WO2021213178A1 - 用于晶体生长过程中温度控制的方法和系统 - Google Patents

用于晶体生长过程中温度控制的方法和系统 Download PDF

Info

Publication number
WO2021213178A1
WO2021213178A1 PCT/CN2021/085533 CN2021085533W WO2021213178A1 WO 2021213178 A1 WO2021213178 A1 WO 2021213178A1 CN 2021085533 W CN2021085533 W CN 2021085533W WO 2021213178 A1 WO2021213178 A1 WO 2021213178A1
Authority
WO
WIPO (PCT)
Prior art keywords
heater
power
crystal growth
heaters
thermal
Prior art date
Application number
PCT/CN2021/085533
Other languages
English (en)
French (fr)
Inventor
黄末
刘林艳
高海棠
陈翼
刘奇
王双丽
Original Assignee
徐州鑫晶半导体科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 徐州鑫晶半导体科技有限公司 filed Critical 徐州鑫晶半导体科技有限公司
Priority to JP2022563378A priority Critical patent/JP2023522906A/ja
Priority to US17/913,173 priority patent/US20230110359A1/en
Priority to KR1020227038600A priority patent/KR20220157506A/ko
Publication of WO2021213178A1 publication Critical patent/WO2021213178A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/203Controlling or regulating the relationship of pull rate (v) to axial thermal gradient (G)
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/206Controlling or regulating the thermal history of growing the ingot
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/22Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Definitions

