WO2021177040A1 - Optical laminate - Google Patents

Optical laminate Download PDF

Info

Publication number
WO2021177040A1
WO2021177040A1 PCT/JP2021/006062 JP2021006062W WO2021177040A1 WO 2021177040 A1 WO2021177040 A1 WO 2021177040A1 JP 2021006062 W JP2021006062 W JP 2021006062W WO 2021177040 A1 WO2021177040 A1 WO 2021177040A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
adhesive layer
sensitive adhesive
pressure
film
Prior art date
Application number
PCT/JP2021/006062
Other languages
French (fr)
Japanese (ja)
Inventor
大山 姜
載鎬 沈
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2021177040A1 publication Critical patent/WO2021177040A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means

Definitions

  • the present invention relates to an optical laminate.
  • Patent Document 1 describes a bendable circular polarizing plate including a polarizing element and a retardation film arranged on one side of the polarizing element. It is described that the retardation film contains a liquid crystal compound. Patent Document 1 describes that the flexibility of a circularly polarizing plate was evaluated by a cylindrical mandrel test Type 2 (a test in which a sample is wound around a metal cylinder).
  • Patent Document 2 describes an adhesive optical film having an optical film and an adhesive layer, and the adhesive layer having a portion inside the edge of the optical film. According to Patent Document 2, such an adhesive optical film is less likely to cause a phenomenon (glue chipping) in which the adhesive at the edge of the optical film falls off when the end of the film comes into contact with an object. It is stated that it is easy to prevent the adhesive from contaminating the surface of the optical film (glue stain).
  • An object of the present invention is to provide an optical laminate in which cracks are less likely to occur in the retardation layer even when bent.
  • a polarizing layer, a first adhesive layer, and a back plate are provided in this order.
  • the polarizing layer has a retardation film and a linear polarizing plate from the side close to the first pressure-sensitive adhesive layer, and the retardation film has a retardation layer including a layer in which a polymerizable liquid crystal compound is cured.
  • An optical laminate in which the position of the end portion of the first pressure-sensitive adhesive layer is outside the position of the end portion of the retardation layer in a direction orthogonal to the lamination direction.
  • the distance between the position of the end portion of the first pressure-sensitive adhesive layer and the position of the end portion of the retardation layer in the direction orthogonal to the laminating direction is more than 0 ⁇ m and 50 ⁇ m or less [1]. ]
  • Optical laminate. [3] The optical laminate according to [1] or [2], wherein the thickness of the first pressure-sensitive adhesive layer is 10 ⁇ m or more.
  • the back plate is a touch sensor layer, and is The end face of the touch sensor layer is inclined to 80 ° or more and less than 90 ° with respect to the surface opposite to the surface on the first adhesive layer side, according to any one of [1] to [4].
  • a second pressure-sensitive adhesive layer and a front plate are provided in this order on the side of the polarizing layer opposite to the first pressure-sensitive adhesive layer side. The position of the end portion of the second pressure-sensitive adhesive layer in the direction orthogonal to the laminating direction is described in any one of [1] to [5], which is located inside the position of the end portion of the front plate.
  • a surface protective film is provided on the front plate on the side opposite to the polarizing layer side.
  • a third pressure-sensitive adhesive layer and a separate film are provided on the back plate on the side opposite to the polarizing layer side.
  • the position of the end portion of the surface protective film is outside the position of the end portion of the first pressure-sensitive adhesive layer, and the position of the end portion of the separate film is the position of the first portion.
  • the optical laminate according to [6] which is outside the position of the end portion of the pressure-sensitive adhesive layer.
  • FIG. 1 is a schematic cross-sectional view showing an example of the optical laminate of the present invention.
  • the optical laminate 100 shown in FIG. 1 includes a polarizing layer 2, a first adhesive layer 11, and a back plate 3 in this order.
  • the polarizing layer 2 has a retardation layer 20 including a layer in which the polymerizable liquid crystal compound is cured and a linear polarizing plate 25 from the side close to the first pressure-sensitive adhesive layer 11, and both are bonded by the bonding layer 4. ing.
  • the retardation layer 20 including a layer in which the polymerizable liquid crystal compound is cured constitutes a retardation film.
  • the first pressure-sensitive adhesive layer 11 is laminated in contact with the retardation layer 20.
  • FIG. 2 is a schematic cross-sectional view showing an example of the optical laminate of the present invention.
  • the optical laminate 200 shown in FIG. 2 includes a front plate 1, a second adhesive layer 12, a polarizing layer 2, a first adhesive layer 11, and a back plate 3 in this order.
  • the polarizing layer 2 includes a first retardation layer 21 including a layer in which the polymerizable liquid crystal compound is cured and a second retardation layer 22 including a layer in which the polymerizable liquid crystal compound is cured from the side close to the first pressure-sensitive adhesive layer 11.
  • the back plate 3 is a touch sensor layer, and includes a transparent conductive layer 31 and a resin film 32.
  • the optical laminate may be provided with a surface protective film on the side of the front plate opposite to the polarizing layer side, and may be provided with a third adhesive layer and a separate film on the side of the back plate opposite to the polarizing layer side. Can be done.
  • FIG. 3 is a schematic cross-sectional view showing an example of the optical laminate of the present invention.
  • the optical laminate 300 shown in FIG. 3 includes a surface protective film 40, a front plate 1, a second adhesive layer 12, a polarizing layer 2, a first adhesive layer 11, a back plate 3, a third adhesive layer 42, and a separate layer.
  • the film 41 is provided in this order.
  • the optical laminate can include layers other than the layers shown in FIGS. 1 to 3.
  • the optical laminate includes, for example, an impact-resistant film arranged between the front plate 1 and the polarizing layer 2, a resin film arranged on the side of the retardation film opposite to the linear polarizing plate 25 side, and the front plate 1 and polarized light.
  • a colored layer arranged between the layer 2 and the layer 2 may be provided.
  • the position of the end portion of the first pressure-sensitive adhesive layer is located outside the position of the end portion of the retardation layer in the direction orthogonal to the lamination direction.
  • the direction orthogonal to the stacking direction can preferably be a direction orthogonal to the stacking direction and orthogonal to any side of the optical laminate in plan view.
  • the first adhesive layer 11 is inside the line segment connecting the end of the lower surface of the retardation layer 20 and the end of the upper surface of the back plate 3.
  • the position of the end of the first pressure-sensitive adhesive layer 11 means the outermost position 30 of the first pressure-sensitive adhesive layer 11.
  • the line segment connecting the lower end of the retardation layer 20 and the upper end of the back plate 3 is formed.
  • the position of the end portion of the first pressure-sensitive adhesive layer 11 means the innermost position 30 of the first pressure-sensitive adhesive layer 11.
  • the outermost position of the retardation layer is defined as the position of the end portion of the retardation layer in the cross section orthogonal to the stacking direction.
  • the position of the end portion of the retardation layer is arranged closest to the first pressure-sensitive adhesive layer in the lamination direction. It means the position of the end of the retardation layer.
  • the optical laminate 200 shown in FIG. 2 includes two retardation layers, a first retardation layer 21 and a second retardation layer 22. In this case, the position of the end portion of the retardation layer means the position of the end portion of the first retardation layer 21.
  • the first pressure-sensitive adhesive layer Since the position of the end portion of the first pressure-sensitive adhesive layer is outside the position of the end portion of the retardation layer in the direction orthogonal to the stacking direction, cracks occur in the retardation layer even if the first pressure-sensitive adhesive layer is bent. It becomes difficult. Since the first pressure-sensitive adhesive layer protrudes outward in the direction orthogonal to the stacking direction, the first pressure-sensitive adhesive layer is present directly below the retardation layer. It is presumed that the first pressure-sensitive adhesive layer functions as a support when the optical laminate is bent and can support the retardation layer, so that cracks are less likely to occur in the retardation layer. Therefore, it is preferable that the first pressure-sensitive adhesive layer is laminated in contact with the retardation layer.
  • the distance between the position of the end portion of the first pressure-sensitive adhesive layer and the position of the end portion of the retardation layer is not particularly limited.
  • the distance between the position of the end portion of the first pressure-sensitive adhesive layer and the position of the end portion of the retardation layer is preferably more than 0 ⁇ m and 50 ⁇ m or less in the direction orthogonal to the stacking direction. It is more preferably more than 0 ⁇ m and 30 ⁇ m or less, and may be 1 ⁇ m or more and 20 ⁇ m or less.
  • the distance between the position of the end portion of the first pressure-sensitive adhesive layer 11 and the position of the end portion of the retardation layer 20 corresponds to a distance of 50.
  • the shape of the end portion of the first pressure-sensitive adhesive layer is not particularly limited as long as the first pressure-sensitive adhesive layer can support the retardation layer. As shown in FIG. 1, in a cross section orthogonal to the stacking direction, the first adhesive layer 11 is outside the line segment connecting the end of the lower surface of the retardation layer 20 and the end of the upper surface of the back plate 3. It may be protruding.
  • the position of the end portion of the second pressure-sensitive adhesive layer can be inside the position of the end portion of the front plate.
  • the position of the end portion of the second pressure-sensitive adhesive layer can be determined in the same manner as the method of determining the position of the end portion of the first pressure-sensitive adhesive layer. That is, in the cross section orthogonal to the stacking direction, when the second adhesive layer is not depressed inward from the line segment connecting the lower end of the front plate and the upper end of the polarizing layer, the second adhesive is adhered.
  • the position of the edge of the agent layer means the outermost position of the second pressure-sensitive adhesive layer.
  • the second adhesive layer has a portion recessed inward from the line segment connecting the end portion of the lower surface of the front plate and the end portion of the upper surface of the polarizing layer.
  • the position of the end portion of the second pressure-sensitive adhesive layer means the innermost position of the second pressure-sensitive adhesive layer.
  • the outermost position of the front plate is defined as the position of the end portion of the front plate in the cross section orthogonal to the stacking direction.
  • the distance between the position of the end portion of the second pressure-sensitive adhesive layer and the position of the end portion of the front plate in the direction orthogonal to the laminating direction may be 0 ⁇ m or more and 50 ⁇ m or less, and may be 0 ⁇ m. It may be super 30 ⁇ m or less, or 1 ⁇ m or more and 20 ⁇ m or less.
  • the distance between the position of the end portion of the second pressure-sensitive adhesive layer 12 and the position of the end portion of the front plate 1 corresponds to the distance 51.
  • the end surface of the back plate is preferably inclined at 80 ° or more and less than 90 ° with respect to the surface of the back plate opposite to the surface on the first pressure-sensitive adhesive layer side, and is 85 ° or more and 90 °. More preferably, it is tilted below °.
  • the angle of inclination is the line segment passing through the end of the upper surface (the surface on the first adhesive layer side) of the back plate and the end of the lower surface (the surface opposite to the first adhesive layer side) of the back plate. It means the angle formed by the lower surface of the back plate.
  • the angle of inclination corresponds to the angle 6 in FIG.
  • the position of the end portion of the first pressure-sensitive adhesive layer of the optical laminate is higher than the position of the end portion of the retardation layer. It suffices to have a portion that is also on the outside in at least a part on the circumference thereof. In order to improve the flexibility, it is preferable that the portion where the position of the end portion of the first pressure-sensitive adhesive layer is outside the position of the end portion of the retardation layer is formed in the bent portion of the optical laminate. ..
  • the portion where the position of the end portion of the first pressure-sensitive adhesive layer is outside the position of the end portion of the retardation layer is formed on the entire side including the bent portion. Is more preferable.
  • the portion where the position of the end portion of the first pressure-sensitive adhesive layer is outside the position of the end portion of the retardation layer may be formed over the entire circumference of the optical laminate.
  • the optical laminate can be bent at least in the direction in which the polarizing layer 2 (front plate 1 in FIG. 2) is inside. Bending means that the polarizing layer 2 (or the front plate 1) can be bent inward without causing cracks.
  • the optical laminate according to the present invention has excellent bending resistance.
  • the shape of the optical laminate in a plan view may be, for example, a rectangular shape, preferably a rectangular shape having a long side and a short side, and more preferably a rectangle.
  • the length of the long side may be, for example, 10 mm to 1400 mm, preferably 50 mm to 600 mm.
  • the length of the short side is, for example, 5 mm to 800 mm, preferably 30 mm to 500 mm, and more preferably 50 mm to 300 mm.
  • Each layer constituting the optical laminate may have corners R-processed, end portions notched, or perforated.
  • the thickness of the optical laminate is not particularly limited because it varies depending on the function required for the optical laminate, the application of the laminate, etc., but is, for example, 20 ⁇ m to 1,000 ⁇ m, preferably 50 ⁇ m to 500 ⁇ m.
  • the front plate 1 constitutes the outermost surface of the display device when viewed from the visual side.
  • the material and thickness of the front plate 1 are not limited as long as it is a plate-like body capable of transmitting light, and the front plate 1 may be composed of only one layer or may be composed of two or more layers. Examples thereof include resin films and glass films.
  • the front plate preferably has a resin film.
  • the front plate 1 may be a laminate of a resin film and a glass film.
  • the thickness of the front plate 1 may be, for example, 30 to 200 ⁇ m, preferably 50 to 150 ⁇ m, and more preferably 50 to 100 ⁇ m.
  • the material thereof is, for example, an acrylic resin such as polymethyl (meth) acrylate and polyethyl (meth) acrylate; a polyolefin resin such as polyethylene, polypropylene, polymethylpentene and polystyrene; Cellular resins such as acetyl cellulose, acetyl cellulose butyrate, propionyl cellulose, butyryl cellulose and acetyl propionyl cellulose; polyvinyl chloride resins such as ethylene-vinyl acetate copolymer, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol and polyvinyl acetal.
  • an acrylic resin such as polymethyl (meth) acrylate and polyethyl (meth) acrylate
  • a polyolefin resin such as polyethylene, polypropylene, polymethylpentene and polystyrene
  • Cellular resins such as acetyl cellulose, acetyl
  • Pulmonate resins such as polysulfone and polyether sulfone; ketone resins such as polyether ketone and polyether ether ketone; polyetherimide; polycarbonate resin; polyester resin; polyimide resin; polyamideimide resin; and polyamide resin Examples include resin. These polymers can be used alone or in combination of two or more. Above all, from the viewpoint of improving strength and transparency, it is preferable to use a polycarbonate resin, a polyester resin, a polyimide resin, a polyamide-imide resin, or a polyamide resin.
  • the thickness of the resin film may be, for example, 10 to 100 ⁇ m, preferably 20 to 70 ⁇ m, and more preferably 30 to 60 ⁇ m.
  • the front plate 1 may be a film in which a hard coat layer is provided on at least one surface of the resin film to further improve the hardness.
  • the hard coat layer may be formed on one surface of the resin film or may be formed on both surfaces. By providing the hard coat layer, it is possible to obtain a front plate having improved hardness and scratch resistance.
  • the hard coat layer is, for example, a cured layer of an ultraviolet curable resin. Examples of the ultraviolet curable resin include acrylic resin, silicone resin, polyester resin, urethane resin, amide resin, epoxy resin and the like.
  • the hard coat layer may contain additives to improve hardness. Additives are not limited, and examples thereof include inorganic fine particles, organic fine particles, and mixtures thereof.
  • the front plate 1 has a glass film
  • tempered glass for a display is preferably used as the glass film.
  • the thickness of the glass film may be, for example, 10 ⁇ m or more and 500 ⁇ m or less, and may be 20 ⁇ m or more and 100 ⁇ m or less.
  • the front plate 1 may have a function as a window film in the display device.
  • the front plate 1 may further have a function as a touch sensor, a blue light cut function, a viewing angle adjusting function, and the like.
  • the polarizing layer has a retardation film and a linear polarizing plate from the side closer to the first pressure-sensitive adhesive layer.
  • the polarizing layer may be a circular polarizing plate (including an elliptical polarizing plate). Since the circularly polarizing plate can absorb the external light reflected in the image display device, it is possible to impart a function as an antireflection film to the optical laminate.
  • the linear polarizing plate has a function of selectively transmitting linearly polarized light in a certain direction from unpolarized light rays such as natural light.
  • the linearly polarizing plate contains a stretched film or stretched layer on which a dichroic dye is adsorbed, a cured product of a polymerizable liquid crystal compound, and a dichroic dye, and the dichroic dye is dispersed in the cured product of the polymerizable liquid crystal compound.
  • An oriented liquid crystal layer or the like can be provided as a polarizer.
  • a linear polarizing plate using a liquid crystal layer as a polarizer is preferable because there is no limitation in the bending direction as compared with a stretched film or a stretched layer on which a dichroic dye is adsorbed.
  • the polarizer which is a stretched film on which a dichroic dye is adsorbed, is usually obtained by uniaxially stretching the polyvinyl alcohol-based resin film and dyeing the polyvinyl alcohol-based resin film with a dichroic dye such as iodine. It can be produced through a step of adsorbing a dichroic dye, a step of treating a polyvinyl alcohol-based resin film on which a dichroic dye is adsorbed with an aqueous boric acid solution, and a step of washing with water after the treatment with the aqueous boric acid solution.
  • the thickness of the polarizer is usually 30 ⁇ m or less, preferably 18 ⁇ m or less, and more preferably 15 ⁇ m or less. Reducing the thickness of the polarizer is advantageous for thinning the optical laminate.
  • the thickness of the polarizer is usually 1 ⁇ m or more, and may be, for example, 5 ⁇ m or more.
  • the polyvinyl alcohol-based resin is obtained by saponifying the polyvinyl acetate-based resin.
  • the polyvinyl acetate-based resin in addition to polyvinyl acetate which is a homopolymer of vinyl acetate, a copolymer of vinyl acetate and another monomer copolymerizable therewith is used.
  • examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acid compounds, olefin compounds, vinyl ether compounds, unsaturated sulfone compounds, and (meth) acrylamide compounds having an ammonium group. ..
  • the degree of saponification of the polyvinyl alcohol-based resin is usually about 85 mol% or more and 100 mol% or less, preferably 98 mol% or more.
  • the polyvinyl alcohol-based resin may be modified, and polyvinyl formal, polyvinyl acetal, and the like modified with aldehydes can also be used.
  • the degree of polymerization of the polyvinyl alcohol-based resin is usually 1000 or more and 10000 or less, preferably 1500 or more and 5000 or less.
  • the polarizer which is a stretched layer on which a bicolor dye is adsorbed, is usually a step of applying a coating liquid containing the polyvinyl alcohol-based resin on a base film, a step of uniaxially stretching the obtained laminated film, and a uniaxial stretching.
  • a dichroic dye By dyeing the polyvinyl alcohol-based resin layer of the laminated film with a dichroic dye, the dichroic dye is adsorbed to form a polarizer, and the film on which the dichroic dye is adsorbed is coated with a boric acid aqueous solution. It can be produced through a step of treating and a step of washing with water after treatment with an aqueous boric acid solution.
  • the base film used for forming the polarizer may be used as a protective layer for the polarizer. If necessary, the base film may be peeled off from the polarizer.
  • the material and thickness of the base film may be the same as the material and thickness of the resin film described later.
  • the stretched film or the polarizing element which is the stretched layer on which the dichroic dye is adsorbed may be used as it is as a linear polarizing plate, or a resin film may be attached to one or both sides thereof and used as a linear polarizing plate.
  • the thickness of the linearly polarizing plate is preferably 2 ⁇ m or more and 40 ⁇ m or less.
  • the resin film is, for example, a cyclopolyolefin resin film; a cellulose acetate resin film made of a resin such as triacetyl cellulose or diacetyl cellulose; a polyester resin film made of a resin such as polyethylene terephthalate, polyethylene naphthalate, or polybutylene terephthalate; a polycarbonate resin film.
  • films known in the art such as resin films; (meth) acrylic resin films; polypropylene-based resin films can be mentioned.
  • the polarizer and the protective layer can be laminated via a bonding layer described later.
  • the thickness of the resin film is, for example, 100 ⁇ m or less, preferably 80 ⁇ m or less, more preferably 60 ⁇ m or less, further preferably 40 ⁇ m or less, still more preferably 30 ⁇ m or less, and usually 10 ⁇ m or more. From the viewpoint of increasing the absorption rate of the laser, it is preferably 15 ⁇ m or more.
  • a hard coat layer may be formed on the resin film.
  • the hard coat layer may be formed on one surface of the resin film or may be formed on both sides.
  • a thermoplastic resin film having improved hardness and scratch resistance can be obtained.
  • the hard coat layer can be formed in the same manner as the hard coat layer formed on the resin film described above.
  • the polymerizable liquid crystal compound used for forming the liquid crystal layer is a compound having a polymerizable reactive group and exhibiting liquid crystallinity.
  • the polymerizable reactive group is a group involved in the polymerization reaction, and is preferably a photopolymerizable reactive group.
  • the photopolymerizable reactive group refers to a group that can participate in the polymerization reaction by an active radical, an acid, or the like generated from the photopolymerization initiator.
  • Examples of the photopolymerizable functional group include a vinyl group, a vinyloxy group, a 1-chlorovinyl group, an isopropenyl group, a 4-vinylphenyl group, an acryloyloxy group, a methacryloyloxy group, an oxylanyl group, an oxetanyl group and the like.
  • an acryloyloxy group, a methacryloyloxy group, a vinyloxy group, an oxylanyl group and an oxetanyl group are preferable, and an acryloyloxy group is more preferable.
  • the type of the polymerizable liquid crystal compound is not particularly limited, and a rod-shaped liquid crystal compound, a disk-shaped liquid crystal compound, and a mixture thereof can be used.
  • the liquid crystal property of the polymerizable liquid crystal compound may be a thermotropic liquid crystal or a lyotropic liquid crystal, and the phase-ordered structure may be a nematic liquid crystal or a smectic liquid crystal.
  • the dichroic dye used for the polarizing element which is a liquid crystal layer, preferably has an absorption maximum wavelength ( ⁇ MAX) in the range of 300 to 700 nm.
  • a dichroic dye include an acridine dye, an oxazine dye, a cyanine dye, a naphthalene dye, an azo dye, an anthraquinone dye, and the like, and among them, the azo dye is preferable.
  • the azo dye include a monoazo dye, a bisazo dye, a trisazo dye, a tetrakisazo dye, a stilbene azo dye, and the like, and a bisazo dye and a trisazo dye are preferable.
  • the dichroic dye may be used alone or in combination of two or more, but it is preferable to combine three or more. In particular, it is more preferable to combine three or more kinds of azo compounds.
  • a part of the dichroic dye may have a reactive group or may have a liquid crystal property.
  • the polarizing element which is a liquid crystal layer
  • a composition for forming a polarizing element containing a polymerizable liquid crystal compound and a dichroic dye is applied onto an alignment film formed on a base film, and the polymerizable liquid crystal compound is polymerized. It can be formed by curing.
  • the base film used for forming the polarizer may be used as a protective layer for the polarizer.
  • the material and thickness of the base film may be the same as the material and thickness of the resin film described above.
  • compositions for forming a polarizer containing a polymerizable liquid crystal compound and a dichroic dye examples include JP2013-37353A, JP2013-33249, and Japanese Patent Publication No. 2013-33249. Examples thereof include those described in Japanese Patent Publication No. 2017-83843.
  • the composition for forming a polarizer further contains additives such as a solvent, a polymerization initiator, a cross-linking agent, a leveling agent, an antioxidant, a plasticizer, and a sensitizer, in addition to the polymerizable liquid crystal compound and the dichroic dye. You may be. Only one of these components may be used, or two or more of these components may be used in combination.
  • the polymerization initiator that may be contained in the polarizer-forming composition is a compound that can initiate the polymerization reaction of the polymerizable liquid crystal compound, and is photopolymerizable in that the polymerization reaction can be initiated under lower temperature conditions. Initiators are preferred. Specific examples thereof include photopolymerization initiators capable of generating active radicals or acids by the action of light, and among them, photopolymerization initiators that generate radicals by the action of light are preferable.
  • the content of the polymerization initiator is preferably 1 part by mass or more and 10 parts by mass or less, and more preferably 3 parts by mass or more and 8 parts by mass or less, based on 100 parts by mass of the total amount of the polymerizable liquid crystal compound. Within this range, the reaction of the polymerizable group proceeds sufficiently, and the orientation state of the liquid crystal compound is likely to be stabilized.
  • the thickness of the polarizing element which is the liquid crystal layer, is usually 10 ⁇ m or less, preferably 0.5 ⁇ m or more and 8 ⁇ m or less, and more preferably 1 ⁇ m or more and 5 ⁇ m or less.
  • the polarizer which is a liquid crystal layer
  • the polarizer may be used as a linear polarizing plate without peeling and removing the base film, or may be used as a linear polarizing plate by peeling and removing the base film from the polarizer.
  • the polarizing element which is a liquid crystal layer, may be used as a linear polarizing plate by forming a protective layer on one side or both sides thereof.
  • the protective layer the above-mentioned resin film can be used.
  • the polarizer which is a liquid crystal layer, may have an overcoat layer on one side or both sides of the polarizer for the purpose of protecting the polarizer and the like.
