1) molding is performed so that the Re value of the flat extruded resin plate is 50 to 330 nm.
  • molding is preferably performed so that the standard deviation of the Re value within the range of the width 17 cm and the length 22 cm of the flat liquid crystal display protective plate is 25.0 nm or less.
  • the absolute value of the rate of change of the Re value after thermoforming with respect to that before thermoforming is 50% or less, preferably 40% or less, more preferably 30% or less, particularly preferably 25% or less, and most preferably 20% or less. be.
  • the curved liquid crystal display protective plate of the present invention obtained after thermoforming has a standard deviation of Re value within a range of 17 cm in width and 22 cm in length, preferably 25.0 nm or less, more preferably 20.0 nm or less, particularly preferably. Is 15.0 nm or less, most preferably 10.0 nm or less.
  • the lower limit of the radius of curvature of the curved surface included in the curved liquid crystal display protective plate of the present invention obtained after thermoforming is 50 mm, preferably 75 mm, more preferably 100 mm, particularly preferably 200 mm, and most preferably 300 mm.
  • the upper limit is 1000 mm, preferably 800 mm, more preferably 600 mm, particularly preferably 500 mm, and most preferably 400 mm.
  • the curved liquid crystal display protective plate in which the Re value is within a preferable range and the variation in the Re value is small is stable. Can be manufactured in.
  • the Re value is within a suitable range both before and after thermoforming, the variation of the Re value is small, and the liquid crystal display on the liquid crystal screen through the polarizing filter. It is possible to provide a liquid crystal display protective plate capable of suppressing deterioration of visibility such as color unevenness, blackout, and coloring when observing the protective plate.
  • the liquid crystal display protective plate and the liquid crystal display protective plate with a curved surface of the present invention include, for example, ATMs of financial institutions such as banks; vending machines; televisions; mobile information of mobile phones (including smartphones), personal computers, tablet-type personal computers, etc. It is suitable as a protective plate for a liquid crystal display or a touch panel display used in digital information devices such as terminals (PDAs), digital audio players, portable game machines, copiers, fax machines, and car navigation systems.
  • the liquid crystal display protective plate and the curved liquid crystal display protective plate of the present invention are suitable as, for example, a protective plate for an in-vehicle liquid crystal display.
  • the evaluation items and evaluation methods are as follows. (Glass transition temperature (Tg) of transparent thermoplastic resin)
  • Tg glass transition temperature
  • the glass transition temperature (Tg) of the transparent thermoplastic resin was measured using a differential scanning calorimeter (“DSC-50”, manufactured by Rigaku Co., Ltd.). 10 mg of the transparent thermoplastic resin was placed in an aluminum pan and set in the above apparatus. After performing nitrogen substitution for 30 minutes or more, the temperature was once raised from 25 ° C. to 200 ° C. at a rate of 20 ° C./min in a nitrogen stream of 10 ml / min, held for 10 minutes, and cooled to 25 ° C. (primary scanning). ).
  • the temperature was raised to 200 ° C. at a rate of 10 ° C./min (secondary scanning), and the glass transition temperature (Tg) was calculated by the midpoint method from the results obtained by the secondary scanning.
  • Tg glass transition temperature
  • the transparent thermoplastic resin was press-molded to obtain a resin plate having a thickness of 1.0 mm.
  • a test piece having a width of 15 mm and a length of 80 mm was cut out from the central portion of the obtained resin plate. Both ends of the test piece in the longitudinal direction were gripped by a pair of chucks. The distance between the chucks was 70 mm.
  • Tension was applied to the test piece using an "X-axis dovetail stage" manufactured by Oji Measuring Instruments Co., Ltd. The tension was gradually increased by 10N from 0N to 30N. The tension was monitored by "Sensor Separate Type Digital Force Gauge ZTS-DPU-100N" manufactured by Imada Co., Ltd.
  • the following measurements were carried out for the tension applying conditions at each stage from 0N to 100N.
  • the phase difference value [nm] of the central portion of the test piece in a tensioned state was measured using "KOBRA-WR" manufactured by Oji Measuring Instruments Co., Ltd. under the condition of a measurement wavelength of 589.5 nm. After that, the test piece was removed from the pair of chucks, and the thickness (d [mm]) of the phase difference measuring portion was measured.
  • the transparent thermoplastic resin was press-molded to obtain a resin plate having a thickness of 1.0 mm.
  • a test piece having a width of 20 mm and a length of 50 mm was cut out from the central portion of the obtained resin plate and set in an autograph with a heating chamber (manufactured by SHIMADZU).
  • the distance between the chucks was 20 mm.
  • the stretched test piece is removed from the above apparatus, cooled to 23 ° C., the thickness (d) is measured, and the Re value of the central portion is measured using "KOBRA-WR" manufactured by Oji Measuring Instruments Co., Ltd. at a measurement wavelength of 589. It was measured under the condition of 5 nm. The value of orientation birefringence was calculated by dividing the obtained Re value by the thickness (d) of the test piece.
  • the average Re values of the liquid crystal display protective plate test piece (width 21 cm, length 30 cm) before curved surface molding and the liquid crystal display protective plate test piece (width 17 cm, length 22 cm) after curved surface molding are as follows. Values and standard deviations were measured.
  • a standard lens (FUJINON HF12.5HA-1B) was attached to "WPA-100-L" manufactured by Photonic Lattice Co., Ltd. The height of the lens was adjusted so that the measurement range was 17 cm in width and 22 cm in length.
  • the Re value of the number of birefringent pixels of about 110,000 points was measured, and the average value and the standard deviation were obtained.
  • a test piece of the liquid crystal display protective plate was placed on the liquid crystal display so that the transmission axis of the polarizer on the visual side of the liquid crystal display and the extrusion molding direction of the resin plate were perpendicular to each other. Further, a polarizing film was placed on the polarizing film, the polarizing film was rotated at various angles, and the appearance at the angle at which the transmitted light intensity of the liquid crystal display was minimized was visually evaluated in the following three stages.
  • a test piece of the liquid crystal display protective plate was placed on the liquid crystal display so that the transmission axis of the polarizer on the visual side of the liquid crystal display and the extrusion molding direction of the resin plate were perpendicular to each other. Further, a polarizing film was placed on the polarizing film, the polarizing film was rotated at various angles, and the appearance at the angle at which the coloring of the liquid crystal display was maximized was visually evaluated in the following three stages.
  • FIG. 6 is a schematic cross-sectional view of a resin mold (male mold and female mold) used for molding a curved liquid crystal display protective plate, and is a yz cross-sectional view of FIG.
  • the lower figure of FIG. 6 is a schematic cross-sectional view of a liquid crystal display protective plate with a curved surface corresponding to the upper view of FIG.
  • reference numeral 26 is a curved liquid crystal display protective plate
  • reference numeral M is a resin type.
  • thermoplastic resin laminate in which base material layers were laminated on both sides of the phase difference adjusting layer was coextruded from the T die.
  • This thermoplastic resin laminate is sandwiched between the first cooling roll and the second cooling roll adjacent to each other, wound around the second cooling roll, sandwiched between the second cooling roll and the third cooling roll, and the third It was cooled by wrapping it around a cooling roll.
  • the flat resin plate obtained after cooling was taken up by a pair of taking-up rolls. In this way, a liquid crystal display protective plate (reference drawing: FIG.
  • a curved surface was formed on this test piece as follows.
  • a resin mold manufactured using "Chemical Wood Prolab 65" manufactured by SSI Co., Ltd. was prepared.
  • the resin type M is composed of a combination of a female FM (lower type in the drawing) and a male MM (upper type in the drawing), and the overall shape is width (dimensions in the x direction in the drawing) 200 mm ⁇ length.
  • a concave curved surface is formed on the upper surface of the female FM, and a convex curved surface that joins with the concave curved surface of the female FM is formed on the lower surface of the male MM.
  • the height was 20-10 mm.
  • the cross-sectional shapes of the concave curved surface of the female FM and the convex curved surface of the male MM parallel to the yz plane were uniform regardless of the position in the x direction shown in the drawing, and were arcuate with a radius of curvature of 300 mm.
  • a polytetrafluoroethylene (PTFE) sheet (300 mm ⁇ 300 mm ⁇ 12 mm) was placed in the oven, and the inside of the oven was heated to 170 ° C.
  • a test piece for curved surface molding was placed on a PTFE sheet, and the test piece was held for 6 to 7 minutes until the temperature of the test piece reached the molding temperature shown in Table 3 (for example, 130 ° C. in Example 1).
  • the PTFE sheet and the curved surface forming test piece placed on the PTFE sheet were taken out from the oven.
  • Example 2 the temperature of the test piece immediately before being sandwiched between the female FM and the male MM was measured, and the molding temperature shown in Table 3 (for example, for example). In Example 1, it was confirmed that the temperature was 130 ° C.).
  • a test piece for curved surface molding at the above molding temperature is placed on a female FM at room temperature (20 to 25 ° C.), and a male MM at room temperature (20 to 25 ° C.) is placed on the test piece for curved surface molding. A load of 3 kg was applied. Then, the test piece was cooled to near room temperature over 1 to 2 minutes. The cooled test piece was taken out from the resin mold M, and the liquid crystal display protective plate (liquid crystal display protective plate with curved surface) after curved surface molding was evaluated using this test piece.
  • PT-S80 non-contact thermometer
  • the type and physical properties of the resin used, the thickness of the retardation adjustment layer, the total thickness of the base material layer, the thermoforming temperature, and the evaluation results of the liquid crystal display protective plate before and after the curved surface molding are shown in the table. 1 to 3 are shown. In each of the examples in Tables 1 to 3, the conditions not shown in the table were set as common conditions.
  • reference numeral 101 indicates a liquid crystal display protective plate for comparison
  • reference numeral 116 indicates a resin plate for comparison
  • reference numeral 121 indicates a phase difference adjusting layer
  • reference numeral 122 indicates a base material layer. Similar to Examples 1 to 4, the liquid crystal display protective plate before and after the curved surface molding was evaluated.
  • the type and physical properties of the resin used, the thickness of the retardation adjustment layer, the total thickness of the base material layer, the thermoforming temperature, and the evaluation results of the liquid crystal display protective plate before and after the curved surface molding are shown in the table. 1 to 3 are shown.
  • Examples 4-1 to 4-8 Manufacturing of LCD protective plate
  • a flat liquid crystal display protective plate was manufactured by the same method and laminated structure as in Example 4. However, in each example, the extrusion amount and the rotation speed of the first to third cooling rolls were adjusted so that the temperature (TX) of the entire resin on the third cooling roll would be the temperature shown in Table 5. As TX, the surface temperature of the resin on the third cooling roll was measured using an infrared radiation thermometer. FIG. 3 schematically shows the measurement range of TX.
  • flat liquid crystal display protective plates (S1-1) to (S1-5) having a three-layer structure in which base material layers are laminated on both sides of the phase difference adjusting layer are obtained (reference drawing: FIG. 1). rice field.
  • the thicknesses of the two base material layers were the same.
  • Table 4 shows the laminated structure, the type and physical properties of the resin used, the total thickness of the phase difference adjusting layer, the total thickness of the base material layer, and the total thickness.
  • a test piece having a width of 17 cm and a length of 22 cm was cut out from the central portion of the obtained liquid crystal display protective plate so that the extrusion molding direction (resin flow direction) was the long side direction. Using this test piece, an evaluation of a flat liquid crystal display protective plate before thermoforming was carried out.
  • test piece having the above molding temperature was placed on the female FM at room temperature (20 to 25 ° C.), and the male MM at room temperature (20 to 25 ° C.) was placed on the test piece, and 3 kg from above. I applied a load. Then, the test piece was cooled to near room temperature over 1 to 2 minutes. The cooled test piece was taken out from the resin mold M, and the curved liquid crystal display protective plate was evaluated using this test piece.
  • Table 5 shows the glass transition temperature (Tg) of the resin used, the temperature of the entire resin on the third cooling roll in the extrusion molding step (TX), the thermoforming temperature (TY), and their temperature relationships. show.
  • Tg glass transition temperature
  • TX temperature of the entire resin on the third cooling roll in the extrusion molding step
  • TY thermoforming temperature
  • Table 6 shows the evaluation results of the flat extruded resin plate and the curved liquid crystal display protective plate before thermoforming for each example.
  • the absolute value of photoelastic coefficient (C B) is not more than 10.0 ⁇ 10 -12 / Pa
  • the absolute value of the orientation birefringence ([Delta] n B) is less than 10.0 ⁇ 10 -4
  • Tg A glass transition temperature of the phase difference adjusting layer
  • Tg B glass transition temperature of the base material layer
  • the liquid crystal display protective plates before curved surface forming obtained in Examples 1 to 4 have an average Re value of 50 to 330 nm within a range of 17 cm in width and 22 cm in length, and have a width of 17 cm and a length of 22 cm.
  • the standard deviation of the Re value within the range was 15.0 nm or less.
  • the curved liquid crystal display protective plates obtained in Examples 1 to 4 have an average Re value of 50 to 330 nm within a range of 17 cm in width and 22 cm in length, and are within a range of 17 cm in width and 22 cm in length.
  • the standard deviation of the Re value was 15.0 nm or less.
  • the absolute value of the rate of change of the average Re value after thermoforming with respect to that before thermoforming was 50% or less.
  • the obtained curved liquid crystal display protective plate was used and the liquid crystal display protective plate on the liquid crystal screen was observed through a polarizing filter, color unevenness, coloring, and blackout were effectively suppressed. ..
  • the V ⁇ T A embodiment is in the range of 6.0 to 30.0 cases 1,2,4, both before and after the curved surface processing, the average value of Re value This is a particularly preferable range.
  • the values of TX and TY are determined so as to satisfy the condition of thermoforming at a temperature (TY) of more than Tg B and less than Tg A and less than TX, and a flat liquid crystal display protective plate is used. And a liquid crystal display protective plate with a curved surface was manufactured.
  • the flat liquid crystal display protective plates obtained in these examples all have an average Re value of 50 to 330 nm and a standard deviation of the Re value of 25.0 nm or less (15.0 nm or less, 10.0 nm or less). Met.
  • All of the curved liquid crystal display protective plates obtained in these examples have an average Re value of 50 to 330 nm and a standard deviation of the Re value of 25.0 nm or less (15.0 nm or less, 10.0 nm or less). Met.
  • the absolute value of the rate of change of the Re value after thermoforming with respect to that before thermoforming was 50% or less (20% or less). Since the thermoforming temperature (TY) was lower than Tg A and TX of the phase difference adjusting layer resin, it is considered that the orientation of the phase difference adjusting layer resin was hardly lost in the thermoforming step and the Re value was almost maintained.
  • thermoforming was performed at a temperature higher than Tg A and Tg B to produce a curved liquid crystal display protective plate.
  • the absolute value of the rate of change of the average Re value after thermoforming with respect to that before thermoforming was more than 50%.
  • the curved liquid crystal display protective plate obtained in this comparative example had a low Re value, and when the liquid crystal display protective plate on the liquid crystal screen was observed through a polarizing filter, blackout was noticeably observed.
  • Comparative Example 2 as the resin of the phase difference adjusting layer, the photoelastic coefficient (C A) and orientation birefringence ([Delta] n A) was used polycarbonate resin is defined outside of the present invention.
  • the liquid crystal display protective plate before curved surface molding obtained in this comparative example has a large standard deviation of the Re value (large variation in the Re value), and when the liquid crystal display protective plate on the liquid crystal screen is observed through a polarizing filter. , Color unevenness was noticeable.
  • a curved liquid crystal display protective plate was manufactured by thermoforming at a temperature of Tg B or more and Tg A or less.
  • the absolute value of the rate of change of the average value of the Re value after thermoforming with respect to that before thermoforming was more than 50%, and the standard deviation of the Re value after thermoforming was more than 25.0 nm.
  • the curved liquid crystal display protective plate obtained in this comparative example has a large standard deviation of the Re value (large variation in the Re value), and when the liquid crystal display protective plate on the liquid crystal screen is observed through a polarizing filter, color unevenness is observed. Was noticeably seen.
  • Comparative Example 3 a liquid crystal display protective plate made of a resin plate in which retardation adjusting layers were laminated on both sides of a base material layer was manufactured.
  • a curved liquid crystal display protective plate was manufactured by thermoforming at a temperature of Tg B or more and Tg A or less.
  • the absolute value of the rate of change of the average Re value after thermoforming with respect to that before thermoforming was 50% or less.
  • the phase difference adjusting layer on the surface was bent at a temperature lower than Tg of the phase difference adjusting layer, cracks occurred in the phase difference adjusting layer.
  • a liquid crystal display protective plate made of a resin plate in which retardation adjusting layers were laminated on both sides of the base material layer was manufactured.
  • the resin of the base layer the photoelastic coefficient (C B) and orientation birefringence ([Delta] n B) was used polycarbonate resin is defined outside of the present invention.
  • the liquid crystal display protective plate before curved surface molding obtained in these comparative examples has a large standard deviation of the Re value (large variation in the Re value), and when the liquid crystal display protective plate on the liquid crystal screen is observed through a polarizing filter. , Color unevenness was noticeable.
  • a liquid crystal display protective plate with a curved surface was manufactured by thermoforming at a temperature higher than Tg A and Tg B.
  • the absolute value of the rate of change of the average Re value after thermoforming with respect to that before thermoforming was more than 50%, and the standard deviation of the Re value after thermoforming was more than 25.0 nm.
  • the curved liquid crystal display protective plate obtained in these comparative examples has a large standard deviation of the Re value (large variation in the Re value), and when the liquid crystal display protective plate on the liquid crystal screen is observed through a polarizing filter, color unevenness is observed. Was noticeably seen.
  • the present invention is not limited to the above-described embodiments and examples, and the design can be appropriately changed as long as the gist of the present invention is not deviated.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

