WO2021205727A1 - Optical laminate and peeling method - Google Patents

Optical laminate and peeling method Download PDF

Info

Publication number
WO2021205727A1
WO2021205727A1 PCT/JP2021/003881 JP2021003881W WO2021205727A1 WO 2021205727 A1 WO2021205727 A1 WO 2021205727A1 JP 2021003881 W JP2021003881 W JP 2021003881W WO 2021205727 A1 WO2021205727 A1 WO 2021205727A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical laminate
layer
laminate
notch
polarizing
Prior art date
Application number
PCT/JP2021/003881
Other languages
French (fr)
Japanese (ja)
Inventor
瑛 高月
白石 貴志
松本 大輔
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020118608A external-priority patent/JP2021167930A/en
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to KR1020227038819A priority Critical patent/KR20220160692A/en
Priority to CN202180026087.8A priority patent/CN115362393A/en
Publication of WO2021205727A1 publication Critical patent/WO2021205727A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/29Laminated material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to an optical laminate and a method for peeling a surface protective film.
  • the polarizing plate is widely used as a polarization supply element in a display device such as a liquid crystal display device or an organic electroluminescence (EL) display device, and as a polarization detection element.
  • a polarizing plate having a protective film adhered to one side or both sides of a polarizing element has been used.
  • a surface protective film (also referred to as “protective film”) that can be peeled off from one surface of the polarizing plate is provided on the other surface.
  • a pressure-sensitive adhesive layer and a release film (also referred to as "separate film”) may be provided and distributed on the market (for example, Patent Document 1 and the like).
  • the surface protective film is peeled off and removed after attaching a polarizing plate to a member such as an image display element, for example, and the peeling film is peeled off when the polarizing plate is attached to a member such as an image display element of a display device, for example. And removed.
  • the surface protective film may be peeled off by attaching a peeling tape to one side of the surface protective film and holding the peeling tape to cause it.
  • the peeling tape may be peeled from the surface protective film, and the surface protective film may not be peeled from the polarizing plate.
  • An object of the present invention is to provide an optical laminate and a peeling method capable of satisfactorily peeling a surface protective film.
  • the present invention provides the following optical laminate and peeling method.
  • An optical laminate including a surface protective film, a polarizing laminate containing a polarizing plate having a protective layer on one or both sides of a linear polarizing layer, and an adhesive layer in this order.
  • the surface protective film is provided so as to be peelable from the polarizing laminate.
  • the thickness of the polarizing laminate is 120 ⁇ m or less, and the thickness is 120 ⁇ m or less.
  • the plan view shape of the optical laminate is a shape in which one corner portion of the quadrangle has at least one notched portion.
  • the notch portion is along a notch line passing through a first notch start point P1 and a second notch start point P2 set on the first side and the second side forming the apex of the corner portion, respectively.
  • Has a notched shape An optical laminate in which the first notch start point P1 and the second notch start point P2 are set so that the distances from the vertices are 0.1 mm or more and 0.5 mm or less, respectively.
  • the attachment step is a peeling method in which the peeling tape is attached so as to straddle one side provided with the notch at the end in the plan view shape of the optical laminate.
  • the optical laminate is the optical laminate according to [6].
  • the peeling method according to [9], wherein the one side on which the peeling tape is attached is a side provided with the notches at both ends.
  • FIG. 5 is a cross-sectional view taken along the line xx'of the optical laminate shown in FIG. It is a schematic plan view which shows typically an example of the step of peeling a surface protection film from an optical laminate of this invention. It is a schematic plan view which shows another example of the optical laminated body of this invention schematically. It is schematic cross-sectional view which shows still another example of the optical laminated body of this invention schematically. It is schematic cross-sectional view which shows still another example of the optical laminated body of this invention schematically. It is schematic cross-sectional view which shows still another example of the optical laminated body of this invention schematically. It is schematic cross-sectional view which shows typically an example of the step of peeling a surface protection film from an optical laminate of this invention. It is a schematic perspective view which shows typically an example of the manufacturing method of the optical laminated body of this invention.
  • FIG. 1 is a schematic plan view schematically showing an example of the optical laminate of the present embodiment.
  • FIG. 1 shows a schematic plan view of the optical laminate as viewed from the surface protective film side.
  • FIG. 2 is a cross-sectional view taken along the line xx'of the optical laminate shown in FIG.
  • the optical laminate 1a of the present embodiment includes a surface protective film 41, a polarizing laminate 20, and an adhesive layer 31 in this order.
  • the polarizing laminate 20 includes a polarizing plate 21. This polarizing plate is provided with a protective layer on one side or both sides of the linearly polarizing layer.
  • the surface protective film 41 is provided so as to be peelable from the polarizing laminate 20.
  • the thickness of the polarizing laminate 20 is 120 ⁇ m or less.
  • the plan view shape of the optical laminate 1a is a shape having one notched portion 11b in which one corner portion of the quadrangle 15 is notched.
  • the notch portion 11b is a first notch start point P1b (first notch) set on each of the first side 15a and the second side 15b, which are two sides constituting the apex Pab of the corner portion of the quadrangle 15. It has a notched shape along a notch line 10eb passing through a start point P1) and a second notch start point P2b (second notch start point P2).
  • the first notch start point P1b and the second notch start point P2b set on the first side 15a and the second side 15b have a distance Laa and a distance Lab from the apex Pab of 0.1 mm or more and 0.5 mm, respectively. It is located within the following range.
  • the plan-view shape of the notch line 10eb passing through the first notch start point P1b and the second notch start point P2b is not particularly limited.
  • the notch line 10eb may be, for example, a straight line or an arcuate curve as shown in FIG. When the notch line 10eb is an arcuate curve, it is preferable that the notch line 10eb is convex toward the apex Pab at the corner of the quadrangle 15.
  • the length of the notch line 10eb may be, for example, 1 mm or less, 0.9 mm or less, 0.8 mm or less, or 0.7 mm or less.
  • the shape of the notch line 10eb is preferably set as follows. In the plan view shape of the optical laminate 1a, when the notch line 10eb is traced from the first notch start point P1b side toward the second notch start point P2b, the first notch start point P1b is located. It is preferable to set the notch line 10eb so that the shortest distance ⁇ from one side 15a increases continuously, or gradually increases while including a section in which the shortest distance ⁇ is constant. Further, when the notch line 10eb is traced from the first notch start point P1b side toward the second notch start point P2b in the plan view shape of the optical laminate 1a, the second notch start point P2b is positioned. It is preferable to set the notch line 10eb so that the shortest distance ⁇ from the second side 15b is continuously reduced, or is gradually reduced while including a section in which the shortest distance ⁇ is constant.
  • the quadrangle 15 is a virtual plan view shape set to include the sides of the plan view shape of the optical laminate 1a.
  • the quadrangle 15 is a rectangle having a first side 15a, a second side 15b, a third side 15c, and a fourth side 15d.
  • a part of the first side 15a and the second side 15b of the quadrangle 15 shown in FIG. 1 constitutes the side 10a and the side 10b in the plan view shape of the optical laminate 1a, respectively, and the third side 15c and the third side 15b of the quadrangle 15 have.
  • the entire fourth side 15d constitutes a side 10c and a side 10d in the plan view shape of the optical laminate 1a, respectively.
  • the side 10a is a portion of the first side 15a of the quadrangle 15 opposite to the side from the first notch start point P1b toward the apex Pab
  • the side 10b is It is a portion of the second side 15b of the quadrangle 15 opposite to the side from the second notch start point P2b toward the apex Pab.
  • the quadrangle 15 set for the plan view shape of the optical laminate 1a extends the sides 10a and 10b in the plan view shape of the optical laminate 1a, and the intersection of the extended portions of the two sides is the apex. It is a quadrangle included as a pub.
  • the side extending from the plan view shape of the optical laminate 1a is obtained by cutting out the corner portion of the quadrangle 15 to obtain the optical laminate 1a.
  • the area for cutting out the quadrangle 15 is set to be the minimum.
  • the distance Laa from the apex Pab to the first notch start point P1b and the distance Lab from the apex Pab to the second notch start point P2b are independently 0.1 mm or more and 0.2 mm or more. It may be 0.3 mm or more, 0.5 mm or less, and 0.4 mm or less.
  • the distance Laa and the distance Lab may be the same as each other or different from each other.
  • the peeling tape 35 (FIG. 3) is attached to the side 10a to peel off the surface protective film 41
  • it is preferable that the distance Laa is larger than the distance Lab. If the distance Laa and the distance Lab are less than 0.1 mm, it tends to be difficult to perform good peeling of the surface protective film 41.
  • the distance Laa and the distance Lab exceed 0.5 mm, the effective area when the optical laminate 1a is attached to the image display element of the display device tends to be small, and the image display area in the display device tends to be narrow.
  • the area of the notched portion from the quadrangle 15 in the plan view is S1, and the optical stacking is performed.
  • the area Sa in the plan view of the portion cut out from the quadrangle 15 by the notch line 10eb actually possessed by the body 1a is preferably 0.6 times or more, and may be 0.7 times or more the area S1. , 0.9 times or more, preferably 1.6 times or less, 1.4 times or less, or 1.2 times or less.
  • FIG. 3 is a schematic plan view schematically showing an example of a step of peeling the surface protective film from the optical laminate of the present embodiment. Since the optical laminate 1a has a notch portion 11b, the surface protective film 41 can be satisfactorily peeled off using the peeling tape 35 shown in FIG. The details of the method of peeling the surface protective film 41 using the peeling tape 35 will be described later, but the surface protective film 41 can be peeled from the optical laminate 1a as follows, for example. First, as shown in FIG. 3, one end of the peeling tape 35 (hereinafter, "mounting end") so as to straddle the side 10a provided with the notch 11b on the surface of the optical laminate 1a on the surface protective film 41 side.
  • mounting end one end of the peeling tape 35
  • the end portion of the release tape 35 opposite to the attachment end portion is raised, and the release tape 35 is pulled in the direction from the side 10a to the side 10c (in the direction of the arrow in FIG. 3).
  • the surface protective film 41 can be peeled off from the optical laminate 1a.
  • a notch portion 11b is provided at the end of the side 10a to which the peeling tape 35 is attached.
  • the surface protective film 41 is more likely to be triggered when the peeling tape 35 is triggered, as compared with the case where the notch portion 11b is not provided on the side 10a. Therefore, in the optical laminate 1a, the peeling tape 35 can be prevented from peeling from the surface protective film 41, and the peeling tape 35 can satisfactorily peel the surface protective film 41.
  • FIG. 4 is a schematic plan view schematically showing another example of the optical laminate of the present embodiment.
  • the optical laminate 1a shown in FIG. 1 has one notch portion 11b has been described, it may have two notches, for example, as in the optical laminate 1b shown in FIG. It may have 3 or 4 notches.
  • the optical laminate 1b shown in FIG. 4 has a notch portion 11d in addition to the notch portion 11b described in the optical laminate 1a shown in FIG.
  • the plan view shape of the optical laminate 1b has a shape in which the two corners of the quadrangle 15 are cut out.
  • the notch portion 11b is as described above.
  • the notch portion 11d is a first notch start point P1d (first notch) set on each of the first side 15a and the fourth side 15d, which are two sides constituting the apex Pda of the corner portion of the quadrangle 15. It has a notched shape along a notch line 10ed passing through a start point P1) and a second notch start point P2d (second notch start point P2).
  • the first notch start point P1d and the second notch start point P2d set on the first side 15a and the fourth side 15d have distances Lba and distance Lbd from the apex Pda of 0.1 mm or more and 0.5 mm, respectively. It is located within the following range.
  • the distance Lba and the distance Lbd may be the same as each other or may be different from each other.
  • the peeling tape 35 (FIG. 3) is attached to the side 10a to peel off the surface protective film 41, it is preferable that the distance Lba is larger than the distance Lbd.
  • the preferred range of the distance Lba and the distance Lbd is the same as the range described for the distance Laa and the distance Lab.
  • the plan-view shape of the notch line 10ed passing through the first notch start point P1d and the second notch start point P2d is not particularly limited.
  • the notch line 10ed may be a straight line or an arcuate curve like the notch line 10eb. When the notch line 10ed is an arcuate curve, it is preferable that the notch line 10ed is convex toward the corner Pda of the quadrangle 15.
  • the preferred range of the length of the notch line 10ed can be the same as the range described in the notch line 10eb.
  • the shape of the notch line 10ed is preferably set as follows. In the plan view shape of the optical laminate 1b, when the notch line 10ed is traced from the first notch start point P1d side toward the second notch start point P2d, the first notch start point P1d is located. It is preferable to set the notch line 10ed so that the shortest distance from one side 15a increases continuously or gradually increases while including a section in which the shortest distance is constant. Further, when the notch line 10ed is traced from the first notch start point P1d side toward the second notch start point P2d in the plan view shape of the optical laminate 1b, the second notch start point P2d is positioned. It is preferable to set the notch line 10ed so that the shortest distance from the fourth side 15d is continuously reduced, or is gradually reduced while including a section in which the shortest distance is constant.
  • the quadrangle 15 set for the plan view shape of the optical laminate 1b is a virtual plane set to include the side of the plan view shape of the optical stack 1b, similarly to the optical stack 1a described above.
  • a part of the first side 15a, the second side 15b, and the fourth side 15d of the quadrangle 15 shown in FIG. 4 constitutes the side 10a, the side 10b, and the side 10d in the plan view shape of the optical laminate 1b, respectively.
  • the entire third side 15c of the quadrangle 15 constitutes the side 10c in the plan view shape of the optical laminate 1b.
  • the side 10a is a line segment between the first notch start point P1b and the first notch start point P1d of the first side 15a of the quadrangle 15, and the side 10b. Is a portion of the second side 15b of the quadrangle 15 opposite to the side from the second notch start point P2b toward the apex Pab, and the side 10d is the second of the fourth side 15d of the quadrangle 15. It is a portion opposite to the side from the notch start point P2d toward the apex Pda.
  • the quadrangle 15 includes the intersection formed by extending the side 10a and the side 10b in the plan view shape of the optical laminate 1b as the apex Pab, and includes the intersection formed by extending the side 10d and the side 10a as the apex Pda. ..
  • the quadrangle 15 is set from the plan view shape of the optical laminate 1b, the side extending from the plan view shape of the optical laminate 1b is cut out from the corner portion of the quadrangle 15 as in the case of the optical laminate 1a. Therefore, assuming that the optical laminate 1b is obtained, the area of the quadrangle 15 notched is set to be the minimum. Further, the shape of the quadrangle set for the optical laminate 1b is set so that the optical laminate 1b can be obtained by notching the two corners of the quadrangle.
  • the area of the notched portion from the quadrangle 15 in the plan view is S2, and the optical stacking is performed.
  • the area Sb of the portion cut out from the quadrangle 15 by the actual notch line 10ed of the body 1b in a plan view is preferably 0.6 times or more, and may be 0.7 times or more of the area S2. , 0.9 times or more, preferably 1.6 times or less, 1.4 times or less, or 1.2 times or less.
  • a notch portion 11b and a notch portion 11d are formed at adjacent corners of the quadrangle 15. Therefore, the force required to cause the surface protective film 41 by using the peeling tape 35 in the above procedure is smaller than that when the surface protective film 41 is peeled off in the optical laminate 1a, and the surface protective film 41 is caused. It is thought that it is easier. As a result, in the optical laminate 1b, the surface protective film 41 can be peeled off more satisfactorily by the peeling tape 35.
  • an optical laminate having one or two notches has been described as an example, but the same applies to the plan view shape of the optical laminate having three or four notches. Can be set to a rectangle.
  • the shape of the quadrangle is the case where it is assumed that the corners of the quadrangle are notched according to the number of notches of the optical laminate. It is set so that an optical laminate having a number of notches can be obtained.
  • the shapes of the notches may be the same or different from each other.
  • at least the two notches are relative to the plan view shape of the optical laminate, such as the notches 11b and 11d of the optical laminate 1b shown in FIG. It is preferable that the quadrangle is provided so as to cut out two adjacent corners of the quadrangle.
  • optical laminate 1a and 1b (hereinafter, may be referred to as "optical laminate 1" including both) have a shape different from the notch portion as long as it has the notch portion described above. It may have a notched notch shape.
  • the optical laminate 1 passes through the corners of the quadrangle 15 in addition to the notches described above at two points outside the range of lengths described by the distances Laa, Lab, Lba, and Lbd described above. It may have a notch shape notched by a line.
  • the end face (end face in the stacking direction) of the notch 11 of the optical laminate 1 is preferably a machined surface by a rotary tool.
  • the end faces of the surface protective film 41 and the polarizing laminate 20 included in the optical laminate 1 are slightly deformed according to the rotation direction of the rotary tool. In this deformed state, the edges of the surface protective film 41 and the polarizing laminate 20 are partially warped or hung down in the lamination direction rather than parallel to the plane direction of the optical laminate 1.
  • the surface protective film 41 can be peeled off even more satisfactorily.
  • the quadrangle 15 set for the plan view shape of the optical laminate 1 is preferably a square.
  • the square means a quadrangle in which four vertices are right angles (internal angle is 90 °), and specifically, a square or a rectangle. It is more preferable that the quadrangle 15 is a rectangle.
  • the lengths of the four sides of the quadrangle 15 are each independently preferably 30 mm or more, preferably 40 mm or more, 50 mm or more, 140 mm or more, and 150 mm. It may be the above. Further, it is preferably 200 mm or less, preferably 190 mm or less, 180 mm or less, 80 mm or less, or 70 mm or less.
  • the surface protective film 41 is a film that can be peeled off from the polarizing laminate 20, and is preferably provided so as to be in direct contact with the polarizing laminate 20.
  • the surface protective film 41 is also called a protective film, and covers and protects the surface of the polarizing laminate 20 in a manufacturing process of the optical laminate 1a, a manufacturing process of a display device to which the optical laminate 1a is applied, and the like. It is possible to prevent the film from becoming dirty or scratched.
  • the surface protective film 41 can be removed by peeling off the optical laminate 1 after the optical laminate 1 is attached to an adherend such as an image display element of a display device via an adhesive layer 31, for example.
  • the polarizing laminate 20 includes a polarizing plate 21 having a protective layer on one side or both sides of the linearly polarized light layer.
  • the thickness of the polarizing laminate 20 is 120 ⁇ m or less, may be 110 ⁇ m or less, may be 100 ⁇ m or less, may be 80 ⁇ m or less, or may be 40 ⁇ m or less.
  • the thickness of the polarizing laminate 20 is usually 5 ⁇ m or more, may be 10 ⁇ m or more, may be 20 ⁇ m or more, may be 40 ⁇ m or more, or may be 50 ⁇ m or more.
  • the adhesive constituting the pressure-sensitive adhesive layer 31 squeezes out and covers the end face of the optical laminate 1, and this pressure-sensitive adhesive covers the end face of the optical laminate 1. May reach the end face of.
  • the surface protective film 41 is fixed to the adhesive layer 31 by the adhesive covering the end surface of the optical laminate 1, it is considered that the surface protective film 41 is less likely to be peeled off from the optical laminate 1.
  • the thickness of the polarizing laminate 20 becomes smaller, the distance between the surface protective film 41 and the pressure-sensitive adhesive layer 31 in the stacking direction of the optical laminate 1 becomes smaller. It is considered that the protective film 41 is likely to be difficult to peel off.
  • the optical laminate 1 has notches 11b and 11d. Therefore, even when the thickness of the polarizing laminate 20 is small, the surface protective film 41 can be satisfactorily peeled off.
  • the polarizing laminate 20 may be the polarizing plate 21 itself, or may have an optical functional layer other than the polarizing plate 21.
  • the optical functional layer other than the polarizing plate 21 include a retardation layer; a reflective film; a transflective reflective film; a brightness improving film; an optical compensation film; and a film with an antiglare function.
  • FIG. 5 is a schematic cross-sectional view schematically showing still another example of the optical laminate of the present embodiment.
  • the optical laminate shown in FIG. 5 shows an example in which the polarizing laminate 20 is a laminate of a polarizing plate 21 and a retardation layer 22.
  • the polarizing plate 21 and the retardation layer 22 can be laminated via a bonding layer such as an adhesive layer or an adhesive curing layer.
  • the retardation layer 22 can be provided on one side or both sides of the polarizing plate 21.
  • the polarizing laminate 20 includes two or more retardation layers 22, one or more retardation layers 22 may be provided on both sides of the polarizing plate 21, and two or more layers may be provided only on one side of the polarizing plate 21.
  • the retardation layer 22 of the above may be provided.
  • the retardation layer is not particularly limited, and examples thereof include a 1/2 wavelength retardation layer, a 1/4 wavelength retardation layer, a 1/4 wavelength retardation layer having opposite wavelength dispersion, and a positive C plate.
  • the slow-phase axis may be parallel (0 °) to the absorption axis of the polarizing plate, or may have an angle of more than 0 °. May be good.
  • the slow axis of the retardation layer 22 may have an angle of 15 °, 30 °, 45 °, 60 °, 75 °, or 90 ° with respect to the absorption axis of the polarizing plate.
  • the polarizing laminate 20 may be a circular polarizing plate or an elliptical polarizing plate.
  • the polarizing laminate 20 can include the polarizing plate 21 and the retardation layer 22.
  • the polarizing laminate 20 is a circular polarizing plate
  • the polarizing laminate 20 has the [i] polarizing plate 21, the 1/2 wavelength retardation layer, and the 1/4 wavelength retardation layer from the surface protective film 41 side. It has [iii] polarizing plate 21, positive C plate, and reverse wavelength dispersibility in this order, or has [iii] polarizing plate 21, positive C plate, and reverse wavelength dispersibility in this order. It may have a 1/4 wavelength retardation layer in this order.
  • a laminating layer can be provided between the layers [i] to [iii].
  • the pressure-sensitive adhesive layer 31 can be used to attach the optical laminate 1 to an adherend such as an image display element of a display device.
  • the pressure-sensitive adhesive layer 31 is preferably provided so as to be in direct contact with the polarizing laminate 20.
  • the pressure-sensitive adhesive layer 31 is the optical laminate 1.
  • the pressure-sensitive adhesive layer is located farthest from the surface protective film 41 in the lamination direction.
  • FIG. 6 is a schematic plan view schematically showing another example of the optical laminate of the present embodiment.
  • the optical laminate 1a may further have a release film 32 that can be peeled off from the pressure-sensitive adhesive layer 31 on the opposite side of the pressure-sensitive adhesive layer 31 from the polarizing laminate 20. good.
  • the release film 32 is usually provided so as to be in direct contact with the pressure-sensitive adhesive layer 31.
  • the release film 32 is also called a separate film, and is for covering and protecting the surface of the pressure-sensitive adhesive layer 31 so that foreign matter and the like do not adhere to the pressure-sensitive adhesive layer 31.
  • the release film 32 can be peeled off and removed by the pressure-sensitive adhesive layer 31 when the optical laminate 1 is attached to an adherend such as an image display element of a display device.
  • the optical laminate 1 can be used for a display device such as a smartphone or a smart watch.
  • the display device include a liquid crystal display device, an organic EL (electroluminescence) display device, and the like.
  • the optical laminate 1 is attached to an adherend such as an image display element of a display device by an adhesive layer 31, and then the surface protective film 41 is peeled off. As a result, the polarized laminate 20 included in the optical laminate 1 can be incorporated into the display device.
  • the optical laminate 1 has, for example, a notch in a raw material laminate obtained by cutting a laminate having a surface protective film, a polarizing laminate, an adhesive layer, and a release film in this order into a predetermined shape and size. It can be manufactured by forming.
  • a method of forming a notch in the raw material laminate for example, a method of polishing the end face (end face parallel to the stacking direction) of the raw material laminate, or a method of polishing the raw material laminate with a Thomson blade, a laser cutter, or the like.
  • polishing and cutting may be performed on one raw material laminate, or two or more raw material laminates may be laminated and performed all at once.
  • the plan-view shape of the raw material laminate may be selected according to the shape of the optical laminate 1 and is not particularly limited.
  • the plan view shape of the raw material laminate shall be a quadrangle 15 (FIGS. 1 and 4) set for the plan view shape of the optical laminate 1 described above when the notch is formed by polishing. Is preferable, a square shape is more preferable, and a rectangular shape is further preferable. Since the plan view shape of the raw material laminate is the quadrangle 15 described above, the area of the raw material laminate notched can be reduced.
  • the corner portion of the quadrangle 15 is a right triangle including the apex Pab and / or the apex Pda (for example, The notch portions 11b and 11d may be formed by polishing or the like so as to form a notch in the shape of a right-angled isosceles triangle).
  • FIG. 8 is a schematic perspective view schematically showing an example of the method for manufacturing the optical laminate of the present embodiment.
  • the manufacturing method for manufacturing the optical laminate 1 by polishing from the raw material laminate is, for example, the following step: [A] The first step of stacking a plurality of raw material laminates to obtain a laminate W, and [b] the rotation axis R along a direction parallel to the end face of the laminate W and orthogonal to the lamination direction. The second step of cutting the end face of the laminate W by moving the rotary tool 60, which rotates around the center and has a cutting blade, relative to the laminate W. Can be included.
  • the second step (above [b]) is performed on the four sides of the raw material laminate having a quadrangular plan view shape. After that, the corners of the quadrangle can be polished by the second step ([b] above) to form a notch.
  • the first step is a step of stacking a plurality of raw material laminates cut into a predetermined shape to obtain a laminate W.
  • the number of raw material laminates contained in the laminate W is not particularly limited, but the laminate W may be, for example, a laminate of 100 to 500 raw material laminates.
  • the raw material laminate may be, for example, obtained by cutting from a long laminate having a layered structure of the raw material laminate.
  • the end face of the laminate W obtained in the first step is cut by the rotary tool 60 to form a cut surface on the end face in the notch portion of the optical laminate 1, and the optical laminate 1 is formed. This is the process of forming.
  • the cutting process performed in the second step can be performed by a device provided with a support portion 50 and two rotary tools 60, for example, as shown in FIG.
  • the support portion 50 is for pressing the laminate W from above and below to fix the laminate W itself so that it does not move during the cutting process and so that the stacked raw material laminates do not shift.
  • the rotary tool 60 is for cutting the end face of the laminate W, and can rotate about the rotation axis R.
  • the support portion 50 is a flat plate-shaped substrate (means for moving the laminate W) 51; a gate-shaped frame 52 arranged on the substrate 51; a rotary table arranged on the substrate 51 and rotatable about a central axis. 53; A cylinder 54 provided at a position facing the rotary table 53 on the frame 52 and capable of moving up and down can be provided.
  • the laminate W is sandwiched and fixed by the rotary table 53 and the cylinder 54 via the jig 55.
  • the rotary tool 60 has a disk-shaped rotating body that rotates around a rotary shaft R.
  • the direction of rotation of the rotating body is the direction indicated by the arrow in FIG.
  • On the board surface of the rotating body (the surface facing the end surface of the laminated body W and parallel to the end surface), a plurality (for example, 2 to 10, preferably 3) are spaced apart in the rotation direction of the rotating body.
  • ⁇ 7) cutting blades are arranged.
  • the rotation axis R is preferably set so as to pass through the center of the board surface of the rotating body.
  • the cutting blade is provided so as to project from the board surface of the rotating body toward the end surface side of the laminate W, and the rotating body rotates about the rotation axis R in a state where the cutting blade is in contact with the end surface of the laminate W. As a result, the end face of the laminate W can be cut.
  • Two rotary tools 60 are provided on both sides of the substrate 51 so as to face each other.
  • the rotary tool 60 can be moved in the rotation axis R direction according to the size of the laminate W, and the substrate 51 can be moved so as to pass between the two rotary tools 60.
  • the laminate W is fixed to the support portion 50, the position of the rotary tool 60 in the rotation axis R direction is appropriately adjusted, and then the rotary tool 60 is rotated around the rotary axis R while rotating the rotary tool 60.
  • the substrate 51 is moved so that the laminate W passes between the rotating tools 60 facing each other.
  • the cutting blade of the rotary tool 60 is moved relative to the laminate W along the direction parallel to the end face of the laminate W and orthogonal to the stacking direction. It is possible to perform a cutting process in which these end faces are scraped off by abutting against the exposed end faces of W facing each other.
  • the relative moving speed between the laminate W and the rotary tool 60 can be selected from, for example, a range of 200 mm / min or more and 5000 mm / min or less (more typically, a range of 500 mm / min or more and 3000 mm / min or less). can.
  • the rotation speed of the rotary tool 60 can be selected from, for example, a range of 2000 rpm or more and 8000 rpm or less (more typically, a range of 2500 rpm or more and 6000 rpm or less).
  • FIG. 7 is a schematic cross-sectional view schematically showing an example of a step of peeling the surface protective film from the optical laminate of the present embodiment.
  • the peeling method for peeling the surface protective film 41 from the optical laminate 1 includes a step of attaching the optical laminate 1 to the image display element 45 (adhesive body) by the adhesive layer 31 (FIG. 7), and the optical laminate 1
  • the optical laminate attached to the image display element 45 by the step of attaching the peeling tape 35 to the surface of the surface protective film 41 side ((a) of FIGS. 3 and 7) and by inducing the peeling tape 35.
  • the step of peeling the surface protective film 41 from 1 ((b) and (c) of FIG. 7) is included.
  • the peeling tape 35 is attached so as to straddle one side provided with the notch portion 11b or the notch portion 11d at the end portion in the plan view shape of the optical laminate 1.
  • FIG. 3 shows an example in which the peeling tape 35 is attached so as to straddle the side 10a, but the side having the notch portion 11b or 11d at the end (for example, the side 10b shown in FIGS. 1 and 4 and FIG. 4). It may be the side 10d) shown in.
  • the surface protective film 41 can be peeled off more satisfactorily by causing the peeling tape 35.
  • the peeling tape 35 is preferably attached so as to straddle the side 10a.
  • the peeling tape 35 is usually attached directly to the surface of the surface protective film 41.
  • the step of bonding to the image display element 45 is performed after the release film 32 is peeled from the optical laminate 1.
  • the step of bonding to the image display element 45 may be performed before or after the step of attaching the peeling tape 35.
  • the end portion of the peeling tape 35 opposite to the mounting end portion which is the end portion attached to the surface on the surface protective film 41 side (hereinafter, "grip side end portion").
  • the peeling tape is held on the side opposite to the image display element 45 side (the direction on the upper right side in (a) of FIG. 7 and the direction of the arrow in (a) of FIG. 7).
  • the gripping side end of the peeling tape 35 is folded back toward the mounting end side (in the direction of the arrow in (b) of FIG. 7), and pulled in the direction of this folding back (in the direction of the arrow in (c) of FIG. 7).
  • the surface protective film 41 can be peeled off from the optical laminate 1 to expose the surface of the polarizing laminate 20.
  • the surface protective film 41 may be peeled off manually, but it can be automated by using a peeling device. When a peeling device is used, the surface protective film 41 is formed by gripping the gripping side end of the peeling tape 35 with the chuck of the peeling device and causing the peeling tape 35 by relatively moving the chuck and the optical laminate 1. Can be peeled off.
  • the peeling tape 35 is used by attaching the peeling tape 35 to the side where the cutout portion 11b and / or the cutout portion 11d is provided at the end portion in the plan view shape of the optical laminate 1.
  • the force required to raise the surface protective film 41 can be reduced. Therefore, according to the peeling method of the present embodiment, the surface protective film can be peeled better than the case where the surface protective film is peeled from the optical laminate having no notch.
  • the peeling tape 35 can be attached to the side 10b to further increase the thickness.
  • the surface protective film 41 can be satisfactorily peeled off.
  • the surface protective film is provided on the surface of the polarizing laminate.
  • the surface protective film may be a resin film for a surface protective film on which an adhesive layer is formed, or may be formed by a self-adhesive film alone.
  • the thickness of the surface protective film can be, for example, 30 to 200 ⁇ m, preferably 30 to 150 ⁇ m, and more preferably 30 to 120 ⁇ m.
  • the resin constituting the surface protective film resin film examples include polyolefin resins such as polyethylene resins and polypropylene resins; cyclic polyolefin resins; polyester resins such as polyethylene terephthalate and polyethylene naphthalate; and polycarbonate resins. ; (Meta) acrylic resin and the like can be mentioned. Of these, polyester resins such as polyethylene terephthalate are preferable.
  • the resin film for a surface protective film may have a one-layer structure, but may have a multi-layer structure of two or more layers.
  • the resin film for the surface protective film may be a film that has been subjected to a stretching treatment such as uniaxial stretching or biaxial stretching.
  • the adhesion (Fp) of the surface protective film to the polarizing laminate 20 at a temperature of 23 ° C. and a relative humidity of 55% is preferably 0.01 N / 25 mm or more, and may be 0.03 N / 25 mm or more. It may be 0.08 N / 25 mm or more, preferably 0.5 N / 25 mm or less, 0.4 N / 25 mm or less, or 0.3 N / 25 mm or less.
  • the adhesion force (Fp) can be measured by the following procedure.
  • the optical laminate 1 is cut into a rectangle of 150 mm ⁇ 25 mm and bonded to a non-alkali glass substrate (thickness 0.7 mm, “Eagle XG” manufactured by Corning Inc.) with an adhesive layer 31 to obtain a test piece.
  • This test piece was placed in an autoclave with an internal temperature of 50 ° C. and an internal pressure of 490.3 kPa (gauge pressure) for 20 minutes and exposed to a heating and pressurizing environment. Store for 24 hours to use as an evaluation sample.
  • This evaluation sample is a peeling device ("Autograph AGS-50NX” manufactured by Shimadzu Corporation, in accordance with JIS K6854-2: 1999 "Adhesive-Peeling Adhesive Strength Test Method-Part 2: 180 ° Peeling”. ) Is used to perform a 180 ° peeling test at a moving speed of 300 mm / min, and the peeling force measured is defined as the adhesion force (Fp).
  • the thickness of the adhesive layer is preferably 5 ⁇ m or more, preferably 10 ⁇ m or more, and 15 ⁇ m or more. It may be 30 ⁇ m or less, 25 ⁇ m or less, or 20 ⁇ m or less.
  • the above-mentioned surface protective film can be obtained by forming an adhesive layer on the surface of the resin film for the surface protective film by applying an adhesive, drying, or the like. If necessary, a surface treatment (for example, corona treatment) may be applied to the surface to which the adhesive of the resin film for the surface protective film is applied in order to improve the adhesion, and the primer layer (also referred to as the undercoat layer) may be applied. A thin layer such as) may be formed. Further, if necessary, when the surface protective film has an adhesive layer, it has a release layer for covering and protecting the surface of the adhesive layer on the side opposite to the resin film side for the surface protective film. You may be doing it. This peeling layer can be peeled off at an appropriate timing when it is bonded to the polarizing laminate.
  • a surface treatment for example, corona treatment
  • the primer layer also referred to as the undercoat layer
  • a thin layer such as
  • the surface protective film has an adhesive layer, it has a release layer for covering and protecting the surface of
  • the self-adhesive film that can be used as a surface protective film is a film that can adhere to itself and maintain its adhered state without providing a means for adhering an adhesive layer or the like.
  • the self-adhesive film can be formed by using, for example, a polypropylene-based resin, a polyethylene-based resin, or the like.