  • the overcoat layer can be formed, for example, by applying a material (composition) for forming the overcoat layer on the polarizer.
  • the material constituting the overcoat layer include a photocurable resin and a water-soluble polymer.
  • a (meth) acrylic resin, a polyvinyl alcohol-based resin, or the like can be used as a material constituting the overcoat layer.
  • the retardation film included in the polarizing layer may be composed of one retardation layer or may be a laminate of two or more retardation layers.
  • the retardation film includes at least one retardation layer including a layer on which the polymerizable liquid crystal compound is cured.
  • each retardation layer is a retardation layer including a layer in which a polymerizable liquid crystal compound is cured.
  • the retardation film is laminated on the side opposite to the front plate side of the polarizer.
  • the retardation film may have an overcoat layer that protects the surface thereof, a base film that supports the retardation film, and the like.
  • the retardation film preferably includes a ⁇ / 4 layer as the retardation layer, and may further include at least one of a ⁇ / 2 layer and a positive C layer.
  • the retardation layer may have an alignment film.
  • the retardation film has a retardation layer having a ⁇ / 2 layer
  • the ⁇ / 2 layer and the ⁇ / 4 layer can be laminated in this order from the polarizer side.
  • the retardation film contains a retardation layer which is a positive C layer
  • the ⁇ / 4 layer and the positive C layer may be laminated in order from the polarizer side
  • the positive C layer and the ⁇ / 4 layer may be laminated in order from the polarizer side. It may be laminated.
  • the first retardation layer 21 can be a positive C layer
  • the second retardation layer 22 can be a ⁇ / 4 layer.
  • the thickness of the retardation layer is, for example, 0.1 ⁇ m or more and 10 ⁇ m or less, preferably 0.5 ⁇ m or more and 8 ⁇ m or less, and more preferably 1 ⁇ m or more and 6 ⁇ m or less. Since a thin retardation layer is prone to cracking due to bending, the present invention is particularly useful when the optical laminate includes a retardation layer having such a thickness.
  • the retardation layer may be formed from the resin film exemplified as the material of the protective layer, or may be formed from a layer in which the polymerizable liquid crystal compound is cured.
  • the retardation layer may further include an alignment film.
  • the retardation film may have a bonding layer for bonding the ⁇ / 4 layer, the ⁇ / 2 layer, and the positive C layer.
  • the bonding layer can be formed from an adhesive layer or an adhesive layer, as will be described later.
  • the retardation layer can be formed by applying a composition containing the polymerizable liquid crystal compound to a base film and curing it.
  • An alignment film may be formed between the base film and the coating layer.
  • the material and thickness of the base film may be the same as the material and thickness of the resin film.
  • the back plate a plate-like body capable of transmitting light, a component used in a normal display device, or the like can be used.
  • the thickness of the back plate may be, for example, 5 ⁇ m or more and 2,000 ⁇ m or less, preferably 10 ⁇ m or more and 1,000 ⁇ m or less, and more preferably 15 ⁇ m or more and 500 ⁇ m or less.
  • the plate-like body used for the back plate may be composed of only one layer, may be composed of two or more layers, and may be formed from the material described in the front plate 1.
  • Examples of the back plate include a resin film, a touch sensor layer, an organic EL display element, a liquid crystal display element, and the like.
  • the touch sensor layer may have at least a transparent conductive layer and may further have a resin film.
  • the touch sensor layer may include a transparent conductive layer 31 and a resin film 32 in this order from the front plate side.
  • the touch sensor layer may also include the resin film 32 and the transparent conductive layer 31 in this order from the front plate side.
  • the touch sensor layer does not have to have a resin film.
  • the touch sensor layer may include a separation layer, a bonding layer, and a protective layer in addition to the transparent conductive layer 31 and the resin film 32.
  • the touch sensor layer is a sensor that can detect the position touched by the front plate 1, and the detection method is not limited as long as it has the transparent conductive layer 31 and the resin film 32.
  • Examples of the touch sensor layer detection method include a resistive film method, a capacitance method, an optical sensor method, an ultrasonic method, an electromagnetic induction coupling method, and a surface acoustic wave method.
  • the capacitance type touch sensor layer is preferably used in terms of low cost, fast reaction speed, and thin film formation.
  • the touch sensor layer preferably has a configuration including a resin film 32 and a transparent conductive layer 31 provided on the surface of the resin film 32 on the bonding layer side.
  • the resin film 32 and the transparent conductive layer 31 may be in contact with each other (for example, by the first method described later).
  • the manufactured touch sensor layer), the resin film 32 and the transparent conductive layer 31 may not be in contact with each other (for example, the touch sensor layer manufactured by the second method described later).
  • the touch sensor layer may include a bonding layer, a separation layer, a protective layer, and the like, in addition to the resin film 32 and the transparent conductive layer 31. Examples of the bonding layer include an adhesive layer and an adhesive layer.
  • An example of the capacitance type touch sensor layer is composed of a resin film, a transparent conductive layer for position detection provided on the surface of the resin film, and a touch position detection circuit.
  • a display device provided with an optical laminate having a capacitance type touch sensor layer
  • the transparent conductive layer is grounded via the capacitance of the human body at the touched point. Will be done.
  • the touch position detection circuit detects the grounding of the transparent conductive layer, and the touched position is detected.
  • the transparent conductive layer may be a transparent conductive layer made of a metal oxide such as ITO, or may be a metal layer made of a metal such as aluminum, copper, silver, gold, or an alloy thereof.
  • the separation layer can be a layer formed on a substrate such as glass and for separating the transparent conductive layer formed on the separation layer from the substrate together with the separation layer.
  • the separation layer is preferably an inorganic layer or an organic layer. Examples of the material forming the inorganic layer include silicon oxide.
  • a (meth) acrylic resin composition, an epoxy resin composition, a polyimide resin composition, or the like can be used as the material for forming the organic material layer.
  • the touch sensor layer may include a protective layer that is in contact with the transparent conductive layer 31 and protects the conductive layer.
  • the protective layer contains at least one of an organic insulating film and an inorganic insulating film, and these films can be formed by a spin coating method, a sputtering method, a vapor deposition method or the like.
  • the touch sensor layer can be manufactured, for example, as follows.
  • the resin film 32 is first laminated on the glass substrate via the bonding layer.
  • a transparent conductive layer 31 patterned by photolithography is formed on the resin film 32.
  • the glass substrate and the resin film 32 are separated to obtain a touch sensor layer composed of the transparent conductive layer 31 and the resin film 32.
  • a separation layer is first formed on the glass substrate, and if necessary, a protective layer is formed on the separation layer.
  • a transparent conductive layer 31 patterned by photolithography is formed on the separation layer (or protective layer).
  • a peelable protective film is laminated on the transparent conductive layer 31, and the transparent conductive layer 31 to the separation layer are transferred to separate the glass substrate.
  • Examples of the resin film 32 included in the touch sensor layer include resin films such as triacetyl cellulose, polyethylene terephthalate, polyethylene naphthalate, polyolefin, polycycloolefin, polycarbonate, polyether sulfone, polyarylate, polyimide, polyamide, and polystyrene.
  • resin films such as triacetyl cellulose, polyethylene terephthalate, polyethylene naphthalate, polyolefin, polycycloolefin, polycarbonate, polyether sulfone, polyarylate, polyimide, polyamide, and polystyrene.
  • the thickness of the resin film 32 of the touch sensor layer is preferably 50 ⁇ m or less, and more preferably 30 ⁇ m or less, from the viewpoint of easily forming an optical laminate having excellent bending resistance.
  • the thickness of the resin film 32 included in the touch sensor layer is, for example, 10 ⁇ m or more.
  • the pressure-sensitive adhesive layer can be composed of a pressure-sensitive adhesive composition containing a resin as a main component, such as (meth) acrylic-based, rubber-based, urethane-based, ester-based, silicone-based, and polyvinyl ether-based. Among them, a pressure-sensitive adhesive composition using a (meth) acrylic resin having excellent transparency, weather resistance, heat resistance and the like as a base polymer is preferable.
  • the pressure-sensitive adhesive composition may be an active energy ray-curable type or a thermosetting type.
  • the composition of the first pressure-sensitive adhesive layer, the second pressure-sensitive adhesive layer, and the third pressure-sensitive adhesive layer may be the same as or different from each other.
  • the thickness of the first pressure-sensitive adhesive layer, the second pressure-sensitive adhesive layer, and the third pressure-sensitive adhesive layer may be the same as or different from each other.
  • Examples of the (meth) acrylic resin (base polymer) used in the pressure-sensitive adhesive composition include butyl (meth) acrylate, ethyl (meth) acrylate, isooctyl (meth) acrylate, and 2- (meth) acrylate.
  • a polymer or copolymer having one or more (meth) acrylic acid esters such as ethylhexyl as a monomer is preferably used.
  • the base polymer may be copolymerized with a polar monomer.
  • Examples of the polar monomer include (meth) acrylic acid, 2-hydroxypropyl (meth) acrylate, hydroxyethyl (meth) acrylate, (meth) acrylamide, N, N-dimethylaminoethyl (meth) acrylate, and glycidyl ().
  • Examples thereof include monomers having a carboxyl group, a hydroxyl group, an amide group, an amino group, an epoxy group and the like, such as meta) acrylate.
  • the pressure-sensitive adhesive composition can contain a cross-linking agent.
  • the cross-linking agent is a divalent or higher metal ion that forms a carboxylic acid metal salt with a carboxyl group; a polyamine compound that forms an amide bond with a carboxyl group; poly.
  • Examples include epoxy compounds and polyols that form an ester bond with a carboxyl group; polyisocyanate compounds that form an amide bond with a carboxyl group. Of these, polyisocyanate compounds are preferable.
  • the pressure-sensitive adhesive composition includes fine particles for imparting light scattering, beads (resin beads, glass beads, etc.), glass fibers, resins other than the base polymer, pressure-sensitive adhesives, fillers (metal powders and other inorganic powders). Etc.), antioxidants, UV absorbers, dyes, pigments, colorants, antifoaming agents, corrosion inhibitors, photopolymerization initiators and other additives may be included.
  • It can be formed by applying an organic solvent diluent of the above pressure-sensitive adhesive composition on a substrate and drying it.
  • the storage elastic modulus of the pressure-sensitive adhesive layer at a temperature of 25 ° C. is preferably 0.005 to 1.0 MPa, more preferably 0.01 to 0.5 MPa, and preferably 0.01 to 0.2 MPa. Is even more preferable.
  • the storage elastic modulus can be measured using a viscoelasticity measuring device (MCR-301, Antonio Par).
  • a plurality of pressure-sensitive adhesive layers are laminated so as to have a thickness of 150 ⁇ m and bonded to a glass film. The measurement can be performed under the condition of a temperature rising rate of 5 ° C./min.
  • the thickness of the first pressure-sensitive adhesive layer is preferably 10 ⁇ m or more, and more preferably 20 ⁇ m or more, from the viewpoint of enhancing the function of supporting the retardation layer.
  • the upper limit of the thickness of the first pressure-sensitive adhesive layer is not particularly limited, but may be 50 ⁇ m or less, or 40 ⁇ m or less.
  • the thickness of the second pressure-sensitive adhesive layer is preferably 10 ⁇ m or more, and more preferably 20 ⁇ m or more.
  • the upper limit of the thickness of the first pressure-sensitive adhesive layer is not particularly limited, but may be 50 ⁇ m or less, or 40 ⁇ m or less.
  • the thickness of the third pressure-sensitive adhesive layer is preferably 10 ⁇ m or more, and more preferably 20 ⁇ m or more.
  • the upper limit of the thickness of the first pressure-sensitive adhesive layer is not particularly limited, but may be 50 ⁇ m or less, or 40 ⁇ m or less.
  • the thickness of the pressure-sensitive adhesive layer refers to the thickness of the thickest part of the pressure-sensitive adhesive layer.
  • the laminating layer can be a layer composed of a pressure-sensitive adhesive or an adhesive. Each laminating layer may be made of the same material or different materials.
  • the retardation films may be bonded to each other with an adhesive layer or may be bonded with an adhesive layer.
  • the linearly polarizing plate and the retardation film are preferably bonded with an adhesive layer.
  • the bonding layer on which the transparent conductive layer 31 and the resin film 32 are laminated is preferably an adhesive layer.
  • the same pressure-sensitive adhesive layer as the above-mentioned first pressure-sensitive adhesive layer, second pressure-sensitive adhesive layer, or third pressure-sensitive adhesive layer can be used as the pressure-sensitive adhesive layer constituting the bonding layer.
  • the adhesive can be formed by combining one or more of, for example, a water-based adhesive, an active energy ray-curable adhesive, and the like.
  • the water-based adhesive include a polyvinyl alcohol-based resin aqueous solution, a water-based two-component urethane-based emulsion adhesive, and the like.
  • the active energy ray-curable adhesive is an adhesive that cures by irradiating with active energy rays such as ultraviolet rays, and is, for example, an adhesive containing a polymerizable compound and a photopolymerizable initiator, and an adhesive containing a photoreactive resin.
  • Examples of the polymerizable compound include photopolymerizable monomers such as a photocurable epoxy monomer, a photocurable acrylic monomer, and a photocurable urethane monomer, and oligomers derived from these monomers.
  • Examples of the photopolymerization initiator include compounds containing substances that generate active species such as neutral radicals, anion radicals, and cationic radicals by irradiating them with active energy rays such as ultraviolet rays.
  • the thickness of the pressure-sensitive adhesive layer is preferably 1 ⁇ m or more and 30 ⁇ m or less, more preferably 2 ⁇ m or more and 20 ⁇ m, and 3 ⁇ m or more and 10 ⁇ m or less.
  • the thickness of the adhesive layer is preferably 0.01 ⁇ m or more and 5 ⁇ m or less, and more preferably 0.1 ⁇ m or more and 3 ⁇ m or less.
  • the surface protective film is a film for protecting the surface of the polarizing layer or the front plate.
  • the surface protective film has an adhesive layer after the optical laminate with the surface protective film is attached to, for example, an image display element, the surface protective film is peeled off together with the adhesive layer. .. Therefore, the surface protective film can be detachably attached to the surface of the polarizing layer or the front plate.
  • the surface protective film can be composed of, for example, a resin film and an adhesive layer laminated on the resin film.
  • the resin film is composed of, for example, a polyolefin resin such as a polyethylene resin, a polypropylene resin, and a cyclic polyolefin resin; a polyester resin such as polyethylene terephthalate and polyethylene naphthalate; a polycarbonate resin; and a (meth) acrylic resin. be able to.
  • the base film may have a single-layer structure or a multi-layer structure.
  • the pressure-sensitive adhesive layer can be composed of a (meth) acrylic pressure-sensitive adhesive, an epoxy-based pressure-sensitive adhesive, a urethane-based pressure-sensitive adhesive, a silicone-based pressure-sensitive adhesive, or the like.
  • the surface protective film may be a resin film having self-adhesiveness such as polypropylene resin and polyethylene resin. In this case, the surface protective film does not have an adhesive layer.
  • the thickness of the surface protective film can be, for example, 5 to 150 ⁇ m, preferably 10 to 100 ⁇ m, more preferably 20 to 75 ⁇ m, still more preferably 25 to 70 ⁇ m (for example, 60 ⁇ m or less, further 55 ⁇ m or less). Is. If the thickness of the surface protective film is less than 5 ⁇ m, the protection of the polarizing layer or the front plate may be insufficient, and it is disadvantageous in terms of handleability. If the thickness of the surface protective film exceeds 150 ⁇ m, it is disadvantageous in terms of thinning the optical laminate and reworkability of the surface protective film.
  • the position of the end portion of the surface protective film is preferably outside the position of the end portion of the first pressure-sensitive adhesive layer.
  • the separate film is a film that is temporarily attached to protect the surface of the pressure-sensitive adhesive layer until it is attached to a display element (for example, a liquid crystal cell) or another optical member.
  • the separate film is usually composed of a thermoplastic resin film having one surface subjected to a mold release treatment such as a silicone-based or fluorine-based mold release agent, and the mold release-treated surface is bonded to a third pressure-sensitive adhesive layer.
  • the thermoplastic resin constituting the separate film can be, for example, a polyethylene resin such as polyethylene, a polypropylene resin such as polypropylene, a polyester resin such as polyethylene terephthalate or polyethylene naphthalate, or the like.
  • the thickness of the separate film is, for example, 10 to 50 ⁇ m.
  • the position of the end portion of the separate film is preferably outside the position of the end portion of the first pressure-sensitive adhesive layer.
  • a polarizing layer and a back plate are laminated via a first pressure-sensitive adhesive layer, and if necessary, a front plate, a second pressure-sensitive adhesive layer, a surface protective film, and a third pressure-sensitive adhesive are further laminated. It is manufactured by laminating layers and separate films and then cutting them into a predetermined shape. After cutting each member, the front plate, the second pressure-sensitive adhesive layer, the surface protective film, the third pressure-sensitive adhesive layer, and the separate film may be laminated. The end face may be polished after cutting, but it is not necessary to polish the adhesive layer because the adhesive layer is easily scraped by the polishing process. By cutting as follows, it is easy to obtain an optical laminate in which the position of the end portion of the adhesive layer and the inclination of the back plate are controlled.
  • the laminated body 400 is fixed to the base 7 having a half-moon-shaped cross section along the shape of the base 7.
  • the laminated body 400 is cut into a predetermined shape by an appropriate cutting means 500 from above the table 7.
  • the position of the end portion of the first pressure-sensitive adhesive layer can be easily set to the outside of the position of the end portion of the retardation layer, and the position of the end portion of the second pressure-sensitive adhesive layer can be easily set. Is easier to set inside than the position of the edge of the front plate.
  • the distance between the position of the end portion of the first pressure-sensitive adhesive layer and the position of the end portion of the retardation layer, the position of the end portion of the second pressure-sensitive adhesive layer, and the position of the end portion can be determined. It is also possible to adjust the distance between the position of the edge of the front plate.
  • the end surface of the back plate is the surface opposite to the surface on the first adhesive layer side. It is easy to incline it to 80 ° or more and less than 90 °.
  • the polarizing layer side surface (or front plate side surface) of the laminate is in contact with the surface of the base 7, the end portion of the back plate is 90 with respect to the surface opposite to the surface on the first adhesive layer side. Easy to incline above ° and below 130 °.
  • Cutting means include lasers, blades and water jets.
  • Blades include scissors, Thomson blades, Pinnacle blades.
  • the laser for example, a laser that emits a wavelength in the range of 200 nm to 11 ⁇ m is used.
  • the laser may be a continuous wave (CW) laser or a pulsed laser.
  • Examples of the laser include a gas laser such as a CO 2 laser, a solid-state laser such as a YAG laser, and a semiconductor laser.
  • a CO 2 laser is preferable because it is easy to adapt to the absorption region of the laminate.
  • the optical laminate can be arranged, for example, on the display surface of the display panel to form a display device.
  • the optical laminate includes a surface protective film or a separate film
  • the optical laminate can be arranged on the display surface of the display panel after being peeled off to form a display device.
  • the optical laminate is particularly preferred for applications where it is applied to the display surface of a flexible display panel.
  • the display device has an optical laminate arranged on the front surface (visual side) thereof and a display panel.
  • the optical laminate and the display panel are laminated by a laminated layer.
  • the bonding layer that laminates the optical laminate and the display panel can be an adhesive layer.
  • the display panel may be configured to be foldable with the viewing side surface inside, or may be configured to be rotatable. Specific examples of the display panel include a liquid crystal display element, an organic EL display element, an inorganic EL display element, a plasma display element, and a field emission type display element.
  • the display device can be used as a mobile device such as a smartphone or tablet, a television, a digital photo frame, an electronic signboard, a measuring instrument or an instrument, an office device, a medical device, a computer device, or the like.
  • a mobile device such as a smartphone or tablet, a television, a digital photo frame, an electronic signboard, a measuring instrument or an instrument, an office device, a medical device, a computer device, or the like.
  • the unit "part" of the ratio of blending substances is based on weight unless otherwise specified.
  • the bending test was performed at a temperature of 25 ° C.
  • the optical laminate was installed in a bending tester (F1-2SV, manufactured by Forehu) in a flat state (not bent), and was bent so that the front plate side was on the inside. After that, it returned to the original flat state.
  • F1-2SV bending tester
  • the bending speed was once per second.
  • the minimum bending radius at which cracks did not occur in the retardation layer even after repeating the bending operation 200,000 times was investigated. The results are shown as "bending radius" in Table 1.
  • a polyimide (PI) film having a hard coat layer formed on one surface was used as the front plate.
  • the thickness of the polyimide film was 50 ⁇ m, and the thickness of the hard coat layer was 10 ⁇ m.
  • a photoalignment film was formed on the base film.
  • a composition containing a dichroic dye and a polymerizable liquid crystal compound was applied onto a photoalignment film, oriented and cured to obtain a polarizer having a thickness of 2 ⁇ m.
  • a 25 ⁇ m-thick triacetyl cellulose (TAC) film was attached onto the polarizer via an adhesive layer.
  • the base film was peeled off and an overcoat layer was formed on the exposed surface.
  • the overcoat layer was formed by applying a resin composition containing polyvinyl alcohol and water and drying at a temperature of 80 ° C. for 3 minutes. The thickness of the overcoat layer was 1.0 ⁇ m.
  • a ⁇ / 4 layer composed of a layer in which the polymerizable liquid crystal compound was cured and a positive C layer composed of a layer in which the polymerizable liquid crystal compound was cured were laminated via an ultraviolet curable adhesive to obtain a retardation film.
  • the thickness of the ⁇ / 4 layer was 2 ⁇ m
  • the thickness of the positive C layer was 3 ⁇ m
  • the thickness of the ultraviolet curable adhesive layer was 1 ⁇ m.
  • a linearly polarizing plate and a retardation film were laminated via an acrylic pressure-sensitive adhesive layer to obtain a circularly polarizing plate.
  • the thickness of the acrylic pressure-sensitive adhesive layer was 5 ⁇ m.
  • the obtained circularly polarizing plate was a laminate having a TAC film, a polarizer, an overcoat layer, an adhesive layer, a ⁇ / 4 layer, an adhesive layer, and a positive C layer in this order.
  • the angle formed by the absorption axis of the polarizer and the slow axis of the ⁇ / 4 layer was 45 °.
  • a separation layer was formed on the glass substrate.
  • a patterned transparent conductive layer was formed on the separation layer by photolithography.
  • a peelable protective film was laminated on the transparent conductive layer, and the transparent conductive layer was transferred to the separation layer to separate the glass substrate.
  • the total thickness of the separation layer and the transparent conductive layer was 7 ⁇ m.
  • Example 1 The front plate, the circularly polarizing plate, and the touch sensor layer were laminated with each other via an acrylic pressure-sensitive adhesive layer. The thickness of this acrylic pressure-sensitive adhesive layer was 25 ⁇ m.
  • the front plate was laminated on the TAC film side of the circularly polarizing plate, and the touch sensor layer was laminated on the positive C layer side of the circularly polarizing plate. After laminating the touch sensor layer on the circularly polarizing plate, the peelable protective film laminated on the touch sensor layer was peeled off. In this way, a laminated body in which the front plate, the second pressure-sensitive adhesive layer, the circularly polarizing plate, the first pressure-sensitive adhesive layer, and the touch sensor layer were laminated in this order was produced.
  • the obtained laminate was fixed to a table 7 having a half-moon-shaped cross section as shown in FIG.
  • the surface of the laminated body on the touch sensor layer (back plate) side is in contact with the table 7.
  • the laminated body was cut by irradiating the laminated body with the laser light emitted from the CO 2 laser from above the table 7.
  • the laser light was focused by the lens, and the focus was on the surface on the front plate side.
  • the output of the laser light was 11 W, and the moving speed (cutting speed) of the laser light was 320 mm / s.
  • the same operation was performed on the four sides to prepare a rectangular optical laminate.
  • Example 2 An optical laminate was produced in the same manner as in Example 1 except that the laminate was punched and cut with a blade instead of the CO 2 laser. As the blade, a single-edged blade having a blade angle of 30 ° was used. The cutting speed was 0.1 m / s.
  • Example 3 An optical laminated body was produced in the same manner as in Example 1 except that the front plate side surface of the laminated body was in contact with the table 7 when the laminated body was fixed to the table 7. The laser light was focused by the lens, and the focus was on the surface on the touch sensor layer side.
  • Example 4 An optical laminated body was produced in the same manner as in Example 2 except that the front plate side surface of the laminated body was in contact with the table 7 when the laminated body was fixed to the table 7.
  • Example 1 The end face of the optical laminate obtained in Example 1 was polished with a rotating cutting blade.
  • the amount to be cut by polishing is 0.5 mm
  • the rotation speed of the cutting blade is 4800 rpm
  • the feed rate is 600 mm / min. And said.
  • Example 2 The end face of the optical laminate obtained in Example 3 was polished with a rotating cutting blade.
  • the amount to be cut by polishing is 0.5 mm
  • the rotation speed of the cutting blade is 4800 rpm
  • the feed rate is 600 mm / min. And said.
  • An optical laminate in which the position of the end portion of the first pressure-sensitive adhesive layer is outside the position of the end portion of the retardation layer in the direction orthogonal to the lamination direction has a small bending radius, and the phase difference even if repeatedly bent. It was difficult for the layer to crack.