本発明は、偏光フィルタを通して液晶画面上にある液晶ディスプレイ保護板を観察した際の、色ムラ、ブラックアウト、及び色付き等の視認性の低下を抑制することが可能な液晶ディスプレイ保護板を提供する。液晶ディスプレイ保護板(1)は、位相差調整層(21)の両面に基材層(22)が積層された樹脂板(16)を含む。位相差調整層は、光弾性係数の絶対値が10.0×10-12/Pa以下であり、配向複屈折の絶対値が10.0×10-4~100.0×10-4である透明熱可塑性樹脂(A)を含む。基材層は、光弾性係数の絶対値が10.0×10-12/Pa以下であり、配向複屈折の絶対値が10.0×10-4未満である透明熱可塑性樹脂(B)を含む。基材層のTgよりも位相差調整層のTgが高い。位相差調整層の厚みよりも基材層の合計厚みが大きい。樹脂板のRe値が50~330nmである。

Description

液晶ディスプレイ保護板、並びに、曲面付き液晶ディスプレイ保護板とその製造方法
 本発明は、液晶ディスプレイ保護板、並びに、曲面付き液晶ディスプレイ保護板とその製造方法に関する。
 液晶ディスプレイ、及び、液晶ディスプレイとタッチパネルとを組み合わせたタッチパネルディスプレイにおいては、表面の傷付き防止等のため、その前面側に保護板が設けられる場合がある。本明細書では、この保護板のことを「液晶ディスプレイ保護板」と称す。
 液晶ディスプレイ保護板は、少なくとも1層の熱可塑性樹脂層からなる樹脂板、及び必要に応じて樹脂板の少なくとも一方の表面に形成された硬化被膜を含む。
 特許文献1には、メタクリル系樹脂板と、その少なくとも一方の表面に形成された硬化被膜とを含み、携帯型情報端末の表示窓保護板として好適な耐擦傷性樹脂板が開示されている(請求項1、2、7、段落0010等)。特許文献2には、ポリカーボネート系樹脂層の一方の表面にメタクリル系樹脂層を積層した積層板と、この積層板のメタクリル系樹脂層上に形成された硬化被膜とを含む液晶ディスプレイカバー用ポリカーボネート系樹脂積層体が開示されている(請求項1、段落0008等)。
 液晶ディスプレイ保護板は、液晶ディスプレイの前面側(視認者側)に設置され、視認者はこの保護板を通して液晶ディスプレイの画面を見る。ここで、液晶ディスプレイ保護板は液晶ディスプレイからの出射光の偏光性をほとんど変化させないため、偏光サングラス等の偏光フィルタを通して画面を見ると、出射光の偏光軸と偏光フィルタの透過軸とがなす角度によっては、画面が暗くなり、画像の視認性が低下する場合がある(ブラックアウト現象)。
 そこで、偏光フィルタを通して液晶ディスプレイの画面を見る場合の画像の視認性の低下を抑制しうる液晶ディスプレイ保護板が検討されている。例えば、特許文献3には、樹脂板の少なくとも一方の表面に硬化被膜が形成された耐擦傷性樹脂板からなり、面内のリタデーション値(「Re値」とも言う。)が85~300nmである液晶ディスプレイ保護板が開示されている(請求項1)。
特開2004-299199号公報 特開2006-103169号公報 特開2010-085978号公報 特開2018-103518号公報
 近年、車載用のカーナビゲーションシステム及びディスプレイオーディオ等の用途において、デザイン性及び視認性等の観点から、曲面加工等の形状加工が施されたディスプレイが開発されている。曲面を有するディスプレイには、その形状に合わせた曲面付き液晶ディスプレイ保護板が用いられる。押出成形等により得られた平坦樹脂板に対して、必要に応じて硬化被膜を形成した後、プレス成形、真空成形、及び圧空成形等の熱成形を行うことで、曲面付き液晶ディスプレイ保護板を製造することができる。液晶ディスプレイ保護板に含まれる樹脂板は、熱成形前と熱成形後の双方において、Re値が好適な範囲内であり、Re値のバラツキが小さいことが好ましい。
 特許文献4は、低温での熱成形性又は印刷性に優れ、熱成形後の色付き及び色ムラの発生が抑制される樹脂積層体(樹脂板)を提供することを目的としている。
 特許文献4には、ポリカーボネート系樹脂層の少なくとも一方の面にアクリル系樹脂層が共押出成形により積層され、幅方向の加熱収縮率が-10~0%であり、押出方向の加熱収縮率が0~10%であり、Re値が1500nm以下である樹脂積層体が開示されている(請求項1)。
 特許文献4では、ポリカーボネート系樹脂が特定の1価フェノールから誘導される末端構造を有することで、ポリカーボネート系樹脂のガラス転移温度を低くし、低温での熱成形性を可能としている(段落0018)。
 特許文献4に記載の樹脂積層体は好ましくは、アクリル系樹脂層上にハードコート層をさらに有する(請求項7)。
 特許文献3、4において、樹脂板は好ましくは、ポリカーボネート系樹脂層の少なくとも一方の表面にメタクリル系樹脂層が積層された積層板である(特許文献3の請求項6、特許文献4の段落0096)。これらの積層板では例えば、樹脂板の厚みに応じて成形条件を調整することで、ポリカーボネート系樹脂層の複屈折を調整し、液晶ディスプレイ保護板のRe値を好適な範囲内に調整することができる(特許文献3の段落0036等)。
 応力と複屈折との関係、及び、配向複屈折と応力複屈折と光弾性係数との関係を示すイメージ図を図7に示す。
 特許文献3、4に用いられているポリカーボネート系樹脂は、光弾性係数の絶対値が90×10-12/Paと非常に大きく、わずかな応力でRe値が変化する。そのため、ポリカーボネート系樹脂を用いる場合、光学的に均一な液晶ディスプレイ保護板を得ることが難しい。例えば、偏光フィルタを通して液晶画面上にある液晶ディスプレイ保護板を観察すると、Re値のバラツキに起因して、色ムラが観察される恐れがある。特に、熱成形後では、熱成形の冷却工程で生じる残留応力によって樹脂板のRe値のバラツキが大きくなる傾向がある。
 特許文献1に用いられているメタクリル系樹脂は、光弾性係数の絶対値が3.2×10-12/Paと小さく、応力でRe値が変化しにくい。そのため、メタクリル系樹脂を用いる場合、光学的に均一な液晶ディスプレイ保護板を得ることはできる。しかしながら、メタクリル系樹脂は、配向複屈折の絶対値が4.0×10-4と小さいため、厚みにもよるが、得られる液晶ディスプレイ保護板のRe値は20nm程度と小さくなる傾向がある。そのため、偏光フィルタを通して液晶画面上にある液晶ディスプレイ保護板を観察すると、出射光の偏光軸と偏光フィルタの透過軸とがなす角度によっては、画面が真っ暗になるブラックアウトが発生し、画像の視認性が低下する恐れがある。
 また、一般的に、液晶ディスプレイ保護板のRe値が好適な範囲より大きい場合、偏光フィルタを通して視認した場合に可視光域の各波長の光透過率の差が大きくなり、様々な色が見えて視認性が低下する恐れがある(色付き現象)。
 本発明は上記事情に鑑みてなされたものであり、熱成形前と熱成形後の双方において、面内のリタデーション値(Re値)が好適な範囲内であり、面内のリタデーション値(Re値)のバラツキが小さく、偏光フィルタを通して液晶画面上にある液晶ディスプレイ保護板を観察した際の、色ムラ、ブラックアウト、及び色付き等の視認性の低下を抑制することが可能な液晶ディスプレイ保護板を提供することを目的とする。
 本発明は、以下の[1]~[13]の、液晶ディスプレイ保護板、並びに、曲面付き液晶ディスプレイ保護板とその製造方法を提供する。
[1] 位相差調整層の両面に基材層が積層された平坦樹脂板を含み、
 前記位相差調整層は、光弾性係数(C)の絶対値が10.0×10-12/Pa以下であり、かつ、幅20mm、長さ40mm、厚み1mmの試験片を、ガラス転移温度より10℃高い温度で3mm/分の速度で100%の延伸率で一軸延伸し、当該試験片の中央部分の面内のリタデーション値を測定して求められる配向複屈折(Δn)の絶対値が10.0×10-4~100.0×10-4である透明熱可塑性樹脂(A)を含み、
 前記基材層は、光弾性係数(C)の絶対値が10.0×10-12/Pa以下であり、かつ、幅20mm、長さ40mm、厚み1mmの試験片を、ガラス転移温度より10℃高い温度で3mm/分の速度で100%の延伸率で一軸延伸し、当該試験片の中央部分の面内のリタデーション値を測定して求められる配向複屈折(Δn)の絶対値が10.0×10-4未満である透明熱可塑性樹脂(B)を含み、
 前記位相差調整層のガラス転移温度をTg、前記基材層のガラス転移温度をTgとしたとき、Tg>Tgであり、
 前記位相差調整層の厚みをT、前記基材層の合計厚みをTとしたとき、T<Tであり、
 前記平坦樹脂板の面内のリタデーション値(Re値)が50~330nmである、液晶ディスプレイ保護板。
[2] 前記平坦樹脂板は、幅17cm、長さ22cmの範囲内の面内のリタデーション値(Re値)の標準偏差が15.0nm以下である、[1]の液晶ディスプレイ保護板。
[3] 前記平坦樹脂板は、Tg以上Tg以下の温度に加熱した際、面内のリタデーション値(Re値)の、加熱前に対する加熱後の変化率の絶対値が50%以下である、[1]又は[2]の液晶ディスプレイ保護板。
[4] 前記平坦樹脂板は、Tg以上Tg以下の温度に加熱した際、幅17cm、長さ22cmの範囲内の面内のリタデーション値(Re値)の標準偏差が25.0nm以下である、[1]~[3]のいずれかの液晶ディスプレイ保護板。
[5] 透明熱可塑性樹脂(A)が芳香族ビニル単量体単位を含み、
 透明熱可塑性樹脂(A)中の前記芳香族ビニル単量体単位の含有量をV[質量%]とし、前記位相差調整層の厚みをT[mm]としたとき、下記式(1)を満たす、[1]~[4]のいずれかの液晶ディスプレイ保護板。
6.0≦V×T≦30.0・・・(1)
[6] 少なくとも一方の最表面に硬化被膜を備える、[1]~[5]のいずれかの液晶ディスプレイ保護板。
[7] 前記平坦樹脂板は押出成形板である、[1]~[6]のいずれかの液晶ディスプレイ保護板。
[8] 位相差調整層の両面に基材層が積層された、曲面を有する樹脂板を含み、
 前記位相差調整層は、光弾性係数(C)の絶対値が10.0×10-12/Pa以下であり、かつ、幅20mm、長さ40mm、厚み1mmの試験片を、ガラス転移温度より10℃高い温度で3mm/分の速度で100%の延伸率で一軸延伸し、当該試験片の中央部分の面内のリタデーション値を測定して求められる配向複屈折(Δn)の絶対値が10.0×10-4~100.0×10-4である透明熱可塑性樹脂(A)を含み、
 前記基材層は、光弾性係数(C)の絶対値が10.0×10-12/Pa以下であり、かつ、幅20mm、長さ40mm、厚み1mmの試験片を、ガラス転移温度より10℃高い温度で3mm/分の速度で100%の延伸率で一軸延伸し、当該試験片の中央部分の面内のリタデーション値を測定して求められる配向複屈折(Δn)の絶対値が10.0×10-4未満である透明熱可塑性樹脂(B)を含み、
 前記位相差調整層のガラス転移温度をTg、前記基材層のガラス転移温度をTgとしたとき、Tg>Tgであり、
 前記位相差調整層の厚みをT、前記基材層の合計厚みをTとしたとき、T<Tであり、
 前記曲面を有する樹脂板の面内のリタデーション値が50~330nmである、曲面付き液晶ディスプレイ保護板。
[9] 前記曲面を有する樹脂板は、幅17cm、長さ22cmの範囲内の面内のリタデーション値の標準偏差が25.0nm以下である、[8]の曲面付き液晶ディスプレイ保護板。
[10] 透明熱可塑性樹脂(A)が芳香族ビニル単量体単位を含み、
 透明熱可塑性樹脂(A)中の前記芳香族ビニル単量体単位の含有量をV[質量%]とし、前記位相差調整層の厚みをT[mm]としたとき、下記式(1)を満たす、[8]又は[9]の曲面付き液晶ディスプレイ保護板。
6.0≦V×T≦30.0・・・(1)
[11] 少なくとも一方の最表面に硬化被膜を備える、[8]~[10]のいずれかの曲面付き液晶ディスプレイ保護板。
[12] 前記曲面を有する樹脂板は、平坦樹脂板を熱成形した熱成形板である、[8]~[11]のいずれかの曲面付き液晶ディスプレイ保護板。
[13] 前記位相差調整層の両面に前記基材層が積層された平坦樹脂板を成形する工程と、
 前記平坦樹脂板をTg以上Tg以下の温度に加熱し、曲面を有する形状に熱成形する工程とを有する、[8]~[12]のいずれかの曲面付き液晶ディスプレイ保護板の製造方法。
 本発明によれば、熱成形前と熱成形後の双方において、面内のリタデーション値(Re値)が好適な範囲内であり、面内のリタデーション値(Re値)のバラツキが小さく、偏光フィルタを通して液晶画面上にある液晶ディスプレイ保護板を観察した際の、色ムラ、ブラックアウト、及び色付き等の視認性の低下を抑制することが可能な液晶ディスプレイ保護板を提供することができる。
本発明に係る第1実施形態の液晶ディスプレイ保護板の模式断面図である。 本発明に係る第2実施形態の液晶ディスプレイ保護板の模式断面図である。 本発明に係る一実施形態の押出成形板の製造装置の模式図である。 比較例用の液晶ディスプレイ保護板の模式断面図である。 [実施例]の項で用いた樹脂型の模式斜視図である。 成形率の求め方の説明図である。 応力と複屈折との関係、及び、配向複屈折と応力複屈折と光弾性係数との関係を示すイメージ図である。
 一般的に、薄膜成形体に対しては、厚みに応じて、「フィルム」、「シート」、又は「板」の用語が使用されるが、これらの間に明確な区別はない。本明細書で言う「樹脂板」には、「樹脂フィルム」及び「樹脂シート」が含まれるものとする。
 本明細書において、一般的な材料のガラス転移温度は「Tg」で表す。
[液晶ディスプレイ保護板]
 本発明は、液晶ディスプレイ保護板に関する。液晶ディスプレイ保護板は、液晶ディスプレイ、及び、液晶ディスプレイとタッチパネルとを組み合わせたタッチパネルディスプレイの保護用途に好適に用いることができる。
 本発明の液晶ディスプレイ保護板は、位相差調整層の両面に基材層が積層された平坦樹脂板を含む。平坦樹脂板は、好ましくは押出成形板である。
 上記の本発明の液晶ディスプレイ保護板を熱成形して、曲面付き液晶ディスプレイ保護板を製造することができる。
 本発明の曲面付き液晶ディスプレイ保護板は、位相差調整層の両面に基材層が積層された、曲面を有する樹脂板を含み、さらに必要に応じて硬化被膜を含む。曲面を有する樹脂板は、平坦樹脂板を熱成形した熱成形板である。
 本発明の液晶ディスプレイ保護板及び曲面付き液晶ディスプレイ保護板は必要に応じて、少なくとも一方の最表面に硬化被膜を有することができる。
 本発明の液晶ディスプレイ保護板及び曲面付き液晶ディスプレイ保護板において、位相差調整層は、特定の光学特性を有する透明熱可塑性樹脂(A)を含み、基材層は、特定の光学特性を有する透明熱可塑性樹脂(B)を含む。位相差調整層のガラス転移温度をTg(℃)、基材層のガラス転移温度をTg(℃)としたとき、Tg>Tgである。位相差調整層の厚みをT、基材層の合計厚みをTとしたとき、T<Tである。
 平坦樹脂板及び曲面を有する樹脂板の面内のリタデーション値(「Re値」とも言う。)は、50~330nmである。
 平坦樹脂板は好ましくは、幅17cm、長さ22cmの範囲内のRe値の標準偏差が15.0nm以下である。
 平坦樹脂板は、Tg以上Tg以下の温度に加熱した際、Re値の加熱前に対する加熱後の変化率の絶対値が、好ましくは50%以下である。
 平坦樹脂板は、Tg以上Tg以下の温度に加熱した際、幅17cm、長さ22cmの範囲内のRe値の標準偏差が、好ましくは25.0nm以下である。
 曲面を有する樹脂板は好ましくは、幅17cm、長さ22cmの範囲内のRe値の標準偏差が25.0nm以下である。
 図1、図2は、本発明に係る第1、第2実施形態の液晶ディスプレイ保護板の模式断面図である。図中、符号1、2は液晶ディスプレイ保護板、符号16は平坦樹脂板、符号21は位相差調整層、符号22は基材層、符号31は硬化被膜をそれぞれ示す。
 第1実施形態の液晶ディスプレイ保護板1は、位相差調整層21の両面に基材層22が積層された3層構造の平坦樹脂板16からなる。
 第2実施形態の液晶ディスプレイ保護板2は、位相差調整層21の両面に基材層22が積層された3層構造の平坦樹脂板16の少なくとも一方の表面に硬化被膜31が形成されたものである。図2に示す例では、平坦樹脂板16の両面に硬化被膜31が形成されている。
 液晶ディスプレイ保護板の構成は図示例に限らず、本発明の趣旨を逸脱しない限り、適宜設計変更が可能である。
 図1、図2に示すような平坦な液晶ディスプレイ保護板を熱成形して、曲面付き液晶ディスプレイ保護板を製造することができる。
