WO2021210574A1 - 蛍光体、発光装置および放射線検知器 - Google Patents

蛍光体、発光装置および放射線検知器 Download PDF

Info

Publication number
WO2021210574A1
WO2021210574A1 PCT/JP2021/015302 JP2021015302W WO2021210574A1 WO 2021210574 A1 WO2021210574 A1 WO 2021210574A1 JP 2021015302 W JP2021015302 W JP 2021015302W WO 2021210574 A1 WO2021210574 A1 WO 2021210574A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
formula
less
fluorescent substance
present
Prior art date
Application number
PCT/JP2021/015302
Other languages
English (en)
French (fr)
Inventor
細野 秀雄
正煥 金
ジァンウェイ リ
敦史 大石
耕治 羽豆
圭二 山原
出 武井
Original Assignee
三菱ケミカル株式会社
国立大学法人東京工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社, 国立大学法人東京工業大学 filed Critical 三菱ケミカル株式会社
Priority to JP2022515392A priority Critical patent/JPWO2021210574A1/ja
Publication of WO2021210574A1 publication Critical patent/WO2021210574A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/61Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing fluorine, chlorine, bromine, iodine or unspecified halogen elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Definitions

  • the present invention relates to a phosphor, particularly a phosphor useful as a scintillator, a light emitting device, a radiation detector, and a radiation detector using this phosphor.
  • Japanese Patent No. 0661765659 International Publication No. 2012/043567 Japanese Patent No. 5674385 Japanese Unexamined Patent Publication No. 2016-56378 Japanese Unexamined Patent Publication No. 2015-151535 Japanese Unexamined Patent Publication No. 2003-95791 Japanese Patent No. 03851547 Japanese Patent No. 06000664 Japanese Patent No. 06116386
  • the above-mentioned phosphors also contain materials containing constituent elements such as Lu that emit radiation and harmful substances such as Cd and Pb while exhibiting high luminous efficiency.
  • materials containing constituent elements such as Lu that emit radiation
  • harmful substances such as Cd and Pb while exhibiting high luminous efficiency.
  • An object to be solved by the present invention is to provide a novel phosphor which does not contain harmful substances and has high emission quantum efficiency.
  • Another problem to be solved by the present invention is to provide a novel phosphor that emits blue to green light by ultraviolet light or radiation, and a light emitting device and a radiation detector using this phosphor. Etc. are to be provided.
  • the present inventor has found a novel phosphor that has a crystal structure and a specific composition different from those of conventional phosphors and emits blue to green light by ultraviolet light or radiation.
  • the gist of the present invention is as follows.
  • a a B b C c D d ... (1) (In formula (1), A contains any one or more of Na, K, Rb, and Cs. B contains any one or more of Cu and Ag. C contains F, Cl, and Br. Includes any one or more. D contains I.
  • a, b, c and d indicate the molar ratio of A, B, C and D in the overall composition, respectively, 3.3 ⁇ a ⁇ 6.8, 2.0 ⁇ b ⁇ 4.1, 5.2 ⁇ c + d ⁇ 10.8, 0.5 ⁇ c / (c + d) ⁇ 1.0, and 1.55 ⁇ a / b ⁇ 3.4 are satisfied.
  • a radiation inspection device provided with the radiation detector according to [13].
  • the present invention it is possible to provide a novel phosphor which does not contain harmful substances and has high emission quantum efficiency. Further, according to the present invention, it is possible to provide a scintillator having a long emission peak wavelength suitable for a receiver. Furthermore, the present invention can provide a novel phosphor that emits blue to green light by ultraviolet rays or radiation, a light emitting device using this phosphor, a radiation detector, and the like.
  • FIG. 1 is a diagram showing a powder XRD figure calculated from the crystal structure of the phosphor of Example 1.
  • FIG. 2 is a diagram showing a powder X-ray diffraction pattern of the phosphor of Example 1.
  • FIG. 3 is a diagram showing an excitation spectrum and an emission spectrum of the phosphor of Example 1.
  • FIG. 4 is a diagram showing the afterglow of the phosphor of Example 1 at the time of X-ray excitation.
  • FIG. 5 is a diagram showing an emission spectrum of the phosphor of Example 2.
  • FIG. 6 is a diagram showing a powder X-ray diffraction pattern of the phosphor of Reference Example 1.
  • FIG. 7 is a diagram showing an excitation spectrum and an emission spectrum of the phosphor of Reference Example 1.
  • the fluorescent substance according to the embodiment of the present invention is a fluorescent substance having a crystal structure belonging to the space group Cmcm and having a composition represented by the following formula (1).
  • A a B b C c D d ... (1)
  • A contains any one or more of Na, K, Rb, and Cs.
  • B contains any one or more of Cu and Ag.
  • C contains F, Cl, and Br. Includes any one or more.
  • D contains I.
  • a, b, c and d indicate the molar ratio of A, B, C and D in the overall composition, respectively, 3.3 ⁇ a ⁇ 6.8, 2.0 ⁇ b ⁇ 4.1, 5.2 ⁇ c + d ⁇ 10.8, 0.5 ⁇ c / (c + d) ⁇ 1.0, and 1.55 ⁇ a / b ⁇ 3.4 are satisfied.
  • the crystal system of the phosphor of the present embodiment is orthorhombic, and the space group of the crystal structure is "International Tables for Crystallography (Third, revised edition), Volume A SPACE-GROUP-based MYME". It belongs to (Cm cm).
  • the space group can be obtained by a conventional method. Specifically, it can be obtained by X-ray diffraction measurement using a single crystal or electron diffraction.
  • the lattice constant a of the phosphor of the present embodiment is usually 14.36 ⁇ to 19.43 ⁇ , preferably 15.21 ⁇ to 18.59 ⁇ , and more preferably 16.39 ⁇ to 17.40 ⁇ .
  • the lattice constant b of the phosphor of the present embodiment is usually 7.77 ⁇ to 10.51 ⁇ , preferably 8.23 ⁇ to 10.05 ⁇ , and more preferably 8.87 ⁇ to 9.41 ⁇ .
  • the lattice constant c of the phosphor of the present embodiment is usually 11.93 ⁇ to 16.14 ⁇ , preferably 12.63 ⁇ to 15.44 ⁇ , and more preferably 13.61 ⁇ to 14.45 ⁇ .
  • the lattice constant can be obtained according to a conventional method. Specifically, it can be obtained by analyzing the result of X-ray diffraction of a single crystal. The results of X-ray diffraction and neutron diffraction of powder can also be obtained by Rietveld analysis.
  • a in the formula (1) showing the composition of the phosphor of the present embodiment is an alkali metal element.
  • Li, Na, K, Rb, Cs can be used.
  • the phosphor of this embodiment contains at least one or more of Na, K, Rb, and Cs as A, and preferably contains Cs.
  • the proportion of the above elements contained in A is usually 50% by mass or more, preferably 70% by mass or more, more preferably 80% by mass or more, and further preferably 90% by mass or more.
  • the upper limit of the ratio of the above elements contained in A is not particularly limited, and may be 100% by mass.
  • the phosphor of this embodiment contains at least one or more of Cu and Ag as B, and preferably contains Cu.
  • the proportion of the above elements contained in B is usually 50% by mass or more, preferably 70% by mass or more, more preferably 80% by mass or more, and further preferably 90% by mass or more.
  • the upper limit of the ratio of the above elements contained in B is not particularly limited and may be 100% by mass.
  • C is not particularly limited as long as it is a halogen other than iodine.
  • the phosphor of the present embodiment contains at least one or more of F, Cl, and Br as C, preferably one or more of Cl and Br, and more preferably Cl.
  • the proportion of the above elements contained in C is usually 50% by mass or more, preferably 70% by mass or more, more preferably 80% by mass or more, and further preferably 90% by mass or more.
  • the upper limit of the ratio of the above elements contained in C is not particularly limited and may be 100% by mass.
  • A, b, c, and d indicate the molar ratios of A, B, C, and D in the total composition of the phosphor, respectively.
  • A is usually 3.3 or more, preferably 4.0 or more, more preferably 4.5 or more, usually 6.8 or less, preferably 6.0 or less, and more preferably 5.5 or less.
  • B is usually 2.0 or more, preferably 2.4 or more, more preferably 2.7 or more, usually 4.1 or less, preferably 3.6 or less, and more preferably 3.3 or less.
  • C + d is usually 5.2 or more, preferably 6.4 or more, more preferably 7.2 or more, usually 10.8 or less, preferably 9.6 or less, and more preferably 8.8 or less.
  • C / (c + d) is usually 0.5 or more, preferably 0.6 or more, more preferably 0.7 or more, usually 1.0 or less, preferably 0.9 or less, and more preferably 0.8 or less.
  • a / b is usually 1.55 or more, preferably 1.58 or more, more preferably 1.60 or more, still more preferably 1.62 or more, usually 3.4 or less, preferably 3.0 or less, and more. It is preferably 2.5 or less, more preferably 2.2 or less, still more preferably 2.0 or less, and particularly preferably 1.8 or less.
  • the phosphor represented by the formula (1) is an element RE (also referred to as “activator element”) other than A, B, C, and D as an activator. May include. A a B b C c D d : RE x ... (2) (Formula (2) indicates that any part of A, B, C, D in the formula (1) is replaced with an activator element represented by RE.
  • A. , B, C, D, a, b, c, d are synonymous with those in the formula (1).
  • RE is Mn, In, Tl, Ce, Pr, Nd, Sm, Pm, Eu, Gd, Tb, Includes one or more selected from the group consisting of Dy, Ho, Er, Tm, and Yb.
  • X represents the total molar ratio of RE and satisfies 0 ⁇ x ⁇ 0.34).
  • the activator element RE is one or more selected from the group consisting of Mn, In, Tl, Ce, Pr, Nd, Sm, Pm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb. May include.
  • the activator element RE preferably contains at least Ce from the viewpoint of obtaining a short fluorescence decay time.
  • the proportion of the above-mentioned element contained in the activator element RE is usually 50% by mass or more, preferably 70% by mass or more, more preferably 80% by mass or more, and further preferably 90% by mass or more.
  • the upper limit of this ratio is not particularly limited and may be 100% by mass.
  • the activator element may be present in the phosphor in any manner. For example, it may be contained in either A or B, or may be contained in both A and B.
  • the content of the activator element is not limited. For example, it is usually 1.0% by mass or less, more preferably 0.5% by mass or less, still more preferably 0.2% by mass or less, and may be 0.1% by mass or less with respect to the entire phosphor. ..
  • the lower limit of the content of the activator element is not particularly limited.
  • the content of the activator element that replaces a part of any of A, B, C, and D is usually 0.5 or less, preferably 0.4 or less, and more preferably 0.34 or less in terms of molar ratio. , More preferably 0.25 or less.
  • the content of the activator element is usually 0.01 mol% or more and 5 mol% or less, preferably 0.1 mol% or more and 2 mol, based on the whole of A. % Or less.
  • the content of the activator element is usually 0.001 mol% or more, usually 5 mol% or less, preferably 1 mol% or less, and more, based on the whole of B. It is preferably 0.1 mol% or less, and preferably as small as possible.
  • the phosphor of the present embodiment contains an appropriate amount of the activator element, a larger fluorescence intensity can be obtained.
  • the phosphor represented by the formula (1) may further contain other elements as long as the effects of the present invention are not impaired.
  • the analysis of the elements contained in the phosphor is not particularly limited. For example, it can be performed by a method of all-element analysis using glow discharge mass spectrometry (GDMS).
  • GDMS glow discharge mass spectrometry
  • the form of the phosphor in this embodiment can be in the form of powder, single crystal, polycrystalline, or sintered body. In particular, it can be in the form of powder, single crystal, or sintered body.
  • the form of the phosphor in this embodiment for example, when used in an X-ray CT apparatus, a block of a single crystal or a sintered body is preferable.
  • the phosphor of this embodiment is preferably used as a film in which powder is dispersed on a resin sheet.
  • the phosphor of the present embodiment is excited by receiving the energy of the excitation source and emits (emits) electromagnetic waves, preferably visible light.
  • electromagnetic waves such as visible light and ultraviolet rays, ionizing radiation, electric current and the like can be used.
  • ionizing radiation include X-rays, ⁇ -rays, ⁇ -rays, and neutron rays.
  • the phosphor of this embodiment usually has an emission peak wavelength in the wavelength region of 160 nm to 700 nm.
