WO2021187098A1 - Circular polarizing sheet and optical laminate - Google Patents

Circular polarizing sheet and optical laminate Download PDF

Info

Publication number
WO2021187098A1
WO2021187098A1 PCT/JP2021/008085 JP2021008085W WO2021187098A1 WO 2021187098 A1 WO2021187098 A1 WO 2021187098A1 JP 2021008085 W JP2021008085 W JP 2021008085W WO 2021187098 A1 WO2021187098 A1 WO 2021187098A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
polarizing plate
retardation
liquid crystal
circularly polarizing
Prior art date
Application number
PCT/JP2021/008085
Other languages
French (fr)
Japanese (ja)
Inventor
柱烈 張
東輝 金
恩瑛 金
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021021641A external-priority patent/JP2021152640A/en
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to KR1020227026846A priority Critical patent/KR20220150282A/en
Priority to CN202180021860.1A priority patent/CN115280203A/en
Publication of WO2021187098A1 publication Critical patent/WO2021187098A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light

Definitions

  • the present invention relates to a circularly polarizing plate, an optical laminate, and a display device.
  • an organic electroluminescence (EL) display device As a display device typified by an organic electroluminescence (EL) display device, a flexible display capable of bending the display device by using a flexible material is known (for example, Patent Documents 1 and 2). .. It is known that an organic EL display device uses a circularly polarizing plate or the like to improve antireflection performance in order to suppress a decrease in visibility due to reflection of external light.
  • the circular polarizing plate can be obtained by laminating a linear polarizing plate and a retardation layer, and a cured product layer of a polymerizable liquid crystal compound may be used as the retardation layer.
  • the circularly polarizing plate provided with the retardation layer of the cured product layer of the polymerizable liquid crystal compound is incorporated into the flexible display as an optical laminate bonded to the front plate or the like constituting the outermost surface of the display device.
  • the circularly polarizing plate may be repeatedly bent so that the linearly polarizing layer side is on the inside.
  • the hue of the reflected light when observed from an oblique direction may be different from the hue (hue) of the reflected light when observed from the front. ..
  • the present invention can suppress the difference in hue of reflected light when observed from an oblique direction as compared with the case where it is observed from the front even after being exposed to bending in a display device such as a flexible display.
  • An object of the present invention is to provide a circular polarizing plate, an optical laminate equipped with the circular polarizing plate, and a display device.
  • a circularly polarizing plate including at least an optical layer including a linearly polarized light layer, a first bonded layer, a first retarded layer, a second bonded layer, and a second retarded layer in this order.
  • the first retardation layer includes a first liquid crystal layer which is a cured product layer of a polymerizable liquid crystal compound.
  • the elastic moduli of the first bonding layer and the second bonding layer at a temperature of 25 ° C. are G'1 [kPa] and G'2 [kPa], respectively, and the first bonding layer and the second bonding layer are bonded.
  • the thickness of the first retardation layer is t [ ⁇ m].
  • the circularly polarizing plate according to [1] which satisfies the relationship of the following formula (2) when the distance from the position in the thickness direction is ⁇ S [ ⁇ m].
  • a circularly polarizing plate including at least an optical layer including a linearly polarized light layer, a first bonded layer, a first retarded layer, a second bonded layer, and a second retarded layer in this order.
  • the first retardation layer includes a first liquid crystal layer which is a cured product layer of a polymerizable liquid crystal compound.
  • the thickness of the first retardation layer is t [ ⁇ m], and the thickness is t [ ⁇ m].
  • a circularly polarizing plate that satisfies the relationship of the following equation (2) when the distance from the position in the thickness direction is ⁇ S [ ⁇ m]. ⁇ S ⁇ 2t (2)
  • the second retardation layer includes a second liquid crystal layer which is a cured product layer of a polymerizable liquid crystal compound.
  • the thickness of the first retardation layer is 5 ⁇ m or less.
  • the optical layer is a polarizing plate having a protective layer on one side or both sides of the linearly polarizing layer.
  • the first retardation layer and the second retardation layer are described in the following [a] or [b]: [A] The first retardation layer is a 1/2 wavelength plate, and the second retardation layer is a 1/4 wavelength plate.
  • One of the first retardation layer and the second retardation layer is a 1/4 wave plate having a reverse wavelength dispersion, and the other is a positive C plate.
  • the first retardation layer is a 1/4 wave plate having anti-wavelength dispersibility.
  • An optical laminate comprising the circularly polarizing plate according to any one of [1] to [9] and a front plate laminated on the optical layer side of the circularly polarizing plate.
  • the present invention even after being exposed to bending in a display device such as a flexible display, it is possible to suppress the difference in hue of reflected light when observed from an oblique direction as compared with the case where it is observed from the front. It is possible to provide a circular polarizing plate capable of forming.
  • FIG. 1 is a schematic cross-sectional view schematically showing an example of a circularly polarizing plate of the present embodiment.
  • FIG. 2 is a schematic cross-sectional view for explaining an example in which the bent state is returned after the bending test of the circularly polarizing plate.
  • the circular polarizing plate 1 includes an optical layer 30 including at least a linearly polarizing layer 31, a first bonded layer 21, a first retardation layer 11, a second bonding layer 22, and a second phase difference. Layer 12 is included in this order.
  • the first retardation layer 11 includes a first liquid crystal layer which is a cured product layer of a polymerizable liquid crystal compound.
  • the circularly polarizing plate 1 satisfies at least one of ⁇ i> and ⁇ ii> shown below.
  • the circularly polarizing plate 1 may satisfy only one of ⁇ i> and ⁇ ii>, but preferably satisfies both ⁇ i> and ⁇ ii>.
  • the elastic modulus of the first bonded layer 21 at a temperature of 25 ° C. is G'1 [kPa]
  • the elastic modulus of the second bonded layer 22 at a temperature of 25 ° C. is G'2 [kPa].
  • the circular polarizing plate 1 has the following formula (1): G'1 / d1 ⁇ G'2 / d2 (1) Satisfy the relationship.
  • the thickness of the first retardation layer 11 of the circularly polarizing plate 1 is t [ ⁇ m].
  • the position closest to the optical layer 30 side and the farthest from the optical layer 30 side of the surface of the first retardation layer 11 on the first bonding layer 21 side is ⁇ S [ ⁇ m]
  • the circularly polarizing plate 1 has the following equation (2): ⁇ S ⁇ 2t (2) Satisfy the relationship.
  • the optical layer 30 may include at least a linearly polarized light layer 31, and may include a polarizing plate having a protective layer on one side or both sides of the linearly polarized light layer 31, or may be a polarizing plate itself.
  • the linearly polarizing layer 31 may contain a polyvinyl alcohol-based resin film, or may contain a cured product of a polymerizable liquid crystal compound and a dichroic dye.
  • a case where the optical layer 30 is a polarizing plate having protective layers 32 and 33 on both surfaces of the linearly polarizing layer 31 is shown as an example.
  • the first bonding layer 21 is a layer for bonding the optical layer 30 and the first retardation layer 11, and can be in direct contact with the optical layer 30 and the first retardation layer 11.
  • the first bonding layer 21 is an adhesive layer or an adhesive curing layer, and is preferably an adhesive layer.
  • the elastic modulus G'1 of the first bonded layer 21 at a temperature of 25 ° C. may be, for example, 10 kPa or more, 20 kPa or more, or 30 kPa or more.
  • the elastic modulus G'1 may be, for example, 3 ⁇ 10 6 kPa or less, 2 ⁇ 10 6 kPa or less, 1 ⁇ 10 6 kPa or less, or 5 ⁇ 10 5 kPa or less. It may be 1 ⁇ 10 5 kPa or less, it may be 1 ⁇ 10 4 kPa or less, it may be 5 ⁇ 10 3 kPa or less, and it may be 3 ⁇ 10 3 kPa or less. It may be 2 ⁇ 10 3 kPa or less, 1 ⁇ 10 3 kPa or less, or 800 kPa or less.
  • the elastic modulus G'1 can be measured by the method described in Examples described later.
  • the elastic modulus G'1 may be, for example, 10 kPa or more, 20 kPa or more, 30 kPa or more, and 5 ⁇ may also be 10 3 kPa or less, may also be 3 ⁇ 10 3 kPa or less, may be less 2 ⁇ 10 3 kPa may be less 1 ⁇ 10 3 kPa, below 800kPa There may be.
  • the elastic modulus G'1 may be, for example, 1 ⁇ 10 5 kPa or more, 5 ⁇ 10 5 kPa or more, and also. It may be 3 ⁇ 10 6 kPa or less, 2 ⁇ 10 6 kPa or less, or 1 ⁇ 10 6 kPa or less.
  • the thickness d1 of the first bonding layer 21 may be, for example, 3 ⁇ m or more, 5 ⁇ m or more, or 10 ⁇ m or more. Further, for example, it may be 50 ⁇ m or less, 40 ⁇ m or less, 30 ⁇ m or less, or 25 ⁇ m or less.
  • the thickness d1 of the first bonded layer 21 may be, for example, 0.01 ⁇ m or more, 0.1 ⁇ m or more, or 0.5 ⁇ m. It may be more than or equal to 1 ⁇ m, and may be, for example, 20 ⁇ m or less, 15 ⁇ m or less, 10 ⁇ m or less, or 5 ⁇ m or less.
  • the first retardation layer 11 includes a first liquid crystal layer which is a cured product layer of a polymerizable liquid crystal compound as described above.
  • the first retardation layer 11 may be the first liquid crystal layer itself, or may be a laminate of the first liquid crystal layer and the first alignment layer.
  • the first alignment layer may be provided on the optical layer 30 side of the first liquid crystal layer, and may be provided on the second bonding layer 22 side of the first liquid crystal layer. It may be provided in.
  • the thickness t of the first retardation layer 11 may be, for example, 0.01 ⁇ m or more, 0.05 ⁇ m or more, 0.1 ⁇ m or more, or 0.5 ⁇ m or more. It may be 1 ⁇ m or more.
  • the thickness t is preferably 5 ⁇ m or less, and may be 4 ⁇ m or less, or 3 ⁇ m or less.
  • the second bonding layer 22 is a layer for bonding the first retardation layer 11 and the second retardation layer 12, and is in direct contact with the first retardation layer 11 and the second retardation layer 12. be able to.
  • the second bonding layer 22 is an adhesive layer or an adhesive curing layer, and is preferably an adhesive curing layer.
  • the elastic modulus G'2 of the second bonded layer 22 at a temperature of 25 ° C. may be, for example, 50 kPa or more, 70 kPa or more, 90 kPa or more, or 100 kPa or more. , 300 kPa or more, or 500 kPa or more.
  • the elastic modulus G'2 may be, for example, 5 ⁇ 10 6 kPa or less, 4 ⁇ 10 6 kPa or less, 3 ⁇ 10 6 kPa or less, and 2.5 ⁇ 10 6 It may be kPa or less, 1 ⁇ 10 5 kPa or less, 1 ⁇ 10 4 kPa or less, 5 ⁇ 10 3 kPa or less, or 3 ⁇ 10 3 kPa or less. It may be 2 ⁇ 10 3 kPa or less, it may be 1 ⁇ 10 3 kPa or less, or it may be 800 kPa or less.
  • the elastic modulus G'2 can be measured by the method described in Examples described later.
  • the elastic modulus G'2 may be, for example, 50 kPa or more, 70 kPa or more, 90 kPa or more, and 5 ⁇ may also be 10 3 kPa or less, may also be 3 ⁇ 10 3 kPa or less, may be less 2 ⁇ 10 3 kPa may be less 1 ⁇ 10 3 kPa, below 800kPa There may be.
  • the elastic modulus G'2 may be, for example, 8 ⁇ 10 5 kPa or more, 1 ⁇ 10 6 kPa or more, and also. It may be 5 ⁇ 10 6 kPa or less, 3 ⁇ 10 6 kPa or less, or 1 ⁇ 10 5 kPa or less.
  • the thickness d2 of the second bonding layer 22 may be, for example, 1 ⁇ m or more, 5 ⁇ m or more, or 10 ⁇ m or more. It may be 15 ⁇ m or more, for example, 50 ⁇ m or less, 40 ⁇ m or less, 30 ⁇ m or less, or 25 ⁇ m or less.
  • the thickness d2 of the second bonded layer 22 may be, for example, 0.01 ⁇ m or more, 0.1 ⁇ m or more, or 0.5 ⁇ m. It may be more than or equal to 1 ⁇ m, and may be, for example, 20 ⁇ m or less, 15 ⁇ m or less, 10 ⁇ m or less, or 5 ⁇ m or less.
  • the second retardation layer 12 may be a stretched film obtained by stretching a resin film, or may include a second liquid crystal layer which is a cured product layer of a polymerizable liquid crystal compound.
  • the second retardation layer 12 may be the second liquid crystal layer itself, or may be a laminate of the second liquid crystal layer and the second alignment layer. good.
  • the second alignment layer 12 includes the second alignment layer, the second alignment layer is usually provided on the side opposite to the second bonding layer 22 side of the second liquid crystal layer.
  • the thickness of the second retardation layer 12 may be, for example, 0.01 ⁇ m or more, 5 ⁇ m or more, 20 ⁇ m or less, or 15 ⁇ m or less.
  • the thickness of the second retardation layer may be, for example, 0.01 ⁇ m or more, 0.05 ⁇ m or more, or 0.1 ⁇ m or more. It may be 0.5 ⁇ m or more, 1 ⁇ m or more, 5 ⁇ m or less, 4 ⁇ m or less, or 3 ⁇ m or less.
  • the circularly polarizing plate may be incorporated into a flexible display or the like and bent so that the optical layer 30 side is on the inside.
  • waviness may occur in the first retardation layer 11.
  • the waviness generated in the first retardation layer 11 can cause the retardation characteristics of the first retardation layer 11 to be non-uniform when the circularly polarizing plate is observed. Therefore, for example, on the optical layer 30 side of the circularly polarizing plate 1, the hue (hue) of the reflected light when the circularly polarizing plate 1 is observed from an oblique direction as compared with the case where the circularly polarizing plate 1 is observed from the front. It is thought that a phenomenon such as different will occur.
  • the circularly polarizing plate 1 of the present embodiment satisfies the relationship of the formula (1) described in the above ⁇ i> and / or the relationship of the formula (2) described in the above ⁇ ii>. Therefore, even when the circularly polarizing plate 1 is bent so that the optical layer 30 side is on the inside and then the bent state is returned to a flat state, the waviness generated in the first retardation layer 11 is suppressed. It is thought that it is. As a result, it is considered that it is possible to suppress the difference in hue of the reflected light depending on the observation direction as described above.
  • the reason why the waviness of the first retardation layer 11 can be suppressed in the circularly polarizing plate 1 satisfying the relationship of the equation (1) is presumed as follows.
  • the circularly polarizing plate 1 is bent so that the optical layer 30 side is on the inside, the first bonded layer 21 is compressed so that the first bonded layer 21 expands toward the first retardation layer 11. do.
  • the first retardation layer 11 arranged adjacent to the first bonded layer 21 is affected by the expansion and deforms, and the circularly polarizing plate 1 is returned to the state before bending.
  • the first retardation layer 11 does not return to the state before bending, and the above-mentioned waviness occurs.
  • the thickness d2 of the second bonding layer 22 relatively small (for example, d1> d2) and making the value of the inverse number of the thickness d2 relatively large, the stress received by the second bonding layer 22 is increased. It is difficult to relax, and it becomes easy to suppress the deformation of the first retardation layer 11 due to the expansion of the first bonding layer 21 accompanying the bending of the circularly polarizing plate 1.
  • the elastic moduli G'1 and G'2 and the thicknesses d1 and d2 of the first bonding layer 21 and the second bonding layer 22 are adjusted so as to satisfy the relationship of the equation (1), thereby performing optics. It is considered that when the circular polarizing plate 1 is bent so that the layer 30 side is on the inside, the first retardation layer 11 can be suppressed from being deformed and the occurrence of the above-mentioned waviness can be suppressed.