 平坦樹脂板及び曲面を有する樹脂板において、位相差調整層は、光弾性係数(C)の絶対値が10.0×10-12/Pa以下であり、幅20mm、長さ40mm、厚み1mmの試験片を、ガラス転移温度より10℃高い温度で3mm/分の速度で100%の延伸率で一軸延伸し、一軸延伸後の試験片の中央部分の面内のリタデーション値を測定して求められる配向複屈折(Δn)の絶対値が10.0×10-4~100.0×10-4である透明熱可塑性樹脂(A)を含む。
 「リタデーション」とは、分子主鎖方向の光とそれに垂直な方向の光との位相差である。一般的に高分子は加熱溶融成形されることで任意の形状を得ることができるが、加熱及び冷却の過程において発生する応力及び分子の配向によってリタデーションが発生することが知られている。なお、本明細書において、「リタデーション」は特に明記しない限り、面内のリタデーションを示すものとする。
 一般的に、樹脂板のRe値は、下記式(i)で表される。
[樹脂板のRe値]=[複屈折(ΔN)]×[厚み(d)]・・・(i)
 複屈折(ΔN)は、下記式(ii)で表される。
[複屈折]=[応力複屈折]+[配向複屈折]・・・(ii)
 応力複屈折、配向複屈折はそれぞれ、下記式(iii)、(iv)で表される。
[応力複屈折]=[光弾性係数(C)]×[応力]・・・(iii)
[配向複屈折]=[固有複屈折]×[配向度]・・・(iv)
 式(iv)において、配向度は0~1.0の範囲の値である。
 応力と複屈折との関係、及び、配向複屈折と応力複屈折と光弾性係数との関係を示すイメージ図を図7に示す。
 本発明では、図7に模試的に示される光弾性係数と配向複屈折で透明熱可塑性樹脂(A)及び透明熱可塑性樹脂(B)の光学特性を特定している。
 本発明の液晶ディスプレイ保護板及び曲面付き液晶ディスプレイ保護板では、上記特定の光学特性を有する透明熱可塑性樹脂(A)を含む位相差調整層を含むことで、偏光フィルタを通して液晶画面上にある液晶ディスプレイ保護板を観察した際の、色ムラ及びブラックアウト等の視認性の低下を抑制することが可能である。
 本明細書において、「樹脂板のRe値」は、特に明記しない限り、幅17cm、長さ22cmの測定範囲内の約11万点の複屈折画素数のRe値の平均値である。「樹脂板のRe値の標準偏差」は、特に明記しない限り、幅17cm、長さ22cmの測定範囲内の約11万点の複屈折画素数のRe値の標準偏差である。
 Re値の平均値と標準偏差は例えば、フォトニックラティス社製のリタデーション測定器「WPA-100-L」を用い、後記[実施例]の項に記載の方法にて測定することができる。
 平坦樹脂板及び曲面を有する樹脂板のRe値は、50~330nmであり、好ましくは70~250nm、より好ましくは80~200nm、特に好ましくは90~150nm、最も好ましくは100~140nmである。
 Re値が上記下限値未満では、偏光フィルタを通して液晶画面上にある液晶ディスプレイ保護板を観察した際、出射光の偏光軸と偏光フィルタの透過軸との関係によらず、ブラックアウトが発生する恐れがある。Re値が上記上限値超では、偏光フィルタを通して視認した際、可視光域の各波長の光透過率の差が大きくなり、様々な色が見えて視認性が低下する恐れがある(色付き現象)。
 平坦樹脂板及び曲面を有する樹脂板のRe値の標準偏差は、小さい方が、Re値のバラツキが少なく、好ましい。Re値の標準偏差が充分に小さければ、偏光フィルタを通して液晶画面上にある液晶ディスプレイ保護板を観察した際、Re値のバラツキに起因する色ムラが抑制され、視認性が向上する。
 平坦樹脂板のRe値の標準偏差は、好ましくは15nm以下、より好ましくは10nm以下、さらに好ましくは7nm以下、特に好ましくは5nm以下、最も好ましくは4nm以下である。
 曲面を有する樹脂板のRe値の標準偏差は、好ましくは25.0nm以下、より好ましくは20.0nm以下、特に好ましくは15.0nm以下、最も好ましくは10.0nm以下である。
 平坦樹脂板のRe値とRe値の標準偏差は、熱成形によって大きく変化しないことが好ましい。本発明において、熱成形温度は、好ましくはTg以上Tg以下、より好ましくはTg以上Tg未満の温度である。
 平坦樹脂板は、Tg以上Tg以下の温度に加熱した際、Re値の加熱前に対する加熱後の変化率の絶対値が、好ましくは50%以下、より好ましくは45%以下、さらに好ましくは40%以下、特に好ましくは35%以下、最も好ましくは30%以下である。
 Re値の加熱前に対する加熱後の変化率は、下記式で表される。
[Re値の加熱前に対する加熱後の変化率](%)=([加熱後のRe値]-[加熱前のRe値])/[加熱前のRe値]×100
 平坦樹脂板は、TgB以上TgA以下の温度に加熱した際、幅17cm、長さ22cmの範囲内のRe値の標準偏差が、好ましくは25.0nm以下、より好ましくは20.0nm以下、特に好ましくは15.0nm以下、最も好ましくは10.0nm以下である。
 平坦樹脂板及び曲面を有する樹脂板の全体の厚み(d)は特に制限されず、好ましくは0.2~4.5mm、より好ましくは0.3~4.0mm、特に好ましくは0.4~3.0mmである。薄すぎると液晶ディスプレイ保護板の剛性が不充分となる恐れがあり、厚すぎると液晶ディスプレイ又はこれを含むタッチパネルディスプレイの軽量化の妨げになる恐れがある。
(位相差調整層)
 平坦樹脂板及び曲面を有する樹脂板は、位相差調整層を含む。位相差調整層は液晶ディスプレイ保護板のRe値を主に決定する層であり、特定の光学特性を有する透明熱可塑性樹脂(A)を含む。
<透明熱可塑性樹脂(A)>
 透明熱可塑性樹脂(A)の光弾性係数(C)の絶対値は、10.0×10-12/Pa以下であり、好ましくは8.0×10-12/Pa以下、より好ましくは6.0×10-12/Pa以下、特に好ましくは5.0×10-12/Pa以下、最も好ましくは4.0×10-12/Pa以下である。光弾性係数(C)の絶対値が上記上限値以下であると、押出成形等の成形加工時に発生する残存応力による応力複屈折が小さく(図7を参照されたい。)、液晶ディスプレイ保護板のRe値の標準偏差を低減できる。その結果、偏光フィルタを通して液晶画面上にある液晶ディスプレイ保護板を観察した際、Re値のバラツキに起因する色ムラが抑制され、視認性が向上する。
 透明熱可塑性樹脂(A)の配向複屈折(Δn)の絶対値は、10.0×10-4~100.0×10-4であり、好ましくは20.0×10-4~90.0×10-4、より好ましくは30.0×10-4~70.0×10-4、特に好ましくは35.0×10-4~60.0×10-4である。透明熱可塑性樹脂(A)の配向複屈折(Δn)の絶対値が上記範囲内であると、液晶ディスプレイ保護板のRe値を適切な範囲に制御することができる。
 配向複屈折はポリマーの配向度に依存するため、成形条件及び延伸条件等の製造条件の影響を受ける。本明細書において、特に明記しない限り、「配向複屈折」は、後記[実施例]の項に記載の方法にて測定するものとする。
 透明熱可塑性樹脂(A)は、本発明で規定する光弾性係数(C)と配向複屈折(Δn)の範囲を満たす透明熱可塑性樹脂であれば、特に限定されない。
 一態様において、透明熱可塑性樹脂(A)は、1種又は2種以上の芳香族ビニル単量体単位を含むことができる。芳香族ビニル単量体としては特に制限されず、スチレン(St);2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、4-エチルスチレン、及び4-tert-ブチルスチレン等の核アルキル置換スチレン;α-メチルスチレン、及び4-メチル-α-メチルスチレン等のα-アルキル置換スチレン等が挙げられる。中でも、入手性の観点から、スチレン(St)が好ましい。
 透明熱可塑性樹脂(A)中の芳香族ビニル単量体単位の含有量をV[質量%]とし、位相差調整層の厚みをT[mm]とする。これらの積(V×T)は、下記式(1)を満たすことが好ましい。
6.0≦V×T≦30.0・・・(1)
 透明熱可塑性樹脂(A)は、光弾性係数(C)の絶対値が小さく、応力複屈折はほぼゼロである。透明熱可塑性樹脂(A)がスチレン(St)単位等の芳香族ビニル単量体単位を含む場合、配向複屈折(Δn)は透明熱可塑性樹脂(A)中の芳香族ビニル単量体単位の含有量V[質量%]に依存する傾向がある。そのため、V×Tは液晶ディスプレイ保護板のRe値と強く相関する。V×Tが上記式(1)を満たす場合、液晶ディスプレイ保護板のRe値を適切な範囲に制御することができる。
 透明熱可塑性樹脂(A)は、芳香族ビニル単量体単位の他に、メタクリル酸メチル(MMA)単位等のメタクリル酸エステル単位;無水マレイン酸単位等の酸無水物単位;アクリロニトリル単位等の他の単量体単位を有する共重合体であってもよい。
 芳香族ビニル単量体単位を含む透明熱可塑性樹脂(A)の具体例としては、メタクリル酸エステル-スチレン共重合体(MS樹脂);スチレン-無水マレイン酸共重合体(SMA樹脂);スチレン-メタクリル酸エステル-無水マレイン酸共重合体(SMM樹脂);α-メチルスチレン-無水マレイン酸-メタクリル酸エステル共重合体(αStMM樹脂);アクリロニトリル-スチレン共重合体(AS樹脂);アクリルイミド樹脂等が挙げられる。これらは、1種または2種以上用いることができる。
 上記樹脂の市販品として、以下の製品が挙げられる。
MS樹脂:東洋スチレン製「トーヨーMS」等、
SMA樹脂:ダイセル-エボニック製「Plexiglas FT15」、Polyscope製「XIBOND」、「XIRAN」等、
SMM樹脂:デンカ製「レジスファイ」等、
AS樹脂:日本エイアンドエル製「ライタック-A」等、
アクリルイミド樹脂:ダイセル-エボニック製「Pleximid」等。
 透明熱可塑性樹脂(A)は、本発明で規定する光弾性係数(C)と配向複屈折(Δn)の範囲を満たすものであれば、芳香族ビニル単量体単位を含まない樹脂であってもよい。芳香族ビニル単量体単位を含まない透明熱可塑性樹脂(A)としては、メタクリル酸メチル単位等のメタクリル酸エステル単位と、グルタルイミド単位、N-置換又は無置換マレイミド単位、及びラクトン環単位から選ばれる少なくとも1種の単位とを含む変性メタクリル系樹脂が挙げられる。これらは、1種または2種以上用いることができる。
 透明熱可塑性樹脂(A)は、本発明で規定する光弾性係数(C)と配向複屈折(Δn)の範囲を満たす芳香族ビニル単量体単位を含む樹脂と、本発明で規定する光弾性係数(C)と配向複屈折(Δn)の範囲を満たす芳香族ビニル単量体単位を含まない樹脂(変性メタクリル系樹脂等)との混合物であってもよい。
 本発明では、上記以外の一般的なメタクリル系樹脂(非変性のメタクリル系樹脂)及びポリカーボネート系樹脂は、光弾性係数及び/又は配向複屈折が本発明の規定範囲外であり、透明熱可塑性樹脂(A)には含まれない。
 ポリカーボネート系樹脂は、光弾性係数の絶対値が90×10-12/Paと非常に大きく、わずかな応力でRe値が変化する。そのため、ポリカーボネート系樹脂を用いる場合、光学的に均一な液晶ディスプレイ保護板を得ることが難しい。例えば、偏光フィルタを通して液晶画面上にある液晶ディスプレイ保護板を観察すると、Re値のバラツキに起因して、色ムラが観察される恐れがある。
 特に、熱成形前に対して熱成形後では、樹脂板のRe値の変化が大きく、樹脂板のRe値のバラツキが大きくなる傾向がある。熱成形工程は例えば、樹脂板を加熱する工程と、加熱した樹脂板に型を押し付ける工程と、型内で樹脂板を冷却する工程と、冷却した樹脂板を型から取り出す工程とを有する。冷却工程では、樹脂板内に歪み(残留応力)が発生する。光弾性係数の絶対値が大きいポリカーボネート系樹脂を用いた樹脂板では、熱成形の冷却工程で生じる残留応力により顕著なリタデーションムラが生じ、樹脂板のRe値のバラツキが大きくなる傾向がある。
 メタクリル系樹脂は、光弾性係数の絶対値が3.2×10-12/Paと小さく、応力でRe値が変化しにくい。そのため、メタクリル系樹脂を用いる場合、光学的に均一な液晶ディスプレイ保護板を得ることはできる。しかしながら、メタクリル系樹脂は、配向複屈折の絶対値が4.0×10-4と小さいため、厚みにもよるが、得られる液晶ディスプレイ保護板のRe値は20nm程度と小さくなる傾向がある。そのため、偏光フィルタを通して液晶画面上にある液晶ディスプレイ保護板を観察すると、出射光の偏光軸と偏光フィルタの透過軸とがなす角度によっては、画面が真っ暗になるブラックアウトが発生し、画像の視認性が低下する恐れがある。
 位相差調整層の厚み(T)は特に制限されず、好ましくは0.05~3.0mm、より好ましくは0.05~0.5mm、特に好ましくは0.1~0.3mm、最も好ましくは0.1~0.2mmである。
 位相差調整層は、光弾性係数及び/又は配向複屈折が透明熱可塑性樹脂(A)として規定外である1種以上の他の重合体を、少量であれば含むことができる。他の重合体の種類としては特に制限されず、一般的な非変性のメタクリル系樹脂、ポリカーボネート系樹脂、ポリエチレン及びポリプロピレン等のポリオレフィン、ポリアミド、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリエステル、ポリスルホン、ポリフェニレンオキサイド、ポリイミド、ポリエーテルイミド、及びポリアセタール等の他の熱可塑性樹脂;フェノール樹脂、メラミン樹脂、シリコーン樹脂、及びエポキシ樹脂等の熱硬化性樹脂等が挙げられる。
 一般的な非変性のメタクリル系樹脂は例えば、1種以上のメタクリル酸エステル単位からなる樹脂である。
 位相差調整層中の透明熱可塑性樹脂(A)の含有量は多い方が好ましく、好ましくは90質量%以上、より好ましくは95質量%以上、特に好ましくは98質量%以上である。位相差調整層中の他の重合体の含有量は、好ましくは10質量%以下、より好ましくは5質量%以下、特に好ましくは2質量%以下である。
 位相差調整層は必要に応じて、各種添加剤を含むことができる。添加剤としては、着色剤、酸化防止剤、熱劣化防止剤、紫外線吸収剤、光安定剤、滑剤、離型剤、高分子加工助剤、帯電防止剤、難燃剤、光拡散剤、艶消し剤、コアシェル粒子及びブロック共重合体等のゴム成分(耐衝撃性改質剤)、及び蛍光体等が挙げられる。添加剤の含有量は、本発明の効果を損なわない範囲で適宜設定できる。位相差調整層の構成樹脂100質量部に対して、例えば、酸化防止剤の含有量は0.01~1質量部、紫外線吸収剤の含有量は0.01~3質量部、光安定剤の含有量は0.01~3質量部、滑剤の含有量は0.01~3質量部が好ましい。
 位相差調整層に他の重合体及び/又は添加剤を添加させる場合、添加タイミングは、透明熱可塑性樹脂(A)の重合時でも重合後でもよい。
 位相差調整層は、透明熱可塑性樹脂(A)と公知のゴム成分(耐衝撃性改質剤)とを含む樹脂組成物からなる樹脂層であってもよい。ゴム成分としては、コアシェル構造の多層構造重合体粒子、サラミ構造を持つゴム状重合体、及びブロックポリマー等が挙げられる。ゴム成分は、ジエン系単量体単位及びアクリル酸アルキル系単量体単位等を含むことができる。位相差調整層の透明性の観点から、ゴム成分の屈折率と主成分である透明熱可塑性樹脂(A)の屈折率との差はより小さい方が好ましい。
 位相差調整層のガラス転移温度(TgA)はTgA>TgBを満たせば、特に制限されない。好ましくは90~170℃、より好ましくは100~160℃、特に好ましくは110~155℃、最も好ましくは130~155℃である。
 なお、「位相差調整層のガラス転移温度(TgA)」は、1種以上の透明熱可塑性樹脂(A)及び必要に応じて1種以上の任意成分からなる位相差調整層の全構成材料のガラス転移温度である。
 TgとTgとの差(Tg-Tg)は好ましくは5~70℃、より好ましくは10~50℃、特に好ましくは15~45℃、最も好ましくは20~40℃である。Tg-Tgが上記範囲内であれば、以下に詳述するように、樹脂板のRe値の変化を抑制しつつ、樹脂板を良好に熱成形することができ、さらに得られた曲面付き液晶ディスプレイ保護板の変形を抑制することができる。
 本発明では、好ましくはTg以上Tg以下の温度で熱成形を行うことができる。