  • the lower limit of the wavelength region is preferably 350 nm or more, more preferably 440 nm or more, further preferably 455 nm or more, and the upper limit is preferably 600 nm or less, more preferably 540 nm or less, still more preferably 500 nm or less, and particularly preferably 490 nm or less. ..
  • the emission peak wavelength is within the above range, the obtained phosphor exhibits a good blue to green color, which is preferable.
  • the method for measuring the emission spectrum and the emission peak wavelength is not particularly limited. For example, it can be measured using a general spectrofluorometer.
  • the emission quantum yield when the phosphor of the present embodiment is excited by ultraviolet rays having a wavelength of 300 nm near the excitation peak wavelength is usually 50% or more, preferably 60% or more, more preferably 70% or more, still more preferably. It is 80% or more, particularly preferably 90% or more.
  • the upper limit of the emission quantum yield is not limited as long as it is in the range of 100% or less, and the higher it is, the better. The higher the emission quantum yield, the more preferable it is that the irradiated light can be efficiently converted into emitted light.
  • the emission quantum yield can be measured by, for example, an absolute PL quantum yield measuring device.
  • the phosphor of the present embodiment is preferably excited by, for example, an electromagnetic wave in the visible light region from ultraviolet rays to emit light.
  • the phosphor of this embodiment can be used as a phosphor used in a light emitting device, a lighting device, or the like.
  • the excitation peak wavelength (absorption maximum wavelength) of the phosphor of the present embodiment is usually 200 nm or more, preferably 230 nm or more, more preferably 260 nm or more, usually 400 nm or less, preferably 340 nm or less, and more preferably 320 nm or less.
  • the method for measuring the excitation spectrum and the excitation peak wavelength is not particularly limited. For example, it can be measured using a general spectrofluorometer.
  • the phosphor of this embodiment is preferably excited by radiation and emits light.
  • the phosphor of this embodiment can also be used as a scintillator.
  • the maximum value of the fluorescence intensity is set to 100%, and the fluorescence intensity 20 ms after the time when the X-ray irradiation is stopped is usually 10% or less, preferably 7% or less. More preferably, it is 5% or less.
  • the fluorescence intensity 100 ms after the time when the X-ray irradiation is stopped is usually 5% or less, preferably 4% or less, and more preferably 3% or less.
  • the lower limit of the fluorescence intensity is not particularly limited and is usually 0% or more.
  • This fluorescence intensity can be measured by the method described in Examples described later.
  • the phosphor of the present embodiment may contain a single phase or a plurality of phases, and may have a composition represented by the above formula (1) as a whole.
  • the phosphor of the present embodiment usually contains a phase having a composition represented by the above formula (1).
  • the proportion of the phase having the composition represented by the formula (1) in the phosphor of the present embodiment is usually 40% or more, preferably 50% or more, more preferably 60% or more, and further, on a mass basis. It is preferably 70% or more, more preferably 80% or more, particularly preferably 90% or more, particularly preferably 95% or more, and most preferably 98% or more.
  • the upper limit of the proportion of the phase having the composition represented by the formula (1) in the phosphor of the present embodiment is not particularly limited, and the higher the ratio, the more preferable, but usually 100% or less. When the phosphor in this embodiment is in a single phase, the mass ratio is 100% or almost 100%.
  • Fluorescent composition containing a fluorescent substance The fluorescent substance of the present embodiment is used as a fluorescent material of the present embodiment and a fluorescent material composition containing a substance different from the fluorescent material (hereinafter, may be referred to as "fluorescent material composition of the present embodiment"). You can also use it.
  • the substance different from the phosphor of the present embodiment is any inorganic material and / or organic material.
  • the portion composed of the fluorescent material of the present embodiment exhibits characteristics equal to or higher than those of the case where the fluorescent material of the present embodiment is used alone. More preferably, the entire fluorescent composition also exhibits characteristics equal to or better than those when the fluorescent material of the present embodiment is used alone.
  • the method for producing the fluorescent composition of the present embodiment is not particularly limited. For example, it can be obtained in the process of manufacturing the phosphor of the present embodiment. Alternatively, it can also be obtained by appropriately adjusting the element ratio of the raw material and / or the conditions of the manufacturing process in the manufacturing process of the phosphor of the present embodiment. It can also be obtained by appropriately adding a substance different from the phosphor of the present embodiment after completing the manufacturing process of the phosphor of the present embodiment.
  • the content of the fluorescent substance of the present embodiment with respect to the total mass of the fluorescent substance composition of the present embodiment is usually 20% by mass or more, preferably 50% by mass or more, more preferably 70% by mass or more, and further preferably 90% by mass. % Or more.
  • the upper limit of the content of the fluorescent substance of the present embodiment with respect to the total mass of the fluorescent substance composition of the present embodiment is not particularly limited, but is usually less than 100%.
  • the performance of the entire fluorescent composition of the embodiment shows at least the same characteristics as when the fluorescent material of the present embodiment is used alone.
  • the method for measuring the content of the phosphor in the phosphor composition is not particularly limited.
  • the results of X-ray diffraction and neutron diffraction of powder can be obtained by Rietveld analysis.
  • the method for producing the fluorescent substance of the present embodiment (hereinafter, may be referred to as “the present production method”) is not particularly limited as long as the fluorescent substance of the present embodiment can be obtained.
  • a method including the following steps 1 and 2, preferably further the following steps 3 and 4, can be mentioned.
  • Step 1 Raw material mixing step of obtaining a raw material mixture by weighing the raw materials so as to obtain the desired composition and sufficiently mixing them.
  • Step 2 Fill the obtained raw material mixture in a heat-resistant container, and set a predetermined temperature and a predetermined atmosphere.
  • the present production method may include a step of preparing a raw material (a step of preparing a raw material).
  • the raw material used is not particularly limited as long as the phosphor of the present embodiment can be produced.
  • oxides, halides, inorganic acid salts and the like of each constituent atom can be used.
  • Examples of the A source in the formula (1) include LiF, LiCl, LiBr, LiI, NaF, NaCl, NaBr, NaI, KF, KCl, KBr, KI, CsF, CsCl, CsBr, CsI and one of its hydrates. Species or two or more species can be used. The purity of each is usually 90% or more, preferably 99% or more, and the upper limit is not particularly limited.
  • the B source for example, one or more of CuF, CuCl, CuBr, CuI, AgF, AgCl, AgBr, AgI, AuF, AuCl, AuBr, AuI and their hydrates can be used.
  • the purity of each is usually 90% or more, preferably 99% or more, and the upper limit is not particularly limited.
  • the C source and D source can be introduced as F, Cl, Br, and I in the above A source and B source and the following activator element sources.
  • oxides, halides, inorganic acid salts and the like can be used as the activator element.
  • Ce one kind or two or more kinds such as CeO 2 , CeI 3 , Ce 2 O 3 , and Ce (NO 3 ) 3 can be used.
  • the purity of these raw materials is usually 90% or more, preferably 99% or more, and the upper limit is not particularly limited.
  • the present production method may include a step of mixing raw materials to obtain a raw material mixture (raw material mixing step).
  • the method of mixing the raw materials is not particularly limited, and a generally used method can be applied. For example, a dry mixing method and a wet mixing method can be mentioned.
  • Examples of the dry mixing method include mixing using a mortar and a ball mill.
  • a solvent such as water or a dispersion medium is added to the raw material, and the mixture is mixed using a milk bowl and a milk stick to prepare a dispersion solution or a slurry, and then dried by spray drying, heat drying, natural drying, or the like. There is a way to make it.
  • the present production method may include a step (synthesis step) of heat-treating the above-mentioned raw material mixture to obtain a synthetic powder.
  • a synthetic powder can be obtained by filling a heat-resistant container such as a crucible or a tray with a raw material mixture and heat-treating it.
  • the material of the heat-resistant container is not particularly limited as long as it is a material having low reactivity with each raw material. Examples thereof include platinum-based containers such as Pt, RtRh alloy having a Rh content of 30% by mass, Ir, and silicate glass containers.
  • the atmosphere at the time of heat treatment is not particularly limited, and examples thereof include a hydrogen atmosphere, a reducing atmosphere such as a hydrogen-noble gas mixed atmosphere; an atmospheric atmosphere; a nitrogen atmosphere, and a reduced pressure atmosphere.
  • Mo, W-based containers and the like can be used in addition to the platinum-based containers.
  • An atmosphere that does not contain the atmosphere is more preferable from the viewpoint of suppressing oxidation during firing.
  • the synthetic powder obtained in this step may be used to obtain a sintered body by the firing step, or may be used as it is as a phosphor of the powder.
  • the temperature and time of the heat treatment in the synthesis step are not particularly limited as long as the phosphor of the present embodiment can be obtained.
  • the temperature and time of the heat treatment are preferably set to a temperature and time at which the mixed raw materials sufficiently react.
  • the temperature is usually 100 ° C. or higher, preferably 200 ° C. or higher, and usually 600 ° C. or lower, preferably 500 ° C. or lower.
  • the time is usually 1 hour or more, preferably 3 hours or more, and usually 100 hours or less.
  • the synthetic powder obtained in the synthesis step may be sieved.
  • the mesh size (opening) of the sieve is usually 500 ⁇ m or less, preferably 200 ⁇ m or less.
  • the present production method may include a step (pressure molding step) of obtaining a pressure-molded body by pressure-molding the synthetic powder obtained in the above-mentioned synthesis step.
  • the pressure molding method and conditions are not particularly limited. For example, it can be performed by a uniaxial pressure press or a cold hydrostatic press.
  • the pressure during pressure molding can be, for example, 1 MPa or more, preferably 30 MPa or more.
  • the upper limit of the pressure molding pressure is not particularly limited, but is usually 400 MPa or less, preferably 300 MPa or less. Appropriate pressure molding reduces voids after sintering and improves translucency.
  • the present production method includes a step (pre-baking step) of pre-baking the synthetic powder obtained in the above-mentioned synthesis step or the pressure-molded body obtained in the above-mentioned pressure molding step to obtain a pre-baked product. good.
  • the temperature, pressure, time and atmosphere at the time of pre-baking are not particularly limited as long as the phosphor of the present embodiment can be obtained.
  • the temperature of the pre-baking is usually 150 ° C. or higher, preferably 200 ° C. or higher, and usually 500 ° C. or lower, preferably 350 ° C. or lower.
  • the pre-baking pressure is usually 10-5 Pa or more, preferably 10-3 Pa or more, usually 10 MPa or less, and preferably 2 MPa or less.
  • the pre-baking time is usually 1 hour or more, preferably 2 hours or more, and usually 50 hours or less.