  • the polarizing laminate includes at least a polarizing plate having a protective layer on one side or both sides of the linearly polarizing layer.
  • the polarizing laminate may include only a polarizing plate, or may include a polarizing plate and an optical functional layer other than the polarizing plate. Examples of the optical functional layer include those described above.
  • the optical functional layer may be one layer or two or more layers.
  • An adhesive layer or an adhesive curing layer is between the linearly polarizing layer and the protective layer, between the polarizing plate and the optical functional layer, and between the optical functional layers when two or more optical functional layers are laminated. It may be bonded through a bonding layer such as.
  • the linearly polarized light layer has a property of transmitting linearly polarized light having a vibration plane orthogonal to the absorption axis when unpolarized light is incident.
  • the linearly polarizing layer may contain a polyvinyl alcohol (hereinafter, may be abbreviated as “PVA”) resin film, and a dichroic dye is oriented on the polymerizable liquid crystal compound to obtain the polymerizable liquid crystal compound. It may be a polymerized cured film.
  • PVA polyvinyl alcohol
  • linear polarizing layer containing the PVA-based resin film examples include hydrophilic polymer films such as PVA-based films, partially formalized PVA-based films, and ethylene-vinyl acetate copolymerization-based partially saponified films, as well as iodine and bicolor.
  • hydrophilic polymer films such as PVA-based films, partially formalized PVA-based films, and ethylene-vinyl acetate copolymerization-based partially saponified films, as well as iodine and bicolor.
  • examples thereof include those subjected to a dyeing treatment with a bicolor substance such as a dye and a stretching treatment. Since it is excellent in optical characteristics, it is preferable to use a linearly polarizing layer obtained by dyeing a PVA-based resin film with iodine and uniaxially stretching it.
  • the PVA-based resin can be produced by saponifying the polyvinyl acetate-based resin.
  • the polyvinyl acetate-based resin can be a copolymer of vinyl acetate and another monomer copolymerizable with vinyl acetate, in addition to polyvinyl acetate which is a homopolymer of vinyl acetate.
  • Examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and acrylamides having an ammonium group.
  • the degree of saponification of the PVA-based resin is usually about 85 to 100 mol%, preferably 98 mol% or more.
  • the PVA-based resin may be modified, and for example, polyvinyl formal or polyvinyl acetal modified with aldehydes can also be used.
  • the average degree of polymerization of the PVA-based resin is usually about 1,000 to 10,000, preferably about 1,500 to 5,000.
  • the average degree of polymerization of the PVA-based resin can be determined in accordance with JIS K 6726 (1994). If the average degree of polymerization is less than 1000, it is difficult to obtain preferable polarization performance, and if it exceeds 10,000, the film processability may be inferior.
  • a base film is first prepared, a resin solution such as PVA-based resin is applied onto the base film, and drying is performed to remove the solvent.
  • a resin solution such as PVA-based resin is applied onto the base film, and drying is performed to remove the solvent.
  • Examples thereof include a step of forming a resin layer on a base film.
  • a primer layer can be formed in advance on the surface of the base film on which the resin layer is formed.
  • the base film a resin film such as PET or a film using a thermoplastic resin that can be used for the protective layer described later can be used.
  • the material of the primer layer include a resin obtained by cross-linking a hydrophilic resin used for the linearly polarizing layer.
  • the amount of solvent such as water content of the resin layer is adjusted, then the base film and the resin layer are uniaxially stretched, and then the resin layer is dyed with a dichroic dye such as iodine to obtain two colors.
  • the sex dye is adsorbed and oriented on the resin layer.
  • the resin layer in which the dichroic dye is adsorbed and oriented is treated with a boric acid aqueous solution, and a washing step of washing off the boric acid aqueous solution is performed.
  • a film of a resin layer in which the dichroic dye is adsorption-oriented, that is, a linearly polarizing layer is produced.
  • a known method can be adopted for each step.
  • the uniaxial stretching of the base film and the resin layer may be performed before dyeing, during dyeing, or during boric acid treatment after dyeing, and each of these multiple steps is uniaxial. Stretching may be performed.
  • the base film and the resin layer may be uniaxially stretched in the MD direction (film transport direction), in this case, uniaxially stretched between rolls having different peripheral speeds, or uniaxially stretched using a thermal roll. You may. Further, the base film and the resin layer may be uniaxially stretched in the TD direction (direction perpendicular to the film transport direction), and in this case, the so-called tenter method can be used.
  • the stretching of the base film and the resin layer may be a dry stretching in which the resin layer is stretched in the air, or a wet stretching in which the resin layer is swollen with a solvent.
  • the draw ratio is 4 times or more, preferably 5 times or more, and particularly preferably 5.5 times or more. There is no particular upper limit to the draw ratio, but it is preferably 8 times or less from the viewpoint of suppressing breakage and the like.
  • the linearly polarized light layer produced by the above method can be obtained by laminating a protective layer described later and then peeling off the base film. According to this method, the linearly polarizing layer can be further thinned.
  • the thickness of the linearly polarizing layer containing the PVA-based resin film is preferably 1 ⁇ m or more, preferably 2 ⁇ m or more, 5 ⁇ m or more, and preferably 30 ⁇ m or less, preferably 15 ⁇ m or less. It may be 10 ⁇ m or less.
  • a method for producing a linearly polarizing layer which is a cured film obtained by orienting a dichroic dye on a polymerizable liquid crystal compound and polymerizing the polymerizable liquid crystal compound, the polymerizable liquid crystal compound and the dichroic dye are placed on a base film.
  • Examples thereof include a method of applying the composition for forming a polarizing layer containing the mixture, polymerizing and curing the polymerizable liquid crystal compound while maintaining the liquid crystal state, and forming a linear polarizing layer.
  • the linearly polarizing layer thus obtained is in a state of being laminated on the base film, and the linearly polarizing layer with the base film may be used as a polarizing plate to be described later.
  • a resin film such as PET or a film using a thermoplastic resin that can be used for the protective layer described later can be used.
  • the dichroic dye a dye having a property that the absorbance in the major axis direction and the absorbance in the minor axis direction of the molecule are different can be used.
  • a dye having an absorption maximum wavelength ( ⁇ max) in the range of 300 to 700 nm. Is preferable.
  • examples of such a dichroic dye include an acridine dye, an oxazine dye, a cyanine dye, a naphthalene dye, an azo dye, an anthraquinone dye, and the like, and among them, the azo dye is preferable.
  • the azo dye examples include a monoazo dye, a bisazo dye, a trisazo dye, a tetrakisazo dye, a stilbene azo dye, and the like, and a bisazo dye and a trisazo dye are more preferable.
  • the composition for forming a polarizing layer may contain a solvent, a polymerization initiator such as a photopolymerization initiator, a photosensitizer, a polymerization inhibitor and the like.
  • a polymerization initiator such as a photopolymerization initiator, a photosensitizer, a polymerization inhibitor and the like.
  • known ones can be used, for example, specially.
  • Those exemplified in Japanese Patent Application Laid-Open No. 2017-102479 and Japanese Patent Application Laid-Open No. 2017-83843 can be used.
  • the compound exemplified as the polymerizable liquid crystal compound used for obtaining the cured product layer as the retardation layer described later may be used.
  • the method exemplified in the above publication can also be adopted.
  • the linearly polarized light layer can be formed as a polarizing plate by laminating a protective layer on one side or both sides thereof.
  • This polarizing plate is a so-called linear polarizing plate.
  • the protective layer that can be laminated on one side or both sides of the linearly polarizing layer is formed of, for example, a thermoplastic resin having excellent transparency, mechanical strength, thermal stability, moisture barrier property, isotropic property, stretchability, and the like. Film is used.
  • thermoplastic resins include cellulose resins such as triacetyl cellulose; polyester resins such as polyethylene terephthalate and polyethylene naphthalate; polyether sulfone resins; polysulfone resins; polycarbonate resins; polyamides such as nylon and aromatic polyamides.
  • the resin compositions of the two protective layers may be the same or different.
  • (meth) acrylic means that either acrylic or methacryl may be used.
  • (Meta) such as (meth) acrylate has the same meaning.
  • the protective layer may have a phase difference characteristic, or may have a functional layer such as a hard coat layer or an antireflection layer.
  • the thickness of the protective layer is preferably 3 ⁇ m or more, and more preferably 5 ⁇ m or more.
  • the thickness of the protective layer is preferably 50 ⁇ m or less, more preferably 30 ⁇ m or less.
  • the above-mentioned upper limit value and lower limit value can be arbitrarily combined.
  • the polarizing laminate may include a retardation layer.
  • the retardation layer may include a cured product layer of a polymerizable liquid crystal compound, or may be a stretched resin film.
  • the retardation layer contains a cured product layer of a polymerizable liquid crystal compound
  • a rod-shaped polymerizable liquid crystal compound and a disk-shaped polymerizable liquid crystal compound can be used as the polymerizable liquid crystal compound, and one of these can be used. Alternatively, a mixture containing both of these may be used.
  • the rod-shaped polymerizable liquid crystal compound is horizontally or vertically oriented with respect to the base material layer, the optical axis of the polymerizable liquid crystal compound coincides with the major axis direction of the polymerizable liquid crystal compound.
  • the optical axis of the polymerizable liquid crystal compound exists in a direction orthogonal to the disk surface of the polymerizable liquid crystal compound.
  • the rod-shaped polymerizable liquid crystal compound for example, those described in JP-A No. 11-513019 (Claim 1 and the like) can be preferably used.
  • the disk-shaped polymerizable liquid crystal compound are described in JP-A-2007-108732 (paragraphs [0020] to [0067], etc.) and JP-A-2010-244038 (paragraphs [0013] to [0108], etc.). Can be preferably used.
  • the polymerizable liquid crystal compound may be oriented in an appropriate direction.
  • an in-plane phase difference is developed by orienting the optical axis of the polymerizable liquid crystal compound horizontally with respect to the plane of the substrate layer.
  • the optical axis direction and the slow axis matches the direction.
  • an in-plane phase difference is developed by orienting the optical axis of the polymerizable liquid crystal compound horizontally with respect to the plane of the substrate layer.
  • the optical axis and the slow axis Is orthogonal to.
  • the orientation state of the polymerizable liquid crystal compound can be adjusted by the combination of the alignment layer and the polymerizable liquid crystal compound.
  • the polymerizable liquid crystal compound is a compound having at least one polymerizable group and having liquid crystallinity. When two or more kinds of polymerizable liquid crystal compounds are used in combination, it is preferable that at least one kind has two or more polymerizable groups in the molecule.
  • the polymerizable group means a group involved in the polymerization reaction, and is preferably a photopolymerizable group.
  • the photopolymerizable group refers to a group that can participate in the polymerization reaction by an active radical, an acid, or the like generated from a photopolymerization initiator described later.
  • Examples of the polymerizable group include a vinyl group, a vinyloxy group, a 1-chlorovinyl group, an isopropenyl group, a 4-vinylphenyl group, an acryloyloxy group, a methacryloyloxy group, an oxylanyl group, an oxetanyl group, a styryl group and an allyl group. Be done. Of these, an acryloyloxy group, a methacryloyloxy group, a vinyloxy group, an oxylanyl group and an oxetanyl group are preferable, and an acryloyloxy group is more preferable.
  • the liquid crystal property of the polymerizable liquid crystal compound may be a thermotropic liquid crystal or a lyotropic liquid crystal, and when the thermotropic liquid crystal is classified by order, it may be a nematic liquid crystal or a smectic liquid crystal.
  • the retardation layer may include an orientation layer.
  • the alignment layer has an orientation regulating force that orients the polymerizable liquid crystal compound in a desired direction.
  • the oriented layer may be a vertically oriented layer in which the molecular axis of the polymerizable liquid crystal compound is vertically oriented with respect to the base material layer, or a horizontally oriented layer in which the molecular axis of the polymerizable liquid crystal compound is horizontally oriented with respect to the base material layer. It may be a tilt-oriented layer in which the molecular axis of the polymerizable liquid crystal compound is tilt-oriented with respect to the base material layer.
  • the first oriented layer and the second oriented layer may be the same oriented layer or may be different oriented layers.
  • the alignment layer preferably has solvent resistance that does not dissolve due to coating of the liquid crystal layer forming composition, and has heat resistance to heat treatment for removing the solvent and aligning the polymerizable liquid crystal compound.
  • the oriented layer include an oriented polymer layer formed of an oriented polymer, a photo-oriented polymer layer formed of a photo-aligned polymer, and a grub-oriented layer having an uneven pattern or a plurality of grubs (grooves) on the layer surface. Can be done.
  • the cured product layer of the polymerizable liquid crystal compound can be formed by applying a liquid crystal layer forming composition containing the polymerizable liquid crystal compound on the base material layer, drying the composition, and polymerizing the polymerizable liquid crystal compound.
  • the liquid crystal layer forming composition may be applied on the alignment layer formed on the base material layer.
  • a film formed of a resin material can be used, and examples thereof include a film using the resin material described as the thermoplastic resin used for forming the protective layer described above.
  • the thickness of the base material layer is not particularly limited, but is generally preferably 1 to 300 ⁇ m or less, more preferably 20 to 200 ⁇ m, and 30 to 120 ⁇ m from the viewpoint of workability such as strength and handleability. Is even more preferable.
  • the base material layer may be incorporated into the polarizing laminate as a retardation layer together with the cured product layer of the polymerizable liquid crystal compound, and the base material layer may be peeled off to form only the cured product layer of the polymerizable liquid crystal compound, or The cured product layer and the oriented layer may be incorporated into the polarizing laminate as a retardation layer.
  • Examples of the resin film used for the stretched resin film include a film made of a thermoplastic resin that can be used to form a protective layer.
  • Examples of the stretching treatment include uniaxial stretching and biaxial stretching.
  • the stretching direction in the stretching treatment may be the length direction of the unstretched resin, the direction orthogonal to the length direction, or the direction obliquely intersecting with the length direction.
  • the unstretched resin may be stretched in any of these directions.
  • the biaxial stretching may be simultaneous biaxial stretching in which two of these directions are simultaneously stretched, or sequential biaxial stretching in which stretching is performed in a predetermined direction and then in the other direction.
  • the thickness of the retardation layer is preferably 1 ⁇ m or more, preferably 2 ⁇ m or more, 5 ⁇ m or more, 100 ⁇ m or less, 50 ⁇ m or less, and 10 ⁇ m. It may be as follows.
  • Examples of the bonding layer for bonding the layers contained in the polarizing laminate include an adhesive layer and an adhesive curing layer.
  • the bonding layer is a pressure-sensitive adhesive layer, it can be formed by using the pressure-sensitive adhesive described in the pressure-sensitive adhesive layer 31 described later.
  • the adhesion of the pressure-sensitive adhesive layer as a bonding layer to a non-alkali glass substrate (thickness 0.7 mm, Corning's "Eagle XG") at a temperature of 23 ° C. and a relative humidity of 55% is preferably 1 N / 25 mm or more.
  • Adhesive force can be measured in accordance with JIS K 6854-2: 1999 "Adhesive-Peeling Adhesive Strength Test Method-Part 2: 180 ° Peeling". Further, the adhesion to the adherend other than the non-alkali glass substrate (thickness 0.7 mm, "Eagle XG” manufactured by Corning Inc.) can be regarded as the same as the adhesion to the general non-alkali glass substrate.
  • the adhesion (Fb) between the bonding layer to which each layer constituting the polarizing laminate is bonded and the layers bonded to the bonding layer is usually the adhesion of the surface protective film 41 to the polarizing laminate 20. Greater than (Fp).
  • the difference between the adhesion force (Fb) and the adhesion force (Fp) is, for example, 0.1 N / 25 mm or more, preferably 0.5 N / 25 mm or more, and usually 50 N / 25 mm or less.
  • the adhesive force (Fa) of the pressure-sensitive adhesive layer 31 to the image display element 45 (adhesive body), which will be described later, is usually the same as the adhesive force (Fb), and the adhesive force (Fp) of the surface protective film 41 to the polarizing laminate 20 is the same. ) Is larger than.
  • the difference between the adhesion force (Fa) and the adhesion force (Fp) is, for example, 1N / 25mm or more, preferably 3N / 25mm or more, and usually 50N / 25mm or less.
  • the adhesive force (Fb) is smaller than the adhesive force (Fp)
  • the polarizing laminate is formed when the surface protective film 41 is peeled off after the optical laminate 1 is attached to the image display element 45 by the adhesive layer 31.
  • the layers constituting 20 may be separated from each other.
  • the adhesive force (Fa) is smaller than the adhesive force (Fp)
  • the adhesive is applied when the surface protective film 41 is peeled off after the optical laminate 1 is attached to the image display element 45 by the adhesive layer 31. Peeling may occur between the layers of the layer 31 and the image display element 45.
  • the adhesion (Fa) may be larger, smaller, or the same as the adhesion (Fb).
  • the adhesion force (Fa) is smaller than the adhesion force (Fb)
  • the storage elastic modulus of the pressure-sensitive adhesive layer as a bonding layer at a temperature of 80 ° C. is preferably 0.01 MPa or more, may be 0.02 MPa or more, and is preferably 0.3 MPa or less. It may be 0.25 MPa or less, or 0.2 MPa or less.
  • the storage elastic modulus is based on JIS K7244-6, which is a measurement sample obtained by punching a 0.2 mm-thick pressure-sensitive adhesive layer laminate produced by laminating a plurality of pressure-sensitive adhesive layers into a cylinder having a diameter of 8 mm. , A commercially available viscoelasticity measuring device can be used for measurement under the following conditions. Normal force FN: 1N Distortion ⁇ : 1% Frequency: 1Hz Temperature: 80 ° C
  • the thickness of the pressure-sensitive adhesive layer as the bonding layer is preferably 5 ⁇ m or more, 10 ⁇ m or more, 15 ⁇ m or more, 50 ⁇ m or less, and 25 ⁇ m or less. It may be 20 ⁇ m or less.
  • the adhesive curing layer can be formed by curing the curable component in the adhesive composition.
  • the adhesive composition for forming the adhesive curing layer include adhesives other than pressure-sensitive adhesives (adhesives), such as water-based adhesives and active energy ray-curable adhesives.
  • water-based adhesive examples include an adhesive in which a polyvinyl alcohol-based resin is dissolved or dispersed in water.
  • the drying method when a water-based adhesive is used is not particularly limited, but for example, a method of drying using a hot air dryer or an infrared dryer can be adopted.
  • the active energy ray-curable adhesive examples include solvent-free active energy ray-curable adhesives containing curable compounds that are cured by irradiation with active energy rays such as ultraviolet rays, visible light, electron beams, and X-rays. Can be mentioned. By using a solvent-free active energy ray-curable adhesive, the adhesion between layers can be improved.
  • the active energy ray-curable adhesive preferably contains one or both of a cationically polymerizable curable compound and a radically polymerizable curable compound because it exhibits good adhesiveness.
  • the active energy ray-curable adhesive may further contain a cationic polymerization initiator for initiating the curing reaction of the curable compound, or a radical polymerization initiator.
  • Examples of the cationically polymerizable curable compound include an epoxy compound (a compound having one or more epoxy groups in the molecule) and an oxetane compound (one or two or more oxetane rings in the molecule). Compounds having), or a combination thereof.
  • radically polymerizable curable compound examples include (meth) acrylic compounds (compounds having one or more (meth) acryloyloxy groups in the molecule), radically polymerizable double bonds, and others. Vinyl-based compounds of the above, or combinations thereof can be mentioned.
  • the active energy ray-curable adhesive can contain a sensitizer if necessary.
  • the sensitizer By using the sensitizer, the reactivity can be improved, and the mechanical strength and the adhesive strength of the adhesive cured layer can be further improved.
  • the sensitizer known ones can be appropriately applied.
  • the sensitizer is blended, the blending amount is preferably in the range of 0.1 to 20 parts by mass with respect to 100 parts by mass of the total amount of the active energy ray-curable adhesive.
  • Active energy ray-curable adhesives if necessary, ion trapping agents, antioxidants, chain transfer agents, tackifiers, thermoplastic resins, fillers, flow regulators, plasticizers, defoamers, antistatics. It can contain additives such as agents, leveling agents, and solvents.
  • an active energy ray-curable adhesive When an active energy ray-curable adhesive is used, it is possible to irradiate active energy rays such as ultraviolet rays, visible light, electron beams, and X-rays to cure the adhesive composition layer to form an adhesive layer.
  • active energy rays such as ultraviolet rays, visible light, electron beams, and X-rays
  • ultraviolet rays are preferable, and as a light source in this case, a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, a chemical lamp, a black light lamp, a microwave-excited mercury lamp, a metal halide lamp, or the like can be used.
  • a low-pressure mercury lamp a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, a chemical lamp, a black light lamp, a microwave-excited mercury lamp, a metal halide lamp, or the like
  • can a low
  • the pressure-sensitive adhesive layer 31 included in the optical laminate is a layer formed by using a pressure-sensitive adhesive.
  • the "adhesive” expresses adhesiveness by sticking itself to an adherend such as an image display element, and is a so-called pressure-sensitive adhesive.
  • the active energy ray-curable pressure-sensitive adhesive described later can adjust the degree of cross-linking and the adhesive force by irradiating with energy rays.
  • a conventionally known pressure-sensitive adhesive having excellent optical transparency can be used without particular limitation.
  • a pressure-sensitive adhesive having a base polymer such as acrylic, urethane, silicone, or polyvinyl ether is used. be able to.
  • it may be an active energy ray-curable pressure-sensitive adhesive, a thermosetting pressure-sensitive adhesive or the like.
  • an adhesive based on an acrylic resin having excellent transparency, adhesive strength, removability (hereinafter, also referred to as reworkability), weather resistance, heat resistance and the like is preferable.
  • the pressure-sensitive adhesive layer is preferably composed of a reaction product of a pressure-sensitive adhesive composition containing a (meth) acrylic resin, a cross-linking agent, and a silane compound, and may contain other components.
  • the pressure-sensitive adhesive layer 31 may be formed by using an active energy ray-curable pressure-sensitive adhesive.
  • the active energy ray-curable pressure-sensitive adhesive is a harder pressure-sensitive adhesive by blending a pressure-sensitive adhesive composition with an ultraviolet-curable compound such as a polyfunctional acrylate, forming a pressure-sensitive adhesive layer, and then irradiating the pressure-sensitive adhesive with ultraviolet rays to cure the pressure-sensitive adhesive. Layers can be formed.
  • the active energy ray-curable pressure-sensitive adhesive has a property of being cured by being irradiated with energy rays such as ultraviolet rays and electron beams.
  • the activated energy ray-curable adhesive Since the activated energy ray-curable adhesive has adhesiveness even before irradiation with energy rays, it adheres to an adherend such as an image display element and is cured by irradiation with energy rays to adjust the adhesion force. It is a pressure-sensitive adhesive having the property of being able to.
  • the active energy ray-curable pressure-sensitive adhesive generally contains an acrylic pressure-sensitive adhesive and an energy ray-polymerizable compound as main components.
  • a cross-linking agent is further blended, and if necessary, a photopolymerization initiator, a photosensitizer, or the like can be blended.
  • the pressure-sensitive adhesive layer 31 it is possible to use a pressure-sensitive adhesive layer 31 having an adhesion force (Fa) to the image display element 45 (adhesive body) relatively larger than the adhesion force (Fp) to the polarizing laminate of the surface protective film described above. preferable. Further, it is preferable to use a pressure-sensitive adhesive layer 31 having a storage elastic modulus or thickness relatively larger than the storage elastic modulus or thickness of the pressure-sensitive adhesive layer as a bonding layer contained in the above-mentioned polarizing laminate. ..
  • the adhesive force of the pressure-sensitive adhesive layer 31 to a non-alkali glass substrate (thickness 0.7 mm, Corning's "Eagle XG") at a temperature of 23 ° C. and a relative humidity of 55% is preferably 5 N / 25 mm or more, preferably 8 N / 25 mm. It may be 10 N / 25 mm or more, preferably 50 N / 25 mm or less, 40 N / 25 mm or less, or 30 N / 25 mm or less.
  • the storage elastic modulus of the pressure-sensitive adhesive layer 31 at a temperature of 80 ° C. is preferably 0.01 MPa or more, may be 0.02 MPa or more, and is preferably 0.3 MPa or less, preferably 0.25 MPa or less.
  • the thickness of the pressure-sensitive adhesive layer 31 is preferably 10 ⁇ m or more, 15 ⁇ m or more, 20 ⁇ m or more, 40 ⁇ m or less, and 35 ⁇ m or less. It may be 30 ⁇ m or less.
  • the adhesion to the adherend other than the non-alkali glass substrate can be regarded as the same as the adhesion to the general non-alkali glass substrate.
  • the release film covers and protects the pressure-sensitive adhesive layer or supports the pressure-sensitive adhesive layer, and has a function as a separator that can be peeled off from the pressure-sensitive adhesive layer.
  • Examples of the release film include a film in which the surface of the base film on the pressure-sensitive adhesive layer side is subjected to a mold release treatment such as a silicone treatment.
  • Examples of the resin material forming the base film include the same resin materials as those forming the protective layer described above.
  • the resin film may have a one-layer structure or may be a multilayer resin film having a multilayer structure of two or more layers.
  • the thickness of the release film can be, for example, 10 ⁇ m or more and 200 ⁇ m or less, preferably 20 ⁇ m or more and 150 ⁇ m or less, and more preferably 30 ⁇ m or more and 120 ⁇ m or less.
  • Information on the optical laminate may be displayed on the release film by printing or the like.
  • Examples of the information regarding the optical laminate include a display regarding the type of the polarizing laminate included in the optical laminate, a display indicating the direction of the absorption axis of the polarizing plate included in the polarizing laminate, and the like.
  • peeling tape As the peeling tape, an adhesive tape having an adhesive layer formed on one side of the resin film can be used.
  • the resin film those exemplified as the resin film for the surface protective film of the surface protective film can be used.
  • the pressure-sensitive adhesive layer can be formed by using the pressure-sensitive adhesive described in the pressure-sensitive adhesive layer 31.
  • the adherend to which the optical laminate is bonded by the pressure-sensitive adhesive layer 31 is not particularly limited, and examples thereof include an image display element of a display device.
  • the image display element can be selected according to the type of display device. Examples of the image display element include a display element such as a liquid crystal cell or an organic EL display element.
  • the release film was peeled off from the optical laminates obtained in Examples and Comparative Examples, and the optical laminate was bonded to a glass plate (holding table) with an exposed adhesive layer to prepare a test sample.
  • a peeling tape (cellotape (registered trademark) (CT405-AP24), manufactured by Nichiban Co., Ltd.) was attached to the surface protective film on the surface of the optical laminate of the test sample.
  • the peeling tape has a size of 24 mm in width and 100 mm in length, and has a notch at the center of the short side provided with the notch in the plan view shape of the optical laminate of the test sample.
  • the peeling tape was attached to the center position of one of the short sides in the same manner as described above.
  • peeling tape the gripping side end on the side opposite to the mounting end of the optical laminate is gripped by the chuck of the peeling device (Autograph AGS-50NX, manufactured by Shimadzu), and the angle with respect to the surface direction of the optical laminate ( A peeling test was conducted in which the peeling angle) was 180 ° and the peeling speed was 300 mm / min, and the peeling tape was pulled in the direction facing the other short side facing the short side to which the peeling tape was attached.
  • Example 1 Preparation of raw material laminate
  • a linearly polarized light layer (thickness 8 ⁇ m) in which iodine was adsorbed and oriented on a polyvinyl alcohol-based resin film was prepared.
  • a cyclic olefin resin (COP) film (thickness 25 ⁇ m) (hereinafter, “25HC-COP”) in which a hard coat (HC) layer as a protective layer is formed on one surface of the linearly polarized light layer via an aqueous adhesive.
  • the COP film side (the side opposite to the HC layer side) of "film”) was bonded.
  • the acrylic pressure-sensitive adhesive layer side of the surface protective film (thickness 53 ⁇ m) in which the acrylic pressure-sensitive adhesive layer (thickness 15 ⁇ m) was formed on the polyester-based resin film (thickness 38 ⁇ m) was bonded.
  • a triacetyl cellulose (TAC) film (thickness 20 ⁇ m) as a protective layer was attached to the other surface of the linearly polarized light layer via an aqueous adhesive. As a result, a polarizing plate (1) with a surface protective film was obtained.
  • a surface protective film polyethylene resin film, acrylic pressure-sensitive adhesive layer, a 25HC-COP film (HC layer, COP film), a linearly polarizing layer, and a TAC film are laminated in this order. It was done.
  • a ⁇ / 4 plate which is a cured product layer of a polymerizable liquid crystal compound, an adhesive cured layer (thickness 2 ⁇ m) of an ultraviolet curable adhesive, and a positive which is a cured product layer of a polymerizable liquid crystal compound.
  • a retardation layer in which C plates (thickness 3 ⁇ m) were laminated in this order was prepared.
  • the TAC film of the polarizing plate (1) with a surface protective film and the ⁇ / 4 plate of the retardation layer were bonded by a bonding layer (thickness 17 ⁇ m) which was an adhesive layer.
  • a pressure-sensitive adhesive layer (1) with a release film was prepared by forming a pressure-sensitive adhesive layer (thickness 25 ⁇ m) formed on a release film (thickness 38 ⁇ m) using an acrylic pressure-sensitive adhesive.
  • the pressure-sensitive adhesive layer of the pressure-sensitive adhesive layer (1) with a release film is bonded to the positive C plate side of the retardation layer bonded to the polarizing plate (1) with a surface protective film, and the length of the long side is 37 mm.
  • a raw material laminate (1) was obtained by cutting into a rectangle having a short side length of 35 mm.
  • the raw material laminate (1) is a polarizing plate with a surface protective film (1) (surface protective film, 25HC-COP film, linear polarizing layer, and TAC film), a bonding layer which is an adhesive layer, and a retardation layer ( ⁇ ).
  • a / 4 plate, a bonding layer, a positive C plate), and an adhesive layer (1) with a release film (adhesive layer, release film) were laminated in this order.
  • the thickness of the laminated portion of the raw material laminate (1) from the polarizing plate (25HC-COP film, linearly polarized light layer, TAC film) to the retardation layer ( ⁇ / 4 plate, bonded layer, positive C plate) is 77 ⁇ m. Met. Further, the direction of the long side of the raw material laminate (1) was parallel to the absorption axis of the linearly polarized light layer.
  • the first notch start point P1 and the second notch start point P2 are set at the positions (see the first notch start point P1b and the second notch start point P2b in FIG. 1), and the first notch start point is set. It was performed along a linear notch line connecting P1 and the second notch start point P2.
  • the relative moving speed between the laminate W and the rotating tool 60 was set to 2100 mm / min, and the rotating speed of the rotating tool was set to 5400 rpm.
  • the obtained optical laminate was evaluated for peeling. The results are shown in Table 1.
  • the adhesion between the surface protective film and the peeling tape was measured by the following procedure.
  • the release film is peeled off from the optical laminate obtained above to expose the pressure-sensitive adhesive layer, and the optical laminate from which the release film has been removed is attached to a glass plate (holding table) by the exposed pressure-sensitive adhesive layer for testing. It was used as a sample.
  • a 180 ° peeling test (peeling) using the peeling device described in the peeling evaluation section is performed by adhering the peeling tape described in the peeling evaluation section to the surface of the surface protective film of the test sample.
  • the adhesive force between the surface protective film and the peeling tape was measured by an angle of 180 ° and a peeling speed of 300 mm / min). This adhesion was 9N / 25mm.
  • the peeling tape was peeled off, the surface protective film was not peeled off from the polarizing laminate.
  • the adhesion between the acrylic pressure-sensitive adhesive layer side of the surface protective film and the HC layer side of the 25HC-COP film is a 180 ° peeling test (peeling angle 180) using the peeling device described in the peeling evaluation section above. °, peeling speed 300 mm / min), and it was 0.03 N / 25 mm.
  • Example 2 The optical laminate is the same as in Example 1 except that the two corners on both ends of one short side of the raw material laminate (1) are polished to form two notches.
  • the first notch start point P1 and the second cut from the apex of the corner of the raw material laminate (1) after polishing the end faces corresponding to the four sides.
  • the distance to the notch start point P2 was 0.3 mm, and the notch line connecting the first notch start point P1 and the second notch start point P2 was a straight line. Peeling evaluation was performed on the optical laminate. The results are shown in Table 1.
  • Example 3 The distances from the apex of the corner of the raw material laminate (raw material laminate after polishing the end faces corresponding to the four sides) to the first notch start point P1 and the second notch start point P2 were set to 0.2 mm, respectively.
  • An optical laminate was obtained in the same manner as in Example 2 except for the above. Peeling evaluation was performed on the optical laminate. The results are shown in Table 1.
  • Example 4 The distances from the apex of the corner of the raw material laminate (raw material laminate after polishing the end faces corresponding to the four sides) to the first notch start point P1 and the second notch start point P2 were set to 0.1 mm, respectively.
  • An optical laminate was obtained in the same manner as in Example 2 except for the above. Peeling evaluation was performed on the optical laminate. The results are shown in Table 1.
  • Example 5 (Preparation of raw material laminate) Use a COP film having a thickness of 16 ⁇ m (hereinafter, sometimes referred to as “16HC-COP film”) on which a hard coat (HC) layer as a protective layer is formed, and do not attach a TAC film as a protective layer.
  • a polarizing plate (2) with a surface protective film was obtained in the same procedure as in Example 1 except for the above.
  • the polarizing plate with a surface protective film (2) is formed by laminating a surface protective film (polyester resin film, acrylic pressure-sensitive adhesive layer), a 16HC-COP film (HC layer, COP film), and a linearly polarizing layer in this order. there were.
  • a pressure-sensitive adhesive layer (2) with a release film was prepared by forming a pressure-sensitive adhesive layer (thickness 10 ⁇ m) formed on a release film (thickness 38 ⁇ m) using an acrylic pressure-sensitive adhesive.
  • a polarizing plate with a surface protective film (2) is used instead of the polarizing plate with a surface protective film (1), and the linearly polarizing layer side of the polarizing plate with a surface protective film (2) and the ⁇ / 4 plate of the retardation layer are separated.
  • a raw material laminate (2) was obtained in the same procedure as in Example 1 except that the agent layers were bonded together.
  • the raw material laminate (2) is a polarizing plate with a surface protective film (2) (surface protective film, 16HC-COP film, linear polarizing layer), a bonding layer which is an adhesive layer, a retardation layer ( ⁇ / 4 plate,).
  • the bonding layer, the positive C plate), and the pressure-sensitive adhesive layer (2) with a release film (the pressure-sensitive adhesive layer and the release film) were laminated in this order.
  • the thickness of the laminated portion from the polarizing plate (16HC-COP film, linearly polarized light layer) to the retardation layer ( ⁇ / 4 plate, bonded layer, positive C plate) in the raw material laminate (2) was 36 ⁇ m. Further, the direction of the long side of the raw material laminate (2) was parallel to the absorption axis of the linearly polarized light layer.
  • Example 6 Optical lamination is performed in the same procedure as in Example 5 except that only one corner portion at one end of one short side of the raw material laminate (2) is polished to form one notch portion. I got a body. Peeling evaluation was performed on the optical laminate. The results are shown in Table 1.
  • each layer 25HC-COP film or 16HC-COP film, linearly polarized light layer, TAC film, adhesive layer, ⁇ / 4 plate, pasted constituting the optical laminate was applied at the time of the peeling test. No peeling was observed between the laminated layer, the positive C plate, the adhesive layer) and the glass plate (holding table).
  • 1,1a, 1b optical laminate 10a, 10b, 10c, 10d side, 10eb, 10ed line, 11b, 11d notch, 15 quadrangle, 15a first side, 15b second side, 15c third side, 15d first 4 sides, 20 polarized laminates, 21 polarizing plates, 22 retardation layers, 31 adhesive layers, 32 release films, 35 release tapes, 41 surface protection films, 50 supports, 51 substrates, 52 frames, 53 rotary tables , 54 Cylinder, 55 Jig, 60 Rotating Tool, Laa, Lab, Lba, Lbd Distance, Pab, Pda Vertex, P1b, P1d (P1) 1st Notch Start Point, P2b, P2d (P2) 2nd Notch Start Point , W Laminate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