 Tg+10℃~Tg+30℃の温度で熱成形を行うことがより好ましい。この温度範囲内であれば、樹脂板を所望の形状に良好に熱成形でき、熱成形の冷却工程で生じる残留応力を小さく抑えることができる。この場合、Re値の変化を抑制することができ、得られた曲面付き液晶ディスプレイ保護板の変形を抑制することができる。例えば、曲面付き液晶ディスプレイ保護板について車載用ディスプレイの信頼試験(例えば105℃で1000時間又は85℃85%RHで72時間)を実施した場合、残留応力の解放による変形が抑制され、好ましい。
 Tg+10℃~Tg+30℃の範囲内で、かつ、Tg未満の温度で熱成形を行うことが特に好ましい。Tg未満の温度であれば、位相差調整層の応力と配向が解放されないため、Re値の変化及び曲面付き液晶ディスプレイ保護板の変形が効果的に抑制され、好ましい。
 Tg+10℃未満の温度で熱成形すると、樹脂板を所望の形状に熱成形することが難しい。この温度域でも大きな荷重をかける、あるいは成形時間を長くするなどすれば、所望の形状に熱成形することができるが、樹脂板に大きな成形応力が発生する。この条件で得られた曲面付き液晶ディスプレイ保護板について車載用ディスプレイの信頼試験を実施した場合、大きな残留応力が解放され、大きく変形する恐れがある。
(基材層)
 平坦樹脂板及び曲面を有する樹脂板は、上記の位相差調整層の両面に積層され、位相差調整層よりもガラス転移温度(Tg)の低い基材層を含む。基材層は、樹脂板の全体の厚み(d)を増加させ、樹脂板の剛性を向上させることができる。
 上記積層構造では、以下のような作用効果が得られる。
 表面に位相差調整層がある平坦樹脂板をTg以上Tg以下の温度で熱成形する場合、位相差調整層に割れが発生する恐れがある。特に位相差調整層がSMA樹脂及びSMM樹脂等の脆い樹脂を含む場合、上記温度での熱成形時に位相差調整層に割れが発生しやすい。
 位相差調整層の両面に基材層が形成された平坦樹脂板では、位相差調整層がSMA樹脂及びSMM樹脂等の脆い樹脂を含む場合であっても、Tg以上Tg以下の温度で熱成形する際に位相差調整層の割れを効果的に抑制することができる。
 熱成形の加熱工程では、先に表面の温度が上昇した後に内部の温度が上昇する。位相差調整層の両面に基材層が形成された積層構造では、表面にある基材層よりも内部にある位相差調整層の温度が上がりにくい。そのため、表面に位相差調整層がある平坦樹脂板を加熱するよりも、熱成形前に対する熱成形後のRe値の変化を効果的に抑制することができる。
 基材層は、液晶ディスプレイ保護板のRe値に影響を与えない樹脂層であることが好ましく、光弾性係数及び配向複屈折が充分に小さい透明熱可塑性樹脂(B)を含む樹脂層であることが好ましい。位相差調整層の両面に積層される基材層の組成と厚みは、各基材層が上記光学特性を有する透明熱可塑性樹脂(B)を含む樹脂層であれば、同一でも非同一でもよい。
<透明熱可塑性樹脂(B)>
 透明熱可塑性樹脂(B)の光弾性係数(C)の絶対値は小さい方が好ましく、好ましくは10.0×10-12/Pa以下、より好ましくは8.0×10-12/Pa以下、さらに好ましくは6.0×10-12/Pa以下、特に好ましくは5.0×10-12/Pa以下、最も好ましくは4.0×10-12/Pa以下である。光弾性係数(C)の絶対値が上記上限値以下であると、押出成形等の成形加工時に発生する残存応力による応力複屈折が充分に小さく(図7を参照されたい。)、樹脂板のRe値の標準偏差を低減できる。その結果、偏光フィルタを通して液晶画面上にある液晶ディスプレイ保護板を観察した際、Re値のバラツキに起因する色ムラが抑制され、視認性が向上する。
 透明熱可塑性樹脂(B)の配向複屈折(Δn)は小さい方が好ましく、好ましくは10.0×10-4未満、より好ましくは8.0×10-4以下、さらに好ましくは6.0×10-4以下、特に好ましくは4.0×10-4以下、最も好ましくは2.0×10-4以下である。透明熱可塑性樹脂(B)の配向複屈折(Δn)の絶対値が上記上限値以下であると、樹脂板のRe値に与える影響が充分に小さく(図7を参照されたい。)、樹脂板のRe値を適切な範囲に良好に制御することができる。
 透明熱可塑性樹脂(B)は、本発明で規定する光弾性係数(C)と配向複屈折(Δn)の範囲を満たす透明熱可塑性樹脂であれば、特に限定されない。具体例としては、一般的な非変性のメタクリル系樹脂(PM)、グルタルイミド単位、N-置換又は無置換マレイミド単位、ラクトン環単位等で変性された変性メタクリル系樹脂、及びシクロオレフィンポリマー(COP)等が挙げられる。透明熱可塑性樹脂(B)は、1種または2種以上用いることができる。
 メタクリル系樹脂(PM)は、1種以上のメタクリル酸エステルに由来する構造単位を含む単独重合体又は共重合体である。透明性の観点から、メタクリル系樹脂(PM)中のメタクリル酸エステル単量体単位の含有量は、好ましくは50質量%以上、より好ましくは80質量%以上、特に好ましくは90質量%以上であり、100質量%であってもよい。
 好ましいメタクリル酸エステルとしては例えば、メタクリル酸メチル(MMA)、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸フェニル、メタクリル酸ベンジル、メタクリル酸2-エチルヘキシル、メタクリル酸2-ヒドロキシエチル;メタクリル酸単環脂肪族炭化水素エステル;メタクリル酸多環脂肪族炭化水素エステル等が挙げられる。透明性の観点から、メタクリル系樹脂(PM)はMMA単位を含むことが好ましく、メタクリル系樹脂(PM)中のMMA単位の含有量は、好ましくは50質量%以上、より好ましくは80質量%以上、特に好ましくは90質量%以上であり、100質量%であってもよい。
 メタクリル系樹脂(PM)は、メタクリル酸エステル以外の1種以上の他の単量体に由来する構造単位を含んでいてもよい。他の単量体としては、アクリル酸メチル(MA)、アクリル酸エチル、アクリル酸ブチル、アクリル酸シクロヘキシル、アクリル酸フェニル、アクリル酸ベンジル、アクリル酸2-エチルヘキシル、及びアクリル酸2-ヒドロキシエチル等のアクリル酸エステル;スチレン類;アクリロニトリル、メタクリロニトリル;無水マレイン酸、フェニルマレイミド、シクロヘキシルマレイミド;等が挙げられる。中でも、透明性の観点から、MAが好ましい。例えば、MMAとMAとの共重合体は、透明性に優れ、好ましい。この共重合体中のMMAの含有量は、好ましくは80質量%以上、より好ましくは85質量%以上、特に好ましくは90質量%以上であり、100質量%であってもよい。
 メタクリル系樹脂(PM)は、好ましくはMMAを含む1種以上のメタクリル酸エステル、及び必要に応じて他の単量体を重合することで得られる。複数種の単量体を用いる場合は、通常、複数種の単量体を混合して単量体混合物を調製した後、重合を行う。重合方法としては特に制限されず、生産性の観点から、塊状重合法、懸濁重合法、溶液重合法、及び乳化重合法等のラジカル重合法が好ましい。
 本発明で規定する光弾性係数(C)と配向複屈折(Δn)の範囲を満たすものであれば、透明熱可塑性樹脂(B)として、透明熱可塑性樹脂(A)として例示した種類の樹脂(具体的には、MS樹脂、SMA樹脂、SMM樹脂、AS樹脂、及び変性メタクリル系樹脂等)を用いてもよい。単量体組成又は変性率によっては、透明熱可塑性樹脂(A)として例示した種類の樹脂が、透明熱可塑性樹脂(B)として使用できる場合がある。
 ポリカーボネート系樹脂は、光弾性係数及び配向複屈折が本発明の規定範囲外であり、透明熱可塑性樹脂(B)には含まれない。
 ポリカーボネート系樹脂は、光弾性係数の絶対値が90×10-12/Paと非常に大きく、わずかな応力でRe値が変化する。そのため、ポリカーボネート系樹脂を用いる場合、光学的に均一な液晶ディスプレイ保護板を得ることが難しい。例えば、偏光フィルタを通して液晶画面上にある液晶ディスプレイ保護板を観察すると、Re値のバラツキに起因して、色ムラが観察される恐れがある。特に、熱成形前に対して熱成形後では、樹脂板のRe値の変化が大きく、樹脂板のRe値のバラツキが大きくなる傾向がある。
 上記したように、位相差調整層のガラス転移温度をTg(℃)、基材層のガラス転移温度をTg(℃)としたとき、Tg>Tgである。
 基材層のガラス転移温度(Tg)はTg>Tgを満たせば、特に制限されない。好ましくは80~160℃、より好ましくは100~150℃、特に好ましくは110~140℃、最も好ましくは110~130℃である。
 なお、「基材層のガラス転移温度(Tg)」は、1種以上の透明熱可塑性樹脂(B)及び必要に応じて1種以上の任意成分からなる基材層の全構成材料のガラス転移温度である。
 位相差調整層の両面に積層された基材層の合計厚みをTとする。本発明の液晶ディスプレイ保護板において、基材層の合計厚み(T)は、位相差調整層の厚み(T)よりも大きく設計される。すなわち、本発明の液晶ディスプレイ保護板は、T<Tを充足する。基材層の合計厚み(T)は、T<Tを満たせば特に制限されず、液晶ディスプレイ保護板の所望の厚み及び剛性に応じて適宜設計される。Tは、好ましくは0.05~4.0mm、より好ましくは0.5~3.0mm、特に好ましくは1.0~3.0mm、最も好ましくは1.5~2.5mmである。
 本発明において、T/T>1であり、好ましくはT/T≧1.2、より好ましくはT/T≧1.5、さらに好ましくはT/T≧2.0、特に好ましくはT/T≧5.0、最も好ましくはT/T≧7.0である。
 TとTが上記関係にあれば、樹脂板の全体の厚み(d)に対する基材層の合計厚み(T)の割合が充分に大きく、曲面成形等の熱成形時に基材層に適した温度で成形を行うことができ、好ましい。
 基材層の合計厚み(T)より位相差調整層の厚み(T)が大きい場合、基材層のガラス転移温度(Tg)近傍の温度の熱成形では、所望の成形率(賦形率)を達成することが難しい。この場合、位相差調整層のガラス転移温度(Tg)超で熱成形する必要がある。この温度条件では、位相差調整層の配向度が低下し、Re値が低下し、偏光フィルタを通して液晶画面上にある液晶ディスプレイ保護板を観察した際にブラックアウトが発生する恐れがある。T<Tであれば、熱成形時に基材層に適した温度で成形を行うことができ、好ましい。
 基材層は、光弾性係数及び/又は配向複屈折が透明熱可塑性樹脂(B)として規定外である1種以上の他の重合体を、少量であれば含むことができる。他の重合体の種類としては特に制限されず、ポリカーボネート系樹脂、ポリエチレン及びポリプロピレン等のポリオレフィン、ポリアミド、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリエステル、ポリスルホン、ポリフェニレンオキサイド、ポリイミド、ポリエーテルイミド、及びポリアセタール等の他の熱可塑性樹脂;フェノール樹脂、メラミン樹脂、シリコーン樹脂、及びエポキシ樹脂等の熱硬化性樹脂等が挙げられる。
 基材層中の透明熱可塑性樹脂(B)の含有量は多い方が好ましく、好ましくは90質量%以上、より好ましくは95質量%以上、特に好ましくは98質量%以上である。基材層中の他の重合体の含有量は、好ましくは10質量%以下、より好ましくは5質量%以下、特に好ましくは2質量%以下である。
 基材層は必要に応じて、各種添加剤を含むことができる。添加剤の種類の例示と好ましい添加量は、位相差調整層に使用可能な添加剤と同様である。
 基材層に他の重合体及び/又は添加剤を添加させる場合、添加タイミングは、透明熱可塑性樹脂(B)の重合時でも重合後でもよい。
 基材層は、透明熱可塑性樹脂(B)と公知のゴム成分(耐衝撃性改質剤)とを含む樹脂組成物からなる樹脂層であってもよい。ゴム成分の例示は、位相差調整層に使用可能なゴム成分と同様である。基材層の透明性の観点から、ゴム成分の屈折率と主成分である透明熱可塑性樹脂(B)の屈折率との差はより小さい方が好ましい。
(他の樹脂層)
 平坦樹脂板及び曲面を有する樹脂板は、位相差調整層及び基材層以外の他の樹脂層を有していてもよい。樹脂板の積層構造としては、基材層-位相差調整層-基材層の3層構造;基材層-位相差調整層-基材層-他の樹脂層の4層構造;基材層-位相差調整層-他の樹脂層-基材層の4層構造等が挙げられる。
(硬化被膜)
 本発明の液晶ディスプレイ保護板及び曲面付き液晶ディスプレイ保護板は必要に応じて、少なくとも一方の最表面に硬化被膜を有することができる。
 曲面付き液晶ディスプレイ保護板が少なくとも一方の最表面に硬化被膜を有する場合、硬化被膜を形成するタイミングは、曲面加工の前でも後でもよい。平坦な液晶ディスプレイ保護板の少なくとも一方の表面に硬化被膜を形成した後に曲面加工を行ってもよいし、平坦な液晶ディスプレイ保護板を曲面加工して、得られた曲面付き液晶ディスプレイ保護板の少なくとも一方の表面に硬化被膜を形成してもよい。
 硬化被膜は、耐擦傷性層(ハードコート層)又は視認性向上効果のための低反射性層として機能することができる。硬化被膜は、公知方法にて形成することができる。
 硬化被膜の材料としては、無機系、有機系、有機無機系、及びシリコーン系等が挙げられ、生産性の観点から、有機系及び有機無機系が好ましい。
 無機系硬化被膜は例えば、SiO、Al、TiO、及びZrO等の金属酸化物等の無機材料を、真空蒸着及びスパッタリング等の気相成膜で成膜することにより形成することができる。
 有機系硬化被膜は例えば、メラミン系樹脂、アルキッド系樹脂、ウレタン系樹脂、及びアクリル系樹脂等の樹脂を含む塗料を塗工し加熱硬化する、又は、多官能アクリル系樹脂を含む塗料を塗工し紫外線硬化させることにより形成することができる。
 有機無機系硬化被膜は例えば、表面に光重合反応性官能基が導入されたシリカ超微粒子等の無機超微粒子と硬化性有機成分とを含む紫外線硬化性ハードコート塗料を塗工し、紫外線照射により硬化性有機成分と無機超微粒子の光重合反応性官能基とを重合反応させることにより形成することができる。この方法では、無機超微粒子が、有機マトリックスと化学結合した状態で有機マトリックス中に分散した網目状の架橋塗膜が得られる。
 シリコーン系硬化被膜は例えば、カーボンファンクショナルアルコキシシラン、アルキルトリアルコキシシラン、及びテトラアルコキシシラン等の部分加水分解物、又はこれらにコロイダルシリカを配合した材料を重縮合させることにより形成することができる。
 上記方法において、材料の塗工方法としては、ディップコート、グラビアロールコート等の各種ロールコート、フローコート、ロッドコート、ブレードコート、スプレーコート、ダイコート、及びバーコート等が挙げられる。
 耐擦傷性(ハードコート性)硬化被膜(耐擦傷性層、ハードコート層)の厚みは、好ましくは2~30μm、より好ましくは5~20μmである。薄すぎると表面硬度が不充分となり、厚すぎると製造工程中の折り曲げにより割れが発生する恐れがある。低反射性硬化被膜(低反射性層)の厚みは、好ましくは80~200nm、より好ましくは100~150nmである。薄すぎても厚すぎても低反射性能が不充分となる恐れがある。
 その他、本発明の液晶ディスプレイ保護板及び曲面付き液晶ディスプレイ保護板は必要に応じて、表面に、眩光防止(アンチグレア)層、反射防止(アンチリフレクション)層、及び防指紋層等の公知の表面処理層を有することができる。
[液晶ディスプレイ保護板の製造方法]
 本発明の平坦な液晶ディスプレイ保護板の製造方法は、位相差調整層の両面にガラス転移温度(Tg)の相対的に低い基材層が積層された平坦な押出樹脂板を成形する工程(1)を有する。
 硬化被膜付きの平坦な液晶ディスプレイ保護板の製造方法は、上記工程(1)と、得られた押出樹脂板の少なくとも一方の表面に硬化被膜を形成する工程(2)とを有する。
(工程(1))
 平坦な液晶ディスプレイ保護板は、共押出成形法を用いて成形することが好ましい。
 以下、共押出成形法による平坦な押出樹脂板の製造方法について、説明する。
 図3に、一実施形態として、Tダイ11、第1~第3冷却ロール12~14、及び一対の引取りロール15を含む押出成形装置の模式図を示す。
 各層の構成樹脂はそれぞれ押出機を用いて溶融混練され、所望の積層構造の形態で、幅広の吐出口を有するTダイ11から板状の形態で共押出される。
 積層方式としては、Tダイ流入前に積層するフィードブロック方式、及びTダイ内部で積層するマルチマニホールド方式等が挙げられる。層間の界面平滑性を高める観点から、マルチマニホールド方式が好ましい。
 Tダイ11から共押出された溶融状態の熱可塑性樹脂積層体は、第1~第3冷却ロール12~14を用いて加圧及び冷却される。加圧及び冷却後に得られた平坦な押出樹脂板16は、一対の引取りロール15により引き取られる。冷却ロールの数は、適宜設計することができる。