  • the present disclosure generally relates to a method and system for temperature control in the crystal growth process, and more specifically, to a method and system for controlling the axial temperature gradient at the solid-liquid interface by adjusting the power of the heater during the crystal growth process .
  • the ratio of the axial temperature gradient at the interface must be controlled within a certain range. In other words, in order to eliminate crystal defects caused by single crystal growth during the crystal growth process, the ratio V/G of the crystal growth rate to the axial temperature gradient at the solid-liquid interface must be controlled within a certain range.
  • the crystal growth rate can be set by the program, but the axial temperature gradient of the crystal at the solid-liquid interface cannot be directly obtained by measurement methods. Therefore, other measurement methods must be developed to obtain this value in an indirect way, so that the crystal growth process can be monitored and controlled in real time.
  • CN 108754599A discloses a silicon single crystal growth temperature control method based on finite element numerical simulation. It solves the problem that the silicon single crystal growth control method in the prior art cannot satisfy the crystal temperature control and causes crystal dislocation defects.
  • finite element simulation analysis is too computationally expensive, and it only simulates crystals within a certain axial range.
  • the heat source is only distributed in the axial range, which is quite different from the actual crystal growth environment, and is not suitable for direct temperature control in actual crystal growth.
  • CN 100374628C discloses a method for producing a silicon single crystal, which comprises: pulling out a single crystal from a melt held in a rotating crucible according to the Zokolassky method, and the single crystal is grown at a growth crystal surface; Rotate the single crystal and the crucible in the same direction, and supply heat to the center of the growth crystal plane through a heat source acting on the center of the growth crystal plane, so that more heat reaches the center of the growth crystal plane per unit time than reaches the periphery of the center. The heat in the edge area of the growing crystal surface.
  • the silicon single crystal production method in this invention does not elaborate on how to adjust the power of each heater.
  • the present disclosure provides a method for temperature control in the crystal growth process, including: continuously adjusting the power of each heater and using software to simulate to calculate the corresponding heat at the solid-liquid interface and its vicinity. Field; the thermal field is coupled with the moving grid to determine whether both the solid-liquid interface and the total thermal energy reach thermal equilibrium; the power of each heater that makes the solid-liquid interface and the total thermal energy reach thermal equilibrium is stored and based on the respective heating The power of the heater is used to draw the heat balance diagram; and the power of each heater is selected from the drawn heat balance diagram during the crystal growth process to control the temperature gradient at the solid-liquid interface.
  • the method further includes maintaining the position of the molten broth unchanged by continuous feeding during the crystal growth process.
  • selecting the power of each heater from the drawn heat balance diagram during the crystal growth process includes: selecting each heater that satisfies the conditions for growing a perfect crystal from the drawn heat balance diagram during the crystal growth process.
  • the method further includes determining the crystal growth rate in real time during the crystal growth process.
  • the thermal balance diagram is a plurality of thermal balance diagrams corresponding to multiple crystal growth speeds
  • selecting the power of each heater from the drawn thermal balance diagram during the crystal growth process includes: During the crystal growth process, the power of each heater is selected from the heat balance maps corresponding to the real-time determined crystal growth speed from the plurality of heat balance maps.
  • determining the crystal growth rate in real time includes using a sensor to detect the crystal growth rate in real time.
  • determining the crystal growth rate in real time includes retrieving a preset crystal growth rate from a device associated with crystal growth.
  • continuously adjusting the power of each heater includes adjusting two or three different heaters selected from the group consisting of side heaters, bottom heaters, and upper heaters at predetermined intervals or randomly Power.
  • continuously adjusting the power of each heater includes setting the power of one heater selected from the group consisting of a side heater, a bottom heater, and an upper heater to each of a predetermined number of values , And adjust the power of the other two heaters in the group at predetermined intervals or randomly for it.
  • the power of a set of heaters is randomly selected from the power of the multiple sets of heaters to compare The temperature gradient at the solid-liquid interface is controlled, or the power of a group of heaters that is closest to the current power of each heater is selected from the powers of the multiple sets of heaters to control the temperature at the solid-liquid interface Control the temperature gradient at the solid-liquid interface by selecting the power of the following group of heaters from the power of the multiple groups of heaters: After controlling the heaters according to it, the thermal field distribution of the system It is closest to the current thermal field distribution.
  • the form of the thermal balance diagram is a table storing the power of multiple sets of heaters that meet the thermal balance conditions.
  • the form of the heat balance diagram is a graph formed by connecting the powers of multiple groups of heaters that satisfy the heat balance condition.
  • two of the power of the side heater, the power of the bottom heater, and the power of the upper heater are in a linear relationship, and during the crystal growth process, according to the The linear relationship adjusts the two of the power of the side heater, the power of the bottom heater, and the power of the upper heater.
  • the present disclosure also provides a system for temperature control in the crystal growth process, including: a single crystal growth furnace, which includes a heater and a continuous feeder for keeping the position of the molten broth unchanged; a processor; and a memory , There are instructions stored thereon, and when executed, the instructions cause the processor to execute the method for temperature control in the crystal growth process described in the present disclosure; and a controller: it and the single crystal growth furnace, wherein The heater, continuous feeder and storage are coupled to control them.
  • the system further includes a sensor for real-time detection of crystal growth speed.
  • the power of each heater can be directly selected according to the pre-obtained heat balance diagram to control it so that the crystal can be grown.
  • the crystal growth rate can be determined in real time, and the power of each heater can be selected to control the power of each heater directly according to the heat balance maps corresponding to the determined crystal growth rate in a plurality of heat balance maps related to the crystal growth rate.
  • Grow crystals Furthermore, the power of each heater that satisfies the conditions for growing perfect crystals can be selected from the heat balance diagram so that perfect crystals without crystal defects can be grown.
  • the power of each heater can be directly controlled according to the pre-calculated heat balance diagram, thereby controlling the temperature gradient at the solid-liquid interface. So as to avoid calculating the power of each heater through the experimental site in actual production. In addition, the amount of calculation is greatly reduced and the power of each heater can be quickly and efficiently controlled, thereby improving the quality of the grown crystal.
  • Fig. 1 illustrates a system for temperature control in a crystal growth process according to an embodiment
  • FIG. 2 illustrates a schematic diagram of the flow direction of heat generated by each heater during the crystal growth process according to an embodiment
  • Figure 3 illustrates a flowchart of a method for temperature control in a crystal growth process according to an embodiment
  • Figure 4 illustrates a heat balance diagram obtained according to the results of the embodiment
  • 5A-5D illustrate the selection of the power of each heater that satisfies the growth perfect crystal condition according to an embodiment.
  • FIG. 1 illustrates a system 100 for temperature control in a crystal growth process according to an embodiment.
  • the system 100 includes a processor, a memory, a controller, and a single crystal growth furnace.
  • the processor in the system 100 represents a processing unit that can execute an operating system (OS) and applications.
  • the processor may include one or more individual processors. Each individual processor may include a single processing unit, a multi-core processing unit, or a combination.
  • the processing unit may be a main processor such as a CPU (Central Processing Unit), a peripheral processor such as a GPU (Graphics Processing Unit), or a combination.
  • the memory in the system can include different memory types, such as volatile memory and non-volatile memory.
  • Volatile memory may include dynamic volatile memory, such as DRAM (Dynamic Random Access Memory) or some variants, such as Synchronous DRAM (SDRAM).
  • Non-volatile memory devices are block addressable memory devices, such as NAND or NOR technology. Therefore, memory devices may also include non-volatile devices developed in the future, such as three-dimensional cross-point memory devices, other byte-addressable non-volatile memory devices, or use chalcogenide phase change materials (for example, chalcogenide Compound glass) memory devices.
  • the memory and the processor in the system 100 may be communicatively coupled wirelessly or wiredly.
  • the memory in the system 100 may store computer readable instructions and data.
  • the controller in the system 100 may include a controller circuit or device for one or more memories of the system 100 and a controller circuit and device for controlling a single crystal growth furnace.
  • the memory controller can access the memory, and the memory controller can generate the control logic of the memory access command in response to the execution of the operation of the processor.
  • the controller circuit and device for controlling the single crystal growth furnace includes one or more sub-controller circuits and devices, which are used to control such as crystal growth speed (V), heater power (for example, side heater power, upper The power of the heater and the power of the bottom heater), the cooling rate of the crystal, the replenishment amount and replenishment rate of the molten soup, etc.
  • the controller in the system 100 is wirelessly or wiredly coupled with the processor and the memory, so that the controller can be controlled by the processor to perform corresponding control. It should be pointed out that although not shown in FIG. 1, any two or more of the processor, memory, controller, and single crystal growth furnace in the system 100 can be coupled together electrically or mechanically as required .
  • the single crystal growth furnace described in FIG. 1 is a single crystal growth furnace that uses the CCZ method (continuous Czochralski method) to grow single crystals.
  • CCZ method continuous Czochralski method
  • the method and system for temperature control during crystal growth described herein are not limited to the Czochralski method for growing single crystals.
  • the method described herein can be adapted to other methods for growing single crystals such as the FZ method, which still falls within the scope of the present invention.
  • the CCZ single crystal growth furnace shown in Figure 1 includes a low thermal conductivity insulation layer 9, a graphite support 10, a heat shield (or called a deflector) 6, a cooling component 4, a continuous feeder 11, a molten soup 8,
  • the electrode pin 5 the upper heater 3, the side heater 1, the bottom heater 2, and the crystal rod 7 that is pulled out.
  • the power of the upper heater 3, the side heater 1, and the bottom heater 2 are respectively configured to generate appropriate heat to maintain the molten broth.
  • the positions of the upper heater 3, the side heater 1, and the bottom heater 2 in FIG. 1 are schematic, and it does not mean that the upper heater 3 must be located at the uppermost part of the single crystal growth furnace.
  • the bottom heater 2 is not necessarily located at the bottom of the single crystal growth furnace.
  • the positions of the upper heater 3, the side heater 1, and the bottom heater 2 in FIG. 1 are relative.
  • only a pair of upper heaters 3, a pair of side heaters 1, and a pair of bottom heaters 2 are shown in FIG. 1 for the purpose of explanation.
  • any number of upper heaters 3, side heaters 1 and bottom heaters 2 can be included in the single crystal growth furnace.
  • one or both of the upper heater 3, the side heater 1 and the bottom heater 2 may be omitted.
  • the upper heater 3, the side heater 1 and the bottom heater 2 may be the same or different types of heaters, and they may have the same or different heating power ranges.
  • the thermal insulation layer 9 with low thermal conductivity can be made of known traditional thermal insulation materials such as graphite and carbon felt, and new thermal insulation materials such as vacuum plates and aerogel felt.
  • the low thermal conductivity insulation layer 9 makes the heat generated by each heater mainly concentrate in the molten bath, thereby increasing the heat utilization efficiency.
  • the heat shield 6 may include multiple layers, such as an outer heat shield layer, an inner heat shield layer, and a middle insulation layer, so as to reduce heat loss.
  • each heater is turned on and its power is adjusted.
  • the molten soup 8 is made to pull out the crystal rod 7 while rotating.
  • the cooling part 4 is switched on to keep the pulled crystal rod 7 below the melting point of the crystal and will not be heated and melted again.
  • the cooling part 4 (for example, water) may be continuously circulating, so that there is always a cooling part 4 with an extremely low temperature (for example, 0° C.) to cool the ingot 7.
  • the cooling component 4 can also adopt any other known and future-developed cooling methods, such as air cooling.
  • the continuous feeder 11 continuously adds molten broth, pellets or small block materials 8 to the single crystal growth furnace.
  • the amount of molten broth added by the continuous feeder 11 at a time or at intervals can be automatically controlled via an automatic control method known in the industry (such as a PID method) to maintain a substantially constant molten broth level position.
  • the single crystal growth furnace may also include other components, such as, but not limited to, a magnetic component used to generate a magnetic field to increase the temperature gradient, a component used to control the rotation speed of the molten bath, and a measurement Sensors for crystal growth rate and molten bath level, etc.
  • the success of single crystal growth and the level of quality are determined by the temperature distribution of the thermal field.
  • a thermal field with appropriate temperature distribution not only grows smoothly, but also has high quality; if the temperature distribution of the thermal field is not very reasonable, various defects are likely to occur during the process of growing single crystals, which affects the quality, and the phenomenon of serious crystallization occurs. No single crystal can be grown. Therefore, during the crystal growth process, the most reasonable thermal field must be configured according to the growth equipment to ensure the quality of the single crystal produced.
  • a temperature gradient is generally used to describe the temperature distribution of the thermal field, and the temperature gradient at the solid-liquid interface is the most critical.
  • FIG. 2 illustrates a schematic diagram of the flow direction of heat generated by each heater during the crystal growth process according to an embodiment.
  • the upper heater is located below the heat shield 6, as shown in Fig. 1.
  • the upper heater located below the heat shield 6 may mean that the upper heater is located directly below the heat shield 6, or below or below the side in the wrapping device. Alternatively, there is no upper heater and only the side heater and the bottom heater are used. It can be seen from Fig. 2 that the heat B generated by the bottom heater flows upward through the crucible containing the molten broth and is conducted into the molten broth. The heat A generated by the side heater is conducted to the molten soup through the crucible wall in the radial direction.
  • the heat F generated by the upper heater located below the heat shield 6 is conducted to the interface of the crystal rod.
  • the part D of the heat in the molten soup is transferred to the crystal rod via the solid-liquid interface.