Abstract

The purpose of the present invention is to provide an optical laminate in which cracks do not readily occur in a retardation layer even when the laminate is bent. The present invention provides an optical laminate which comprises a polarization layer, a first adhesive layer, and a back surface panel in this order, wherein the polarization layer has, from the side near the first adhesive layer, a retardation film and a linear polarizing plate, the retardation film has a retardation layer which contains a layer of a cured polymerizable liquid crystal compound, and the positions of the ends of the first adhesive layer in a direction perpendicular to the lamination direction are further outward than the positions of the ends of the retardation layer.

Description

光学積層体Optical laminate
 本発明は、光学積層体に関する。 The present invention relates to an optical laminate.
 特許文献1には、偏光子と、偏光子の一方の側に配置された位相差フィルムとを備える屈曲可能な円偏光板が記載されている。位相差フィルムは、液晶化合物を含むことが記載されている。特許文献1には、円筒形マンドレル試験 Type2(金属製円柱にサンプルを巻きつける試験)で円偏光板の屈曲性を評価したことが記載されている。 Patent Document 1 describes a bendable circular polarizing plate including a polarizing element and a retardation film arranged on one side of the polarizing element. It is described that the retardation film contains a liquid crystal compound. Patent Document 1 describes that the flexibility of a circularly polarizing plate was evaluated by a cylindrical mandrel test Type 2 (a test in which a sample is wound around a metal cylinder).
 特許文献2には、光学フィルムと粘着剤層とを有し、粘着剤層が光学フィルムの端辺よりも内側にある部分を有する粘着型光学フィルムが記載されている。特許文献2には、かかる粘着型光学フィルムは、その端部が何らかの物体と触れることによって、光学フィルム端部の粘着剤が欠けたように脱落してしまう現象(糊欠け)を起こしにくく、脱落した粘着剤が光学フィルムの表面を汚染すること(糊汚れ)を防止しやすい、と記載されている。 Patent Document 2 describes an adhesive optical film having an optical film and an adhesive layer, and the adhesive layer having a portion inside the edge of the optical film. According to Patent Document 2, such an adhesive optical film is less likely to cause a phenomenon (glue chipping) in which the adhesive at the edge of the optical film falls off when the end of the film comes into contact with an object. It is stated that it is easy to prevent the adhesive from contaminating the surface of the optical film (glue stain).
WO2016/158300WO2016 / 158300 特開2004-170907号公報Japanese Unexamined Patent Publication No. 2004-170907
 重合性液晶化合物が硬化した層からなる位相差層を備える光学積層体は、小さな屈曲半径で、繰り返し屈曲したときに、位相差層にクラックが生じやすいことが明らかになった。本発明は、屈曲しても、位相差層にクラックが発生しにくい光学積層体を提供することを目的とする。 It has been clarified that an optical laminate having a retardation layer composed of a cured layer of a polymerizable liquid crystal compound tends to crack in the retardation layer when repeatedly bent with a small bending radius. An object of the present invention is to provide an optical laminate in which cracks are less likely to occur in the retardation layer even when bent.
[1] 偏光層、第1粘着剤層、および背面板をこの順に備え、
前記偏光層は、前記第1粘着剤層に近い側から、位相差フィルムと直線偏光板とを有し、前記位相差フィルムは、重合性液晶化合物が硬化した層を含む位相差層を有し、
積層方向に直交する方向において、前記第1粘着剤層の端部の位置は、前記位相差層の端部の位置よりも外側である、光学積層体。
[2] 前記積層方向に直交する方向において、前記第1粘着剤層の端部の位置と、前記位相差層の端部の位置との間の距離は、0μm超50μm以下である、[1]の光学積層体。
[3] 前記第1粘着剤層の厚みは、10μm以上である、[1]または[2]に記載の光学積層体。
[4] 前記第1粘着剤層は、前記位相差層に接して積層されている、[1]~[3]のいずれかに記載の光学積層体。
[5] 前記背面板は、タッチセンサ層であり、
当該タッチセンサ層の端面は、前記第1粘着剤層側の面とは反対側の面に対して80°以上90°未満に傾斜している、[1]~[4]のいずれかに記載の光学積層体。
[6] 前記偏光層における前記第1粘着剤層側とは反対側に、第2の粘着剤層、および前面板をこの順に備え、
前記積層方向に直交する方向において、前記第2粘着剤層の端部の位置は、前記前面板の端部の位置よりも、内側に位置する、[1]~[5]のいずれかに記載の光学積層体。
[7] 前記前面板における前記偏光層側とは反対側に、表面保護フィルムを備え、
前記背面板における前記偏光層側とは反対側に、第3粘着剤層とセパレートフィルムとを備え、
前記積層方向に直交する方向において、前記表面保護フィルムの端部の位置は、前記第1粘着剤層の端部の位置よりも外側であり、前記セパレートフィルムの端部の位置は、前記第1粘着剤層の端部の位置よりも外側である、[6]に記載の光学積層体。
[1] A polarizing layer, a first adhesive layer, and a back plate are provided in this order.
The polarizing layer has a retardation film and a linear polarizing plate from the side close to the first pressure-sensitive adhesive layer, and the retardation film has a retardation layer including a layer in which a polymerizable liquid crystal compound is cured. ,
An optical laminate in which the position of the end portion of the first pressure-sensitive adhesive layer is outside the position of the end portion of the retardation layer in a direction orthogonal to the lamination direction.
[2] The distance between the position of the end portion of the first pressure-sensitive adhesive layer and the position of the end portion of the retardation layer in the direction orthogonal to the laminating direction is more than 0 μm and 50 μm or less [1]. ] Optical laminate.
[3] The optical laminate according to [1] or [2], wherein the thickness of the first pressure-sensitive adhesive layer is 10 μm or more.
[4] The optical laminate according to any one of [1] to [3], wherein the first pressure-sensitive adhesive layer is laminated in contact with the retardation layer.
[5] The back plate is a touch sensor layer, and is
The end face of the touch sensor layer is inclined to 80 ° or more and less than 90 ° with respect to the surface opposite to the surface on the first adhesive layer side, according to any one of [1] to [4]. Optical laminate.
[6] A second pressure-sensitive adhesive layer and a front plate are provided in this order on the side of the polarizing layer opposite to the first pressure-sensitive adhesive layer side.
The position of the end portion of the second pressure-sensitive adhesive layer in the direction orthogonal to the laminating direction is described in any one of [1] to [5], which is located inside the position of the end portion of the front plate. Optical laminate.
[7] A surface protective film is provided on the front plate on the side opposite to the polarizing layer side.
A third pressure-sensitive adhesive layer and a separate film are provided on the back plate on the side opposite to the polarizing layer side.
In the direction orthogonal to the laminating direction, the position of the end portion of the surface protective film is outside the position of the end portion of the first pressure-sensitive adhesive layer, and the position of the end portion of the separate film is the position of the first portion. The optical laminate according to [6], which is outside the position of the end portion of the pressure-sensitive adhesive layer.
 本発明によれば、屈曲しても、位相差層にクラックが発生しにくい光学積層体を提供することができる。 According to the present invention, it is possible to provide an optical laminate in which cracks are less likely to occur in the retardation layer even when bent.
本発明の光学積層体の一例を示す概略断面図である。It is the schematic sectional drawing which shows an example of the optical laminated body of this invention. 本発明の光学積層体の一例を示す概略断面図である。It is the schematic sectional drawing which shows an example of the optical laminated body of this invention. 本発明の光学積層体の一例を示す概略断面図である。It is the schematic sectional drawing which shows an example of the optical laminated body of this invention. 粘着剤層の端部の位置を説明するための概略断面図である。It is the schematic sectional drawing for demonstrating the position of the end portion of the pressure-sensitive adhesive layer. 本発明の光学積層体の製造方法の一例を示す概略断面図である。It is the schematic sectional drawing which shows an example of the manufacturing method of the optical laminated body of this invention.
 以下、図面を参照しつつ本発明の実施形態を説明するが、本発明は以下の実施形態に限定されるものではない。以下の全ての図面においては、各構成要素を理解し易くするために縮尺を適宜調整して示しており、図面に示される各構成要素の縮尺と実際の構成要素の縮尺とは必ずしも一致しない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the following embodiments. In all the drawings below, the scale is appropriately adjusted to make it easier to understand each component, and the scale of each component shown in the drawings does not necessarily match the scale of the actual component.
 <光学積層体>
 図1は、本発明の光学積層体の一例を示す概略断面図である。図1に示す光学積層体100は、偏光層2、第1粘着剤層11、および背面板3をこの順に備える。偏光層2は、第1粘着剤層11に近い側から、重合性液晶化合物が硬化した層を含む位相差層20と直線偏光板25とを有し、両者は貼合層4により貼合されている。重合性液晶化合物が硬化した層を含む位相差層20は、位相差フィルムを構成している。第1粘着剤層11は、位相差層20に接して積層されている。
<Optical laminate>
FIG. 1 is a schematic cross-sectional view showing an example of the optical laminate of the present invention. The optical laminate 100 shown in FIG. 1 includes a polarizing layer 2, a first adhesive layer 11, and a back plate 3 in this order. The polarizing layer 2 has a retardation layer 20 including a layer in which the polymerizable liquid crystal compound is cured and a linear polarizing plate 25 from the side close to the first pressure-sensitive adhesive layer 11, and both are bonded by the bonding layer 4. ing. The retardation layer 20 including a layer in which the polymerizable liquid crystal compound is cured constitutes a retardation film. The first pressure-sensitive adhesive layer 11 is laminated in contact with the retardation layer 20.
 光学積層体は、偏光層における第1粘着剤層側とは反対側に、第2の粘着剤層、および前面板をこの順に備えることができる。図2は、本発明の光学積層体の一例を示す概略断面図である。図2に示す光学積層体200は、前面板1、第2粘着剤層12、偏光層2、第1粘着剤層11、および背面板3をこの順に備える。偏光層2は、第1粘着剤層11に近い側から、重合性液晶化合物が硬化した層を含む第1位相差層21と重合性液晶化合物が硬化した層を含む第2位相差層22と直線偏光板25とを有し、各層は貼合層4により貼合されている。第1位相差層21、第2位相差層22および両者を貼合する貼合層4は、位相差フィルムを構成している。光学積層体200において、背面板3は、タッチセンサ層であり、透明導電層31と樹脂フィルム32とを備える。 The optical laminate can be provided with a second pressure-sensitive adhesive layer and a front plate in this order on the side of the polarizing layer opposite to the first pressure-sensitive adhesive layer side. FIG. 2 is a schematic cross-sectional view showing an example of the optical laminate of the present invention. The optical laminate 200 shown in FIG. 2 includes a front plate 1, a second adhesive layer 12, a polarizing layer 2, a first adhesive layer 11, and a back plate 3 in this order. The polarizing layer 2 includes a first retardation layer 21 including a layer in which the polymerizable liquid crystal compound is cured and a second retardation layer 22 including a layer in which the polymerizable liquid crystal compound is cured from the side close to the first pressure-sensitive adhesive layer 11. It has a linear polarizing plate 25, and each layer is bonded by a bonding layer 4. The first retardation layer 21, the second retardation layer 22, and the bonding layer 4 for bonding both of them form a retardation film. In the optical laminate 200, the back plate 3 is a touch sensor layer, and includes a transparent conductive layer 31 and a resin film 32.
 光学積層体は、前面板における偏光層側とは反対側に、表面保護フィルムを備えることができ、背面板における偏光層側とは反対側に、第3粘着剤層とセパレートフィルムとを備えることができる。図3は、本発明の光学積層体の一例を示す概略断面図である。図3に示す光学積層体300は、表面保護フィルム40、前面板1、第2粘着剤層12、偏光層2、第1粘着剤層11、背面板3、第3粘着剤層42、およびセパレートフィルム41をこの順に備える。 The optical laminate may be provided with a surface protective film on the side of the front plate opposite to the polarizing layer side, and may be provided with a third adhesive layer and a separate film on the side of the back plate opposite to the polarizing layer side. Can be done. FIG. 3 is a schematic cross-sectional view showing an example of the optical laminate of the present invention. The optical laminate 300 shown in FIG. 3 includes a surface protective film 40, a front plate 1, a second adhesive layer 12, a polarizing layer 2, a first adhesive layer 11, a back plate 3, a third adhesive layer 42, and a separate layer. The film 41 is provided in this order.
 光学積層体は、図1~3に示した層以外の層を備えることができる。光学積層体は、例えば、前面板1と偏光層2との間に配置される耐衝撃フィルム、位相差フィルムの直線偏光板25側とは反対側に配置される樹脂フィルム、前面板1と偏光層2との間に配置される着色層を備えていてもよい。 The optical laminate can include layers other than the layers shown in FIGS. 1 to 3. The optical laminate includes, for example, an impact-resistant film arranged between the front plate 1 and the polarizing layer 2, a resin film arranged on the side of the retardation film opposite to the linear polarizing plate 25 side, and the front plate 1 and polarized light. A colored layer arranged between the layer 2 and the layer 2 may be provided.
 本発明の光学積層体は、積層方向に直交する方向において、第1粘着剤層の端部の位置は、位相差層の端部の位置よりも、外側に位置する。光学積層体が平面視で矩形であるとき、積層方向に直交する方向は、好ましくは、積層方向に直交し、かつ平面視で光学積層体の任意の辺に直交する方向であることができる。図1に示すように、積層方向に直交する断面において、位相差層20の下面の端部と背面板3の上面の端部とを結ぶ線分よりも、第1粘着剤層11が内側に陥没していない場合、第1粘着剤層11の端部の位置は、第1粘着剤層11の最も外側の位置30を意味する。一方、図4(a)~(d)に示すように、積層方向に直交する断面において、位相差層20の下面の端部と背面板3の上面の端部とを結ぶ線分よりも、内側に陥没している部分を第1粘着剤層11が有する場合、第1粘着剤層11の端部の位置は、第1粘着剤層11の最も内側の位置30を意味する。位相差層に関しては、積層方向に直交する断面において、位相差層の最も外側の位置を位相差層の端部の位置とする。 In the optical laminate of the present invention, the position of the end portion of the first pressure-sensitive adhesive layer is located outside the position of the end portion of the retardation layer in the direction orthogonal to the lamination direction. When the optical laminate is rectangular in plan view, the direction orthogonal to the stacking direction can preferably be a direction orthogonal to the stacking direction and orthogonal to any side of the optical laminate in plan view. As shown in FIG. 1, in a cross section orthogonal to the stacking direction, the first adhesive layer 11 is inside the line segment connecting the end of the lower surface of the retardation layer 20 and the end of the upper surface of the back plate 3. When not depressed, the position of the end of the first pressure-sensitive adhesive layer 11 means the outermost position 30 of the first pressure-sensitive adhesive layer 11. On the other hand, as shown in FIGS. 4A to 4D, in the cross section orthogonal to the stacking direction, the line segment connecting the lower end of the retardation layer 20 and the upper end of the back plate 3 is formed. When the first pressure-sensitive adhesive layer 11 has a portion recessed inward, the position of the end portion of the first pressure-sensitive adhesive layer 11 means the innermost position 30 of the first pressure-sensitive adhesive layer 11. Regarding the retardation layer, the outermost position of the retardation layer is defined as the position of the end portion of the retardation layer in the cross section orthogonal to the stacking direction.
 位相差フィルムが、重合性液晶化合物が硬化した層を含む位相差層を複数有する場合、位相差層の端部の位置とは、積層方向において最も第1粘着剤層に近接して配置される位相差層の端部の位置を意味する。具体的に、図2に示す光学積層体200は、第1位相差層21および第2位相差層22の2つの位相差層を備える。この場合、位相差層の端部の位置とは、第1位相差層21の端部の位置を意味する。 When the retardation film has a plurality of retardation layers including a layer in which the polymerizable liquid crystal compound is cured, the position of the end portion of the retardation layer is arranged closest to the first pressure-sensitive adhesive layer in the lamination direction. It means the position of the end of the retardation layer. Specifically, the optical laminate 200 shown in FIG. 2 includes two retardation layers, a first retardation layer 21 and a second retardation layer 22. In this case, the position of the end portion of the retardation layer means the position of the end portion of the first retardation layer 21.
 積層方向に直交する方向において、第1粘着剤層の端部の位置が、位相差層の端部の位置よりも、外側であることによって、屈曲しても、位相差層にクラックが発生しにくくなる。積層方向に直交する方向において、第1粘着剤層が外側へはみ出すことにより、位相差層の直下には、第1粘着剤層が存在することになる。第1粘着剤層は、光学積層体を屈曲したときに、支持体として機能し、位相差層を支えることができるので、位相差層にクラックが生じにくくなるものと推測される。そのため、第1粘着剤層は、位相差層に接して積層されていることが好ましい。 Since the position of the end portion of the first pressure-sensitive adhesive layer is outside the position of the end portion of the retardation layer in the direction orthogonal to the stacking direction, cracks occur in the retardation layer even if the first pressure-sensitive adhesive layer is bent. It becomes difficult. Since the first pressure-sensitive adhesive layer protrudes outward in the direction orthogonal to the stacking direction, the first pressure-sensitive adhesive layer is present directly below the retardation layer. It is presumed that the first pressure-sensitive adhesive layer functions as a support when the optical laminate is bent and can support the retardation layer, so that cracks are less likely to occur in the retardation layer. Therefore, it is preferable that the first pressure-sensitive adhesive layer is laminated in contact with the retardation layer.
 第1粘着剤層が位相差層を支えることができる限りにおいて、第1粘着剤層の端部の位置と、位相差層の端部の位置との間の距離は特に限定されない。一実施形態では、積層方向に直交する方向において、第1粘着剤層の端部の位置と、位相差層の端部の位置との間の距離は、0μm超50μm以下であることが好ましく、0μm超30μm以下であることがより好ましく、1μm以上20μm以下であってもよい。具体的に、図1に示す光学積層体100において、第1粘着剤層11の端部の位置と、位相差層20の端部の位置との間の距離は、距離50に当たる。 As long as the first pressure-sensitive adhesive layer can support the retardation layer, the distance between the position of the end portion of the first pressure-sensitive adhesive layer and the position of the end portion of the retardation layer is not particularly limited. In one embodiment, the distance between the position of the end portion of the first pressure-sensitive adhesive layer and the position of the end portion of the retardation layer is preferably more than 0 μm and 50 μm or less in the direction orthogonal to the stacking direction. It is more preferably more than 0 μm and 30 μm or less, and may be 1 μm or more and 20 μm or less. Specifically, in the optical laminate 100 shown in FIG. 1, the distance between the position of the end portion of the first pressure-sensitive adhesive layer 11 and the position of the end portion of the retardation layer 20 corresponds to a distance of 50.
 第1粘着剤層が位相差層を支えることができる限りにおいて、第1粘着剤層の端部の形状も特に限定されない。図1に示すように、積層方向に直交する断面において、位相差層20の下面の端部と背面板3の上面の端部とを結ぶ線分よりも、第1粘着剤層11が外側に突出していてもよい。 The shape of the end portion of the first pressure-sensitive adhesive layer is not particularly limited as long as the first pressure-sensitive adhesive layer can support the retardation layer. As shown in FIG. 1, in a cross section orthogonal to the stacking direction, the first adhesive layer 11 is outside the line segment connecting the end of the lower surface of the retardation layer 20 and the end of the upper surface of the back plate 3. It may be protruding.