 なお、製造装置の構成は、本発明の趣旨を逸脱しない範囲において、適宜設計変更が可能である。
 工程(1)において、第3冷却ロール14上での樹脂全体の温度をTXとする。図3には、[実施例]の項におけるTXの測定範囲を模式的に示してある。
 製造ライン上の樹脂の温度は、公知方法にて測定することができる。例えば、TXとして、第3冷却ロール14上の樹脂の表面温度を、赤外放射温度計等の非接触温度計を用いて測定することができる。
 本発明では、平坦な押出樹脂板のRe値が50~330nmとなるように、成形を行う。
 好ましくは、平坦な押出樹脂板の幅17cm、長さ22cmの範囲内のRe値の標準偏差が25.0nm以下となるように、成形を行う。
 Re値を制御するためには、分子の配向を制御する必要がある。分子の配向は例えば、高分子のガラス転移温度近傍での成形時の応力により発生する。押出成形の過程における製造条件を好適化することにより分子の配向を制御し、これによって、液晶ディスプレイ保護板の押出成形後のRe値を好適化することができる。
(工程(2))
 工程(2)では、工程(1)で得られた平坦な液晶ディスプレイ保護板、または後述する工程(3)で熱成形された液晶ディスプレイ保護板の少なくとも一方の表面に、公知方法にて無機又は有機の硬化被膜を形成する。硬化被膜の形成方法は上記したので、ここでは省略する。
(その他の工程)
 平坦な液晶ディスプレイ保護板及び硬化被膜付きの平坦な液晶ディスプレイ保護板の製造方法は必要に応じて、上記以外の他の工程を有することができる。
 例えば、工程(1)と工程(2)との間に、平坦な液晶ディスプレイ保護板に対する硬化被膜の密着性を向上させる目的で、工程(1)で得られた平坦な液晶ディスプレイ保護板の硬化被膜を形成する面に対して、プライマー処理、サンドブラスト処理、及び溶剤処理等の表面凹凸化処理;コロナ放電処理、クロム酸処理、オゾン照射処理、及び紫外線照射処理等の表面酸化処理等の表面処理を施す工程を追加してもよい。
[曲面付き液晶ディスプレイ保護板の製造方法]
 本発明の曲面付き液晶ディスプレイ保護板の製造方法は、
 位相差調整層の両面にガラス転移温度(Tg)の相対的に低い基材層が積層された平坦な液晶ディスプレイ保護板を成形する工程(1)と、
 平坦な液晶ディスプレイ保護板をTg以上Tg以下の温度(TY)に加熱し、曲面を有する形状に熱成形する工程(3)とを有する。
 本発明の曲面付き液晶ディスプレイ保護板の製造方法は、工程(1)と工程(3)との間に、必要に応じて、平坦な液晶ディスプレイ保護板の少なくとも一方の表面に硬化被膜を形成する工程(2)を有することができる。この場合、工程(3)では、硬化被膜付きの平坦な液晶ディスプレイ保護板を熱成形する。
 工程(1)、(2)は、[液晶ディスプレイ保護板の製造方法]の項で説明したので、ここでは省略する。
(工程(3))
 平坦な液晶ディスプレイ保護板又は硬化被膜付きの平坦な液晶ディスプレイ保護板に対する曲面加工等の形状加工は、プレス成形、真空成形、及び圧空成形等の公知の熱成形により行うことができる。
 本発明では、位相差調整層の両面上に基材層が形成された平坦な液晶ディスプレイ保護板を、好ましくはTg超Tg未満かつTX未満の温度で熱成形する。
 工程(3)において、熱成形温度をTYとする。TX>TYであり、Tg<TY<Tgであることが好ましい。
 本発明では、Tg以上Tg以下の温度(TY)で熱成形を行うことが好ましく、Tg超Tg未満の温度で熱成形を行うことがより好ましく、Tg+10℃~Tg+30℃の温度で熱成形を行うことが特に好ましい。
 上記の温度範囲内であれば、平坦な液晶ディスプレイ保護板を所望の形状に良好に熱成形でき、熱成形の冷却工程で生じる残留応力を小さく抑えることができる。この場合、Re値の変化を抑制することができ、熱成形後に得られる曲面付き液晶ディスプレイ保護板の変形を抑制することができる。例えば、曲面付き液晶ディスプレイ保護板について車載用ディスプレイの信頼試験(例えば105℃で1000時間又は85℃85%RHで72時間)を実施した場合、残留応力の解放による変形が抑制され、好ましい。
 Tg+10℃~Tg+30℃の範囲内で、かつ、Tg未満の温度で熱成形を行うことが最も好ましい。Tg未満の温度であれば、位相差調整層の応力と配向が解放されないため、Re値の変化及び曲面付き液晶ディスプレイ保護板の変形が効果的に抑制され、好ましい。
 Tg+10℃未満の温度で熱成形すると、押出樹脂板を所望の形状に熱成形することが難しい。この温度域でも大きな荷重をかける、あるいは成形時間を長くするなどすれば、所望の形状に熱成形することができるが、樹脂板に大きな成形応力が発生する。この条件で得られた曲面付き液晶ディスプレイ保護板について車載用ディスプレイの信頼試験を実施した場合、大きな残留応力が解放され、大きく変形する恐れがある。
 一般的に、押出樹脂板の位相差調整層の構成樹脂のTgより低い温度で熱成形を行えば、Re値の低下を抑制できると考えられる。しかしながら、本発明者らが熱成形条件について種々検討したところ、押出樹脂板の位相差調整層の構成樹脂のTgより低い温度で熱成形を行った場合でも、押出成形工程における押出樹脂板の配向を制御する温度より熱成形温度が高ければ、樹脂の配向は緩和し、Re値が大きく低下する場合があることが分かった。そして、位相差調整層の構成樹脂のTgより低温でかつ押出成形工程における押出樹脂板の配向を制御する温度より高い温度で熱成形した曲面付き液晶ディスプレイ保護板を、偏光フィルタを通して観察すると、出射光の偏光軸と偏光フィルタの透過軸とがなす角度によっては、画面が真っ暗になるブラックアウトが発生し、画像の視認性が低下する場合があることが分かった。
 本発明者らが検討したところ、Re値の大きさに寄与している位相差調整層の配向は、例えば第2冷却ロール速度0.75m/分の条件で全体厚み3mmの樹脂板を押出成形した場合、第3冷却ロールまでに形成されることが分かった。すなわち、本発明で、TXは「押出成形工程において冷却中にRe値の大きさに寄与している位相差調整層の配向を固定化する温度」と同義である。そのため、「押出成形工程における押出樹脂板の配向を制御する温度」の下限値として、第3冷却ロール上での樹脂全体の温度(TX)を用いることができる。TX未満で熱成形を行う場合、熱成形工程での樹脂温度が、第3冷却ロール上での樹脂温度及び第3冷却ロールより上流側の樹脂温度に到達することがない。この条件では、熱成形工程において、樹脂の配向の緩和が抑制されてRe値の低下が効果的に抑制され、偏光フィルタを通して液晶画面上にある液晶ディスプレイ保護板を観察した際の視認性の低下を効果的に抑制できる。なお、第2冷却ロール速度を0.75m/分超の条件で共押出した場合、位相差調整層の配向は第3冷却ロールと引取りロールの間で形成される可能性がある。また、成形する押出樹脂板の全体厚みを3mmより厚くした場合も、位相差調整層の配向は第3冷却ロールと引取りロールの間で形成される可能性がある。
 本発明では、位相差調整層の両面に基材層が形成された平坦な液晶ディスプレイ保護板を、Tg超Tg未満かつTX未満の温度で熱成形することが好ましい。この場合、位相差調整層がSMA樹脂及びSMM樹脂等の脆い樹脂を含む場合であっても、位相差調整層の割れを効果的に抑制することができる。
 熱成形の加熱工程では、先に表面の温度が上昇した後に内部の温度が上昇する。位相差調整層の両面上に基材層が形成された積層構造では、表面にある基材層よりも内部にある位相差調整層の温度が上がりにくい。そのため、表面に位相差調整層がある平坦な液晶ディスプレイ保護板を加熱するよりも、熱成形前に対する熱成形後のRe値の変化を効果的に抑制することができる。
 本発明では、工程(1)において、平坦な押出樹脂板のRe値が50~330nmとなるように、成形を行う。工程(1)において、好ましくは、平坦な液晶ディスプレイ保護板の幅17cm、長さ22cmの範囲内のRe値の標準偏差が25.0nm以下となるように、成形を行う。
 Re値の熱成形前に対する熱成形後の変化率の絶対値は50%以下であり、好ましくは40%以下、より好ましくは30%以下、特に好ましくは25%以下、最も好ましくは20%以下である。
 Re値の熱成形前に対する熱成形後の変化率は、下記式で表される。
[Re値の熱成形前に対する熱成形後の変化率][%]=100×([熱成形後のRe値]-[熱成形前のRe値])/[熱成形前のRe値]
 熱成形後に得られる本発明の曲面付き液晶ディスプレイ保護板は、幅17cm、長さ22cmの範囲内のRe値の標準偏差が、好ましくは25.0nm以下、より好ましくは20.0nm以下、特に好ましくは15.0nm以下、最も好ましくは10.0nm以下である。
 熱成形後に得られる本発明の曲面付き液晶ディスプレイ保護板に含まれる曲面の曲率半径の下限値は50mmであり、好ましくは75mm、より好ましくは100mm、特に好ましくは200mm、最も好ましくは300mmである。上限値は1000mmであり、好ましくは800mm、より好ましくは600mm、特に好ましくは500mm、最も好ましくは400mmである。
 本発明では、熱成形を実施しても樹脂板のRe値の変化が抑制されるので、Re値が好適な範囲内であり、Re値のバラツキが小さい、曲面付き液晶ディスプレイ保護板を安定的に製造することができる。
 以上説明したように、本発明によれば、熱成形前と熱成形後の双方において、Re値が好適な範囲内であり、Re値のバラツキが小さく、偏光フィルタを通して液晶画面上にある液晶ディスプレイ保護板を観察した際の、色ムラ、ブラックアウト、及び色付き等の視認性の低下を抑制することが可能な液晶ディスプレイ保護板を提供することができる。
[用途]
 本発明の液晶ディスプレイ保護板及び曲面付き液晶ディスプレイ保護板は例えば、銀行等の金融機関のATM;自動販売機;テレビ;携帯電話(スマートフォンを含む)、パーソナルコンピュータ、タブレット型パーソナルコンピュータ等の携帯情報端末(PDA)、デジタルオーディオプレーヤー、携帯ゲーム機、コピー機、ファックス、及びカーナビゲーションシステム等のデジタル情報機器等に使用される、液晶ディスプレイ又はタッチパネルディスプレイの保護板として好適である。
 本発明の液晶ディスプレイ保護板及び曲面付き液晶ディスプレイ保護板は例えば、車載用液晶ディスプレイの保護板として好適である。
 本発明に係る実施例及び比較例について説明する。
[評価項目及び評価方法]
 評価項目及び評価方法は、以下の通りである。
(透明熱可塑性樹脂のガラス転移温度(Tg))
 透明熱可塑性樹脂のガラス転移温度(Tg)は、示差走査熱量計(「DSC-50」、株式会社リガク製)を用いて、測定した。透明熱可塑性樹脂10mgをアルミパンに入れ、上記装置にセットした。30分以上窒素置換を行った後、10ml/分の窒素気流中、一旦25℃から200℃まで20℃/分の速度で昇温し、10分間保持し、25℃まで冷却した(1次走査)。次いで、10℃/分の速度で200℃まで昇温し(2次走査)、2次走査で得られた結果から、中点法でガラス転移温度(Tg)を算出した。なお、2種以上の樹脂を含有する樹脂組成物において複数のTgデータが得られる場合は、主成分の樹脂に由来する値をTgデータとして採用した。
(透明熱可塑性樹脂の光弾性係数)
 透明熱可塑性樹脂をプレス成形して、1.0mm厚の樹脂板を得た。得られた樹脂板の中央部から、幅15mm、長さ80mmの試験片を切り出した。この試験片の長手方向の両端部を、一対のチャックで把持した。チャック間距離は70mmとした。
 王子計測機器社製「X軸アリ式ステージ」を用いて、試験片に対して張力を付与した。張力は、0Nから30Nまで、10Nずつ段階的に高くした。張力は、株式会社イマダ製「センサーセパレート型デジタルフォースゲージ ZTS-DPU-100N」によりモニターした。
 0Nから100Nまでの各段階の張力付与条件について、以下の測定を実施した。
 張力が付与された状態の試験片の中央部分の位相差値[nm]を、王子計測機器社製「KOBRA-WR」を用いて、測定波長589.5nmの条件で測定した。この後、一対のチャックから試験片を取り外し、位相差測定部分の厚み(d[mm])を測定した。試験片の断面積(S)[m](=15[mm]×d[mm]×10-6)、応力[Pa](=張力[N]/S[m])、複屈折(=位相差値[nm]×10-6/d[mm])をそれぞれ計算した。横軸に応力、縦軸に複屈折をプロットし、最小自乗法により求め得られた直線の傾きを光弾性係数として求めた。
(透明熱可塑性樹脂の配向複屈折)
 透明熱可塑性樹脂をプレス成形して、1.0mm厚の樹脂板を得た。得られた樹脂板の中央部から、幅20mm、長さ50mmの試験片を切り出し、加熱チャンバー付きオートグラフ(SHIMADZU社製)にセットした。チャック間距離は20mmとした。ガラス転移温度(Tg)より10℃高い温度で3分間保持した後、3mm/分の速度で一軸延伸した。延伸率は100%とした。この条件では、延伸後のチャック間距離は40mmとなる。延伸後の試験片を上記装置から取り外し、23℃に冷却した後、厚み(d)を測定し、中央部分のRe値を王子計測機器社製「KOBRA-WR」を用いて、測定波長589.5nmの条件で測定した。得られたRe値を試験片の厚み(d)で除することで、配向複屈折の値を算出した。
(液晶ディスプレイ保護板のRe値の平均値と標準偏差)
 曲面成形前の液晶ディスプレイ保護板の試験片(幅21cm、長さ30cm)及び曲面成形後の液晶ディスプレイ保護板の試験片(幅17cm、長さ22cm)について、以下のようにしてRe値の平均値と標準偏差を測定した。
 株式会社フォトニックラティス製「WPA-100-L」に標準レンズ(FUJINON HF12.5HA-1B)を取り付けた。測定範囲が幅17cm、長さ22cmとなるように、レンズの高さを調整した。約11万点の複屈折画素数のRe値を測定し、平均値と標準偏差を求めた。
 下記式に基づいて、Re値の平均値の曲面成形前に対する曲面成形後の変化率を求めた。
[Re値の加熱前に対する加熱後の変化率](%)=([加熱後のRe値]-[加熱前のRe値])/[加熱前のRe値]×100
(各層の厚み)
 ニコンインステック社製「万能投影機(V-12B)」を用いて各層の厚みを測定した。
(色ムラ)
 液晶ディスプレイの視認側の偏光子の透過軸と樹脂板の押出成形方向とが互いに垂直になるように、液晶ディスプレイ保護板の試験片を液晶ディスプレイ上に載置した。さらにこの上に偏光フィルムを載置し、偏光フィルムを様々な角度に回転させ、Re値のバラツキに起因する色ムラが最も強くなる角度での見え方を次の3段階で目視評価した。
A(良):色ムラが全くなく、液晶ディスプレイの視認性が低下しない。
B(可):色ムラが少しあり、液晶ディスプレイの視認性がわずかに低下する。
C(不良):顕著な色ムラがあり、液晶ディスプレイの視認性が大きく低下する。
(ブラックアウト)
 液晶ディスプレイの視認側の偏光子の透過軸と樹脂板の押出成形方向とが互いに垂直になるように、液晶ディスプレイ保護板の試験片を液晶ディスプレイ上に載置した。さらにこの上に偏光フィルムを載置し、偏光フィルムを様々な角度に回転させ、液晶ディスプレイの透過光強度が最も小さくなる角度での見え方を次の3段階で目視評価した。
A(良):透過光強度が充分に高く、液晶ディスプレイに表示されている文字等をはっきりと視認できる。
B(可):透過光強度がやや低く、液晶ディスプレイに表示されている文字等の視認性がわずかに低下する。
C(不良):透過光強度がほぼゼロであり、液晶ディスプレイに表示されている文字等を視認できない。
(色付き)
 液晶ディスプレイの視認側の偏光子の透過軸と樹脂板の押出成形方向とが互いに垂直になるように、液晶ディスプレイ保護板の試験片を液晶ディスプレイ上に載置した。さらにこの上に偏光フィルムを載置し、偏光フィルムを様々な角度に回転させ、液晶ディスプレイの色付きが最も大きくなる角度での見え方を次の3段階で目視評価した。
A(良):顕著な色付きがなく、液晶ディスプレイの視認性が低下しない。
B(可):色付きがあり、液晶ディスプレイの視認性がわずかに低下する。
C(不良):顕著な色付きがあり、液晶ディスプレイの視認性が低下する。
(割れ)
 曲面成形後の液晶ディスプレイ保護板を目視観察し、以下の2段階で評価した。
A(良):位相差調整層に割れがなく、液晶ディスプレイの視認性が低下しない。