  • the other part of C is conducted to the single crystal growth furnace through the molten bath surface.
  • a part of the heat conducted to the ingot E is then diffused into the single crystal growth furnace through the surface of the ingot.
  • the present disclosure continuously adjusts the power of each heater and uses CGSIM software to simulate and calculate the corresponding thermal field, from which the power of each heater that meets the thermal balance condition is selected to draw a thermal balance diagram.
  • the power of each heater can be controlled directly according to the obtained heat balance diagram.
  • FIG. 3 illustrates a flowchart of a method for temperature control in a crystal growth process according to an embodiment.
  • the idea of this method is to continuously change the power of the side heater, the power of the upper heater and the power of the bottom heater, and use software to simulate and calculate the corresponding solid-liquid interface and the thermal field distribution in the vicinity of the single crystal growth furnace; From all the combinations of the power of the side heater, the power of the upper heater, and the power of the bottom heater, a combination of the power of each heater that satisfies the thermal balance condition is selected, and a thermal balance diagram is drawn based on it.
  • the method includes setting the power of the side heater to a certain value, and continuously changing the power of the upper heater and the power of the bottom heater for it, wherein the upper heating can be traversed at a certain interval within a certain range.
  • the power of the heater and the power of the bottom heater can also be randomly changed by the software within a certain range to a predetermined amount; then the power of the side heater is set to another value, The above process is repeated until the power of the corresponding upper heater and the power of the bottom heater are calculated for all the predetermined number of side heaters to satisfy the thermal balance condition.
  • the method may also include setting the power of the upper heater or the power of the bottom heater, while continuously changing the power of the other two heaters, while the other steps remain unchanged.
  • the "thermal balance diagram" mentioned in the present disclosure means all combinations of the power of the upper heater, the power of the bottom heater, and the power of the side heater that satisfy the thermal balance condition.
  • the heat balance diagram may be a point, line, surface or volume in a three-dimensional space with the power of the upper heater, the power of the bottom heater, and the power of the side heater as the coordinate axis, respectively.
  • the thermal balance diagram is in the form of a table, and the table records all combinations of the power of the upper heater, the power of the bottom heater, and the power of the side heater that meet the thermal balance conditions.
  • the thermal balance diagram may be a plurality of thermal balance diagrams related to the crystal growth rate V.
  • the method disclosed herein further includes directly selecting the power of each heater according to the thermal balance diagram during the crystal growth process and controlling the axial temperature gradient at the solid-liquid interface accordingly.
  • a thermal balance diagram corresponding to the current crystal growth rate may be selected from multiple thermal balance diagrams related to the crystal growth rate, and the heat balance diagram at the solid-liquid interface can be controlled based on it. Axial temperature gradient.
  • step 102 the geometric structure of related components in the single crystal growth furnace is drawn, including, for example, the shape and size of the crucible containing the molten soup, the drawn crystal rod, and the like. It should be noted that the present disclosure is suitable for growing crystals of any desired size, including, for example, 4 inches, 6 inches, 8 inches, and 12 inches.
  • step 104 materials and parameters are set, including setting the material, specific heat capacity, density, etc. of the single crystal to be grown.
  • the method for controlling the power of each heater in a single crystal growth furnace disclosed in the present disclosure is not only suitable for the process of growing single crystal silicon, but also suitable for the process of growing other single crystals (such as sapphire). Power is controlled.
  • the method disclosed in the present disclosure is not limited to growing a single crystal at a specific crystal plane, but can be applied to growing a single crystal at any crystal plane.
  • step 106 the governing equation and boundary conditions are established.
  • the basic model is two-dimensional axisymmetric, that is to say, the temperature change at the position around the crystal that is axisymmetric is zero, as shown in formula (1).
  • the thermal field and the flow field are coupled to calculate.
  • the heat source of the thermal field is each heater, which generates heat energy Q in the form of heat conduction (Equation (2)) generates resistance heat. The resistance heat is transferred to the entire model through the boundary equation of face-to-face thermal radiation.
  • the boundary equations include the following formulas: crystal surface (formula (3)), molten bath level (formula (4)), and other surfaces (formula (5)). Each solid and fluid transfer heat energy inside the object through heat conduction (Equation (6)). The periphery of the model is used for heat dissipation of the runner, assuming that it maintains a constant temperature of 300K (formula (7)).
  • step 110 the power of the side heater is adjusted and the thermal field is solved.
  • the power of each heater including the power of the side heater, the power of the upper heater, and the power of the bottom heater
  • the power of each heater can be set and Solve the corresponding thermal field at the solid-liquid interface and its vicinity, and when it runs to step 110 again, perform the steps of adjusting the power of the side heater and solving the corresponding thermal field at the solid-liquid interface and its vicinity .
  • the continuous feeder 11 continuously adds the molten stock 8 to the single crystal growth furnace, the molten stock in the crucible is maintained at a certain amount.
  • the moving boundary involves the stefan problem.
  • the solid-liquid equation and the surface equation can be established, and the setting value of the ambient temperature can be obtained through repeated iterations.
  • the thermal field and the flow field are coupled with each other through the energy equation (formula (8)), and the solution is solved by iterating through the boundary equation (stefan), the overall thermal energy Q and the crystal growth rate V at step 112.
  • the thermal field at the solid-liquid interface and its vicinity can set a limit on the number of iterations, and the method proceeds to step 122 if the limit is exceeded and the convergence cannot be achieved.
  • step 116 After solving the coupled balance of the thermal field and the flow field of the complete body model, at step 116, it is determined whether the calculation has converged. If the convergence value is not obtained, the method proceeds to step 122 to modify the mesh and set a new convergence condition. If the convergence value is calculated, the temperature field distribution and velocity field distribution are obtained. The shape and power distribution of the solid-liquid interface can also be obtained. Then the method proceeds to step 118 to determine whether both the solid-liquid interface and the total thermal energy have reached equilibrium. If it is determined in step 118 that both the solid-liquid interface and the total thermal energy are in equilibrium, the method proceeds to step 120, the power of each heater is stored, and the result is analyzed.
  • the obtained power of each heater may be stored in the memory in the system 100 in the form of a table.
  • the power of the obtained multiple heaters can be analyzed, and the law of the power of each heater that meets the thermal balance conditions can be counted, including the power range of each heater and the power of each heater.
  • the statistics and analysis of the results may be performed in the processor in the system 100, or may be performed on other computing devices outside the system 100. In other embodiments, statistics and analysis of the results may use data analysis methods and models commonly used in statistics including machine learning.
  • the statistics and analysis of the results include recording the thermal field distribution of the solid-liquid interface and its vicinity corresponding to the power of each heater that meets the thermal equilibrium conditions of the system, including the corresponding
  • the axial temperature gradient at the solid-liquid interface includes the temperature gradient Ge at the edge along the radial direction of the crystal and the temperature gradient Gc at the center.
  • any one of the side heater, the upper heater, and the bottom heater may be omitted.
  • Fig. 4 illustrates a heat balance diagram obtained according to the results of the embodiment.
  • the power of the side heater is set to 10, 30, 50, 70, 90 kW, and the power of the upper heater and the power of the side heater are constantly changed to calculate the heat balance map.
  • the power of the side heater is set to 10KW
  • the power of the upper heater and the power of the bottom heater are adjusted so that both the solid-liquid interface and the total thermal energy reach thermal equilibrium.
  • the power of the upper heater and the power of the bottom heater are plotted on the horizontal and vertical planes respectively, and the points satisfying the thermal balance conditions are drawn and connected as a line, as shown by the line A in FIG. 4.
  • the other B, C, D, and E lines can be derived.
  • the lines A, B, C, D, and E are substantially parallel straight lines.
  • the power of the upper heater and the power of the bottom heater satisfying the thermal balance condition have a linear relationship.
  • Constantly adjust the power of the side heater to obtain the heat balance area as shown in Figure 4, the area enclosed by the dotted line in the lower left corner.
  • crystals can be grown smoothly.
  • the boundary of the heat balance area is inferred from the distribution trend of many points that meet the heat balance conditions calculated in the heat balance diagram.
  • the boundary surrounding the heat balance area is composed of four dashed lines.
  • the dotted line that coincides with the abscissa axis indicates that the power of the upper heater is zero.
  • the dotted line that coincides with the ordinate axis indicates that the power of the bottom heater is zero.
  • the area beyond the uppermost dotted line (which overlaps with the condensation line indicated by the solid line) continues to extend is the condensation area.
  • the top dashed part is diagonally upward. This means that the larger the power of the side heater (i.e., the closer to the lower left of the thermal balance area), the lower the power of the extreme bottom heater that satisfies the thermal balance condition. This is also in line with the experience of adjusting the power of each heater during the actual crystal growth process.
  • the dotted line on the far right indicates that the power of the side heater is zero. Since the side heater is the main heater and supports the energy source for the entire system, the continuation of the dashed part beyond the rightmost side will also cause condensation to occur, and the condensation starts from the side.
  • the present disclosure fixes the heater power to 10KW, when the side heater When the power is 10, 30, 50, 70, and 90 kW, the power of the bottom heater that meets the thermal balance condition is simulated and calculated according to the method shown in Figure 3, respectively.
  • the power of the side heater, the power of the bottom heater, and the power of the upper heater that meet the thermal balance conditions are specifically 90-7-10, 70-30-10, 50-54-10, 30-77-10, 10- 102-10.
  • the power of the bottom heater in the combination of these powers and the result on the thermal balance diagram shown in Figure 4 ie, the horizontal line (not shown) where the power of the fixed heater is 10KW
  • the power of the bottom heater corresponding to the intersection of the lines C, D, and E (not shown) is basically the same. Therefore, in actual crystal growth, in order to grow crystals smoothly, the power of each heater can be selected or adjusted directly according to the thermal balance diagram, or it can be directly based on the power of each heater that achieves the thermal balance condition shown in the thermal balance diagram. (For example, linear) relationship to select or adjust the power of each heater.
  • the power of the side heater is set to 10, 30, 50, 70, 90 kW, and the power of the upper heater and the power of the bottom heater are constantly changed to calculate the heat balance diagram, but in other embodiments, the power of the side heater can be set to other values to continuously change the power of the upper heater and the power of the bottom heater to calculate the heat balance map. That is, there are other lines substantially parallel to the lines A, B, C, D, and E in the heat balance diagram shown in FIG. 4, and the points on them also satisfy the heat balance condition.
  • the heat balance diagram shown in Figure 4 was obtained when the crystal growth rate was 0.6 mm/min.
  • the crystal growth rate can be other values, and a similar thermal balance diagram can be obtained. Therefore, in one embodiment, the thermal balance diagram may be multiple thermal balance diagrams related to the crystal growth rate, and therefore, during the crystal growth process, the one corresponding to the current crystal growth rate can be selected from the multiple thermal balance diagrams. Heat balance diagram, and select the power of each heater from the heat balance diagram to control the heater. It should also be pointed out that although the thermal balance is shown as a thermal balance area in a two-dimensional plane and several lines with fixed power of the side heaters in FIG. 4 for the convenience of description.
  • the heat balance diagram may have other forms, such as the form of a table, the form of an object in a three-dimensional space with the power of each heater as the coordinate axis, such as a point, a line, a surface, and a volume.
  • the crystal growth rate V 0.4-0.8mm/min.
  • This range is the range of crystal growth speed that can be used to grow crystals stably, reliably and smoothly in most current crystal growth systems.
  • crystal growth rates can be higher, so that crystals can be grown faster and more efficiently.
  • FIGS. 5A to 5D how to further select the power of each heater satisfying the perfect crystal growth condition from the heat balance diagram shown in FIG. 4 that satisfies the heat balance condition of the system.
  • the computer simulation method shown in Figure 3 can be used to calculate the corresponding thermal field distribution and the corresponding axial temperature gradient Ge and the corresponding axial temperature gradient at the edge along the radial direction of the crystal.
  • the axial temperature gradient Gc at the center of the crystal.
  • the axial temperature gradients corresponding to the power of each group of heaters that meet the thermal equilibrium conditions recorded at step 120 in FIG. 3 can be directly retrieved from the memory, including Ge and Gc.
  • the conditions for growing perfect crystals can be satisfied at the same time, as shown in Fig. 5A.
  • the power of the side heater, the power of the bottom heater, and the power of the upper heater are respectively 30-80-8KW
  • the conditions for growing a perfect crystal can be satisfied at the same time, as shown in Fig. 5B.
  • the power of the side heater, the power of the bottom heater, and the power of the upper heater are respectively 50-70-1KW
  • the conditions for growing a perfect crystal can be satisfied at the same time, as shown in Fig. 5C.
  • the conditions for growing perfect crystals can be satisfied at the same time, as shown in Figure 5D.
  • perfect crystals can be grown.
  • one set of heater powers can be randomly selected from them, or the best set can be selected from them.
  • the power of the heater controls the temperature gradient at the solid-liquid interface.
  • the power of the optimal set of heaters may refer to the power of the set of heaters that is the closest to the current power of each heater as a whole, so that the power of each heater can be quickly changed. Adjust to the expected power.
  • the power of the optimal set of heaters refers to the power of the following set of heaters: after the heaters are controlled according to them, the thermal field distribution of the system (specifically, the solid-liquid interface The thermal field in its vicinity) is closest to the current thermal field distribution, so that when the current power of each heater is adjusted to the power of the group of heaters, the thermal field distribution of the system changes the least.
  • the power of the optimal set of heaters can meet other constraints.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开了一种用于晶体生长过程中温度控制的方法和系统。用于晶体生长过程中温度控制的方法包括:不断调整各个加热器的功率并利用软件进行模拟以计算相应的在固液界面及其邻近处的热场;使热场与移动网格耦合来确定固液界面和总热能二者是否都达到热平衡;存储使固液界面和总热能二者都达到热平衡的各个加热器的功率并基于所述各个加热器的功率来绘制热平衡图;以及在晶体生长过程中从所绘制的热平衡图中选择各个加热器的功率来对固液界面处的温度梯度进行控制。