  • the surface of the first retardation layer 11 on the first bonding layer 21 side is wavy in the circularly polarizing plate 1 after the bending test. Is considered to be in a suppressed state.
  • the hue (hue) of the reflected light when the circularly polarizing plate 1 is observed from an oblique direction is higher than that when the circularly polarizing plate 1 is observed from the front. It is presumed that different things can be suppressed.
  • ⁇ S in the formula (2) is the optics of the surface of the first retardation layer 11 on the first bonding layer 21 side in the cross section of the bent portion of the circularly polarizing plate 1 after the bending test, as shown in FIG. It is the distance in the thickness direction between the position closest to the layer 30 side and the position farthest from the optical layer 30 side.
  • the thickness direction is a direction orthogonal to the plane of the circularly polarizing plate 1 (the laminating direction of the circularly polarizing plate 1).
  • the cross section of the bent portion is a cross section parallel to the direction orthogonal to the rotation axis (swing axis) in the bending test on the plane of the circular plate plate 1 before bending.
  • FIG. 4A is a cross section parallel to the paper surface.
  • the bent portion is the range of the gap C1 (FIG. 4 (a)) between the two stages of the bending test of the embodiment described later.
  • the magnitude of ⁇ S corresponds to the magnitude of the waviness of the first retardation layer 11 described above, and it is considered that the smaller the ⁇ S, the more the waviness is suppressed. Therefore, when ⁇ S satisfies the equation (2), It is considered that the waviness of the first retardation layer 11 is suppressed in the circularly polarizing plate 1 after the bending test.
  • ⁇ S can be determined based on a microscopic image obtained by observing the bent portion of the circularly polarizing plate 1 after the bending test with a scanning electron microscope, as described in Examples described later.
  • ⁇ S may be, for example, 1.9 t or less, 1.8 t or less, 1.5 t or less, or 1.4 t or less. It may be 1.35t or less, or 1.3t or less. ⁇ S may be, for example, 0.1 t or more, 0.5 t or more, t or more, or t or more.
  • the first retardation layer 11 and the second retardation layer 12 have the following [a] or [b]: [A] The first retardation layer 11 is a 1/2 wavelength plate, and the second retardation layer 12 is a 1/4 wavelength plate. [B] One of the first retardation layer 11 and the second retardation layer 12 is a 1/4 wave plate having an inverse wavelength dispersion, and the other is a positive C plate. It is preferable to satisfy the relationship of. In the case of the above [b], it is preferable that the first retardation layer 11 is a 1/4 wave plate having a reverse wavelength dispersion and the second retardation layer 12 is a positive C plate.
  • the circularly polarizing plate 1 is bendable. Being bendable means that the layer constituting the circularly polarizing plate 1 (for example, the first retardation layer 11 and the like) can be bent without causing cracks. It is preferable that the circularly polarizing plate 1 can be bent in the direction in which the optical layer 30 side is inward.
  • the thickness of the circularly polarizing plate 1 is usually 5 ⁇ m or more, may be 10 ⁇ m or more, may be 15 ⁇ m or more, is preferably 80 ⁇ m or less, and more preferably 60 ⁇ m or less.
  • FIG. 3 is a schematic cross-sectional view schematically showing an example of the optical laminate of the present embodiment.
  • the optical laminate 5 has a circularly polarizing plate 1 and a front plate 40 laminated on the optical layer 30 side of the circularly polarizing plate 1 via a third bonding layer 23. It is preferable that the optical laminate 5 can be bent in the direction in which the circularly polarizing plate 1 side is on the inside.
  • the front plate 40 is a plate-like body that can function as a layer for protecting display elements and the like of a display device and can transmit light.
  • the plate-shaped body has a resin film or a glass film.
  • the plate-shaped body may be a laminate of a resin film and a glass film.
  • the front plate 40 can be arranged on the outermost surface of the display device.
  • the third bonded layer 23 can be in direct contact with the front plate 40 and the optical layer 30 of the circularly polarizing plate 1.
  • the third bonding layer 23 is an adhesive layer or an adhesive curing layer.
  • the optical laminate 5 may have a fourth bonding layer for bonding to a display element or the like of a display device described later on the circular polarizing plate 1 side (second retardation layer side).
  • the fourth bonded layer is an adhesive layer or an adhesive cured layer.
  • the optical laminate 5 may have a touch sensor panel or the like.
  • the touch sensor panel may be arranged between the front plate 40 and the circularly polarizing plate 1, or may be arranged on the circularly polarizing plate 1 side (second retardation layer side) of the optical laminate 5.
  • the optical laminate 5 can be incorporated into a display device such as an organic EL display device.
  • the display device can be obtained, for example, by laminating the optical laminate 5 on the display laminate including the display element and the like.
  • the display laminate may include a touch sensor panel or the like in addition to the display element.
  • the display device may be a mobile terminal such as a smartphone or tablet, or may be a television, a digital photo frame, an electronic signboard, measuring instruments and instruments, office equipment, medical equipment, computer equipment, and the like.
  • the display device is preferably a flexible display.
  • the optical layer includes at least a linearly polarized light layer.
  • the optical layer includes a protective layer that protects one or both sides of the linear polarizing layer, a reflective film, a transflective reflective film, a brightness improving film, an optical compensation film, a film with an antiglare function, and the like. You may be.
  • the linearly polarized light layer has a function of selectively transmitting linearly polarized light in a certain direction from unpolarized light rays such as natural light.
  • the linearly polarizing layer contains a stretched film on which a dichroic dye is adsorbed, a cured product of a polymerizable liquid crystal compound, and a dichroic dye, and the dichroic dye is dispersed in the cured product of the polymerizable liquid crystal compound.
  • An oriented liquid crystal layer and the like can be mentioned.
  • the dichroic dye refers to a dye having a property in which the absorbance in the major axis direction and the absorbance in the minor axis direction of the molecule are different.
  • the stretched film on which the dichroic dye is adsorbed is usually a step of uniaxially stretching the polyvinyl alcohol-based resin film, and the polyvinyl alcohol-based resin film is dyed with a dichroic dye such as iodine to obtain the dichroic dye. It is produced through a step of adsorbing the vinyl alcohol, a step of treating a polyvinyl alcohol-based resin film on which a dichroic dye is adsorbed with an aqueous boric acid solution, and a step of washing with water after the treatment with the aqueous boric acid solution.
  • the stretched film on which the bicolor dye was adsorbed was subjected to a step of applying a coating liquid containing a polyvinyl alcohol-based resin on the base film to obtain a laminated film, a step of uniaxially stretching the obtained laminated film, and uniaxially stretching.
  • the obtained film may be used as it is as a linear polarizing layer, or may be used as a linear polarizing plate having a protective layer formed on one side or both sides thereof.
  • the thickness of the linearly polarizing layer thus obtained is preferably 2 ⁇ m to 40 ⁇ m.
  • the polyvinyl alcohol-based resin is obtained by saponifying the polyvinyl acetate-based resin.
  • the polyvinyl acetate-based resin in addition to polyvinyl acetate which is a homopolymer of vinyl acetate, a copolymer of vinyl acetate and another monomer copolymerizable therewith is used.
  • examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and (meth) acrylamides having an ammonium group.
  • the saponification degree of the polyvinyl alcohol-based resin is usually about 85 to 100 mol%, preferably 98 mol% or more.
  • the polyvinyl alcohol-based resin may be modified, and for example, polyvinyl formal or polyvinyl acetal modified with aldehydes can also be used.
  • the degree of polymerization of the polyvinyl alcohol-based resin is usually about 1,000 to 10,000, preferably in the range of 1,500 to 5,000.
  • a film formed of such a polyvinyl alcohol-based resin is used as a raw film for a linearly polarizing layer.
  • the method for forming the film of the polyvinyl alcohol-based resin is not particularly limited, and the film can be formed by a known method.
  • the film thickness of the polyvinyl alcohol-based raw film can be, for example, about 10 ⁇ m to 150 ⁇ m.
  • the uniaxial stretching of the polyvinyl alcohol-based resin film can be performed before dyeing with a dichroic dye, at the same time as dyeing, or after dyeing.
  • the uniaxial stretching may be performed before the boric acid treatment or during the boric acid treatment. It is also possible to perform uniaxial stretching at these multiple stages.
  • rolls having different peripheral speeds may be uniaxially stretched, or thermal rolls may be used to uniaxially stretch the rolls.
  • the uniaxial stretching may be a dry stretching in which the stretching is performed in the atmosphere, or a wet stretching in which the polyvinyl alcohol-based resin film is swollen using a solvent.
  • the draw ratio is usually about 3 to 8 times.
  • the thickness of the linear polarizing plate having the stretched film as a linear polarizing layer and having protective layers on one or both sides thereof may be, for example, 1 ⁇ m or more and 100 ⁇ m or less, 5 ⁇ m or more, or 7 ⁇ m or more. Further, it may be 70 ⁇ m or less, 50 ⁇ m or less, 20 ⁇ m or less, or 10 ⁇ m or less.
  • the material of the protective layer provided on one side or both sides of the linear polarizing layer is not particularly limited, but is, for example, cellulose acetate made of a resin such as a cyclic polyolefin resin, triacetyl cellulose (TAC), or diacetyl cellulose.
  • Resins known in the art such as polyester resins, polycarbonate resins, (meth) acrylic resins, and polypropylene resins made of resins such as based resins, polyethylene terephthalates, polyethylene naphthalates, and polybutylene terephthalates can be mentioned. ..
  • the thickness of the protective layer is usually 300 ⁇ m or less, preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less, and usually 5 ⁇ m or more, preferably 20 ⁇ m or more. ..
  • the protective layer may be a film, and the protective layer which is a film may have a phase difference.
  • the protective layer is a film
  • the linearly polarized light layer and the protective layer can be laminated via an adhesive layer or an adhesive curing layer.
  • the pressure-sensitive adhesive layer and the adhesive curing layer can be formed by using a pressure-sensitive adhesive composition or an adhesive composition described later.
  • the polymerizable liquid crystal compound used for forming the liquid crystal layer is a compound having a polymerizable reactive group and exhibiting liquid crystallinity.
  • the polymerizable reactive group is a group involved in the polymerization reaction, and is preferably a photopolymerizable reactive group.
  • the photopolymerizable reactive group refers to a group that can participate in the polymerization reaction by an active radical, an acid, or the like generated from the photopolymerization initiator.
  • Examples of the photopolymerizable functional group include a vinyl group, a vinyloxy group, a 1-chlorovinyl group, an isopropenyl group, a 4-vinylphenyl group, an acryloyloxy group, a methacryloyloxy group, an oxylanyl group, an oxetanyl group and the like.
  • an acryloyloxy group, a methacryloyloxy group, a vinyloxy group, an oxylanyl group and an oxetanyl group are preferable, and an acryloyloxy group is more preferable.
  • the type of the polymerizable liquid crystal compound is not particularly limited, and a rod-shaped liquid crystal compound, a disk-shaped liquid crystal compound, and a mixture thereof can be used.
  • the liquid crystal property of the polymerizable liquid crystal compound may be a thermotropic liquid crystal or a lyotropic liquid crystal, and the phase-ordered structure may be a nematic liquid crystal or a smectic liquid crystal.
  • the dichroic dye used in the linearly polarized light layer using the liquid crystal layer preferably has an absorption maximum wavelength ( ⁇ MAX) in the range of 300 to 700 nm.
  • a bicolor dye include an acridine dye, an oxazine dye, a cyanine dye, a naphthalene dye, an azo dye, an anthraquinone dye and the like, and among them, the azo dye is preferable.
  • the azo dye include a monoazo dye, a bisazo dye, a trisazo dye, a tetrakisazo dye, a stillbenazo dye and the like, and a bisazo dye and a trisazo dye are preferable.
  • the dichroic dye may be used alone or in combination of two or more, but it is preferable to combine three or more. In particular, it is more preferable to combine three or more kinds of azo compounds.
  • a part of the dichroic dye may have a reactive group or may have a liquid crystallinity.
  • a composition for forming a polarizing layer containing a polymerizable liquid crystal compound and a dichroic dye is applied onto an orientation layer formed on a base material, and the polymerizable liquid crystal compound is polymerized. It can be formed by curing.
  • a linear polarizing layer may be formed by applying a polarizing layer forming composition on a base material to form a coating film and stretching the coating film together with the base material layer.
  • the base material used for forming the linearly polarized light layer may be used as a protective layer for the linearly polarized light layer. Examples of the base material include a resin film, and examples thereof include a film formed by using the material forming the protective layer described above.
  • compositions for forming a polarizing layer containing a polymerizable liquid crystal compound and a dichroic dye examples include those described in JP-A-2017-83843.
  • the composition for forming a polarizing layer further contains additives such as a solvent, a polymerization initiator, a cross-linking agent, a leveling agent, an antioxidant, a plasticizer, and a sensitizer, in addition to the polymerizable liquid crystal compound and the dichroic dye. You may be. As each of these components, only one kind may be used, or two or more kinds may be used in combination.
  • the polymerization initiator that may be contained in the polarizing layer forming composition is a compound that can initiate the polymerization reaction of the polymerizable liquid crystal compound, and is photopolymerizable in that the polymerization reaction can be initiated under lower temperature conditions. Initiators are preferred. Specific examples thereof include photopolymerization initiators capable of generating active radicals or acids by the action of light, and among them, photopolymerization initiators that generate radicals by the action of light are preferable.
  • the content of the polymerization initiator is preferably 1 part by mass to 10 parts by mass, and more preferably 3 parts by mass to 8 parts by mass with respect to 100 parts by mass of the total amount of the polymerizable liquid crystal compound. Within this range, the reaction of the polymerizable group proceeds sufficiently, and the orientation state of the liquid crystal compound is likely to be stabilized.
  • the thickness of the linearly polarizing layer using the liquid crystal layer is not particularly limited, but is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less, and further preferably 5 ⁇ m or less.
  • the linearly polarized light layer using the liquid crystal layer may have an overcoat layer as a protective layer on one side or both sides of the linearly polarized light layer.
  • the overcoat layer can be provided for the purpose of protecting the linearly polarized light layer and the like.
  • the overcoat layer preferably has excellent solvent resistance, transparency, mechanical strength, thermal stability, shielding property, isotropic property, and the like.
  • the overcoat layer can be formed, for example, by applying a material (composition) for forming the overcoat layer on the linearly polarized light layer.
  • the material constituting the overcoat layer include a photocurable resin and a water-soluble polymer, and (meth) acrylic resin, polyvinyl alcohol resin, polyamide epoxy resin and the like can be used.
  • the thickness of the overcoat layer is not particularly limited, but is preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less, further preferably 10 ⁇ m or less, 5 ⁇ m or less, and 0. It is 05 ⁇ m or more, and may be 0.5 ⁇ m or more.
  • the first retardation layer includes a first liquid crystal layer which is a cured product layer of a polymerizable liquid crystal compound.
  • a polymerizable liquid crystal compound for example, those described above can be used.
  • the second retardation layer contains a second liquid crystal layer which is a cured product layer of the polymerizable liquid crystal compound, as the polymerizable liquid crystal compound, for example, those described above can be used.
  • the polymerizable liquid crystal compound forming the linearly polarized light layer, the polymerizable liquid crystal compound forming the first retardation layer, and the polymerizable liquid crystal compound forming the second retardation layer may be the same as each other. Only some may be the same or all may be different.
  • the second retardation layer is a stretched film obtained by stretching a resin film
  • examples of the resin film include the resin film exemplified in the above-mentioned protective layer.
  • the first retardation layer and the second retardation layer are, for example, a composition for forming a retardation layer containing a polymerizable liquid crystal compound on a base material layer. It can be formed by applying a substance and polymerizing and curing a polymerizable liquid crystal compound.
  • the base material layer used to form the retardation layer may be included in the circularly polarizing plate.