  • the atmosphere of the pre-baking is preferably an inert atmosphere such as an argon atmosphere or a nitrogen atmosphere.
  • the synthetic powder obtained in the above synthesis step, the pressure-molded body obtained in the pressure molding step, or the pre-baked product obtained in the pre-baking step is further heated (baked) under pressure.
  • This may include a step (baking step) of obtaining a fired product (sintered body).
  • the pressurizing method and conditions of the firing step are not particularly limited. For example, it can be performed by the hot isostatic pressing method (HIP). Hot press treatment may be performed before firing.
  • the conditions at the time of firing are not particularly limited as long as the phosphor of the present embodiment can be obtained.
  • the firing temperature is usually 150 ° C. or higher, preferably 200 ° C. or higher, and usually 500 ° C. or lower, preferably 350 ° C. or lower.
  • the firing pressure is usually 10 MPa or more, preferably 30 MPa or more, usually 300 MPa or less, preferably 200 MPa or less.
  • the firing time is usually 0.5 hours or more, preferably 1 hour or more, and usually 20 hours or less, preferably 10 hours or less.
  • the atmosphere at the time of firing is not particularly limited as long as the phosphor of the present embodiment can be obtained. Considering the stability of the material, reaction vessel, furnace material, etc., it is preferable to perform firing in an appropriate atmosphere.
  • Specific examples of the atmosphere include an inert atmosphere such as an argon atmosphere and a nitrogen atmosphere.
  • the firing step may optionally include a pretreatment step (a step of performing washing, drying, vacuum degassing, etc.), a posttreatment step (a step of performing washing, drying, etc.) and the like.
  • a pretreatment step a step of performing washing, drying, vacuum degassing, etc.
  • a posttreatment step a step of performing washing, drying, etc.
  • the phosphor When the phosphor is obtained as a single crystal, it can be obtained, for example, by heating and melting the raw material mixture or the sintered body obtained by the firing step or the annealing step below, and growing the single crystal from the melt. can.
  • the temperature of the heat melting treatment is usually 200 to 600 ° C, preferably 300 to 500 ° C.
  • the pressure is not particularly limited as long as it is in a pressure range in which the raw material mixture or the sintered body obtained by the firing step or the annealing step below does not decompose. For example, it can be performed at normal pressure.
  • the material of the container used for heating and melting is not particularly limited as in the case of the synthesis step. For example, Pt, RtRh alloy having a Rh content of 30% by mass, platinum-based metals such as Ir, and silicate glass can be mentioned.
  • the container and atmosphere at the time of producing a single crystal can be appropriately selected from the same viewpoint as in the production of a sintered body.
  • the method for growing a single crystal is not particularly limited, and a general Czochralski method, Bridgeman method, micro-pulling method, EFG method, zone melt method and the like can be used.
  • the flux method or the like can also be used.
  • the Czochralski method and the Bridgeman method are preferable.
  • the fired product obtained in the firing step may be used as a sintered body as it is, but after the firing step, the fired product is used for the purpose of repairing crystal defects.
  • the conditions such as temperature, pressure, time, and atmosphere in the annealing step are not particularly limited as long as the phosphor of this embodiment can be obtained.
  • the annealing temperature is usually 100 ° C. or higher, preferably 150 ° C. or higher, and usually 390 ° C. or lower, preferably 300 ° C. or lower.
  • the annealing pressure is usually 10 MPa or more, preferably 20 MPa or more, and usually 300 MPa or less, preferably 200 MPa or less.
  • the annealing time is usually 0.5 hours or more, preferably 1 hour or more, and usually 20 hours or less, preferably 10 hours or less.
  • the annealing atmosphere is preferably an inert atmosphere such as an argon atmosphere or a nitrogen atmosphere.
  • the following methods I and II can be used.
  • Method of precipitating crystals II Method of preparing raw materials so as to obtain the desired composition and depositing them on a substrate at a predetermined temperature and a predetermined atmosphere The substrate for film production can be appropriately selected.
  • the solvent for dissolving the raw material is not particularly limited as long as it can dissolve or disperse the raw material.
  • concentration of the raw material in the solution may be adjusted as appropriate.
  • the obtained phosphor-equivalent concentration is preferably 0.05 to 1.0 mol / L.
  • the method for obtaining the phosphor of the present embodiment as a powder is not particularly limited.
  • a method of obtaining the synthetic powder obtained in the above synthesis step as it is as a powder phosphor; a method of crushing a sintered body obtained in the above firing step or an annealing step; crushing a single crystal obtained in the single crystal growth step. Method to do; etc.
  • the method of pulverization is not particularly limited.
  • the use of the phosphor in this embodiment is not particularly limited.
  • it can be used as a light emitting element due to its characteristics of being excited by ultraviolet rays or its characteristics of emitting light in blue to green. Further, it can be used in a light emitting device including such a light emitting element.
  • Examples of the light emitting device include a lighting device, an image display device, an automobile headlamp, and the like.
  • LED devices such as LED lighting devices and LED image display devices
  • EL devices such as EL lighting devices and EL image display devices, fluorescent lamps, and the like are known. More specifically, examples thereof include a white light emitting diode, a lighting fixture including a plurality of white light emitting diodes, a backlight for a liquid crystal panel, and the like, but the present invention is not particularly limited thereto.
  • Examples of the image display device include, but are not limited to, a vacuum fluorescent display (VFD), a field emission display (FED), a plasma display panel (PDP), a cathode ray tube (CRT), a liquid crystal display (LCD), and the like.
  • VFD vacuum fluorescent display
  • FED field emission display
  • PDP plasma display panel
  • CRT cathode ray tube
  • LCD liquid crystal display
  • a ⁇ -sialone-type phosphor activating YAG: Ce, Eu, or a phosphor that emits light of other colors such as yellow, green, and red represented by CASN: Eu. Can be used for white light emitting elements and light emitting devices.
  • the phosphor of this embodiment can also be used in a radiation detector, for example as a scintillator material.
  • the radiation detector is, for example, radiomedical science, physics, physiology, chemistry for medical diagnosis or X-ray CT for safety inspection, positron CT (PET) for medical diagnosis, cosmic ray observation, underground resource search, etc. , Mineral science, and can be used in fields such as oil exploration.
  • the form of the phosphor in this embodiment is not particularly limited, and it may be any of powder, single crystal, and sintered body.
  • the phosphor of this embodiment can be used as a radiation detector by combining it with a receiver.
  • Receivers used in radiation detectors include position-detecting photomultiplier tubes (PS-PMT), silicon photomultiplier tubes (Si-PM), photodiodes (PD) or avalanche photodiodes (APD). Be done.
  • the phosphor of this embodiment can also be used as a radiation inspection device by providing these radiation detectors.
  • the radiation inspection device include a non-destructive inspection detector such as a non-destructive inspection detector, a resource exploration detector, a high-energy physical detector, and a diagnostic device such as a medical image processing device.
  • medical image processing devices include positron emission tomography (PET) devices, X-ray CT, SPECT and the like.
  • PET form include a two-dimensional PET, a three-dimensional PET, a time-of-flight (TOF) PET, and a depth detection (DOI) PET. Moreover, these can be used in combination.
  • a transparent block-shaped crystal having a side of about 100 ⁇ m was collected from a part of the obtained massive sample.
  • X-ray diffraction intensity is collected using a single crystal X-ray structure analyzer (R-AXIS RAPIDII manufactured by Rigaku) equipped with a MoK ⁇ radiation source and a graphite monochromator, and crystal structure analysis is performed. rice field. It was confirmed that the obtained crystal was a novel compound Cs 5 Cu 3 Cl 6 I 2 belonging to the space group Cmcm and occupying the crystal parameters and atomic coordinates shown in Table 1.
  • FIG. 1 shows a powder XRD figure when a CuK ⁇ radiation source calculated from the structural analysis results is used.
  • the emission spectrum and excitation spectrum of the phosphor of Example 1 were measured using a spectral fluorometer (F-4500, manufactured by Hitachi, Ltd.). The results are shown in FIG.
  • the excitation spectrum is a measurement result of monitoring the emission at 462 nm.
  • the emission spectrum is a measurement result when excited at 300 nm.
  • the emission peak wavelength of the phosphor of Example 1 was 462 nm, and the excitation peak wavelength was 271 nm.
  • an absolute PL quantum yield measuring device manufactured by Hamamatsu Photonics Co., Ltd., L9799-02
  • the emission quantum yield when the phosphor of Example 1 was excited with light having a wavelength of 300 nm was measured. As a result, the emission quantum efficiency was as good as 95%. It was found that the phosphor of Example 1 had high luminous efficiency at the time of ultraviolet excitation and was an excellent blue-green phosphor for ultraviolet excitation.
  • the fluorescence intensity after stopping the X-ray irradiation was 3.9% after 20 ms and 2.1% after 100 ms, assuming that the fluorescence intensity during the X-ray irradiation was 100%.
  • the calculated density derived from the single crystal structure analysis was 4.05 g / cm 3 .
  • the effective atomic number calculated from the composition formula is 50.0. It can be seen that the fluorescent substance of Example 1 is a fluorescent substance that emits blue-green light and has a high radiation blocking ability.
  • Example 2 Add CsI to 2-methoxyethanol to a final concentration of 0.30 mol / L, CsCl to a final concentration of 0.45 mol / L, and CuCl to a final concentration of 0.45 mol / L, and then stir until the raw materials are dissolved. Then, a Cs, Cu, Cl, and I solution having a concentration of 0.15 mol / L when converted to Cs 5 Cu 3 Cl 6 I 2 was prepared. Next, the obtained solution was dropped onto a quartz substrate, spin-coated at 500 rpm for 5 seconds and 4000 rpm for 30 seconds, and then baked at 100 ° C. to obtain a Cs 5 Cu 3 Cl 6 I 2 thin film (implemented). Example 2 phosphor) was prepared.
  • Example 2 For the phosphor of Example 2, the emission spectrum and the emission quantum yield when excited by ultraviolet rays having a wavelength of 300 nm were measured in the same manner as in Example 1. The fluorophore results are shown in FIG. The phosphor of Example 2 showed an emission peak wavelength at 472 nm, and exhibited a blue-green emission as in Example 1. The emission quantum efficiency of the phosphor of Example 2 was as good as 72%.
  • the excitation spectrum is a measurement result of monitoring the emission at 439 nm.
  • the emission spectrum is a measurement result when excited at 302 nm.
  • the emission peak wavelength of the phosphor of Reference Example 1 was 440 nm, and the excitation peak wavelength was 303 nm.
  • the emission quantum yield when the phosphor of Reference Example 1 was excited at 300 nm was 81%. It can be seen that the fluorescent substance of Reference Example 1 is a fluorescent substance that emits blue light when excited by ultraviolet rays.
  • the present invention it is possible to provide a novel phosphor that does not contain harmful substances and has high emission quantum efficiency. Further, according to the present invention, it is possible to provide a scintillator having a long emission peak wavelength suitable for a receiver. Furthermore, according to the present invention, it is possible to provide a novel phosphor that emits blue to green light by ultraviolet rays or radiation, a light emitting device using this phosphor, a radiation detector, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Luminescent Compositions (AREA)