Description

用于晶体生长过程中温度控制的方法和系统 技术领域
本公开内容一般地涉及用于晶体生长过程中温度控制的方法和系统,更具体地,涉及在晶体生长过程中通过调整加热器的功率来控制固液界面处的轴向温度梯度的方法和系统。
背景技术
随着半导体器件的关键尺寸越来越小,半导体厂对于半导体硅片的品质要求也越来越高,尤其是对于硅片的表面缺陷(LLS)、平坦度及表、体金属杂质的要求。为了降低硅片的表面缺陷数,硅片制造商试着通过控制硅单晶生长时的热历史来消除晶体生长时所产生的结晶缺陷,藉以降低表面缺陷数。至于在晶体生长过程中如何消除结晶缺陷,目前都以Voronkov提出的理论来解释。Voronkov提出,若是要在晶体生长过程中消除单晶生长所产生的结晶缺陷,则晶体在固液界面间的轴向温度梯度沿着径向需要保持一定的均匀性,并且晶体生长速度与固液界面处的轴向温度梯度的比值必须被控制在一定的范围内。换言之,为了在晶体生长过程中消除单晶生长所产生的结晶缺陷,晶体生长速度与固液界面处的轴向温度梯度的比值V/G必须被控制在一定的范围内。
然而,在实际的晶体生长过程中,晶体生长速度可以由程序设置,但是晶体在固液界面处的轴向温度梯度则无法藉由量测方法直接获得。因此,必须开发其他的量测方法,以间接的方式获得该值,使得在晶体的生长过程中,得以即时监控,并加以控制。
CN 108754599A公开了一种基于有限元数值模拟的硅单晶生长温度控制方法。其解决了现有技术中存在的硅单晶生长控制方法无法满足晶体温度控制、造成晶体位错缺陷的问题。然而,使用有限元仿真分析计算量太大,并且其仅就某一轴向范围内的晶体进行仿真。而且,热源仅分布在该轴向范围内,这与实际的晶体生长环境相差较大,不适合直接用于实际的晶体生长中的温度控制。
CN 100374628C公开了一种生产硅单晶的方法,包括:根据左科拉斯基法自保持在转动的坩埚中的熔体中抽拉出单晶,该单晶在一生 长结晶面处生长;同向转动该单晶和该坩埚,以及通过作用在生长结晶面中心的热源将热量供应至生长结晶面的中心,以使得每单位时间内到达生长结晶面中心的热量多于到达该中心周围的生长结晶面的边缘区域的热量。然而,该发明中的硅单晶生产方法没有详述如何调整各个加热器的功率。
因此,存在对于一种在实际晶体生长过程中能够大幅减少计算量并能够通过自动控制软件来实时调整各个加热器的功率从而控制固液界面处的轴向温度梯度的方法的需要。
发明内容
鉴于前述背景,本公开内容提供了一种用于晶体生长过程中温度控制的方法,包括:不断调整各个加热器的功率并利用软件进行模拟以计算相应的在固液界面及其邻近处的热场;使热场与移动网格耦合来确定固液界面和总热能二者是否都达到热平衡;存储使固液界面和总热能二者都达到热平衡的各个加热器的功率并基于所述各个加热器的功率来绘制热平衡图;以及在晶体生长过程中从所绘制的热平衡图中选择各个加热器的功率来对固液界面处的温度梯度进行控制。在一个实施例中,所述方法还包括在晶体生长过程中通过连续加料的方式保持熔汤液面位置不变。
在一个实施例中,其中,在晶体生长过程中从所绘制的热平衡图中选择各个加热器的功率包括:在晶体生长过程中从所绘制的热平衡图中选择满足生长完美晶体的条件的各个加热器的功率。在一个实施例中,其中,所述生长完美晶体的条件包括V/G=0.112-0.142mm 2/min·℃,优选地V/G=0.117-0.139mm 2/min·℃,并且Gc>=Ge,其中V表示晶体生长速度,G表示固液界面处的轴向温度梯度,Gc表示在晶体中心处的G,Ge表示在晶体边缘处的G。
在一个实施例中,所述方法还包括在晶体生长过程中实时确定晶体生长速度。在一个实施例中,其中,所述热平衡图是与多个晶体生长速度相对应的多个热平衡图,并且其中,在晶体生长过程中从所绘制的热平衡图中选择各个加热器的功率包括:在晶体生长过程中从所述多个热平衡图中与所述实时确定的晶体生长速度相对应的热平衡图中选择各个加热器的功率。在一个实施例中,其中,实时确定晶体生 长速度包括使用传感器实时检测晶体生长速度。在另一个实施例中,其中,实时确定晶体生长速度包括从与晶体生长相关联的设备中检索预先设置的晶体生长速度。
在一个实施例中,其中,不断调整各个加热器的功率包括按预定间隔或随机地调整选自包括侧加热器、底加热器和上加热器的组中的两个或三个不同的加热器的功率。在另一个实施例中,其中,不断调整各个加热器的功率包括设置选自包括侧加热器、底加热器和上加热器的组中的一个加热器的功率为预定数量的值中的每一个,而针对其按预定间隔或随机地调整所述组中的另外两个加热器的功率。
在一个实施例,其中,当热平衡图中存在多组满足热平衡条件的加热器的功率时,在晶体生长过程中,从所述多组加热器的功率中随机选择一组加热器的功率来对固液界面处的温度梯度进行控制,或者从所述多组加热器的功率中选择整体而言与当前的各个加热器的功率最接近的一组加热器的功率来对固液界面处的温度梯度进行控制,或者从所述多组加热器的功率中选择如下一组加热器的功率来对固液界面处的温度梯度进行控制:在根据其对加热器进行控制之后,系统的热场分布与当前的热场分布最接近。
在一个实施例中,其中,所述热平衡图的形式为存储多组满足热平衡条件的加热器的功率的表格。在一个实施例中,其中,所述热平衡图的形式是连接多组满足热平衡条件的加热器的功率而形成的图形。在一个实施例中,其中,在所述热平衡图中,侧加热器的功率、底加热器的功率和上加热器的功率中的两个呈线性关系,并且在晶体生长过程中,根据所述线性关系来调整侧加热器的功率、底加热器的功率和上加热器的功率中的所述两个。
本公开内容还提供了一种用于晶体生长过程中温度控制的系统,包括:单晶生长炉,其包括加热器和用于保持熔汤液面位置不变的连续加料器;处理器;存储器,其上存储有指令,所述指令在被执行时使所述处理器执行本公开内容中所述的用于晶体生长过程中温度控制的方法;以及控制器:其与单晶生长炉、其中的加热器、连续加料器以及存储器耦合以对它们进行控制。在一个实施例中,所述系统还包括用于实时检测晶体生长速度的传感器。
利用本公开内容公开的方法,在晶体生长过程中,可以直接根据 预先得到的热平衡图来选择各个加热器的功率以对其进行控制使得能够长出晶体。进一步地,可以实时确定晶体生长速度,并且直接根据与晶体生长速度相关的多个热平衡图中与所确定的晶体生长速度相对应的热平衡图来选择各个加热器的功率以对其进行控制使得能够长出晶体。更进一步地,可以从热平衡图中选择满足生长完美晶体条件的各个加热器的功率使得能够生长出没有晶体缺陷的完美晶体。照此,可以在晶体生长过程中,直接根据预先计算的热平衡图来控制各个加热器的功率,进而控制固液界面处的温度梯度。从而避免在实际生产中通过实验现场计算各个加热器的功率。并且大幅减少计算量并能够实现对各个加热器的功率的快速高效控制,从而提高生长的晶体的质量。
通过阅读以下详细描述连同附图,本公开内容的特征、方面和优点将是显而易见的,所述附图在以下被简要描述。本公开内容包括在本公开内容中所阐明的两个、三个、四个或更多特征或元素的任何组合,而无论这样的特征或元素是否被清楚地组合或以其他方式在本文中描述的特定示例实现方式中被记载。本公开内容意图被整体论地阅读使得本公开内容的任何可分离的特征或元素,在其各方面以及示例实现方式中任一个中,应当被视为可组合的,除非本公开内容的上下文清晰地另行规定。
附图说明
因而已经概括地描述了本公开内容,现在将参考附图,所述附图不一定是按比例绘制的,并且其中:
图1图示了根据实施例的用于晶体生长过程中的温度控制的系统;
图2图示了根据实施例的在晶体生长过程中各个加热器产生的热量的流动方向的示意图;
图3图示了根据实施例的用于晶体生长过程中的温度控制的方法的流程图;
图4图示了根据实施例的结果得到的热平衡图;
图5A-5D图示了根据实施例的满足生长完美晶体条件的各个加热器的功率的选择。
具体实施方式
如本文中所使用的,例如,单数形式“一”、“一个”和“该”等等包括复数参照对象,除非上下文另行清晰地规定。在本文中可以参考定量度量、值、关系等等。除非另行声明,否则任何一个或多个——如果不是这些中的全部的话——可以是绝对的或者近似的,以计及可出现的可接受的变化,诸如由于工程容差等等所致的那些。要指出的是,在本文中当使用序数词“第一”、“第二”或“第三”等来修饰某事物时,并不意指该事物在时间顺序上或者空间顺序上必然是“第一”、“第二”或“第三”的,而仅仅是为了描述的方便。另外,如果没有另行规定,则用序数词“第一”、“第二”或“第三”等描述的事物可以互换而不超出本公开内容的范围。还要指出的是,如本领域普通技术人员通常所理解的那样,本文中所使用的术语“完美晶体”或“无缺陷晶体”并不意指绝对完美的晶体或没有任何缺陷的晶体,而是容许存在极少量的一种或多种晶体缺陷,其不足以使晶体或结果得到的晶圆的某种电学或机械学特性产生大的变化以致使用其制成的电子器件的性能劣化。
现在将在下文中参考附图更充分地描述本公开内容的一些实现方式,在所述附图中示出本公开内容的一些而不是所有实现方式。事实上,本公开内容的各种实现方式可以用许多不同的形式被具体化并且不应当被解释为受限于本文中所阐明的实现方式;相反,提供这些示例实现方式是为了更好地把本公开内容的范围传达给本领域技术人员。
图1图示了根据实施例的用于晶体生长过程中的温度控制的系统100。所述系统100包括处理器、存储器、控制器和单晶生长炉。系统100中的处理器表示可以执行操作系统(OS)和应用的处理单元。处理器可以包括一个或多个单独的处理器。每个单独的处理器可以包括单个处理单元、多核处理单元或组合。该处理单元可以是诸如CPU(中央处理单元)的主处理器、诸如GPU(图形处理单元)的外围处理器或组合。系统中的存储器可以包括不同的存储器类型,诸如易失性存储器和非易失性存储器。易失性存储器可以包括动态易失性存储器,例如DRAM(动态随机存取存储器)或某些变体,诸如同步DRAM(SDRAM)。非易失性存储器设备是块可寻址存储器设备,诸如NAND或NOR技术。因此,存储器设备还可以包括未来开发的非易失性设备, 诸如三维交叉点型存储器设备、其他字节可寻址的非易失性存储器设备或使用硫族化合物相变材料(例如,硫族化合物玻璃)的存储器设备。系统100中的存储器和处理器可以无线地或有线地通信耦合。系统100中的存储器可以存储有计算机可读指令以及数据。所述指令在执行时使得系统100中的处理器执行本文中描述的用于在晶体生长过程中的温度控制的方法。系统100中的控制器可以包括用于系统100的一个或多个存储器的控制器电路或设备以及用于控制单晶生长炉的控制器电路和设备。存储器控制器可以访问存储器,并且存储器控制器可以响应于处理器的操作执行而生成存储器访问命令的控制逻辑。用于控制单晶生长炉的控制器电路和设备包括一个或多个子控制器电路和设备,其用于控制诸如晶体生长速度(V)、加热器的功率(例如,侧加热器的功率、上加热器的功率和底加热器的功率)、晶体的冷却速率以及熔汤的补给量和补给速率等。系统100中的控制器与处理器和存储器无线地或有线地耦合,使得控制器能够由处理器支配以执行相应的控制。要指出的是,虽然在图1中没有示出,但是系统100中的处理器、存储器、控制器和单晶生长炉中的任何两个或更多可以按需要电气地或者机械地耦合在一起。