  • the base material layer for example, the resin film described in the above-mentioned protective layer can be used.
  • the first retardation layer may be a laminate of the first liquid crystal layer and the first alignment layer as described above.
  • the second retardation layer may be a laminate of the second liquid crystal layer and the second alignment layer as described above.
  • the first alignment layer and the second alignment layer (hereinafter, both may be collectively referred to as "alignment layer”) have an orientation regulating force for aligning the polymerizable liquid crystal compound in a desired direction.
  • the oriented layer include an oriented polymer layer formed of an oriented polymer, a photo-oriented polymer layer formed of a photo-aligned polymer, and a grub-oriented layer having an uneven pattern or a plurality of grubs (grooves) on the layer surface. Can be done.
  • the thickness of the alignment layer is usually 10 to 500 nm, preferably 10 to 200 nm.
  • the first to fourth bonded layers are an adhesive layer or an adhesive cured layer.
  • the pressure-sensitive adhesive layer can be formed by using a known pressure-sensitive adhesive composition.
  • the adhesive cured layer can be formed by using a known adhesive composition.
  • the pressure-sensitive adhesive composition examples include pressure-sensitive adhesive compositions containing resins such as (meth) acrylic, rubber, urethane, ester, silicone, and polyvinyl ether as main components. Among them, a pressure-sensitive adhesive composition using a (meth) acrylic resin having excellent transparency, weather resistance, heat resistance and the like as a base polymer is preferable.
  • the pressure-sensitive adhesive composition may be an active energy ray-curable type or a thermosetting type.
  • Examples of the (meth) acrylic resin (base polymer) used in the pressure-sensitive adhesive composition include butyl (meth) acrylate, ethyl (meth) acrylate, isooctyl (meth) acrylate, and 2- (meth) acrylate.
  • a polymer or copolymer having one or more (meth) acrylic acid esters such as ethylhexyl as a monomer is preferably used. It is preferable that the base polymer is copolymerized with a polar monomer.
  • Examples of the polar monomer include (meth) acrylic acid, 2-hydroxypropyl (meth) acrylate, hydroxyethyl (meth) acrylate, (meth) acrylamide, N, N-dimethylaminoethyl (meth) acrylate, and glycidyl ().
  • Examples thereof include monomers having a carboxyl group, a hydroxyl group, an amide group, an amino group, an epoxy group and the like, such as meta) acrylate.
  • the pressure-sensitive adhesive composition may contain only the above-mentioned base polymer, but usually further contains a cross-linking agent.
  • the cross-linking agent is a divalent or higher metal ion that forms a carboxylic acid metal salt with a carboxyl group; a polyamine compound that forms an amide bond with a carboxyl group; poly.
  • Epoxy compounds and polyols that form an ester bond with a carboxyl group; polyisocyanate compounds that form an amide bond with a carboxyl group are exemplified. Of these, polyisocyanate compounds are preferable.
  • the active energy ray-curable pressure-sensitive adhesive composition has a property of being cured by being irradiated with active energy rays such as ultraviolet rays and electron beams, and has adhesiveness even before irradiation with active energy rays. It is a pressure-sensitive adhesive composition having the property of being able to adhere to an adherend such as, etc., and being cured by irradiation with active energy rays to adjust the adhesion force.
  • the active energy ray-curable pressure-sensitive adhesive composition is preferably an ultraviolet-curable type.
  • the active energy ray-curable pressure-sensitive adhesive composition further contains an active energy ray-polymerizable compound in addition to the base polymer and the cross-linking agent. Further, if necessary, a photopolymerization initiator, a photosensitizer, or the like may be contained.
  • the pressure-sensitive adhesive composition includes fine particles for imparting light scattering, beads (resin beads, glass beads, etc.), glass fibers, resins other than the base polymer, pressure-sensitive adhesives, fillers (metal powders and other inorganic powders). Etc.), antioxidants, UV absorbers, dyes, pigments, colorants, antifoaming agents, corrosion inhibitors, photopolymerization initiators and other additives can be included.
  • the pressure-sensitive adhesive layer can be formed by applying an organic solvent diluent of the above-mentioned pressure-sensitive adhesive composition on a substrate and drying it.
  • the formed pressure-sensitive adhesive layer can be irradiated with active energy rays to obtain a cured product having a desired degree of curing.
  • Examples of the adhesive composition include water-based adhesives, active energy ray-curable adhesives, natural rubber adhesives, ⁇ -olefin adhesives, urethane resin adhesives, ethylene-vinyl acetate resin emulsion adhesives, and ethylene-.
  • Vinyl acetate resin hot melt adhesive epoxy resin adhesive, vinyl chloride resin solvent adhesive, chloroprene rubber adhesive, cyanoacrylate adhesive, silicone adhesive, styrene-butadiene rubber solvent adhesive, nitrile Rubber adhesives, nitrocellulose adhesives, reactive hot melt adhesives, phenol resin adhesives, modified silicone adhesives, polyester hot melt adhesives, polyamide resin hot melt adhesives, polyimide adhesives, polyurethane Resin Hotlt Adhesive, Polyolefin Resin Hot Melt Adhesive, Polyvinyl Acetate Resin Solvent Adhesive, Polystyrene Resin Solvent Adhesive, Polypoly Alcohol Adhesive, Polypolypyrrolidone Resin Adhesive, Polyvinyl Butyral Adhesive, Polybenzimidazole Examples thereof include adhesives, polymethacrylate resin solvent-based adhesives, melamine resin-based adhesives, urea resin-based adhesives, resorcinol-based adhesives, and the like
  • the water-based adhesive examples include a polyvinyl alcohol-based resin aqueous solution, a water-based two-component urethane-based emulsion adhesive, and the like.
  • the active energy ray-curable adhesive is an adhesive that cures by irradiating with active energy rays such as ultraviolet rays, and includes, for example, a polymerizable compound and a photopolymerizable initiator, a photoreactive resin, and the like. Examples thereof include those containing a binder resin and a photoreactive cross-linking agent.
  • Examples of the polymerizable compound include photopolymerizable monomers such as a photocurable epoxy monomer, a photocurable (meth) acrylic monomer, and a photocurable urethane monomer, and oligomers derived from these monomers. ..
  • Examples of the photopolymerization initiator include substances that generate active species such as neutral radicals, anion radicals, and cationic radicals by irradiating with active energy rays such as ultraviolet rays.
  • the material and thickness of the front plate are not limited as long as it is a plate-like body capable of transmitting light.
  • the front plate may be composed of only one layer, or may be composed of two or more layers.
  • Examples of the front plate include a resin plate-like body (for example, a resin plate, a resin sheet, a resin film, etc.) and a glass plate-like body (for example, a glass plate, a glass film, etc.).
  • the front plate can form the outermost surface of the display device.
  • the front plate may be a resin film or a resin film with a hard coat layer in which a hard coat layer is provided on at least one surface of the resin film to further improve the hardness.
  • the hard coat layer is provided so as to be arranged on the outermost surface of the display device.
  • the front plate may have a blue light cut function, a viewing angle adjusting function, and the like.
  • the third bonding layer in the optical laminate is provided in contact with the resin film.
  • the front plate includes a resin film with a hard coat layer having a hard coat layer on one surface of the resin film
  • the third bonding layer in the optical laminate is provided in contact with the resin film of the front plate. Is preferable.
  • the resin film forming the front plate is not limited as long as it is a resin film capable of transmitting light.
  • a resin film capable of transmitting light for example, triacetyl cellulose, acetyl cellulose butyrate, ethylene-vinyl acetate copolymer, propionyl cellulose, butyryl cellulose, acetyl propionyl cellulose, polyester, polystyrene, polyamide, polyetherimide, poly (meth) acrylic, polyimide, polyether.
  • the front plate may be a resin film having a hard coat layer from the viewpoint of hardness.
  • the hard coat layer may be formed on one surface of the resin film or may be formed on both sides. By providing the hard coat layer, hardness and scratch resistance can be improved.
  • the hard coat layer is, for example, a cured layer of an ultraviolet curable resin.
  • the ultraviolet curable resin include (meth) acrylic resins such as monofunctional (meth) acrylic resins, polyfunctional (meth) acrylic resins, and polyfunctional (meth) acrylic resins having a dendrimer structure (meth). ) Acrylic resin; Silicone resin; Polyester resin; Urethane resin; Amid resin; Epoxy resin and the like.
  • the hard coat layer may contain additives to improve strength.
  • the additive is not particularly limited, and examples thereof include inorganic fine particles, organic fine particles, or a mixture thereof.
  • the composition and thickness of the hard coat layers may be the same as each other or different from each other.
  • the front plate is a glass plate
  • tempered glass for a display is preferably used as the glass plate.
  • a front plate having excellent mechanical strength and surface hardness can be constructed.
  • the thickness of the front plate may be, for example, 10 ⁇ m or more and 300 ⁇ m or less, preferably 20 ⁇ m or more and 200 ⁇ m or less, and more preferably 30 ⁇ m or more and 100 ⁇ m or less.
  • the touch sensor panel is a sensor that can detect the touched position.
  • the detection method of the touch sensor panel is not limited, and touch sensor panels such as a resistive film method, a capacitance coupling method, an optical sensor method, an ultrasonic method, an electromagnetic induction coupling method, and a surface acoustic wave method are exemplified.
  • touch sensor panel of the resistance film type and the capacitance coupling type is preferably used because of its low cost.
  • the laminated adhesive layer and the measuring chip are joined, and the frequency is 1.0 Hz and the deformation amount is 1% in the temperature range of -20 ° C to 100 ° C.
  • the measurement was carried out under the condition of a temperature rising rate of 5 ° C./min, and the storage elastic modulus at a temperature of 25 ° C. and a relative humidity of 50% was determined as the elastic modulus.
  • the elastic modulus at a temperature of 25 ° C. when the first bonded layer and the second bonded layer were adhesive cured layers was determined by the following procedure.
  • a COP film is applied onto a coating film obtained by applying an adhesive composition for forming an adhesive curing layer to be a first bonding layer or a second bonding layer to glass (thickness 1.0 mm). (Made by Nippon Zeon Co., Ltd., thickness 50 ⁇ m) was laminated.
  • the coating film was subjected to a light irradiation intensity of 400 mW / cm 2 and an integrated light amount at a wavelength of 280 to 320 nm using an ultraviolet irradiation device (manufactured by Fusion UV Systems Co., Ltd., equipped with an H valve of an electrodeless ultraviolet lamp).
  • the adhesive composition was cured by irradiating ultraviolet rays so as to be 1500 mJ / cm 2, and a laminated structure having a layer structure of glass / adhesive cured layer (thickness 2 ⁇ m) / COP film was obtained.
  • the exposed adhesive cured layer is compressed using Nano Indicator (HM-500, manufactured by Fisher Instruments) at a temperature of 25 ° C., a relative humidity of 50%, and a pressure of 1 mN.
  • HM-500 Nano Indicator
  • the elastic modulus was measured and used as the elastic modulus.
  • a Berkovich triangular weight indenter was used as the indenter.
  • a bending device (STS-VRT-500 manufactured by Science Town) equipped with two stages 501 and 502 was prepared.
  • the test piece 100 was placed on the stages 501 and 502 so that the front plate side was facing upward (FIG. 4A).
  • the two stages 501 and 502 were arranged in the gap C1, and the test piece 100 was fixedly arranged so that the center in the width direction was located at the center of the gap C1 (FIG. 4A).
  • the stages 501 and 502 are swingable, and initially the two stages 501 and 502 form the same plane.
  • the two stages 501 and 502 are rotated 90 degrees upward with position P1 and position P2 as the center of the rotation axis so that the distance C2 between the opposing test pieces 100 is 5 mm (radius of the curved portion in this state). Is approximately 2.5R.)
  • the operation of closing the two stages 501 and 502 (FIG. 4B) and opening the stages 501 and 502 again is defined as one bending. This operation was repeated, and the flexibility was evaluated by counting the number of times of bending until the test piece 100 was first cracked.
  • the evaluation criteria are as follows.
  • A Bending number of 300,000 times or more until crack occurs
  • B Bending number of 200,000 times or more and less than 300,000 times until crack occurs
  • C Bending number of 100,000 times or more and less than 200,000 times until crack occurs
  • D The number of bends before cracking occurs is 50,000 or more and less than 100,000.
  • a test piece 100 was prepared by the procedure for evaluating the flexibility described above, and the test piece 100 was bent 200,000 times by the procedure for evaluating the flexibility described above.
  • a bending test was performed to perform the operation.
  • the cross section of the bent portion of the circularly polarizing plate (the range of the gap C1 between the two stages described above) in the test piece 100 after the bending test was observed with a scanning electron microscope.
  • the cross section of the bent portion is the cross section of the circular polarizing plate before bending in the direction parallel to the direction orthogonal to the rotation axis (swing axis) in the bending test (cross section parallel to the paper surface in FIG. 4A). bottom.
  • the test piece 100 (which has been subjected to the bending operation 200,000 times) subjected to the bending test in the above-mentioned procedure for measuring ⁇ S is set to the state before bending (the flat state as shown in FIG. 4A) and tested.
  • the hue (hue) of the reflected light when observed from the direction of °) was visually confirmed and evaluated by comparing the two.
  • a As a result of comparison, no difference in hue of reflected light was observed.
  • b As a result of comparison, a slight difference was found in the hue of the reflected light.
  • c As a result of comparison, a difference was observed in the hue of the reflected light.
  • d A crack occurred in the first retardation layer.
  • composition for forming protective layer is 100 parts of water, 3 parts of polyvinyl alcohol resin powder (KL-318, manufactured by Kuraray Co., Ltd., average degree of polymerization 18000), It was prepared by mixing 1.5 parts of a polyamide epoxy resin (SR650 (30), manufactured by Sumika Chemtex Co., Ltd.) as a cross-linking agent.
  • SR650 polyamide epoxy resin
  • a composition for forming an orientation layer was applied to a triacetyl cellulose (TAC) film having a thickness of 25 ⁇ m as a protective layer to form a coating film.
  • TAC triacetyl cellulose
  • This coating film was irradiated with polarized UV to form an alignment layer (photoalignment layer) having a thickness of 100 nm.
  • a composition for forming a polarizing layer containing a polymerizable liquid crystal compound and an azo dye was applied onto the alignment layer (the side opposite to the TAC film side) to form a coating film. After the coating film was dried, it was irradiated with ultraviolet rays to form a linearly polarized light layer (1) having a thickness of 1.8 ⁇ m.
  • a composition for forming a protective layer is applied onto the linearly polarizing layer (1) (on the side opposite to the TAC film side) and dried to form an OC layer having a thickness of 1.0 ⁇ m as a protective layer, which serves as an optical layer.
  • a polarizing plate (1) was obtained.
  • the polarizing plate (1) was a TAC film, an alignment layer, a linearly polarized light layer (1), and an OC layer laminated in this order.
  • the film drawn from the crosslinked bath was immersed in a washing bath made of pure water (washing step), and then introduced into a heating furnace capable of controlling humidity to perform high-temperature and high-humidity treatment (high-temperature and high-humidity treatment).
  • a linearly polarized light layer (2) having a thickness of 12.1 ⁇ m was obtained.
  • polarizing plate (2) A cyclic polyolefin (COP) film having a thickness of 23 ⁇ m as a protective layer and a linearly polarized light layer (2) were subjected to corona treatment (output 0.3 kW, treatment speed 3 m / min), respectively.
  • the protective layer forming composition prepared in the above [Preparation of polarizing plate (1)] as an adhesive composition the corona-treated surface of the COP film and the corona-treated surface of the linearly polarized light layer (2) are bonded together. It was dried at a temperature of 60 ° C. for 2 minutes to obtain a polarizing plate (2) as an optical layer.
  • the polarizing plate (2) was a COP film and a linearly polarizing layer (2) laminated in this order.
  • composition for Forming First Orientation Layer (Composition for Forming First Orientation Layer)
  • composition for forming the first oriented layer for forming the first oriented layer is prepared by dissolving a polymer having a photoreactive group represented by the following structural formula in cyclopentanone at a concentration of 5%. bottom.