[Problem] To provide an optical laminate capable of favorably peeling a surface protective film and a peeling method. [Solution] The optical laminate sequentially comprises: a surface protective film; a polarizing laminate including a polarizing plate having a protective layer on one or both surfaces of a linearly polarizing layer; and an adhesive layer. The surface protective film is provided to be peelable with respect to the polarizing laminate, and the thickness of the polarizing laminate is 120 μm or less. The planar view shape of the optical laminate is a shape having at least one notched part in which one corner portion of a quadrangular shape is notched, and the notched part has a shape notched along a notch line passing through a first notch start point P1 and a second notch start point P2 respectively set on a first side and a second side constituting an apex of the corner portion. The first notch start point P1 and the second notch start point P2 are set so that the distances from the apex are 0.1 mm or more and 0.5 mm or less.

Description

光学積層体及び剥離方法Optical laminate and peeling method
 本発明は、光学積層体、及び、表面保護フィルムの剥離方法に関する。 The present invention relates to an optical laminate and a method for peeling a surface protective film.
 偏光板は、液晶表示装置や有機エレクトロルミネッセンス(EL)表示装置等の表示装置における偏光の供給素子として、また偏光の検出素子として広く用いられている。偏光板は従来より、偏光子の片面又は両面に保護フィルムを接着したものが使用されている。 The polarizing plate is widely used as a polarization supply element in a display device such as a liquid crystal display device or an organic electroluminescence (EL) display device, and as a polarization detection element. Conventionally, a polarizing plate having a protective film adhered to one side or both sides of a polarizing element has been used.
 このような偏光板は、その表面の汚れや傷つきを抑制するために、偏光板の一方の表面に対して剥離可能な表面保護フィルム(「プロテクトフィルム」とも呼ばれる。)を設け、他方の表面に粘着剤層及び剥離フィルム(「セパレートフィルム」とも呼ばれる。)を設けて市場流通されることがある(例えば、特許文献1等)。表面保護フィルムは、例えば、画像表示素子等の部材に偏光板を貼合した後に剥離されて除去され、剥離フィルムは、例えば、表示装置の画像表示素子等の部材に偏光板を取付ける際に剥離されて除去される。 In such a polarizing plate, in order to suppress stains and scratches on the surface thereof, a surface protective film (also referred to as “protective film”) that can be peeled off from one surface of the polarizing plate is provided on the other surface. A pressure-sensitive adhesive layer and a release film (also referred to as "separate film") may be provided and distributed on the market (for example, Patent Document 1 and the like). The surface protective film is peeled off and removed after attaching a polarizing plate to a member such as an image display element, for example, and the peeling film is peeled off when the polarizing plate is attached to a member such as an image display element of a display device, for example. And removed.
特開2019-191551号公報Japanese Unexamined Patent Publication No. 2019-191551
 スマートフォンやスマートウォッチ等に用いられる比較的サイズの小さい偏光板では、表面保護フィルムの一辺に剥離用テープを取付け、この剥離用テープを把持して引き起こすことによって表面保護フィルムを剥離する場合がある。このような剥離方法により剥離用テープを引き起こした場合、剥離用テープが表面保護フィルムから剥離し、偏光板から表面保護フィルムを剥離することができない場合があった。 For relatively small polarizing plates used in smartphones, smart watches, etc., the surface protective film may be peeled off by attaching a peeling tape to one side of the surface protective film and holding the peeling tape to cause it. When the peeling tape is caused by such a peeling method, the peeling tape may be peeled from the surface protective film, and the surface protective film may not be peeled from the polarizing plate.
 本発明は、表面保護フィルムを良好に剥離することができる光学積層体及び剥離方法の提供を目的とする。 An object of the present invention is to provide an optical laminate and a peeling method capable of satisfactorily peeling a surface protective film.
 本発明は、以下の光学積層体及び剥離方法を提供する。
 〔1〕 表面保護フィルムと、直線偏光層の片面又は両面に保護層を有する偏光板を含む偏光性積層体と、粘着剤層と、をこの順に含む光学積層体であって、
 前記表面保護フィルムは、前記偏光性積層体に対して剥離可能に設けられており、
 前記偏光性積層体の厚みは、120μm以下であり、
 前記光学積層体の平面視形状は、四角形が有する1つの角部が切欠かれた切欠き部を少なくとも1つ有する形状であり、
 前記切欠き部は、前記角部の頂点を構成する第1辺及び第2辺上にそれぞれ設定された第1切欠き開始点P1及び第2切欠き開始点P2を通る切欠き線に沿って切欠かれた形状を有し、
 前記第1切欠き開始点P1及び前記第2切欠き開始点P2は、前記頂点からの距離がそれぞれ0.1mm以上0.5mm以下となるように設定されている、光学積層体。
 〔2〕 前記四角形は、方形である、〔1〕に記載の光学積層体。
 〔3〕 前記切欠き線は、直線又は円弧状の曲線である、〔1〕又は〔2〕に記載の光学積層体。
 〔4〕 前記光学積層体の前記切欠き部における端面は、回転工具による切削加工面である、〔1〕~〔3〕のいずれかに記載の光学積層体。
 〔5〕 前記四角形が有する4つの辺の長さは、それぞれ30mm以上100mm以下の範囲内である、〔1〕~〔4〕のいずれかに記載の光学積層体。
 〔6〕 前記切欠き部を少なくとも2つ有し、
 前記切欠き部は、前記四角形の隣合う2つの角部をそれぞれ切欠くように設けられている、〔1〕~〔5〕のいずれかに記載の光学積層体。
 〔7〕 前記偏光性積層体は、前記偏光板の片面又は両面に位相差層を有する、〔1〕~〔6〕のいずれかに記載の光学積層体。
 〔8〕 さらに、前記粘着剤層の前記偏光性積層体側とは反対側に、前記粘着剤層に対して剥離可能な剥離フィルムを有する、〔1〕~〔7〕のいずれかに記載の光学積層体。
 〔9〕 〔1〕~〔8〕のいずれかに記載の光学積層体から前記表面保護フィルムを剥離する剥離方法であって、
 前記光学積層体を前記粘着剤層によって被着体に貼合する工程と、
 前記光学積層体の前記表面保護フィルム側の表面に剥離用テープを取付ける工程と、
 前記剥離用テープを引き起こすことにより、前記被着体に貼合された前記光学積層体から前記表面保護フィルムを剥離する工程と、を含み、
 前記取付ける工程は、前記光学積層体の平面視形状において端部に前記切欠き部が設けられた1辺を跨ぐように、前記剥離用テープを取付ける、剥離方法。
 〔10〕 前記光学積層体は、〔6〕に記載の光学積層体であり、
 前記剥離用テープを取付ける前記1辺は、両端部に前記切欠き部が設けられた辺である、〔9〕に記載の剥離方法。
The present invention provides the following optical laminate and peeling method.
[1] An optical laminate including a surface protective film, a polarizing laminate containing a polarizing plate having a protective layer on one or both sides of a linear polarizing layer, and an adhesive layer in this order.
The surface protective film is provided so as to be peelable from the polarizing laminate.
The thickness of the polarizing laminate is 120 μm or less, and the thickness is 120 μm or less.
The plan view shape of the optical laminate is a shape in which one corner portion of the quadrangle has at least one notched portion.
The notch portion is along a notch line passing through a first notch start point P1 and a second notch start point P2 set on the first side and the second side forming the apex of the corner portion, respectively. Has a notched shape,
An optical laminate in which the first notch start point P1 and the second notch start point P2 are set so that the distances from the vertices are 0.1 mm or more and 0.5 mm or less, respectively.
[2] The optical laminate according to [1], wherein the quadrangle is a square.
[3] The optical laminate according to [1] or [2], wherein the notch line is a straight line or an arcuate curve.
[4] The optical laminate according to any one of [1] to [3], wherein the end surface of the optical laminate in the notch is a surface cut by a rotary tool.
[5] The optical laminate according to any one of [1] to [4], wherein the lengths of the four sides of the quadrangle are each within a range of 30 mm or more and 100 mm or less.
[6] Having at least two notches,
The optical laminate according to any one of [1] to [5], wherein the cutout portion is provided so as to cut out two adjacent corner portions of the quadrangle.
[7] The optical laminate according to any one of [1] to [6], wherein the polarizing laminate has a retardation layer on one side or both sides of the polarizing plate.
[8] The optical according to any one of [1] to [7], further comprising a release film that can be peeled off from the pressure-sensitive adhesive layer on the side of the pressure-sensitive adhesive layer opposite to the side of the polarizing laminate. Laminated body.
[9] A peeling method for peeling the surface protective film from the optical laminate according to any one of [1] to [8].
The step of adhering the optical laminate to the adherend by the pressure-sensitive adhesive layer, and
A step of attaching a peeling tape to the surface of the optical laminate on the surface protective film side,
A step of peeling the surface protective film from the optical laminate attached to the adherend by causing the peeling tape is included.
The attachment step is a peeling method in which the peeling tape is attached so as to straddle one side provided with the notch at the end in the plan view shape of the optical laminate.
[10] The optical laminate is the optical laminate according to [6].
The peeling method according to [9], wherein the one side on which the peeling tape is attached is a side provided with the notches at both ends.
 本発明によれば、表面保護フィルムを良好に剥離することができる光学積層体を提供することができる。 According to the present invention, it is possible to provide an optical laminate capable of satisfactorily peeling off the surface protective film.
本発明の光学積層体の一例を模式的に示す概略平面図である。It is a schematic plan view which shows typically an example of the optical laminated body of this invention. 図1に示す光学積層体のx-x’断面図である。FIG. 5 is a cross-sectional view taken along the line xx'of the optical laminate shown in FIG. 本発明の光学積層体から表面保護フィルムを剥離する工程の一例を模式的に示す概略平面図である。It is a schematic plan view which shows typically an example of the step of peeling a surface protection film from an optical laminate of this invention. 本発明の光学積層体の他の一例を模式的に示す概略平面図である。It is a schematic plan view which shows another example of the optical laminated body of this invention schematically. 本発明の光学積層体のさらに他の一例を模式的に示す概略断面図である。It is schematic cross-sectional view which shows still another example of the optical laminated body of this invention schematically. 本発明の光学積層体のさらに他の一例を模式的に示す概略断面図である。It is schematic cross-sectional view which shows still another example of the optical laminated body of this invention schematically. 本発明の光学積層体から表面保護フィルムを剥離する工程の一例を模式的に示す概略断面図である。It is schematic cross-sectional view which shows typically an example of the step of peeling a surface protection film from an optical laminate of this invention. 本発明の光学積層体の製造方法の一例を模式的に示す概略斜視図である。It is a schematic perspective view which shows typically an example of the manufacturing method of the optical laminated body of this invention.
 以下、図面を参照して、本発明の光学積層体及び剥離方法の好ましい実施形態について説明する。以下のすべての図面は、本発明の理解を助けるために示すものであり、図面に示される各構成要素のサイズや形状は、実際の構成要素のサイズや形状とは必ずしも一致しない。 Hereinafter, preferred embodiments of the optical laminate and the peeling method of the present invention will be described with reference to the drawings. All of the drawings below are provided to aid in the understanding of the present invention, and the size and shape of each component shown in the drawings may not necessarily match the size and shape of the actual component.
 (光学積層体)
 図1は、本実施形態の光学積層体の一例を模式的に示す概略平面図である。図1は、光学積層体の表面保護フィルム側からみた概略平面図を示している。図2は、図1に示す光学積層体のx-x’断面図である。
(Optical laminate)
FIG. 1 is a schematic plan view schematically showing an example of the optical laminate of the present embodiment. FIG. 1 shows a schematic plan view of the optical laminate as viewed from the surface protective film side. FIG. 2 is a cross-sectional view taken along the line xx'of the optical laminate shown in FIG.
 本実施形態の光学積層体1aは、図2に示すように、表面保護フィルム41と偏光性積層体20と粘着剤層31とをこの順に備える。偏光性積層体20は偏光板21を備える。この偏光板は直線偏光層の片面又は両面に保護層を備える。表面保護フィルム41は、偏光性積層体20に対して剥離可能に設けられている。偏光性積層体20の厚みは120μm以下である。 As shown in FIG. 2, the optical laminate 1a of the present embodiment includes a surface protective film 41, a polarizing laminate 20, and an adhesive layer 31 in this order. The polarizing laminate 20 includes a polarizing plate 21. This polarizing plate is provided with a protective layer on one side or both sides of the linearly polarizing layer. The surface protective film 41 is provided so as to be peelable from the polarizing laminate 20. The thickness of the polarizing laminate 20 is 120 μm or less.
 光学積層体1aの平面視形状は、図1に示すように、四角形15が有する1つの角部が切欠かれた1つの切欠き部11bを有する形状である。切欠き部11bは、四角形15が有する角部の頂点Pabを構成する2つの辺である第1辺15a及び第2辺15bのそれぞれに設定された第1切欠き開始点P1b(第1切欠き開始点P1)及び第2切欠き開始点P2b(第2切欠き開始点P2)を通る切欠き線10ebに沿って切欠かれた形状を有する。第1辺15a及び第2辺15bのそれぞれに設定された第1切欠き開始点P1b及び第2切欠き開始点P2bは、頂点Pabからの距離Laa及び距離Labがそれぞれ0.1mm以上0.5mm以下となる範囲内に位置する。 As shown in FIG. 1, the plan view shape of the optical laminate 1a is a shape having one notched portion 11b in which one corner portion of the quadrangle 15 is notched. The notch portion 11b is a first notch start point P1b (first notch) set on each of the first side 15a and the second side 15b, which are two sides constituting the apex Pab of the corner portion of the quadrangle 15. It has a notched shape along a notch line 10eb passing through a start point P1) and a second notch start point P2b (second notch start point P2). The first notch start point P1b and the second notch start point P2b set on the first side 15a and the second side 15b have a distance Laa and a distance Lab from the apex Pab of 0.1 mm or more and 0.5 mm, respectively. It is located within the following range.
 第1切欠き開始点P1b及び第2切欠き開始点P2bを通る切欠き線10ebの平面視形状は特に限定されない。切欠き線10ebは、例えば、図1に示すように直線であってもよく、円弧状の曲線であってもよい。切欠き線10ebが円弧状の曲線である場合、切欠き線10ebは、四角形15の角部の頂点Pabに向かって凸であることが好ましい。
切欠き線10ebの長さは、例えば1mm以下であってもよく、0.9mm以下であってもよく、0.8mm以下であってもよく、0.7mm以下であってもよい。
The plan-view shape of the notch line 10eb passing through the first notch start point P1b and the second notch start point P2b is not particularly limited. The notch line 10eb may be, for example, a straight line or an arcuate curve as shown in FIG. When the notch line 10eb is an arcuate curve, it is preferable that the notch line 10eb is convex toward the apex Pab at the corner of the quadrangle 15.
The length of the notch line 10eb may be, for example, 1 mm or less, 0.9 mm or less, 0.8 mm or less, or 0.7 mm or less.
 切欠き線10ebの形状は、次のように設定することが好ましい。光学積層体1aの平面視形状において第1切欠き開始点P1b側から第2切欠き開始点P2b方向に向かって切欠き線10ebを辿った場合に、第1切欠き開始点P1bが位置する第1辺15aからの最短距離αが連続的に大きくなるように、又は、最短距離αが一定となる区間を含みながら次第に大きくなるように、切欠き線10ebを設定することが好ましい。また、光学積層体1aの平面視形状において第1切欠き開始点P1b側から第2切欠き開始点P2b方向に向かって切欠き線10ebを辿った場合に、第2切欠き開始点P2bが位置する第2辺15bからの最短距離βが連続的に小さくなるように、又は、最短距離βが一定となる区間を含みながら次第に小さくなるように、切欠き線10ebを設定することが好ましい。 The shape of the notch line 10eb is preferably set as follows. In the plan view shape of the optical laminate 1a, when the notch line 10eb is traced from the first notch start point P1b side toward the second notch start point P2b, the first notch start point P1b is located. It is preferable to set the notch line 10eb so that the shortest distance α from one side 15a increases continuously, or gradually increases while including a section in which the shortest distance α is constant. Further, when the notch line 10eb is traced from the first notch start point P1b side toward the second notch start point P2b in the plan view shape of the optical laminate 1a, the second notch start point P2b is positioned. It is preferable to set the notch line 10eb so that the shortest distance β from the second side 15b is continuously reduced, or is gradually reduced while including a section in which the shortest distance β is constant.
 四角形15は、光学積層体1aの平面視形状の辺を含むように設定された仮想の平面視形状である。四角形15は、例えば図1に示すように、第1辺15a、第2辺15b、第3辺15c、及び第4辺15dを有する長方形である。図1に示す四角形15が有する第1辺15a及び第2辺15bの一部はそれぞれ、光学積層体1aの平面視形状における辺10a及び辺10bを構成し、四角形15が有する第3辺15c及び第4辺15d全体はそれぞれ、光学積層体1aの平面視形状における辺10c及び辺10dを構成している。
光学積層体1aの平面視形状において、辺10aは、四角形15の第1辺15aのうちの第1切欠き開始点P1bから頂点Pabに向かう側とは反対側の部分であり、辺10bは、四角形15の第2辺15bのうちの第2切欠き開始点P2bから頂点Pabに向かう側とは反対側の部分である。
The quadrangle 15 is a virtual plan view shape set to include the sides of the plan view shape of the optical laminate 1a. As shown in FIG. 1, for example, the quadrangle 15 is a rectangle having a first side 15a, a second side 15b, a third side 15c, and a fourth side 15d. A part of the first side 15a and the second side 15b of the quadrangle 15 shown in FIG. 1 constitutes the side 10a and the side 10b in the plan view shape of the optical laminate 1a, respectively, and the third side 15c and the third side 15b of the quadrangle 15 have. The entire fourth side 15d constitutes a side 10c and a side 10d in the plan view shape of the optical laminate 1a, respectively.
In the plan view shape of the optical laminate 1a, the side 10a is a portion of the first side 15a of the quadrangle 15 opposite to the side from the first notch start point P1b toward the apex Pab, and the side 10b is It is a portion of the second side 15b of the quadrangle 15 opposite to the side from the second notch start point P2b toward the apex Pab.
 このように、光学積層体1aの平面視形状に対して設定される四角形15は、光学積層体1aの平面視形状における辺10a及び辺10bを延長し、この2辺の延長部分の交点を頂点Pabとして含む四角形である。なお、光学積層体1aの平面視形状から四角形15を設定する際に光学積層体1aの平面視形状から延長する辺は、四角形15が有する角部を切欠いて光学積層体1aを得たと仮定した場合に四角形15を切欠く面積が最小となるように設定する。 As described above, the quadrangle 15 set for the plan view shape of the optical laminate 1a extends the sides 10a and 10b in the plan view shape of the optical laminate 1a, and the intersection of the extended portions of the two sides is the apex. It is a quadrangle included as a pub. When setting the quadrangle 15 from the plan view shape of the optical laminate 1a, it is assumed that the side extending from the plan view shape of the optical laminate 1a is obtained by cutting out the corner portion of the quadrangle 15 to obtain the optical laminate 1a. In this case, the area for cutting out the quadrangle 15 is set to be the minimum.
 頂点Pabから第1切欠き開始点P1bまでの距離Laa、及び頂点Pabから第2切欠き開始点P2bまでの距離Labは、それぞれ独立して、0.1mm以上であり、0.2mm以上であってもよく、0.3mm以上であってもよく、0.5mm以下であり、0.4mm以下であってもよい。距離Laa及び距離Labは互いに同じであってもよく、互いに異なっていてもよい。後述するように、辺10aに剥離用テープ35(図3)を取付けて表面保護フィルム41の剥離を行う場合、距離Laaが距離Labよりも大きいことが好ましい。距離Laa及び距離Labが0.1mm未満であると、表面保護フィルム41の良好な剥離が行いにくくなる傾向にある。距離Laa及び距離Labが0.5mmを超えると、光学積層体1aを表示装置の画像表示素子に貼合した場合の有効面積が小さくなり、表示装置における画像表示領域が狭くなる傾向にある。 The distance Laa from the apex Pab to the first notch start point P1b and the distance Lab from the apex Pab to the second notch start point P2b are independently 0.1 mm or more and 0.2 mm or more. It may be 0.3 mm or more, 0.5 mm or less, and 0.4 mm or less. The distance Laa and the distance Lab may be the same as each other or different from each other. As will be described later, when the peeling tape 35 (FIG. 3) is attached to the side 10a to peel off the surface protective film 41, it is preferable that the distance Laa is larger than the distance Lab. If the distance Laa and the distance Lab are less than 0.1 mm, it tends to be difficult to perform good peeling of the surface protective film 41. When the distance Laa and the distance Lab exceed 0.5 mm, the effective area when the optical laminate 1a is attached to the image display element of the display device tends to be small, and the image display area in the display device tends to be narrow.
 第1切欠き開始点P1bと第2切欠き開始点P2bとを結ぶ切欠き線が直線であると仮定して四角形15から切欠かれた部分の平面視における面積をS1とした場合に、光学積層体1aが実際に有する切欠き線10ebによって四角形15から切欠かれた部分の平面視における面積Saは、面積S1の0.6倍以上であることが好ましく、0.7倍以上であってもよく、0.9倍以上であってもよく、また、1.6倍以下であることが好ましく、1.4倍以下であってもよく、1.2倍以下であってもよい。 Assuming that the notch line connecting the first notch start point P1b and the second notch start point P2b is a straight line, the area of the notched portion from the quadrangle 15 in the plan view is S1, and the optical stacking is performed. The area Sa in the plan view of the portion cut out from the quadrangle 15 by the notch line 10eb actually possessed by the body 1a is preferably 0.6 times or more, and may be 0.7 times or more the area S1. , 0.9 times or more, preferably 1.6 times or less, 1.4 times or less, or 1.2 times or less.
 図3は、本実施形態の光学積層体から表面保護フィルムを剥離する工程の一例を模式的に示す概略平面図である。光学積層体1aは切欠き部11bを有しているため、図3に示す剥離用テープ35を用いた表面保護フィルム41の剥離を良好に行うことができる。剥離用テープ35を用いた表面保護フィルム41の剥離方法の詳細については後述するが、光学積層体1aからの表面保護フィルム41の剥離は、例えば次のように行うことができる。まず、図3に示すように、光学積層体1aの表面保護フィルム41側の表面に、切欠き部11bが設けられている辺10aを跨ぐように剥離用テープ35の一端(以下、「取付け端部」という場合がある。)を取付ける。続いて、剥離用テープ35の取付け端部とは反対側の端部を引き起こし、剥離用テープ35を辺10aから辺10cに向かう方向(図3中の矢印の方向)に引っ張る。これにより、光学積層体1aから表面保護フィルム41を剥離することができる。光学積層体1aでは、剥離用テープ35が取付けられた辺10aの端部に切欠き部11bが設けられている。これにより、辺10aに切欠き部11bが設けられていない場合に比較すると、剥離用テープ35を引き起こした際に、表面保護フィルム41が引き起こされやすくなっていると考えられる。そのため、光学積層体1aでは、剥離用テープ35が表面保護フィルム41から剥離することを抑制し、剥離用テープ35によって表面保護フィルム41を良好に剥離することができる。 FIG. 3 is a schematic plan view schematically showing an example of a step of peeling the surface protective film from the optical laminate of the present embodiment. Since the optical laminate 1a has a notch portion 11b, the surface protective film 41 can be satisfactorily peeled off using the peeling tape 35 shown in FIG. The details of the method of peeling the surface protective film 41 using the peeling tape 35 will be described later, but the surface protective film 41 can be peeled from the optical laminate 1a as follows, for example. First, as shown in FIG. 3, one end of the peeling tape 35 (hereinafter, "mounting end") so as to straddle the side 10a provided with the notch 11b on the surface of the optical laminate 1a on the surface protective film 41 side. It may be called "part".) Subsequently, the end portion of the release tape 35 opposite to the attachment end portion is raised, and the release tape 35 is pulled in the direction from the side 10a to the side 10c (in the direction of the arrow in FIG. 3). As a result, the surface protective film 41 can be peeled off from the optical laminate 1a. In the optical laminate 1a, a notch portion 11b is provided at the end of the side 10a to which the peeling tape 35 is attached. As a result, it is considered that the surface protective film 41 is more likely to be triggered when the peeling tape 35 is triggered, as compared with the case where the notch portion 11b is not provided on the side 10a. Therefore, in the optical laminate 1a, the peeling tape 35 can be prevented from peeling from the surface protective film 41, and the peeling tape 35 can satisfactorily peel the surface protective film 41.
 図4は、本実施形態の光学積層体の他の一例を模式的に示す概略平面図である。図1に示す光学積層体1aでは、1つの切欠き部11bを有する場合について説明したが、例えば図4に示す光学積層体1bのように、2つの切欠き部を有していてもよく、3つ又は4つの切欠き部を有していてもよい。 FIG. 4 is a schematic plan view schematically showing another example of the optical laminate of the present embodiment. Although the case where the optical laminate 1a shown in FIG. 1 has one notch portion 11b has been described, it may have two notches, for example, as in the optical laminate 1b shown in FIG. It may have 3 or 4 notches.
 図4に示す光学積層体1bは、図1に示す光学積層体1aで説明した切欠き部11bに加えて、さらに切欠き部11dを有する。光学積層体1bの平面視形状は、図4に示すように、四角形15が有する2つの角部が切欠かれた形状を有する。切欠き部11bは、上記したとおりである。切欠き部11dは、四角形15が有する角部の頂点Pdaを構成する2つの辺である第1辺15a及び第4辺15dのそれぞれに設定された第1切欠き開始点P1d(第1切欠き開始点P1)及び第2切欠き開始点P2d(第2切欠き開始点P2)を通る切欠き線10edに沿って切欠かれた形状を有する。第1辺15a及び第4辺15dのそれぞれに設定された第1切欠き開始点P1d及び第2切欠き開始点P2dは、頂点Pdaからの距離Lba及び距離Lbdがそれぞれ0.1mm以上0.5mm以下となる範囲内に位置する。距離Lbaと距離Lbdとは互いに同じであってもよく、互いに異なっていてもよい。辺10aに剥離用テープ35(図3)を取付けて表面保護フィルム41の剥離を行う場合、距離Lbaが距離Lbdよりも大きいことが好ましい。距離Lba及び距離Lbdの好ましい範囲は、距離Laa及び距離Labについて説明した範囲と同じである。 The optical laminate 1b shown in FIG. 4 has a notch portion 11d in addition to the notch portion 11b described in the optical laminate 1a shown in FIG. As shown in FIG. 4, the plan view shape of the optical laminate 1b has a shape in which the two corners of the quadrangle 15 are cut out. The notch portion 11b is as described above. The notch portion 11d is a first notch start point P1d (first notch) set on each of the first side 15a and the fourth side 15d, which are two sides constituting the apex Pda of the corner portion of the quadrangle 15. It has a notched shape along a notch line 10ed passing through a start point P1) and a second notch start point P2d (second notch start point P2). The first notch start point P1d and the second notch start point P2d set on the first side 15a and the fourth side 15d have distances Lba and distance Lbd from the apex Pda of 0.1 mm or more and 0.5 mm, respectively. It is located within the following range. The distance Lba and the distance Lbd may be the same as each other or may be different from each other. When the peeling tape 35 (FIG. 3) is attached to the side 10a to peel off the surface protective film 41, it is preferable that the distance Lba is larger than the distance Lbd. The preferred range of the distance Lba and the distance Lbd is the same as the range described for the distance Laa and the distance Lab.
 第1切欠き開始点P1d及び第2切欠き開始点P2dを通る切欠き線10edの平面視形状は特に限定されない。切欠き線10edは、切欠き線10ebと同様に、直線又は円弧状の曲線であってもよい。切欠き線10edが円弧状の曲線である場合、切欠き線10edは、四角形15の角部Pdaに向かって凸であることが好ましい。切欠き線10edの長さの好ましい範囲は、切欠き線10ebで説明した範囲と同じとすることができる。 The plan-view shape of the notch line 10ed passing through the first notch start point P1d and the second notch start point P2d is not particularly limited. The notch line 10ed may be a straight line or an arcuate curve like the notch line 10eb. When the notch line 10ed is an arcuate curve, it is preferable that the notch line 10ed is convex toward the corner Pda of the quadrangle 15. The preferred range of the length of the notch line 10ed can be the same as the range described in the notch line 10eb.
 切欠き線10edの形状は、次のように設定することが好ましい。光学積層体1bの平面視形状において第1切欠き開始点P1d側から第2切欠き開始点P2d方向に向かって切欠き線10edを辿った場合に、第1切欠き開始点P1dが位置する第1辺15aからの最短距離は、連続的に大きくなるように、又は、当該最短距離が一定となる区間を含みながら次第に大きくなるように、切欠き線10edを設定することが好ましい。また、光学積層体1bの平面視形状において第1切欠き開始点P1d側から第2切欠き開始点P2d方向に向かって切欠き線10edを辿った場合に、第2切欠き開始点P2dが位置する第4辺15dからの最短距離は、連続的に小さくなるように、又は、当該最短距離が一定となる区間を含みながら次第に小さくなるように、切欠き線10edを設定することが好ましい。 The shape of the notch line 10ed is preferably set as follows. In the plan view shape of the optical laminate 1b, when the notch line 10ed is traced from the first notch start point P1d side toward the second notch start point P2d, the first notch start point P1d is located. It is preferable to set the notch line 10ed so that the shortest distance from one side 15a increases continuously or gradually increases while including a section in which the shortest distance is constant. Further, when the notch line 10ed is traced from the first notch start point P1d side toward the second notch start point P2d in the plan view shape of the optical laminate 1b, the second notch start point P2d is positioned. It is preferable to set the notch line 10ed so that the shortest distance from the fourth side 15d is continuously reduced, or is gradually reduced while including a section in which the shortest distance is constant.