C(不良):位相差調整層に割れが発生し、液晶ディスプレイの視認性が低下する。
(曲面付き液晶ディスプレイ保護板の成形率)
 曲面付きディスプレイ保護板の試験片(幅17cm、長さ22cm)について、以下のようにして成形率を測定した。図6を参照して、説明する。図6の上図は、曲面付き液晶ディスプレイ保護板の成形に使用した樹脂型(雄型と雌型)の模式断面図であり、図5のyz断面図である。図6の下図は、図6の上図に対応した曲面付き液晶ディスプレイ保護板の模式断面図である。図中、符号26は曲面付き液晶ディスプレイ保護板、符号Mは樹脂型である。
 曲面付き液晶ディスプレイ保護板26を、凸曲面S1側を上側して、平坦な定盤上に載置した。その状態で定盤から凹曲面S2の中心までの高さL1を測定した。一方、曲面付き液晶ディスプレイ保護板26の成形に使用した樹脂型Mの雄型の凸曲面MS1の高さL2を測定した。下記式に基づいて、成形率を求めた。
成形率[%]=(L1/L2)×100
[材料]
 用いた材料は、以下の通りである。
<MS樹脂>
(MS1)特開2003-231785号公報の[実施例]の項に記載の共重合体(A)の製造方法に従って、MS樹脂(メタクリル酸メチル(MMA)とスチレン(St)との共重合体)を重合した。Tg=109℃、芳香族ビニル単量体単位の含有量=35質量%。
<SMM樹脂>
(SMM1)デンカ株式会社「レジスファイ R200」、Tg=135℃、スチレン-無水マレイン酸-MMA共重合体。芳香族ビニル単量体単位の含有量=56質量%。
<アクリルイミド樹脂>
(PMMI1)ダイセル-エボニック社「Pleximid TT50」、Tg=155℃。芳香族ビニル単量体単位の含有量=0質量%。
<SMA含有樹脂>
(SMA1)Polyscope社「XIRAN」、Tg=152℃、スチレン-無水マレイン酸共重合体。芳香族ビニル単量体単位の含有量=77質量%。
(SMA2)SMA樹脂(SMA1)/メタクリル系樹脂(PMMA1)(質量比)=82/18、Tg=145℃、スチレン-無水マレイン酸共重合体アロイ樹脂。芳香族ビニル単量体単位の含有量=63質量%。
<メタクリル系樹脂>
(PMMA1)メタクリル酸メチル(MMA)とアクリル酸メチル(MA)との共重合体、株式会社クラレ製「パラペット EH」、Tg=110℃。
(PMMA2)メタクリル酸メチル(MMA)とアクリル酸メチル(MA)との共重合体、株式会社クラレ製「パラペット HR-S」、Tg=119℃。
(PMMA3)メタクリル酸メチル(MMA)とアクリル酸メチル(MA)との共重合体、Tg=85℃。
<ポリカーボネート系樹脂>
(PC1)住化ポリカーボネート株式会社製「SDポリカ 300シリーズ」、Tg=150℃。
[実施例1~4、比較例1、2]
(液晶ディスプレイ保護板の製造)
 50mmφ単軸押出機(東芝機械株式会社製)を用いて、基材層用の樹脂(透明熱可塑性樹脂(B)又は比較用樹脂)を溶融押出した。30mmφ単軸押出機(東芝機械株式会社製)を用いて、位相差調整層用の樹脂(透明熱可塑性樹脂(A)又は比較用樹脂)を溶融押出した。溶融状態のこれらの樹脂をマルチマニホールド型ダイスを介して積層し、Tダイから、位相差調整層の両面に基材層が積層された3層構造の熱可塑性樹脂積層体を共押出した。この熱可塑性樹脂積層体を互いに隣接する第1冷却ロールと第2冷却ロールとの間に挟み込み、第2冷却ロールに巻き掛け、第2冷却ロールと第3冷却ロールとの間に挟み込み、第3冷却ロールに巻き掛けることにより冷却した。冷却後に得られた平坦樹脂板を一対の引取りロールによって引き取った。このようにして、位相差調整層の両面に基材層が積層された3層構造の平坦樹脂板からなる液晶ディスプレイ保護板(参照図面:図1)を得た。
 得られた液晶ディスプレイ保護板の中央部から、押出成形方向(樹脂の流れ方向)が長辺方向となるように、幅21cm、長さ30cmの試験片を切り出した。この試験片を用いて、曲面成形前の液晶ディスプレイ保護板の評価を実施した。
(曲面成形)
 上記試験片の中央部から、押出成形方向(樹脂の流れ方向)が長辺方向となるように、幅17cm、長さ22cmの曲面成形用試験片を切り出した。この試験片に対して、以下のようにして、曲面成形を実施した。
 株式会社SSI製「ケミカルウッド Prolab65」を用いて製造された樹脂型を用意した。図5に示すように、樹脂型Mは雌型FM(図示下型)と雄型MM(図示上型)との組合せからなり、全体の形状は、幅(図示x方向の寸法)200mm×長さ(図示y方向の寸法)250mm×高さ(図示z方向の寸法)35mmの直方体状であった。
 雌型FMの上面には凹曲面が形成され、雄型MMの下面には雌型FMの凹曲面と接合する凸曲面が形成され、雌型FMの高さは15~25mm、雄型MMの高さは20~10mmであった。雌型FMの凹曲面及び雄型MMの凸曲面のy-z面に平行な断面形状は、図示x方向の位置に関係なく均一で、曲率半径が300mmの円弧状であった。
 オーブンの中にポリテトラフルオロエチレン(PTFE)シート(300mm×300mm×12mm)を載置し、オーブン内を170℃に加熱した。この状態で、PTFEシート上に曲面成形用試験片を載置し、試験片の温度が表3に記載の成形温度(例えば、実施例1では130℃)になるまで6~7分間保持した。次いで、PTFEシートとその上に載置された曲面成形用試験片をオーブンから取り出した。次いで、非接触温度計(オプテックス株式会社製「PT-S80」)を用いて、雌型FMと雄型MMで挟み込む直前の試験片の温度を測定し、表3に記載の成形温度(例えば、実施例1では130℃)であることを確認した。次いで、常温(20~25℃)の雌型FM上に上記成形温度の曲面成形用試験片を載置し、その上に常温(20~25℃)の雄型MMを載置し、その上から3kgの荷重をかけた。次いで、1~2分かけて、試験片の温度が常温近傍になるまで冷却した。冷却後の試験片を樹脂型Mから取り出し、この試験片を用いて、曲面成形後の液晶ディスプレイ保護板(曲面付き液晶ディスプレイ保護板)の評価を実施した。
 各例について、用いた樹脂の種類と物性、位相差調整層の厚み、基材層の合計厚み、熱成形温度、並びに、曲面成形前及び曲面成形後の液晶ディスプレイ保護板の評価結果を、表1~表3に示す。表1~表3の各例において、表に不記載の条件は共通条件とした。
[比較例3~5]
 基材層の両面に位相差調整層が積層されるように共押出成形を行った以外は実施例1~4と同様にして、3層構造の平坦樹脂板からなる液晶ディスプレイ保護板(参照図面:図4)を製造し、曲面成形を実施した。図4中、符号101は比較用の液晶ディスプレイ保護板、符号116は比較用の樹脂板、符号121は位相差調整層、符号122は基材層をそれぞれ示す。実施例1~4と同様に、曲面成形前及び曲面成形後の液晶ディスプレイ保護板の評価を実施した。
 各例について、用いた樹脂の種類と物性、位相差調整層の厚み、基材層の合計厚み、熱成形温度、並びに、曲面成形前及び曲面成形後の液晶ディスプレイ保護板の評価結果を、表1~表3に示す。
[実施例4-1~4-8]
(液晶ディスプレイ保護板の製造)
 実施例4と同様の方法及び積層構造で、平坦な液晶ディスプレイ保護板を製造した。ただし、各例においては、第3冷却ロール上での樹脂全体の温度(TX)が表5に記載の温度になるように、押出量及び第1~第3冷却ロールの回転速度を調整した。TXとして、第3冷却ロール上の樹脂の表面温度を、赤外放射温度計を用いて測定した。図3に、TXの測定範囲を模式的に示す。
 上記のようにして、位相差調整層の両面に基材層が積層された3層構造の平坦な液晶ディスプレイ保護板(S1-1)~(S1-5)(参照図面:図1)を得た。2つの基材層の厚みは、同一とした。
 積層構造、用いた樹脂の種類と物性、位相差調整層の合計厚み、基材層の合計厚み、及び全体厚みを表4に示す。
 得られた液晶ディスプレイ保護板の中央部から、押出成形方向(樹脂の流れ方向)が長辺方向となるように、幅17cm、長さ22cmの試験片を切り出した。この試験片を用いて、熱成形前の平坦な液晶ディスプレイ保護板の評価を実施した。
(曲面付き液晶ディスプレイ保護板の製造)
 平坦な押出樹脂板から切り出した上記試験片(幅17cm、長さ22cm)に対して、実施例4と同じ樹脂型M(図5を参照されたい。)を用い、実施例4と同様の方法で、熱成形を実施した。
 オーブンの中にポリテトラフルオロエチレン(PTFE)シート(300mm×300mm×12mm)を載置し、オーブン内を170℃に加熱した。この状態で、PTFEシート上に試験片を載置し、試験片の温度が表5に記載の成形温度(TY)(例えば、実施例4-1では140℃)になるまで6~7分間保持した。次いで、常温(20~25℃)の雌型FM上に上記成形温度の試験片を載置し、その上に常温(20~25℃)の雄型MMを載置し、その上から3kgの荷重をかけた。次いで、1~2分間かけて、試験片の温度が常温近傍になるまで冷却した。冷却後の試験片を樹脂型Mから取り出し、この試験片を用いて、曲面付き液晶ディスプレイ保護板の評価を実施した。
 各例について、用いた樹脂のガラス転移温度(Tg)、押出成形工程における第3冷却ロール上の樹脂全体の温度(TX)、熱成形温度(TY)、及びこれらの温度関係を、表5に示す。表5の各例において、表に不記載の条件は共通条件とした。
 各例について、熱成形前の平坦な押出樹脂板及び曲面付き液晶ディスプレイ保護板の評価結果を、表6に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
[結果のまとめ]
 実施例1~4では、位相差調整層の両面に基材層が積層された平坦樹脂板からなる液晶ディスプレイ保護板を製造した。これら実施例において、位相差調整層は、光弾性係数(C)の絶対値が10.0×10-12/Pa以下であり、配向複屈折(Δn)の絶対値が10.0×10-4~100.0×10-4である透明熱可塑性樹脂(A)を含む層であった。基材層は、光弾性係数(C)の絶対値が10.0×10-12/Pa以下であり、配向複屈折(Δn)の絶対値が10.0×10-4未満である透明熱可塑性樹脂(B)を含む層であった。位相差調整層のガラス転移温度をTg、基材層のガラス転移温度をTgとしたとき、Tg>Tgであった。
 実施例1~4で得られた曲面成形前の液晶ディスプレイ保護板はいずれも、幅17cm、長さ22cmの範囲内のRe値の平均値が50~330nmであり、幅17cm、長さ22cmの範囲内のRe値の標準偏差が15.0nm以下であった。これら実施例において、得られた液晶ディスプレイ保護板を用い、偏光フィルタを通して液晶画面上にある液晶ディスプレイ保護板を観察した際に、色ムラ、色付き、及びブラックアウトが効果的に抑制された。
 実施例1~4では、得られた液晶ディスプレイ保護板をTg以上Tg以下(Tg以上Tg未満)の温度で熱成形し、曲面付き液晶ディスプレイ保護板を製造した。
 実施例1~4で得られた曲面付き液晶ディスプレイ保護板はいずれも、幅17cm、長さ22cmの範囲内のRe値の平均値が50~330nmであり、幅17cm、長さ22cmの範囲内のRe値の標準偏差が15.0nm以下であった。これら実施例において、Re値の平均値の熱成形前に対する熱成形後の変化率の絶対値は50%以下であった。
 これら実施例において、得られた曲面付き液晶ディスプレイ保護板を用い、偏光フィルタを通して液晶画面上にある液晶ディスプレイ保護板を観察した際に、色ムラ、色付き、及びブラックアウトが効果的に抑制された。
 実施例1~4の中でも、V×Tが6.0~30.0の範囲内である実施例1、2、4では、曲面加工の前と後の双方において、Re値の平均値が特に好ましい範囲となった。
 実施例4-1~4-8では、Tg超Tg未満かつTX未満の温度(TY)で熱成形するという条件を満たすように、TXとTYの値を決め、平坦な液晶ディスプレイ保護板及び曲面付き液晶ディスプレイ保護板を製造した。
 これら実施例で得られた平坦な液晶ディスプレイ保護板はいずれも、Re値の平均値が50~330nmであり、Re値の標準偏差が25.0nm以下(15.0nm以下、10.0nm以下)であった。
 これら実施例で得られた曲面付き液晶ディスプレイ保護板はいずれも、Re値の平均値が50~330nmであり、Re値の標準偏差が25.0nm以下(15.0nm以下、10.0nm以下)であった。これら実施例において、Re値の熱成形前に対する熱成形後の変化率の絶対値は50%以下(20%以下)であった。
 熱成形温度(TY)が位相差調整層樹脂のTg及びTXより低温であったため、熱成形工程において位相差調整層樹脂の配向がほとんど崩れず、Re値がほぼ保持されたと考えられる。
 これら実施例において、偏光フィルタを通して液晶画面上にある曲面付き液晶ディスプレイ保護板を観察した際に、ブラックアウト、色付き、及び色ムラが効果的に抑制された。
 実施例4-1~4-8の結果から、TX>TY、かつ、Tg<TY<Tgを満たす条件で、曲面加工を行うことがより好ましいことが分かった。
 比較例1では、Tg<Tgであり、Tg及びTgよりも高い温度で熱成形し、曲面付き液晶ディスプレイ保護板を製造した。この比較例において、Re値の平均値の熱成形前に対する熱成形後の変化率の絶対値は50%超であった。この比較例で得られた曲面付き液晶ディスプレイ保護板はRe値が低く、偏光フィルタを通して液晶画面上にある液晶ディスプレイ保護板を観察した際に、ブラックアウトが顕著に見られた。
 比較例2では、位相差調整層の樹脂として、光弾性係数(C)及び配向複屈折(Δn)が本発明の規定外であるポリカーボネート系樹脂を用いた。この比較例で得られた曲面成形前の液晶ディスプレイ保護板は、Re値の標準偏差が大きく(Re値のバラツキが大きく)、偏光フィルタを通して液晶画面上にある液晶ディスプレイ保護板を観察した際に、色ムラが顕著に見られた。
 この比較例では、Tg以上Tg以下の温度で熱成形し、曲面付き液晶ディスプレイ保護板を製造した。この比較例において、Re値の平均値の熱成形前に対する熱成形後の変化率の絶対値は50%超であり、熱成形後のRe値の標準偏差は25.0nm超であった。この比較例で得られた曲面付き液晶ディスプレイ保護板はRe値の標準偏差が大きく(Re値のバラツキが大きく)、偏光フィルタを通して液晶画面上にある液晶ディスプレイ保護板を観察した際に、色ムラが顕著に見られた。
 比較例3では、基材層の両面に位相差調整層が積層された樹脂板からなる液晶ディスプレイ保護板を製造した。この比較例では、Tg以上Tg以下の温度で熱成形し、曲面付き液晶ディスプレイ保護板を製造した。この比較例において、Re値の平均値の熱成形前に対する熱成形後の変化率の絶対値は50%以下であった。しかしながら、表面にある位相差調整層を位相差調整層のTg未満の温度で曲げ加工したため、位相差調整層に割れが生じた。
 比較例4、5では、基材層の両面に位相差調整層が積層された樹脂板からなる液晶ディスプレイ保護板を製造した。基材層の樹脂として、光弾性係数(C)及び配向複屈折(Δn)が本発明の規定外であるポリカーボネート系樹脂を用いた。Tg<Tgであった。これら比較例で得られた曲面成形前の液晶ディスプレイ保護板は、Re値の標準偏差が大きく(Re値のバラツキが大きく)、偏光フィルタを通して液晶画面上にある液晶ディスプレイ保護板を観察した際に、色ムラが顕著に見られた。
 これら比較例では、Tg及びTgよりも高い温度で熱成形し、曲面付き液晶ディスプレイ保護板を製造した。Re値の平均値の熱成形前に対する熱成形後の変化率の絶対値は50%超であり、熱成形後のRe値の標準偏差は25.0nm超であった。これら比較例で得られた曲面付き液晶ディスプレイ保護板はRe値の標準偏差が大きく(Re値のバラツキが大きく)、偏光フィルタを通して液晶画面上にある液晶ディスプレイ保護板を観察した際に、色ムラが顕著に見られた。
 本発明は上記実施形態及び実施例に限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて、適宜設計変更が可能である。
 この出願は、2020年4月24日に出願された日本出願特願2020-077644号及び2020年12月25日に出願された日本出願特願2020-216445号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1、2 液晶ディスプレイ保護板
11 Tダイ
12~14 冷却ロール
15 引取りロール
16 平坦樹脂板
21 位相差調整層
22 基材層
31 硬化被膜