  • composition for Forming First Liquid Crystal Layer The composition for forming the first liquid crystal layer for forming the first liquid crystal layer was prepared by mixing each of the following components and stirring the obtained mixture at 80 ° C. for 1 hour. -Compound represented by the following structural formula: 80 parts
  • the composition for forming a first alignment layer was applied on a polyethylene terephthalate film (PET) having a thickness of 100 ⁇ m as a base material layer by a bar coating method, and dried by heating in a drying oven at 80 ° C. for 1 minute.
  • PET polyethylene terephthalate film
  • the obtained dry film was subjected to polarized UV irradiation treatment (“SPOT CURE SP-9”, manufactured by Ushio, Inc.) at an integrated light intensity of 100 mJ / cm 2 (365 nm standard) to form a first oriented layer.
  • SPOT CURE SP-9 polarized UV irradiation treatment
  • the polarization direction of the polarized UV was set to 45 ° with respect to the absorption axis of the linearly polarized light layer.
  • the composition for forming the first liquid crystal layer was applied onto the first alignment layer (the side opposite to the PET film side) by the bar coating method, heated and dried in a drying oven at 120 ° C. for 1 minute, and then cooled to room temperature.
  • the obtained dry film was irradiated with ultraviolet rays having an integrated light intensity of 1000 mJ / cm 2 (365 nm standard) to form a first liquid crystal layer having a thickness of 2.0 ⁇ m.
  • the first liquid crystal layer was a ⁇ / 4 plate showing a phase difference value of ⁇ / 4 in the in-plane direction, and had anti-wavelength dispersibility.
  • a first retardation layer with a base material layer in which the PET film and the first retardation layer (first alignment layer, first liquid crystal layer) were laminated in this order was obtained.
  • composition for forming a second orientation layer is composed of 2-phenoxyethyl acrylate, tetrahydrofurfuryl acrylate, dipentaerythritol triacrylate, and bis (2-vinyloxyethyl) ether. , A ratio of 1: 1: 4: 5 was mixed, and LUCIRIN TPO was added as a polymerization initiator to this mixture at a ratio of 4%.
  • composition for Forming Second Liquid Crystal Layer contains a photopolymerizable nematic liquid crystal compound (manufactured by Merck & Co., Inc., RMM28B) and a solvent so that the solid content is 1 to 1.5 g.
  • a solvent a mixed solvent was used in which methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), and cyclohexanone (CHN) were mixed at a mass ratio (MEK: MIBK: CHN) of 35:30:35. ..
  • a composition for forming a second alignment layer is applied onto a polyethylene terephthalate (PET) film having a thickness of 38 ⁇ m as a base material layer so as to have a thickness of 3 ⁇ m, and is irradiated with ultraviolet rays of 200 mJ / cm 2 to form a vertically oriented layer.
  • a second oriented layer was formed.
  • a coating film was formed by applying a composition for forming a second liquid crystal layer on the second alignment layer (the side opposite to the PET film side) with a coating amount of 4 to 5 g (wet) by die coating.
  • the coating film was dried at a drying temperature of 75 ° C. and a drying time of 120 seconds, and then irradiated with ultraviolet rays to form a second liquid crystal layer having a thickness of 3 ⁇ m.
  • the second liquid crystal layer was a positive C plate.
  • a second retardation layer with a base material layer in which the PET film and the second retardation layer (second orientation layer, second liquid crystal layer) were laminated in this order was obtained.
  • Adhesive Composition A and Adhesive Sheet A An acrylic polymer (A) was prepared by copolymerizing 70 parts of n-butyl acrylate, 20 parts of methyl acrylate, and 1.0 part of acrylic acid. When the molecular weight of the acrylic polymer (A) was measured, the weight average molecular weight Mw was 1.5 million.
  • Adhesive Composition B and Adhesive Sheet B An acrylic polymer (B) was prepared by copolymerizing 98.9 parts of n-butyl acrylate and 1.1 parts of acrylic acid. When the molecular weight of the acrylic polymer (B) was measured, the weight average molecular weight Mw was 1.36 million.
  • acrylic polymer (B) 100 parts of acrylic polymer (B), 2 parts of the first cross-linking agent (“Coronate L” of Nippon Polyurethane Industry Co., Ltd.), and 2 parts of the second cross-linking agent (“TAZM” of Mutual Yakuko Co., Ltd.) 0. 02 parts and 0.5 part of a silane coupling agent (“KBM403” manufactured by Shin-Etsu Chemical Co., Ltd.) were mixed, and ethyl acetate was added so that the total solid content concentration became 10% to obtain the pressure-sensitive adhesive composition B. Obtained.
  • a pressure-sensitive adhesive sheet B composed of a heavy SP film / a pressure-sensitive adhesive layer B / a light SP film was prepared in the same procedure as the preparation of the pressure-sensitive adhesive sheet A except that the pressure-sensitive adhesive composition B was used.
  • the elastic modulus of the pressure-sensitive adhesive layer B contained in the pressure-sensitive adhesive sheet B at 25 ° C. was measured. The results are shown in Table 1.
  • Adhesive Composition C and Adhesive Sheet C An acrylic polymer (C) was prepared by copolymerizing 70.4 parts of n-butyl acrylate, 45 parts of 2-ethylhexyl acrylate, and 1 part of 4-hydroxybutyl acrylate. When the molecular weight of the acrylic polymer (C) was measured, the weight average molecular weight Mw was 800,000.
  • a cross-linking agent (Nippon Polyurethane Industry Co., Ltd. "Coronate L") 0.4 part and a silane coupling agent (Shin-Etsu Chemical Co., Ltd. "KBM403") 0.5 part are mixed with 100 parts of acrylic polymer (C). Then, ethyl acetate was added so that the total solid content concentration became 10% to obtain a pressure-sensitive adhesive composition C.
  • a pressure-sensitive adhesive sheet C composed of a heavy SP film / a pressure-sensitive adhesive layer C / a light SP film was prepared in the same procedure as the preparation of the pressure-sensitive adhesive sheet A except that the pressure-sensitive adhesive composition C was used.
  • the elastic modulus of the pressure-sensitive adhesive layer C of the pressure-sensitive adhesive sheet C at 25 ° C. was measured. The results are shown in Table 1.
  • Adhesive Composition D and Adhesive Sheets D1 and D2 An acrylic polymer (D) was prepared by copolymerizing 68 parts of n-butyl acrylate, 30 parts of methyl acrylate, 1 part of 2-hydroxyethyl acrylate, and 1 part of acrylic acid. When the molecular weight of the acrylic polymer (D) was measured, the weight average molecular weight Mw was 1.35 million.
  • acrylic polymer (D) 100 parts is mixed with 3 parts of a cross-linking agent (Nippon Polyurethane Industry Co., Ltd. "Coronate L") and 0.5 part of a silane coupling agent ("KBM403" manufactured by Shinetsu Silicon Co., Ltd.). Ethyl acetate was added so that the solid content concentration became 10% to obtain a pressure-sensitive adhesive composition D.
  • a cross-linking agent Nippon Polyurethane Industry Co., Ltd. "Coronate L
  • silane coupling agent KBM403 manufactured by Shinetsu Silicon Co., Ltd.
  • the heavy SP film / pressure-sensitive adhesive layer D1 was prepared in the same procedure as the preparation of the pressure-sensitive adhesive sheet A, except that the pressure-sensitive adhesive composition D was used and the pressure-sensitive adhesive composition D was applied so that the thickness after drying was 15 ⁇ m.
  • An adhesive sheet D1 made of a light SP film was produced. Further, the heavy SP film / adhesive was prepared in the same procedure as the preparation of the pressure-sensitive adhesive sheet A, except that the pressure-sensitive adhesive composition D was used and the pressure-sensitive adhesive composition D was applied so that the thickness after drying was 5 ⁇ m.
  • An adhesive sheet D2 made of layer D2 / light SP film was prepared. The elastic moduli of the pressure-sensitive adhesive layers D1 and D2 of the pressure-sensitive adhesive sheets D1 and D2 at 25 ° C. were measured. The results are shown in Table 1.
  • a film with an HC layer in which a hard coat (HC) layer having a thickness of 10 ⁇ m was formed on one side of a polyimide (PI) resin film having a thickness of 50 ⁇ m was used.
  • the HC layer was a layer formed from a composition containing a dendrimer compound having a polyfunctional acrylic group at the terminal.
  • Example 1 (Preparation of phase difference laminate (1)) Corona treatment (output 0. 3 kW, processing speed 3 m / min).
  • the adhesive composition prepared above was applied to the corona-treated surface of the first retardation layer with a base material layer, and bonded to the corona-treated surface of the second retardation layer with a base material layer.
  • an ultraviolet irradiation device ultraviolet rays are emitted so that the light irradiation intensity is 400 mW / cm 2 and the integrated light amount at wavelengths of 280 to 320 nm is 400 mJ / cm 2.
  • the adhesive composition was cured by irradiation to form an adhesive cured layer having a thickness of 2 ⁇ m as a second bonding layer.
  • a retardation laminate (1) in which PET films were laminated in this order was obtained.
  • the circular polarizing plate (1) includes a polarizing plate (1) (TAC film, alignment layer, linearly polarized light layer (1), OC layer), a first bonding layer (adhesive layer A), a first retardation layer, and a first.
  • TAC film alignment layer, linearly polarized light layer (1), OC layer
  • first bonding layer adheresive layer A
  • first retardation layer a first retardation layer
  • second retardation layer a first.
  • the two bonding layers (adhesive-cured layer) and the second retardation layer were laminated in this order.
  • the circularly polarizing plate ( The layer structures of the first retardation layer and the second retardation layer in 1) do not necessarily match the layer structures of the first retardation layer and the second retardation layer in the retardation laminate (1). The same applies to the following examples and comparative examples.
  • Corona treatment (output 0.3 kW, processing speed) on the second retardation layer side of the circularly polarizing plate (1) and the pressure-sensitive adhesive layer A exposed by peeling off the light SP film of the pressure-sensitive adhesive sheet A prepared above. After performing (3 m / min), the corona-treated surfaces were bonded to each other to obtain a circularly polarizing plate (1) with an adhesive layer.
  • Corona treatment (output 0.3 kW, processing speed 3 m) was applied to the PI-based resin film side of the front plate prepared above and the pressure-sensitive adhesive layer A exposed by peeling off the light SP film of the pressure-sensitive adhesive sheet A prepared above. After performing (/ min), the corona-treated surfaces were bonded to each other to obtain a front plate with an adhesive layer.
  • the adhesive layer A exposed by peeling off the heavy SP film of the front plate with the adhesive layer and the polarizing plate (1) side of the circularly polarizing plate (1) with the adhesive layer are subjected to corona treatment (output 0).
  • the corona-treated surfaces were bonded to each other to obtain an optical laminate (1).
  • the optical laminate (1) was formed by laminating a front plate (HC layer, PI resin film), an adhesive layer A, a circularly polarizing plate (1), an adhesive layer A, and a heavy SP film in this order. ..
  • Example 2 (Preparation of phase difference laminate (2)) Corona treatment (corona treatment) was applied to the first retardation layer side of the first retardation layer with the base material layer prepared above and the pressure-sensitive adhesive layer D2 exposed by peeling off the light SP film of the pressure-sensitive adhesive sheet D2 prepared above. After the output was 0.3 kW and the processing speed was 3 m / min), the corona-processed surfaces were bonded to each other. Next, the pressure-sensitive adhesive layer D2 exposed by peeling off the heavy SP film of the pressure-sensitive adhesive sheet D2 and the second retardation layer side of the second retardation layer with the base material layer prepared above are subjected to corona treatment (output 0).
  • corona treatment corona treatment
  • the retardation laminate (2) includes a PET film, a first retardation layer (first alignment layer, first liquid crystal layer), a second bonding layer (adhesive layer D2), and a second retardation layer (second liquid crystal display).
  • the layer, the second oriented layer), and the PET film were laminated in this order.
  • the procedure is the same as that for producing the circularly polarizing plate (1), except that the pressure-sensitive adhesive sheet D1 is used instead of the pressure-sensitive adhesive sheet A and the retardation laminate (2) is used instead of the retardation laminate (1). Obtained a circularly polarizing plate (2).
  • the circular polarizing plate (2) includes a polarizing plate (1) (TAC film, alignment layer, linearly polarized light layer (1), OC layer), a first bonding layer (adhesive layer D1), a first retardation layer, and a first. The two bonding layers (adhesive layer D2) and the second retardation layer were laminated in this order.
  • optical laminate (2) An optical laminate (2) was obtained in the same procedure as in the production of the optical laminate (1) except that the circular polarizing plate (2) was used instead of the circular polarizing plate (1).
  • the optical laminate (2) was formed by laminating a front plate (HC layer, PI resin film), an adhesive layer A, a circularly polarizing plate (2), an adhesive layer A, and a heavy SP film in this order. ..
  • the obtained optical laminate (2) was used for evaluation of flexibility, measurement of ⁇ S, and visual evaluation. The results are shown in Table 1.
  • Example 3 (Preparation of phase difference laminate (3)) A retardation laminate (3) was obtained in the same procedure as in the production of the retardation laminate (2) except that the pressure-sensitive adhesive sheet C prepared above was used instead of the pressure-sensitive adhesive sheet D2.
  • the retardation laminate (3) includes a PET film, a first retardation layer (first alignment layer, first liquid crystal layer), a second bonding layer (adhesive layer C), and a second retardation layer (second liquid crystal display).
  • the layer, the second oriented layer), and the PET film were laminated in this order.
  • the circular polarizing plate (3) includes a polarizing plate (1) (TAC film, alignment layer, linearly polarized light layer (1), OC layer), a first bonding layer (adhesive layer B), a first retardation layer, and a first.
  • the two bonding layers (adhesive layer C) and the second retardation layer were laminated in this order.
  • optical laminate (3) An optical laminate (3) was obtained in the same procedure as in the production of the optical laminate (1) except that the circular polarizing plate (3) was used instead of the circular polarizing plate (1).
  • the optical laminate (3) was formed by laminating a front plate (HC layer, PI resin film), an adhesive layer A, a circularly polarizing plate (3), an adhesive layer A, and a heavy SP film in this order. ..
  • the obtained optical laminate (3) was used for evaluation of flexibility, measurement of ⁇ S, and visual evaluation. The results are shown in Table 1.
  • Example 4 (Preparation of circularly polarizing plate (4))
  • the polarizing plate (2) prepared above is used instead of the polarizing plate (1), the retardation laminate (2) is used instead of the retardation laminate (1), and the pressure-sensitive adhesive sheet A is replaced by the above preparation.
  • the linearly polarizing layer (2) of the polarizing plate (2) and the pressure-sensitive adhesive layer D1 as the first bonding layer were corona-treated (output 0.3 kW, processing speed 3 m / min) using the pressure-sensitive adhesive sheet D1.
  • a circularly polarizing plate (4) was obtained in the same procedure as in the preparation of the circularly polarizing plate (1) except that it was bonded.
  • the circular polarizing plate (4) includes a polarizing plate (2) (COP film, adhesive curing layer, linearly polarized light layer (2) (COP film, adhesive layer, linearly polarized light layer (2)), and a first bonded layer (COP film, adhesive layer, linearly polarized light layer (2)).
  • COP film polarizing plate
  • the pressure-sensitive adhesive layer D1), the first retardation layer, the second bonding layer (adhesive layer D2), and the second retardation layer were laminated in this order.
  • optical laminate (4) was obtained in the same procedure as in the production of the optical laminate (1) except that the circular polarizing plate (4) was used instead of the circular polarizing plate (1).
  • the optical laminate (4) was formed by laminating a front plate (HC layer, PI resin film), an adhesive layer A, a circularly polarizing plate (4), an adhesive layer A, and a heavy SP film in this order. ..