 積層方向に直交する方向において、第2粘着剤層の端部の位置は、前面板の端部の位置よりも、内側であることができる。第2粘着剤層の端部の位置は、第1粘着剤層の端部の位置の決め方と同様に決めることができる。すなわち、積層方向に直交する断面において、前面板の下面の端部と偏光層の上面の端部とを結ぶ線分よりも、第2粘着剤層が内側に陥没していない場合、第2粘着剤層の端部の位置は、第2粘着剤層の最も外側の位置を意味する。一方、積層方向に直交する断面において、前面板の下面の端部と偏光層の上面の端部とを結ぶ線分よりも、内側に陥没している部分を第2粘着剤層が有する場合、第2粘着剤層の端部の位置は、第2粘着剤層の最も内側の位置を意味する。前面板に関しては、積層方向に直交する断面において、前面板の最も外側の位置を前面板の端部の位置とする。 In the direction orthogonal to the laminating direction, the position of the end portion of the second pressure-sensitive adhesive layer can be inside the position of the end portion of the front plate. The position of the end portion of the second pressure-sensitive adhesive layer can be determined in the same manner as the method of determining the position of the end portion of the first pressure-sensitive adhesive layer. That is, in the cross section orthogonal to the stacking direction, when the second adhesive layer is not depressed inward from the line segment connecting the lower end of the front plate and the upper end of the polarizing layer, the second adhesive is adhered. The position of the edge of the agent layer means the outermost position of the second pressure-sensitive adhesive layer. On the other hand, in a cross section orthogonal to the stacking direction, when the second adhesive layer has a portion recessed inward from the line segment connecting the end portion of the lower surface of the front plate and the end portion of the upper surface of the polarizing layer. The position of the end portion of the second pressure-sensitive adhesive layer means the innermost position of the second pressure-sensitive adhesive layer. Regarding the front plate, the outermost position of the front plate is defined as the position of the end portion of the front plate in the cross section orthogonal to the stacking direction.
 一実施形態では、積層方向に直交する方向において、第2粘着剤層の端部の位置と、前面板の端部の位置との間の距離は、0μm以上50μm以下であってもよく、0μm超30μm以下であってもよく、1μm以上20μm以下であってもよい。具体的に、図2に示す光学積層体200において、第2粘着剤層12の端部の位置と、前面板1の端部の位置との間の距離は、距離51に当たる。 In one embodiment, the distance between the position of the end portion of the second pressure-sensitive adhesive layer and the position of the end portion of the front plate in the direction orthogonal to the laminating direction may be 0 μm or more and 50 μm or less, and may be 0 μm. It may be super 30 μm or less, or 1 μm or more and 20 μm or less. Specifically, in the optical laminate 200 shown in FIG. 2, the distance between the position of the end portion of the second pressure-sensitive adhesive layer 12 and the position of the end portion of the front plate 1 corresponds to the distance 51.
 一実施形態において、背面板の端面は、背面板における第1粘着剤層側の面とは反対側の面に対して80°以上90°未満に傾斜していることが好ましく、85°以上90°未満に傾斜していることがより好ましい。理由は定かではないが、光学積層体がこのような傾斜角度を有すると、屈曲性が向上しやすい。傾斜の角度は、背面板の上面(第1粘着剤層側の面)の端部および背面板の下面(第1粘着剤層側とは反対側の面)の端部を通る線分と、背面板の下面とがなす角度を意味する。傾斜の角度は、図1において、角度6がこれに当たる。 In one embodiment, the end surface of the back plate is preferably inclined at 80 ° or more and less than 90 ° with respect to the surface of the back plate opposite to the surface on the first pressure-sensitive adhesive layer side, and is 85 ° or more and 90 °. More preferably, it is tilted below °. Although the reason is not clear, when the optical laminate has such an inclination angle, the flexibility is likely to be improved. The angle of inclination is the line segment passing through the end of the upper surface (the surface on the first adhesive layer side) of the back plate and the end of the lower surface (the surface opposite to the first adhesive layer side) of the back plate. It means the angle formed by the lower surface of the back plate. The angle of inclination corresponds to the angle 6 in FIG.
 光学積層体を、その積層方向から見たときに、すなわち、光学積層体の平面視において、光学積層体は、第1粘着剤層の端部の位置が、位相差層の端部の位置よりも外側である部分を、その周上の少なくとも一部分に有していればよい。屈曲性を向上させるために、第1粘着剤層の端部の位置が、位相差層の端部の位置よりも外側である部分は、光学積層体の折り曲げ部分に形成されていることが好ましい。光学積層体が平面視で矩形である場合、第1粘着剤層の端部の位置が、位相差層の端部の位置よりも外側である部分は、折り曲げ部分を含む辺の全体に形成されていることがより好ましい。第1粘着剤層の端部の位置が、位相差層の端部の位置よりも外側である部分は、光学積層体の全周にわたって形成されていてもよい。 When the optical laminate is viewed from the lamination direction, that is, in the plan view of the optical laminate, the position of the end portion of the first pressure-sensitive adhesive layer of the optical laminate is higher than the position of the end portion of the retardation layer. It suffices to have a portion that is also on the outside in at least a part on the circumference thereof. In order to improve the flexibility, it is preferable that the portion where the position of the end portion of the first pressure-sensitive adhesive layer is outside the position of the end portion of the retardation layer is formed in the bent portion of the optical laminate. .. When the optical laminate is rectangular in a plan view, the portion where the position of the end portion of the first pressure-sensitive adhesive layer is outside the position of the end portion of the retardation layer is formed on the entire side including the bent portion. Is more preferable. The portion where the position of the end portion of the first pressure-sensitive adhesive layer is outside the position of the end portion of the retardation layer may be formed over the entire circumference of the optical laminate.
 光学積層体は、少なくとも偏光層2(図2においては前面板1)を内側にした方向に屈曲可能であることが好ましい。屈曲可能とは、クラックを生じさせることなく、偏光層2(または前面板1)を内側にした方向に屈曲させ得ることを意味する。本発明に係る光学積層体は、耐屈曲性に優れている。 It is preferable that the optical laminate can be bent at least in the direction in which the polarizing layer 2 (front plate 1 in FIG. 2) is inside. Bending means that the polarizing layer 2 (or the front plate 1) can be bent inward without causing cracks. The optical laminate according to the present invention has excellent bending resistance.
 光学積層体の平面視の形状は、例えば方形形状であってよく、好ましくは長辺と短辺とを有する方形形状であり、より好ましくは長方形である。光学積層体の平面視の形状が長方形である場合、長辺の長さは、例えば10mm~1400mmであってよく、好ましくは50mm~600mmである。短辺の長さは、例えば5mm~800mmであり、好ましくは30mm~500mmであり、より好ましくは50mm~300mmである。光学積層体を構成する各層は、角部がR加工されたり、端部が切り欠き加工されたり、穴あき加工されたりしていてもよい。 The shape of the optical laminate in a plan view may be, for example, a rectangular shape, preferably a rectangular shape having a long side and a short side, and more preferably a rectangle. When the shape of the optical laminate in a plan view is rectangular, the length of the long side may be, for example, 10 mm to 1400 mm, preferably 50 mm to 600 mm. The length of the short side is, for example, 5 mm to 800 mm, preferably 30 mm to 500 mm, and more preferably 50 mm to 300 mm. Each layer constituting the optical laminate may have corners R-processed, end portions notched, or perforated.
 光学積層体の厚さは、光学積層体に求められる機能及び積層体の用途等に応じて異なるため特に限定されないが、例えば20μm~1,000μmであり、好ましくは50μm~500μmである。 The thickness of the optical laminate is not particularly limited because it varies depending on the function required for the optical laminate, the application of the laminate, etc., but is, for example, 20 μm to 1,000 μm, preferably 50 μm to 500 μm.
[前面板]
 前面板1は、視認側から見て、表示装置の最表面を構成する。前面板1は、光を透過可能な板状体であれば材料及び厚さは限定されることはなく、1層のみから構成されてよく、2層以上から構成されてもよい。その例としては、樹脂フィルム、ガラスフィルム等が挙げられる。前面板は、樹脂フィルムを有することが好ましい。前面板1は、樹脂フィルムとガラスフィルムとの積層体であってもよい。
[Front plate]
The front plate 1 constitutes the outermost surface of the display device when viewed from the visual side. The material and thickness of the front plate 1 are not limited as long as it is a plate-like body capable of transmitting light, and the front plate 1 may be composed of only one layer or may be composed of two or more layers. Examples thereof include resin films and glass films. The front plate preferably has a resin film. The front plate 1 may be a laminate of a resin film and a glass film.
 前面板1の厚さは、例えば30~200μmであってよく、好ましくは50~150μmであり、より好ましくは50~100μmである。 The thickness of the front plate 1 may be, for example, 30 to 200 μm, preferably 50 to 150 μm, and more preferably 50 to 100 μm.
 前面板1が樹脂フィルムを有する場合、その材料としては、例えば、ポリメチル(メタ)アクリレート及びポリエチル(メタ)アクリレート等のアクリル系樹脂;ポリエチレン、ポリプロピレン、ポリメチルペンテン及びポリスチレン等のポリオレフィン系樹脂;トリアセチルセルロース、アセチルセルロースブチレート、プロピオニルセルロース、ブチリルセルロース及びアセチルプロピオニルセルロース等のセルロース系樹脂;エチレン-酢酸ビニル共重合体、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール及びポリビニルアセタール等のポリビニル系樹脂;ポリスルホン及びポリエーテルスルホン等のスルホン系樹脂;ポリエーテルケトン及びポリエーテルエーテルケトン等のケトン系樹脂;ポリエーテルイミド;ポリカーボネート系樹脂;ポリエステル系樹脂;ポリイミド系樹脂;ポリアミドイミド系樹脂;及びポリアミド系樹脂等が挙げられる。これらの高分子は単独で又は2種以上を混合して用いることができる。中でも強度及び透明性向上の観点から、ポリカーボネート系樹脂、ポリエステル系樹脂、ポリイミド系樹脂、ポリアミドイミド系樹脂、又はポリアミド系樹脂を用いることが好ましい。 When the front plate 1 has a resin film, the material thereof is, for example, an acrylic resin such as polymethyl (meth) acrylate and polyethyl (meth) acrylate; a polyolefin resin such as polyethylene, polypropylene, polymethylpentene and polystyrene; Cellular resins such as acetyl cellulose, acetyl cellulose butyrate, propionyl cellulose, butyryl cellulose and acetyl propionyl cellulose; polyvinyl chloride resins such as ethylene-vinyl acetate copolymer, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol and polyvinyl acetal. Pulmonate resins such as polysulfone and polyether sulfone; ketone resins such as polyether ketone and polyether ether ketone; polyetherimide; polycarbonate resin; polyester resin; polyimide resin; polyamideimide resin; and polyamide resin Examples include resin. These polymers can be used alone or in combination of two or more. Above all, from the viewpoint of improving strength and transparency, it is preferable to use a polycarbonate resin, a polyester resin, a polyimide resin, a polyamide-imide resin, or a polyamide resin.
 樹脂フィルムの厚さは、例えば10~100μmであってよく、好ましくは20~70μmであり、より好ましくは30~60μmである。 The thickness of the resin film may be, for example, 10 to 100 μm, preferably 20 to 70 μm, and more preferably 30 to 60 μm.
 前面板1は、樹脂フィルムの少なくとも一方の面にハードコート層を設けて硬度をより向上させたフィルムであってもよい。ハードコート層は、樹脂フィルムの一方の面に形成されていても、両方の面に形成されていてもよい。ハードコート層を設けることにより、硬度及び耐スクラッチ性を向上させた前面板とすることができる。ハードコート層は、例えば紫外線硬化型樹脂の硬化層である。紫外線硬化型樹脂としては、例えばアクリル系樹脂、シリコーン系樹脂、ポリエステル系樹脂、ウレタン系樹脂、アミド系樹脂、エポキシ系樹脂等が挙げられる。ハードコート層は、硬度を向上させるために、添加剤を含んでいてもよい。添加剤は限定されることはなく、無機系微粒子、有機系微粒子、又はこれらの混合物が挙げられる。 The front plate 1 may be a film in which a hard coat layer is provided on at least one surface of the resin film to further improve the hardness. The hard coat layer may be formed on one surface of the resin film or may be formed on both surfaces. By providing the hard coat layer, it is possible to obtain a front plate having improved hardness and scratch resistance. The hard coat layer is, for example, a cured layer of an ultraviolet curable resin. Examples of the ultraviolet curable resin include acrylic resin, silicone resin, polyester resin, urethane resin, amide resin, epoxy resin and the like. The hard coat layer may contain additives to improve hardness. Additives are not limited, and examples thereof include inorganic fine particles, organic fine particles, and mixtures thereof.
 前面板1がガラスフィルムを有する場合、ガラスフィルムは、ディスプレイ用強化ガラスが好ましく用いられる。ガラスフィルムの厚さは、例えば10μm以上500μm以下であってよく、20μm以上100μm以下であってもよい。ガラスフィルムを用いることにより、優れた機械的強度及び表面硬度を有する前面板1を構成することができる。 When the front plate 1 has a glass film, tempered glass for a display is preferably used as the glass film. The thickness of the glass film may be, for example, 10 μm or more and 500 μm or less, and may be 20 μm or more and 100 μm or less. By using the glass film, the front plate 1 having excellent mechanical strength and surface hardness can be constructed.
 光学積層体が表示装置に用いられる場合、前面板1は、表示装置におけるウィンドウフィルムとしての機能を有していてもよい。前面板1は、さらにタッチセンサとしての機能、ブルーライトカット機能、視野角調整機能等を有するものであってもよい。 When the optical laminate is used in the display device, the front plate 1 may have a function as a window film in the display device. The front plate 1 may further have a function as a touch sensor, a blue light cut function, a viewing angle adjusting function, and the like.
[偏光層]
 偏光層は、第1粘着剤層に近い側から、位相差フィルムと直線偏光板とを有する。偏光層は、円偏光板(楕円偏光板を含む)であってよい。円偏光板は、画像表示装置中で反射された外光を吸収することができるため、光学積層体に反射防止フィルムとしての機能を付与することができる。
[Polarizing layer]
The polarizing layer has a retardation film and a linear polarizing plate from the side closer to the first pressure-sensitive adhesive layer. The polarizing layer may be a circular polarizing plate (including an elliptical polarizing plate). Since the circularly polarizing plate can absorb the external light reflected in the image display device, it is possible to impart a function as an antireflection film to the optical laminate.
 [直線偏光板]
 直線偏光板は、自然光等の非偏光な光線から、ある一方向の直線偏光を選択的に透過させる機能を有する。直線偏光板は、二色性色素を吸着させた延伸フィルム又は延伸層、重合性液晶化合物の硬化物及び二色性色素を含み、二色性色素が重合性液晶化合物の硬化物中に分散し、配向している液晶層等を偏光子として備えることができる。液晶層を偏光子として用いた直線偏光板は、二色性色素を吸着させた延伸フィルム又は延伸層に比べて、屈曲方向に制限がないため好ましい。
[Linear polarizing plate]
The linear polarizing plate has a function of selectively transmitting linearly polarized light in a certain direction from unpolarized light rays such as natural light. The linearly polarizing plate contains a stretched film or stretched layer on which a dichroic dye is adsorbed, a cured product of a polymerizable liquid crystal compound, and a dichroic dye, and the dichroic dye is dispersed in the cured product of the polymerizable liquid crystal compound. , An oriented liquid crystal layer or the like can be provided as a polarizer. A linear polarizing plate using a liquid crystal layer as a polarizer is preferable because there is no limitation in the bending direction as compared with a stretched film or a stretched layer on which a dichroic dye is adsorbed.
 (二色性色素を吸着させた延伸フィルム又は延伸層である偏光子)
 二色性色素を吸着させた延伸フィルムである偏光子は、通常、ポリビニルアルコール系樹脂フィルムを一軸延伸する工程、ポリビニルアルコール系樹脂フィルムをヨウ素等の二色性色素で染色することにより、その二色性色素を吸着させる工程、二色性色素が吸着されたポリビニルアルコール系樹脂フィルムをホウ酸水溶液で処理する工程、及びホウ酸水溶液による処理後に水洗する工程を経て製造することができる。
(A polarizing film that is a stretched film or a stretched layer on which a dichroic dye is adsorbed)
The polarizer, which is a stretched film on which a dichroic dye is adsorbed, is usually obtained by uniaxially stretching the polyvinyl alcohol-based resin film and dyeing the polyvinyl alcohol-based resin film with a dichroic dye such as iodine. It can be produced through a step of adsorbing a dichroic dye, a step of treating a polyvinyl alcohol-based resin film on which a dichroic dye is adsorbed with an aqueous boric acid solution, and a step of washing with water after the treatment with the aqueous boric acid solution.
 偏光子の厚みは、通常30μm以下であり、好ましくは18μm以下、より好ましくは15μm以下である。偏光子の厚みを薄くすることは、光学積層体の薄膜化に有利である。偏光子の厚みは、通常1μm以上であり、例えば5μm以上であってよい。 The thickness of the polarizer is usually 30 μm or less, preferably 18 μm or less, and more preferably 15 μm or less. Reducing the thickness of the polarizer is advantageous for thinning the optical laminate. The thickness of the polarizer is usually 1 μm or more, and may be, for example, 5 μm or more.
 ポリビニルアルコール系樹脂は、ポリ酢酸ビニル系樹脂をケン化することによって得られる。ポリ酢酸ビニル系樹脂としては、酢酸ビニルの単独重合体であるポリ酢酸ビニルのほか、酢酸ビニルとそれに共重合可能な他の単量体との共重合体が用いられる。酢酸ビニルに共重合可能な他の単量体としては、例えば不飽和カルボン酸系化合物、オレフィン系化合物、ビニルエーテル系化合物、不飽和スルホン系化合物、アンモニウム基を有する(メタ)アクリルアミド系化合物が挙げられる。 The polyvinyl alcohol-based resin is obtained by saponifying the polyvinyl acetate-based resin. As the polyvinyl acetate-based resin, in addition to polyvinyl acetate which is a homopolymer of vinyl acetate, a copolymer of vinyl acetate and another monomer copolymerizable therewith is used. Examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acid compounds, olefin compounds, vinyl ether compounds, unsaturated sulfone compounds, and (meth) acrylamide compounds having an ammonium group. ..
 ポリビニルアルコール系樹脂のケン化度は、通常85モル%以上100モル%以下程度であり、好ましくは98モル%以上である。ポリビニルアルコール系樹脂は変性されていてもよく、アルデヒド類で変性されたポリビニルホルマール、ポリビニルアセタール等も使用することができる。ポリビニルアルコール系樹脂の重合度は、通常1000以上10000以下であり、好ましくは1500以上5000以下である。 The degree of saponification of the polyvinyl alcohol-based resin is usually about 85 mol% or more and 100 mol% or less, preferably 98 mol% or more. The polyvinyl alcohol-based resin may be modified, and polyvinyl formal, polyvinyl acetal, and the like modified with aldehydes can also be used. The degree of polymerization of the polyvinyl alcohol-based resin is usually 1000 or more and 10000 or less, preferably 1500 or more and 5000 or less.
 二色性色素を吸着させた延伸層である偏光子は、通常、上記ポリビニルアルコール系樹脂を含む塗布液を基材フィルム上に塗布する工程、得られた積層フィルムを一軸延伸する工程、一軸延伸された積層フィルムのポリビニルアルコール系樹脂層を二色性色素で染色することにより、その二色性色素を吸着させて偏光子とする工程、二色性色素が吸着されたフィルムをホウ酸水溶液で処理する工程、及びホウ酸水溶液による処理後に水洗する工程を経て製造することができる。偏光子を形成するために用いる基材フィルムは、偏光子の保護層として用いてもよい。必要に応じて、基材フィルムを偏光子から剥離除去してもよい。基材フィルムの材料及び厚みは、後述する樹脂フィルムの材料及び厚みと同様であってよい。 The polarizer, which is a stretched layer on which a bicolor dye is adsorbed, is usually a step of applying a coating liquid containing the polyvinyl alcohol-based resin on a base film, a step of uniaxially stretching the obtained laminated film, and a uniaxial stretching. By dyeing the polyvinyl alcohol-based resin layer of the laminated film with a dichroic dye, the dichroic dye is adsorbed to form a polarizer, and the film on which the dichroic dye is adsorbed is coated with a boric acid aqueous solution. It can be produced through a step of treating and a step of washing with water after treatment with an aqueous boric acid solution. The base film used for forming the polarizer may be used as a protective layer for the polarizer. If necessary, the base film may be peeled off from the polarizer. The material and thickness of the base film may be the same as the material and thickness of the resin film described later.
 二色性色素を吸着させた延伸フィルム又は延伸層である偏光子は、そのまま直線偏光板として用いてよく、その片面又は両面に樹脂フィルムを貼合して直線偏光板として用いてもよい。直線偏光板の厚みは、好ましくは2μm以上40μm以下である。 The stretched film or the polarizing element which is the stretched layer on which the dichroic dye is adsorbed may be used as it is as a linear polarizing plate, or a resin film may be attached to one or both sides thereof and used as a linear polarizing plate. The thickness of the linearly polarizing plate is preferably 2 μm or more and 40 μm or less.
 樹脂フィルムは、例えばシクロポリオレフィン系樹脂フィルム;トリアセチルセルロース、ジアセチルセルロース等の樹脂からなる酢酸セルロース系樹脂フィルム;ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート等の樹脂からなるポリエステル系樹脂フィルム;ポリカーボネート系樹脂フィルム;(メタ)アクリル系樹脂フィルム;ポリプロピレン系樹脂フィルム等、当分野において公知のフィルムを挙げることができる。偏光子と保護層とは、後述する貼合層を介して積層することができる。 The resin film is, for example, a cyclopolyolefin resin film; a cellulose acetate resin film made of a resin such as triacetyl cellulose or diacetyl cellulose; a polyester resin film made of a resin such as polyethylene terephthalate, polyethylene naphthalate, or polybutylene terephthalate; a polycarbonate resin film. Examples of films known in the art such as resin films; (meth) acrylic resin films; polypropylene-based resin films can be mentioned. The polarizer and the protective layer can be laminated via a bonding layer described later.