Claims (13)

  1.  位相差調整層の両面に基材層が積層された平坦樹脂板を含み、
     前記位相差調整層は、光弾性係数(C)の絶対値が10.0×10-12/Pa以下であり、かつ、幅20mm、長さ40mm、厚み1mmの試験片を、ガラス転移温度より10℃高い温度で3mm/分の速度で100%の延伸率で一軸延伸し、当該試験片の中央部分の面内のリタデーション値を測定して求められる配向複屈折(Δn)の絶対値が10.0×10-4~100.0×10-4である透明熱可塑性樹脂(A)を含み、
     前記基材層は、光弾性係数(C)の絶対値が10.0×10-12/Pa以下であり、かつ、幅20mm、長さ40mm、厚み1mmの試験片を、ガラス転移温度より10℃高い温度で3mm/分の速度で100%の延伸率で一軸延伸し、当該試験片の中央部分の面内のリタデーション値を測定して求められる配向複屈折(Δn)の絶対値が10.0×10-4未満である透明熱可塑性樹脂(B)を含み、
     前記位相差調整層のガラス転移温度をTg、前記基材層のガラス転移温度をTgとしたとき、Tg>Tgであり、
     前記位相差調整層の厚みをT、前記基材層の合計厚みをTとしたとき、T<Tであり、
     前記平坦樹脂板の面内のリタデーション値が50~330nmである、液晶ディスプレイ保護板。
  2.  前記平坦樹脂板は、幅17cm、長さ22cmの範囲内の面内のリタデーション値の標準偏差が15.0nm以下である、請求項1に記載の液晶ディスプレイ保護板。
  3.  前記平坦樹脂板は、Tg以上Tg以下の温度に加熱した際、面内のリタデーション値の、加熱前に対する加熱後の変化率の絶対値が50%以下である、請求項1又は2に記載の液晶ディスプレイ保護板。
  4.  前記平坦樹脂板は、Tg以上Tg以下の温度に加熱した際、幅17cm、長さ22cmの範囲内の面内のリタデーション値の標準偏差が25.0nm以下である、請求項1~3のいずれか1項に記載の液晶ディスプレイ保護板。
  5.  透明熱可塑性樹脂(A)が芳香族ビニル単量体単位を含み、
     透明熱可塑性樹脂(A)中の前記芳香族ビニル単量体単位の含有量をV[質量%]とし、前記位相差調整層の厚みをT[mm]としたとき、下記式(1)を満たす、請求項1~4のいずれか1項に記載の液晶ディスプレイ保護板。
    6.0≦V×T≦30.0・・・(1)
  6.  少なくとも一方の最表面に硬化被膜を備える、請求項1~5のいずれか1項に記載の液晶ディスプレイ保護板。
  7.  前記平坦樹脂板は押出成形板である、請求項1~6のいずれか1項に記載の液晶ディスプレイ保護板。
  8.  位相差調整層の両面に基材層が積層された、曲面を有する樹脂板を含み、
     前記位相差調整層は、光弾性係数(C)の絶対値が10.0×10-12/Pa以下であり、かつ、幅20mm、長さ40mm、厚み1mmの試験片を、ガラス転移温度より10℃高い温度で3mm/分の速度で100%の延伸率で一軸延伸し、当該試験片の中央部分の面内のリタデーション値を測定して求められる配向複屈折(Δn)の絶対値が10.0×10-4~100.0×10-4である透明熱可塑性樹脂(A)を含み、
     前記基材層は、光弾性係数(C)の絶対値が10.0×10-12/Pa以下であり、かつ、幅20mm、長さ40mm、厚み1mmの試験片を、ガラス転移温度より10℃高い温度で3mm/分の速度で100%の延伸率で一軸延伸し、当該試験片の中央部分の面内のリタデーション値を測定して求められる配向複屈折(Δn)の絶対値が10.0×10-4未満である透明熱可塑性樹脂(B)を含み、
     前記位相差調整層のガラス転移温度をTg、前記基材層のガラス転移温度をTgとしたとき、Tg>Tgであり、
     前記位相差調整層の厚みをT、前記基材層の合計厚みをTとしたとき、T<Tであり、
     前記曲面を有する樹脂板の面内のリタデーション値が50~330nmである、曲面付き液晶ディスプレイ保護板。
  9.  前記曲面を有する樹脂板は、幅17cm、長さ22cmの範囲内の面内のリタデーション値の標準偏差が25.0nm以下である、請求項8に記載の曲面付き液晶ディスプレイ保護板。
  10.  透明熱可塑性樹脂(A)が芳香族ビニル単量体単位を含み、
     透明熱可塑性樹脂(A)中の前記芳香族ビニル単量体単位の含有量をV[質量%]とし、前記位相差調整層の厚みをT[mm]としたとき、下記式(1)を満たす、請求項8又は9に記載の曲面付き液晶ディスプレイ保護板。
    6.0≦V×T≦30.0・・・(1)
  11.  少なくとも一方の最表面に硬化被膜を備える、請求項8~10のいずれか1項に記載の曲面付き液晶ディスプレイ保護板。
  12.  前記曲面を有する樹脂板は、平坦樹脂板を熱成形した熱成形板である、請求項8~11のいずれか1項に記載の曲面付き液晶ディスプレイ保護板。
  13.  前記位相差調整層の両面に前記基材層が積層された平坦樹脂板を成形する工程と、
     前記平坦樹脂板をTg以上Tg以下の温度に加熱し、曲面を有する形状に熱成形する工程とを有する、請求項8~12のいずれか1項に記載の曲面付き液晶ディスプレイ保護板の製造方法。
PCT/JP2021/016367 2020-04-24 2021-04-22 液晶ディスプレイ保護板、並びに、曲面付き液晶ディスプレイ保護板とその製造方法 WO2021215515A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21793087.4A EP4141525A4 (en) 2020-04-24 2021-04-22 LIQUID CRYSTAL DISPLAY PROTECTIVE PLATE, CURVED SURFACE MOUNTED LIQUID CRYSTAL DISPLAY PROTECTIVE PLATE AND METHOD OF MANUFACTURING SAME
JP2022517103A JPWO2021215515A1 (ja) 2020-04-24 2021-04-22
CN202180029785.3A CN115485611A (zh) 2020-04-24 2021-04-22 液晶显示器保护板、以及带曲面液晶显示器保护板及其制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-077644 2020-04-24
JP2020077644 2020-04-24
JP2020-216445 2020-12-25
JP2020216445 2020-12-25