在图1中描述的单晶生长炉是利用CCZ法(连续直拉法)生长单晶体的单晶生长炉。然而,要指出的是,本文中描述的用于在晶体生长过程中温度控制的方法和系统不限于直拉法生长单晶体。换言之,本文中描述的方法可以被适配以适用于诸如FZ法之类的其他用于生长单晶体的方法,这仍旧落入本发明的范围之内。图1中所示出的CCZ单晶生长炉包括低导热的绝热层9、石墨支撑件10、热屏(或者称为导流筒)6、冷却部件4、连续加料器11、熔汤8、电极脚5、上加热器3、侧加热器1、底加热器2以及提拉出的晶棒7。
在生长单晶体的过程中,上加热器3、侧加热器1、底加热器2的功率被分别配置以产生适当的热量来维持熔融状态的熔汤。图1中的上加热器3、侧加热器1、底加热器2的位置是示意性的,并不意味着上加热器3一定位于单晶生长炉的最上部。类似地,底加热器2也未必位于单晶生长炉的底部。换言之,图1中的上加热器3、侧加热器1、底加热器2的位置是相对而言的。此外,图1中仅示出一对上加热器3、一对侧加热器1和一对底加热器2以用于说明的目的。实际上,单晶 生长炉中可以包括任何数量的上加热器3、侧加热器1和底加热器2。在某些实施例中,上加热器3、侧加热器1和底加热器2中的一种或两种可以省略。另外,上加热器3、侧加热器1和底加热器2可以是相同或不同类型的加热器,并且它们可以具有相同或不同的加热功率范围。
低导热的绝热层9可以采用已知的诸如石墨、碳毡等的传统绝热材料,和诸如真空板和气凝胶毡之类的新型绝热材料制成。低导热的绝热层9使得各个加热器产生的热量主要集中在熔汤中,从而增加热量的利用效率。热屏6可以包括多个层,诸如外热屏层、内热屏层和中间的保温层,从而降低热量的损失。
在生长单晶体的过程中,接通各个加热器并调整各自的功率。使得熔汤8一边旋转一边牵拉出晶棒7。接通冷却部件4使得牵拉出的晶棒7维持在晶体的熔点以下而不至再受热熔化。冷却部件4(例如水)可以是不断循环流动的,使得总是有温度极低(例如0℃)的冷却部件4对晶棒7进行冷却。除了水冷之外或者与水冷相组合地,冷却部件4还可以采用其他已知的以及未来开发的任何冷却方式,例如风冷等。为了使熔汤8维持一定量,连续加料器11不断向单晶生长炉中添加熔汤、颗粒料或者小块状物料8。连续加料器11每次或每隔一段时间添加的熔汤的量可以经由工业上已知的自动控制方法(例如PID法)来被自动控制来维持基本不变的熔汤液面位置。虽然没有在图1中详细示出,但是单晶生长炉还可以包括其他组件,诸如但不限于用于产生磁场以提高温度梯度的磁性组件、用于控制熔汤旋转速度的组件以及用于测量晶体生长速度和熔汤液位的传感器等。
在直拉法生长单晶的过程中,单晶生长的成功与否以及质量的高低是由热场的温度分布决定的。温度分布合适的热场,不仅单晶生长顺利,而且品质较高;如果热场的温度分布不是很合理,生长单晶的过程中容易产生各种缺陷,影响质量,情况严重的出现变晶现象生长不出来单晶。因此在晶体生长过程中,一定要根据生长设备,配置出最合理的热场,从而保证生产出来的单晶的品质。在直拉单晶生长工艺中,一般采用温度梯度来描述热场的温度分布情况,其中在固液界面处的温度梯度最为关键。
图2图示了根据实施例的在晶体生长过程中各个加热器产生的热量流动方向的示意图。上加热器位于热屏6的下方,如图1中所示出 的那样。其中,上加热器位于热屏6的下方可以指上加热器位于热屏6的正下方,或者其包裹装置内的下方或侧下方等。或者也可以不存在上加热器而仅使用侧加热器与底加热器。从图2中可以看出,底加热器产生的热量B向上流动经过容纳熔汤的坩埚而传导到熔汤中。侧加热器产生的热量A沿径向通过坩埚壁传导到熔汤中。位于热屏6下方的上加热器产生的热量F向晶棒的界面传导。熔汤中的热量的部分D经由固液界面传导到晶棒中。另一部分C经由熔汤表面而传导到单晶生长炉中。并且传导到晶棒中的热量中的一部分E进而通过晶棒表面而扩散到单晶生长炉中。
为了模拟单晶生长炉中的热场分布,通常使用数值模拟的方法。数值模拟是在一个低成本的情况下,利用电脑计算提供的详尽资料,用以支持真正的(且昂贵)实验。由于数值模拟提供了一个近似真实的过程,利用这一技术可以很容易地对任何类型的变化(几何尺寸、保温材料、加热器、外围环境等)对晶体质量的影响做出容易的判断。用于对单晶炉的热场进行模拟的软件很多,包括但不限于面向过程的仿真软件FEMAG、CGSIM软件、COMSOL等。本公开内容通过不断调整各个加热器的功率并采用CGSIM软件进行模拟计算出相应的热场,从中选择满足热平衡条件的各个加热器的功率来绘制热平衡图。在实际的晶体生长过程中,可以直接依据所得到的热平衡图来控制各个加热器的功率。
图3图示了根据实施例的用于晶体生长过程中温度控制的方法的流程图。该方法的思想在于:不断改变侧加热器的功率、上加热器的功率和底加热器的功率并利用软件模拟计算单晶生长炉中相应的固液界面及其邻近处的热场分布;从侧加热器的功率、上加热器的功率和底加热器的功率的所有组合中选出满足热平衡条件的各个加热器的功率的组合,基于其来绘制热平衡图。在一个实施例中,该方法包括设置侧加热器的功率为某一值,针对其而不断改变上加热器的功率和底加热器的功率,其中可以在一定范围内按某一间隔遍历上加热器的功率和底加热器的功率,也可以由软件在某一范围内随机改变上加热器的功率和底加热器的功率达预定的数量;然后将侧加热器的功率设置为另一值,并重复上述过程,直到计算出针对所有预定数量的侧加热器的功率以满足热平衡条件的相应的上加热器的功率和底加热器的功 率为止。在另外的实施例中,该方法也可以包括设置上加热器的功率或底加热器的功率,而不断变化其余两种加热器的功率,而其他步骤不变。
本公开内容中提到的“热平衡图”意指满足热平衡条件的上加热器的功率、底加热器的功率和侧加热器的功率的所有组合。在一个实施例中,所述热平衡图可以是分别以上加热器的功率、底加热器的功率和侧加热器的功率为坐标轴的三维空间中的点、线、面或体。在一个实施例中,所述热平衡图以表格的形式,所述表格中记载着满足热平衡条件的上加热器的功率、底加热器的功率和侧加热器的功率的所有组合。在另外的实施例中,所述热平衡图可以是与晶体生长速度V相关的多个热平衡图。
在一个实施例中,本文公开的方法还包括在晶体生长过程中,直接根据热平衡图来选择各个加热器的功率并据此对固液界面处的轴向温度梯度进行控制。在另一个实施例中,可以基于当前的晶体生长速度,从与晶体生长速度相关的多个热平衡图中选择与当前的晶体生长速度相对应的热平衡图,并基于其来控制固液界面处的轴向温度梯度。
以下结合图3来详细描述所示方法的具体步骤。在步骤102中,绘制单晶生长炉中相关组件的几何结构,包括例如容纳熔汤的坩埚、牵拉出的晶棒等的形状和尺寸。要指出的是,本公开内容适用于生长任何所需尺寸的晶体,包括例如4英寸、6英寸、8英寸和12英寸等。在步骤104中,设置材料和参数,包括设置要生长的单晶体的材料、比热容、密度等。本公开内容公开的用于控制单晶生长炉中各个加热器的功率的方法不仅适合在生长单晶硅的过程中,也适合在生长其他单晶体(诸如蓝宝石等)的过程中对各个加热器的功率进行控制。此外,本公开内容中公开的方法不限于在特定结晶面处生长单晶体,而是可以适用于在任一结晶面处生长单晶体。
在步骤106中,建立统御方程和边界条件。在使用软件对单晶生长炉中的热场进行模拟时,假设基本模型是二维轴对称的,也就是说环绕晶体呈轴对称的位置的温度变化为零,如公式(1)所示。假设流体为不可压缩的牛顿流体,气体满足理想气体状态方程式,根据热传导理论与流体力学理论,使用热场与流场耦合计算,其中热场发热源为各个加热器,其产生热能Q以热传导形式(公式(2))产生电阻热。 所述电阻热通过面对面热辐射的边界方程式传递到整个模型中。所述边界方程式包括如下公式:晶体表面(公式(3))、熔汤液面(公式(4))、与其他表面(公式(5))。而各固体与流体都通过热传导在物体内部传递热能(公式(6))。模型外围用于流道散热,假设其保持定温300K(公式(7))。
Figure PCTCN2021085533-appb-000001
Figure PCTCN2021085533-appb-000002
Figure PCTCN2021085533-appb-000003
Figure PCTCN2021085533-appb-000004
Figure PCTCN2021085533-appb-000005
Figure PCTCN2021085533-appb-000006
T out=300K        (7)
此后,图3中的方法行进到步骤108,建立或者划分网格,例如通过本领域普通技术人员所熟知的方法。在步骤110处,调整侧加热器的功率并求解热场。在一个实施例中,在初次运行图3中的方法时,在步骤110处,可以设置各个加热器的功率(包括设置侧加热器的功率、上加热器的功率和底加热器的功率)并求解相应的在固液界面及其邻近处的热场,而当再次运行到步骤110处时,则执行调整侧加热器的功率并求解相应的在固液界面及其邻近处的热场的步骤。
虽然连续加料器11不断向单晶生长炉中添加熔汤8使得坩埚中的熔汤维持一定的量。然而,在实际晶体生长的过程中,晶棒与熔汤液面间的界面是动态变化的。该移动边界涉及到stefan问题。针对stefan边界问题,可以建立固液方程与面面方程,通过反复迭代求出环境温度设置值。在步骤114处,通过能量方程式(公式(8))使得热场与流场互相耦合,并通过在步骤112处经由边界方程式(stefan)与总体热能Q以及晶体生长速度V三者互相迭代来求解固液界面及其邻近处的热场。在步骤112处的反复迭代可以设置迭代次数限制,超过该限 制仍达不到收敛则方法进行到步骤122。
Figure PCTCN2021085533-appb-000007