 樹脂フィルムの厚みは、例えば100μm以下であり、好ましくは80μm以下であり、より好ましくは60μm以下であり、さらに好ましくは40μm以下であり、なおさらに好ましくは30μm以下であり、また、通常10μm以上であり、レーザーの吸収率を高める観点から、好ましくは15μm以上である。 The thickness of the resin film is, for example, 100 μm or less, preferably 80 μm or less, more preferably 60 μm or less, further preferably 40 μm or less, still more preferably 30 μm or less, and usually 10 μm or more. From the viewpoint of increasing the absorption rate of the laser, it is preferably 15 μm or more.
 樹脂フィルム上にハードコート層が形成されていてもよい。ハードコート層は、樹脂フィルムの一方の面に形成されていてもよいし、両面に形成されていてもよい。ハードコート層を設けることにより、硬度及び耐スクラッチ性を向上させた熱可塑性樹脂フィルムとすることができる。ハードコート層は、上述の樹脂フィルムに形成されるハードコート層と同様にして形成することができる。 A hard coat layer may be formed on the resin film. The hard coat layer may be formed on one surface of the resin film or may be formed on both sides. By providing the hard coat layer, a thermoplastic resin film having improved hardness and scratch resistance can be obtained. The hard coat layer can be formed in the same manner as the hard coat layer formed on the resin film described above.
 (液晶層である偏光子)
 液晶層を形成するために用いる重合性液晶化合物は、重合性反応基を有し、かつ、液晶性を示す化合物である。重合性反応基は、重合反応に関与する基であり、光重合性反応基であることが好ましい。光重合性反応基は、光重合開始剤から発生した活性ラジカルや酸等によって重合反応に関与し得る基をいう。光重合性官能基としては、ビニル基、ビニルオキシ基、1-クロロビニル基、イソプロペニル基、4-ビニルフェニル基、アクリロイルオキシ基、メタクリロイルオキシ基、オキシラニル基、オキセタニル基等が挙げられる。中でも、アクリロイルオキシ基、メタクリロイルオキシ基、ビニルオキシ基、オキシラニル基及びオキセタニル基が好ましく、アクリロイルオキシ基がより好ましい。重合性液晶化合物の種類は特に限定されず、棒状液晶化合物、円盤状液晶化合物、及びこれらの混合物を用いることができる。重合性液晶化合物の液晶性は、液晶性はサーモトロピック性液晶でもリオトロピック性液晶でもよく、相秩序構造としてはネマチック液晶でもスメクチック液晶でもよい。
(Polarizer, which is a liquid crystal layer)
The polymerizable liquid crystal compound used for forming the liquid crystal layer is a compound having a polymerizable reactive group and exhibiting liquid crystallinity. The polymerizable reactive group is a group involved in the polymerization reaction, and is preferably a photopolymerizable reactive group. The photopolymerizable reactive group refers to a group that can participate in the polymerization reaction by an active radical, an acid, or the like generated from the photopolymerization initiator. Examples of the photopolymerizable functional group include a vinyl group, a vinyloxy group, a 1-chlorovinyl group, an isopropenyl group, a 4-vinylphenyl group, an acryloyloxy group, a methacryloyloxy group, an oxylanyl group, an oxetanyl group and the like. Of these, an acryloyloxy group, a methacryloyloxy group, a vinyloxy group, an oxylanyl group and an oxetanyl group are preferable, and an acryloyloxy group is more preferable. The type of the polymerizable liquid crystal compound is not particularly limited, and a rod-shaped liquid crystal compound, a disk-shaped liquid crystal compound, and a mixture thereof can be used. As for the liquid crystal property of the polymerizable liquid crystal compound, the liquid crystal property may be a thermotropic liquid crystal or a lyotropic liquid crystal, and the phase-ordered structure may be a nematic liquid crystal or a smectic liquid crystal.
 液晶層である偏光子に用いられる二色性色素としては、300~700nmの範囲に吸収極大波長(λMAX)を有するものが好ましい。このような二色性色素としては、例えば、アクリジン色素、オキサジン色素、シアニン色素、ナフタレン色素、アゾ色素、及びアントラキノン色素等が挙げられるが、中でもアゾ色素が好ましい。アゾ色素としては、モノアゾ色素、ビスアゾ色素、トリスアゾ色素、テトラキスアゾ色素、及びスチルベンアゾ色素等が挙げられ、好ましくはビスアゾ色素、及びトリスアゾ色素である。二色性色素は単独でも、2種以上を組み合わせてもよいが、3種以上を組み合わせることが好ましい。特に、3種以上のアゾ化合物を組み合わせることがより好ましい。二色性色素の一部が反応性基を有していてもよく、また液晶性を有していてもよい。 The dichroic dye used for the polarizing element, which is a liquid crystal layer, preferably has an absorption maximum wavelength (λMAX) in the range of 300 to 700 nm. Examples of such a dichroic dye include an acridine dye, an oxazine dye, a cyanine dye, a naphthalene dye, an azo dye, an anthraquinone dye, and the like, and among them, the azo dye is preferable. Examples of the azo dye include a monoazo dye, a bisazo dye, a trisazo dye, a tetrakisazo dye, a stilbene azo dye, and the like, and a bisazo dye and a trisazo dye are preferable. The dichroic dye may be used alone or in combination of two or more, but it is preferable to combine three or more. In particular, it is more preferable to combine three or more kinds of azo compounds. A part of the dichroic dye may have a reactive group or may have a liquid crystal property.
 液晶層である偏光子は、例えば基材フィルム上に形成した配向膜上に、重合性液晶化合物及び二色性色素を含む偏光子形成用組成物を塗布し、重合性液晶化合物を重合して硬化させることによって形成することができる。偏光子を形成するために用いる基材フィルムは、偏光子の保護層として用いてもよい。基材フィルムの材料及び厚みは、上述した樹脂フィルムの材料及び厚みと同様であってよい。 For the polarizing element, which is a liquid crystal layer, for example, a composition for forming a polarizing element containing a polymerizable liquid crystal compound and a dichroic dye is applied onto an alignment film formed on a base film, and the polymerizable liquid crystal compound is polymerized. It can be formed by curing. The base film used for forming the polarizer may be used as a protective layer for the polarizer. The material and thickness of the base film may be the same as the material and thickness of the resin film described above.
 重合性液晶化合物及び二色性色素を含む偏光子形成用組成物、及びこの組成物を用いた偏光子の製造方法としては、特開2013-37353号公報、特開2013-33249号公報、特開2017-83843号公報等に記載のものを例示することができる。偏光子形成用組成物は、重合性液晶化合物及び二色性色素に加えて、溶媒、重合開始剤、架橋剤、レベリング剤、酸化防止剤、可塑剤、増感剤等の添加剤をさらに含んでいてもよい。これらの成分は、それぞれ1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of a composition for forming a polarizer containing a polymerizable liquid crystal compound and a dichroic dye, and a method for producing a polarizer using this composition include JP2013-37353A, JP2013-33249, and Japanese Patent Publication No. 2013-33249. Examples thereof include those described in Japanese Patent Publication No. 2017-83843. The composition for forming a polarizer further contains additives such as a solvent, a polymerization initiator, a cross-linking agent, a leveling agent, an antioxidant, a plasticizer, and a sensitizer, in addition to the polymerizable liquid crystal compound and the dichroic dye. You may be. Only one of these components may be used, or two or more of these components may be used in combination.
 偏光子形成用組成物が含有していてもよい重合開始剤は、重合性液晶化合物の重合反応を開始し得る化合物であり、より低温条件下で、重合反応を開始できる点で、光重合性開始剤が好ましい。具体的には、光の作用により活性ラジカル又は酸を発生できる光重合開始剤が挙げられ、中でも、光の作用によりラジカルを発生する光重合開始剤が好ましい。
重合開始剤の含有量は、重合性液晶化合物の総量100重量部に対して、好ましくは1質量部以上10質量部以下であり、より好ましくは3質量部以上8質量部以下である。この範囲内であると、重合性基の反応が十分に進行し、かつ、液晶化合物の配向状態を安定化させやすい。
The polymerization initiator that may be contained in the polarizer-forming composition is a compound that can initiate the polymerization reaction of the polymerizable liquid crystal compound, and is photopolymerizable in that the polymerization reaction can be initiated under lower temperature conditions. Initiators are preferred. Specific examples thereof include photopolymerization initiators capable of generating active radicals or acids by the action of light, and among them, photopolymerization initiators that generate radicals by the action of light are preferable.
The content of the polymerization initiator is preferably 1 part by mass or more and 10 parts by mass or less, and more preferably 3 parts by mass or more and 8 parts by mass or less, based on 100 parts by mass of the total amount of the polymerizable liquid crystal compound. Within this range, the reaction of the polymerizable group proceeds sufficiently, and the orientation state of the liquid crystal compound is likely to be stabilized.
 液晶層である偏光子の厚みは、通常10μm以下であり、好ましくは0.5μm以上8μm以下であり、より好ましくは1μm以上5μm以下である。 The thickness of the polarizing element, which is the liquid crystal layer, is usually 10 μm or less, preferably 0.5 μm or more and 8 μm or less, and more preferably 1 μm or more and 5 μm or less.
 液晶層である偏光子は、基材フィルムを剥離除去せずに直線偏光板として用いてもよく、基材フィルムを偏光子から剥離除去して直線偏光板としてもよい。液晶層である偏光子は、その片面又は両面に保護層を形成して直線偏光板として用いてもよい。保護層としては、上述の樹脂フィルムを用いることができる。 The polarizer, which is a liquid crystal layer, may be used as a linear polarizing plate without peeling and removing the base film, or may be used as a linear polarizing plate by peeling and removing the base film from the polarizer. The polarizing element, which is a liquid crystal layer, may be used as a linear polarizing plate by forming a protective layer on one side or both sides thereof. As the protective layer, the above-mentioned resin film can be used.
 液晶層である偏光子は、偏光子の保護等を目的として、偏光子の片面又は両面にオーバーコート層を有していてもよい。オーバーコート層は、例えば偏光子上にオーバーコート層を形成するための材料(組成物)を塗布することによって形成することができる。オーバーコート層を構成する材料としては、例えば光硬化性樹脂、水溶性ポリマー等が挙げられる。オーバーコート層を構成する材料としては、(メタ)アクリル系樹脂、ポリビニルアルコール系樹脂等を用いることができる。 The polarizer, which is a liquid crystal layer, may have an overcoat layer on one side or both sides of the polarizer for the purpose of protecting the polarizer and the like. The overcoat layer can be formed, for example, by applying a material (composition) for forming the overcoat layer on the polarizer. Examples of the material constituting the overcoat layer include a photocurable resin and a water-soluble polymer. As a material constituting the overcoat layer, a (meth) acrylic resin, a polyvinyl alcohol-based resin, or the like can be used.
 [位相差フィルム]
 偏光層に含まれる位相差フィルムは、1層の位相差層からなってもよく、2層以上の位相差層の積層体であってもよい。位相差フィルムは、重合性液晶化合物が硬化した層を含む位相差層を少なくとも1層備える。位相差フィルムが2層の位相差層の積層体である場合、いずれの位相差層も重合性液晶化合物が硬化した層を含む位相差層であることが好ましい。位相差フィルムは、偏光子の前面板側とは反対側に積層されている。位相差フィルムは、その表面を保護するオーバーコート層、位相差フィルムを支持する基材フィルム等を有していてもよい。
[Phase difference film]
The retardation film included in the polarizing layer may be composed of one retardation layer or may be a laminate of two or more retardation layers. The retardation film includes at least one retardation layer including a layer on which the polymerizable liquid crystal compound is cured. When the retardation film is a laminate of two retardation layers, it is preferable that each retardation layer is a retardation layer including a layer in which a polymerizable liquid crystal compound is cured. The retardation film is laminated on the side opposite to the front plate side of the polarizer. The retardation film may have an overcoat layer that protects the surface thereof, a base film that supports the retardation film, and the like.
 位相差フィルムは、位相差層としてλ/4層を備えることが好ましく、さらにλ/2層又はポジティブC層の少なくともいずれかを備えていてもよい。位相差層は、配向膜を有していてもよい。位相差フィルムがλ/2層である位相差層を有する場合、偏光子側から順にλ/2層及びλ/4層を積層することができる。位相差フィルムがポジティブC層である位相差層を含む場合、偏光子側から順にλ/4層及びポジティブC層を積層してもよく、偏光子側から順にポジティブC層及びλ/4層を積層してもよい。図2において、第1位相差層21は、ポジティブC層であることができ、第2位相差層22は、λ/4層であることができる。 The retardation film preferably includes a λ / 4 layer as the retardation layer, and may further include at least one of a λ / 2 layer and a positive C layer. The retardation layer may have an alignment film. When the retardation film has a retardation layer having a λ / 2 layer, the λ / 2 layer and the λ / 4 layer can be laminated in this order from the polarizer side. When the retardation film contains a retardation layer which is a positive C layer, the λ / 4 layer and the positive C layer may be laminated in order from the polarizer side, and the positive C layer and the λ / 4 layer may be laminated in order from the polarizer side. It may be laminated. In FIG. 2, the first retardation layer 21 can be a positive C layer, and the second retardation layer 22 can be a λ / 4 layer.
 位相差層の厚みは、例えば0.1μm以上10μm以下であり、好ましくは0.5μm以上8μm以下であり、より好ましくは1μm以上6μm以下である。薄い位相差層は、屈曲によってクラックが生じやすいため、このような厚みの位相差層を光学積層体が備える場合、本発明は特に有用である。 The thickness of the retardation layer is, for example, 0.1 μm or more and 10 μm or less, preferably 0.5 μm or more and 8 μm or less, and more preferably 1 μm or more and 6 μm or less. Since a thin retardation layer is prone to cracking due to bending, the present invention is particularly useful when the optical laminate includes a retardation layer having such a thickness.
 位相差層は、保護層の材料として例示した樹脂フィルムから形成してもよいし、重合性液晶化合物が硬化した層から形成してもよい。位相差層は、さらに配向膜を含んでもよい。位相差フィルムは、λ/4層と、λ/2層及びポジティブC層とを貼合するための貼合層を有していてもよい。貼合層は、後述のとおり、接着剤層や粘着剤層から形成されることができる。 The retardation layer may be formed from the resin film exemplified as the material of the protective layer, or may be formed from a layer in which the polymerizable liquid crystal compound is cured. The retardation layer may further include an alignment film. The retardation film may have a bonding layer for bonding the λ / 4 layer, the λ / 2 layer, and the positive C layer. The bonding layer can be formed from an adhesive layer or an adhesive layer, as will be described later.
 重合性液晶化合物を硬化して位相差層を形成する場合、位相差層は、重合性液晶化合物を含む組成物を基材フィルムに塗布し硬化させることにより形成することができる。基材フィルムと塗布層との間に配向膜を形成してもよい。基材フィルムの材料及び厚みは、上記樹脂フィルムの材料及び厚みと同じであってよい。重合性液晶化合物を硬化してなる層から位相差層を形成する場合、位相差層は、配向膜及び基材フィルムを有する形態で光学積層体に組み込まれてもよいし、位相差層は、基材フィルムを有さなくてもよい。位相差層は、貼合層を介して直線偏光板と貼合することができる。 When the polymerizable liquid crystal compound is cured to form a retardation layer, the retardation layer can be formed by applying a composition containing the polymerizable liquid crystal compound to a base film and curing it. An alignment film may be formed between the base film and the coating layer. The material and thickness of the base film may be the same as the material and thickness of the resin film. When a retardation layer is formed from a layer obtained by curing a polymerizable liquid crystal compound, the retardation layer may be incorporated into an optical laminate in the form of having an alignment film and a base film, and the retardation layer may be incorporated into an optical laminate. It is not necessary to have a base film. The retardation layer can be bonded to the linear polarizing plate via the bonding layer.
[背面板]
 背面板としては、光を透過可能な板状体や通常の表示装置に用いられる構成要素等を用いることができる。背面板の厚みは、例えば5μm以上2,000μm以下であってよく、好ましくは10μm以上1,000μm以下であり、より好ましくは15μm以上500μm以下である。
[Back plate]
As the back plate, a plate-like body capable of transmitting light, a component used in a normal display device, or the like can be used. The thickness of the back plate may be, for example, 5 μm or more and 2,000 μm or less, preferably 10 μm or more and 1,000 μm or less, and more preferably 15 μm or more and 500 μm or less.
 背面板に用いる板状体としては、1層のみから構成されてよく、2層以上から構成されたものであってよく、前面板1において述べた材料から形成してもよい。背面板としては、例えば、樹脂フィルム、タッチセンサ層、有機EL表示素子、液晶表示素子等が挙げられる。 The plate-like body used for the back plate may be composed of only one layer, may be composed of two or more layers, and may be formed from the material described in the front plate 1. Examples of the back plate include a resin film, a touch sensor layer, an organic EL display element, a liquid crystal display element, and the like.
[タッチセンサ層]
 タッチセンサ層は、少なくとも透明導電層を有し、さらに樹脂フィルムを有することができる。タッチセンサ層は、前面板側から順に、透明導電層31、及び樹脂フィルム32を備えることができる。タッチセンサ層は、前面板側から順に、樹脂フィルム32、及び透明導電層31を備えることもできる。タッチセンサ層は、樹脂フィルムを有さなくてもよい。タッチセンサ層は、透明導電層31、樹脂フィルム32以外に、分離層、貼合層、保護層を備えることができる。
[Touch sensor layer]
The touch sensor layer may have at least a transparent conductive layer and may further have a resin film. The touch sensor layer may include a transparent conductive layer 31 and a resin film 32 in this order from the front plate side. The touch sensor layer may also include the resin film 32 and the transparent conductive layer 31 in this order from the front plate side. The touch sensor layer does not have to have a resin film. The touch sensor layer may include a separation layer, a bonding layer, and a protective layer in addition to the transparent conductive layer 31 and the resin film 32.
 タッチセンサ層としては、前面板1でタッチされた位置を検出可能なセンサであり、透明導電層31、および樹脂フィルム32を有する構成であれば、検出方式は限定されることはない。タッチセンサ層の検出方式としては、抵抗膜方式、静電容量方式、光センサ方式、超音波方式、電磁誘導結合方式、表面弾性波方式等が挙げられる。中でも低コスト、早い反応速度、薄膜化の面で、静電容量方式のタッチセンサ層が好ましく用いられる。 The touch sensor layer is a sensor that can detect the position touched by the front plate 1, and the detection method is not limited as long as it has the transparent conductive layer 31 and the resin film 32. Examples of the touch sensor layer detection method include a resistive film method, a capacitance method, an optical sensor method, an ultrasonic method, an electromagnetic induction coupling method, and a surface acoustic wave method. Among them, the capacitance type touch sensor layer is preferably used in terms of low cost, fast reaction speed, and thin film formation.
 タッチセンサ層は、樹脂フィルム32と、樹脂フィルム32の貼合層側の表面上に設けられた透明導電層31とを備える構成であることが好ましい。樹脂フィルム32の表面上に透明導電層31が設けられている構成においては、樹脂フィルム32と透明導電層31とが互いに接している構成であってもよく(例えば、後述する第1の方法により製造されるタッチセンサ層)、樹脂フィルム32と透明導電層31とが互いに接していない構成であってもよい(例えば、後述する第2の方法により製造されるタッチセンサ層)。タッチセンサ層は、樹脂フィルム32、透明導電層31とは別に、貼合層、分離層、保護層等を備えていてもよい。貼合層としては、接着剤層、粘着剤層が挙げられる。 The touch sensor layer preferably has a configuration including a resin film 32 and a transparent conductive layer 31 provided on the surface of the resin film 32 on the bonding layer side. In the configuration in which the transparent conductive layer 31 is provided on the surface of the resin film 32, the resin film 32 and the transparent conductive layer 31 may be in contact with each other (for example, by the first method described later). The manufactured touch sensor layer), the resin film 32 and the transparent conductive layer 31 may not be in contact with each other (for example, the touch sensor layer manufactured by the second method described later). The touch sensor layer may include a bonding layer, a separation layer, a protective layer, and the like, in addition to the resin film 32 and the transparent conductive layer 31. Examples of the bonding layer include an adhesive layer and an adhesive layer.
 静電容量方式のタッチセンサ層の一例は、樹脂フィルムと、樹脂フィルムの表面に設けられた位置検出用の透明導電層と、タッチ位置検知回路とにより構成されている。静電容量方式のタッチセンサ層を有する光学積層体を設けた表示装置においては、前面板1の表面がタッチされると、タッチされた点で人体の静電容量を介して透明導電層が接地される。タッチ位置検知回路が、透明導電層の接地を検知し、タッチされた位置が検出される。
互いに離間した複数の透明導電層を有することにより、より詳細な位置の検出が可能となる。