  • the obtained optical laminate (4) was used for evaluation of flexibility, measurement of ⁇ S, and visual evaluation. The results are shown in Table 1.
  • the circular polarizing plate (C1) includes a polarizing plate (1) (TAC film, alignment layer, linearly polarized light layer (1), OC layer), a first bonding layer (adhesive layer D2), a first retardation layer, and a first.
  • the two bonding layers (adhesive layer D2) and the second retardation layer were laminated in this order.
  • optical laminate (C1) was obtained in the same procedure as in the production of the optical laminate (1) except that the circular polarizing plate (C1) was used instead of the circular polarizing plate (1).
  • the optical laminate (C1) consisted of a front plate (HC layer, PI-based resin film), an adhesive layer A, a circularly polarizing plate (C1), an adhesive layer A, and a heavy SP film laminated in this order. ..
  • the obtained optical laminate (C1) was used for evaluation of flexibility, measurement of ⁇ S, and visual evaluation. The results are shown in Table 1.
  • a retardation laminate (C2) was obtained in the same procedure as in the production of the retardation laminate (2) except that the pressure-sensitive adhesive sheet B prepared above was used instead of the pressure-sensitive adhesive sheet D2.
  • the retardation laminate (C2) includes a PET film, a first retardation layer (first alignment layer, first liquid crystal layer), a second bonding layer (adhesive layer B), and a second retardation layer (second liquid crystal display). The layer, the second oriented layer), and the PET film were laminated in this order.
  • the circular polarizing plate (C2) includes a polarizing plate (1) (TAC film, alignment layer, linearly polarized light layer (1), OC layer), a first bonding layer (adhesive layer C), a first retardation layer, and a first.
  • the two bonding layers (adhesive layer B) and the second retardation layer were laminated in this order.
  • optical laminate (C2) An optical laminate (C2) was obtained in the same procedure as in the production of the optical laminate (1) except that the circular polarizing plate (C2) was used instead of the circular polarizing plate (1).
  • the optical laminate (C2) consisted of a front plate (HC layer, PI-based resin film), an adhesive layer A, a circularly polarizing plate (C2), an adhesive layer A, and a heavy SP film laminated in this order. ..
  • the obtained optical laminate (C2) was used for evaluation of flexibility, measurement of ⁇ S, and visual evaluation. The results are shown in Table 1.
  • a retardation laminate (C3) was obtained in the same procedure as in the production of the retardation laminate (2) except that the pressure-sensitive adhesive sheet D1 prepared above was used instead of the pressure-sensitive adhesive sheet D2.
  • the retardation laminate (C3) includes a PET film, a first retardation layer (first alignment layer, first liquid crystal layer), a second bonding layer (adhesive layer D1), and a second retardation layer (second liquid crystal display). The layer, the second oriented layer), and the PET film were laminated in this order.
  • the circular polarizing plate (C3) includes a polarizing plate (1) (TAC film, alignment layer, linearly polarized light layer (1), OC layer), a first bonding layer (adhesive layer D2), a first retardation layer, and a first.
  • the two bonding layers (adhesive layer D1) and the second retardation layer were laminated in this order.
  • optical laminate (C3) was obtained in the same procedure as in the production of the optical laminate (1) except that the circular polarizing plate (C3) was used instead of the circular polarizing plate (1).
  • the optical laminate (C3) consisted of a front plate (HC layer, PI-based resin film), an adhesive layer A, a circularly polarizing plate (C3), an adhesive layer A, and a heavy SP film laminated in this order. .. Flexibility and visual evaluation were performed using the obtained optical laminate (C3). Since cracks were generated in the bending test, ⁇ S was not measured. The results are shown in Table 1.
  • a retardation laminate (C4) was obtained in the same procedure as in the production of the retardation laminate (2) except that the pressure-sensitive adhesive sheet A prepared above was used instead of the pressure-sensitive adhesive sheet D2.
  • the retardation laminate (C4) includes a PET film, a first retardation layer (first alignment layer, first liquid crystal layer), a second bonding layer (adhesive layer A), and a second retardation layer (second liquid crystal display). The layer, the second oriented layer), and the PET film were laminated in this order.
  • ultraviolet irradiation device ultraviolet lamp uses "H valve” manufactured by Fusion UV System Co., Ltd.
  • ultraviolet rays are emitted so that the light irradiation intensity is 400 mW / cm 2 and the integrated light amount at wavelengths of 280 to 320 nm is 800 mJ / cm 2.
  • the adhesive composition was cured by irradiation to form an adhesive cured layer having a thickness of 2 ⁇ m as the first bonding layer, and a circular ultraviolet plate (C4) was obtained.
  • the circular polarizing plate (C4) includes a polarizing plate (1) (TAC film, alignment layer, linearly polarized light layer (1), OC layer), a first bonding layer (adhesive curing layer), a first retardation layer, and a first.
  • the two bonding layers (adhesive layer A) and the second retardation layer were laminated in this order.
  • optical laminate (C4) was obtained in the same procedure as in the production of the optical laminate (1) except that the circular polarizing plate (C4) was used instead of the circular polarizing plate (1).
  • the optical laminate (C4) consisted of a front plate (HC layer, PI-based resin film), an adhesive layer A, a circularly polarizing plate (C4), an adhesive layer A, and a heavy SP film laminated in this order. .. Flexibility and visual evaluation were performed using the obtained optical laminate (C4). Since cracks were generated in the bending test, ⁇ S was not measured. The results are shown in Table 1.
  • 1 circularly polarizing plate 5 optical laminate, 11 1st retardation layer, 12 2nd retardation layer, 21 1st bonding layer, 22 2nd bonding layer, 23 3rd bonding layer, 30 optical layer, 31 Linear polarizing layer, 32, 33 protective layer, 40 front plate, 100 test piece, 501,502 stage.

Abstract

The present invention provides a circular polarizing sheet, and an optical laminate and display device provided with the circular polarizing sheet, said circular polarizing sheet being able to suppress differences in the hue of reflected light when viewed from an oblique direction compared to when viewed from the front, even after being exposed to flexion in a display device such as a flexible display. The circular polarizing sheet comprises, in the following order, an optical layer that includes at least a linear polarization layer, a first bonding layer, a first phase difference layer, a second bonding layer, and a second phase difference layer. The first phase difference layer includes a first liquid crystal layer, which is a cured layer of a polymerizable liquid crystal compound. If the modulus of elasticity at a temperature of 25°C of the first bonding layer and the second bonding layer is respectively G'1 [kPa] and G'2 [kPa], and the thickness of the first bonding layer and the second bonding layer is respectively d1 [μm] and d2 [μm], the relationship of formula (1) is satisfied. (1) G'1/d1 < G'2/d2

Description

円偏光板及び光学積層体Circularly polarizing plate and optical laminate
 本発明は、円偏光板、光学積層体、及び表示装置に関する。 The present invention relates to a circularly polarizing plate, an optical laminate, and a display device.
 有機エレクトロルミネッセンス(EL)表示装置に代表される表示装置では、可撓性を有する材料を用いて表示装置の屈曲等を可能にしたフレキシブルディスプレイが知られている(例えば、特許文献1,2)。有機EL表示装置では、外光の反射による視認性の低下を抑制するために、円偏光板等を用いて反射防止性能を向上させることが知られている。円偏光板は、直線偏光板及び位相差層を積層して得ることができ、位相差層として重合性液晶化合物の硬化物層を用いることがある。 As a display device typified by an organic electroluminescence (EL) display device, a flexible display capable of bending the display device by using a flexible material is known (for example, Patent Documents 1 and 2). .. It is known that an organic EL display device uses a circularly polarizing plate or the like to improve antireflection performance in order to suppress a decrease in visibility due to reflection of external light. The circular polarizing plate can be obtained by laminating a linear polarizing plate and a retardation layer, and a cured product layer of a polymerizable liquid crystal compound may be used as the retardation layer.
特開2019-91021号公報Japanese Unexamined Patent Publication No. 2019-91021 特開2019-91091号公報JP-A-2019-91091
 上記のように重合性液晶化合物の硬化物層の位相差層を備えた円偏光板は、表示装置の最表面を構成する前面板等と貼合された光学積層体として、フレキシブルディスプレイに組み込まれ、円偏光板の直線偏光層側が内側となるように繰り返し屈曲されることがある。このような屈曲に曝されたフレキシブルディスプレイでは、正面から観察した場合の反射光の色相(色味)に比較して、斜め方向から観察した場合の反射光の色相が異なっていることがあった。 As described above, the circularly polarizing plate provided with the retardation layer of the cured product layer of the polymerizable liquid crystal compound is incorporated into the flexible display as an optical laminate bonded to the front plate or the like constituting the outermost surface of the display device. , The circularly polarizing plate may be repeatedly bent so that the linearly polarizing layer side is on the inside. In a flexible display exposed to such bending, the hue of the reflected light when observed from an oblique direction may be different from the hue (hue) of the reflected light when observed from the front. ..
 本発明は、フレキシブルディスプレイ等の表示装置等において屈曲に曝された後においても、正面から観察した場合に比較して斜め方向から観察した場合の反射光の色相が異なることを抑制することができる円偏光板、これを備えた光学積層体及び表示装置の提供を目的とする。 INDUSTRIAL APPLICABILITY The present invention can suppress the difference in hue of reflected light when observed from an oblique direction as compared with the case where it is observed from the front even after being exposed to bending in a display device such as a flexible display. An object of the present invention is to provide a circular polarizing plate, an optical laminate equipped with the circular polarizing plate, and a display device.
 本発明は、以下の円偏光板、光学積層体、及び表示装置を提供する。
 〔1〕 少なくとも直線偏光層を含む光学層、第1貼合層、第1位相差層、第2貼合層、及び第2位相差層をこの順に含む円偏光板であって、
 前記第1位相差層は、重合性液晶化合物の硬化物層である第1液晶層を含み、
 前記第1貼合層及び前記第2貼合層の温度25℃における弾性率がそれぞれG’1[kPa]及びG’2[kPa]であり、前記第1貼合層及び前記第2貼合層の厚みがそれぞれd1[μm]及びd2[μm]であるとき、下記式(1)の関係を満たす、円偏光板。
  G’1/d1<G’2/d2  (1)
 〔2〕 前記第1位相差層の厚みがt[μm]であり、
 屈曲試験後の前記円偏光板の屈曲部分の断面において、前記第1位相差層の前記第1貼合層側の表面のうちの前記光学層側に最も近い位置と前記光学層側から最も遠い位置との間の厚み方向の距離がΔS[μm]であるとき、下記式(2)の関係を満たす、〔1〕に記載の円偏光板。
  ΔS≦2t  (2)
 〔3〕 少なくとも直線偏光層を含む光学層、第1貼合層、第1位相差層、第2貼合層、及び第2位相差層をこの順に含む円偏光板であって、
 前記第1位相差層は、重合性液晶化合物の硬化物層である第1液晶層を含み、
 前記第1位相差層の厚みがt[μm]であり、
 屈曲試験後の前記円偏光板の屈曲部分の断面において、前記第1位相差層の前記第1貼合層側の表面のうちの前記光学層側に最も近い位置と前記光学層側から最も遠い位置との間の厚み方向の距離がΔS[μm]であるとき、下記式(2)の関係を満たす、円偏光板。
  ΔS≦2t  (2)
 〔4〕 前記第2位相差層は、重合性液晶化合物の硬化物層である第2液晶層を含む、〔1〕~〔3〕のいずれかに記載の円偏光板。
 〔5〕 前記第1位相差層の厚みは、5μm以下である、〔1〕~〔4〕のいずれかに記載の円偏光板。
 〔6〕 前記直線偏光層は、重合性液晶化合物の硬化物及び二色性色素を含む、〔1〕~〔5〕のいずれかに記載の円偏光板。
 〔7〕 前記光学層は、前記直線偏光層の片面又は両面に保護層を有する偏光板である、〔1〕~〔6〕のいずれかに記載の円偏光板。
 〔8〕 前記第1位相差層及び前記第2位相差層は、下記[a]又は[b]:
 [a]前記第1位相差層が1/2波長板であり、前記第2位相差層が1/4波長板である、
 [b]前記第1位相差層及び前記第2位相差層のうちの一方が逆波長分散性の1/4波長板であり、他方がポジティブCプレートである、
の関係を満たす、〔1〕~〔7〕のいずれかに記載の円偏光板。
 〔9〕 前記第1位相差層は、逆波長分散性の1/4波長板であり、
 前記第2位相差層は、ポジティブCプレートである、〔1〕~〔8〕のいずれかに記載の円偏光板。
 〔10〕 〔1〕~〔9〕のいずれかに記載の円偏光板と、前記円偏光板の前記光学層側に積層された前面板と、を有する、光学積層体。
 〔11〕 〔10〕に記載の光学積層体を備えた表示装置。
The present invention provides the following circularly polarizing plate, optical laminate, and display device.
[1] A circularly polarizing plate including at least an optical layer including a linearly polarized light layer, a first bonded layer, a first retarded layer, a second bonded layer, and a second retarded layer in this order.
The first retardation layer includes a first liquid crystal layer which is a cured product layer of a polymerizable liquid crystal compound.
The elastic moduli of the first bonding layer and the second bonding layer at a temperature of 25 ° C. are G'1 [kPa] and G'2 [kPa], respectively, and the first bonding layer and the second bonding layer are bonded. A circular polarizing plate satisfying the relationship of the following formula (1) when the thicknesses of the layers are d1 [μm] and d2 [μm], respectively.
G'1 / d1 <G'2 / d2 (1)
[2] The thickness of the first retardation layer is t [μm].
In the cross section of the bent portion of the circularly polarizing plate after the bending test, the position closest to the optical layer side and the farthest from the optical layer side of the surface of the first retardation layer on the first bonding layer side. The circularly polarizing plate according to [1], which satisfies the relationship of the following formula (2) when the distance from the position in the thickness direction is ΔS [μm].
ΔS ≦ 2t (2)
[3] A circularly polarizing plate including at least an optical layer including a linearly polarized light layer, a first bonded layer, a first retarded layer, a second bonded layer, and a second retarded layer in this order.
The first retardation layer includes a first liquid crystal layer which is a cured product layer of a polymerizable liquid crystal compound.
The thickness of the first retardation layer is t [μm], and the thickness is t [μm].
In the cross section of the bent portion of the circularly polarizing plate after the bending test, the position closest to the optical layer side and the farthest from the optical layer side of the surface of the first retardation layer on the first bonding layer side. A circularly polarizing plate that satisfies the relationship of the following equation (2) when the distance from the position in the thickness direction is ΔS [μm].
ΔS ≦ 2t (2)
[4] The circularly polarizing plate according to any one of [1] to [3], wherein the second retardation layer includes a second liquid crystal layer which is a cured product layer of a polymerizable liquid crystal compound.
[5] The circularly polarizing plate according to any one of [1] to [4], wherein the thickness of the first retardation layer is 5 μm or less.
[6] The circular polarizing plate according to any one of [1] to [5], wherein the linearly polarizing layer contains a cured product of a polymerizable liquid crystal compound and a dichroic dye.
[7] The circular polarizing plate according to any one of [1] to [6], wherein the optical layer is a polarizing plate having a protective layer on one side or both sides of the linearly polarizing layer.
[8] The first retardation layer and the second retardation layer are described in the following [a] or [b]:
[A] The first retardation layer is a 1/2 wavelength plate, and the second retardation layer is a 1/4 wavelength plate.
[B] One of the first retardation layer and the second retardation layer is a 1/4 wave plate having a reverse wavelength dispersion, and the other is a positive C plate.
The circularly polarizing plate according to any one of [1] to [7], which satisfies the above relationship.
[9] The first retardation layer is a 1/4 wave plate having anti-wavelength dispersibility.
The circularly polarizing plate according to any one of [1] to [8], wherein the second retardation layer is a positive C plate.
[10] An optical laminate comprising the circularly polarizing plate according to any one of [1] to [9] and a front plate laminated on the optical layer side of the circularly polarizing plate.