求解完整体模型的热场与流场耦合平衡后,在步骤116处,判断计算是否收敛。如果没有得到收敛值,则方法进行到步骤122来修正网格并设置新的收敛条件。如果计算到收敛值,则得到温度场分布与速度场分布。同样也可以得到固液界面形状与功率分布。则方法进行到步骤118来判断固液界面和总热能二者是否都达到平衡。如果在步骤118处判断固液界面和总热能二者都达到平衡,则方法行进到步骤120处,存储各个加热器的功率,并对结果进行分析。在一个实施例中,在步骤120处,可以将得到的各个加热器的功率以表格的形式存储在系统100中的存储器中。在另一个实施例中,在步骤120处,可以对得到的多组加热器的功率进行分析,统计满足热平衡条件的各个加热器的功率的规律,包括各个加热器的功率的范围、当一个加热器的功率变化时其他加热器的功率变化的规律,包括线性变化、指数变化或者不相关的变化。在又一实施例中,对结果的统计和分析可以在系统100中的处理器中进行,也可以在系统100外部的其他计算设备上进行。在另外的实施例中,对结果的统计和分析可以利用包括机器学习在内的统计学中常用的数据分析方法和模型。在一个实施例中,在步骤120处,对结果的统计和分析包括记录与满足系统的热平衡条件的各个加热器的功率相对应的固液界面及其邻近处的热场分布,包括相对应的固液界面处的轴向温度梯度,其中包括沿着晶体的径向方向在边缘处的温度梯度Ge和在中心处的温度梯度Gc。如果在步骤118处,判断固液界面和总热能二者之一或都没有达到平衡,则重新调整上加热器的功率和底加热器的功率,再重复上述过程直到针对该侧加热器的功率按某一规则(例如按某一间隔或者随机地)遍历了预定范围或数量的上加热器的功率和底加热器的功率为止。此后,将侧加热器的功率设置为另一值,重复上述过程。
要指出的是,图3中的流程图的方法仅仅是示意性的,可以省略或多次执行所述方法中的某个或某些步骤。而且,要指出的是,图3中的流程图的方法仅仅是为了方便说明,而不是详尽的,其中的步骤 可以拆分成多个子步骤来执行,并且其中可以存在附加的步骤。另外,虽然图3中的流程图的方法设置侧加热器的功率为某些值而不断改变上加热器的功率和底加热器的功率来计算满足热平衡条件的各个加热器的功率,然而,在其他实施例中,也可以设定侧加热器的功率、上加热器的功率和底加热器的功率中的任何一个或者两个来不断改变其余的两个或者一个,进而计算满足系统的热平衡条件的各个加热器的功率。此外,在其他实施例中,也可以省略侧加热器、上加热器和底加热器中的任一个。
图4图示了根据实施例的结果得到的热平衡图。在本公开内容中,分别将侧加热器的功率设置为10、30、50、70、90KW,而不断改变上加热器的功率和侧加热器的功率来计算热平衡图。当侧加热器的功率设置为10KW时,调整上加热器的功率和底加热器的功率以使固液界面和总热能二者都达到热平衡。在分别以上加热器的功率和底加热器的功率为横纵坐标的平面中描绘出满足热平衡条件的点,并将其连接成线,如图4中的A线所示。依次类推得出其他B、C、D和E线。
从图4中可以看出,A、B、C、D、E线为基本上平行的直线。换言之,当设置侧加热器的功率为某一值时,满足热平衡条件的上加热器的功率和底加热器的功率呈线性关系。不断调整侧加热器的功率,得到热平衡区域,如图4中靠左下角的虚线所围成的区域。也就是说,当上加热器的功率和底加热器的功率在该热平衡区域中时,可以顺利长出晶体。要指出的是,实验中计算出的是满足热平衡条件的各加热器的功率的组合,即图4中所述热平衡区域中的用不同符号标记的点。而热平衡区域的边界是根据热平衡图中所计算出的许多满足热平衡条件的点所呈现的分布趋势而推断出的。包围所述热平衡区域的边界由四个虚线部分组成。与横坐标轴(即底加热器的功率)重合的虚线部分表示上加热器的功率为零。与纵坐标轴(即上加热器的功率)重合的虚线部分表示底加热器的功率为零。超过最上方的虚线部分(与用实线表示的凝结线重合)继续延伸的区域为凝结区域。表示上加热器的功率太大,但是底加热器的功率太低,因为温度过冷导致熔汤的能量不足使底部先行固化而破坏长晶区域的热平衡,不利于晶体生长环境。最上方的虚线部分是斜向上的。这意味着越大的侧加热器的功率(即,越靠近热平衡区域的左下方),满足热平衡条件的极限底加热 器的功率越低。这也符合实际晶体生长过程中,对各加热器的功率调整的经验。最右侧的虚线部分表示侧加热器的功率为零。由于侧加热器为主要加热器,为整个系统撑起能量的来源,因此超过最右侧的虚线部分继续延伸也会导致发生凝结,并且所述凝结从侧面开始。
为了验证图4中所示出的热平衡图中的A、B、C、D、E线上的点是否能够让系统达到热平衡,本公开内容固定上加热器的功率为10KW,当侧加热器的功率为10、30、50、70、90KW时,分别根据图3中所示的方法模拟计算满足热平衡条件条件的底加热器的功率。得到满足热平衡条件的侧加热器的功率、底加热器的功率和上加热器的功率具体为90-7-10、70-30-10、50-54-10、30-77-10、10-102-10。这些功率的组合中的底加热器的功率与图4中所示出的热平衡图上的结果(即,固定上加热器的功率为10KW的水平线(未示出)与热平衡图中的A、B、C、D、E线的交点(未示出)所对应的底加热器的功率)基本相同。因此,在实际的晶体生长中,为了顺利生长出晶体,可以直接根据热平衡图来选择或调整各个加热器的功率,或者,可以直接根据热平衡图中呈现的使得达到热平衡条件的各个加热器功率的(例如,线性的)关系来选择或调整各个加热器的功率。即使例如由于误差的原因,按照平衡图或其呈现的规律所选择的各个加热器的功率没有使得系统达到热平衡,则也只需要在所选的各个加热器的功率或其中的一个或两个附近略微调整,而不需要在各个加热器的功率的很大的范围内随机地耗时地尝试着或者猜测着来选择各个加热器的功率,从而大大节省计算量和计算时间,并且因此能够生长出品质更好的晶体。
要指出的是,虽然在本公开内容中,将侧加热器的功率设置为10、30、50、70、90KW,而不断改变上加热器的功率和底加热器的功率来计算热平衡图,但是在其他实施例中,可以将侧加热器的功率设置为其他值来不断改变上加热器的功率和底加热器的功率来计算热平衡图。也就是说,存在基本上平行于图4中所示的热平衡图中的A、B、C、D、E线的其他线,其上的点也满足热平衡条件。
还要指出的是,图4中所示的热平衡图是在晶体生长速度为0.6mm/min的情况下得到的。在其他实施例中,晶体生长速度可以为其他值,可以得到类似的热平衡图。因此,在一个实施例中,热平衡图可以是与晶体生长速度相关的多个热平衡图,并且因此,在晶体生长 过程中,可以从多个热平衡图中选择与当前的晶体生长速度相对应的那个热平衡图,并从该热平衡图中选择各个加热器的功率来控制加热器。还要指出的是,虽然在图4中为了方便说明的目的而将热平衡示出为二维平面中的一个热平衡区域以及侧加热器功率固定的几条线。但是在其他实施例中,热平衡图可以具有其他形式,例如表格的形式、以各个加热器的功率为坐标轴的三维空间中的对象的形式,诸如点、线、面、体。
在实际的晶体生长过程中,根据图4中的热平衡图来选择各个加热器的功率,可以保证能够生长出晶体。然而,为了生长出完美晶体,对晶体生长速度V以及固液界面处的温度梯度G都有要求。一般地,V/G理论值(C crit=2.1*10 -5cm 2/s·K=0.126mm 2/min·℃)的0.88-1.12倍为完美晶体的窗口区,即V/G值范围为0.112-0.142mm 2/min·℃,且需同时满足Gc>=Ge。符合此两大条件可以生长出完美晶体。优选地,V/G理论值的0.92-1.1倍为完美晶体的窗口区,即V/G值范围为0.117-0.139mm 2/min·℃。在实际的晶体生长过程中,晶体生长速度V=0.4-0.8mm/min。该范围是目前大多数晶体生长系统中能够稳定可靠顺利生长出晶体的晶体生长速度范围。对于其他以及未来开发的晶体生长系统,也可以存在其他范围内的晶体生长速度。例如,晶体生长速度可以更高,从而更快更高效地生长晶体。
在晶体生长速度范围为V=0.4-0.8mm/min的情况下,为了生长出完美晶体,则7.14K/mm>=G>=2.8K/mm,即7140K/m>=G>=2800K/m,并且需同时满足Gc>=Ge。在其他实施例中,晶体生长速度为其他范围,相应地,G值的范围也按照V/G值范围为0.112-0.142mm 2/min·℃或者优选地,V/G值范围为0.117-0.139mm 2/min·℃而对应地变化,且仍需同时满足Gc>=Ge。
现在参考图5A-5D来描述如何进一步从满足系统的热平衡条件的图4中所示出的热平衡图中选择满足完美晶体生长条件的各个加热器的功率。根据满足系统的热平衡的各个加热器功率,利用图3中所示出的计算机模拟方法,可以计算出对应的热场分布以及相应的沿晶体的径向方向在边缘处的轴向温度梯度Ge和在晶体中心处的轴向温度梯度Gc。在一个实施例中,可以直接从存储器中检索在图3中的步骤120处所记录的与满足热平衡条件的各组加热器的功率相对应的轴向温度 梯度,包括Ge和Gc。计算轴向温度梯度是否满足以上描述的可与当前晶体生长速度相对应的生长完美晶体的G值窗口以及Gc>=Ge的条件。如果满足,则根据对应的各组加热器的功率来调整和控制各个加热器,即可以生长出完美晶体。所述计算可以在系统100中的处理器或系统100外部的处理器或其他计算设备中执行。要指出的是,由于范围的限制,在图5A-5D上部示出的完美晶体的G值窗口可以仅是整个窗口的部分。
侧加热器的功率、底加热器的功率和上加热器的功率分别为10-102-10KW时,可以同时满足生长完美晶体的条件,如图5A中所示出的。侧加热器的功率、底加热器的功率和上加热器的功率分别为30-80-8KW时,可以同时满足生长完美晶体的条件,如图5B中所示出的。侧加热器的功率、底加热器的功率和上加热器的功率分别为50-70-1KW时,可以同时满足生长完美晶体的条件,如图5C中所示出的。侧加热器的功率、底加热器的功率和上加热器的功率分别为70-47-4KW时,可以同时满足生长完美晶体的条件,如图5D中所示出的。根据上述各组加热器的功率,可以生长出完美晶体。要指出的是,还可以存在其他满足生长完美晶体条件的多组加热器的功率。并且在实际的晶体生长中,当同时存在多组满足热平衡条件或者生长完美晶体的条件的加热器的功率的时候,可以从中随机选择一组加热器的功率,也可以从中选择最优的一组加热器的功率来对固液界面处的温度梯度进行控制。在一个实施例中,最优的一组加热器的功率可以是指整体而言与当前的各个加热器的功率最接近的一组加热器的功率,使得能够最快地将各个加热器的功率调整为预期的功率。在一个实施例中,所述最优的一组加热器的功率是指如下一组加热器的功率:在根据其来对加热器进行控制之后,系统的热场分布(具体地,固液界面及其邻近处的热场)与当前的热场分布最接近使得当将当前的各个加热器的功率调整为该组加热器的功率时,系统的热场分布变化最小。在其他实施例中,所述最优的一组加热器的功率可以满足其他限制条件。
对于本领域技术人员而言,将清楚的是,根据本发明的方法和系统的修改和变型是可感知的并落入本发明的范围内。各附图是示意性的。以上参考附图所描述的特定实施例仅仅是说明性的,并且不意图限制本发明的范围,本发明的范围由所附权利要求限定。