An example of the capacitance type touch sensor layer is composed of a resin film, a transparent conductive layer for position detection provided on the surface of the resin film, and a touch position detection circuit. In a display device provided with an optical laminate having a capacitance type touch sensor layer, when the surface of the front plate 1 is touched, the transparent conductive layer is grounded via the capacitance of the human body at the touched point. Will be done. The touch position detection circuit detects the grounding of the transparent conductive layer, and the touched position is detected.
By having a plurality of transparent conductive layers separated from each other, more detailed position detection becomes possible.
 透明導電層は、ITO等の金属酸化物からなる透明導電層であってもよく、アルミニウムや銅、銀、金、又はこれらの合金等の金属からなる金属層であってもよい。 The transparent conductive layer may be a transparent conductive layer made of a metal oxide such as ITO, or may be a metal layer made of a metal such as aluminum, copper, silver, gold, or an alloy thereof.
 分離層は、ガラス等の基板上に形成されて、分離層上に形成された透明導電層を分離層とともに、基板から分離するための層であることができる。分離層は、無機物層又は有機物層であることが好ましい。無機物層を形成する材料としては、例えばシリコン酸化物が挙げられる。有機物層を形成する材料としては、例えば(メタ)アクリル系樹脂組成物、エポキシ系樹脂組成物、ポリイミド系樹脂組成物等を用いることができる。 The separation layer can be a layer formed on a substrate such as glass and for separating the transparent conductive layer formed on the separation layer from the substrate together with the separation layer. The separation layer is preferably an inorganic layer or an organic layer. Examples of the material forming the inorganic layer include silicon oxide. As the material for forming the organic material layer, for example, a (meth) acrylic resin composition, an epoxy resin composition, a polyimide resin composition, or the like can be used.
 タッチセンサ層は、透明導電層31に接して導電層を保護する保護層を備えていてもよい。保護層は有機絶縁膜及び無機絶縁膜のうちの少なくとも一つを含み、これらの膜は、スピンコート法、スパッタリング法、蒸着法等により形成することができる。 The touch sensor layer may include a protective layer that is in contact with the transparent conductive layer 31 and protects the conductive layer. The protective layer contains at least one of an organic insulating film and an inorganic insulating film, and these films can be formed by a spin coating method, a sputtering method, a vapor deposition method or the like.
 タッチセンサ層は例えば、以下のようにして製造することができる。第1の方法では、まずガラス基板へ貼合層を介して樹脂フィルム32を積層する。樹脂フィルム32上に、フォトリソグラフィによりパターン化された透明導電層31を形成する。熱を加えることにより、ガラス基板と樹脂フィルム32とを分離して、透明導電層31と樹脂フィルム32とからなるタッチセンサ層が得られる。 The touch sensor layer can be manufactured, for example, as follows. In the first method, the resin film 32 is first laminated on the glass substrate via the bonding layer. A transparent conductive layer 31 patterned by photolithography is formed on the resin film 32. By applying heat, the glass substrate and the resin film 32 are separated to obtain a touch sensor layer composed of the transparent conductive layer 31 and the resin film 32.
 第2の方法では、まずガラス基板上に分離層を形成し、必要に応じて、分離層上に保護層を形成する。分離層(又は保護層)上に、フォトリソグラフィによりパターン化された透明導電層31を形成する。透明導電層31上に、剥離可能な保護フィルムを積層し、透明導電層31から分離層までを転写して、ガラス基板を分離する。貼合層を介して樹脂フィルム32と分離層とを貼合し、剥離可能な保護フィルムを剥離することで、透明導電層31と分離層と貼合層と樹脂フィルム32とをこの順に有するタッチセンサ層が得られる。 In the second method, a separation layer is first formed on the glass substrate, and if necessary, a protective layer is formed on the separation layer. A transparent conductive layer 31 patterned by photolithography is formed on the separation layer (or protective layer). A peelable protective film is laminated on the transparent conductive layer 31, and the transparent conductive layer 31 to the separation layer are transferred to separate the glass substrate. By laminating the resin film 32 and the separating layer via the laminating layer and peeling off the peelable protective film, a touch having the transparent conductive layer 31, the separating layer, the laminating layer, and the resin film 32 in this order. A sensor layer is obtained.
 タッチセンサ層が有する樹脂フィルム32としては、トリアセチルセルロース、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリオレフィン、ポリシクロオレフィン、ポリカーボネート、ポリエーテルスルホン、ポリアリレート、ポリイミド、ポリアミド、ポリスチレン等の樹脂フィルムが挙げられる。 Examples of the resin film 32 included in the touch sensor layer include resin films such as triacetyl cellulose, polyethylene terephthalate, polyethylene naphthalate, polyolefin, polycycloolefin, polycarbonate, polyether sulfone, polyarylate, polyimide, polyamide, and polystyrene.
 タッチセンサ層の樹脂フィルム32は、優れた耐屈曲性を有する光学積層体を構成しやすい観点から、厚さが50μm以下であることが好ましく、30μm以下であることがより好ましい。タッチセンサ層が備える樹脂フィルム32の厚みは、例えば10μm以上である。 The thickness of the resin film 32 of the touch sensor layer is preferably 50 μm or less, and more preferably 30 μm or less, from the viewpoint of easily forming an optical laminate having excellent bending resistance. The thickness of the resin film 32 included in the touch sensor layer is, for example, 10 μm or more.
[第1粘着剤層、第2粘着剤層、第3粘着剤層]
 粘着剤層は、(メタ)アクリル系、ゴム系、ウレタン系、エステル系、シリコーン系、ポリビニルエーテル系のような樹脂を主成分とする粘着剤組成物で構成することができる。中でも、透明性、耐候性、耐熱性等に優れる(メタ)アクリル系樹脂をベースポリマーとする粘着剤組成物が好ましい。粘着剤組成物は、活性エネルギー線硬化型、熱硬化型であってもよい。第1粘着剤層、第2粘着剤層、および第3粘着剤層は、その組成が互いに同じであってもよいし、異なってもよい。第1粘着剤層、第2粘着剤層、および第3粘着剤層は、その厚みが互いに同じであってもよいし、異なってもよい。
[First adhesive layer, second adhesive layer, third adhesive layer]
The pressure-sensitive adhesive layer can be composed of a pressure-sensitive adhesive composition containing a resin as a main component, such as (meth) acrylic-based, rubber-based, urethane-based, ester-based, silicone-based, and polyvinyl ether-based. Among them, a pressure-sensitive adhesive composition using a (meth) acrylic resin having excellent transparency, weather resistance, heat resistance and the like as a base polymer is preferable. The pressure-sensitive adhesive composition may be an active energy ray-curable type or a thermosetting type. The composition of the first pressure-sensitive adhesive layer, the second pressure-sensitive adhesive layer, and the third pressure-sensitive adhesive layer may be the same as or different from each other. The thickness of the first pressure-sensitive adhesive layer, the second pressure-sensitive adhesive layer, and the third pressure-sensitive adhesive layer may be the same as or different from each other.
 粘着剤組成物に用いられる(メタ)アクリル系樹脂(ベースポリマー)としては、例えば、(メタ)アクリル酸ブチル、(メタ)アクリル酸エチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸2-エチルヘキシルのような(メタ)アクリル酸エステルの1種又は2種以上をモノマーとする重合体又は共重合体が好ましく用いられる。ベースポリマーには、極性モノマーを共重合させてもよい。極性モノマーとしては、例えば、(メタ)アクリル酸、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリルアミド、N,N-ジメチルアミノエチル(メタ)アクリレート、グリシジル(メタ)アクリレートのような、カルボキシル基、水酸基、アミド基、アミノ基、エポキシ基等を有するモノマーが挙げられる。 Examples of the (meth) acrylic resin (base polymer) used in the pressure-sensitive adhesive composition include butyl (meth) acrylate, ethyl (meth) acrylate, isooctyl (meth) acrylate, and 2- (meth) acrylate. A polymer or copolymer having one or more (meth) acrylic acid esters such as ethylhexyl as a monomer is preferably used. The base polymer may be copolymerized with a polar monomer. Examples of the polar monomer include (meth) acrylic acid, 2-hydroxypropyl (meth) acrylate, hydroxyethyl (meth) acrylate, (meth) acrylamide, N, N-dimethylaminoethyl (meth) acrylate, and glycidyl (). Examples thereof include monomers having a carboxyl group, a hydroxyl group, an amide group, an amino group, an epoxy group and the like, such as meta) acrylate.
 粘着剤組成物は、架橋剤を含むことができる。架橋剤としては、2価以上の金属イオンであって、カルボキシル基との間でカルボン酸金属塩を形成するもの;ポリアミン化合物であって、カルボキシル基との間でアミド結合を形成するもの;ポリエポキシ化合物やポリオールであって、カルボキシル基との間でエステル結合を形成するもの;ポリイソシアネート化合物であって、カルボキシル基との間でアミド結合を形成するものが挙げられる。中でも、ポリイソシアネート化合物が好ましい。 The pressure-sensitive adhesive composition can contain a cross-linking agent. The cross-linking agent is a divalent or higher metal ion that forms a carboxylic acid metal salt with a carboxyl group; a polyamine compound that forms an amide bond with a carboxyl group; poly. Examples include epoxy compounds and polyols that form an ester bond with a carboxyl group; polyisocyanate compounds that form an amide bond with a carboxyl group. Of these, polyisocyanate compounds are preferable.
 粘着剤組成物は、光散乱性を付与するための微粒子、ビーズ(樹脂ビーズ、ガラスビーズ等)、ガラス繊維、ベースポリマー以外の樹脂、粘着性付与剤、充填剤(金属粉やその他の無機粉末等)、酸化防止剤、紫外線吸収剤、染料、顔料、着色剤、消泡剤、腐食防止剤、光重合開始剤等の添加剤を含んでいてよい。 The pressure-sensitive adhesive composition includes fine particles for imparting light scattering, beads (resin beads, glass beads, etc.), glass fibers, resins other than the base polymer, pressure-sensitive adhesives, fillers (metal powders and other inorganic powders). Etc.), antioxidants, UV absorbers, dyes, pigments, colorants, antifoaming agents, corrosion inhibitors, photopolymerization initiators and other additives may be included.
 上記粘着剤組成物の有機溶剤希釈液を基材上に塗布し、乾燥させることにより形成することができる。 It can be formed by applying an organic solvent diluent of the above pressure-sensitive adhesive composition on a substrate and drying it.
 粘着剤層の温度25℃における貯蔵弾性率は、0.005~1.0MPaであることが好ましく、0.01~0.5MPaであることがより好ましく、0.01~0.2MPaであることがさらに好ましい。貯蔵弾性率は、粘弾性測定装置(MCR-301、Anton Paar社)を使用して測定することができる。粘着剤層を、厚みが150μmとなるように複数枚積層してガラスフィルムに接合後、測定チップと接着した状態で-20℃から100℃の温度領域で周波数1.0Hz、変形量1%、昇温速度5℃/分の条件下にて測定を行うことができる。 The storage elastic modulus of the pressure-sensitive adhesive layer at a temperature of 25 ° C. is preferably 0.005 to 1.0 MPa, more preferably 0.01 to 0.5 MPa, and preferably 0.01 to 0.2 MPa. Is even more preferable. The storage elastic modulus can be measured using a viscoelasticity measuring device (MCR-301, Antonio Par). A plurality of pressure-sensitive adhesive layers are laminated so as to have a thickness of 150 μm and bonded to a glass film. The measurement can be performed under the condition of a temperature rising rate of 5 ° C./min.
 第1粘着剤層の厚みは、位相差層を支持する機能を高める観点から、10μm以上であることが好ましく、20μm以上であることがより好ましい。第1粘着剤層の厚みの上限値は、特に限定されないが、50μm以下であってもよいし、40μm以下であってもよい。 The thickness of the first pressure-sensitive adhesive layer is preferably 10 μm or more, and more preferably 20 μm or more, from the viewpoint of enhancing the function of supporting the retardation layer. The upper limit of the thickness of the first pressure-sensitive adhesive layer is not particularly limited, but may be 50 μm or less, or 40 μm or less.
 第2粘着剤層の厚みは、10μm以上であることが好ましく、20μm以上であることがより好ましい。第1粘着剤層の厚みの上限値は、特に限定されないが、50μm以下であってもよいし、40μm以下であってもよい。 The thickness of the second pressure-sensitive adhesive layer is preferably 10 μm or more, and more preferably 20 μm or more. The upper limit of the thickness of the first pressure-sensitive adhesive layer is not particularly limited, but may be 50 μm or less, or 40 μm or less.
 第3粘着剤層の厚みは、10μm以上であることが好ましく、20μm以上であることがより好ましい。第1粘着剤層の厚みの上限値は、特に限定されないが、50μm以下であってもよいし、40μm以下であってもよい。 The thickness of the third pressure-sensitive adhesive layer is preferably 10 μm or more, and more preferably 20 μm or more. The upper limit of the thickness of the first pressure-sensitive adhesive layer is not particularly limited, but may be 50 μm or less, or 40 μm or less.
 粘着剤層の厚みは、粘着剤層における最も厚い部分の厚みのことをいう。 The thickness of the pressure-sensitive adhesive layer refers to the thickness of the thickest part of the pressure-sensitive adhesive layer.
[貼合層]
 貼合層は、粘着剤又は接着剤から構成される層であることができる。各貼合層は、同じ材料からなるものであっても、異なる材料からなるものであってもよい。位相差フィルムが複数の位相差層を有する場合、位相差層は互いに接着剤層で貼合されてもよいし、粘着剤層で貼合されてもよい。直線偏光板と位相差フィルムとは、粘着剤層で貼合されることが好ましい。透明導電層31と樹脂フィルム32とを積層する貼合層は、接着剤層であることが好ましい。
[Lated layer]
The laminating layer can be a layer composed of a pressure-sensitive adhesive or an adhesive. Each laminating layer may be made of the same material or different materials. When the retardation film has a plurality of retardation layers, the retardation layers may be bonded to each other with an adhesive layer or may be bonded with an adhesive layer. The linearly polarizing plate and the retardation film are preferably bonded with an adhesive layer. The bonding layer on which the transparent conductive layer 31 and the resin film 32 are laminated is preferably an adhesive layer.
 貼合層を構成する粘着剤層としては、上述の第1粘着剤層、第2粘着剤層、または第3粘着剤層と同様の粘着剤層を用いることができる。 As the pressure-sensitive adhesive layer constituting the bonding layer, the same pressure-sensitive adhesive layer as the above-mentioned first pressure-sensitive adhesive layer, second pressure-sensitive adhesive layer, or third pressure-sensitive adhesive layer can be used.
 接着剤としては、例えば水系接着剤、活性エネルギー線硬化型接着剤等のうち1種又は2種以上を組み合わせて形成することができる。水系接着剤としては、例えばポリビニルアルコール系樹脂水溶液、水系二液型ウレタン系エマルジョン接着剤等を挙げることができる。活性エネルギー線硬化型接着剤は、紫外線等の活性エネルギー線を照射することによって硬化する接着剤であり、例えば重合性化合物及び光重合性開始剤を含む接着剤、光反応性樹脂を含む接着剤、バインダー樹脂及び光反応性架橋剤を含む接着剤等を挙げることができる。上記重合性化合物としては、光硬化性エポキシ系モノマー、光硬化性アクリル系モノマー、光硬化性ウレタン系モノマー等の光重合性モノマー、及びこれらモノマーに由来するオリゴマー等を挙げることができる。上記光重合開始剤としては、紫外線等の活性エネルギー線を照射して中性ラジカル、アニオンラジカル、カチオンラジカルといった活性種を発生する物質を含む化合物を挙げることができる。 The adhesive can be formed by combining one or more of, for example, a water-based adhesive, an active energy ray-curable adhesive, and the like. Examples of the water-based adhesive include a polyvinyl alcohol-based resin aqueous solution, a water-based two-component urethane-based emulsion adhesive, and the like. The active energy ray-curable adhesive is an adhesive that cures by irradiating with active energy rays such as ultraviolet rays, and is, for example, an adhesive containing a polymerizable compound and a photopolymerizable initiator, and an adhesive containing a photoreactive resin. , Adhesives containing a binder resin and a photoreactive cross-linking agent, and the like. Examples of the polymerizable compound include photopolymerizable monomers such as a photocurable epoxy monomer, a photocurable acrylic monomer, and a photocurable urethane monomer, and oligomers derived from these monomers. Examples of the photopolymerization initiator include compounds containing substances that generate active species such as neutral radicals, anion radicals, and cationic radicals by irradiating them with active energy rays such as ultraviolet rays.
 貼合層が粘着剤層である場合、粘着剤層の厚みは、好ましくは1μm以上30μm以下であり、より好ましくは2μm以上20μmであり、3μm以上10μm以下である。貼合層が接着剤層である場合、接着剤層の厚みは、好ましくは、0.01μm以上5μm以下であり、より好ましくは0.1μm以上3μm以下である。 When the bonding layer is a pressure-sensitive adhesive layer, the thickness of the pressure-sensitive adhesive layer is preferably 1 μm or more and 30 μm or less, more preferably 2 μm or more and 20 μm, and 3 μm or more and 10 μm or less. When the bonding layer is an adhesive layer, the thickness of the adhesive layer is preferably 0.01 μm or more and 5 μm or less, and more preferably 0.1 μm or more and 3 μm or less.
[表面保護フィルム]
 表面保護フィルムは、偏光層または前面板の表面を保護するためのフィルムである。通常、例えば画像表示素子等に表面保護フィルム付きの光学積層体が貼合された後に、表面保護フィルムが粘着剤層を有する場合には、表面保護フィルムは、その粘着剤層ごと剥離除去される。したがって、表面保護フィルムは、偏光層または前面板の表面に剥離可能に貼合されることができる。
[Surface protection film]
The surface protective film is a film for protecting the surface of the polarizing layer or the front plate. Usually, when the surface protective film has an adhesive layer after the optical laminate with the surface protective film is attached to, for example, an image display element, the surface protective film is peeled off together with the adhesive layer. .. Therefore, the surface protective film can be detachably attached to the surface of the polarizing layer or the front plate.
 表面保護フィルムは、例えば、樹脂フィルムと、その上に積層される粘着剤層とで構成することができる。樹脂フィルムは、例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂、環状ポリオレフィン系樹脂等のポリオレフィン系樹脂;ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂;ポリカーボネート系樹脂;(メタ)アクリル系樹脂などで構成することができる。基材フィルムは、単層構造であってもよいし多層構造であってもよい。粘着剤層は、(メタ)アクリル系粘着剤、エポキシ系粘着剤、ウレタン系粘着剤、シリコーン系粘着剤等で構成することができる。また、表面保護フィルムは、ポリプロピレン系樹脂及びポリエチレン系樹脂等の自己粘着性を有する樹脂フィルムであってもよい。この場合、表面保護フィルムは、粘着剤層を有しない。 The surface protective film can be composed of, for example, a resin film and an adhesive layer laminated on the resin film. The resin film is composed of, for example, a polyolefin resin such as a polyethylene resin, a polypropylene resin, and a cyclic polyolefin resin; a polyester resin such as polyethylene terephthalate and polyethylene naphthalate; a polycarbonate resin; and a (meth) acrylic resin. be able to. The base film may have a single-layer structure or a multi-layer structure. The pressure-sensitive adhesive layer can be composed of a (meth) acrylic pressure-sensitive adhesive, an epoxy-based pressure-sensitive adhesive, a urethane-based pressure-sensitive adhesive, a silicone-based pressure-sensitive adhesive, or the like. Further, the surface protective film may be a resin film having self-adhesiveness such as polypropylene resin and polyethylene resin. In this case, the surface protective film does not have an adhesive layer.
 表面保護フィルムの厚みは、例えば5~150μmであることができ、好ましくは10~100μmであり、より好ましくは20~75μmであり、さらに好ましくは25~70μm(例えば60μm以下、さらには55μm以下)である。表面保護フィルムの厚みが5μm未満の場合には、偏光層または前面板の保護が不十分になることがあり、また取扱性の面でも不利である。表面保護フィルムの厚みが150μmを超えることは、光学積層体の薄膜化や、表面保護フィルムのリワーク性の面で不利である。 The thickness of the surface protective film can be, for example, 5 to 150 μm, preferably 10 to 100 μm, more preferably 20 to 75 μm, still more preferably 25 to 70 μm (for example, 60 μm or less, further 55 μm or less). Is. If the thickness of the surface protective film is less than 5 μm, the protection of the polarizing layer or the front plate may be insufficient, and it is disadvantageous in terms of handleability. If the thickness of the surface protective film exceeds 150 μm, it is disadvantageous in terms of thinning the optical laminate and reworkability of the surface protective film.
 表面保護フィルムの端部の位置は、第1粘着剤層の端部の位置よりも外側であることが好ましい。このような構成とすることで、第1粘着剤層の端部が何らかの物体と触れることによって、第1粘着剤層の一部が脱落したり、第1粘着剤層が光学積層体の表面を汚染したりするのを防止することができる。 The position of the end portion of the surface protective film is preferably outside the position of the end portion of the first pressure-sensitive adhesive layer. With such a configuration, when the end portion of the first pressure-sensitive adhesive layer comes into contact with some object, a part of the first pressure-sensitive adhesive layer may fall off, or the first pressure-sensitive adhesive layer may touch the surface of the optical laminate. It can be prevented from becoming contaminated.