Abstract

結晶構造が空間群Cmcmに属し、以下の式(1)で表される組成の蛍光体。 A・・・(1) (式(1)中、AはNa、K、Rb、およびCsのいずれか1種以上を含む。BはCu、およびAgのいずれか1種以上を含む。CはF、Cl、およびBrのいずれか1種以上を含む。DはIを含む。a、b、cおよびdはそれぞれ全体の組成におけるA、B、CおよびDのモル比を示し、3.3≦a≦6.8、2.0≦b≦4.1、5.2≦c+d≦10.8、0.5<c/(c+d)<1.0、および1.55≦a/b≦3.4を満たす。)

Description

蛍光体、発光装置および放射線検知器
 本発明は、蛍光体、特にシンチレータとして有用な蛍光体、この蛍光体を用いた発光装置と放射線検知器および放射線検出装置に関する。
 紫外線や青色光で励起される蛍光体として、例えばMnを付活したBaMgAl1017、Euを付活したβサイアロン型蛍光体などが知られている。これらの分野の研究開発では、発光中心元素の種類を変えることで発光スペクトル形状を変化させる方法、組成式に特定量のズレを有する蛍光体とする方法、などの方法で、蛍光特性の改善が図られてきた(特許文献1~2)。
 放射線を検出するためのシンチレータとして、代表的なものとして、LuSiO、Ga(Ga,Al)12、GdSi、CdWO、PbWOなどが知られている。これらの分野の研究開発では、これらの化合物の構造をベースとして、母体原子を同族原子で置換する方法、あるいは発光中心原子とともに価数の異なる不純物原子を共添加するなどの方法で、シンチレータ特性の改善が図られてきた(特許文献3~6)。
 より安価なシンチレータ開発の需要から、CsCuといった銅系ハライドが開発され、発光波長調整のためにInやTlによる付活やCsCuへのCl置換が試みられてきた(特許文献7~9)。
特許第06617659号公報 国際公開第2012/043567号 特許第5674385号公報 特開2016-56378号公報 特開2015-151535号公報 特開2003-95791号公報 特許第03851547号公報 特許第06000664号公報 特許第06116386号公報
 上述の蛍光体の中には、高い発光効率を示す一方で、Lu等の放射線を放出する構成元素や、Cd、Pb等の有害物を含む材料も含まれている。
 しかし、近年は有害物を含む材料の使用が規制される例が生じており、有害物を含まず、かつ発光効率の高い新規な蛍光体が求められている。
 本発明が解決しようとする課題は、有害物を含まず、かつ発光量子効率の高い新規な蛍光体を提供することにある。
 また、本発明が解決しようとする別の課題は、紫外線又は放射線の光により、青色乃至緑色に発光する新規な蛍光体を提供すること、および、この蛍光体を用いた発光装置および放射線検知器等を提供することにある。
 本発明者は、従来の蛍光体とは異なる結晶構造および特定の組成を有し、紫外線又は放射線の光により、青色乃至緑色に発光する新規な蛍光体を見出した。
 本発明は以下を要旨とする。
[1] 結晶構造が空間群Cmcmに属し、以下の式(1)で表される組成の蛍光体。
 A・・・(1)
(式(1)中、AはNa、K、Rb、およびCsのいずれか1種以上を含む。BはCu、およびAgのいずれか1種以上を含む。CはF、Cl、およびBrのいずれか1種以上を含む。DはIを含む。a、b、cおよびdはそれぞれ全体の組成におけるA、B、CおよびDのモル比を示し、3.3≦a≦6.8、2.0≦b≦4.1、5.2≦c+d≦10.8、0.5<c/(c+d)<1.0、および1.55≦a/b≦3.4を満たす。)
[2] 以下の式(2)で表される組成の[1]に記載の蛍光体。
 A:RE・・・(2)
(式(2)は、式(1)におけるA、B、C、Dのいずれかの一部がREで表される賦活剤元素で置換されていることを示す。式(2)中、A、B、C、D、a、b、c、dは、式(1)におけると同義である。REはMn、In、Tl、Ce、Pr、Nd、Sm、Pm、Eu、Gd、Tb、Dy、Ho、Er、Tm、およびYbからなる群から選択される1種以上を含む。xはREの合計含有モル比を表し、0<x≦0.34を満たす。)
[3] 発光ピーク波長が440nm以上540nm以下である[1]又は[2]に記載の蛍光体。
[4] 波長300nmの光で励起したときの発光量子収率が60%以上である[1]~[3]のいずれかに記載の蛍光体。
[5] 励起ピーク波長が230nm以上340nm以下である[1]~[4]のいずれかに記載の蛍光体。
[6] X線を照射したときの蛍光強度の最大値を100%としたとき、X線の照射を止めた時間から20ms後の蛍光強度が7%以下、かつ100ms後の蛍光強度が4%以下である[1]~[5]のいずれかに記載の蛍光体。
[7] 式(1)におけるCがClである[1]~[6]のいずれかに記載の蛍光体。
[8] 式(1)におけるBがCuである[1]~[7]のいずれかに記載の蛍光体。
[9] 式(1)におけるAがCsである[1]~[8]のいずれかに記載の蛍光体。
[10] 式(1)で表される組成の相の質量割合が50%以上100%以下である、[1]~[9]のいずれかに記載の蛍光体。
[11] [1]~[10]のいずれかに記載の蛍光体を含み、かつ該蛍光体の含有量が50質量%以上である蛍光体組成物。
[12] [1]~[10]のいずれかに記載の蛍光体又は[11]に記載の蛍光体組成物を含む発光装置。
[13] [1]~[10]のいずれかに記載の蛍光体又は[11]に記載の蛍光体組成物を含む放射線検知器。
[14] [13]に記載の放射線検知器を備えた放射線検査装置。
 本発明により、有害物を含まず、かつ発光量子効率の高い新規な蛍光体を提供することができる。
 また、本発明により、受光器に適した長波長の発光ピーク波長を有するシンチレータを提供することができる。
 更に、本発明は、紫外線又は放射線の光により、青色乃至緑色に発光する新規な蛍光体、および、この蛍光体を用いた発光装置、放射線検知器等を提供することができる。
図1は実施例1の蛍光体の結晶構造から計算した粉末XRD図形を示す図である。 図2は実施例1の蛍光体の粉末X線回折図形を示す図である。 図3は実施例1の蛍光体の励起スペクトルおよび発光スペクトルを示す図である。 図4は実施例1の蛍光体のX線励起時の残光を示す図である。 図5は実施例2の蛍光体の発光スペクトルを示す図である。 図6は参考例1の蛍光体の粉末X線回折図形を示す図である。 図7は参考例1の蛍光体の励起スペクトルおよび発光スペクトルを示す図である。
 以下に本発明の実施の形態を詳細に説明する。以下の説明は本発明の実施形態の一例(代表例)であり、本発明はその要旨を超えない限り以下の内容に限定されない。
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載された数値を下限値および上限値として含む範囲を意味する。例えば、「A~B」は、A以上B以下であることを意味する。
[蛍光体]
 本発明の一実施形態に係る蛍光体(以下、単に「蛍光体」とも称する)は、結晶構造が空間群Cmcmに属し、以下の式(1)で表される組成の蛍光体である。
  A・・・(1)
(式(1)中、AはNa、K、Rb、およびCsのいずれか1種以上を含む。BはCu、およびAgのいずれか1種以上を含む。CはF、Cl、およびBrのいずれか1種以上を含む。DはIを含む。a、b、cおよびdはそれぞれ全体の組成におけるA、B、CおよびDのモル比を示し、3.3≦a≦6.8、2.0≦b≦4.1、5.2≦c+d≦10.8、0.5<c/(c+d)<1.0、および1.55≦a/b≦3.4を満たす。)
<結晶系と空間群>
 本実施形態の蛍光体の結晶系は、斜方晶(Orthorombic)であり、結晶構造の空間群は、「International Tables for Crystallography(Third,revised edition),Volume A SPACE-GROUP SYMMETRY」に基づく63番(C m c m)に属する。ここで、空間群は常法によって求めることができる。具体的には、単結晶を用いたX線回折測定や電子線回折により求めることができる。
<格子定数>
 本実施様態の蛍光体の格子定数aは通常14.36Å~19.43Åであり、好ましくは15.21Å~18.59Åであり、より好ましくは16.39Å~17.40Åである。
 本実施様態の蛍光体の格子定数bは通常7.77Å~10.51Åであり、好ましくは8.23Å~10.05Åであり、より好ましくは8.87Å~9.41Åである。
 本実施様態の蛍光体の格子定数cは通常11.93Å~16.14Åであり、好ましくは12.63Å~15.44Åであり、より好ましくは13.61Å~14.45Åである。
 格子定数は、常法に従って求めることできる。具体的には、単結晶のX線回折の結果を解析することによって求めることができる。また粉末のX線回折および中性子線回折の結果をリートベルト(Rietveld)解析することにより求めることもできる。
<組成比率>
 本実施様態の蛍光体の組成を示す式(1)におけるAはアルカリ金属元素であれば特に制限はない。例えばLi、Na、K、Rb、Csを用いることができる。大気中での安定性の観点から、本実施様態の蛍光体はAとして少なくともNa、K、Rb、およびCsのいずれか1種以上を含み、好ましくはCsを含む。
 Aに含まれる上記元素の割合は通常50質量%以上、好ましくは70質量%以上、より好ましくは80質量%以上、更に好ましくは90質量%以上である。Aに含まれる上記元素の割合の上限は特に制限されず、100質量%であってもよい。
 Bは1価を取りうる遷移元素であれば特に制限はない。例えばCu、Ag、Auを用いることができる。元素非希少性の観点から、本実施様態の蛍光体はBとして、少なくともCu、およびAgのいずれか1種以上を含み、好ましくはCuを含む。
 Bに含まれる上記元素の割合は通常50質量%以上、好ましくは70質量%以上、より好ましくは80質量%以上、更に好ましくは90質量%以上である。Bに含まれる上記元素の割合の上限は特に制限されず、100質量%であってもよい。
 Cはヨウ素を除くハロゲンであれば特に制限はない。本実施様態の蛍光体はCとして少なくともF、Cl、およびBrのいずれか1種以上を含み、好ましくはCl、およびBrのいずれか1種以上を含み、より好ましくはClを含む。