[11] A display device provided with the optical laminate according to [10].
 本発明によれば、フレキシブルディスプレイ等の表示装置等において屈曲に曝された後においても、正面から観察した場合に比較して斜め方向から観察した場合の反射光の色相が異なることを抑制することができる円偏光板を提供することができる。 According to the present invention, even after being exposed to bending in a display device such as a flexible display, it is possible to suppress the difference in hue of reflected light when observed from an oblique direction as compared with the case where it is observed from the front. It is possible to provide a circular polarizing plate capable of forming.
本発明の円偏光板の一例を模式的に示す概略断面図である。It is a schematic cross-sectional view which shows typically an example of the circularly polarizing plate of this invention. 円偏光板の屈曲試験後、屈曲状態を戻した場合の一例を説明するための概略断面図である。It is a schematic cross-sectional view for demonstrating an example of the case where the bent state is returned after the bending test of a circularly polarizing plate. 本発明の光学積層体の一例を模式的に示す概略断面図である。It is schematic cross-sectional view which shows typically an example of the optical laminated body of this invention. (a)及び(b)は、屈曲試験の方法を説明するための概略図である。(A) and (b) are schematic views for explaining the method of the bending test.
 以下、図面を参照しつつ本発明の実施形態を説明するが、本発明は以下の実施形態に限定されるものではない。以下のすべての図面は、本発明の理解を助けるために示すものであり、図面に示される各構成要素のサイズや形状は、実際の構成要素のサイズや形状とは必ずしも一致しない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the following embodiments. All of the drawings below are provided to aid in the understanding of the present invention, and the size and shape of each component shown in the drawings may not necessarily match the size and shape of the actual component.
 (円偏光板)
 図1は、本実施形態の円偏光板の一例を模式的に示す概略断面図である。図2は、円偏光板の屈曲試験後、屈曲状態を戻した場合の一例を説明するための概略断面図である。円偏光板1は、図1に示すように、少なくとも直線偏光層31を含む光学層30、第1貼合層21、第1位相差層11、第2貼合層22、及び第2位相差層12をこの順に含む。第1位相差層11は、重合性液晶化合物の硬化物層である第1液晶層を含む。
(Circular polarizing plate)
FIG. 1 is a schematic cross-sectional view schematically showing an example of a circularly polarizing plate of the present embodiment. FIG. 2 is a schematic cross-sectional view for explaining an example in which the bent state is returned after the bending test of the circularly polarizing plate. As shown in FIG. 1, the circular polarizing plate 1 includes an optical layer 30 including at least a linearly polarizing layer 31, a first bonded layer 21, a first retardation layer 11, a second bonding layer 22, and a second phase difference. Layer 12 is included in this order. The first retardation layer 11 includes a first liquid crystal layer which is a cured product layer of a polymerizable liquid crystal compound.
 円偏光板1は、下記に示す<i>及び<ii>のうちの少なくとも一方を満たす。円偏光板1は、<i>及び<ii>のうちの一方のみを満たしていてもよいが、<i>及び<ii>の両方を満たしていることが好ましい。 The circularly polarizing plate 1 satisfies at least one of <i> and <ii> shown below. The circularly polarizing plate 1 may satisfy only one of <i> and <ii>, but preferably satisfies both <i> and <ii>.
<i> 第1貼合層21の温度25℃における弾性率がG’1[kPa]であり、第2貼合層22の温度25℃における弾性率がG’2[kPa]であり、第1貼合層21の厚みがd1[μm]であり、第2貼合層22の厚みがd2[μm]であるとき、円偏光板1は、下記式(1):
  G’1/d1<G’2/d2  (1)
の関係を満たす。
<I> The elastic modulus of the first bonded layer 21 at a temperature of 25 ° C. is G'1 [kPa], and the elastic modulus of the second bonded layer 22 at a temperature of 25 ° C. is G'2 [kPa]. When the thickness of the first bonded layer 21 is d1 [μm] and the thickness of the second bonded layer 22 is d2 [μm], the circular polarizing plate 1 has the following formula (1):
G'1 / d1 <G'2 / d2 (1)
Satisfy the relationship.
<ii> 円偏光板1の第1位相差層11の厚みがt[μm]であり、
 屈曲試験後の前記円偏光板の屈曲部分の断面において、第1位相差層11の第1貼合層21側の表面のうちの光学層30側に最も近い位置と光学層30側から最も遠い位置との間の厚み方向の距離がΔS[μm]であるとき、円偏光板1は、下記式(2):
  ΔS≦2t  (2)
の関係を満たす。
<Ii> The thickness of the first retardation layer 11 of the circularly polarizing plate 1 is t [μm].
In the cross section of the bent portion of the circularly polarizing plate after the bending test, the position closest to the optical layer 30 side and the farthest from the optical layer 30 side of the surface of the first retardation layer 11 on the first bonding layer 21 side. When the distance in the thickness direction from the position is ΔS [μm], the circularly polarizing plate 1 has the following equation (2):
ΔS ≦ 2t (2)
Satisfy the relationship.
 光学層30は、少なくとも直線偏光層31を含んでいればよく、直線偏光層31の片面又は両面に保護層を有する偏光板を含んでいてもよく、偏光板そのものであってもよい。
直線偏光層31は、ポリビニルアルコール系樹脂フィルムを含むものであってもよく、重合性液晶化合物の硬化物及び二色性色素を含むものであってもよい。図1に示す円偏光板1では、光学層30が、直線偏光層31の両面に保護層32,33を有する偏光板である場合を例に挙げて示している。
The optical layer 30 may include at least a linearly polarized light layer 31, and may include a polarizing plate having a protective layer on one side or both sides of the linearly polarized light layer 31, or may be a polarizing plate itself.
The linearly polarizing layer 31 may contain a polyvinyl alcohol-based resin film, or may contain a cured product of a polymerizable liquid crystal compound and a dichroic dye. In the circular polarizing plate 1 shown in FIG. 1, a case where the optical layer 30 is a polarizing plate having protective layers 32 and 33 on both surfaces of the linearly polarizing layer 31 is shown as an example.
 第1貼合層21は、光学層30と第1位相差層11とを貼合するための層であり、光学層30及び第1位相差層11に直接接していることができる。第1貼合層21は、粘着剤層又は接着剤硬化層であり、粘着剤層であることが好ましい。 The first bonding layer 21 is a layer for bonding the optical layer 30 and the first retardation layer 11, and can be in direct contact with the optical layer 30 and the first retardation layer 11. The first bonding layer 21 is an adhesive layer or an adhesive curing layer, and is preferably an adhesive layer.
 第1貼合層21の温度25℃における弾性率G’1は、例えば10kPa以上であってもよく、20kPa以上であってもよく、30kPa以上であってもよい。弾性率G’1は、例えば3×10kPa以下であってもよく、2×10kPa以下であってもよく、1×10kPa以下であってもよく、5×10kPa以下であってもよく、1×10kPa以下であってもよく、1×10kPa以下であってもよく、5×10kPa以下であってもよく、3×10kPa以下であってもよく、2×10kPa以下であってもよく、1×10kPa以下であってもよく、800kPa以下であってもよい。弾性率G’1は、後述の実施例に記載の方法によって測定することができる。 The elastic modulus G'1 of the first bonded layer 21 at a temperature of 25 ° C. may be, for example, 10 kPa or more, 20 kPa or more, or 30 kPa or more. The elastic modulus G'1 may be, for example, 3 × 10 6 kPa or less, 2 × 10 6 kPa or less, 1 × 10 6 kPa or less, or 5 × 10 5 kPa or less. It may be 1 × 10 5 kPa or less, it may be 1 × 10 4 kPa or less, it may be 5 × 10 3 kPa or less, and it may be 3 × 10 3 kPa or less. It may be 2 × 10 3 kPa or less, 1 × 10 3 kPa or less, or 800 kPa or less. The elastic modulus G'1 can be measured by the method described in Examples described later.
 第1貼合層21が粘着剤層である場合、上記弾性率G’1は、例えば10kPa以上であってもよく、20kPa以上であってもよく、30kPa以上であってもよく、また、5×10kPa以下であってもよく、3×10kPa以下であってもよく、2×10kPa以下であってもよく、1×10kPa以下であってもよく、800kPa以下であってもよい。第1貼合層21が接着剤硬化層である場合、上記弾性率G’1は、例えば1×10kPa以上であってもよく、5×10kPa以上であってもよく、また、3×10kPa以下であってもよく、2×10kPa以下であってもよく、1×10kPa以下であってもよい。 When the first bonding layer 21 is an adhesive layer, the elastic modulus G'1 may be, for example, 10 kPa or more, 20 kPa or more, 30 kPa or more, and 5 × may also be 10 3 kPa or less, may also be 3 × 10 3 kPa or less, may be less 2 × 10 3 kPa may be less 1 × 10 3 kPa, below 800kPa There may be. When the first bonding layer 21 is an adhesive cured layer, the elastic modulus G'1 may be, for example, 1 × 10 5 kPa or more, 5 × 10 5 kPa or more, and also. It may be 3 × 10 6 kPa or less, 2 × 10 6 kPa or less, or 1 × 10 6 kPa or less.
 第1貼合層21が粘着剤層である場合、第1貼合層21の厚みd1は、例えば3μm以上であってもよく、5μm以上であってもよく、10μm以上であってもよく、また、例えば50μm以下であってもよく、40μm以下であってもよく、30μm以下であってもよく、25μm以下であってもよい。第1貼合層21が接着剤硬化層である場合、第1貼合層21の厚みd1は、例えば0.01μm以上であってもよく、0.1μm以上であってもよく、0.5μm以上であってもよく、1μm以上であってもよく、また、例えば20μm以下であってもよく、15μm以下であってもよく、10μm以下であってもよく、5μm以下であってもよい。 When the first bonding layer 21 is an adhesive layer, the thickness d1 of the first bonding layer 21 may be, for example, 3 μm or more, 5 μm or more, or 10 μm or more. Further, for example, it may be 50 μm or less, 40 μm or less, 30 μm or less, or 25 μm or less. When the first bonded layer 21 is an adhesive cured layer, the thickness d1 of the first bonded layer 21 may be, for example, 0.01 μm or more, 0.1 μm or more, or 0.5 μm. It may be more than or equal to 1 μm, and may be, for example, 20 μm or less, 15 μm or less, 10 μm or less, or 5 μm or less.
 第1位相差層11は、上記したように重合性液晶化合物の硬化物層である第1液晶層を含む。第1位相差層11は第1液晶層そのものであってもよく、第1液晶層と第1配向層との積層体であってもよい。第1位相差層11が第1配向層を含む場合、第1配向層は、第1液晶層の光学層30側に設けられていてもよく、第1液晶層の第2貼合層22側に設けられていてもよい。 The first retardation layer 11 includes a first liquid crystal layer which is a cured product layer of a polymerizable liquid crystal compound as described above. The first retardation layer 11 may be the first liquid crystal layer itself, or may be a laminate of the first liquid crystal layer and the first alignment layer. When the first retardation layer 11 includes the first alignment layer, the first alignment layer may be provided on the optical layer 30 side of the first liquid crystal layer, and may be provided on the second bonding layer 22 side of the first liquid crystal layer. It may be provided in.
 第1位相差層11の厚みtは、例えば0.01μm以上であってもよく、0.05μm以上であってもよく、0.1μm以上であってもよく、0.5μm以上であってもよく、1μm以上であってもよい。厚みtは、5μm以下であることが好ましく、4μm以下であってもよく、3μm以下であってもよい。 The thickness t of the first retardation layer 11 may be, for example, 0.01 μm or more, 0.05 μm or more, 0.1 μm or more, or 0.5 μm or more. It may be 1 μm or more. The thickness t is preferably 5 μm or less, and may be 4 μm or less, or 3 μm or less.
 第2貼合層22は、第1位相差層11と第2位相差層12とを貼合するための層であり、第1位相差層11及び第2位相差層12に直接接していることができる。第2貼合層22は、粘着剤層又は接着剤硬化層であり、接着剤硬化層であることが好ましい。 The second bonding layer 22 is a layer for bonding the first retardation layer 11 and the second retardation layer 12, and is in direct contact with the first retardation layer 11 and the second retardation layer 12. be able to. The second bonding layer 22 is an adhesive layer or an adhesive curing layer, and is preferably an adhesive curing layer.
 第2貼合層22の温度25℃における弾性率G’2は、例えば50kPa以上であってもよく、70kPa以上であってもよく、90kPa以上であってもよく、100kPa以上であってもよく、300kPa以上であってもよく、500kPa以上であってもよい。弾性率G’2は、例えば5×10kPa以下であってもよく、4×10kPa以下であってもよく、3×10kPa以下であってもよく、2.5×10kPa以下であってもよく、1×10kPa以下であってもよく、1×10kPa以下であってもよく、5×10kPa以下であってもよく、3×10kPa以下であってもよく、2×10kPa以下であってもよく、1×10kPa以下であってもよく、800kPa以下であってもよい。弾性率G’2は、後述の実施例に記載の方法によって測定することができる。 The elastic modulus G'2 of the second bonded layer 22 at a temperature of 25 ° C. may be, for example, 50 kPa or more, 70 kPa or more, 90 kPa or more, or 100 kPa or more. , 300 kPa or more, or 500 kPa or more. The elastic modulus G'2 may be, for example, 5 × 10 6 kPa or less, 4 × 10 6 kPa or less, 3 × 10 6 kPa or less, and 2.5 × 10 6 It may be kPa or less, 1 × 10 5 kPa or less, 1 × 10 4 kPa or less, 5 × 10 3 kPa or less, or 3 × 10 3 kPa or less. It may be 2 × 10 3 kPa or less, it may be 1 × 10 3 kPa or less, or it may be 800 kPa or less. The elastic modulus G'2 can be measured by the method described in Examples described later.
 第2貼合層22が粘着剤層である場合、上記弾性率G’2は、例えば50kPa以上であってもよく、70kPa以上であってもよく、90kPa以上であってもよく、また、5×10kPa以下であってもよく、3×10kPa以下であってもよく、2×10kPa以下であってもよく、1×10kPa以下であってもよく、800kPa以下であってもよい。第2貼合層22が接着剤硬化層である場合、上記弾性率G’2は、例えば8×10kPa以上であってもよく、1×10kPa以上であってもよく、また、5×10kPa以下であってもよく、3×10kPa以下であってもよく、1×10kPa以下であってもよい。 When the second bonding layer 22 is an adhesive layer, the elastic modulus G'2 may be, for example, 50 kPa or more, 70 kPa or more, 90 kPa or more, and 5 × may also be 10 3 kPa or less, may also be 3 × 10 3 kPa or less, may be less 2 × 10 3 kPa may be less 1 × 10 3 kPa, below 800kPa There may be. When the second bonding layer 22 is an adhesive cured layer, the elastic modulus G'2 may be, for example, 8 × 10 5 kPa or more, 1 × 10 6 kPa or more, and also. It may be 5 × 10 6 kPa or less, 3 × 10 6 kPa or less, or 1 × 10 5 kPa or less.
 第2貼合層22が粘着剤層である場合、第2貼合層22の厚みd2は、例えば1μm以上であってもよく、5μm以上であってもよく、10μm以上であってもよく、15μm以上であってもよく、また、例えば50μm以下であってもよく、40μm以下であってもよく、30μm以下であってもよく、25μm以下であってもよい。第2貼合層22が接着剤硬化層である場合、第2貼合層22の厚みd2は、例えば0.01μm以上であってもよく、0.1μm以上であってもよく、0.5μm以上であってもよく、1μm以上であってもよく、また、例えば20μm以下であってもよく、15μm以下であってもよく、10μm以下であってもよく、5μm以下であってもよい。 When the second bonding layer 22 is an adhesive layer, the thickness d2 of the second bonding layer 22 may be, for example, 1 μm or more, 5 μm or more, or 10 μm or more. It may be 15 μm or more, for example, 50 μm or less, 40 μm or less, 30 μm or less, or 25 μm or less. When the second bonded layer 22 is an adhesive cured layer, the thickness d2 of the second bonded layer 22 may be, for example, 0.01 μm or more, 0.1 μm or more, or 0.5 μm. It may be more than or equal to 1 μm, and may be, for example, 20 μm or less, 15 μm or less, 10 μm or less, or 5 μm or less.