Publications (1)

Publication Number Publication Date
WO2021215515A1 true WO2021215515A1 (ja) 2021-10-28

Family

ID=78269289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/016367 WO2021215515A1 (ja) 2020-04-24 2021-04-22 液晶ディスプレイ保護板、並びに、曲面付き液晶ディスプレイ保護板とその製造方法

Country Status (4)

Country Link
EP (1) EP4141525A4 (ja)
JP (1) JPWO2021215515A1 (ja)
CN (1) CN115485611A (ja)
WO (1) WO2021215515A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022131014A1 (ja) * 2020-12-18 2022-06-23 三菱瓦斯化学株式会社 樹脂組成物、平板状成形体、多層体、成形品および成形品の製造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003231785A (ja) 2002-02-13 2003-08-19 Denki Kagaku Kogyo Kk 熱可塑性樹脂組成物
JP2004299199A (ja) 2003-03-31 2004-10-28 Sumitomo Chem Co Ltd 耐擦傷性樹脂板及びそれを用いた携帯型情報端末の表示窓保護板
JP2005091825A (ja) * 2003-09-18 2005-04-07 Nippon Zeon Co Ltd 偏光分離シート及び輝度向上フィルム
JP2006103169A (ja) 2004-10-06 2006-04-20 Mitsubishi Gas Chem Co Inc 液晶ディスプレーカバー用ポリカーボネート樹脂積層体
JP2008224829A (ja) * 2007-03-09 2008-09-25 Nippon Zeon Co Ltd 積層フィルム
JP2010085978A (ja) 2008-09-03 2010-04-15 Sumitomo Chemical Co Ltd 液晶ディスプレイ保護板
US20110013346A1 (en) * 2009-07-17 2011-01-20 Jun-Hwan Ju Display apparatus
JP2017125112A (ja) * 2016-01-13 2017-07-20 株式会社クラレ 芳香族ビニル系共重合体を含有する樹脂組成物
JP2018103518A (ja) 2016-12-27 2018-07-05 三菱瓦斯化学株式会社 透明樹脂積層体
JP2020077644A (ja) 2020-01-29 2020-05-21 デクセリアルズ株式会社 熱硬化型異方性導電フィルム、接続方法、及び接合体

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3422474B2 (ja) * 1999-05-19 2003-06-30 日東電工株式会社 偏光導光板及び偏光面光源
JP2005031557A (ja) * 2003-07-10 2005-02-03 Nitto Denko Corp ノルボルネン系光学補償フィルムとその製造方法
JP4068120B2 (ja) * 2005-10-07 2008-03-26 旭化成ケミカルズ株式会社 光学補償フィルム
CN104956243B (zh) * 2013-02-04 2017-07-28 日本瑞翁株式会社 叠层相位差膜及其制造方法
JPWO2015098980A1 (ja) * 2013-12-27 2017-03-23 株式会社カネカ 光学用熱可塑性樹脂、および成形体
JP6655528B2 (ja) * 2016-01-05 2020-02-26 富士フイルム株式会社 偏光板および液晶表示装置
JP7216700B2 (ja) * 2018-02-13 2023-02-01 株式会社クラレ 積層シートとその製造方法、及び保護カバー付きディスプレイ
JP2019197181A (ja) * 2018-05-11 2019-11-14 住友化学株式会社 偏光板および表示装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003231785A (ja) 2002-02-13 2003-08-19 Denki Kagaku Kogyo Kk 熱可塑性樹脂組成物
JP2004299199A (ja) 2003-03-31 2004-10-28 Sumitomo Chem Co Ltd 耐擦傷性樹脂板及びそれを用いた携帯型情報端末の表示窓保護板
JP2005091825A (ja) * 2003-09-18 2005-04-07 Nippon Zeon Co Ltd 偏光分離シート及び輝度向上フィルム
JP2006103169A (ja) 2004-10-06 2006-04-20 Mitsubishi Gas Chem Co Inc 液晶ディスプレーカバー用ポリカーボネート樹脂積層体
JP2008224829A (ja) * 2007-03-09 2008-09-25 Nippon Zeon Co Ltd 積層フィルム
JP2010085978A (ja) 2008-09-03 2010-04-15 Sumitomo Chemical Co Ltd 液晶ディスプレイ保護板
US20110013346A1 (en) * 2009-07-17 2011-01-20 Jun-Hwan Ju Display apparatus
JP2017125112A (ja) * 2016-01-13 2017-07-20 株式会社クラレ 芳香族ビニル系共重合体を含有する樹脂組成物
JP2018103518A (ja) 2016-12-27 2018-07-05 三菱瓦斯化学株式会社 透明樹脂積層体
JP2020077644A (ja) 2020-01-29 2020-05-21 デクセリアルズ株式会社 熱硬化型異方性導電フィルム、接続方法、及び接合体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4141525A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022131014A1 (ja) * 2020-12-18 2022-06-23 三菱瓦斯化学株式会社 樹脂組成物、平板状成形体、多層体、成形品および成形品の製造方法

Also Published As

Publication number Publication date
CN115485611A (zh) 2022-12-16
EP4141525A1 (en) 2023-03-01
JPWO2021215515A1 (ja) 2021-10-28
EP4141525A4 (en) 2024-05-15

Similar Documents

Publication Publication Date Title
US9535202B2 (en) Multilayer retardation film and method for producing same
JP5104373B2 (ja) 位相差板の製造方法
JP6864671B2 (ja) 押出樹脂板の製造方法及び耐擦傷性層付き押出樹脂板の製造方法
JPWO2008136346A1 (ja) 表示画面用保護フィルムおよび偏光板
WO2006051784A1 (ja) 反射防止フィルム、偏光板およびディスプレイ
JP6926088B2 (ja) 押出樹脂板の製造方法及び押出樹脂板
JP6542780B2 (ja) 液晶ディスプレイ保護板の製造方法
WO2012090791A1 (ja) 位相差フィルム積層体及び位相差フィルム積層体の製造方法
JP6997771B2 (ja) 押出樹脂板とその製造方法
WO2021215515A1 (ja) 液晶ディスプレイ保護板、並びに、曲面付き液晶ディスプレイ保護板とその製造方法
JP7045944B2 (ja) 防眩性保護板
JP7537931B2 (ja) 液晶ディスプレイ保護板、並びに、曲面付き液晶ディスプレイ保護板とその製造方法
WO2021251355A1 (ja) 液晶ディスプレイ保護板、曲面付き液晶ディスプレイ保護板、及びこれらの製造方法
JP2012150462A (ja) 位相差フィルム及び位相差フィルムの製造方法
WO2021095794A1 (ja) 液晶ディスプレイ保護板
WO2021117788A1 (ja) 液晶ディスプレイ保護板
WO2016002665A1 (ja) 光学フィルム及びその製造方法
JP7574291B2 (ja) 液晶ディスプレイ保護板、曲面付き液晶ディスプレイ保護板、及びこれらの製造方法
JP5541273B2 (ja) 位相差板の製造方法
WO2011018945A1 (ja) 位相差板及びその製造方法並びに液晶表示装置
JP7150016B2 (ja) 押出樹脂板とその製造方法、及び積層板
JP2013200408A (ja) 位相差板及びその製造方法
CN117999160A (zh) 挤出树脂层叠膜及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21793087

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022517103

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021793087

Country of ref document: EP

Effective date: 20221124

NENP Non-entry into the national phase

Ref country code: DE