 Cに含まれる上記元素の割合は通常50質量%以上、好ましくは70質量%以上、より好ましくは80質量%以上、更に好ましくは90質量%以上である。Cに含まれる上記元素の割合の上限は特に制限されず、100質量%であってもよい。
 DはI(ヨウ素)である。
 a、b、c、dはそれぞれ蛍光体の全組成におけるA、B、C、Dのモル比を示す。
 aは通常3.3以上、好ましくは4.0以上、より好ましくは4.5以上、通常6.8以下、好ましくは6.0以下、より好ましくは5.5以下である。
 bは通常2.0以上、好ましくは2.4以上、より好ましくは2.7以上、通常4.1以下、好ましくは3.6以下、より好ましくは3.3以下である。
 c+dは通常5.2以上、好ましくは6.4以上、より好ましくは7.2以上、通常10.8以下、好ましくは9.6以下、より好ましくは8.8以下である。
 c/(c+d)は通常0.5以上、好ましくは0.6以上、より好ましくは0.7以上、通常1.0以下、好ましくは0.9以下、より好ましくは0.8以下である。
 a/bは通常1.55以上、好ましくは1.58以上、更に好ましくは1.60以上、より更に好ましくは1.62以上であり、通常3.4以下、好ましくは3.0以下、より好ましくは2.5以下、更に好ましくは2.2以下、より更に好ましくは2.0以下、特に好ましくは1.8以下である。
 A、B、C、D、a、b、c、dに適切な元素および比率を用いることで、発光色と発光効率に優れた蛍光体を得ることができる。
 式(1)で表される蛍光体は、以下の式(2)で表されるように、A、B、C、D以外に賦活剤として他の元素RE(「賦活剤元素」とも称する)を含んでいてもよい。
 A:RE・・・(2)
(式(2)は、式(1)におけるA、B、C、Dのいずれかの一部がREで表される賦活剤元素で置換されていることを示す。式(2)中、A、B、C、D、a、b、c、dは、式(1)におけると同義である。REはMn、In、Tl、Ce、Pr、Nd、Sm、Pm、Eu、Gd、Tb、Dy、Ho、Er、Tm、およびYbからなる群から選択される1種以上を含む。xはREの合計含有モル比を表し、0<x≦0.34を満たす。)
 上記賦活剤元素REとしては、Mn、In、Tl、Ce、Pr、Nd、Sm、Pm、Eu、Gd、Tb、Dy、Ho、Er、Tm、およびYbからなる群から選択される1種以上を含んでいてよい。賦活剤元素REは短い蛍光減衰時間を得る観点から、少なくともCeを含むことが好ましい。
 賦活剤元素REに含まれる上記元素の割合は通常50質量%以上、好ましくは70質量%以上、より好ましくは80質量%以上、更に好ましくは90質量%以上である。この割合の上限は特に制限されず、100質量%であってもよい。
 賦活剤元素は、どのような態様で蛍光体中に存在してもよい。例えば、A又はBのいずれか一方に含まれていてもよく、AおよびBの両方に含まれていてもよい。
 賦活剤元素の含有量は制限されない。例えば、蛍光体全体に対して、通常1.0質量%以下であり、より好ましくは0.5質量%以下、更に好ましくは0.2質量%以下であり、0.1質量%以下としてもよい。賦活剤元素の含有量の下限は特に制限されない。
 A、B、C、Dのいずれかの一部を置換する賦活剤元素の含有量は、モル比で表せば、通常0.5以下、好ましくは0.4以下、より好ましくは0.34以下、更に好ましくは0.25以下である。
 賦活剤元素がAに含まれる場合、賦活剤元素の含有量は、Aの全体に対して通常0.01モル%以上、5モル%以下であり、好ましくは0.1モル%以上、2モル%以下である。
 賦活剤元素がBに含まれる場合、賦活剤元素の含有量は、Bの全体に対して通常0.001モル%以上であり、通常5モル%以下であり、好ましくは1モル%以下、より好ましくは0.1モル%以下であり、極力少ないことが好ましい。
 本実施様態の蛍光体が賦活剤元素を適切な量含むことで、より大きな蛍光強度を得ることができる。
 式(1)で表される蛍光体は、本発明の効果を損なわない範囲で、更に他の元素を含有していてもよい。
 蛍光体に含まれる元素の分析は特に制限されない。例えばグロー放電質量分析(GDMS)を用いた全元素分析の手法で行うことができる。
 本実施様態の蛍光体の形態には特に制限がなく、各々の用途、目的に応じて適宜選択することができる。例えば、粉体、単結晶、多結晶、または焼結体の形態とすることができる。特に、粉体、単結晶、または焼結体の形態とすることができる。本実施様態の蛍光体の形態は、例えば、X線CT装置に用いる場合には、単結晶または焼結体のブロックが好ましい。非破壊検査用のX線検出フィルムに用いる場合には、本実施様態の蛍光体は、粉体を樹脂製のシートに分散させたフィルムとして用いることが好ましい。
<発光特性と励起源>
 本実施様態の蛍光体は、励起源のエネルギーを受けて励起し、電磁波、好ましくは可視光を放出(発光)する。前記励起源は可視光、紫外線などの電磁波、電離放射線、又は電流などを用いることができる。電離放射線としてはX線、γ線、α線、中性子線が挙げられる。
<発光ピーク波長>
 本実施様態の蛍光体は、通常160nm~700nmの波長領域に発光ピーク波長を有する。前記波長領域の下限は好ましくは350nm以上、より好ましくは440nm以上、更に好ましくは455nm以上であり、上限は好ましくは600nm以下、より好ましく540nm以下、更に好ましくは500nm以下、特に好ましくは490nm以下である。
 発光ピーク波長が上記範囲内であると、得られる蛍光体において、良好な青色~緑色を呈するため好ましい。
 発光スペクトルおよび発光ピーク波長の測定方法は特に制限されない。例えば一般的な分光蛍光光度計を用いて測定することができる。
<発光量子収率>
 本実施態様の蛍光体を励起ピーク波長近傍である波長300nmの紫外線で励起させたときの発光量子収率は、通常50%以上、好ましくは60%以上、より好ましくは70%以上、更に好ましくは80%以上、特に好ましくは90%以上である。発光量子収率の上限は100%以下の範囲であれば制限は無く、高ければ高いほど良い。この発光量子収率が高い程、照射した光を効率的に放出光に変換できる点で好ましい。
 発光量子収率の測定は、例えば、絶対PL量子収率測定装置で行うことができる。
<紫外線等による励起、および励起ピーク波長>
 本実施態様の蛍光体は、例えば紫外線から可視光領域の電磁波によって励起し、発光することが好ましい。この場合、本実施様態の蛍光体は発光装置、照明装置などに使用する蛍光体として用いることができる。
 本実施様態の蛍光体の励起ピーク波長(吸収極大波長)は通常200nm以上、好ましくは230nm以上、より好ましくは260nm以上、通常400nm以下、好ましくは340nm以下、より好ましくは320nm以下である。
 励起スペクトルおよび励起ピーク波長の測定方法は特に制限されない。例えば一般的な分光蛍光光度計を用いて測定することができる。
<X線励起時の残光>
 本実施様態の蛍光体は、放射線によっても励起し、発光することが好ましい。この場合、本実施様態の蛍光体は、シンチレータとしても用いることができる。本実施様態の蛍光体にX線を照射した際、蛍光強度の最大値を100%として、X線の照射を止めた時間から20ms後の蛍光強度は通常10%以下、好ましくは7%以下、より好ましくは5%以下である。また、X線の照射を止めた時間から100ms後の蛍光強度は、通常5%以下、好ましくは4%以下、より好ましくは3%以下である。この蛍光強度の下限値は特に制限されず、通常0%以上である。
 X線照射停止後の蛍光強度が小さいほど、例えば放射線による診断装置に用いた際に時間分解能を高め、先鋭な画像が得られるとともに被爆量を低下させることができる点で好ましい。
 この蛍光強度は、後述の実施例に記載の方法で測定することができる。
 本実施形態の蛍光体は、単一相であっても複数の相を含んでも良く、全体として前記式(1)で表される組成であればよい。本実施様態の蛍光体が複数の相を含む場合、本実施様態の蛍光体は、通常、前記式(1)で表される組成を有する相を含む。
 本実施様態の蛍光体における、前記式(1)で表される組成を有する相の割合は、質量基準で、通常40%以上であり、好ましくは50%以上、より好ましくは60%以上、更に好ましくは70%以上、より更に好ましくは80%以上、特に好ましくは90%以上、とりわけ好ましくは95%以上、最も好ましくは98%以上である。
 本実施様態の蛍光体における、前記式(1)で表される組成を有する相の割合の上限は特に制限されず、高ければ高いほど好ましいが、通常100%以下である。
 本実施様態の蛍光体が単一相の時、前記質量割合は100%又はほぼ100%である。
[蛍光体を含む蛍光体組成物]
<蛍光体組成物>
 本実施形態の蛍光体は、本実施形態の蛍光体、および該蛍光体とは異なる物質を含む蛍光体組成物(以下、「本実施形態の蛍光体組成物」と称す場合がある。)として利用することもできる。
 本実施形態の蛍光体とは異なる物質としては、任意の無機系材料および/又は有機系材料である。例えば、CsCl、CuCl、CsCuCl、CsCuCl、CsCuCl、CsCuClおよびこれらの化合物の塩素以外のハロゲンとの固溶体や水和物、CsI、CuI、CsCu、CsCu10およびこれらの化合物のヨウ素以外のハロゲンとの固溶体や水和物等が挙げられる。
 本実施形態の蛍光体組成物の特性については、好ましくは、少なくとも、本実施形態の蛍光体から成る部分は本実施形態の蛍光体を単独で用いた場合と同等かそれ以上の特性を示す。より好ましくは、蛍光体組成物全体においても、本実施形態の蛍光体を単独で用いた場合と同等かそれ以上の特性を示す。
 本実施様態の蛍光体と異なる物質を共に利用することで、双方の特性を併せ持つ多彩な蛍光体組成物とすることができる。
 本実施様態の蛍光体組成物の製造方法は特に制限されない。例えば本実施形態の蛍光体を製造する工程の過程で得ることができる。或いは、本実施形態の蛍光体の製造工程において、原料の元素比および/又は製造工程の条件を適宜調整することで得ることもできる。また、本実施様態の蛍光体の製造工程を終えた後に本実施様態の蛍光体とは異なる物質を適宜添加することで得ることもできる。