 光学積層体1bの平面視形状に対して設定される四角形15は、上記で説明した光学積層体1aと同様に、光学積層体1bの平面視形状の辺を含むように設定された仮想の平面形状である。図4に示す四角形15が有する第1辺15a、第2辺15b、及び第4辺15dの一部がそれぞれ、光学積層体1bの平面視形状における辺10a、辺10b、及び辺10dを構成し、四角形15が有する第3辺15c全体が、光学積層体1bの平面視形状における辺10cを構成している。光学積層体1bの平面視形状において、辺10aは、四角形15の第1辺15aのうちの第1切欠き開始点P1bと第1切欠き開始点P1dとの間の線分であり、辺10bは、四角形15の第2辺15bのうちの第2切欠き開始点P2bから頂点Pabに向かう側とは反対側の部分であり、辺10dは、四角形15の第4辺15dのうちの第2切欠き開始点P2dから頂点Pdaに向かう側とは反対側の部分である。 The quadrangle 15 set for the plan view shape of the optical laminate 1b is a virtual plane set to include the side of the plan view shape of the optical stack 1b, similarly to the optical stack 1a described above. The shape. A part of the first side 15a, the second side 15b, and the fourth side 15d of the quadrangle 15 shown in FIG. 4 constitutes the side 10a, the side 10b, and the side 10d in the plan view shape of the optical laminate 1b, respectively. The entire third side 15c of the quadrangle 15 constitutes the side 10c in the plan view shape of the optical laminate 1b. In the plan view shape of the optical laminate 1b, the side 10a is a line segment between the first notch start point P1b and the first notch start point P1d of the first side 15a of the quadrangle 15, and the side 10b. Is a portion of the second side 15b of the quadrangle 15 opposite to the side from the second notch start point P2b toward the apex Pab, and the side 10d is the second of the fourth side 15d of the quadrangle 15. It is a portion opposite to the side from the notch start point P2d toward the apex Pda.
 四角形15は、光学積層体1bの平面視形状における辺10a及び辺10bを延長して形成される交点を頂点Pabとして含み、辺10d及び辺10aを延長して形成される交点を頂点Pdaとして含む。なお、光学積層体1bの平面視形状から四角形15を設定する際に光学積層体1bの平面視形状から延長する辺は、光学積層体1aの場合と同様に、四角形15が有する角部を切欠いて光学積層体1bを得たと仮定した場合に四角形15を切欠く面積が最小となるように設定する。また、光学積層体1bに対して設定される四角形の形状は、当該四角形が有する2つの角部を切欠くことにより光学積層体1bが得られるように設定する。 The quadrangle 15 includes the intersection formed by extending the side 10a and the side 10b in the plan view shape of the optical laminate 1b as the apex Pab, and includes the intersection formed by extending the side 10d and the side 10a as the apex Pda. .. When the quadrangle 15 is set from the plan view shape of the optical laminate 1b, the side extending from the plan view shape of the optical laminate 1b is cut out from the corner portion of the quadrangle 15 as in the case of the optical laminate 1a. Therefore, assuming that the optical laminate 1b is obtained, the area of the quadrangle 15 notched is set to be the minimum. Further, the shape of the quadrangle set for the optical laminate 1b is set so that the optical laminate 1b can be obtained by notching the two corners of the quadrangle.
 第1切欠き開始点P1dと第2切欠き開始点P2dとを結ぶ切欠き線が直線であると仮定して四角形15から切欠かれた部分の平面視における面積をS2とした場合に、光学積層体1bが有する実際の切欠き線10edによって四角形15から切欠かれた部分の平面視における面積Sbは、面積S2の0.6倍以上であることが好ましく、0.7倍以上であってもよく、0.9倍以上であってもよく、また、1.6倍以下であることが好ましく、1.4倍以下であってもよく、1.2倍以下であってもよい。 Assuming that the notch line connecting the first notch start point P1d and the second notch start point P2d is a straight line, the area of the notched portion from the quadrangle 15 in the plan view is S2, and the optical stacking is performed. The area Sb of the portion cut out from the quadrangle 15 by the actual notch line 10ed of the body 1b in a plan view is preferably 0.6 times or more, and may be 0.7 times or more of the area S2. , 0.9 times or more, preferably 1.6 times or less, 1.4 times or less, or 1.2 times or less.
 光学積層体1bでは、四角形15が有する隣合う角部に切欠き部11b及び切欠き部11dが形成されている。そのため、上記した手順で剥離用テープ35を用いて表面保護フィルム41を引き起こすために必要な力が、光学積層体1aにおいて表面保護フィルム41を剥離する場合よりも小さく、表面保護フィルム41が引き起こされやすくなっていると考えられる。これにより、光学積層体1bでは、剥離用テープ35によって表面保護フィルム41をより一層良好に剥離することができる。 In the optical laminate 1b, a notch portion 11b and a notch portion 11d are formed at adjacent corners of the quadrangle 15. Therefore, the force required to cause the surface protective film 41 by using the peeling tape 35 in the above procedure is smaller than that when the surface protective film 41 is peeled off in the optical laminate 1a, and the surface protective film 41 is caused. It is thought that it is easier. As a result, in the optical laminate 1b, the surface protective film 41 can be peeled off more satisfactorily by the peeling tape 35.
 上記では、1つ又は2つの切欠き部を有する光学積層体を例に挙げて説明したが、3つ又は4つの切欠き部を有する光学積層体の平面視形状に対しても、上記と同様に四角形を設定することができる。なお、光学積層体が2以上の切欠き部を有する場合、四角形の形状は、当該四角形が有する角部を光学積層体が有する切欠き部の個数に合わせて切欠いたと仮定した場合に、当該個数の切欠き部を有する光学積層体が得られるように設定する。 In the above description, an optical laminate having one or two notches has been described as an example, but the same applies to the plan view shape of the optical laminate having three or four notches. Can be set to a rectangle. When the optical laminate has two or more notches, the shape of the quadrangle is the case where it is assumed that the corners of the quadrangle are notched according to the number of notches of the optical laminate. It is set so that an optical laminate having a number of notches can be obtained.
 光学積層体が2以上の切欠き部を有する場合、切欠き部の形状は互いに同じであってもよく、互いに異なっていてもよい。光学積層体が2以上の切欠き部を有する場合、少なくとも2つの切欠き部は、図4に示す光学積層体1bの切欠き部11b,11dのように、光学積層体の平面視形状に対して設定される四角形の隣合う2つの角部を切欠くように設けられていることが好ましい。 When the optical laminate has two or more notches, the shapes of the notches may be the same or different from each other. When the optical laminate has two or more notches, at least the two notches are relative to the plan view shape of the optical laminate, such as the notches 11b and 11d of the optical laminate 1b shown in FIG. It is preferable that the quadrangle is provided so as to cut out two adjacent corners of the quadrangle.
 光学積層体1a,1b(以下、両者を含めて「光学積層体1」という場合がある。)は、上記で説明した切欠き部を有していれば、当該切欠き部とは異なる形状に切欠かれた切欠き形状を有していてもよい。例えば、光学積層体1は、上記で説明した切欠き部以外に、四角形15が有する角部を、上記した距離Laa,Lab,Lba,Lbdで説明した長さの範囲外にある2点を通る線によって切欠いた切欠き形状を有していてもよい。 The optical laminates 1a and 1b (hereinafter, may be referred to as "optical laminate 1" including both) have a shape different from the notch portion as long as it has the notch portion described above. It may have a notched notch shape. For example, the optical laminate 1 passes through the corners of the quadrangle 15 in addition to the notches described above at two points outside the range of lengths described by the distances Laa, Lab, Lba, and Lbd described above. It may have a notch shape notched by a line.
 光学積層体1の切欠き部11における端面(積層方向における端面)は、回転工具による切削加工面であることが好ましい。上記端面が回転工具による切削加工面である場合、光学積層体1に含まれる表面保護フィルム41や偏光性積層体20の端面が、回転工具の回転方向に応じて僅かに変形した状態になる。この変形した状態とは、表面保護フィルム41や偏光性積層体20の端部が部分的に、光学積層体1の平面方向に平行ではなく積層方向に僅かに反りあがったり、垂れ下がったりしていることをいう。光学積層体1aの端面に上記の変形が生じることにより、より一層良好に表面保護フィルム41を剥離することができる。 The end face (end face in the stacking direction) of the notch 11 of the optical laminate 1 is preferably a machined surface by a rotary tool. When the end face is a surface cut by a rotary tool, the end faces of the surface protective film 41 and the polarizing laminate 20 included in the optical laminate 1 are slightly deformed according to the rotation direction of the rotary tool. In this deformed state, the edges of the surface protective film 41 and the polarizing laminate 20 are partially warped or hung down in the lamination direction rather than parallel to the plane direction of the optical laminate 1. Say that. By causing the above deformation on the end face of the optical laminate 1a, the surface protective film 41 can be peeled off even more satisfactorily.
 光学積層体1の平面視形状に対して設定される四角形15は、方形であることが好ましい。本明細書において方形とは、4つの頂点が直角(内角が90°)である四角形をいい、具体的には正方形又は長方形をいう。四角形15は長方形であることがより好ましい。 The quadrangle 15 set for the plan view shape of the optical laminate 1 is preferably a square. In the present specification, the square means a quadrangle in which four vertices are right angles (internal angle is 90 °), and specifically, a square or a rectangle. It is more preferable that the quadrangle 15 is a rectangle.
 四角形15が有する4つの辺の長さは、それぞれ独立して、30mm以上であることが好ましく、40mm以上であることが好ましく、50mm以上であってもよく、140mm以上であってもよく、150mm以上であってもよい。また、200mm以下であることが好ましく、190mm以下であってもよく、180mm以下であってもよく、80mm以下であってもよく、70mm以下であってもよい。 The lengths of the four sides of the quadrangle 15 are each independently preferably 30 mm or more, preferably 40 mm or more, 50 mm or more, 140 mm or more, and 150 mm. It may be the above. Further, it is preferably 200 mm or less, preferably 190 mm or less, 180 mm or less, 80 mm or less, or 70 mm or less.
 表面保護フィルム41は、偏光性積層体20に対して剥離可能であるフィルムであり、偏光性積層体20に直接接するように設けられることが好ましい。表面保護フィルム41は、プロテクトフィルムとも呼ばれ、光学積層体1aの製造工程や、光学積層体1aを適用する表示装置の製造工程等において、偏光性積層体20の表面を被覆保護し、当該表面に汚れや傷が生じることを抑制することができる。表面保護フィルム41は、例えば、粘着剤層31を介して光学積層体1を表示装置の画像表示素子等の被着体に貼合した後に、剥離して除去することができる。 The surface protective film 41 is a film that can be peeled off from the polarizing laminate 20, and is preferably provided so as to be in direct contact with the polarizing laminate 20. The surface protective film 41 is also called a protective film, and covers and protects the surface of the polarizing laminate 20 in a manufacturing process of the optical laminate 1a, a manufacturing process of a display device to which the optical laminate 1a is applied, and the like. It is possible to prevent the film from becoming dirty or scratched. The surface protective film 41 can be removed by peeling off the optical laminate 1 after the optical laminate 1 is attached to an adherend such as an image display element of a display device via an adhesive layer 31, for example.
 偏光性積層体20は、直線偏光層の片面又は両面に保護層を有する偏光板21を含むものである。偏光性積層体20の厚みは120μm以下であり、110μm以下であってもよく、100μm以下であってもよく、80μm以下であってもよく、40μm以下であってもよい。偏光性積層体20の厚みは、通常5μm以上であり、10μm以上であってもよく、20μm以上であってもよく、40μm以上であってもよく、50μm以上であってもよい。光学積層体1の製造工程において研磨等の端面加工を行った場合に、粘着剤層31を構成する粘着剤が食み出して光学積層体1の端面を覆い、この粘着剤が表面保護フィルム41の端面にまで到達することがある。この場合、光学積層体1の端面を覆う粘着剤によって表面保護フィルム41が粘着剤層31に固定された状態となるため、光学積層体1から表面保護フィルム41が剥離されにくくなると考えられる。偏光性積層体20の厚みが小さくなるほど、光学積層体1の積層方向における表面保護フィルム41と粘着剤層31との距離が小さくなるため、粘着剤による光学積層体1の端面の被覆により、表面保護フィルム41を剥離しにくい状態になりやすいと考えられる。光学積層体1は、上記したように、切欠き部11b,11dを有している。そのため、偏光性積層体20の厚みが小さい場合であっても、表面保護フィルム41を良好に剥離することができる。 The polarizing laminate 20 includes a polarizing plate 21 having a protective layer on one side or both sides of the linearly polarized light layer. The thickness of the polarizing laminate 20 is 120 μm or less, may be 110 μm or less, may be 100 μm or less, may be 80 μm or less, or may be 40 μm or less. The thickness of the polarizing laminate 20 is usually 5 μm or more, may be 10 μm or more, may be 20 μm or more, may be 40 μm or more, or may be 50 μm or more. When end face processing such as polishing is performed in the manufacturing process of the optical laminate 1, the adhesive constituting the pressure-sensitive adhesive layer 31 squeezes out and covers the end face of the optical laminate 1, and this pressure-sensitive adhesive covers the end face of the optical laminate 1. May reach the end face of. In this case, since the surface protective film 41 is fixed to the adhesive layer 31 by the adhesive covering the end surface of the optical laminate 1, it is considered that the surface protective film 41 is less likely to be peeled off from the optical laminate 1. As the thickness of the polarizing laminate 20 becomes smaller, the distance between the surface protective film 41 and the pressure-sensitive adhesive layer 31 in the stacking direction of the optical laminate 1 becomes smaller. It is considered that the protective film 41 is likely to be difficult to peel off. As described above, the optical laminate 1 has notches 11b and 11d. Therefore, even when the thickness of the polarizing laminate 20 is small, the surface protective film 41 can be satisfactorily peeled off.
 偏光性積層体20は、図2に示すように偏光板21そのものであってもよく、偏光板21以外の光学機能層を有していてもよい。偏光板21以外の光学機能層としては、例えば、位相差層;反射フィルム;半透過型反射フィルム;輝度向上フィルム;光学補償フィルム;防眩機能付きフィルム等が挙げられる。 As shown in FIG. 2, the polarizing laminate 20 may be the polarizing plate 21 itself, or may have an optical functional layer other than the polarizing plate 21. Examples of the optical functional layer other than the polarizing plate 21 include a retardation layer; a reflective film; a transflective reflective film; a brightness improving film; an optical compensation film; and a film with an antiglare function.
 図5は、本実施形態の光学積層体のさらに他の一例を模式的に示す概略断面図である。
図5に示す光学積層体は、偏光性積層体20が偏光板21と位相差層22との積層体である場合の例を示している。偏光板21と位相差層22とは、粘着剤層又は接着剤硬化層等の貼合層を介して積層することができる。偏光性積層体20が位相差層22を有する場合、位相差層22は、偏光板21の片面又は両面に設けることができる。偏光性積層体20が2層以上の位相差層22を含む場合、偏光板21の両面に位相差層22が1層以上ずつ設けられていてもよく、偏光板21の片面にのみ2層以上の位相差層22が設けられていてもよい。位相差層としては、特に限定されず、例えば1/2波長位相差層、1/4波長位相差層、逆波長分散性の1/4波長位相差層、ポジティブCプレート等が挙げられる。
FIG. 5 is a schematic cross-sectional view schematically showing still another example of the optical laminate of the present embodiment.
The optical laminate shown in FIG. 5 shows an example in which the polarizing laminate 20 is a laminate of a polarizing plate 21 and a retardation layer 22. The polarizing plate 21 and the retardation layer 22 can be laminated via a bonding layer such as an adhesive layer or an adhesive curing layer. When the polarizing laminate 20 has the retardation layer 22, the retardation layer 22 can be provided on one side or both sides of the polarizing plate 21. When the polarizing laminate 20 includes two or more retardation layers 22, one or more retardation layers 22 may be provided on both sides of the polarizing plate 21, and two or more layers may be provided only on one side of the polarizing plate 21. The retardation layer 22 of the above may be provided. The retardation layer is not particularly limited, and examples thereof include a 1/2 wavelength retardation layer, a 1/4 wavelength retardation layer, a 1/4 wavelength retardation layer having opposite wavelength dispersion, and a positive C plate.
 位相差層22が面内に遅相軸を有する場合、遅相軸は、偏光板の吸収軸に対して平行(0°)であってもよいし、0°超の角度を有していてもよい。例えば、位相差層22の遅相軸は、偏光板の吸収軸に対して、15°、30°、45°、60°、75°、又は90°の角度を有していてもよい。 When the retardation layer 22 has an in-plane slow-phase axis, the slow-phase axis may be parallel (0 °) to the absorption axis of the polarizing plate, or may have an angle of more than 0 °. May be good. For example, the slow axis of the retardation layer 22 may have an angle of 15 °, 30 °, 45 °, 60 °, 75 °, or 90 ° with respect to the absorption axis of the polarizing plate.
 偏光性積層体20は、円偏光板又は楕円偏光板であってもよい。この場合、偏光性積層体20は、偏光板21と位相差層22とを含むことができる。偏光性積層体20が円偏光板である場合、偏光性積層体20は、表面保護フィルム41側から、[i]偏光板21、1/2波長位相差層、1/4波長位相差層をこの順に有する、[ii]偏光板21、逆波長分散性の1/4波長位相差層、ポジティブCプレートをこの順に有する、又は、[iii]偏光板21、ポジティブCプレート、逆波長分散性の1/4波長位相差層をこの順に有するものであってもよい。上記[i]~[iii]の各層の間には貼合層を設けることができる。 The polarizing laminate 20 may be a circular polarizing plate or an elliptical polarizing plate. In this case, the polarizing laminate 20 can include the polarizing plate 21 and the retardation layer 22. When the polarizing laminate 20 is a circular polarizing plate, the polarizing laminate 20 has the [i] polarizing plate 21, the 1/2 wavelength retardation layer, and the 1/4 wavelength retardation layer from the surface protective film 41 side. It has [iii] polarizing plate 21, positive C plate, and reverse wavelength dispersibility in this order, or has [iii] polarizing plate 21, positive C plate, and reverse wavelength dispersibility in this order. It may have a 1/4 wavelength retardation layer in this order. A laminating layer can be provided between the layers [i] to [iii].
 粘着剤層31は、光学積層体1を表示装置の画像表示素子等の被着体に貼合するために用いることができる。粘着剤層31は、偏光性積層体20に直接接するように設けられることが好ましい。偏光性積層体20において、偏光板と光学機能層との貼合及び/又は位相差層どうしの貼合等に粘着剤層が用いられている場合、粘着剤層31は、光学積層体1の積層方向において表面保護フィルム41から最も離れた位置にある粘着剤層となる。 The pressure-sensitive adhesive layer 31 can be used to attach the optical laminate 1 to an adherend such as an image display element of a display device. The pressure-sensitive adhesive layer 31 is preferably provided so as to be in direct contact with the polarizing laminate 20. In the polarizing laminate 20, when the pressure-sensitive adhesive layer is used for bonding the polarizing plate and the optical functional layer and / or bonding the retardation layers to each other, the pressure-sensitive adhesive layer 31 is the optical laminate 1. The pressure-sensitive adhesive layer is located farthest from the surface protective film 41 in the lamination direction.
 図6は、本実施形態の光学積層体の他の一例を模式的に示す概略平面図である。図6に示すように、光学積層体1aは、さらに、粘着剤層31の偏光性積層体20とは反対側に、粘着剤層31に対して剥離可能な剥離フィルム32を有していてもよい。剥離フィルム32は、通常、粘着剤層31に直接接するように設けられる。剥離フィルム32は、セパレートフィルムとも呼ばれ、粘着剤層31に異物等が付着しないように、粘着剤層31の表面を被覆保護するためのものである。剥離フィルム32は、粘着剤層31によって光学積層体1を、表示装置の画像表示素子等の被着体に貼合する際に剥離して除去することができる。 FIG. 6 is a schematic plan view schematically showing another example of the optical laminate of the present embodiment. As shown in FIG. 6, the optical laminate 1a may further have a release film 32 that can be peeled off from the pressure-sensitive adhesive layer 31 on the opposite side of the pressure-sensitive adhesive layer 31 from the polarizing laminate 20. good. The release film 32 is usually provided so as to be in direct contact with the pressure-sensitive adhesive layer 31. The release film 32 is also called a separate film, and is for covering and protecting the surface of the pressure-sensitive adhesive layer 31 so that foreign matter and the like do not adhere to the pressure-sensitive adhesive layer 31. The release film 32 can be peeled off and removed by the pressure-sensitive adhesive layer 31 when the optical laminate 1 is attached to an adherend such as an image display element of a display device.
 光学積層体1は、スマートフォンやスマートウォッチ等の表示装置に用いることができる。表示装置としては、液晶表示装置又は有機EL(エレクトロルミネッセンス)表示装置等が挙げられる。光学積層体1は粘着剤層31によって表示装置の画像表示素子等の被着体に貼合された後、表面保護フィルム41が剥離される。これにより、光学積層体1に含まれる偏光性積層体20を表示装置に組み入れることができる。 The optical laminate 1 can be used for a display device such as a smartphone or a smart watch. Examples of the display device include a liquid crystal display device, an organic EL (electroluminescence) display device, and the like. The optical laminate 1 is attached to an adherend such as an image display element of a display device by an adhesive layer 31, and then the surface protective film 41 is peeled off. As a result, the polarized laminate 20 included in the optical laminate 1 can be incorporated into the display device.
 (光学積層体の製造方法)
 光学積層体1は、例えば、表面保護フィルム、偏光性積層体、粘着剤層、及び剥離フィルムをこの順に有する積層体を、所定の形状及び寸法に裁断した原料積層体に対し、切欠き部を形成することによって製造することができる。原料積層体に切欠き部を形成する方法としては、例えば、原料積層体の端面(積層方向に平行な端面)に対して研磨を行う方法、及び原料積層体をトムソン刃やレーザーカッター等のうちの1種又は2種以上を組み合わせて用いて裁断する方法が挙げられる。このうち、光学積層体1の積層方向における端面に発生するケバ等を抑制し、光学積層体1の良好な寸法精度を得るために、研磨によって切欠き部を形成することが好ましい。上記した研磨や裁断は、1枚の原料積層体に対して行ってもよく、2枚以上の原料積層体を積層して一斉に行ってもよい。
(Manufacturing method of optical laminate)
The optical laminate 1 has, for example, a notch in a raw material laminate obtained by cutting a laminate having a surface protective film, a polarizing laminate, an adhesive layer, and a release film in this order into a predetermined shape and size. It can be manufactured by forming. As a method of forming a notch in the raw material laminate, for example, a method of polishing the end face (end face parallel to the stacking direction) of the raw material laminate, or a method of polishing the raw material laminate with a Thomson blade, a laser cutter, or the like. There is a method of cutting by using one kind or a combination of two or more kinds of. Of these, it is preferable to form a notch by polishing in order to suppress fluff and the like generated on the end face of the optical laminate 1 in the lamination direction and to obtain good dimensional accuracy of the optical laminate 1. The above-mentioned polishing and cutting may be performed on one raw material laminate, or two or more raw material laminates may be laminated and performed all at once.
 原料積層体の平面視形状は、光学積層体1の形状に応じて選定すればよく特に限定されない。原料積層体の平面視形状は、研磨によって切欠き部を形成する場合は、上記で説明した光学積層体1の平面視形状に対して設定される四角形15(図1,図4)であることが好ましく、方形であることがより好ましく、長方形であることがさらに好ましい。原料積層体の平面視形状が上記で説明した四角形15であることにより、原料積層体を切欠く面積を小さくすることができる。 The plan-view shape of the raw material laminate may be selected according to the shape of the optical laminate 1 and is not particularly limited. The plan view shape of the raw material laminate shall be a quadrangle 15 (FIGS. 1 and 4) set for the plan view shape of the optical laminate 1 described above when the notch is formed by polishing. Is preferable, a square shape is more preferable, and a rectangular shape is further preferable. Since the plan view shape of the raw material laminate is the quadrangle 15 described above, the area of the raw material laminate notched can be reduced.
 図1及び図4で説明した四角形15の平面視形状を有する原料積層体から光学積層体1を製造する場合、四角形15の角部を、頂点Pab及び/又は頂点Pdaを含む直角三角形(例えば、直角二等辺三角形)の形状に切欠くように研磨等を行うことによって、切欠き部11b,11dを形成すればよい。 When the optical laminate 1 is manufactured from the raw material laminate having the plan-view shape of the quadrangle 15 described with reference to FIGS. 1 and 4, the corner portion of the quadrangle 15 is a right triangle including the apex Pab and / or the apex Pda (for example, The notch portions 11b and 11d may be formed by polishing or the like so as to form a notch in the shape of a right-angled isosceles triangle).
 図8は、本実施形態の光学積層体の製造方法の一例を模式的に示す概略斜視図である。
原料積層体から研磨によって光学積層体1を製造する製造方法は、例えば下記の工程:
[a]原料積層体を複数枚積み重ねて、積層物Wを得る第1工程、及び
[b]積層物Wの端面に平行な方向であって積層方向に直交する方向に沿って、回転軸Rを中心に回転し切削刃を有する回転工具60を、積層物Wに対して相対移動させることにより積層物Wの端面を切削加工する第2工程、
を含むことができる。
FIG. 8 is a schematic perspective view schematically showing an example of the method for manufacturing the optical laminate of the present embodiment.
The manufacturing method for manufacturing the optical laminate 1 by polishing from the raw material laminate is, for example, the following step:
[A] The first step of stacking a plurality of raw material laminates to obtain a laminate W, and [b] the rotation axis R along a direction parallel to the end face of the laminate W and orthogonal to the lamination direction. The second step of cutting the end face of the laminate W by moving the rotary tool 60, which rotates around the center and has a cutting blade, relative to the laminate W.
Can be included.
 光学積層体1の製造方法では、例えば、第1工程(上記[a])を行った後、まず平面視形状が四角形の原料積層体の4辺に対して第2工程(上記[b])による研磨を実施し、その後、四角形の角部に対して第2工程(上記[b])による研磨を実施して切欠き部を形成することができる。 In the method for manufacturing the optical laminate 1, for example, after performing the first step (above [a]), first, the second step (above [b]) is performed on the four sides of the raw material laminate having a quadrangular plan view shape. After that, the corners of the quadrangle can be polished by the second step ([b] above) to form a notch.
 第1工程は、所定の形状に裁断された原料積層体を複数枚積み重ねて積層物Wを得る工程である。積層物Wに含まれる原料積層体の枚数は特に限定されないが、積層物Wは、例えば100~500枚の原料積層体を積層したものであってよい。原料積層体は、例えば、原料積層体の層構造を有する長尺状の積層体から裁断して得られたものであってよい。 The first step is a step of stacking a plurality of raw material laminates cut into a predetermined shape to obtain a laminate W. The number of raw material laminates contained in the laminate W is not particularly limited, but the laminate W may be, for example, a laminate of 100 to 500 raw material laminates. The raw material laminate may be, for example, obtained by cutting from a long laminate having a layered structure of the raw material laminate.
 第2工程は、第1工程で得られた積層物Wの端面を回転工具60により切削加工して、光学積層体1の切欠き部における端面に切削加工面を形成し、光学積層体1を形成する工程である。 In the second step, the end face of the laminate W obtained in the first step is cut by the rotary tool 60 to form a cut surface on the end face in the notch portion of the optical laminate 1, and the optical laminate 1 is formed. This is the process of forming.
 第2工程で行う切削加工は、例えば図8に示すように、支持部50及び2つの回転工具60を備えた装置によって行うことができる。支持部50は、積層物Wを上下から押圧して、切削加工中に積層物W自体が移動しないように及び積み重ねられた原料積層体がずれないように固定等するためのものである。回転工具60は、積層物Wの端面を切削加工するためのものであり、回転軸Rを中心に回転することができる。 The cutting process performed in the second step can be performed by a device provided with a support portion 50 and two rotary tools 60, for example, as shown in FIG. The support portion 50 is for pressing the laminate W from above and below to fix the laminate W itself so that it does not move during the cutting process and so that the stacked raw material laminates do not shift. The rotary tool 60 is for cutting the end face of the laminate W, and can rotate about the rotation axis R.
 支持部50は、平板状の基板(積層物Wの移動手段)51;基板51上に配置される門形のフレーム52;基板51上に配置される、中心軸を中心に回転可能な回転テーブル53;フレーム52における回転テーブル53と対向する位置に設けられ、上下動可能なシリンダ54を備えるものであることができる。積層物Wは、回転テーブル53とシリンダ54とによってジグ55を介して挟まれ、固定される。 The support portion 50 is a flat plate-shaped substrate (means for moving the laminate W) 51; a gate-shaped frame 52 arranged on the substrate 51; a rotary table arranged on the substrate 51 and rotatable about a central axis. 53; A cylinder 54 provided at a position facing the rotary table 53 on the frame 52 and capable of moving up and down can be provided. The laminate W is sandwiched and fixed by the rotary table 53 and the cylinder 54 via the jig 55.
 回転工具60は、回転軸Rを中心に回転する円盤状の回転体を有する。回転体の回転方向は図8中の矢印で示す方向である。回転体の盤面(積層物Wの端面に対向する面であって、当該端面に平行な面)には、回転体の回転方向に間隔をおいて複数(例えば、2~10個、好ましくは3~7個)の切削刃が配置されている。回転軸Rは、回転体の盤面の中心を通るように設定されていることが好ましい。切削刃は、回転体の盤面から積層物Wの端面側に突出するように設けられており、切削刃が積層物Wの端面に当接した状態で回転体が回転軸Rを中心に回転することにより、積層物Wの端面を切削することができる。 The rotary tool 60 has a disk-shaped rotating body that rotates around a rotary shaft R. The direction of rotation of the rotating body is the direction indicated by the arrow in FIG. On the board surface of the rotating body (the surface facing the end surface of the laminated body W and parallel to the end surface), a plurality (for example, 2 to 10, preferably 3) are spaced apart in the rotation direction of the rotating body. ~ 7) cutting blades are arranged. The rotation axis R is preferably set so as to pass through the center of the board surface of the rotating body. The cutting blade is provided so as to project from the board surface of the rotating body toward the end surface side of the laminate W, and the rotating body rotates about the rotation axis R in a state where the cutting blade is in contact with the end surface of the laminate W. As a result, the end face of the laminate W can be cut.