[セパレートフィルム]
 セパレートフィルムは、粘着剤層を表示素子(例えば液晶セル)や他の光学部材に貼合するまでその表面を保護するために仮着されるフィルムである。セパレートフィルムは通常、片面にシリコーン系、フッ素系等の離型剤などによる離型処理が施された熱可塑性樹脂フィルムで構成され、その離型処理面が第3粘着剤層に貼り合わされる。
[Separate film]
The separate film is a film that is temporarily attached to protect the surface of the pressure-sensitive adhesive layer until it is attached to a display element (for example, a liquid crystal cell) or another optical member. The separate film is usually composed of a thermoplastic resin film having one surface subjected to a mold release treatment such as a silicone-based or fluorine-based mold release agent, and the mold release-treated surface is bonded to a third pressure-sensitive adhesive layer.
 セパレートフィルムを構成する熱可塑性樹脂は、例えば、ポリエチレンのようなポリエチレン系樹脂、ポリプロピレンのようなポリプロピレン系樹脂、ポリエチレンテレフタレートやポリエチレンナフタレートのようなポリエステル系樹脂等であることができる。セパレートフィルムの厚みは、例えば10~50μmである。 The thermoplastic resin constituting the separate film can be, for example, a polyethylene resin such as polyethylene, a polypropylene resin such as polypropylene, a polyester resin such as polyethylene terephthalate or polyethylene naphthalate, or the like. The thickness of the separate film is, for example, 10 to 50 μm.
 セパレートフィルムの端部の位置は、第1粘着剤層の端部の位置よりも外側であることが好ましい。このような構成とすることで、第1粘着剤層の端部が何らかの物体と触れることによって、第1粘着剤層の一部が脱落したり、第1粘着剤層が光学積層体の表面を汚染したりするのを防止することができる。 The position of the end portion of the separate film is preferably outside the position of the end portion of the first pressure-sensitive adhesive layer. With such a configuration, when the end portion of the first pressure-sensitive adhesive layer comes into contact with some object, a part of the first pressure-sensitive adhesive layer may fall off, or the first pressure-sensitive adhesive layer may touch the surface of the optical laminate. It can be prevented from becoming contaminated.
[光学積層体の製造方法]
 本発明の光学積層体は、第1粘着剤層を介して、偏光層と背面板とを積層し、必要に応じて、さらに前面板、第2粘着剤層、表面保護フィルム、第3粘着剤層、セパレートフィルムを積層した後、所定形状に裁断することにより製造される。各部材を裁断後に、前面板、第2粘着剤層、表面保護フィルム、第3粘着剤層、セパレートフィルムを積層してもよい。裁断後に、その端面を研磨してもよいが、研磨加工で粘着剤層がかきとられやすいので、研磨しなくてもよい。以下のようにして裁断すると、粘着剤層の端部の位置や、背面板の傾斜が制御された光学積層体を得やすい。
[Manufacturing method of optical laminate]
In the optical laminate of the present invention, a polarizing layer and a back plate are laminated via a first pressure-sensitive adhesive layer, and if necessary, a front plate, a second pressure-sensitive adhesive layer, a surface protective film, and a third pressure-sensitive adhesive are further laminated. It is manufactured by laminating layers and separate films and then cutting them into a predetermined shape. After cutting each member, the front plate, the second pressure-sensitive adhesive layer, the surface protective film, the third pressure-sensitive adhesive layer, and the separate film may be laminated. The end face may be polished after cutting, but it is not necessary to polish the adhesive layer because the adhesive layer is easily scraped by the polishing process. By cutting as follows, it is easy to obtain an optical laminate in which the position of the end portion of the adhesive layer and the inclination of the back plate are controlled.
 図5に示すように、断面が半月形に盛り上がった形状である台7に、積層体400を台7の形状に沿わせて固定する。次いで、台7の上方から適当な切断手段500によって、積層体400を所定形状に裁断する。このような台7を用いて積層体を裁断すると、第1粘着剤層の端部の位置を、位相差層の端部の位置よりも外側にしやすく、第2粘着剤層の端部の位置を、前面板の端部の位置よりも内側にしやすい。台7の断面形状を調整することにより、第1粘着剤層の端部の位置と、位相差層の端部の位置との間の距離や、第2粘着剤層の端部の位置と、前面板の端部の位置との間の距離を調整することもできる。 As shown in FIG. 5, the laminated body 400 is fixed to the base 7 having a half-moon-shaped cross section along the shape of the base 7. Next, the laminated body 400 is cut into a predetermined shape by an appropriate cutting means 500 from above the table 7. When the laminate is cut using such a base 7, the position of the end portion of the first pressure-sensitive adhesive layer can be easily set to the outside of the position of the end portion of the retardation layer, and the position of the end portion of the second pressure-sensitive adhesive layer can be easily set. Is easier to set inside than the position of the edge of the front plate. By adjusting the cross-sectional shape of the base 7, the distance between the position of the end portion of the first pressure-sensitive adhesive layer and the position of the end portion of the retardation layer, the position of the end portion of the second pressure-sensitive adhesive layer, and the position of the end portion can be determined. It is also possible to adjust the distance between the position of the edge of the front plate.
 台7へ積層体400を固定する際に、積層体の背面板側表面が台7の表面に接するようにすると、背面板の端面を、第1粘着剤層側の面とは反対側の面に対して80°以上90°未満に傾斜させやすい。積層体の偏光層側表面(または前面板側表面)が台7の表面に接するようにすると、背面板の端部を、第1粘着剤層側の面とは反対側の面に対して90°超以上130°未満に傾斜させやすい。 When fixing the laminate 400 to the base 7, if the back plate side surface of the laminate is in contact with the surface of the base 7, the end surface of the back plate is the surface opposite to the surface on the first adhesive layer side. It is easy to incline it to 80 ° or more and less than 90 °. When the polarizing layer side surface (or front plate side surface) of the laminate is in contact with the surface of the base 7, the end portion of the back plate is 90 with respect to the surface opposite to the surface on the first adhesive layer side. Easy to incline above ° and below 130 °.
 切断手段は特に限定されない。切断手段としては、レーザー、刃物およびウォータージェットが挙げられる。刃物は、はさみ、トムソン刃、ピナクル刃を含む。 The cutting means is not particularly limited. Cutting means include lasers, blades and water jets. Blades include scissors, Thomson blades, Pinnacle blades.
 レーザーには、例えば200nm~11μmの範囲の波長を放射するレーザーが用いられる。レーザーは、連続波(CW)レーザーであってもよいし、パルスレーザーであってもよい。レーザーの種類としては、COレーザー等の気体レーザー、YAGレーザー等の固体レーザー、半導体レーザーが挙げられる。積層体の吸収域に適合させやすいことから、COレーザーが好ましい。 As the laser, for example, a laser that emits a wavelength in the range of 200 nm to 11 μm is used. The laser may be a continuous wave (CW) laser or a pulsed laser. Examples of the laser include a gas laser such as a CO 2 laser, a solid-state laser such as a YAG laser, and a semiconductor laser. A CO 2 laser is preferable because it is easy to adapt to the absorption region of the laminate.
[表示装置]
 光学積層体は、例えば、表示パネルの表示面に配置されて、表示装置を構成することができる。光学積層体が、表面保護フィルムやセパレートフィルムを備える場合は、これらを剥離した後に、表示パネルの表示面に配置されて、表示装置を構成することができる。
光学積層体は、可撓性を有する表示パネルの表示面に適用する用途に特に好ましい。表示装置は、その前面(視認側)に配置された光学積層体と、表示パネルとを有する。光学積層体及び表示パネルは、貼合層により積層されている。光学積層体と表示パネルとを積層する貼合層は粘着剤層であることができる。表示パネルは、視認側表面を内側にして折り畳み可能に構成されたものであってもよく、巻回可能に構成されたものであってもよい。
表示パネルの具体例としては、液晶表示素子、有機EL表示素子、無機EL表示素子、プラズマ表示素子、電界放射型表示素子が挙げられる。
[Display device]
The optical laminate can be arranged, for example, on the display surface of the display panel to form a display device. When the optical laminate includes a surface protective film or a separate film, the optical laminate can be arranged on the display surface of the display panel after being peeled off to form a display device.
The optical laminate is particularly preferred for applications where it is applied to the display surface of a flexible display panel. The display device has an optical laminate arranged on the front surface (visual side) thereof and a display panel. The optical laminate and the display panel are laminated by a laminated layer. The bonding layer that laminates the optical laminate and the display panel can be an adhesive layer. The display panel may be configured to be foldable with the viewing side surface inside, or may be configured to be rotatable.
Specific examples of the display panel include a liquid crystal display element, an organic EL display element, an inorganic EL display element, a plasma display element, and a field emission type display element.
 表示装置は、スマートフォン、タブレット等のモバイル機器、テレビ、デジタルフォトフレーム、電子看板、測定器や計器類、事務用機器、医療機器、電算機器等として用いることができる。 The display device can be used as a mobile device such as a smartphone or tablet, a television, a digital photo frame, an electronic signboard, a measuring instrument or an instrument, an office device, a medical device, a computer device, or the like.
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。本実施例中、物質を配合する割合の単位「部」は、特に断らない限り、重量基準である。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto. In this example, the unit "part" of the ratio of blending substances is based on weight unless otherwise specified.
[端部の位置関係および距離ならびに傾斜角]
各層の端部の位置、および端部の位置間の距離、ならびに傾斜角は、光学積層体の断面のSEM画像から決定した。
[Position and distance of edges and tilt angle]
The position of the end of each layer, the distance between the positions of the ends, and the angle of inclination were determined from the SEM image of the cross section of the optical laminate.
[屈曲試験]
 屈曲試験は、温度25℃において行った。屈曲試験機(F1-2SV、Forehu社製)に、光学積層体を平坦な状態(屈曲していない状態)で設置し、前面板側が内側となるように屈曲させた。その後、元の平坦な状態に戻した。一連の操作を1回行ったときを屈曲回数1回と数え、この屈曲操作を繰返し行った。屈曲速度は1秒当たり1回とした。
20万回屈曲操作を繰り返しても、位相差層へクラックが生じない最小の屈曲半径を調べた。結果は、表1において、”屈曲半径”として示した。
[Bending test]
The bending test was performed at a temperature of 25 ° C. The optical laminate was installed in a bending tester (F1-2SV, manufactured by Forehu) in a flat state (not bent), and was bent so that the front plate side was on the inside. After that, it returned to the original flat state. When a series of operations was performed once, the number of times of bending was counted as one, and this bending operation was repeated. The bending speed was once per second.
The minimum bending radius at which cracks did not occur in the retardation layer even after repeating the bending operation 200,000 times was investigated. The results are shown as "bending radius" in Table 1.
[前面板]
 前面板として、ポリイミド(PI)フィルムの一方の表面にハードコート層が形成されたものを用いた。ポリイミドフィルムの厚みは50μmであり、ハードコート層の厚みは10μmであった。
[Front plate]
As the front plate, a polyimide (PI) film having a hard coat layer formed on one surface was used. The thickness of the polyimide film was 50 μm, and the thickness of the hard coat layer was 10 μm.
[円偏光板]
 基材フィルムに光配向膜を形成した。二色性色素と重合性液晶化合物とを含む組成物を光配向膜上に塗布し、配向、硬化させて、厚み2μmの偏光子を得た。偏光子上に、接着剤層を介して、厚み25μmのトリアセチルセルロース(TAC)フィルムを貼合した。
基材フィルムを剥離し、露出した面に、オーバーコート層を形成した。オーバーコート層は、ポリビニルアルコールと水とを含む樹脂組成物を塗工し、温度80℃で3分間乾燥させて形成した。オーバーコート層の厚みは1.0μmであった。
[Circular polarizing plate]
A photoalignment film was formed on the base film. A composition containing a dichroic dye and a polymerizable liquid crystal compound was applied onto a photoalignment film, oriented and cured to obtain a polarizer having a thickness of 2 μm. A 25 μm-thick triacetyl cellulose (TAC) film was attached onto the polarizer via an adhesive layer.
The base film was peeled off and an overcoat layer was formed on the exposed surface. The overcoat layer was formed by applying a resin composition containing polyvinyl alcohol and water and drying at a temperature of 80 ° C. for 3 minutes. The thickness of the overcoat layer was 1.0 μm.
 重合性液晶化合物が硬化した層からなるλ/4層と、重合性液晶化合物が硬化した層からなるポジティブC層とを、紫外線硬化型接着剤を介して積層し、位相差フィルムを得た。λ/4層の厚みは2μmであり、ポジティブC層の厚みは3μmであり、紫外線硬化型接着剤層の厚みは1μmであった。 A λ / 4 layer composed of a layer in which the polymerizable liquid crystal compound was cured and a positive C layer composed of a layer in which the polymerizable liquid crystal compound was cured were laminated via an ultraviolet curable adhesive to obtain a retardation film. The thickness of the λ / 4 layer was 2 μm, the thickness of the positive C layer was 3 μm, and the thickness of the ultraviolet curable adhesive layer was 1 μm.
 直線偏光板と位相差フィルムとを、アクリル系粘着剤層を介して積層し、円偏光板を得た。アクリル系粘着剤層の厚みは5μmであった。得られた円偏光板は、TACフィルム、偏光子、オーバーコート層、粘着剤層、λ/4層、接着剤層、ポジティブC層をこの順に有する積層体であった。偏光子の吸収軸と、λ/4層の遅相軸とのなす角度は45°であった。 A linearly polarizing plate and a retardation film were laminated via an acrylic pressure-sensitive adhesive layer to obtain a circularly polarizing plate. The thickness of the acrylic pressure-sensitive adhesive layer was 5 μm. The obtained circularly polarizing plate was a laminate having a TAC film, a polarizer, an overcoat layer, an adhesive layer, a λ / 4 layer, an adhesive layer, and a positive C layer in this order. The angle formed by the absorption axis of the polarizer and the slow axis of the λ / 4 layer was 45 °.
[タッチセンサ層]
 ガラス基板上に分離層を形成した。分離層上に、パターン化された透明導電層をフォトリソグラフィにより形成した。透明導電層上に、剥離可能な保護フィルムを積層し、透明導電層から分離層までを転写して、ガラス基板を分離した。分離層と透明導電層との合計厚みは7μmであった。
[Touch sensor layer]
A separation layer was formed on the glass substrate. A patterned transparent conductive layer was formed on the separation layer by photolithography. A peelable protective film was laminated on the transparent conductive layer, and the transparent conductive layer was transferred to the separation layer to separate the glass substrate. The total thickness of the separation layer and the transparent conductive layer was 7 μm.
[実施例1]
 前面板、円偏光板、およびタッチセンサ層を、アクリル系粘着剤層を介して、互いに積層した。このアクリル系粘着剤層の厚みは25μmであった。前面板は、円偏光板のTACフィルム側に積層し、タッチセンサ層は、円偏光板のポジティブC層側に積層した。タッチセンサ層を円偏光板に積層した後に、タッチセンサ層に積層された剥離可能な保護フィルムを剥離した。このようにして、前面板、第2粘着剤層、円偏光板、第1粘着剤層、タッチセンサ層がこの順に積層された積層体を作製した。
[Example 1]
The front plate, the circularly polarizing plate, and the touch sensor layer were laminated with each other via an acrylic pressure-sensitive adhesive layer. The thickness of this acrylic pressure-sensitive adhesive layer was 25 μm. The front plate was laminated on the TAC film side of the circularly polarizing plate, and the touch sensor layer was laminated on the positive C layer side of the circularly polarizing plate. After laminating the touch sensor layer on the circularly polarizing plate, the peelable protective film laminated on the touch sensor layer was peeled off. In this way, a laminated body in which the front plate, the second pressure-sensitive adhesive layer, the circularly polarizing plate, the first pressure-sensitive adhesive layer, and the touch sensor layer were laminated in this order was produced.
 得られた積層体を、図5に示すように断面が半月形に盛り上がった形状である台7に固定した。台7へ積層体を固定する際は、積層体のタッチセンサ層(背面板)側表面が台7に接するようにした。COレーザーから発せられたレーザー光を、台7の上方から積層体へ照射し、積層体を裁断した。レーザー光はレンズで集光し、焦点は前面板側の表面に合わせた。レーザー光の出力は11Wであり、レーザー光の移動速度(切断速度)は320mm/sであった。同様の操作を4辺に対して行い、矩形状の光学積層体を作製した。 The obtained laminate was fixed to a table 7 having a half-moon-shaped cross section as shown in FIG. When fixing the laminated body to the table 7, the surface of the laminated body on the touch sensor layer (back plate) side is in contact with the table 7. The laminated body was cut by irradiating the laminated body with the laser light emitted from the CO 2 laser from above the table 7. The laser light was focused by the lens, and the focus was on the surface on the front plate side. The output of the laser light was 11 W, and the moving speed (cutting speed) of the laser light was 320 mm / s. The same operation was performed on the four sides to prepare a rectangular optical laminate.
[実施例2]
 COレーザーに代えて刃物で積層体を打ち抜いて裁断したこと以外は、実施例1と同様にして、光学積層体を作製した。刃物には、片刃で刃角が30°であるものを用いた。
切断速度は、0.1m/sであった。 
[Example 2]
An optical laminate was produced in the same manner as in Example 1 except that the laminate was punched and cut with a blade instead of the CO 2 laser. As the blade, a single-edged blade having a blade angle of 30 ° was used.
The cutting speed was 0.1 m / s.
[実施例3]
 台7へ積層体を固定する際に、積層体の前面板側表面が台7に接するようにしたこと以外は、実施例1と同様にして、光学積層体を作製した。なお、レーザー光はレンズで集光し、焦点はタッチセンサ層側の表面に合わせた。
[Example 3]
An optical laminated body was produced in the same manner as in Example 1 except that the front plate side surface of the laminated body was in contact with the table 7 when the laminated body was fixed to the table 7. The laser light was focused by the lens, and the focus was on the surface on the touch sensor layer side.
[実施例4]
 台7へ積層体を固定する際に、積層体の前面板側表面が台7に接するようにしたこと以外は、実施例2と同様にして、光学積層体を作製した。
[Example 4]
An optical laminated body was produced in the same manner as in Example 2 except that the front plate side surface of the laminated body was in contact with the table 7 when the laminated body was fixed to the table 7.
[比較例1]
 実施例1で得られた光学積層体に対して、回転する切削刃により、端面の研磨加工を行った。研磨加工で切削する量は0.5mmとし、切削刃の回転速度は4800rpmとし、送り速度は600mm/min.とした。
[Comparative Example 1]
The end face of the optical laminate obtained in Example 1 was polished with a rotating cutting blade. The amount to be cut by polishing is 0.5 mm, the rotation speed of the cutting blade is 4800 rpm, and the feed rate is 600 mm / min. And said.
[比較例2]
 実施例3で得られた光学積層体に対して、回転する切削刃により、端面の研磨加工を行った。研磨加工で切削する量は0.5mmとし、切削刃の回転速度は4800rpmとし、送り速度は600mm/min.とした。
[Comparative Example 2]
The end face of the optical laminate obtained in Example 3 was polished with a rotating cutting blade. The amount to be cut by polishing is 0.5 mm, the rotation speed of the cutting blade is 4800 rpm, and the feed rate is 600 mm / min. And said.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 積層方向に直交する方向において、第1粘着剤層の端部の位置が、位相差層の端部の位置よりも外側である光学積層体は、小さな屈曲半径で、繰り返し屈曲しても位相差層にクラックが生じにくかった。 An optical laminate in which the position of the end portion of the first pressure-sensitive adhesive layer is outside the position of the end portion of the retardation layer in the direction orthogonal to the lamination direction has a small bending radius, and the phase difference even if repeatedly bent. It was difficult for the layer to crack.
 1…前面板、2…偏光層、3…背面板、4…貼合層、7…台、11…第1粘着剤層、12…第2粘着剤層、20…位相差層、21…第1位相差層、22…第2位相差層、25…直線偏光板、30…端部の位置、31…透明導電層、32…樹脂フィルム、40…表面保護フィルム、41…セパレートフィルム、42…第3粘着剤層、100、102~105…光学積層体、200…光学積層体、300…光学積層体、400…積層体、500…切断手段 1 ... front plate, 2 ... polarizing layer, 3 ... back plate, 4 ... bonding layer, 7 ... stand, 11 ... first adhesive layer, 12 ... second adhesive layer, 20 ... retardation layer, 21 ... th 1 retardation layer, 22 ... second retardation layer, 25 ... linear polarizing plate, 30 ... end position, 31 ... transparent conductive layer, 32 ... resin film, 40 ... surface protection film, 41 ... separate film, 42 ... Third adhesive layer, 100, 102 to 105 ... Optical laminate, 200 ... Optical laminate, 300 ... Optical laminate, 400 ... Laminate, 500 ... Cutting means