<蛍光体の含有率>
 本実施形態の蛍光体組成物の総質量に対する本実施形態の蛍光体の含有率は、通常20質量%以上であり、好ましくは50質量%以上、より好ましくは70質量%以上、更に好ましくは90%以上である。本実施形態の蛍光体組成物の総質量に対する本実施形態の蛍光体の含有率の上限は特に制限されないが、通常100%未満である。
 本実施形態の蛍光体組成物中の本実施様態の蛍光体の含有率が上記範囲にあることで、本実施形態の蛍光体組成物に含まれる本実施形態の蛍光体から成る部分、又は本実施形態の蛍光体組成物全体の性能が、本実施形態の蛍光体を単独で用いた場合と少なくとも同等の特性を示すことが期待される。
 蛍光体組成物中の蛍光体の含有率の測定方法は特に制限されない。例えば粉末のX線回折および中性子線回折の結果をリートベルト(Rietveld)解析することにより求めることができる。
[蛍光体の製造方法]
 本実施様態の蛍光体を製造する方法(以下、「本製造方法」と称する場合もある)は本実施様態の蛍光体を得られる限り特に限定されない。例えば、以下の工程1,2、好適には更に以下の工程3,4を含む方法が挙げられる。
 工程1:目的とする組成が得られるように原料を秤量し、十分混合することで、原料混合物を得る原料混合工程
 工程2:得られた原料混合物を耐熱容器に充填し、所定温度、所定雰囲気下で熱処理することで合成粉を得る合成工程
 工程3:得られた合成粉を加圧成形して加圧成形体を得る加圧成形工程
 工程4:得られた加圧成形体を所定温度、所定雰囲気下で焼成し、焼成物を必要に応じて加工、洗浄することにより、焼結体を得る焼成工程
<原料準備工程>
 本製造方法は、原料を準備する工程(原料の準備工程)を含んでよい。用いる原料は、本実施様態の蛍光体を製造することができる限り特に制限はない。例えば各々の構成原子の酸化物、ハロゲン化物、無機酸塩などを用いることができる。
 式(1)におけるA源としては、例えば、LiF、LiCl、LiBr、LiI、NaF、NaCl、NaBr、NaI、KF、KCl、KBr、KI、CsF、CsCl、CsBr、CsIおよびその水和物の1種又は2種以上を用いることができる。それぞれの純度は通常90%以上であり、好ましくは99%以上であり、上限は特に制限されない。
 B源としては、例えば、CuF、CuCl、CuBr、CuI、AgF、AgCl、AgBr、AgI、AuF、AuCl、AuBr、AuIおよびその水和物の1種又は2種以上を用いることができる。それぞれの純度は通常90%以上であり、好ましくは99%以上であり、上限は特に制限されない。
 C源、D源としては、上記A源、B源や、以下の賦活剤元素源中のF、Cl、Br、Iとして導入することができる。
 賦活剤元素についても同様に酸化物、ハロゲン化物、無機酸塩などを用いることができる。例えばCeに関しては、CeO、CeI、Ce、Ce(NO等の1種又は2種以上を用いることができる。これらの原料の純度は通常90%以上、好ましくは99%以上であり、上限は特に制限されない。
<原料混合工程>
 本製造方法は、原料を混合して原料混合物を得る工程(原料混合工程)を含んでよい。原料を混合する方法は特に限定はされず、一般的に用いられている方法が適用可能である。例えば乾式混合法、湿式混合法が挙げられる。
 乾式混合法としては、例えば、乳鉢やボールミルなどを用いた混合が挙げられる。
 湿式混合法としては、例えば、原料に水等の溶媒又は分散媒を加え、乳鉢と乳棒を用いて混合し分散溶液又はスラリーの状態とした上で、噴霧乾燥、加熱乾燥又は自然乾燥等により乾燥させる方法が挙げられる。
<合成工程>
 本製造方法は、上記の原料混合物を熱処理して合成紛を得る工程(合成工程)を含んでよい。
 合成工程では、原料混合物を、ルツボやトレイ等の耐熱容器中に充填し熱処理することで合成粉を得ることができる。前記耐熱容器の材質は、各原料と反応性の低い材質であれば特に制限はない。例えば、Pt、Rh含有量30質量%のRtRh合金、Irなどの白金系の容器やケイ酸塩ガラス容器が挙げられる。
 熱処理時の雰囲気は特に制限はないが、水素雰囲気、水素-希ガス混合雰囲気等の還元雰囲気;大気雰囲気;窒素雰囲気;減圧雰囲気等が挙げられる。
 大気中熱処理が還元雰囲気で行われる場合は、白金系の容器以外に、Mo、W系の容器なども使用できる。
 焼成時の酸化を抑制する観点で、大気を含まない雰囲気がより好ましい。
 本工程で得られた合成粉は、焼成工程により焼結体を得るために利用してもよく、そのまま粉体の蛍光体として利用することもできる。
 前記合成工程における熱処理の温度および時間については、本実施様態の蛍光体が得られる限り特に制限はない。熱処理の温度および時間は、混合した各原料が充分に反応する温度、時間とすることが好ましい。温度は通常100℃以上、好ましくは200℃以上であり、通常600℃以下、好ましくは500℃以下である。時間は通常1時間以上、好ましくは3時間以上、通常100時間以下である。
 前記合成工程で得られた合成粉は、篩にかけてもよい。篩の網目サイズ(オープニング)は通常500μm以下、好ましくは200μm以下である。篩にかけることで粉体の凝集を解消し、均一な品質の蛍光体を得ることができる。
<加圧成形工程>
 本製造方法は、上記の合成工程で得られた合成粉を加圧成形して加圧成形体を得る工程(加圧成形工程)を含んでよい。
 加圧成形の方法と条件は特に限定されない。例えば一軸加圧プレスや冷間静水圧プレスにて行うことができる。加圧成形時の圧力は例えば1MPa以上、好ましくは30MPa以上とすることができる。加圧成形圧力の上限に特に制限はないが通常400MPa以下、好ましくは300MPa以下である。
 適切に加圧成形を行うことで、焼結後のボイドが低減され、透光性が改善される。
<予備焼成工程>
 本製造方法は、上記の合成工程で得られた合成粉、又は上記の加圧成形工程で得られた加圧成形体を予備焼成して予備焼成物を得る工程(予備焼成工程)を含んでよい。
 予備焼成時の温度、圧力、時間および雰囲気は、本実施様態の蛍光体が得られる限り特に制限はない。予備焼成の温度は通常150℃以上、好ましくは200℃以上であり、通常500℃以下、好ましくは350℃以下である。予備焼成圧力は、通常10-5Pa以上であり、好ましくは10-3Pa以上であり、通常10MPa以下であり、好ましくは2MPa以下である。予備焼成時間は通常1時間以上、好ましくは2時間以上であり、通常50時間以下である。予備焼成の雰囲気は、好ましくはアルゴン雰囲気、窒素雰囲気等の不活性雰囲気である。
<焼成工程>
 本製造方法は、上記の合成工程で得られた合成粉、加圧成形工程で得られた加圧成形体、又は予備焼成工程で得られた予備焼成物を加圧下で更に加熱(焼成)することで焼成物(焼結体)を得る工程(焼成工程)を含んでよい。
 焼成工程の加圧方法および条件は特に限定されない。例えば熱間等方圧加圧法(HIP)にて行うことができる。焼成の前にホットプレス処理してもよい。
 焼成時の条件は、本実施形態の蛍光体が得られる限り特に制限はない。焼成温度は、通常150℃以上、好ましくは200℃以上であり、通常500℃以下、好ましくは350℃以下である。焼成圧力は、通常10MPa以上、好ましくは30MPa以上であり、通常300MPa以下、好ましくは200MPa以下である。焼成時間は、通常0.5時間以上、好ましくは1時間以上であり、通常20時間以下、好ましくは10時間以下である。
 焼成時の雰囲気は、本実施様態の蛍光体が得られる限り特に制限はない。材料、反応容器および炉材などの安定性を考慮し、適宜適した雰囲気下で焼成を行うことが好ましい。具体的な雰囲気としては、例えばアルゴン雰囲気、窒素雰囲気等の不活性雰囲気が挙げられる。
 焼成工程は、前処理工程(洗浄、乾燥、真空脱気などを行う工程)、後処理工程(洗浄、乾燥などを行う工程)等を任意に含んでいてもよい。
<単結晶成長工程>
 蛍光体を単結晶として得る場合は、例えば、前記原料混合物、又は、上記焼成工程若しくは下記アニール工程により得られた焼結体を加熱溶融し、融液から単結晶を成長させることにより得ることができる。
 この場合、加熱溶融処理の温度は通常200~600℃、好ましくは300~500℃である。圧力は特に制限されず、前記原料混合物又は上記焼成工程又は下記アニール工程により得られた焼結体が分解しない圧力範囲であれば良い。例えば常圧で行うことができる。加熱溶融に用いる容器の材質は、合成工程の場合と同様に特に制限されない。例えば、Pt、Rh含有量30質量%のRtRh合金、Irなどの白金系金属やケイ酸塩ガラスが挙げられる。
 単結晶作製時の容器や雰囲気は、焼結体の製造と同様の観点で適宜選択することができる。単結晶育成の方法には特に制限はなく、一般的なチョクラルスキー法、ブリッジマン法、マイクロ引下げ法、EFG法、ゾーンメルト法などを用いることができる。融点を下げる目的では、フラックス法などを用いることもできる。大型の結晶を育成する場合は、チョクラルスキー法、ブリッジマン法が好ましい。
<アニール工程>
 本製造方法は、本実施様態の蛍光体を焼結体として得る場合は、焼成工程により得られる焼成物をそのまま焼結体としてもよいが、焼成工程後に、結晶欠陥修復の目的で、焼成物をアニールする工程(アニール工程)を含んでよい。アニールを行うことで、結晶欠陥による光吸収が低減され、より透光性が高い焼結体を得ることができる。
 アニール工程における温度、圧力、時間、雰囲気などの諸条件は、本実施様態の蛍光体が得られる限り特に制限はない。アニール温度は、通常100℃以上、好ましくは150℃以上であり、通常390℃以下、好ましくは300℃以下である。アニール圧力は、通常10MPa以上であり、20MPa以上であることが好ましく、通常300MPa以下であり、200MPa以下であることが好ましい。アニール時間は、通常0.5時間以上、好ましくは1時間以上であり、通常20時間以下、好ましくは10時間以下である。アニール雰囲気は、好ましくはアルゴン雰囲気、窒素雰囲気等の不活性雰囲気である。
<フィルム作製工程>
 蛍光体をフィルムとして得る場合は、例えば、以下I,IIのような方法などを用いることができる。
 I:目的とする組成物が得られるように原料を秤量し、秤量した原料を溶媒中に溶解させ、得られた溶液を基板に塗布し、塗膜を所定温度、所定雰囲気下で加熱して結晶を析出させる方法