 基板51の両側には、2つの回転工具60が互いに向かい合って設けられる。回転工具60は、積層物Wの大きさに合わせて回転軸R方向に移動可能であり、基板51は、2つの回転工具60同士の間を通過するように移動可能である。切削加工にあたっては、積層物Wを支持部50に固定し、回転工具60の回転軸R方向の位置を適切に調整したうえで、回転工具60をそれらの回転軸Rを中心に回転させつつ、積層物Wが向かい合う回転工具60同士の間を通過するように基板51を移動させる。これにより、積層物Wの端面に平行な方向であって積層方向に直交する方向に沿って、積層物Wに対して回転工具60を相対移動させつつ、回転工具60が有する切削刃を積層物Wの向かい合う露出した端面に当接させてこれらの端面を削り取る切削加工を行うことができる。 Two rotary tools 60 are provided on both sides of the substrate 51 so as to face each other. The rotary tool 60 can be moved in the rotation axis R direction according to the size of the laminate W, and the substrate 51 can be moved so as to pass between the two rotary tools 60. In the cutting process, the laminate W is fixed to the support portion 50, the position of the rotary tool 60 in the rotation axis R direction is appropriately adjusted, and then the rotary tool 60 is rotated around the rotary axis R while rotating the rotary tool 60. The substrate 51 is moved so that the laminate W passes between the rotating tools 60 facing each other. As a result, the cutting blade of the rotary tool 60 is moved relative to the laminate W along the direction parallel to the end face of the laminate W and orthogonal to the stacking direction. It is possible to perform a cutting process in which these end faces are scraped off by abutting against the exposed end faces of W facing each other.
 積層物Wと回転工具60との間の相対移動速度は、例えば200mm/分以上5000mm/分以下の範囲(より典型的には、500mm/分以上3000mm/分以下の範囲)から選択することができる。回転工具60の回転速度は、例えば2000rpm以上8000rpm以下の範囲(より典型的には、2500rpm以上6000rpm以下の範囲)から選択することができる。 The relative moving speed between the laminate W and the rotary tool 60 can be selected from, for example, a range of 200 mm / min or more and 5000 mm / min or less (more typically, a range of 500 mm / min or more and 3000 mm / min or less). can. The rotation speed of the rotary tool 60 can be selected from, for example, a range of 2000 rpm or more and 8000 rpm or less (more typically, a range of 2500 rpm or more and 6000 rpm or less).
 (表面保護フィルムの剥離方法)
 図7は、本実施形態の光学積層体から表面保護フィルムを剥離する工程の一例を模式的に示す概略断面図である。光学積層体1から表面保護フィルム41を剥離する剥離方法は、光学積層体1を粘着剤層31によって画像表示素子45(被着体)に貼合する工程と(図7)、光学積層体1の表面保護フィルム41側の表面に剥離用テープ35を取付ける工程と(図3、図7の(a))、剥離用テープ35を引き起こすことにより、画像表示素子45に貼合された光学積層体1から表面保護フィルム41を剥離する工程と(図7の(b)及び(c))、を含む。
(Peeling method of surface protective film)
FIG. 7 is a schematic cross-sectional view schematically showing an example of a step of peeling the surface protective film from the optical laminate of the present embodiment. The peeling method for peeling the surface protective film 41 from the optical laminate 1 includes a step of attaching the optical laminate 1 to the image display element 45 (adhesive body) by the adhesive layer 31 (FIG. 7), and the optical laminate 1 The optical laminate attached to the image display element 45 by the step of attaching the peeling tape 35 to the surface of the surface protective film 41 side ((a) of FIGS. 3 and 7) and by inducing the peeling tape 35. The step of peeling the surface protective film 41 from 1 ((b) and (c) of FIG. 7) is included.
 剥離用テープ35を取付ける工程では、光学積層体1の平面視形状において端部に切欠き部11b又は切欠き部11dが設けられた1辺を跨ぐように、剥離用テープ35を取付ける。図3では、辺10aを跨ぐように剥離用テープ35を取付ける例を示しているが、端部に切欠き部11b又は11dを有する辺(例えば、図1及び図4に示す辺10b、図4に示す辺10d)であってもよい。図4に示すように、辺10aの両端部に切欠き部11b及び切欠き部11dが設けられている場合、剥離用テープ35の引き起こしにより表面保護フィルム41をより一層良好に剥離するために、剥離用テープ35は辺10aを跨ぐように取付けられることが好ましい。剥離用テープ35は、通常、表面保護フィルム41の表面に直接取付けられる。 In the step of attaching the peeling tape 35, the peeling tape 35 is attached so as to straddle one side provided with the notch portion 11b or the notch portion 11d at the end portion in the plan view shape of the optical laminate 1. FIG. 3 shows an example in which the peeling tape 35 is attached so as to straddle the side 10a, but the side having the notch portion 11b or 11d at the end (for example, the side 10b shown in FIGS. 1 and 4 and FIG. 4). It may be the side 10d) shown in. As shown in FIG. 4, when the notch portions 11b and the notch portions 11d are provided at both ends of the side 10a, the surface protective film 41 can be peeled off more satisfactorily by causing the peeling tape 35. The peeling tape 35 is preferably attached so as to straddle the side 10a. The peeling tape 35 is usually attached directly to the surface of the surface protective film 41.
 画像表示素子45に貼合する工程は、光学積層体1が剥離フィルム32を有する場合(図6)、光学積層体1から剥離フィルム32を剥離した後に行う。画像表示素子45に貼合する工程は、剥離用テープ35を取付ける工程よりも前に行ってもよく、後に行ってもよい。 When the optical laminate 1 has the release film 32 (FIG. 6), the step of bonding to the image display element 45 is performed after the release film 32 is peeled from the optical laminate 1. The step of bonding to the image display element 45 may be performed before or after the step of attaching the peeling tape 35.
 表面保護フィルム41を剥離する工程では、剥離用テープ35のうち、表面保護フィルム41側の表面に取付けられた端部である取付け端部とは反対側の端部(以下、「把持側端部」という場合がある。)を把持して、画像表示素子45側とは反対側(図7の(a)中の右上側の方向、図7の(a)中の矢印方向)に剥離用テープ35を引き起こす。剥離用テープ35の把持側端部を取付け端部側に折返し(図7の(b)中の矢印方向)、この折返し方向(図7の(c)中の矢印方向)に向かうように引っ張ることにより、光学積層体1から表面保護フィルム41を剥離し、偏光性積層体20表面を露出させることができる。 In the step of peeling the surface protective film 41, the end portion of the peeling tape 35 opposite to the mounting end portion, which is the end portion attached to the surface on the surface protective film 41 side (hereinafter, "grip side end portion"). The peeling tape is held on the side opposite to the image display element 45 side (the direction on the upper right side in (a) of FIG. 7 and the direction of the arrow in (a) of FIG. 7). Causes 35. The gripping side end of the peeling tape 35 is folded back toward the mounting end side (in the direction of the arrow in (b) of FIG. 7), and pulled in the direction of this folding back (in the direction of the arrow in (c) of FIG. 7). As a result, the surface protective film 41 can be peeled off from the optical laminate 1 to expose the surface of the polarizing laminate 20.
 表面保護フィルム41の剥離は、人手によって行ってもよいが、剥離装置を用いて自動化することができる。剥離装置を用いる場合、剥離用テープ35の把持側端部を剥離装置のチャックに把持し、チャックと光学積層体1とを相対移動させて剥離用テープ35を引き起こすことにより、表面保護フィルム41を剥離することができる。 The surface protective film 41 may be peeled off manually, but it can be automated by using a peeling device. When a peeling device is used, the surface protective film 41 is formed by gripping the gripping side end of the peeling tape 35 with the chuck of the peeling device and causing the peeling tape 35 by relatively moving the chuck and the optical laminate 1. Can be peeled off.
 上記のように、光学積層体1の平面視形状において端部に切欠き部11b及び/又は切欠き部11dが設けられた辺に、剥離用テープ35を取付けることにより、剥離用テープ35を用いて表面保護フィルム41を引き起こすために必要な力を小さくすることができる。そのため、本実施形態の剥離方法によれば、切欠き部を有していない光学積層体から表面保護フィルムを剥離する場合に比較して、表面保護フィルムを良好に剥離することができる。特に、図4に示す光学積層体1bのように、辺10bの両端部に切欠き部11b及び切欠き部11dが設けられている場合、辺10bに剥離用テープ35を取付けることにより、より一層良好に表面保護フィルム41を剥離することができる。 As described above, the peeling tape 35 is used by attaching the peeling tape 35 to the side where the cutout portion 11b and / or the cutout portion 11d is provided at the end portion in the plan view shape of the optical laminate 1. The force required to raise the surface protective film 41 can be reduced. Therefore, according to the peeling method of the present embodiment, the surface protective film can be peeled better than the case where the surface protective film is peeled from the optical laminate having no notch. In particular, when the notch portions 11b and the notch portions 11d are provided at both ends of the side 10b as in the optical laminate 1b shown in FIG. 4, the peeling tape 35 can be attached to the side 10b to further increase the thickness. The surface protective film 41 can be satisfactorily peeled off.
 以下、本実施形態の光学積層体及び表面保護フィルムの剥離方法で用いた各部材の詳細について説明する。 Hereinafter, details of each member used in the method for peeling the optical laminate and the surface protective film of the present embodiment will be described.
 (表面保護フィルム)
 表面保護フィルムは、偏光性積層体の表面に設けられる。偏光性積層体の最表面が偏光板である場合、表面保護フィルムは偏光板に設けられることが好ましい。表面保護フィルムは、表面保護フィルム用樹脂フィルムに粘着剤層が形成されたものであってもよいし、自己粘着性フィルム単独で形成されていてもよい。表面保護フィルムの厚みは、例えば30~200μmであることができ、好ましくは30~150μmであり、より好ましくは30~120μmである。
(Surface protection film)
The surface protective film is provided on the surface of the polarizing laminate. When the outermost surface of the polarizing laminate is a polarizing plate, it is preferable that the surface protective film is provided on the polarizing plate. The surface protective film may be a resin film for a surface protective film on which an adhesive layer is formed, or may be formed by a self-adhesive film alone. The thickness of the surface protective film can be, for example, 30 to 200 μm, preferably 30 to 150 μm, and more preferably 30 to 120 μm.
 表面保護フィルム用樹脂フィルムを構成する樹脂としては、例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂のようなポリオレフィン系樹脂;環状ポリオレフィン系樹脂;ポリエチレンテレフタレートやポリエチレンナフタレートのようなポリエステル系樹脂;ポリカーボネート系樹脂;(メタ)アクリル系樹脂等を挙げることができる。このうち、ポリエチレンテレフタレート等のポリエステル系樹脂が好ましい。表面保護フィルム用樹脂フィルムは、1層構造であってもよいが、2層以上の多層構造を有していてもよい。表面保護フィルム用樹脂フィルムは、一軸延伸又は二軸延伸等の延伸処理が施されたフィルムであってもよい。 Examples of the resin constituting the surface protective film resin film include polyolefin resins such as polyethylene resins and polypropylene resins; cyclic polyolefin resins; polyester resins such as polyethylene terephthalate and polyethylene naphthalate; and polycarbonate resins. ; (Meta) acrylic resin and the like can be mentioned. Of these, polyester resins such as polyethylene terephthalate are preferable. The resin film for a surface protective film may have a one-layer structure, but may have a multi-layer structure of two or more layers. The resin film for the surface protective film may be a film that has been subjected to a stretching treatment such as uniaxial stretching or biaxial stretching.
 表面保護フィルムの温度23℃、相対湿度55%における偏光性積層体20に対する密着力(Fp)は、0.01N/25mm以上であることが好ましく、0.03N/25mm以上であってもよく、0.08N/25mm以上であってもよく、また、0.5N/25mm以下であることが好ましく、0.4N/25mm以下であってもよく、0.3N/25mm以下であってもよい。 The adhesion (Fp) of the surface protective film to the polarizing laminate 20 at a temperature of 23 ° C. and a relative humidity of 55% is preferably 0.01 N / 25 mm or more, and may be 0.03 N / 25 mm or more. It may be 0.08 N / 25 mm or more, preferably 0.5 N / 25 mm or less, 0.4 N / 25 mm or less, or 0.3 N / 25 mm or less.
 上記密着力(Fp)は、次の手順で測定することができる。光学積層体1を150mm×25mmの矩形に裁断したものを、粘着剤層31により無アルカリガラス基板(厚さ0.7mm、コーニング社製「Eagle XG」)に貼合して試験片とする。この試験片を内部温度50℃、内部圧力490.3kPa(ゲージ圧)のオートクレーブ中に20分間投入して加熱加圧環境下に曝した後、温度23℃、相対湿度55%RHの雰囲気下に24時間保管して評価用サンプルとする。この評価用サンプルについて、JIS K6854-2:1999「接着剤-剥離接着強さ試験方法-第2部:180°剥離」に準拠して、剥離装置(島津製作所社製「オートグラフAGS-50NX」)を用い、移動速度300mm/分にて180°剥離試験を行って測定された剥離力を密着力(Fp)とする。 The adhesion force (Fp) can be measured by the following procedure. The optical laminate 1 is cut into a rectangle of 150 mm × 25 mm and bonded to a non-alkali glass substrate (thickness 0.7 mm, “Eagle XG” manufactured by Corning Inc.) with an adhesive layer 31 to obtain a test piece. This test piece was placed in an autoclave with an internal temperature of 50 ° C. and an internal pressure of 490.3 kPa (gauge pressure) for 20 minutes and exposed to a heating and pressurizing environment. Store for 24 hours to use as an evaluation sample. This evaluation sample is a peeling device ("Autograph AGS-50NX" manufactured by Shimadzu Corporation, in accordance with JIS K6854-2: 1999 "Adhesive-Peeling Adhesive Strength Test Method-Part 2: 180 ° Peeling". ) Is used to perform a 180 ° peeling test at a moving speed of 300 mm / min, and the peeling force measured is defined as the adhesion force (Fp).
 表面保護フィルムが表面保護フィルム用樹脂フィルムに粘着剤層が設けられたものである場合、この粘着剤層の厚みは、5μm以上であることが好ましく、10μm以上であってもよく、15μm以上であってもよく、また、30μm以下であることが好ましく、25μm以下であってもよく、20μm以下であってもよい。 When the surface protective film is a resin film for a surface protective film provided with an adhesive layer, the thickness of the adhesive layer is preferably 5 μm or more, preferably 10 μm or more, and 15 μm or more. It may be 30 μm or less, 25 μm or less, or 20 μm or less.
 上記した表面保護フィルムは、表面保護フィルム用樹脂フィルム面上に、粘着剤を塗布、乾燥等することにより粘着剤層を形成して得ることができる。必要に応じて、表面保護フィルム用樹脂フィルムの粘着剤の塗布面には密着性を向上するために、表面処理(例えば、コロナ処理等)が施されていてもよく、プライマー層(下塗り層ともいう)等の薄層が形成されていてもよい。また、必要に応じて、表面保護フィルムが粘着剤層を有する場合には、当該粘着剤層の表面保護フィルム用樹脂フィルム側とは反対側の表面を被覆して保護するための剥離層を有していてもよい。この剥離層は、偏光性積層体と貼り合わせる際の適宜のタイミングで剥離することができる。 The above-mentioned surface protective film can be obtained by forming an adhesive layer on the surface of the resin film for the surface protective film by applying an adhesive, drying, or the like. If necessary, a surface treatment (for example, corona treatment) may be applied to the surface to which the adhesive of the resin film for the surface protective film is applied in order to improve the adhesion, and the primer layer (also referred to as the undercoat layer) may be applied. A thin layer such as) may be formed. Further, if necessary, when the surface protective film has an adhesive layer, it has a release layer for covering and protecting the surface of the adhesive layer on the side opposite to the resin film side for the surface protective film. You may be doing it. This peeling layer can be peeled off at an appropriate timing when it is bonded to the polarizing laminate.
 表面保護フィルムとして用いることができる自己粘着性フィルムは、粘着剤層等の付着のための手段を設けることなくそれ自身で付着し、かつ、その付着状態を維持することが可能なフィルムである。自己粘着性フィルムは、例えばポリプロピレン系樹脂及びポリエチレン系樹脂等を用いて形成することができる。 The self-adhesive film that can be used as a surface protective film is a film that can adhere to itself and maintain its adhered state without providing a means for adhering an adhesive layer or the like. The self-adhesive film can be formed by using, for example, a polypropylene-based resin, a polyethylene-based resin, or the like.
 (偏光性積層体)
 偏光性積層体は、直線偏光層の片面又は両面に保護層を有する偏光板を少なくとも含む。偏光性積層体は、偏光板のみを含むものであってもよく、偏光板と偏光板以外の光学機能層とを含むものであってもよい。当該光学機能層としては、上記したものが挙げられる。光学機能層は1層であってもよく2層以上であってもよい。直線偏光層と保護層との間、偏光板と光学機能層との間、及び、光学機能層が2層以上積層されている場合の光学機能層の間は、粘着剤層又は接着剤硬化層等の貼合層を介して貼合されていてもよい。
(Polarizing laminate)
The polarizing laminate includes at least a polarizing plate having a protective layer on one side or both sides of the linearly polarizing layer. The polarizing laminate may include only a polarizing plate, or may include a polarizing plate and an optical functional layer other than the polarizing plate. Examples of the optical functional layer include those described above. The optical functional layer may be one layer or two or more layers. An adhesive layer or an adhesive curing layer is between the linearly polarizing layer and the protective layer, between the polarizing plate and the optical functional layer, and between the optical functional layers when two or more optical functional layers are laminated. It may be bonded through a bonding layer such as.
 (直線偏光層)
 直線偏光層は、無偏光の光を入射させたとき、吸収軸に直交する振動面をもつ直線偏光を透過させる性質を有する。直線偏光層は、ポリビニルアルコール(以下、「PVA」と略すこともある。)系樹脂フィルムを含むものであってもよく、重合性液晶化合物に二色性色素を配向させ、重合性液晶化合物を重合させた硬化膜であってもよい。
(Straightly polarized layer)
The linearly polarized light layer has a property of transmitting linearly polarized light having a vibration plane orthogonal to the absorption axis when unpolarized light is incident. The linearly polarizing layer may contain a polyvinyl alcohol (hereinafter, may be abbreviated as “PVA”) resin film, and a dichroic dye is oriented on the polymerizable liquid crystal compound to obtain the polymerizable liquid crystal compound. It may be a polymerized cured film.
 PVA系樹脂フィルムを含む直線偏光層としては、例えば、PVA系フィルム、部分ホルマール化PVA系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質による染色処理、及び延伸処理が施されたもの等が挙げられる。光学特性に優れることから、PVA系樹脂フィルムをヨウ素で染色し一軸延伸して得られた直線偏光層を用いることが好ましい。 Examples of the linear polarizing layer containing the PVA-based resin film include hydrophilic polymer films such as PVA-based films, partially formalized PVA-based films, and ethylene-vinyl acetate copolymerization-based partially saponified films, as well as iodine and bicolor. Examples thereof include those subjected to a dyeing treatment with a bicolor substance such as a dye and a stretching treatment. Since it is excellent in optical characteristics, it is preferable to use a linearly polarizing layer obtained by dyeing a PVA-based resin film with iodine and uniaxially stretching it.
 PVA系樹脂は、ポリ酢酸ビニル系樹脂をケン化することにより製造できる。ポリ酢酸ビニル系樹脂は、酢酸ビニルの単独重合体であるポリ酢酸ビニルのほか、酢酸ビニルと酢酸ビニルに共重合可能な他の単量体との共重合体であることもできる。酢酸ビニルに共重合可能な他の単量体としては、例えば、不飽和カルボン酸類、オレフィン類、ビニルエーテル類、不飽和スルホン酸類、アンモニウム基を有するアクリルアミド類等が挙げられる。 The PVA-based resin can be produced by saponifying the polyvinyl acetate-based resin. The polyvinyl acetate-based resin can be a copolymer of vinyl acetate and another monomer copolymerizable with vinyl acetate, in addition to polyvinyl acetate which is a homopolymer of vinyl acetate. Examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and acrylamides having an ammonium group.
 PVA系樹脂のケン化度は、通常85~100モル%程度であり、好ましくは98モル%以上である。PVA系樹脂は変性されていてもよく、例えば、アルデヒド類で変性されたポリビニルホルマールやポリビニルアセタール等も使用可能である。PVA系樹脂の平均重合度は、通常1,000~10,000程度であり、好ましくは1,500~5,000程度である。PVA系樹脂の平均重合度は、JIS K 6726(1994)に準拠して求めることができる。平均重合度が1000未満では好ましい偏光性能を得ることが困難であり、10000超ではフィルム加工性に劣ることがある。 The degree of saponification of the PVA-based resin is usually about 85 to 100 mol%, preferably 98 mol% or more. The PVA-based resin may be modified, and for example, polyvinyl formal or polyvinyl acetal modified with aldehydes can also be used. The average degree of polymerization of the PVA-based resin is usually about 1,000 to 10,000, preferably about 1,500 to 5,000. The average degree of polymerization of the PVA-based resin can be determined in accordance with JIS K 6726 (1994). If the average degree of polymerization is less than 1000, it is difficult to obtain preferable polarization performance, and if it exceeds 10,000, the film processability may be inferior.
 その他のPVA系樹脂フィルムを含む直線偏光層の製造方法としては、まず基材フィルムを用意し、基材フィルム上にPVA系樹脂等の樹脂の溶液を塗布し、溶媒を除去する乾燥等を行って基材フィルム上に樹脂層を形成する工程を含むものを挙げることができる。
なお、基材フィルムの樹脂層が形成される面には、予めプライマー層を形成することができる。基材フィルムとしては、PET等の樹脂フィルムや、後述する保護層に用いることができる熱可塑性樹脂を用いたフィルムを使用できる。プライマー層の材料としては、直線偏光層に用いられる親水性樹脂を架橋した樹脂等を挙げることができる。
As another method for producing a linear polarizing layer containing a PVA-based resin film, a base film is first prepared, a resin solution such as PVA-based resin is applied onto the base film, and drying is performed to remove the solvent. Examples thereof include a step of forming a resin layer on a base film.
A primer layer can be formed in advance on the surface of the base film on which the resin layer is formed. As the base film, a resin film such as PET or a film using a thermoplastic resin that can be used for the protective layer described later can be used. Examples of the material of the primer layer include a resin obtained by cross-linking a hydrophilic resin used for the linearly polarizing layer.
 次いで、必要に応じて樹脂層の水分等の溶媒量を調整し、その後、基材フィルム及び樹脂層を一軸延伸し、続いて、樹脂層をヨウ素等の二色性色素で染色して二色性色素を樹脂層に吸着配向させる。次に、必要に応じて二色性色素が吸着配向した樹脂層をホウ酸水溶液で処理し、ホウ酸水溶液を洗い落とす洗浄工程を行う。これにより、二色性色素が吸着配向された樹脂層、すなわち、直線偏光層のフィルムが製造される。各工程には公知の方法を採用できる。 Then, if necessary, the amount of solvent such as water content of the resin layer is adjusted, then the base film and the resin layer are uniaxially stretched, and then the resin layer is dyed with a dichroic dye such as iodine to obtain two colors. The sex dye is adsorbed and oriented on the resin layer. Next, if necessary, the resin layer in which the dichroic dye is adsorbed and oriented is treated with a boric acid aqueous solution, and a washing step of washing off the boric acid aqueous solution is performed. As a result, a film of a resin layer in which the dichroic dye is adsorption-oriented, that is, a linearly polarizing layer is produced. A known method can be adopted for each step.
 基材フィルム及び樹脂層の一軸延伸は、染色の前に行ってもよいし、染色中に行ってもよいし、染色後のホウ酸処理中に行ってもよく、これら複数の段階においてそれぞれ一軸延伸を行ってもよい。基材フィルム及び樹脂層は、MD方向(フィルム搬送方向)に一軸延伸してもよく、この場合、周速の異なるロール間で一軸に延伸してもよいし、熱ロールを用いて一軸に延伸してもよい。また、基材フィルム及び樹脂層は、TD方向(フィルム搬送方向に垂直な方向)に一軸延伸してもよく、この場合、いわゆるテンター法を使用することができる。また、基材フィルム及び樹脂層の延伸は、大気中で延伸を行う乾式延伸であってもよいし、溶剤にて樹脂層を膨潤させた状態で延伸を行う湿式延伸であってもよい。直線偏光層の性能を発現するためには延伸倍率は4倍以上であり、5倍以上であることが好ましく、特に5.5倍以上が好ましい。延伸倍率の上限は特にないが、破断等を抑制する観点から8倍以下が好ましい。 The uniaxial stretching of the base film and the resin layer may be performed before dyeing, during dyeing, or during boric acid treatment after dyeing, and each of these multiple steps is uniaxial. Stretching may be performed. The base film and the resin layer may be uniaxially stretched in the MD direction (film transport direction), in this case, uniaxially stretched between rolls having different peripheral speeds, or uniaxially stretched using a thermal roll. You may. Further, the base film and the resin layer may be uniaxially stretched in the TD direction (direction perpendicular to the film transport direction), and in this case, the so-called tenter method can be used. Further, the stretching of the base film and the resin layer may be a dry stretching in which the resin layer is stretched in the air, or a wet stretching in which the resin layer is swollen with a solvent. In order to exhibit the performance of the linearly polarized light layer, the draw ratio is 4 times or more, preferably 5 times or more, and particularly preferably 5.5 times or more. There is no particular upper limit to the draw ratio, but it is preferably 8 times or less from the viewpoint of suppressing breakage and the like.
 上記方法で作製した直線偏光層は、後述する保護層を積層した後に基材フィルムを剥離することで得ることができる。この方法によれば、直線偏光層の更なる薄膜化が可能となる。 The linearly polarized light layer produced by the above method can be obtained by laminating a protective layer described later and then peeling off the base film. According to this method, the linearly polarizing layer can be further thinned.
 PVA系樹脂フィルムを含む直線偏光層の厚みは、1μm以上であることが好ましく、2μm以上であってもよく、5μm以上であってもよく、また、30μm以下であることが好ましく、15μm以下であってもよく、10μm以下であってもよい。 The thickness of the linearly polarizing layer containing the PVA-based resin film is preferably 1 μm or more, preferably 2 μm or more, 5 μm or more, and preferably 30 μm or less, preferably 15 μm or less. It may be 10 μm or less.
 重合性液晶化合物に二色性色素を配向させ、重合性液晶化合物を重合させた硬化膜である直線偏光層の製造方法としては、基材フィルム上に、重合性液晶化合物及び二色性色素を含む偏光層形成用組成物を塗布し、重合性液晶化合物を液晶状態を保持したまま重合して硬化させて直線偏光層を形成する方法を挙げることができる。このようにして得られた直線偏光層は、基材フィルムに積層された状態にあり、基材フィルム付き直線偏光層を後述する偏光板として用いてもよい。基材フィルムとしては、PET等の樹脂フィルムや、後述する保護層に用いることができる熱可塑性樹脂を用いたフィルムを使用できる。 As a method for producing a linearly polarizing layer, which is a cured film obtained by orienting a dichroic dye on a polymerizable liquid crystal compound and polymerizing the polymerizable liquid crystal compound, the polymerizable liquid crystal compound and the dichroic dye are placed on a base film. Examples thereof include a method of applying the composition for forming a polarizing layer containing the mixture, polymerizing and curing the polymerizable liquid crystal compound while maintaining the liquid crystal state, and forming a linear polarizing layer. The linearly polarizing layer thus obtained is in a state of being laminated on the base film, and the linearly polarizing layer with the base film may be used as a polarizing plate to be described later. As the base film, a resin film such as PET or a film using a thermoplastic resin that can be used for the protective layer described later can be used.
 二色性色素としては、分子の長軸方向における吸光度と短軸方向における吸光度とが異なる性質を有する色素を用いることができ、例えば、300~700nmの範囲に吸収極大波長(λmax)を有する色素が好ましい。このような二色性色素としては、例えば、アクリジン色素、オキサジン色素、シアニン色素、ナフタレン色素、アゾ色素、アントラキノン色素等が挙げられるが、中でもアゾ色素が好ましい。アゾ色素としては、モノアゾ色素、ビスアゾ色素、トリスアゾ色素、テトラキスアゾ色素、スチルベンアゾ色素等が挙げられ、ビスアゾ色素、トリスアゾ色素がより好ましい。 As the dichroic dye, a dye having a property that the absorbance in the major axis direction and the absorbance in the minor axis direction of the molecule are different can be used. For example, a dye having an absorption maximum wavelength (λmax) in the range of 300 to 700 nm. Is preferable. Examples of such a dichroic dye include an acridine dye, an oxazine dye, a cyanine dye, a naphthalene dye, an azo dye, an anthraquinone dye, and the like, and among them, the azo dye is preferable. Examples of the azo dye include a monoazo dye, a bisazo dye, a trisazo dye, a tetrakisazo dye, a stilbene azo dye, and the like, and a bisazo dye and a trisazo dye are more preferable.
 偏光層形成用組成物は、溶剤、光重合開始剤等の重合開始剤、光増感剤、重合禁止剤等を含むことができる。偏光層形成用組成物に含まれる、重合性液晶化合物、二色性色素、溶剤、重合開始剤、光増感剤、重合禁止剤等については、公知のものを用いることができ、例えば、特開2017-102479号公報、特開2017-83843号公報に例示されているものを用いることができる。また、重合性液晶化合物は、後述する位相差層としての硬化物層を得るために用いた重合性液晶化合物として例示した化合物を用いてもよい。偏光層形成用組成物を用いて直線偏光層を形成する方法についても、上記公報に例示された方法を採用することができる。 The composition for forming a polarizing layer may contain a solvent, a polymerization initiator such as a photopolymerization initiator, a photosensitizer, a polymerization inhibitor and the like. As the polymerizable liquid crystal compound, the dichroic dye, the solvent, the polymerization initiator, the photosensitizer, the polymerization inhibitor and the like contained in the composition for forming the polarizing layer, known ones can be used, for example, specially. Those exemplified in Japanese Patent Application Laid-Open No. 2017-102479 and Japanese Patent Application Laid-Open No. 2017-83843 can be used. Further, as the polymerizable liquid crystal compound, the compound exemplified as the polymerizable liquid crystal compound used for obtaining the cured product layer as the retardation layer described later may be used. As a method for forming a linearly polarized light layer using the polarizing layer forming composition, the method exemplified in the above publication can also be adopted.
 (偏光板)
 直線偏光層はその片面又は両面に保護層を積層して偏光板とすることができる。この偏光板はいわゆる直線偏光板である。直線偏光層の片面又は両面に積層することができる保護層としては、例えば、透明性、機械的強度、熱安定性、水分遮断性、等方性、延伸性等に優れる熱可塑性樹脂から形成されたフィルムが用いられる。このような熱可塑性樹脂の具体例としては、トリアセチルセルロース等のセルロース樹脂;ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル樹脂;ポリエーテルスルホン樹脂;ポリスルホン樹脂;ポリカーボネート樹脂;ナイロンや芳香族ポリアミド等のポリアミド樹脂;ポリイミド樹脂;ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体等のポリオレフィン樹脂;シクロ系及びノルボルネン構造を有する環状ポリオレフィン樹脂(ノルボルネン系樹脂ともいう);(メタ)アクリル樹脂;ポリアリレート樹脂;ポリスチレン樹脂;ポリビニルアルコール樹脂、並びにこれらの混合物を挙げることができる。
直線偏光層の両面に保護層が積層されている場合、二つの保護層の樹脂組成は同一であってもよいし、異なっていてもよい。なお、本明細書において「(メタ)アクリル」とは、アクリル又はメタクリルのいずれでもよいことを意味する。(メタ)アクリレート等の「(メタ)」も同様の意味である。
(Polarizer)