Claims (7)

  1. 偏光層、第1粘着剤層、および背面板をこの順に備え、
    前記偏光層は、前記第1粘着剤層に近い側から、位相差フィルムと直線偏光板とを有し、前記位相差フィルムは、重合性液晶化合物が硬化した層を含む位相差層を有し、
    積層方向に直交する方向において、前記第1粘着剤層の端部の位置は、前記位相差層の端部の位置よりも外側である、光学積層体。
    The polarizing layer, the first adhesive layer, and the back plate are provided in this order.
    The polarizing layer has a retardation film and a linear polarizing plate from the side close to the first pressure-sensitive adhesive layer, and the retardation film has a retardation layer including a layer in which a polymerizable liquid crystal compound is cured. ,
    An optical laminate in which the position of the end portion of the first pressure-sensitive adhesive layer is outside the position of the end portion of the retardation layer in a direction orthogonal to the lamination direction.
  2. 前記積層方向に直交する方向において、前記第1粘着剤層の端部の位置と、前記位相差層の端部の位置との間の距離は、0μm超50μm以下である、請求項1の光学積層体。 The optical according to claim 1, wherein the distance between the position of the end portion of the first pressure-sensitive adhesive layer and the position of the end portion of the retardation layer is more than 0 μm and 50 μm or less in the direction orthogonal to the stacking direction. Laminated body.
  3. 前記第1粘着剤層の厚みは、10μm以上である、請求項1または2に記載の光学積層体。 The optical laminate according to claim 1 or 2, wherein the thickness of the first pressure-sensitive adhesive layer is 10 μm or more.
  4. 前記第1粘着剤層は、前記位相差層に接して積層されている、請求項1~3のいずれかに記載の光学積層体。 The optical laminate according to any one of claims 1 to 3, wherein the first pressure-sensitive adhesive layer is laminated in contact with the retardation layer.
  5. 前記背面板は、タッチセンサ層であり、
    当該タッチセンサ層の端面は、前記第1粘着剤層側の面とは反対側の面に対して80°以上90°未満に傾斜している、請求項1~4のいずれかに記載の光学積層体。
    The back plate is a touch sensor layer and
    The optics according to any one of claims 1 to 4, wherein the end surface of the touch sensor layer is inclined at 80 ° or more and less than 90 ° with respect to the surface opposite to the surface on the first pressure-sensitive adhesive layer side. Laminated body.
  6. 前記偏光層における前記第1粘着剤層側とは反対側に、第2の粘着剤層、および前面板をこの順に備え、
    前記積層方向に直交する方向において、前記第2粘着剤層の端部の位置は、前記前面板の端部の位置よりも、内側に位置する、請求項1~5のいずれかに記載の光学積層体。
    A second pressure-sensitive adhesive layer and a front plate are provided in this order on the side of the polarizing layer opposite to the first pressure-sensitive adhesive layer side.
    The optical according to any one of claims 1 to 5, wherein the position of the end portion of the second pressure-sensitive adhesive layer is located inside the position of the end portion of the front surface plate in a direction orthogonal to the laminating direction. Laminated body.
  7. 前記前面板における前記偏光層側とは反対側に、表面保護フィルムを備え、
    前記背面板における前記偏光層側とは反対側に、第3粘着剤層とセパレートフィルムとを備え、
    前記積層方向に直交する方向において、前記表面保護フィルムの端部の位置は、前記第1粘着剤層の端部の位置よりも外側であり、前記セパレートフィルムの端部の位置は、前記第1粘着剤層の端部の位置よりも外側である、請求項6に記載の光学積層体。
    A surface protective film is provided on the front plate on the side opposite to the polarizing layer side.
    A third pressure-sensitive adhesive layer and a separate film are provided on the back plate on the side opposite to the polarizing layer side.
    In the direction orthogonal to the laminating direction, the position of the end portion of the surface protective film is outside the position of the end portion of the first pressure-sensitive adhesive layer, and the position of the end portion of the separate film is the position of the first portion. The optical laminate according to claim 6, which is outside the position of the end portion of the pressure-sensitive adhesive layer.
PCT/JP2021/006062 2020-03-05 2021-02-18 Optical laminate WO2021177040A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-037534 2020-03-05
JP2020037534A JP2021140024A (en) 2020-03-05 2020-03-05 Optical laminate

Publications (1)

Publication Number Publication Date
WO2021177040A1 true WO2021177040A1 (en) 2021-09-10

Family

ID=77613315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006062 WO2021177040A1 (en) 2020-03-05 2021-02-18 Optical laminate

Country Status (3)

Country Link
JP (1) JP2021140024A (en)
TW (1) TW202134708A (en)
WO (1) WO2021177040A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023132164A1 (en) * 2022-01-05 2023-07-13 住友化学株式会社 Polarizer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3264147A1 (en) * 2016-06-30 2018-01-03 LG Display Co., Ltd. Polarizer, display device having the polarizer, and method of fabricating the polarizer
JP2018005252A (en) * 2017-09-28 2018-01-11 住友化学株式会社 Polarizing plate and image display device
JP2019125423A (en) * 2018-01-12 2019-07-25 株式会社Joled Display divice
JP2019199081A (en) * 2018-05-10 2019-11-21 住友化学株式会社 Laminate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3264147A1 (en) * 2016-06-30 2018-01-03 LG Display Co., Ltd. Polarizer, display device having the polarizer, and method of fabricating the polarizer
JP2018005252A (en) * 2017-09-28 2018-01-11 住友化学株式会社 Polarizing plate and image display device
JP2019125423A (en) * 2018-01-12 2019-07-25 株式会社Joled Display divice
JP2019199081A (en) * 2018-05-10 2019-11-21 住友化学株式会社 Laminate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023132164A1 (en) * 2022-01-05 2023-07-13 住友化学株式会社 Polarizer

Also Published As

Publication number Publication date
TW202134708A (en) 2021-09-16
JP2021140024A (en) 2021-09-16

Similar Documents

Publication Publication Date Title
WO2021153098A1 (en) Optical laminate and method for manufacturing display device
WO2021010114A1 (en) Optical laminate and manufacturing method therefor
JP2021144208A (en) Laminated sheet and manufacturing method therefor
WO2021177040A1 (en) Optical laminate
WO2021085000A1 (en) Optical laminate and display device
WO2021182005A1 (en) Laminate sheet and method for manufacturing same
WO2021176989A1 (en) Optical laminate and display device
WO2021149358A1 (en) Optical stack and production method therefor
WO2021186986A1 (en) Laminate sheet and method for manufacturing same
WO2021166434A1 (en) Optical laminate and display device having same
WO2022255155A1 (en) Laminate
WO2022255154A1 (en) Laminate
WO2021149359A1 (en) Optical stack and display device
JP2021149087A (en) Laminated sheet and manufacturing method therefor
WO2021193348A1 (en) Laminate
JP2021140136A (en) Optical laminate and display device
JP2022148467A (en) optical laminate
JP2022145565A (en) Optical laminate and display device
JP2022059255A (en) Flexible laminate
KR20230164592A (en) Organic el display device with protective film
JP2021152640A (en) Circularly polarizing plate and optical laminate
JP2021144093A (en) Optical laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21764965

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21764965

Country of ref document: EP

Kind code of ref document: A1