 第2位相差層12は、樹脂フィルムを延伸した延伸フィルムであってもよく、重合性液晶化合物の硬化物層である第2液晶層を含むものであってもよい。第2位相差層12が第2液晶層を含む場合、第2位相差層12は第2液晶層そのものであってもよく、第2液晶層と第2配向層との積層体であってもよい。第2位相差層12が第2配向層を含む場合、第2配向層は通常、第2液晶層の第2貼合層22側とは反対側に設けられる。 The second retardation layer 12 may be a stretched film obtained by stretching a resin film, or may include a second liquid crystal layer which is a cured product layer of a polymerizable liquid crystal compound. When the second retardation layer 12 includes the second liquid crystal layer, the second retardation layer 12 may be the second liquid crystal layer itself, or may be a laminate of the second liquid crystal layer and the second alignment layer. good. When the second alignment layer 12 includes the second alignment layer, the second alignment layer is usually provided on the side opposite to the second bonding layer 22 side of the second liquid crystal layer.
 第2位相差層12の厚みは、例えば0.01μm以上であってもよく、5μm以上であってもよく、また、20μm以下であってもよく、15μm以下であってもよい。第2位相差層12が第2液晶層を含む場合、第2位相差層の厚みは、例えば0.01μm以上であってもよく、0.05μm以上であってもよく、0.1μm以上であってもよく、0.5μm以上であってもよく、1μm以上であってもよく、また、5μm以下であってもよく、4μm以下であってもよく、3μm以下であってもよい。 The thickness of the second retardation layer 12 may be, for example, 0.01 μm or more, 5 μm or more, 20 μm or less, or 15 μm or less. When the second retardation layer 12 includes the second liquid crystal layer, the thickness of the second retardation layer may be, for example, 0.01 μm or more, 0.05 μm or more, or 0.1 μm or more. It may be 0.5 μm or more, 1 μm or more, 5 μm or less, 4 μm or less, or 3 μm or less.
 円偏光板はフレキシブルディスプレイ等に組み込まれて、光学層30側が内側となるように屈曲されることがある。この場合、例えば図2に示すように第1位相差層11に波打ちが発生することがある。第1位相差層11に発生する波打ちは、円偏光板を観察したときの第1位相差層11の位相差特性を不均一なものとする原因となり得る。そのため、例えば、円偏光板1の光学層30側において、円偏光板1を正面から観察した場合に比較して、円偏光板1を斜め方向から観察した場合の反射光の色相(色味)が異なるといった現象が生じると考えられる。 The circularly polarizing plate may be incorporated into a flexible display or the like and bent so that the optical layer 30 side is on the inside. In this case, for example, as shown in FIG. 2, waviness may occur in the first retardation layer 11. The waviness generated in the first retardation layer 11 can cause the retardation characteristics of the first retardation layer 11 to be non-uniform when the circularly polarizing plate is observed. Therefore, for example, on the optical layer 30 side of the circularly polarizing plate 1, the hue (hue) of the reflected light when the circularly polarizing plate 1 is observed from an oblique direction as compared with the case where the circularly polarizing plate 1 is observed from the front. It is thought that a phenomenon such as different will occur.
 本実施形態の円偏光板1では、上記<i>に記載の式(1)の関係、及び/又は、上記<ii>に記載の式(2)の関係を満たしている。そのため、光学層30側が内側となるように円偏光板1を屈曲させた後、屈曲状態を戻して平坦な状態とした場合であっても、第1位相差層11に発生する波打ちが抑制されていると考えられる。これにより、上記したように観察方向に応じて反射光の色相が異なることを抑制することができると考えられる。 The circularly polarizing plate 1 of the present embodiment satisfies the relationship of the formula (1) described in the above <i> and / or the relationship of the formula (2) described in the above <ii>. Therefore, even when the circularly polarizing plate 1 is bent so that the optical layer 30 side is on the inside and then the bent state is returned to a flat state, the waviness generated in the first retardation layer 11 is suppressed. It is thought that it is. As a result, it is considered that it is possible to suppress the difference in hue of the reflected light depending on the observation direction as described above.
 式(1)の関係を満たす円偏光板1において第1位相差層11の上記波打ちを抑制できる理由は次のように推測される。光学層30側が内側となるように円偏光板1を屈曲させると、第1貼合層21が圧縮されることにより、第1貼合層21が第1位相差層11に向かって膨張しようとする。第1貼合層21が膨張すると、第1貼合層21に隣接して配置されている第1位相差層11がその影響を受けて変形し、円偏光板1を屈曲前の状態に戻しても第1位相差層11は屈曲前の状態に戻らず、上記した波打ちが発生すると考えられる。 The reason why the waviness of the first retardation layer 11 can be suppressed in the circularly polarizing plate 1 satisfying the relationship of the equation (1) is presumed as follows. When the circularly polarizing plate 1 is bent so that the optical layer 30 side is on the inside, the first bonded layer 21 is compressed so that the first bonded layer 21 expands toward the first retardation layer 11. do. When the first bonded layer 21 expands, the first retardation layer 11 arranged adjacent to the first bonded layer 21 is affected by the expansion and deforms, and the circularly polarizing plate 1 is returned to the state before bending. However, it is considered that the first retardation layer 11 does not return to the state before bending, and the above-mentioned waviness occurs.
 第1貼合層21及び第2貼合層22では、弾性率G’1及びG’2が大きいほど膨張しやすくなり、硬くなりやすい傾向にある。そこで、第1貼合層21の弾性率G’1を相対的に小さくする(例えば、G’1<G’2)ことにより、円偏光板1の屈曲により第1貼合層21が膨張する変形を抑制し、第1貼合層21の膨張に伴う第1位相差層11の変形を抑制しやすくなる。また、第2貼合層22の弾性率G’2を相対的に大きくする(例えば、G’1<G’2)ことにより第2貼合層22を硬くして、円偏光板1の屈曲に伴う第1貼合層21の膨張に追随して第1位相差層11が変形することを抑制しやすくなる。 In the first bonded layer 21 and the second bonded layer 22, the larger the elastic moduli G'1 and G'2, the easier it is to expand and the more likely it is to become hard. Therefore, by making the elastic modulus G'1 of the first bonded layer 21 relatively small (for example, G'1 <G'2), the first bonded layer 21 expands due to the bending of the circularly polarizing plate 1. Deformation is suppressed, and it becomes easy to suppress deformation of the first retardation layer 11 due to expansion of the first bonding layer 21. Further, the elastic modulus G'2 of the second bonded layer 22 is relatively increased (for example, G'1 <G'2) to harden the second bonded layer 22, and the circularly polarizing plate 1 is bent. It becomes easy to suppress the deformation of the first retardation layer 11 following the expansion of the first bonding layer 21 accompanying the expansion.
 一方、第1貼合層21及び第2貼合層22では、厚みd1及びd2が大きいほど、すなわち厚みd1及びd2の逆数の値が小さいほど、応力緩和性が高くなる。そこで、第1貼合層21の厚みd1を相対的に大きくして(例えば、d1>d2)厚みd1の逆数の値を相対的に小さくすることにより、円偏光板1の屈曲に伴って第1貼合層21が受ける応力を速やかに緩和し、第1位相差層11に伝わる応力を低減しやすくなる。また、第2貼合層22の厚みd2を相対的に小さくして(例えば、d1>d2)厚みd2の逆数の値を相対的に大きくすることにより、第2貼合層22が受ける応力を緩和しにくくし、円偏光板1の屈曲に伴う第1貼合層21の膨張によって第1位相差層11が変形することを抑制しやすくなる。 On the other hand, in the first bonded layer 21 and the second bonded layer 22, the larger the thicknesses d1 and d2, that is, the smaller the reciprocal value of the thicknesses d1 and d2, the higher the stress relaxation property. Therefore, by making the thickness d1 of the first bonded layer 21 relatively large (for example, d1> d2) and making the value of the reciprocal of the thickness d1 relatively small, the circular polarizing plate 1 is bent. The stress received by the 1-bonded layer 21 is quickly relaxed, and the stress transmitted to the first retardation layer 11 can be easily reduced. Further, by making the thickness d2 of the second bonding layer 22 relatively small (for example, d1> d2) and making the value of the inverse number of the thickness d2 relatively large, the stress received by the second bonding layer 22 is increased. It is difficult to relax, and it becomes easy to suppress the deformation of the first retardation layer 11 due to the expansion of the first bonding layer 21 accompanying the bending of the circularly polarizing plate 1.
 このように、第1貼合層21及び第2貼合層22の弾性率G’1及びG’2並びに厚みd1及びd2を、式(1)の関係を満たすように調整することにより、光学層30側が内側となるように円偏光板1を屈曲させた場合に、第1位相差層11が変形することを抑制し、上記した波打ちの発生を抑制することができると考えられる。 In this way, the elastic moduli G'1 and G'2 and the thicknesses d1 and d2 of the first bonding layer 21 and the second bonding layer 22 are adjusted so as to satisfy the relationship of the equation (1), thereby performing optics. It is considered that when the circular polarizing plate 1 is bent so that the layer 30 side is on the inside, the first retardation layer 11 can be suppressed from being deformed and the occurrence of the above-mentioned waviness can be suppressed.
 円偏光板1が上記<ii>に記載の式(2)の関係を満たす場合、屈曲試験後の円偏光板1において、第1位相差層11の第1貼合層21側の表面の波打ちが抑制された状態にあると考えられる。これにより、円偏光板1の光学層30側において、円偏光板1を正面から観察した場合に比較して、円偏光板1を斜め方向から観察した場合の反射光の色相(色味)が異なることを抑制することができると推測される。 When the circularly polarizing plate 1 satisfies the relationship of the formula (2) described in the above <ii>, the surface of the first retardation layer 11 on the first bonding layer 21 side is wavy in the circularly polarizing plate 1 after the bending test. Is considered to be in a suppressed state. As a result, on the optical layer 30 side of the circularly polarizing plate 1, the hue (hue) of the reflected light when the circularly polarizing plate 1 is observed from an oblique direction is higher than that when the circularly polarizing plate 1 is observed from the front. It is presumed that different things can be suppressed.
 式(2)におけるΔSは、屈曲試験後の円偏光板1の屈曲部分の断面において、図2に示すように、第1位相差層11の第1貼合層21側の表面のうちの光学層30側に最も近い位置と光学層30側から最も遠い位置との間の厚み方向の距離である。厚み方向は、円偏光板1の平面に直交する方向(円偏光板1の積層方向)である。屈曲部分の断面は、屈曲前の円偏光板1の平面において、屈曲試験における回転軸(揺動軸)に直交する方向に平行な断面とし、詳細には、後述する実施例における屈曲試験を説明する図4(a)において紙面に平行な断面である。屈曲部分は、後述する実施例の屈曲試験の2つのステージの間の間隙C1(図4(a))の範囲である。 ΔS in the formula (2) is the optics of the surface of the first retardation layer 11 on the first bonding layer 21 side in the cross section of the bent portion of the circularly polarizing plate 1 after the bending test, as shown in FIG. It is the distance in the thickness direction between the position closest to the layer 30 side and the position farthest from the optical layer 30 side. The thickness direction is a direction orthogonal to the plane of the circularly polarizing plate 1 (the laminating direction of the circularly polarizing plate 1). The cross section of the bent portion is a cross section parallel to the direction orthogonal to the rotation axis (swing axis) in the bending test on the plane of the circular plate plate 1 before bending. FIG. 4A is a cross section parallel to the paper surface. The bent portion is the range of the gap C1 (FIG. 4 (a)) between the two stages of the bending test of the embodiment described later.
 ΔSの大きさは、上記した第1位相差層11の波打ちの大きさに対応しており、ΔSが小さいほど波打ちが抑制されていると考えられるため、ΔSが式(2)を満たす場合、屈曲試験後の円偏光板1において第1位相差層11の波打ちが抑制されていると考えられる。ΔSは、後述する実施例に記載のように、屈曲試験後の円偏光板1の屈曲部分を走査型電子顕微鏡で観察した顕微鏡画像に基づいて決定することができる。 The magnitude of ΔS corresponds to the magnitude of the waviness of the first retardation layer 11 described above, and it is considered that the smaller the ΔS, the more the waviness is suppressed. Therefore, when ΔS satisfies the equation (2), It is considered that the waviness of the first retardation layer 11 is suppressed in the circularly polarizing plate 1 after the bending test. ΔS can be determined based on a microscopic image obtained by observing the bent portion of the circularly polarizing plate 1 after the bending test with a scanning electron microscope, as described in Examples described later.
 式(2)において、ΔSは、例えば1.9t以下であってもよく、1.8t以下であってもよく、1.5t以下であってもよく、1.4t以下であってもよく、1.35t以下であってもよく、1.3t以下であってもよい。ΔSは、例えば0.1t以上であってもよく、0.5t以上であってもよく、t以上であってもよく、tを超えてもよい。 In the formula (2), ΔS may be, for example, 1.9 t or less, 1.8 t or less, 1.5 t or less, or 1.4 t or less. It may be 1.35t or less, or 1.3t or less. ΔS may be, for example, 0.1 t or more, 0.5 t or more, t or more, or t or more.
 円偏光板1において、第1位相差層11及び第2位相差層12は、下記[a]又は[b]:
[a]第1位相差層11が1/2波長板であり、第2位相差層12が1/4波長板である、
[b]第1位相差層11及び第2位相差層12のうちの一方が逆波長分散性の1/4波長板であり、他方がポジティブCプレートである、
の関係を満たすことが好ましい。上記[b]の場合において、第1位相差層11は逆波長分散性の1/4波長板であり、第2位相差層12はポジティブCプレートであることが好ましい。
In the circularly polarizing plate 1, the first retardation layer 11 and the second retardation layer 12 have the following [a] or [b]:
[A] The first retardation layer 11 is a 1/2 wavelength plate, and the second retardation layer 12 is a 1/4 wavelength plate.
[B] One of the first retardation layer 11 and the second retardation layer 12 is a 1/4 wave plate having an inverse wavelength dispersion, and the other is a positive C plate.
It is preferable to satisfy the relationship of. In the case of the above [b], it is preferable that the first retardation layer 11 is a 1/4 wave plate having a reverse wavelength dispersion and the second retardation layer 12 is a positive C plate.
 円偏光板1は、屈曲可能であることが好ましい。屈曲可能であるとは、円偏光板1を構成する層(例えば、第1位相差層11等)にクラックを生じさせることなく屈曲させ得ることを意味する。円偏光板1は、光学層30側を内側にした方向に屈曲が可能であることが好ましい。 It is preferable that the circularly polarizing plate 1 is bendable. Being bendable means that the layer constituting the circularly polarizing plate 1 (for example, the first retardation layer 11 and the like) can be bent without causing cracks. It is preferable that the circularly polarizing plate 1 can be bent in the direction in which the optical layer 30 side is inward.
 円偏光板1の厚みは、通常5μm以上であり、10μm以上であってもよく、15μm以上であってもよく、また、80μm以下であることが好ましく、60μm以下であることがより好ましい。 The thickness of the circularly polarizing plate 1 is usually 5 μm or more, may be 10 μm or more, may be 15 μm or more, is preferably 80 μm or less, and more preferably 60 μm or less.