The linearly polarized light layer can be formed as a polarizing plate by laminating a protective layer on one side or both sides thereof. This polarizing plate is a so-called linear polarizing plate. The protective layer that can be laminated on one side or both sides of the linearly polarizing layer is formed of, for example, a thermoplastic resin having excellent transparency, mechanical strength, thermal stability, moisture barrier property, isotropic property, stretchability, and the like. Film is used. Specific examples of such thermoplastic resins include cellulose resins such as triacetyl cellulose; polyester resins such as polyethylene terephthalate and polyethylene naphthalate; polyether sulfone resins; polysulfone resins; polycarbonate resins; polyamides such as nylon and aromatic polyamides. Resin; Polygon resin; Polyethylene resin such as polyethylene, polypropylene, ethylene / propylene copolymer; Cyclic polyolefin resin having cyclo-based and norbornene structure (also referred to as norbornene-based resin); (meth) acrylic resin; polyallylate resin; polystyrene resin Polyvinyl alcohol resins, as well as mixtures thereof, can be mentioned.
When the protective layers are laminated on both sides of the linearly polarizing layer, the resin compositions of the two protective layers may be the same or different. In addition, in this specification, "(meth) acrylic" means that either acrylic or methacryl may be used. "(Meta)" such as (meth) acrylate has the same meaning.
 保護層は、位相差特性を有するものであってもよく、ハードコート層や反射防止層等の機能層を有するものであってもよい。保護層の厚みは、3μm以上であることが好ましく、5μm以上であることがより好ましい。また、保護層の厚みは、50μm以下であることが好ましく、30μm以下であることがより好ましい。なお、上述した上限値及び下限値は、任意に組み合わせることができる。 The protective layer may have a phase difference characteristic, or may have a functional layer such as a hard coat layer or an antireflection layer. The thickness of the protective layer is preferably 3 μm or more, and more preferably 5 μm or more. The thickness of the protective layer is preferably 50 μm or less, more preferably 30 μm or less. The above-mentioned upper limit value and lower limit value can be arbitrarily combined.
 (位相差層)
 偏光性積層体は、位相差層を含んでいてもよい。位相差層は、重合性液晶化合物の硬化物層を含むものであってもよく、延伸された樹脂フィルムであってもよい。
(Phase difference layer)
The polarizing laminate may include a retardation layer. The retardation layer may include a cured product layer of a polymerizable liquid crystal compound, or may be a stretched resin film.
 位相差層が重合性液晶化合物の硬化物層を含む場合、重合性液晶化合物として、棒状の重合性液晶化合物及び円盤状の重合性液晶化合物を用いることができ、これらのうちの一方を用いてもよく、これらの両方を含む混合物を用いてもよい。棒状の重合性液晶化合物が基材層に対して水平配向又は垂直配向した場合は、該重合性液晶化合物の光軸は、該重合性液晶化合物の長軸方向と一致する。円盤状の重合性液晶化合物が配向した場合は、該重合性液晶化合物の光軸は、該重合性液晶化合物の円盤面に対して直交する方向に存在する。棒状の重合性液晶化合物としては、例えば、特表平11-513019号公報(請求項1等)に記載のものを好適に用いることができる。円盤状の重合性液晶化合物としては、特開2007-108732号公報(段落[0020]~[0067]等)、特開2010-244038号公報(段落[0013]~[0108]等)に記載のものを好適に用いることができる。 When the retardation layer contains a cured product layer of a polymerizable liquid crystal compound, a rod-shaped polymerizable liquid crystal compound and a disk-shaped polymerizable liquid crystal compound can be used as the polymerizable liquid crystal compound, and one of these can be used. Alternatively, a mixture containing both of these may be used. When the rod-shaped polymerizable liquid crystal compound is horizontally or vertically oriented with respect to the base material layer, the optical axis of the polymerizable liquid crystal compound coincides with the major axis direction of the polymerizable liquid crystal compound. When the disk-shaped polymerizable liquid crystal compound is oriented, the optical axis of the polymerizable liquid crystal compound exists in a direction orthogonal to the disk surface of the polymerizable liquid crystal compound. As the rod-shaped polymerizable liquid crystal compound, for example, those described in JP-A No. 11-513019 (Claim 1 and the like) can be preferably used. Examples of the disk-shaped polymerizable liquid crystal compound are described in JP-A-2007-108732 (paragraphs [0020] to [0067], etc.) and JP-A-2010-244038 (paragraphs [0013] to [0108], etc.). Can be preferably used.
 重合性液晶化合物を重合することによって形成される硬化物層が面内位相差を発現するためには、重合性液晶化合物を適した方向に配向させればよい。重合性液晶化合物が棒状の場合は、該重合性液晶化合物の光軸を基材層平面に対して水平に配向させることで面内位相差が発現し、この場合、光軸方向と遅相軸方向とは一致する。重合性液晶化合物が円盤状の場合は、該重合性液晶化合物の光軸を基材層平面に対して水平に配向させることで面内位相差が発現し、この場合、光軸と遅相軸とは直交する。重合性液晶化合物の配向状態は、配向層と重合性液晶化合物との組み合わせによって調整することができる。 In order for the cured product layer formed by polymerizing the polymerizable liquid crystal compound to exhibit an in-plane retardation, the polymerizable liquid crystal compound may be oriented in an appropriate direction. When the polymerizable liquid crystal compound is rod-shaped, an in-plane phase difference is developed by orienting the optical axis of the polymerizable liquid crystal compound horizontally with respect to the plane of the substrate layer. In this case, the optical axis direction and the slow axis It matches the direction. When the polymerizable liquid crystal compound has a disk shape, an in-plane phase difference is developed by orienting the optical axis of the polymerizable liquid crystal compound horizontally with respect to the plane of the substrate layer. In this case, the optical axis and the slow axis Is orthogonal to. The orientation state of the polymerizable liquid crystal compound can be adjusted by the combination of the alignment layer and the polymerizable liquid crystal compound.
 重合性液晶化合物は、少なくとも1つの重合性基を有し、かつ、液晶性を有する化合物である。重合性液晶化合物を2種類以上を併用する場合、少なくとも1種類が分子内に2以上の重合性基を有することが好ましい。重合性基とは、重合反応に関与する基を意味し、光重合性基であることが好ましい。ここで、光重合性基とは、後述する光重合開始剤から発生した活性ラジカルや酸等によって重合反応に関与し得る基のことをいう。重合性基としては、ビニル基、ビニルオキシ基、1-クロロビニル基、イソプロペニル基、4-ビニルフェニル基、アクリロイルオキシ基、メタクリロイルオキシ基、オキシラニル基、オキセタニル基、スチリル基、アリル基等が挙げられる。中でも、アクリロイルオキシ基、メタクリロイルオキシ基、ビニルオキシ基、オキシラニル基及びオキセタニル基が好ましく、アクリロイルオキシ基がより好ましい。重合性液晶化合物が有する液晶性はサーモトロピック性液晶でもリオトロピック液晶でもよく、サーモトロピック液晶を秩序度で分類すると、ネマチック液晶でもスメクチック液晶でもよい。 The polymerizable liquid crystal compound is a compound having at least one polymerizable group and having liquid crystallinity. When two or more kinds of polymerizable liquid crystal compounds are used in combination, it is preferable that at least one kind has two or more polymerizable groups in the molecule. The polymerizable group means a group involved in the polymerization reaction, and is preferably a photopolymerizable group. Here, the photopolymerizable group refers to a group that can participate in the polymerization reaction by an active radical, an acid, or the like generated from a photopolymerization initiator described later. Examples of the polymerizable group include a vinyl group, a vinyloxy group, a 1-chlorovinyl group, an isopropenyl group, a 4-vinylphenyl group, an acryloyloxy group, a methacryloyloxy group, an oxylanyl group, an oxetanyl group, a styryl group and an allyl group. Be done. Of these, an acryloyloxy group, a methacryloyloxy group, a vinyloxy group, an oxylanyl group and an oxetanyl group are preferable, and an acryloyloxy group is more preferable. The liquid crystal property of the polymerizable liquid crystal compound may be a thermotropic liquid crystal or a lyotropic liquid crystal, and when the thermotropic liquid crystal is classified by order, it may be a nematic liquid crystal or a smectic liquid crystal.
 位相差層が重合性液晶化合物の硬化物層を含む場合、位相差層は配向層を含んでいてもよい。配向層は、重合性液晶化合物を所望の方向に配向させる配向規制力を有する。配向層は、重合性液晶化合物の分子軸を基材層に対して垂直配向した垂直配向層であってもよく、重合性液晶化合物の分子軸を基材層に対して水平配向した水平配向層であってもよく、重合性液晶化合物の分子軸を基材層に対して傾斜配向させる傾斜配向層であってもよい。第1配向層と第2配向層とは、同じ配向層であってもよく、異なる配向層であってもよい。 When the retardation layer contains a cured product layer of a polymerizable liquid crystal compound, the retardation layer may include an orientation layer. The alignment layer has an orientation regulating force that orients the polymerizable liquid crystal compound in a desired direction. The oriented layer may be a vertically oriented layer in which the molecular axis of the polymerizable liquid crystal compound is vertically oriented with respect to the base material layer, or a horizontally oriented layer in which the molecular axis of the polymerizable liquid crystal compound is horizontally oriented with respect to the base material layer. It may be a tilt-oriented layer in which the molecular axis of the polymerizable liquid crystal compound is tilt-oriented with respect to the base material layer. The first oriented layer and the second oriented layer may be the same oriented layer or may be different oriented layers.
 配向層としては、液晶層形成用組成物の塗工等により溶解しない溶媒耐性を有し、溶媒の除去や重合性液晶化合物の配向のための加熱処理に対する耐熱性を有するものが好ましい。配向層としては、配向性ポリマーで形成された配向性ポリマー層、光配向ポリマーで形成された光配向性ポリマー層、層表面に凹凸パターンや複数のグルブ(溝)を有するグルブ配向層を挙げることができる。 The alignment layer preferably has solvent resistance that does not dissolve due to coating of the liquid crystal layer forming composition, and has heat resistance to heat treatment for removing the solvent and aligning the polymerizable liquid crystal compound. Examples of the oriented layer include an oriented polymer layer formed of an oriented polymer, a photo-oriented polymer layer formed of a photo-aligned polymer, and a grub-oriented layer having an uneven pattern or a plurality of grubs (grooves) on the layer surface. Can be done.
 重合性液晶化合物の硬化物層は、基材層上に、重合性液晶化合物を含む液晶層形成用組成物を塗布、乾燥し、重合性液晶化合物を重合させることによって形成することができる。液晶層形成用組成物は、基材層上に形成された配向層上に塗布してもよい。 The cured product layer of the polymerizable liquid crystal compound can be formed by applying a liquid crystal layer forming composition containing the polymerizable liquid crystal compound on the base material layer, drying the composition, and polymerizing the polymerizable liquid crystal compound. The liquid crystal layer forming composition may be applied on the alignment layer formed on the base material layer.
 基材層としては、樹脂材料で形成されたフィルムを用いることができ、例えば上記した保護層を形成するために用いる熱可塑性樹脂として説明した樹脂材料を用いたフィルムを挙げることができる。基材層の厚みは、特に限定されないが、一般には強度や取扱い性等の作業性の点から1~300μm以下であることが好ましく、20~200μmであることがより好ましく、30~120μmであることがさらに好ましい。基材層は、重合性液晶化合物の硬化物層とともに位相差層として偏光性積層体に組み込まれていてもよく、基材層を剥離して、重合性液晶化合物の硬化物層のみ、又は、当該硬化物層及び配向層が位相差層として偏光性積層体に組み込まれていてもよい。 As the base material layer, a film formed of a resin material can be used, and examples thereof include a film using the resin material described as the thermoplastic resin used for forming the protective layer described above. The thickness of the base material layer is not particularly limited, but is generally preferably 1 to 300 μm or less, more preferably 20 to 200 μm, and 30 to 120 μm from the viewpoint of workability such as strength and handleability. Is even more preferable. The base material layer may be incorporated into the polarizing laminate as a retardation layer together with the cured product layer of the polymerizable liquid crystal compound, and the base material layer may be peeled off to form only the cured product layer of the polymerizable liquid crystal compound, or The cured product layer and the oriented layer may be incorporated into the polarizing laminate as a retardation layer.
 延伸された樹脂フィルムに用いられる樹脂フィルムとしては、保護層を形成するために用いることができる熱可塑性樹脂からなるフィルムが挙げられる。延伸処理としては、一軸延伸や二軸延伸等が挙げられる。延伸処理における延伸方向は、未延伸樹脂の長さ方向であってもよく、長さ方向に直交する方向であってもよく、長さ方向に対して斜交する方向であってもよい。一軸延伸の場合は、これらの方向のうちのいずれかの方向に未延伸樹脂を延伸すればよい。二軸延伸は、これらの方向のうちの2つの延伸方向に同時に延伸する同時二軸延伸でもよく、所定の方向に延伸した後で他の方向に延伸する逐次二軸延伸であってもよい。 Examples of the resin film used for the stretched resin film include a film made of a thermoplastic resin that can be used to form a protective layer. Examples of the stretching treatment include uniaxial stretching and biaxial stretching. The stretching direction in the stretching treatment may be the length direction of the unstretched resin, the direction orthogonal to the length direction, or the direction obliquely intersecting with the length direction. In the case of uniaxial stretching, the unstretched resin may be stretched in any of these directions. The biaxial stretching may be simultaneous biaxial stretching in which two of these directions are simultaneously stretched, or sequential biaxial stretching in which stretching is performed in a predetermined direction and then in the other direction.
 位相差層の厚みは、1μm以上であることが好ましく、2μm以上であってもよく、5μm以上であってもよく、また、100μm以下であることが好ましく、50μm以下であってもよく、10μm以下であってもよい。 The thickness of the retardation layer is preferably 1 μm or more, preferably 2 μm or more, 5 μm or more, 100 μm or less, 50 μm or less, and 10 μm. It may be as follows.
 (貼合層)
 偏光性積層体に含まれる各層を貼合するための貼合層としては、粘着剤層又は接着剤硬化層が挙げられる。貼合層が粘着剤層である場合、後述する粘着剤層31で説明する粘着剤を用いて形成することができる。貼合層としての粘着剤層の温度23℃、相対湿度55%における無アルカリガラス基板(厚み0.7mm、コーニング社製「Eagle XG」)に対する密着力は、1N/25mm以上であることが好ましく、3N/25mm以上であってもよく、10N/25mm以上であってもよく、また、50N/25mm以下であることが好ましく、40N/25mm以下であってもよく、30N/25mm以下であってもよい。密着力は、JIS K 6854-2:1999「接着剤-はく離接着強さ試験方法-第2部:180°はく離」に準拠して測定することができる。また、無アルカリガラス基板(厚み0.7mm、コーニング社製「Eagle XG」)以外の被着体に対する密着力についても、一般の上記無アルカリガラス基板に対する密着力と同程度とみなすことができる。
(Lated layer)
Examples of the bonding layer for bonding the layers contained in the polarizing laminate include an adhesive layer and an adhesive curing layer. When the bonding layer is a pressure-sensitive adhesive layer, it can be formed by using the pressure-sensitive adhesive described in the pressure-sensitive adhesive layer 31 described later. The adhesion of the pressure-sensitive adhesive layer as a bonding layer to a non-alkali glass substrate (thickness 0.7 mm, Corning's "Eagle XG") at a temperature of 23 ° C. and a relative humidity of 55% is preferably 1 N / 25 mm or more. , 3N / 25mm or more, 10N / 25mm or more, preferably 50N / 25mm or less, 40N / 25mm or less, 30N / 25mm or less. May be good. Adhesive force can be measured in accordance with JIS K 6854-2: 1999 "Adhesive-Peeling Adhesive Strength Test Method-Part 2: 180 ° Peeling". Further, the adhesion to the adherend other than the non-alkali glass substrate (thickness 0.7 mm, "Eagle XG" manufactured by Corning Inc.) can be regarded as the same as the adhesion to the general non-alkali glass substrate.
 偏光性積層体を構成する各層を貼合する貼合層と、これに貼合される各層との間の密着力(Fb)はそれぞれ通常、表面保護フィルム41の偏光性積層体20に対する密着力(Fp)よりも大きい。密着力(Fb)と密着力(Fp)との差は、例えば0.1N/25mm以上であり、好ましくは0.5N/25mm以上であり、通常50N/25mm以下である。また、後述する粘着剤層31の画像表示素子45(被着体)に対する密着力(Fa)は通常、密着力(Fb)と同様、表面保護フィルム41の偏光性積層体20に対する密着力(Fp)よりも大きい。密着力(Fa)と密着力(Fp)との差は、例えば1N/25mm以上であり、好ましくは3N/25mm以上であり、通常50N/25mm以下である。 The adhesion (Fb) between the bonding layer to which each layer constituting the polarizing laminate is bonded and the layers bonded to the bonding layer is usually the adhesion of the surface protective film 41 to the polarizing laminate 20. Greater than (Fp). The difference between the adhesion force (Fb) and the adhesion force (Fp) is, for example, 0.1 N / 25 mm or more, preferably 0.5 N / 25 mm or more, and usually 50 N / 25 mm or less. Further, the adhesive force (Fa) of the pressure-sensitive adhesive layer 31 to the image display element 45 (adhesive body), which will be described later, is usually the same as the adhesive force (Fb), and the adhesive force (Fp) of the surface protective film 41 to the polarizing laminate 20 is the same. ) Is larger than. The difference between the adhesion force (Fa) and the adhesion force (Fp) is, for example, 1N / 25mm or more, preferably 3N / 25mm or more, and usually 50N / 25mm or less.
 密着力(Fb)が密着力(Fp)よりも小さい場合、粘着剤層31により画像表示素子45に光学積層体1を貼合した後、表面保護フィルム41を剥離する際に、偏光性積層体20を構成する各層が互いに剥れる可能性がある。また、密着力(Fa)が密着力(Fp)よりも小さい場合、粘着剤層31により画像表示素子45に光学積層体1を貼合した後、表面保護フィルム41を剥離する際に、粘着剤層31と画像表示素子45との層間から剥離が発生する場合がある。 When the adhesive force (Fb) is smaller than the adhesive force (Fp), the polarizing laminate is formed when the surface protective film 41 is peeled off after the optical laminate 1 is attached to the image display element 45 by the adhesive layer 31. There is a possibility that the layers constituting 20 may be separated from each other. When the adhesive force (Fa) is smaller than the adhesive force (Fp), the adhesive is applied when the surface protective film 41 is peeled off after the optical laminate 1 is attached to the image display element 45 by the adhesive layer 31. Peeling may occur between the layers of the layer 31 and the image display element 45.
 密着力(Fa)は、密着力(Fb)よりも大きくてもよく、小さくてもよく、同じであってもよい。密着力(Fa)が密着力(Fb)よりも小さい場合、画像表示素子45に貼合された偏光性積層体20を画像表示素子45から剥がして新たな光学積層体1を貼合するリワーク等を容易に行うことができる。 The adhesion (Fa) may be larger, smaller, or the same as the adhesion (Fb). When the adhesion force (Fa) is smaller than the adhesion force (Fb), a rework or the like in which the polarizing laminate 20 bonded to the image display element 45 is peeled off from the image display element 45 and a new optical laminate 1 is bonded. Can be easily performed.
 貼合層としての粘着剤層の温度80℃における貯蔵弾性率は、0.01MPa以上であることが好ましく、0.02MPa以上であってもよく、また、0.3MPa以下であることが好ましく、0.25MPa以下であってもよく、0.2MPa以下であってもよい。上記貯蔵弾性率は、粘着剤層を複数積層して作製した厚み0.2mmの粘着剤層積層体を、直径8mmの円柱体に打抜いたものを測定サンプルとして、JIS K7244-6に準拠し、市販の粘弾性測定装置を用いて、以下の条件で測定することができる。
 ノーマルフォースFN:1N
 歪みγ       :1%
 周波数       :1Hz
 温度        :80℃
The storage elastic modulus of the pressure-sensitive adhesive layer as a bonding layer at a temperature of 80 ° C. is preferably 0.01 MPa or more, may be 0.02 MPa or more, and is preferably 0.3 MPa or less. It may be 0.25 MPa or less, or 0.2 MPa or less. The storage elastic modulus is based on JIS K7244-6, which is a measurement sample obtained by punching a 0.2 mm-thick pressure-sensitive adhesive layer laminate produced by laminating a plurality of pressure-sensitive adhesive layers into a cylinder having a diameter of 8 mm. , A commercially available viscoelasticity measuring device can be used for measurement under the following conditions.
Normal force FN: 1N
Distortion γ: 1%
Frequency: 1Hz
Temperature: 80 ° C
 貼合層としての粘着剤層の厚みは、5μm以上であることが好ましく、10μm以上であってもよく、15μm以上であってもよく、また、50μm以下であることが好ましく、25μm以下であってもよく、20μm以下であってもよい。 The thickness of the pressure-sensitive adhesive layer as the bonding layer is preferably 5 μm or more, 10 μm or more, 15 μm or more, 50 μm or less, and 25 μm or less. It may be 20 μm or less.
 貼合層が接着剤硬化層である場合、接着剤硬化層は、接着剤組成物中の硬化性成分を硬化させることによって形成することができる。接着剤硬化層を形成するための接着剤組成物としては、感圧型接着剤(粘着剤)以外の接着剤であって、例えば、水系接着剤、活性エネルギー線硬化性接着剤が挙げられる。 When the bonding layer is an adhesive curing layer, the adhesive curing layer can be formed by curing the curable component in the adhesive composition. Examples of the adhesive composition for forming the adhesive curing layer include adhesives other than pressure-sensitive adhesives (adhesives), such as water-based adhesives and active energy ray-curable adhesives.
 水系接着剤としては、例えば、ポリビニルアルコール系樹脂を水に溶解、又は分散させた接着剤が挙げられる。水系接着剤を用いた場合の乾燥方法については特に限定されるものではないが、例えば、熱風乾燥機や赤外線乾燥機を用いて乾燥する方法が採用できる。 Examples of the water-based adhesive include an adhesive in which a polyvinyl alcohol-based resin is dissolved or dispersed in water. The drying method when a water-based adhesive is used is not particularly limited, but for example, a method of drying using a hot air dryer or an infrared dryer can be adopted.
 活性エネルギー線硬化性接着剤としては、例えば、紫外線、可視光、電子線、X線のような活性エネルギー線の照射によって硬化する硬化性化合物を含む無溶剤型の活性エネルギー線硬化性接着剤が挙げられる。無溶剤型の活性エネルギー線硬化性接着剤を用いることにより、層間の密着性を向上させることができる。 Examples of the active energy ray-curable adhesive include solvent-free active energy ray-curable adhesives containing curable compounds that are cured by irradiation with active energy rays such as ultraviolet rays, visible light, electron beams, and X-rays. Can be mentioned. By using a solvent-free active energy ray-curable adhesive, the adhesion between layers can be improved.
 活性エネルギー線硬化性接着剤としては、良好な接着性を示すことから、カチオン重合性の硬化性化合物、ラジカル重合性の硬化性化合物のいずれか一方又は両方を含むことが好ましい。活性エネルギー線硬化性接着剤は、上記硬化性化合物の硬化反応を開始させるためのカチオン重合開始剤、又はラジカル重合開始剤をさらに含むことができる。 The active energy ray-curable adhesive preferably contains one or both of a cationically polymerizable curable compound and a radically polymerizable curable compound because it exhibits good adhesiveness. The active energy ray-curable adhesive may further contain a cationic polymerization initiator for initiating the curing reaction of the curable compound, or a radical polymerization initiator.
 カチオン重合性の硬化性化合物としては、例えばエポキシ系化合物(分子内に1個又は2個以上のエポキシ基を有する化合物)や、オキセタン系化合物(分子内に1個又は2個以上のオキセタン環を有する化合物)、又はこれらの組み合わせを挙げることができる。 Examples of the cationically polymerizable curable compound include an epoxy compound (a compound having one or more epoxy groups in the molecule) and an oxetane compound (one or two or more oxetane rings in the molecule). Compounds having), or a combination thereof.
 ラジカル重合性の硬化性化合物としては、例えば、(メタ)アクリル系化合物(分子内に1個又は2個以上の(メタ)アクリロイルオキシ基を有する化合物)、ラジカル重合性の二重結合を有するその他のビニル系化合物、又はこれらの組み合わせを挙げることができる。 Examples of the radically polymerizable curable compound include (meth) acrylic compounds (compounds having one or more (meth) acryloyloxy groups in the molecule), radically polymerizable double bonds, and others. Vinyl-based compounds of the above, or combinations thereof can be mentioned.
 活性エネルギー線硬化性接着剤は、必要に応じて増感剤を含有することができる。増感剤を使用することにより、反応性が向上し、接着剤硬化層の機械強度や接着強度をさらに向上させることができる。増感剤としては、公知のものを適宜適用することができる。増感剤を配合する場合、その配合量は、活性エネルギー線硬化性接着剤の総量100質量部に対し、0.1~20質量部の範囲とすることが好ましい。 The active energy ray-curable adhesive can contain a sensitizer if necessary. By using the sensitizer, the reactivity can be improved, and the mechanical strength and the adhesive strength of the adhesive cured layer can be further improved. As the sensitizer, known ones can be appropriately applied. When the sensitizer is blended, the blending amount is preferably in the range of 0.1 to 20 parts by mass with respect to 100 parts by mass of the total amount of the active energy ray-curable adhesive.
 活性エネルギー線硬化性接着剤は、必要に応じて、イオントラップ剤、酸化防止剤、連鎖移動剤、粘着付与剤、熱可塑性樹脂、充填剤、流動調整剤、可塑剤、消泡剤、帯電防止剤、レベリング剤、溶媒等の添加剤を含有することができる。 Active energy ray-curable adhesives, if necessary, ion trapping agents, antioxidants, chain transfer agents, tackifiers, thermoplastic resins, fillers, flow regulators, plasticizers, defoamers, antistatics. It can contain additives such as agents, leveling agents, and solvents.
 活性エネルギー線硬化性接着剤を用いた場合は、紫外線、可視光、電子線、X線のような活性エネルギー線を照射し、接着剤組成物層を硬化させて接着剤層を形成することができる。活性エネルギー線としては、紫外線が好ましく、この場合の光源としては、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、メタルハライドランプ等を用いることができる。 When an active energy ray-curable adhesive is used, it is possible to irradiate active energy rays such as ultraviolet rays, visible light, electron beams, and X-rays to cure the adhesive composition layer to form an adhesive layer. can. As the active energy ray, ultraviolet rays are preferable, and as a light source in this case, a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, a chemical lamp, a black light lamp, a microwave-excited mercury lamp, a metal halide lamp, or the like can be used. can.
 (粘着剤層)
 光学積層体が有する粘着剤層31は、粘着剤を用いて形成された層である。本明細書において「粘着剤」とは、それ自体を画像表示素子等の被着体に張り付けることで接着性を発現するものであり、いわゆる感圧型接着剤と称されるものである。また、後述する活性エネルギー線硬化型粘着剤は、エネルギー線を照射することにより、架橋度や接着力を調整することができる。
(Adhesive layer)
The pressure-sensitive adhesive layer 31 included in the optical laminate is a layer formed by using a pressure-sensitive adhesive. In the present specification, the "adhesive" expresses adhesiveness by sticking itself to an adherend such as an image display element, and is a so-called pressure-sensitive adhesive. Further, the active energy ray-curable pressure-sensitive adhesive described later can adjust the degree of cross-linking and the adhesive force by irradiating with energy rays.
 粘着剤としては、従来公知の光学的な透明性に優れる粘着剤を特に制限なく用いることができ、例えば、アクリル系、ウレタン系、シリコーン系、ポリビニルエーテル系等のベースポリマーを有する粘着剤を用いることができる。また、活性エネルギー線硬化型粘着剤、熱硬化型粘着剤等であってもよい。これらの中でも、透明性、粘着力、再剥離性(以下、リワーク性ともいう。)、耐候性、耐熱性等に優れるアクリル系樹脂をベースポリマーとした粘着剤が好適である。粘着剤層は、(メタ)アクリル系樹脂、架橋剤、シラン化合物を含む粘着剤組成物の反応生成物から構成されることが好ましく、その他の成分を含んでいてもよい。 As the pressure-sensitive adhesive, a conventionally known pressure-sensitive adhesive having excellent optical transparency can be used without particular limitation. For example, a pressure-sensitive adhesive having a base polymer such as acrylic, urethane, silicone, or polyvinyl ether is used. be able to. Further, it may be an active energy ray-curable pressure-sensitive adhesive, a thermosetting pressure-sensitive adhesive or the like. Among these, an adhesive based on an acrylic resin having excellent transparency, adhesive strength, removability (hereinafter, also referred to as reworkability), weather resistance, heat resistance and the like is preferable. The pressure-sensitive adhesive layer is preferably composed of a reaction product of a pressure-sensitive adhesive composition containing a (meth) acrylic resin, a cross-linking agent, and a silane compound, and may contain other components.
 粘着剤層31は、活性エネルギー線硬化型粘着剤を用いて形成してもよい。活性エネルギー線硬化型粘着剤は、粘着剤組成物に、多官能性アクリレート等の紫外線硬化性化合物を配合し、粘着剤層を形成した後に紫外線を照射して硬化させることにより、より硬い粘着剤層を形成することができる。活性エネルギー線硬化型粘着剤は、紫外線や電子線等のエネルギー線の照射を受けて硬化する性質を有している。活性化エネルギー線硬化型粘着剤は、エネルギー線照射前においても粘着性を有しているため、画像表示素子等の被着体に密着し、エネルギー線の照射により硬化して密着力を調整することができる性質を有する粘着剤である。 The pressure-sensitive adhesive layer 31 may be formed by using an active energy ray-curable pressure-sensitive adhesive. The active energy ray-curable pressure-sensitive adhesive is a harder pressure-sensitive adhesive by blending a pressure-sensitive adhesive composition with an ultraviolet-curable compound such as a polyfunctional acrylate, forming a pressure-sensitive adhesive layer, and then irradiating the pressure-sensitive adhesive with ultraviolet rays to cure the pressure-sensitive adhesive. Layers can be formed. The active energy ray-curable pressure-sensitive adhesive has a property of being cured by being irradiated with energy rays such as ultraviolet rays and electron beams. Since the activated energy ray-curable adhesive has adhesiveness even before irradiation with energy rays, it adheres to an adherend such as an image display element and is cured by irradiation with energy rays to adjust the adhesion force. It is a pressure-sensitive adhesive having the property of being able to.