 II:目的とする組成物が得られるように原料を用意し、所定温度、所定雰囲気で基板上に蒸着させる方法
 フィルム作製時の基板は、適宜選択することができる。
 原料を溶解する溶媒としては、原料を溶解又は分散できるものであれば特に制限はない。例えば、2-メトキシエタノール、2-エトキシエタノール、ジメチルエーテル、メチルエチルエーテル、アセトン、メチルエチルケトン、メチルイソブチルケトン、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、ジメチルスルホキシド、N,N-ジメチルホルムアミド、アセトニトリル、テトラヒドロフラン、ヘキサン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、トルエン、キシレン等の1種又は2種以上を用いることができる。
 溶液中の原料濃度は、適宜調整すればよい。例えば、得られる蛍光体換算濃度として0.05~1.0mol/Lが好ましい。
<蛍光体粉体>
 本実施形態の蛍光体を粉体として得る方法は特に制限されない。例えば上記合成工程で得られた合成粉をそのまま粉体蛍光体として得る方法;上記焼成工程又はアニール工程により得られた焼結体を粉砕する方法;単結晶成長工程により得られた単結晶を粉砕する方法;等が挙げられる。
 前記粉砕の方法は特に制限されない。
[蛍光体の用途]
 本実施様態の蛍光体の用途は特に制限されない。例えば紫外線により励起する特性あるいは青~緑色で発光する特性により、発光素子として用いることができる。また、このような発光素子を含む発光装置に用いることができる。
 発光装置としては、例えば照明装置や画像表示装置、自動車のヘッドランプ等が挙げられる。照明装置や画像表示装置等の発光装置としては、LED照明装置やLED画像表示装置等のLEDデバイス、EL照明装置やEL画像表示装置等のELデバイス、蛍光ランプ等が知られている。より具体的には、白色発光ダイオード、複数の白色発光ダイオードを含む照明器具、液晶パネル用バックライト等が挙げられるが、これらに特に限定されない。
 画像表示装置としては、蛍光表示管(VFD)、フィールドエミッションディスプレイ(FED)、プラズマディスプレイパネル(PDP)、陰極線管(CRT)、液晶ディスプレイ(LCD)等が挙げられるが、これらに特に限定されない。
 本実施様態の蛍光体を例えばYAG:Ce、Euを付活したβサイアロン型蛍光体、CASN:Eu等に代表される黄色、緑色、赤色等他の色の発光を示す蛍光体と組み合わせることで、白色光の発光素子、発光装置に用いることができる。
 本実施様態の蛍光体はまた、例えばシンチレータ材料として、放射線検知器に用いることもできる。該放射線検知器は、例えば、医学診断用あるいは安全検査用X線CT用、医学診断用ポジトロンCT(PET)用、宇宙線観察用、地下資源探索用等の放射線医学、物理学、生理学、化学、鉱物学、更に石油探査等の分野で用い得る。
 放射線検知器の用途に用いる場合、本実施様態の蛍光体の形態は特に制限されず、粉体、単結晶、焼結体のいずれとすることもできる。本実施様態の蛍光体は、受光器と組み合わせることで、放射線検知器としての使用が可能となる。放射線検知器において使用される受光器としては、位置検出型光電子増倍管(PS-PMT)、シリコンフォトマルチプライヤー(Si-PM)、フォトダイオード(PD)またはアバランシェ―フォトダイオード(APD)が挙げられる。
 更に、本実施様態の蛍光体は、これらの放射線検知器を備えることで放射線検査装置としても使用可能である。放射線検査装置としては、非破壊検査用検出器、資源探査用検出器、高エネルギー物理用検出器などの非破壊検査用の検査装置、又は医用画像処理装置などの診断装置が挙げられる。医用画像処理装置の例としては、陽電子放射断層撮影(PET)装置、X線CT、SPECTなどが挙げられる。PETの形態としては、二次元型PET、三次元型PET、タイム・オブ・フライト(TOF)型PET、深さ検出(DOI)型PETが挙げられる。また、これらを組み合わせて使用することができる。
 以下、本発明について、実施例により詳細に説明する。本発明は以下の実施例に限定されるものではない。
[実施例1]
<CsCuCl蛍光体の製造>
 シグマアルドリッチ社製のCsI(純度99.999%)、CsCl(純度99.9%)、CuCl(純度99.99%)をモル比がCs:Cu:Cl:I=5:3:6:2となるように混合し、原料混合物を得た。得られた原料混合物をガラス管内に設置した後、減圧下で封入した。次いで、原料混合物が封入されたガラス管を管状炉中に設置し、400℃で12時間保持した後、24時間掛けて冷却し、塊状試料を得た。
 得られた塊状試料の一部から一辺が100μm程度の透明なブロック状の結晶を採取した。このブロック状の結晶について、MoKα線源およびグラファイトモノクロメータを備えた単結晶X線構造解析装置(Rigaku社製、R-AXIS RAPIDII)を用いてX線回折強度を収集し、結晶構造解析を行った。得られた結晶は、空間群Cmcmに属し、表1に示す結晶パラメータおよび原子座標を占める、新規化合物CsCuClであることが確認された。
 参考のため、構造解析結果から計算したCuKα線源を用いた場合の粉末XRD図形を図1に示す。
Figure JPOXMLDOC01-appb-T000001
<粉末XRD測定>
 次いで、上記の塊状試料を粉砕し、粉末試料を得た(実施例1の蛍光体)。実施例1の蛍光体について、CuKα線源を備えたX線回折測定装置(Bruker社製、D8 Advance)を用いて粉末XRDを測定した。得られたXRD図形を図2に示す。
 図1との比較から明らかなように、実施例1の蛍光体は空間群Cmcmに属するCsCuClの単一相であった。
<発光スペクトルおよび励起スペクトルの測定>
 分光蛍光光度計(日立製作所製、F-4500)を用いて、実施例1の蛍光体の発光スペクトルおよび励起スペクトルを測定した。結果を図3に示す。励起スペクトルは462nmの発光をモニターした測定結果である。発光スペクトルは300nmで励起したときの測定結果である。
 実施例1の蛍光体の発光ピーク波長は462nmであり、励起ピーク波長は271nmであった。
 絶対PL量子収率測定装置(浜松ホトニクス社製、L9799-02)を用いて、実施例1の蛍光体を波長300nmの光で励起したときの発光量子収率を測定した。その結果、該発光量子効率は95%と良好であった。
 実施例1の蛍光体は紫外線励起時の発光効率が高く、優れた紫外線励起用の青緑色蛍光体であることがわかった。
<シンチレーション特性および残光強度の評価>
 粉末XRD測定において、実施例1の蛍光体はX線の照射下で明らかに発光を示していた。次いで、実施例1の蛍光体を石英シャーレに200mg充填した後、100kV、20mAs、16mGy/sの条件でサンプルにX線を照射し、X線照射中およびX線照射を止めた後の蛍光強度を光電子増倍管で測定した。結果を図4に示す。X線照射を止めた後の蛍光強度は、X線照射中の蛍光強度を100%として、20ms後で3.9%、100ms後で2.1%だった。
 単結晶構造解析から導かれた計算密度は4.05g/cmであった。
 組成式から計算した実効原子番号は50.0である。
 実施例1の蛍光体は、青緑色発光を示すと共に、高い放射線阻止能を有する蛍光体であることがわかる。
[実施例2]
 2-メトキシエタノールに対してCsIを最終濃度0.30mol/L、CsClを最終濃度0.45mol/L、CuClを最終濃度0.45mol/Lとなる様に加えた後、原料が溶解するまで攪拌し、CsCuClに換算した際の濃度が0.15mol/LとなるCs、Cu、Cl、I溶液を作製した。次いで、得られた溶液を石英基板上へ滴下し、500rpmで5秒、4000rpmで30秒の条件でスピンコートした後、100℃でベーキングすることで、CsCuCl薄膜(実施例2の蛍光体)を作製した。
 実施例2の蛍光体について、実施例1と同様に、波長300nmの紫外線で励起した際の発光スペクトルおよび発光量子収率を測定した。蛍光体結果を図5に示す。
 実施例2の蛍光体は472nmに発光ピーク波長を示し、実施例1と同様に青緑色の発光を示した。
 実施例2の蛍光体の発光量子効率は72%と良好であった。
[参考例1]
 シグマアルドリッチ社製のCsI(純度99.999%)、CuI(純度99.999%)をモル比がCs:Cu:I=3:2:5となるように混合し、原料混合物を得た。得られた原料混合物をガラス管中に設置した後、減圧下で封入した。次いで、原料混合物が封入されたガラス管を箱型炉中に設置し、300℃で100時間保持した後、3時間かけて室温に冷却し、塊状試料を得た。得られた塊状試料を粉砕し、粉末試料(参考例1の蛍光体)を得た。
 参考例1の蛍光体の粉末XRD測定結果を図6に示す。参考例1の粉末試料は空間群Pnmaに属するCsCuの単一相であった。
 次いで、分光蛍光光度計(日立製作所製、F-4500)を用いて、参考例1の蛍光体の発光スペクトルおよび励起スペクトルを測定した。結果を図7に示す。
 励起スペクトルは439nmの発光をモニターした測定結果である。発光スペクトルは302nmで励起したときの測定結果である。
 参考例1の蛍光体の発光ピーク波長は440nmであり、励起ピーク波長は303nmであった。
 参考例1の蛍光体を300nmで励起したときの発光量子収率は81%であった。参考例1の蛍光体は紫外線励起で青色発光を示す蛍光体であることがわかる。
 以上に示す通り、本発明により、有害物を含まず、かつ発光量子効率の高い新規な蛍光体を提供することができる。
 また、本発明により、受光器に適した長波長の発光ピーク波長を有するシンチレータを提供することができる。
 更に、本発明により、紫外線又は放射線の光により、青色乃至緑色に発光する新規な蛍光体、および、この蛍光体を用いた発光装置、および放射線検知器等を提供することができる。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2020年4月14日付で出願された日本特許出願2020-072369に基づいており、その全体が引用により援用される。