Claims (19)

  1. 一种用于晶体生长过程中温度控制的方法,包括:
    不断调整各个加热器的功率并利用软件进行模拟以计算相应的在固液界面及其邻近处的热场;
    使热场与移动网格耦合来确定固液界面和总热能二者是否都达到热平衡;
    存储使固液界面和总热能二者都达到热平衡的各个加热器的功率并基于所述各个加热器的功率来绘制热平衡图;以及
    在晶体生长过程中从所绘制的热平衡图中选择各个加热器的功率来对固液界面处的温度梯度进行控制。
  2. 根据权利要求1所述的方法,还包括在晶体生长过程中通过连续加料的方式保持熔汤液面位置不变。
  3. 根据权利要求1所述的方法,其中,在晶体生长过程中从所绘制的热平衡图中选择各个加热器的功率包括:在晶体生长过程中从所绘制的热平衡图中选择满足生长完美晶体的条件的各个加热器的功率。
  4. 根据权利要求3所述的方法,其中,所述生长完美晶体的条件包括V/G=0.112-0.142mm 2/min·℃并且Gc>=Ge,其中V表示晶体生长速度,G表示固液界面处的轴向温度梯度,Gc表示在晶体中心处的G,Ge表示在晶体边缘处的G。
  5. 根据权利要求3所述的方法,其中,所述生长完美晶体的条件包括V/G=0.117-0.139mm 2/min·℃并且Gc>=Ge,其中V表示晶体生长速度,G表示固液界面处的轴向温度梯度,Gc表示在晶体中心处的G,Ge表示在晶体边缘处的G。
  6. 根据前述权利要求中任一项所述的方法,还包括在晶体生长过程中实时确定晶体生长速度。
  7. 根据权利要求6所述的方法,其中,所述热平衡图是与多个晶体生长速度相对应的多个热平衡图,并且其中,在晶体生长过程中从所绘制的热平衡图中选择各个加热器的功率包括:在晶体生长过程中从所述多个热平衡图中与所述实时确定的晶体生长速度相对应的热平衡图中选择各个加热器的功率。
  8. 根据权利要求6所述的方法,其中,实时确定晶体生长速度包 括使用传感器实时检测晶体生长速度。
  9. 根据权利要求6所述的方法,其中,实时确定晶体生长速度包括从与晶体生长相关联的设备中检索预先设置的晶体生长速度。
  10. 根据前述权利要求中任一项所述的方法,其中,所述不断调整各个加热器的功率包括按预定间隔或随机地调整选自包括侧加热器、底加热器和上加热器的组中的两个或三个不同的加热器的功率。
  11. 根据权利要求1-9中任一项所述的方法,其中,所述不断调整各个加热器的功率包括设置选自包括侧加热器、底加热器和上加热器的组中的一个加热器的功率为预定数量的值中的每一个,而针对其按预定间隔或随机地调整调整所述组中的另外两个加热器的功率。
  12. 根据前述权利要求中任一项所述的方法,其中,当热平衡图中存在多组满足热平衡条件的加热器的功率时,在晶体生长过程中,从所述多组加热器的功率中随机选择一组加热器的功率来对固液界面处的温度梯度进行控制。
  13. 根据前述权利要求中任一项所述的方法,其中,当热平衡图中存在多组满足热平衡条件的加热器的功率时,在晶体生长过程中,从所述多组加热器的功率中选择整体而言与当前的各个加热器的功率最接近的一组加热器的功率来对固液界面处的温度梯度进行控制。
  14. 根据前述权利要求中任一项所述的方法,其中,当热平衡图中存在多组满足热平衡条件的加热器的功率时,在晶体生长过程中,从所述多组加热器的功率中选择如下一组加热器的功率来对固液界面处的温度梯度进行控制:在根据其对各个加热器进行控制之后,系统的热场分布与当前的热场分布最接近。
  15. 根据前述权利要求中的任一项所述的方法,其中,所述热平衡图的形式为存储多组满足热平衡条件的加热器的功率的表格。
  16. 根据权利要求1-14中的任一项所述的方法,其中,所述热平衡图的形式是连接多组满足热平衡条件的加热器的功率而形成的图形。
  17. 根据前述权利要求中的任一项所述的方法,其中,在所述热平衡图中,侧加热器的功率、底加热器的功率和上加热器的功率中的两个呈线性关系,并且在晶体生长过程中,根据所述线性关系来调整侧加热器的功率、底加热器的功率和上加热器的功率中的所述两个。
  18. 一种用于晶体生长过程中温度控制的系统,包括:
    单晶生长炉,其包括加热器和用于保持熔汤液面位置不变的连续加料器;
    处理器;
    存储器,其上存储有指令,所述指令在被执行时使所述处理器执行权利要求1-17中任一项所述的方法;以及
    控制器:其与单晶生长炉、其中的加热器、连续加料器以及存储器耦合以对它们进行控制。
  19. 根据权利要求18所述的系统,还包括用于实时检测晶体生长速度的传感器。
PCT/CN2021/085533 2020-04-20 2021-04-06 用于晶体生长过程中温度控制的方法和系统 WO2021213178A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022563378A JP2023522906A (ja) 2020-04-20 2021-04-06 結晶成長過程における温度制御方法及びシステム
US17/913,173 US20230110359A1 (en) 2020-04-20 2021-04-06 Method and System for Controlling Temperature during Crystal Growth
KR1020227038600A KR20220157506A (ko) 2020-04-20 2021-04-06 결정 성장 과정에서 온도 제어를 위한 방법 및 시스템