 活性エネルギー線硬化型粘着剤は、一般にはアクリル系粘着剤と、エネルギー線重合性化合物とを主成分として含む。通常はさらに架橋剤が配合されており、また必要に応じて、光重合開始剤や光増感剤等を配合することもできる。 The active energy ray-curable pressure-sensitive adhesive generally contains an acrylic pressure-sensitive adhesive and an energy ray-polymerizable compound as main components. Usually, a cross-linking agent is further blended, and if necessary, a photopolymerization initiator, a photosensitizer, or the like can be blended.
 粘着剤層31は、画像表示素子45(被着体)に対する密着力(Fa)が、上記した表面保護フィルムの偏光性積層体に対する密着力(Fp)よりも相対的に大きいものを用いることが好ましい。また、粘着剤層31の貯蔵弾性率又は厚みはそれぞれ、上記した偏光性積層体に含まれる貼合層としての粘着剤層の貯蔵弾性率又は厚みよりも相対的に大きいものを用いることが好ましい。 As the pressure-sensitive adhesive layer 31, it is possible to use a pressure-sensitive adhesive layer 31 having an adhesion force (Fa) to the image display element 45 (adhesive body) relatively larger than the adhesion force (Fp) to the polarizing laminate of the surface protective film described above. preferable. Further, it is preferable to use a pressure-sensitive adhesive layer 31 having a storage elastic modulus or thickness relatively larger than the storage elastic modulus or thickness of the pressure-sensitive adhesive layer as a bonding layer contained in the above-mentioned polarizing laminate. ..
 粘着剤層31の温度23℃、相対湿度55%における無アルカリガラス基板(厚み0.7mm、コーニング社製「Eagle XG」)に対する密着力は、5N/25mm以上であることが好ましく、8N/25mm以上であってもよく、10N/25mm以上であってもよく、また、50N/25mm以下であることが好ましく、40N/25mm以下であってもよく、30N/25mm以下であってもよい。粘着剤層31の温度80℃における貯蔵弾性率は、0.01MPa以上であることが好ましく、0.02MPa以上であってもよく、また、0.3MPa以下であることが好ましく、0.25MPa以下であってもよく、0.2MPa以下であってもよい。密着力及び貯蔵弾性率の測定方法は、上記した貼合層で説明した密着力及び貯蔵弾性率の測定方法を用いることができる。粘着剤層31の厚みは、10μm以上であることが好ましく、15μm以上であってもよく、20μm以上であってもよく、また、40μm以下であることが好ましく、35μm以下であってもよく、30μm以下であってもよい。また、無アルカリガラス基板(厚み0.7mm、コーニング社製「Eagle XG」)以外の被着体に対する密着力についても、一般の上記無アルカリガラス基板に対する密着力と同程度とみなすことができる。 The adhesive force of the pressure-sensitive adhesive layer 31 to a non-alkali glass substrate (thickness 0.7 mm, Corning's "Eagle XG") at a temperature of 23 ° C. and a relative humidity of 55% is preferably 5 N / 25 mm or more, preferably 8 N / 25 mm. It may be 10 N / 25 mm or more, preferably 50 N / 25 mm or less, 40 N / 25 mm or less, or 30 N / 25 mm or less. The storage elastic modulus of the pressure-sensitive adhesive layer 31 at a temperature of 80 ° C. is preferably 0.01 MPa or more, may be 0.02 MPa or more, and is preferably 0.3 MPa or less, preferably 0.25 MPa or less. It may be 0.2 MPa or less. As a method for measuring the adhesive force and the storage elastic modulus, the method for measuring the adhesive force and the storage elastic modulus described in the above-mentioned bonding layer can be used. The thickness of the pressure-sensitive adhesive layer 31 is preferably 10 μm or more, 15 μm or more, 20 μm or more, 40 μm or less, and 35 μm or less. It may be 30 μm or less. Further, the adhesion to the adherend other than the non-alkali glass substrate (thickness 0.7 mm, "Eagle XG" manufactured by Corning Inc.) can be regarded as the same as the adhesion to the general non-alkali glass substrate.
 (剥離フィルム)
 剥離フィルムは、粘着剤層を被覆保護する、又は、粘着剤層を支持するものであって、粘着剤層に対して剥離可能なセパレータとしての機能を有する。剥離フィルムとしては、基材フィルムの粘着剤層側の表面にシリコーン処理等の離型処理が施されたフィルムを挙げることができる。基材フィルムをなす樹脂材料としては、上記した保護層をなす樹脂材料と同様のものを挙げることができる。樹脂フィルムは1層構造であってもよく、2層以上の多層構造の多層樹脂フィルムであってもよい。
(Release film)
The release film covers and protects the pressure-sensitive adhesive layer or supports the pressure-sensitive adhesive layer, and has a function as a separator that can be peeled off from the pressure-sensitive adhesive layer. Examples of the release film include a film in which the surface of the base film on the pressure-sensitive adhesive layer side is subjected to a mold release treatment such as a silicone treatment. Examples of the resin material forming the base film include the same resin materials as those forming the protective layer described above. The resin film may have a one-layer structure or may be a multilayer resin film having a multilayer structure of two or more layers.
 剥離フィルムの厚みは、例えば10μm以上200μm以下であることができ、好ましくは、20μm以上150μm以下であり、より好ましくは30μm以上120μm以下である。 The thickness of the release film can be, for example, 10 μm or more and 200 μm or less, preferably 20 μm or more and 150 μm or less, and more preferably 30 μm or more and 120 μm or less.
 剥離フィルムには、光学積層体に関する情報が印刷等により表示されていてもよい。光学積層体に関する情報としては、光学積層体に含まれる偏光性積層体の種類に関する表示、偏光性積層体に含まれる偏光板の吸収軸の方向を表す表示等が挙げられる。 Information on the optical laminate may be displayed on the release film by printing or the like. Examples of the information regarding the optical laminate include a display regarding the type of the polarizing laminate included in the optical laminate, a display indicating the direction of the absorption axis of the polarizing plate included in the polarizing laminate, and the like.
 (剥離用テープ)
 剥離用テープは、樹脂フィルムの片面に粘着剤層が形成された粘着テープを用いることができる。樹脂フィルムとしては、表面保護フィルムの表面保護フィルム用樹脂フィルムとして例示したものを用いることができる。粘着剤層は、粘着剤層31で説明した粘着剤を用いて形成することができる。
(Peeling tape)
As the peeling tape, an adhesive tape having an adhesive layer formed on one side of the resin film can be used. As the resin film, those exemplified as the resin film for the surface protective film of the surface protective film can be used. The pressure-sensitive adhesive layer can be formed by using the pressure-sensitive adhesive described in the pressure-sensitive adhesive layer 31.
 (被着体)
 光学積層体が粘着剤層31によって貼合される被着体としては、特に限定されないが、例えば表示装置の画像表示素子が挙げられる。画像表示素子は、表示装置の種類に応じて選択することができる。画像表示素子は、例えば、液晶セル又は有機EL表示素子等の表示素子等が挙げられる。
(Subject)
The adherend to which the optical laminate is bonded by the pressure-sensitive adhesive layer 31 is not particularly limited, and examples thereof include an image display element of a display device. The image display element can be selected according to the type of display device. Examples of the image display element include a display element such as a liquid crystal cell or an organic EL display element.
 以下、実施例及び比較例を示して本発明をさらに具体的に説明するが、本発明はこれらの例によって限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these examples.
 [剥離評価]
 実施例及び比較例で得た光学積層体から剥離フィルムを剥離し、露出した粘着剤層によって光学積層体をガラス板(保持台)に貼合して試験用サンプルを作製した。試験用サンプルの光学積層体の表面にある表面保護フィルムに、剥離用テープ(セロテープ(登録商標)(CT405-AP24)、ニチバン社製)を貼合して取付けた。剥離用テープは、幅24mm、長さ100mmの大きさを有し、試験用サンプルの光学積層体の平面視形状において、切欠き部が設けられた短辺の中央の位置(切欠き部を有さない四角形を仮定したときの短辺において中央となる位置)に、上記短辺を跨ぎ、剥離用テープの長さ方向の一方の端から10mmの長さの範囲を取付け端部として表面保護フィルム表面上に配置されるように、取付けた(図3を参照。)。比較例では、一方の短辺の中央の位置に、上記と同様にして剥離用テープを取付けた。
[Peeling evaluation]
The release film was peeled off from the optical laminates obtained in Examples and Comparative Examples, and the optical laminate was bonded to a glass plate (holding table) with an exposed adhesive layer to prepare a test sample. A peeling tape (cellotape (registered trademark) (CT405-AP24), manufactured by Nichiban Co., Ltd.) was attached to the surface protective film on the surface of the optical laminate of the test sample. The peeling tape has a size of 24 mm in width and 100 mm in length, and has a notch at the center of the short side provided with the notch in the plan view shape of the optical laminate of the test sample. A surface protection film that straddles the short side and has a length range of 10 mm from one end in the length direction of the peeling tape as the mounting end. It was mounted so that it was placed on the surface (see FIG. 3). In the comparative example, the peeling tape was attached to the center position of one of the short sides in the same manner as described above.
 剥離用テープのうち光学積層体の取付け端部とは反対側の把持側端部を剥離装置(オートグラフAGS-50NX、島津社製)のチャックで把持し、光学積層体の面方向に対する角度(剥離角度)を180°、剥離速度を300mm/分として、剥離用テープを取付けた短辺に対向するもう一方の短辺に向かう方向に剥離用テープを引っ張る剥離試験を行った。剥離試験の結果、試験用サンプルから表面保護フィルムが剥離された場合をAと評価し、剥離用テープが表面保護フィルムから剥離し、試験用サンプルから表面保護フィルムが剥離されなかった場合をBと評価した。この剥離試験を10枚又は20枚の試験用サンプルに対して行い、剥離不良率を、下式:
  剥離不良率[%]=(評価Bの回数/剥離試験の回数)×100
に基づいて算出した。
Of the peeling tape, the gripping side end on the side opposite to the mounting end of the optical laminate is gripped by the chuck of the peeling device (Autograph AGS-50NX, manufactured by Shimadzu), and the angle with respect to the surface direction of the optical laminate ( A peeling test was conducted in which the peeling angle) was 180 ° and the peeling speed was 300 mm / min, and the peeling tape was pulled in the direction facing the other short side facing the short side to which the peeling tape was attached. As a result of the peeling test, the case where the surface protective film is peeled from the test sample is evaluated as A, and the case where the peeling tape is peeled from the surface protective film and the surface protective film is not peeled from the test sample is evaluated as B. evaluated. This peeling test was performed on 10 or 20 test samples, and the peeling defect rate was calculated by the following formula:
Peeling defect rate [%] = (number of evaluation B / number of peeling tests) x 100
It was calculated based on.
 〔実施例1〕
 (原料積層体の作製)
 ポリビニルアルコール系樹脂フィルムにヨウ素が吸着配向した、直線偏光層(厚み8μm)を準備した。この直線偏光層の一方の面に、水系接着剤を介して、保護層としてのハードコート(HC)層が形成された環状オレフィン系樹脂(COP)フィルム(厚み25μm)(以下、「25HC-COPフィルム」ということがある。)のCOPフィルム側(HC層側とは反対側)を貼合した。この保護層のHC層上に、ポリエステル系樹脂フィルム(厚み38μm)上にアクリル系粘着剤層(厚み15μm)を形成した表面保護フィルム(厚み53μm)のアクリル系粘着剤層側を貼合した。直線偏光層の他方の面に、水系接着剤を介して、保護層としてのトリアセチルセルロース(TAC)フィルム(厚み20μm)を貼合した。これにより、表面保護フィルム付き偏光板(1)を得た。表面保護フィルム付き偏光板(1)は、表面保護フィルム(ポリエステル系樹脂フィルム、アクリル系粘着剤層)、25HC-COPフィルム(HC層、COPフィルム)、直線偏光層、及びTACフィルムがこの順に積層されたものであった。
[Example 1]
(Preparation of raw material laminate)
A linearly polarized light layer (thickness 8 μm) in which iodine was adsorbed and oriented on a polyvinyl alcohol-based resin film was prepared. A cyclic olefin resin (COP) film (thickness 25 μm) (hereinafter, “25HC-COP”) in which a hard coat (HC) layer as a protective layer is formed on one surface of the linearly polarized light layer via an aqueous adhesive. The COP film side (the side opposite to the HC layer side) of "film") was bonded. On the HC layer of this protective layer, the acrylic pressure-sensitive adhesive layer side of the surface protective film (thickness 53 μm) in which the acrylic pressure-sensitive adhesive layer (thickness 15 μm) was formed on the polyester-based resin film (thickness 38 μm) was bonded. A triacetyl cellulose (TAC) film (thickness 20 μm) as a protective layer was attached to the other surface of the linearly polarized light layer via an aqueous adhesive. As a result, a polarizing plate (1) with a surface protective film was obtained. In the polarizing plate (1) with a surface protective film, a surface protective film (polyester resin film, acrylic pressure-sensitive adhesive layer), a 25HC-COP film (HC layer, COP film), a linearly polarizing layer, and a TAC film are laminated in this order. It was done.
 次に、重合性液晶化合物の硬化物層であるλ/4板(厚み2μm)、紫外線硬化性接着剤の接着剤硬化層(厚み2μm)、及び、重合性液晶化合物の硬化物層であるポジティブCプレート(厚み3μm)がこの順に積層された位相差層を準備した。表面保護フィルム付き偏光板(1)のTACフィルムと、位相差層のλ/4板とを、粘着剤層である貼合層(厚み17μm)によって貼合した。続いて、剥離フィルム(厚み38μm)上にアクリル系粘着剤を用いて形成された粘着剤層(厚み25μm)を形成した剥離フィルム付き粘着剤層(1)を準備した。表面保護フィルム付き偏光板(1)に貼合された位相差層のポジティブCプレート側に、剥離フィルム付き粘着剤層(1)の粘着剤層を貼合し、長辺の長さが37mm、短辺の長さが35mmの長方形に裁断して原料積層体(1)を得た。原料積層体(1)は、表面保護フィルム付き偏光板(1)(表面保護フィルム、25HC-COPフィルム、直線偏光層、及びTACフィルム)、粘着剤層である貼合層、位相差層(λ/4板、貼合層、ポジティブCプレート)、及び剥離フィルム付き粘着剤層(1)(粘着剤層、剥離フィルム)がこの順に積層されたものであった。原料積層体(1)における、偏光板(25HC-COPフィルム、直線偏光層、TACフィルム)から、位相差層(λ/4板、貼合層、ポジティブCプレート)までの積層部分の厚みは77μmであった。また、原料積層体(1)の長辺の方向は、直線偏光層の吸収軸に平行であった。 Next, a λ / 4 plate (thickness 2 μm) which is a cured product layer of a polymerizable liquid crystal compound, an adhesive cured layer (thickness 2 μm) of an ultraviolet curable adhesive, and a positive which is a cured product layer of a polymerizable liquid crystal compound. A retardation layer in which C plates (thickness 3 μm) were laminated in this order was prepared. The TAC film of the polarizing plate (1) with a surface protective film and the λ / 4 plate of the retardation layer were bonded by a bonding layer (thickness 17 μm) which was an adhesive layer. Subsequently, a pressure-sensitive adhesive layer (1) with a release film was prepared by forming a pressure-sensitive adhesive layer (thickness 25 μm) formed on a release film (thickness 38 μm) using an acrylic pressure-sensitive adhesive. The pressure-sensitive adhesive layer of the pressure-sensitive adhesive layer (1) with a release film is bonded to the positive C plate side of the retardation layer bonded to the polarizing plate (1) with a surface protective film, and the length of the long side is 37 mm. A raw material laminate (1) was obtained by cutting into a rectangle having a short side length of 35 mm. The raw material laminate (1) is a polarizing plate with a surface protective film (1) (surface protective film, 25HC-COP film, linear polarizing layer, and TAC film), a bonding layer which is an adhesive layer, and a retardation layer (λ). A / 4 plate, a bonding layer, a positive C plate), and an adhesive layer (1) with a release film (adhesive layer, release film) were laminated in this order. The thickness of the laminated portion of the raw material laminate (1) from the polarizing plate (25HC-COP film, linearly polarized light layer, TAC film) to the retardation layer (λ / 4 plate, bonded layer, positive C plate) is 77 μm. Met. Further, the direction of the long side of the raw material laminate (1) was parallel to the absorption axis of the linearly polarized light layer.
 (光学積層体の作製)
 図8に示す装置を用い、上記で説明した第1工程(上記[a])の手順にしたがって原料積層体を積層した積層物Wを用意し、上記で説明した第2工程(上記[b])の手順にしたがって原料積層体の4つの辺に対応する端面に対して研磨を行った。さらに、上記で説明した第2工程(上記[b])の手順にしたがって、原料積層体の一方の短辺の一端にある角部1つに対して研磨を行って、1つの切欠き部を有する光学積層体を得た。角部の研磨は、4つの辺に対応する端面に対する研磨後の原料積層体の角部の頂点から短辺方向及び長辺方向のそれぞれに0.3mm(図1の距離Laa及び距離Lab)の位置に第1切欠き開始点P1及び第2切欠き開始点P2を設定し(図1の第1切欠き開始点P1b、第2切欠き開始点P2bを参照。)、第1切欠き開始点P1及び第2切欠き開始点P2を結ぶ直線状の切欠き線に沿って行った。上記の研磨はいずれも、積層物Wと回転工具60との相対移動速度を2100mm/分、回転工具の回転速度を5400rpmとした。得られた光学積層体について剥離評価を行った。結果を表1に示す。
(Preparation of optical laminate)
Using the apparatus shown in FIG. 8, a laminate W in which the raw material laminates are laminated according to the procedure of the first step (above [a]) described above is prepared, and the second step (above [b]) described above. ), The end faces corresponding to the four sides of the raw material laminate were polished. Further, according to the procedure of the second step (above [b]) described above, one corner portion at one end of one short side of the raw material laminate is polished to form one notch portion. An optical laminate having was obtained. The corners are polished by 0.3 mm (distance Laa and distance Lab in FIG. 1) from the apex of the corner of the raw material laminate after polishing to the end faces corresponding to the four sides in the short side direction and the long side direction, respectively. The first notch start point P1 and the second notch start point P2 are set at the positions (see the first notch start point P1b and the second notch start point P2b in FIG. 1), and the first notch start point is set. It was performed along a linear notch line connecting P1 and the second notch start point P2. In each of the above polishings, the relative moving speed between the laminate W and the rotating tool 60 was set to 2100 mm / min, and the rotating speed of the rotating tool was set to 5400 rpm. The obtained optical laminate was evaluated for peeling. The results are shown in Table 1.
 表面保護フィルムと剥離用テープとの間の密着力を次の手順で測定した。上記で得た光学積層体から剥離フィルムを剥離して粘着剤層を露出させ、露出した粘着剤層により、剥離フィルムを除去した光学積層体をガラス板(保持台)に貼合して試験用サンプルとした。この試験用サンプルの表面保護フィルムの表面の面内に、上記剥離評価の項で説明した剥離用テープを貼合し、上記剥離評価の項で説明した剥離装置を用いた180°剥離試験(剥離角度180°、剥離速度300mm/分)により、表面保護フィルムと剥離用テープとの間の密着力を測定した。この密着力は、9N/25mmであった。なお、剥離用テープを剥離する際に、表面保護フィルムは偏光性積層体から剥離しなかった。 The adhesion between the surface protective film and the peeling tape was measured by the following procedure. The release film is peeled off from the optical laminate obtained above to expose the pressure-sensitive adhesive layer, and the optical laminate from which the release film has been removed is attached to a glass plate (holding table) by the exposed pressure-sensitive adhesive layer for testing. It was used as a sample. A 180 ° peeling test (peeling) using the peeling device described in the peeling evaluation section is performed by adhering the peeling tape described in the peeling evaluation section to the surface of the surface protective film of the test sample. The adhesive force between the surface protective film and the peeling tape was measured by an angle of 180 ° and a peeling speed of 300 mm / min). This adhesion was 9N / 25mm. When the peeling tape was peeled off, the surface protective film was not peeled off from the polarizing laminate.
 また、表面保護フィルムのアクリル系粘着剤層側と25HC-COPフィルムのHC層側との間の密着力は、上記剥離評価の項で説明した剥離装置を用いた180°剥離試験(剥離角度180°、剥離速度300mm/分)により測定したところ、0.03N/25mmであった。 Further, the adhesion between the acrylic pressure-sensitive adhesive layer side of the surface protective film and the HC layer side of the 25HC-COP film is a 180 ° peeling test (peeling angle 180) using the peeling device described in the peeling evaluation section above. °, peeling speed 300 mm / min), and it was 0.03 N / 25 mm.
 〔実施例2〕
 原料積層体(1)の一方の短辺の両端にある角部2つに対してそれぞれ研磨を行って、2つの切欠き部を形成したこと以外は、実施例1と同様にして光学積層体を得た。2つの切欠き部はいずれも、実施例1と同様に、4つの辺に対応する端面の研磨後の原料積層体(1)の角部の頂点から第1切欠き開始点P1及び第2切欠き開始点P2までの距離はそれぞれ0.3mmとし、第1切欠き開始点P1及び第2切欠き開始点P2を結ぶ切欠き線はいずれも直線とした。光学積層体について剥離評価を行った。結果を表1に示す。
[Example 2]
The optical laminate is the same as in Example 1 except that the two corners on both ends of one short side of the raw material laminate (1) are polished to form two notches. Got In each of the two notches, as in the first embodiment, the first notch start point P1 and the second cut from the apex of the corner of the raw material laminate (1) after polishing the end faces corresponding to the four sides. The distance to the notch start point P2 was 0.3 mm, and the notch line connecting the first notch start point P1 and the second notch start point P2 was a straight line. Peeling evaluation was performed on the optical laminate. The results are shown in Table 1.
 〔実施例3〕
 原料積層体(4つの辺に対応する端面の研磨後の原料積層体)の角部の頂点から第1切欠き開始点P1及び第2切欠き開始点P2までの距離をそれぞれ0.2mmとしたこと以外は、実施例2と同様にして光学積層体を得た。光学積層体について剥離評価を行った。
結果を表1に示す。
[Example 3]
The distances from the apex of the corner of the raw material laminate (raw material laminate after polishing the end faces corresponding to the four sides) to the first notch start point P1 and the second notch start point P2 were set to 0.2 mm, respectively. An optical laminate was obtained in the same manner as in Example 2 except for the above. Peeling evaluation was performed on the optical laminate.
The results are shown in Table 1.
 〔実施例4〕
 原料積層体(4つの辺に対応する端面の研磨後の原料積層体)の角部の頂点から第1切欠き開始点P1及び第2切欠き開始点P2までの距離をそれぞれ0.1mmとしたこと以外は、実施例2と同様にして光学積層体を得た。光学積層体について剥離評価を行った。
結果を表1に示す。
[Example 4]
The distances from the apex of the corner of the raw material laminate (raw material laminate after polishing the end faces corresponding to the four sides) to the first notch start point P1 and the second notch start point P2 were set to 0.1 mm, respectively. An optical laminate was obtained in the same manner as in Example 2 except for the above. Peeling evaluation was performed on the optical laminate.
The results are shown in Table 1.
 〔実施例5〕
 (原料積層体の作製)
 保護層としてのハードコート(HC)層が形成されたCOPフィルムとして厚み16μmのもの(以下、「16HC-COPフィルム」ということがある。)を用い、保護層としてのTACフィルムを貼合しないこと以外は、実施例1と同様の手順で表面保護フィルム付き偏光板(2)を得た。表面保護フィルム付き偏光板(2)は、表面保護フィルム(ポリエステル系樹脂フィルム、アクリル系粘着剤層)、16HC-COPフィルム(HC層、COPフィルム)、直線偏光層がこの順に積層されたものであった。
[Example 5]
(Preparation of raw material laminate)
Use a COP film having a thickness of 16 μm (hereinafter, sometimes referred to as “16HC-COP film”) on which a hard coat (HC) layer as a protective layer is formed, and do not attach a TAC film as a protective layer. A polarizing plate (2) with a surface protective film was obtained in the same procedure as in Example 1 except for the above. The polarizing plate with a surface protective film (2) is formed by laminating a surface protective film (polyester resin film, acrylic pressure-sensitive adhesive layer), a 16HC-COP film (HC layer, COP film), and a linearly polarizing layer in this order. there were.
 剥離フィルム(厚み38μm)上にアクリル系粘着剤を用いて形成された粘着剤層(厚み10μm)を形成した剥離フィルム付き粘着剤層(2)を準備した。表面保護フィルム付き偏光板(1)に代えて表面保護フィルム付き偏光板(2)を用い、表面保護フィルム付き偏光板(2)の直線偏光層側と位相差層のλ/4板とを、粘着剤層である貼合層(厚み5μm)によって貼合し、位相差層のポジティブCプレート側に、剥離フィルム付き粘着剤層(1)に代えて剥離フィルム付き粘着剤層(2)の粘着剤層を貼合したこと以外は、実施例1と同様の手順で原料積層体(2)を得た。 A pressure-sensitive adhesive layer (2) with a release film was prepared by forming a pressure-sensitive adhesive layer (thickness 10 μm) formed on a release film (thickness 38 μm) using an acrylic pressure-sensitive adhesive. A polarizing plate with a surface protective film (2) is used instead of the polarizing plate with a surface protective film (1), and the linearly polarizing layer side of the polarizing plate with a surface protective film (2) and the λ / 4 plate of the retardation layer are separated. It is bonded by a bonding layer (thickness 5 μm) which is a pressure-sensitive adhesive layer, and the pressure-sensitive adhesive layer (2) with a release film is adhered to the positive C plate side of the retardation layer instead of the pressure-sensitive adhesive layer (1) with a release film. A raw material laminate (2) was obtained in the same procedure as in Example 1 except that the agent layers were bonded together.
 原料積層体(2)は、表面保護フィルム付き偏光板(2)(表面保護フィルム、16HC-COPフィルム、直線偏光層)、粘着剤層である貼合層、位相差層(λ/4板、貼合層、ポジティブCプレート)、及び剥離フィルム付き粘着剤層(2)(粘着剤層、剥離フィルム)がこの順に積層されたものであった。原料積層体(2)における、偏光板(16HC-COPフィルム、直線偏光層)から位相差層(λ/4板、貼合層、ポジティブCプレート)までの積層部分の厚みは36μmであった。また、原料積層体(2)の長辺の方向は、直線偏光層の吸収軸に平行であった。 The raw material laminate (2) is a polarizing plate with a surface protective film (2) (surface protective film, 16HC-COP film, linear polarizing layer), a bonding layer which is an adhesive layer, a retardation layer (λ / 4 plate,). The bonding layer, the positive C plate), and the pressure-sensitive adhesive layer (2) with a release film (the pressure-sensitive adhesive layer and the release film) were laminated in this order. The thickness of the laminated portion from the polarizing plate (16HC-COP film, linearly polarized light layer) to the retardation layer (λ / 4 plate, bonded layer, positive C plate) in the raw material laminate (2) was 36 μm. Further, the direction of the long side of the raw material laminate (2) was parallel to the absorption axis of the linearly polarized light layer.
 (光学積層体の作製)
 原料積層体(2)を用い、積層物Wと回転工具60との相対移動速度を700mm/分、回転工具60の回転速度を4800rpmとしたこと以外は、実施例2と同様の手順で光学積層体を得た。実施例1と同様の手順で、表面保護フィルムと剥離用テープとの間の密着力、及び、表面保護フィルムのアクリル系粘着剤層側と16HC-COPフィルムのHC層側との間の密着力を測定したところ、それぞれ9N/25mm、及び、0.03N/25mmであった。
(Preparation of optical laminate)
Using the raw material laminate (2), optical lamination was performed in the same procedure as in Example 2 except that the relative movement speed between the laminate W and the rotary tool 60 was 700 mm / min and the rotation speed of the rotary tool 60 was 4800 rpm. I got a body. Adhesion between the surface protective film and the release tape and the adhesion between the acrylic pressure-sensitive adhesive layer side of the surface protection film and the HC layer side of the 16HC-COP film in the same procedure as in Example 1. Was measured and found to be 9N / 25mm and 0.03N / 25mm, respectively.
 〔実施例6〕
 原料積層体(2)の一方の短辺の一端にある角部1つのみに対して研磨を行って、1つの切欠き部を形成したこと以外は、実施例5と同様の手順で光学積層体を得た。光学積層体について剥離評価を行った。結果を表1に示す。
[Example 6]
Optical lamination is performed in the same procedure as in Example 5 except that only one corner portion at one end of one short side of the raw material laminate (2) is polished to form one notch portion. I got a body. Peeling evaluation was performed on the optical laminate. The results are shown in Table 1.
 〔比較例1〕
 原料積層体の角部に対して研磨を行わず、切欠き部を形成しないこと以外は、実施例1と同様にして光学積層体を得た。光学積層体について剥離評価を行った。結果を表1に示す。
[Comparative Example 1]
An optical laminate was obtained in the same manner as in Example 1 except that the corners of the raw material laminate were not polished and notches were not formed. Peeling evaluation was performed on the optical laminate. The results are shown in Table 1.
 〔比較例2〕
 原料積層体の角部に対して研磨を行わず、切欠き部を形成しないこと以外は、実施例5と同様にして光学積層体を得た。光学積層体について剥離評価を行った。結果を表1に示す。
[Comparative Example 2]
An optical laminate was obtained in the same manner as in Example 5 except that the corners of the raw material laminate were not polished and notches were not formed. Peeling evaluation was performed on the optical laminate. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 各実施例及び各比較例では、剥離試験の際に、光学積層体を構成する各層(25HC-COPフィルム又は16HC-COPフィルム、直線偏光層、TACフィルム、粘着剤層、λ/4板、貼合層、ポジティブCプレート、粘着剤層)及びガラス板(保持台)の間の剥離は認められなかった。 In each Example and each Comparative Example, each layer (25HC-COP film or 16HC-COP film, linearly polarized light layer, TAC film, adhesive layer, λ / 4 plate, pasted) constituting the optical laminate was applied at the time of the peeling test. No peeling was observed between the laminated layer, the positive C plate, the adhesive layer) and the glass plate (holding table).
 1,1a,1b 光学積層体、10a,10b,10c,10d 辺、10eb,10ed 線、11b,11d 切欠き部、15 四角形、15a 第1辺、15b 第2辺、15c 第3辺、15d 第4辺、20 偏光性積層体、21 偏光板、22 位相差層、31 粘着剤層、32 剥離フィルム、35 剥離用テープ、41 表面保護フィルム、50 支持部、51 基板、52 フレーム、53 回転テーブル、54 シリンダ、55 ジグ、60 回転工具、Laa,Lab,Lba,Lbd 距離、Pab,Pda 頂点、P1b,P1d(P1) 第1切欠き開始点、P2b,P2d(P2) 第2切欠き開始点、W 積層物。 1,1a, 1b optical laminate, 10a, 10b, 10c, 10d side, 10eb, 10ed line, 11b, 11d notch, 15 quadrangle, 15a first side, 15b second side, 15c third side, 15d first 4 sides, 20 polarized laminates, 21 polarizing plates, 22 retardation layers, 31 adhesive layers, 32 release films, 35 release tapes, 41 surface protection films, 50 supports, 51 substrates, 52 frames, 53 rotary tables , 54 Cylinder, 55 Jig, 60 Rotating Tool, Laa, Lab, Lba, Lbd Distance, Pab, Pda Vertex, P1b, P1d (P1) 1st Notch Start Point, P2b, P2d (P2) 2nd Notch Start Point , W Laminate.