 

Claims (14)

  1.  結晶構造が空間群Cmcmに属し、以下の式(1)で表される組成の蛍光体。
     A・・・(1)
    (式(1)中、AはNa、K、Rb、およびCsのいずれか1種以上を含む。BはCu、およびAgのいずれか1種以上を含む。CはF、Cl、およびBrのいずれか1種以上を含む。DはIを含む。a、b、cおよびdはそれぞれ全体の組成におけるA、B、CおよびDのモル比を示し、3.3≦a≦6.8、2.0≦b≦4.1、5.2≦c+d≦10.8、0.5<c/(c+d)<1.0、および1.55≦a/b≦3.4を満たす。)
  2.  以下の式(2)で表される組成の請求項1に記載の蛍光体。
     A:RE・・・(2)
    (式(2)は、式(1)におけるA、B、C、Dのいずれかの一部がREで表される賦活剤元素で置換されていることを示す。式(2)中、A、B、C、D、a、b、c、dは、式(1)におけると同義である。REはMn、In、Tl、Ce、Pr、Nd、Sm、Pm、Eu、Gd、Tb、Dy、Ho、Er、Tm、およびYbからなる群から選択される1種以上を含む。xはREの合計含有モル比を表し、0<x≦0.34を満たす。)
  3.  発光ピーク波長が440nm以上540nm以下である請求項1又は2に記載の蛍光体。
  4.  波長300nmの光で励起したときの発光量子収率が60%以上である請求項1~3のいずれか1項に記載の蛍光体。
  5.  励起ピーク波長が230nm以上340nm以下である請求項1~4のいずれか1項に記載の蛍光体。
  6.  X線を照射したときの蛍光強度の最大値を100%としたとき、X線の照射を止めた時間から20ms後の蛍光強度が7%以下、かつ100ms後の蛍光強度が4%以下である請求項1~5のいずれか1項に記載の蛍光体。
  7.  式(1)におけるCがClである請求項1~6のいずれか1項に記載の蛍光体。
  8.  式(1)におけるBがCuである請求項1~7のいずれか1項に記載の蛍光体。
  9.  式(1)におけるAがCsである請求項1~8のいずれか1項に記載の蛍光体。
  10. 式(1)で表される組成の相の質量割合が50%以上である、請求項1~9のいずれか1項に記載の蛍光体。
  11.  請求項1~10のいずれか一項に記載の蛍光体を含み、かつ該蛍光体の含有量が50質量%以上である蛍光体組成物。
  12.  請求項1~10のいずれか1項に記載の蛍光体又は請求項11に記載の蛍光体組成物を含む発光装置。
  13.  請求項1~10のいずれか1項に記載の蛍光体又は請求項11に記載の蛍光体組成物を含む放射線検知器。
  14.  請求項13に記載の放射線検知器を備えた放射線検査装置。

     
PCT/JP2021/015302 2020-04-14 2021-04-13 蛍光体、発光装置および放射線検知器 WO2021210574A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022515392A JPWO2021210574A1 (ja) 2020-04-14 2021-04-13

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-072369 2020-04-14
JP2020072369 2020-04-14

Publications (1)

Publication Number Publication Date
WO2021210574A1 true WO2021210574A1 (ja) 2021-10-21

Family

ID=78085326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/015302 WO2021210574A1 (ja) 2020-04-14 2021-04-13 蛍光体、発光装置および放射線検知器

Country Status (2)

Country Link
JP (1) JPWO2021210574A1 (ja)
WO (1) WO2021210574A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007517949A (ja) * 2004-01-09 2007-07-05 スティヒテング フォール デ テフニシェ ウェテンシャッペン 高輝度及び高速の中性子シンチレータ
JP2013014753A (ja) * 2011-06-06 2013-01-24 Canon Inc シンチレータ材料及びそれを用いた放射線検出器
JP2013036030A (ja) * 2011-07-12 2013-02-21 Canon Inc 相分離構造を有するシンチレータ及びそれを用いた放射線検出器
JP2014012628A (ja) * 2012-06-06 2014-01-23 Canon Inc 化合物、構造体、シンチレータ、放射線検出器及びそれらの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007517949A (ja) * 2004-01-09 2007-07-05 スティヒテング フォール デ テフニシェ ウェテンシャッペン 高輝度及び高速の中性子シンチレータ
JP2013014753A (ja) * 2011-06-06 2013-01-24 Canon Inc シンチレータ材料及びそれを用いた放射線検出器
JP2013036030A (ja) * 2011-07-12 2013-02-21 Canon Inc 相分離構造を有するシンチレータ及びそれを用いた放射線検出器
JP2014012628A (ja) * 2012-06-06 2014-01-23 Canon Inc 化合物、構造体、シンチレータ、放射線検出器及びそれらの製造方法

Also Published As

Publication number Publication date
JPWO2021210574A1 (ja) 2021-10-21

Similar Documents

Publication Publication Date Title
JP4933739B2 (ja) 電子線励起用の蛍光体および蛍光体膜、並びにそれらを用いたカラー表示装置
US9561969B2 (en) Intrinsic complex halide elpasolite scintillators and methods of making and using same
WO2005087896A1 (ja) 蛍光体とその製造方法、照明器具、および画像表示装置
JPWO2016186057A1 (ja) 蛍光体、その製造方法、照明器具および画像表示装置
CN111778017A (zh) 一种具有高光产额的锰掺杂Cs3Cu2I5卤化物闪烁体
JP6823879B2 (ja) 放射線検出用の混合ハロゲン化物シンチレータ
US8778225B2 (en) Iodide single crystal, production process thereof, and scintillator comprising iodide single crystal
US20060163484A1 (en) Metal halide for radiation detection, method for production thereof and radiation detector
Ayer et al. BaWO 2 F 4: a mixed anion X-ray scintillator with excellent photoluminescence quantum efficiency
Wang et al. Mechanochemical synthesis of an efficient nanocrystalline BaFBr: Eu 2+ X-ray storage phosphor
Rebrova et al. Effects of europium concentration on luminescent and scintillation performance of Cs0. 2Rb0. 8Ca1− xEuxBr3 (0≤ x≤ 0.08) crystals
JP2006016251A (ja) 放射線検出用Lu3Al5O12結晶材料の製造方法
JP2008537001A (ja) CTのための非常に短い残光を有するGd2O2S:Prを得る方法。
WO2021210574A1 (ja) 蛍光体、発光装置および放射線検知器
WO2018110451A1 (ja) 電離放射線検出用の蛍光体、該蛍光体を含む蛍光体材料、並びに該蛍光体材料を備えた検査装置及び診断装置
Rebrova et al. Growth and luminescent properties of new Eu2+ doped RbBa2I5 scintillator
JP6959601B2 (ja) 蛍光体の製造方法
CN108193274B (zh) 一种复式钨酸盐闪烁晶体及其制备方法
CN117304933B (zh) 稀土团簇增强的低维卤化物闪烁材料及其制备方法和应用
US11952520B2 (en) Method for manufacturing phosphor powder, phosphor powder, and light emitting device
Rutstrom et al. Investigating new activators for small-bandgap LaX3 (X= Br, I) scintillators
WO2021149670A1 (ja) シンチレータおよび放射線検出器
JP2022158438A (ja) 酸化物結晶材料、蛍光体材料、該蛍光体材料を備えた装置、及び該酸化物結晶材料を含むLiイオン伝導体
WO2023192587A1 (en) Codoped cesium iodide scintillators
JP5317952B2 (ja) フッ化物結晶、真空紫外発光素子及び真空紫外発光シンチレーター

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21789360

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022515392

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21789360

Country of ref document: EP

Kind code of ref document: A1