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010311608.1A CN112080794B (zh) 2020-04-20 2020-04-20 用于晶体生长过程中温度控制的方法和系统
CN202010311608.1 2020-04-20

Publications (1)

Publication Number Publication Date
WO2021213178A1 true WO2021213178A1 (zh) 2021-10-28

Family

ID=73734647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/085533 WO2021213178A1 (zh) 2020-04-20 2021-04-06 用于晶体生长过程中温度控制的方法和系统

Country Status (5)

Country Link
US (1) US20230110359A1 (zh)
JP (1) JP2023522906A (zh)
KR (1) KR20220157506A (zh)
CN (1) CN112080794B (zh)
WO (1) WO2021213178A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118147750A (zh) * 2024-04-10 2024-06-07 西安交通大学 一种氧化镓单晶生长的加热功率匹配方法、装置和设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112080794B (zh) * 2020-04-20 2022-10-21 徐州鑫晶半导体科技有限公司 用于晶体生长过程中温度控制的方法和系统
CN115640983B (zh) * 2022-11-18 2023-03-07 浙江晶盛机电股份有限公司 功率调整方法、装置、计算机设备和存储介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1295632A (zh) * 1998-04-01 2001-05-16 Memc电子材料有限公司 控制半导体晶体生长的开环方法和系统
CN101445954A (zh) * 2007-11-26 2009-06-03 北京有色金属研究总院 一种控制直拉硅单晶生长过程中晶体和熔体界面处的温度梯度及热历史的方法
JP2010275170A (ja) * 2009-06-01 2010-12-09 Sumco Corp シリコン単結晶の製造方法、シリコン単結晶の温度推定方法
CN108754599A (zh) * 2018-05-31 2018-11-06 西安理工大学 一种基于有限元数值模拟的硅单晶生长温度控制方法
CN109056056A (zh) * 2018-09-14 2018-12-21 西安理工大学 一种直拉硅单晶生长过程热场模型辨识方法
US20190136407A1 (en) * 2003-11-03 2019-05-09 Corner Star Limited Single crystal ingots with reduced dislocation defects and methods for producing such ingots
CN110016714A (zh) * 2018-01-09 2019-07-16 爱思开矽得荣株式会社 用于单晶锭生长的温度控制装置及其应用的温度控制方法
CN110284186A (zh) * 2019-07-30 2019-09-27 刘冬雯 一种直拉单晶炉及其纵向温度梯度的测定控制方法
CN112080794A (zh) * 2020-04-20 2020-12-15 徐州鑫晶半导体科技有限公司 用于晶体生长过程中温度控制的方法和系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060005761A1 (en) * 2004-06-07 2006-01-12 Memc Electronic Materials, Inc. Method and apparatus for growing silicon crystal by controlling melt-solid interface shape as a function of axial length
JP5509636B2 (ja) * 2009-03-17 2014-06-04 株式会社Sumco シリコン単結晶の欠陥解析方法
JP5733245B2 (ja) * 2012-03-16 2015-06-10 信越半導体株式会社 シリコン単結晶ウェーハの製造方法
JP6222056B2 (ja) * 2014-11-21 2017-11-01 信越半導体株式会社 シリコン単結晶の温度の推定方法及びシリコン単結晶の製造方法
CN104514032B (zh) * 2014-12-18 2017-03-08 华中科技大学 一种热场协调控制的提拉法晶体生长炉
CN104562185B (zh) * 2014-12-26 2017-05-10 华中科技大学 一种提拉法晶体生长炉
CN105239154A (zh) * 2015-09-10 2016-01-13 上海超硅半导体有限公司 提拉法单晶硅生长流场控制技术
KR101874712B1 (ko) * 2016-12-07 2018-07-04 에스케이실트론 주식회사 잉곳 성장 제어장치 및 그 제어방법
CN110528069B (zh) * 2018-05-25 2021-07-06 隆基绿能科技股份有限公司 一种直拉硅单晶的自动调温方法
CN108914201B (zh) * 2018-08-29 2019-09-27 西安理工大学 一种直拉硅单晶生长过程工艺参数优化方法
CN110983429A (zh) * 2019-12-23 2020-04-10 西安奕斯伟硅片技术有限公司 单晶炉及单晶硅制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1295632A (zh) * 1998-04-01 2001-05-16 Memc电子材料有限公司 控制半导体晶体生长的开环方法和系统
US20190136407A1 (en) * 2003-11-03 2019-05-09 Corner Star Limited Single crystal ingots with reduced dislocation defects and methods for producing such ingots
CN101445954A (zh) * 2007-11-26 2009-06-03 北京有色金属研究总院 一种控制直拉硅单晶生长过程中晶体和熔体界面处的温度梯度及热历史的方法
JP2010275170A (ja) * 2009-06-01 2010-12-09 Sumco Corp シリコン単結晶の製造方法、シリコン単結晶の温度推定方法
CN110016714A (zh) * 2018-01-09 2019-07-16 爱思开矽得荣株式会社 用于单晶锭生长的温度控制装置及其应用的温度控制方法
CN108754599A (zh) * 2018-05-31 2018-11-06 西安理工大学 一种基于有限元数值模拟的硅单晶生长温度控制方法
CN109056056A (zh) * 2018-09-14 2018-12-21 西安理工大学 一种直拉硅单晶生长过程热场模型辨识方法
CN110284186A (zh) * 2019-07-30 2019-09-27 刘冬雯 一种直拉单晶炉及其纵向温度梯度的测定控制方法
CN112080794A (zh) * 2020-04-20 2020-12-15 徐州鑫晶半导体科技有限公司 用于晶体生长过程中温度控制的方法和系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118147750A (zh) * 2024-04-10 2024-06-07 西安交通大学 一种氧化镓单晶生长的加热功率匹配方法、装置和设备

Also Published As

Publication number Publication date
CN112080794B (zh) 2022-10-21
CN112080794A (zh) 2020-12-15
US20230110359A1 (en) 2023-04-13
JP2023522906A (ja) 2023-06-01
KR20220157506A (ko) 2022-11-29

Similar Documents

Publication Publication Date Title
WO2021213178A1 (zh) 用于晶体生长过程中温度控制的方法和系统
Ma et al. Influence of an insulation partition on a seeded directional solidification process for quasi-single crystalline silicon ingot for high-efficiency solar cells
US8774959B2 (en) Method of calculating temperature distribution of crucible
JP5995335B2 (ja) シリコン結晶基板を成長するための装置および方法
Yang et al. A modified vacuum directional solidification system of multicrystalline silicon based on optimizing for heat transfer
TWI632256B (zh) 用於控制氧之柴可斯基(czochralski)坩堝及相關方法
TWI830263B (zh) 單晶生長的方法、裝置及單晶體
Liu et al. Controlling solidification front shape and thermal stress in growing quasi-single-crystal silicon ingots: Process design for seeded directional solidification
JP6604338B2 (ja) シリコン単結晶の引き上げ条件演算プログラム、シリコン単結晶のホットゾーンの改良方法、およびシリコン単結晶の育成方法
Zhang et al. Nucleation and bulk growth control for high efficiency silicon ingot casting
KR20230153916A (ko) 결정 성장 장치, 결정 직경 제어 방법, 시스템, 및 저장 매체
Dezfoli et al. Modeling of poly-crystalline silicon ingot crystallization during casting and theoretical suggestion for ingot quality improvement
Qi et al. Improved seeded directional solidification process for producing high-efficiency multi-crystalline silicon ingots for solar cells
Wu et al. Influence of inclusion on nucleation of silicon casting for photovoltaic (PV) application
Yang et al. Effect of heat transfer during the vacuum directional solidification process on the crystal quality of multicrystalline silicon
Lv et al. Numerical simulation and experimental verification of vacuum directional solidification process for multicrystalline silicon
TW201335446A (zh) 自熔體水平帶材生長的方法以及自熔體形成第一材料的帶材的方法
TWI432617B (zh) 長晶裝置
CN103603032B (zh) 控制硅锭铸造中结晶速度的方法
Hur et al. Crystal front shape control by use of an additional heater in a Czochralski sapphire single crystal growth system
Xie et al. The influence of Marangoni effect on the growth quality of multi-crystalline silicon during the vacuum directional solidification process
Sekar et al. Investigation of Solid-Liquid interface effects on the impurity concentration in the DS grown Mc-Si Ingot by using C-Clamp insulation block for solar cell applications: numerical analysis
Fang et al. Characteristics of thermal stress evolution during the cooling stage of multicrystalline silicon
Dughiero et al. Multi-crystalline silicon ingots growth with an innovative induction heating directional solidification furnace
Prostomolotov et al. Hydrodynamics, heat and mass transfer during crystal growth in assembly of “Hele-Shaw” cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21792128

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022563378

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227038600

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21792128

Country of ref document: EP

Kind code of ref document: A1