Claims (10)

  1.  表面保護フィルムと、直線偏光層の片面又は両面に保護層を有する偏光板を含む偏光性積層体と、粘着剤層と、をこの順に含む光学積層体であって、
     前記表面保護フィルムは、前記偏光性積層体に対して剥離可能に設けられており、
     前記偏光性積層体の厚みは、120μm以下であり、
     前記光学積層体の平面視形状は、四角形が有する1つの角部が切欠かれた切欠き部を少なくとも1つ有する形状であり、
     前記切欠き部は、前記角部の頂点を構成する第1辺及び第2辺上にそれぞれ設定された第1切欠き開始点P1及び第2切欠き開始点P2を通る切欠き線に沿って切欠かれた形状を有し、
     前記第1切欠き開始点P1及び前記第2切欠き開始点P2は、前記頂点からの距離がそれぞれ0.1mm以上0.5mm以下となるように設定されている、光学積層体。
    An optical laminate including a surface protective film, a polarizing laminate containing a polarizing plate having a protective layer on one or both sides of a linear polarizing layer, and an adhesive layer in this order.
    The surface protective film is provided so as to be peelable from the polarizing laminate.
    The thickness of the polarizing laminate is 120 μm or less, and the thickness is 120 μm or less.
    The plan view shape of the optical laminate is a shape in which one corner portion of the quadrangle has at least one notched portion.
    The notch portion is along a notch line passing through a first notch start point P1 and a second notch start point P2 set on the first side and the second side forming the apex of the corner portion, respectively. Has a notched shape,
    An optical laminate in which the first notch start point P1 and the second notch start point P2 are set so that the distances from the vertices are 0.1 mm or more and 0.5 mm or less, respectively.
  2.  前記四角形は、方形である、請求項1に記載の光学積層体。 The optical laminate according to claim 1, wherein the quadrangle is a square.
  3.  前記切欠き線は、直線又は円弧状の曲線である、請求項1又は2に記載の光学積層体。 The optical laminate according to claim 1 or 2, wherein the notch line is a straight line or an arcuate curve.
  4.  前記光学積層体の前記切欠き部における端面は、回転工具による切削加工面である、請求項1~3のいずれか1項に記載の光学積層体。 The optical laminate according to any one of claims 1 to 3, wherein the end surface of the optical laminate in the notch is a surface cut by a rotary tool.
  5.  前記四角形が有する4つの辺の長さは、それぞれ30mm以上100mm以下の範囲内である、請求項1~4のいずれか1項に記載の光学積層体。 The optical laminate according to any one of claims 1 to 4, wherein the lengths of the four sides of the quadrangle are each within a range of 30 mm or more and 100 mm or less.
  6.  前記切欠き部を少なくとも2つ有し、
     前記切欠き部は、前記四角形の隣合う2つの角部をそれぞれ切欠くように設けられている、請求項1~5のいずれか1項に記載の光学積層体。
    It has at least two notches
    The optical laminate according to any one of claims 1 to 5, wherein the cutout portion is provided so as to cut out two adjacent corner portions of the quadrangle.
  7.  前記偏光性積層体は、前記偏光板の片面又は両面に位相差層を有する、請求項1~6のいずれか1項に記載の光学積層体。 The optical laminate according to any one of claims 1 to 6, wherein the polarizing laminate has a retardation layer on one side or both sides of the polarizing plate.
  8.  さらに、前記粘着剤層の前記偏光性積層体側とは反対側に、前記粘着剤層に対して剥離可能な剥離フィルムを有する、請求項1~7のいずれか1項に記載の光学積層体。 The optical laminate according to any one of claims 1 to 7, further comprising a release film that can be peeled off from the pressure-sensitive adhesive layer on the side of the pressure-sensitive adhesive layer opposite to the polarizing laminate side.
  9.  請求項1~8のいずれか1項に記載の光学積層体から前記表面保護フィルムを剥離する剥離方法であって、
     前記光学積層体を前記粘着剤層によって被着体に貼合する工程と、
     前記光学積層体の前記表面保護フィルム側の表面に剥離用テープを取付ける工程と、
     前記剥離用テープを引き起こすことにより、前記被着体に貼合された前記光学積層体から前記表面保護フィルムを剥離する工程と、を含み、
     前記取付ける工程は、前記光学積層体の平面視形状において端部に前記切欠き部が設けられた1辺を跨ぐように、前記剥離用テープを取付ける、剥離方法。
    A peeling method for peeling the surface protective film from the optical laminate according to any one of claims 1 to 8.
    The step of adhering the optical laminate to the adherend by the pressure-sensitive adhesive layer, and
    A step of attaching a peeling tape to the surface of the optical laminate on the surface protective film side,
    A step of peeling the surface protective film from the optical laminate attached to the adherend by causing the peeling tape is included.
    The attachment step is a peeling method in which the peeling tape is attached so as to straddle one side provided with the notch at the end in the plan view shape of the optical laminate.
  10.  前記光学積層体は、請求項6に記載の光学積層体であり、
     前記剥離用テープを取付ける前記1辺は、両端部に前記切欠き部が設けられた辺である、請求項9に記載の剥離方法。
    The optical laminate is the optical laminate according to claim 6.
    The peeling method according to claim 9, wherein the one side on which the peeling tape is attached is a side provided with the notches at both ends.
PCT/JP2021/003881 2020-04-09 2021-02-03 Optical laminate and peeling method WO2021205727A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020227038819A KR20220160692A (en) 2020-04-09 2021-02-03 Optical laminate and peeling method
CN202180026087.8A CN115362393A (en) 2020-04-09 2021-02-03 Optical laminate and peeling method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020070537 2020-04-09
JP2020-070537 2020-04-09
JP2020118608A JP2021167930A (en) 2020-04-09 2020-07-09 Optical laminate and peeling method
JP2020-118608 2020-07-09

Publications (1)

Publication Number Publication Date
WO2021205727A1 true WO2021205727A1 (en) 2021-10-14

Family

ID=78023947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003881 WO2021205727A1 (en) 2020-04-09 2021-02-03 Optical laminate and peeling method

Country Status (4)

Country Link
KR (1) KR20220160692A (en)
CN (1) CN115362393A (en)
TW (1) TW202138192A (en)
WO (1) WO2021205727A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001166141A (en) * 1999-12-09 2001-06-22 Sumitomo Chem Co Ltd Optical film
JP2008083210A (en) * 2006-09-26 2008-04-10 Epson Imaging Devices Corp Liquid crystal device, method of peeling polarizing plate, method for manufacturing liquid crystal device, and electronic equipment
JP2012226343A (en) * 2011-04-08 2012-11-15 Sumitomo Chemical Co Ltd Method for manufacturing polarizing plate, polarizing plate, and liquid crystal display device
JP2014224963A (en) * 2012-09-13 2014-12-04 日東電工株式会社 Optical member, polarizing plate set, and liquid crystal display device
JP2016062029A (en) * 2014-09-19 2016-04-25 日東電工株式会社 Polarizing plate
WO2017026079A1 (en) * 2015-08-07 2017-02-16 住友化学株式会社 Polarizing plate and image display device
JP2017181597A (en) * 2016-03-28 2017-10-05 住友化学株式会社 Optical film and polarizing plate
JP2018180512A (en) * 2017-04-04 2018-11-15 住友化学株式会社 Polarizing plate with protect film and liquid crystal panel
JP2019166583A (en) * 2018-03-22 2019-10-03 日東電工株式会社 Manufacturing method of non-linearly processed resin sheet
JP2019191556A (en) * 2018-04-24 2019-10-31 住友化学株式会社 Laminate body
JP2020038254A (en) * 2018-09-03 2020-03-12 住友化学株式会社 Optical film

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019191551A (en) 2017-10-31 2019-10-31 住友化学株式会社 Laminate body

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001166141A (en) * 1999-12-09 2001-06-22 Sumitomo Chem Co Ltd Optical film
JP2008083210A (en) * 2006-09-26 2008-04-10 Epson Imaging Devices Corp Liquid crystal device, method of peeling polarizing plate, method for manufacturing liquid crystal device, and electronic equipment
JP2012226343A (en) * 2011-04-08 2012-11-15 Sumitomo Chemical Co Ltd Method for manufacturing polarizing plate, polarizing plate, and liquid crystal display device
JP2014224963A (en) * 2012-09-13 2014-12-04 日東電工株式会社 Optical member, polarizing plate set, and liquid crystal display device
JP2016062029A (en) * 2014-09-19 2016-04-25 日東電工株式会社 Polarizing plate
WO2017026079A1 (en) * 2015-08-07 2017-02-16 住友化学株式会社 Polarizing plate and image display device
JP2017181597A (en) * 2016-03-28 2017-10-05 住友化学株式会社 Optical film and polarizing plate
JP2018180512A (en) * 2017-04-04 2018-11-15 住友化学株式会社 Polarizing plate with protect film and liquid crystal panel
JP2019166583A (en) * 2018-03-22 2019-10-03 日東電工株式会社 Manufacturing method of non-linearly processed resin sheet
JP2019191556A (en) * 2018-04-24 2019-10-31 住友化学株式会社 Laminate body
JP2020038254A (en) * 2018-09-03 2020-03-12 住友化学株式会社 Optical film

Also Published As

Publication number Publication date
CN115362393A (en) 2022-11-18
KR20220160692A (en) 2022-12-06
TW202138192A (en) 2021-10-16

Similar Documents

Publication Publication Date Title
CN108693589B (en) Polarizing plate with protective film and liquid crystal panel
CN110275234B (en) Optical laminate and method for producing optical laminate with adhesive layer
JP6680347B2 (en) Laminate
JP2019199081A (en) Laminate
JP6457053B2 (en) Polarizing plate with protective film and liquid crystal panel
KR20200080174A (en) Laminate and method of manufacturing the same
JP2021167930A (en) Optical laminate and peeling method
CN111103647B (en) Liquid crystal layer laminate
JP2019159199A (en) Method of manufacturing optical laminate with adhesive layers
WO2021205727A1 (en) Optical laminate and peeling method
WO2021177040A1 (en) Optical laminate
JP2022000693A (en) Optical laminate with adhesive layer, and display device
CN110275237B (en) Method for producing optical laminate and method for producing optical laminate with adhesive layer
JP7169159B2 (en) Liquid crystal layer laminate
WO2022224921A1 (en) Stacked body, and method for manufacturing same
KR20190109269A (en) Method for manufacturing optical laminate and method for manufacturing optical laminate with adhesive layer
WO2021182056A1 (en) Optical laminate
WO2021187098A1 (en) Circular polarizing sheet and optical laminate
JP2023037965A (en) Adhesive member and method for producing the same
JP2023159077A (en) Laminate and method of manufacturing the same
JP2023037967A (en) Adhesive member and method for producing the same
JP2022167759A (en) Laminate and manufacturing method therefor
TW202231459A (en) Laminate
JP2022148467A (en) optical laminate
JP2023068424A (en) Laminate and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21785407

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227038819

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21785407

Country of ref document: EP

Kind code of ref document: A1