 (光学積層体)
 図3は、本実施形態の光学積層体の一例を模式的に示す概略断面図である。光学積層体5は、図3に示すように、円偏光板1と、円偏光板1の光学層30側に、第3貼合層23を介して積層された前面板40とを有する。光学積層体5は、円偏光板1側が内側となる方向に屈曲可能であることが好ましい。
(Optical laminate)
FIG. 3 is a schematic cross-sectional view schematically showing an example of the optical laminate of the present embodiment. As shown in FIG. 3, the optical laminate 5 has a circularly polarizing plate 1 and a front plate 40 laminated on the optical layer 30 side of the circularly polarizing plate 1 via a third bonding layer 23. It is preferable that the optical laminate 5 can be bent in the direction in which the circularly polarizing plate 1 side is on the inside.
 前面板40は、表示装置の表示素子等を保護するための層として機能することができ、光を透過可能な板状体である。光学積層体5を屈曲可能なものとするために、板状体は、樹脂フィルム又はガラスフィルムを有することが好ましい。板状体は、樹脂フィルムとガラスフィルムとの積層体であってもよい。前面板40は、表示装置の最表面に配置されるものであることができる。 The front plate 40 is a plate-like body that can function as a layer for protecting display elements and the like of a display device and can transmit light. In order to make the optical laminate 5 bendable, it is preferable that the plate-shaped body has a resin film or a glass film. The plate-shaped body may be a laminate of a resin film and a glass film. The front plate 40 can be arranged on the outermost surface of the display device.
 第3貼合層23は、前面板40及び円偏光板1の光学層30に直接接していることができる。第3貼合層23は、粘着剤層又は接着剤硬化層である。 The third bonded layer 23 can be in direct contact with the front plate 40 and the optical layer 30 of the circularly polarizing plate 1. The third bonding layer 23 is an adhesive layer or an adhesive curing layer.
 光学積層体5は、円偏光板1側(第2位相差層側)に、後述する表示装置の表示素子等に貼合するための第4貼合層を有していてもよい。第4貼合層は、粘着剤層又は接着剤硬化層である。 The optical laminate 5 may have a fourth bonding layer for bonding to a display element or the like of a display device described later on the circular polarizing plate 1 side (second retardation layer side). The fourth bonded layer is an adhesive layer or an adhesive cured layer.
 光学積層体5は、タッチセンサパネル等を有していてもよい。タッチセンサパネルは、前面板40と円偏光板1との間に配置されていてもよく、光学積層体5の円偏光板1側(第2位相差層側)に配置されていてもよい。 The optical laminate 5 may have a touch sensor panel or the like. The touch sensor panel may be arranged between the front plate 40 and the circularly polarizing plate 1, or may be arranged on the circularly polarizing plate 1 side (second retardation layer side) of the optical laminate 5.
 (表示装置)
 光学積層体5は、有機EL表示装置等の表示装置に組み込むことができる。表示装置は、例えば、光学積層体5を表示素子等を含む表示積層体に積層することによって得ることができる。表示積層体は、表示素子の他、タッチセンサパネル等を含んでいてもよい。
(Display device)
The optical laminate 5 can be incorporated into a display device such as an organic EL display device. The display device can be obtained, for example, by laminating the optical laminate 5 on the display laminate including the display element and the like. The display laminate may include a touch sensor panel or the like in addition to the display element.
 表示装置は、スマートフォンやタブレット等の携帯端末であってもよく、テレビ、デジタルフォトフレーム、電子看板、測定器や計器類、事務用機器、医療機器、電算機器等であってもよい。表示装置は、フレキシブルディスプレイであることが好ましい。 The display device may be a mobile terminal such as a smartphone or tablet, or may be a television, a digital photo frame, an electronic signboard, measuring instruments and instruments, office equipment, medical equipment, computer equipment, and the like. The display device is preferably a flexible display.
 以下、円偏光板及び光学積層体の各層について詳細に説明する。
 (光学層)
 光学層は、少なくとも直線偏光層を含む。光学層は、直線偏光層の他に、直線偏光層の片面又は両面を保護する保護層、反射フィルム、半透過型反射フィルム、輝度向上フィルム、光学補償フィルム、防眩機能付きフィルム等を有していてもよい。
Hereinafter, each layer of the circularly polarizing plate and the optical laminate will be described in detail.
(Optical layer)
The optical layer includes at least a linearly polarized light layer. In addition to the linear polarizing layer, the optical layer includes a protective layer that protects one or both sides of the linear polarizing layer, a reflective film, a transflective reflective film, a brightness improving film, an optical compensation film, a film with an antiglare function, and the like. You may be.
 (直線偏光層)
 直線偏光層は、自然光等の非偏光な光線からある一方向の直線偏光を選択的に透過させる機能を有するものである。直線偏光層は、二色性色素を吸着させた延伸フィルムや、重合性液晶化合物の硬化物及び二色性色素を含み、二色性色素が、重合性液晶化合物の硬化物中に分散し、配向している液晶層等が挙げられる。二色性色素は、分子の長軸方向における吸光度と短軸方向における吸光度とが異なる性質を有する色素をいう。
(Straightly polarized layer)
The linearly polarized light layer has a function of selectively transmitting linearly polarized light in a certain direction from unpolarized light rays such as natural light. The linearly polarizing layer contains a stretched film on which a dichroic dye is adsorbed, a cured product of a polymerizable liquid crystal compound, and a dichroic dye, and the dichroic dye is dispersed in the cured product of the polymerizable liquid crystal compound. An oriented liquid crystal layer and the like can be mentioned. The dichroic dye refers to a dye having a property in which the absorbance in the major axis direction and the absorbance in the minor axis direction of the molecule are different.
 (延伸フィルムを用いた直線偏光層)
 二色性色素を吸着させた延伸フィルムは、通常、ポリビニルアルコール系樹脂フィルムを一軸延伸する工程、ポリビニルアルコール系樹脂フィルムを、ヨウ素等の二色性色素で染色することにより、その二色性色素を吸着させる工程、二色性色素が吸着されたポリビニルアルコール系樹脂フィルムをホウ酸水溶液で処理する工程、及びホウ酸水溶液による処理後に水洗する工程を経て製造される。二色性色素を吸着させた延伸フィルムは、ポリビニルアルコール系樹脂を含む塗布液を基材フィルム上に塗布して積層フィルムを得る工程、得られた積層フィルムを一軸延伸する工程、一軸延伸された積層フィルムのポリビニルアルコール系樹脂層に二色性色素を吸着させる工程、二色性色素が吸着されたポリビニルアルコール系樹脂層をホウ酸水溶液で処理する工程、及びホウ酸水溶液による処理後に水洗する工程を経て製造されてもよい。得られたフィルムをそのまま直線偏光層として用いてもよく、その片面又は両面に保護層を形成した直線偏光板として用いてもよい。こうして得られる直線偏光層の厚みは、好ましくは2μm~40μmである。
(Linear polarizing layer using stretched film)
The stretched film on which the dichroic dye is adsorbed is usually a step of uniaxially stretching the polyvinyl alcohol-based resin film, and the polyvinyl alcohol-based resin film is dyed with a dichroic dye such as iodine to obtain the dichroic dye. It is produced through a step of adsorbing the vinyl alcohol, a step of treating a polyvinyl alcohol-based resin film on which a dichroic dye is adsorbed with an aqueous boric acid solution, and a step of washing with water after the treatment with the aqueous boric acid solution. The stretched film on which the bicolor dye was adsorbed was subjected to a step of applying a coating liquid containing a polyvinyl alcohol-based resin on the base film to obtain a laminated film, a step of uniaxially stretching the obtained laminated film, and uniaxially stretching. A step of adsorbing a bicolor dye on the polyvinyl alcohol-based resin layer of the laminated film, a step of treating the polyvinyl alcohol-based resin layer on which the bicolor dye is adsorbed with a boric acid aqueous solution, and a step of washing with water after the treatment with the boric acid aqueous solution. It may be manufactured through. The obtained film may be used as it is as a linear polarizing layer, or may be used as a linear polarizing plate having a protective layer formed on one side or both sides thereof. The thickness of the linearly polarizing layer thus obtained is preferably 2 μm to 40 μm.
 ポリビニルアルコール系樹脂は、ポリ酢酸ビニル系樹脂をケン化することによって得られる。ポリ酢酸ビニル系樹脂としては、酢酸ビニルの単独重合体であるポリ酢酸ビニルのほか、酢酸ビニルとそれに共重合可能な他の単量体との共重合体が用いられる。酢酸ビニルに共重合可能な他の単量体としては、例えば、不飽和カルボン酸類、オレフィン類、ビニルエーテル類、不飽和スルホン酸類、アンモニウム基を有する(メタ)アクリルアミド類等が挙げられる。 The polyvinyl alcohol-based resin is obtained by saponifying the polyvinyl acetate-based resin. As the polyvinyl acetate-based resin, in addition to polyvinyl acetate which is a homopolymer of vinyl acetate, a copolymer of vinyl acetate and another monomer copolymerizable therewith is used. Examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and (meth) acrylamides having an ammonium group.
 ポリビニルアルコール系樹脂のケン化度は、通常85~100モル%程度であり、好ましくは98モル%以上である。ポリビニルアルコール系樹脂は変性されていてもよく、例えば、アルデヒド類で変性されたポリビニルホルマールやポリビニルアセタールも使用することができる。ポリビニルアルコール系樹脂の重合度は、通常1,000~10,000程度であり、好ましくは1,500~5,000の範囲である。 The saponification degree of the polyvinyl alcohol-based resin is usually about 85 to 100 mol%, preferably 98 mol% or more. The polyvinyl alcohol-based resin may be modified, and for example, polyvinyl formal or polyvinyl acetal modified with aldehydes can also be used. The degree of polymerization of the polyvinyl alcohol-based resin is usually about 1,000 to 10,000, preferably in the range of 1,500 to 5,000.
 このようなポリビニルアルコール系樹脂を製膜したものが、直線偏光層の原反フィルムとして用いられる。ポリビニルアルコール系樹脂を製膜する方法は、特に限定されるものでなく、公知の方法で製膜することができる。ポリビニルアルコール系原反フィルムの膜厚は、例えば、10μm~150μm程度とすることができる。 A film formed of such a polyvinyl alcohol-based resin is used as a raw film for a linearly polarizing layer. The method for forming the film of the polyvinyl alcohol-based resin is not particularly limited, and the film can be formed by a known method. The film thickness of the polyvinyl alcohol-based raw film can be, for example, about 10 μm to 150 μm.
 ポリビニルアルコール系樹脂フィルムの一軸延伸は、二色性色素による染色の前、染色と同時、又は染色の後で行うことができる。一軸延伸を染色の後で行う場合、この一軸延伸は、ホウ酸処理の前に行ってもよいし、ホウ酸処理中に行ってもよい。また、これらの複数の段階で一軸延伸を行うことも可能である。一軸延伸にあたっては、周速の異なるロール間で一軸に延伸してもよいし、熱ロールを用いて一軸に延伸してもよい。また一軸延伸は、大気中で延伸を行う乾式延伸であってもよいし、溶剤を用い、ポリビニルアルコール系樹脂フィルムを膨潤させた状態で延伸を行う湿式延伸であってもよい。延伸倍率は、通常3~8倍程度である。 The uniaxial stretching of the polyvinyl alcohol-based resin film can be performed before dyeing with a dichroic dye, at the same time as dyeing, or after dyeing. When the uniaxial stretching is performed after dyeing, the uniaxial stretching may be performed before the boric acid treatment or during the boric acid treatment. It is also possible to perform uniaxial stretching at these multiple stages. In uniaxial stretching, rolls having different peripheral speeds may be uniaxially stretched, or thermal rolls may be used to uniaxially stretch the rolls. Further, the uniaxial stretching may be a dry stretching in which the stretching is performed in the atmosphere, or a wet stretching in which the polyvinyl alcohol-based resin film is swollen using a solvent. The draw ratio is usually about 3 to 8 times.
 延伸フィルムを直線偏光層とし、その片面又は両面に保護層を備える直線偏光板の厚みは、例えば1μm以上100μm以下であってよく、5μm以上であってもよく、7μm以上であってもよく、また、70μm以下であってもよく、50μm以下であってもよく、20μm以下であってもよく、10μm以下であってもよい。 The thickness of the linear polarizing plate having the stretched film as a linear polarizing layer and having protective layers on one or both sides thereof may be, for example, 1 μm or more and 100 μm or less, 5 μm or more, or 7 μm or more. Further, it may be 70 μm or less, 50 μm or less, 20 μm or less, or 10 μm or less.
 直線偏光層の片面又は両面に設けられる保護層の材料としては、特に限定されるものではないが、例えば、環状ポリオレフィン系樹脂、トリアセチルセルロース(TAC)、ジアセチルセルロースのような樹脂からなる酢酸セルロース系樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレートのような樹脂からなるポリエステル系樹脂、ポリカーボネート系樹脂、(メタ)アクリル系樹脂、ポリプロピレン系樹脂等、当分野において公知の樹脂を挙げることができる。保護層の厚みは、薄型化の観点から、通常300μm以下であり、200μm以下であることが好ましく、100μm以下であることがより好ましく、また、通常5μm以上であり、20μm以上であることが好ましい。保護層は、フィルムであってもよく、フィルムである保護層は、位相差を有していてもよい。保護層がフィルムである場合、直線偏光層と保護層とは、粘着剤層や接着剤硬化層を介して積層することができる。粘着剤層や接着剤硬化層は、後述する粘着剤組成物や接着剤組成物を用いて形成することができる。 The material of the protective layer provided on one side or both sides of the linear polarizing layer is not particularly limited, but is, for example, cellulose acetate made of a resin such as a cyclic polyolefin resin, triacetyl cellulose (TAC), or diacetyl cellulose. Resins known in the art such as polyester resins, polycarbonate resins, (meth) acrylic resins, and polypropylene resins made of resins such as based resins, polyethylene terephthalates, polyethylene naphthalates, and polybutylene terephthalates can be mentioned. .. From the viewpoint of thinning, the thickness of the protective layer is usually 300 μm or less, preferably 200 μm or less, more preferably 100 μm or less, and usually 5 μm or more, preferably 20 μm or more. .. The protective layer may be a film, and the protective layer which is a film may have a phase difference. When the protective layer is a film, the linearly polarized light layer and the protective layer can be laminated via an adhesive layer or an adhesive curing layer. The pressure-sensitive adhesive layer and the adhesive curing layer can be formed by using a pressure-sensitive adhesive composition or an adhesive composition described later.
 (液晶層を用いた直線偏光層)
 液晶層を形成するために用いる重合性液晶化合物は、重合性反応基を有し、かつ、液晶性を示す化合物である。重合性反応基は、重合反応に関与する基であり、光重合性反応基であることが好ましい。光重合性反応基は、光重合開始剤から発生した活性ラジカルや酸等によって重合反応に関与し得る基をいう。光重合性官能基としては、ビニル基、ビニルオキシ基、1-クロロビニル基、イソプロペニル基、4-ビニルフェニル基、アクリロイルオキシ基、メタクリロイルオキシ基、オキシラニル基、オキセタニル基等が挙げられる。中でも、アクリロイルオキシ基、メタクリロイルオキシ基、ビニルオキシ基、オキシラニル基及びオキセタニル基が好ましく、アクリロイルオキシ基がより好ましい。重合性液晶化合物の種類は特に限定されず、棒状液晶化合物、円盤状液晶化合物、及びこれらの混合物を用いることができる。重合性液晶化合物の液晶性は、サーモトロピック性液晶でもリオトロピック性液晶でもよく、相秩序構造としてはネマチック液晶でもスメクチック液晶でもよい。
(Linearly polarized light layer using a liquid crystal layer)
The polymerizable liquid crystal compound used for forming the liquid crystal layer is a compound having a polymerizable reactive group and exhibiting liquid crystallinity. The polymerizable reactive group is a group involved in the polymerization reaction, and is preferably a photopolymerizable reactive group. The photopolymerizable reactive group refers to a group that can participate in the polymerization reaction by an active radical, an acid, or the like generated from the photopolymerization initiator. Examples of the photopolymerizable functional group include a vinyl group, a vinyloxy group, a 1-chlorovinyl group, an isopropenyl group, a 4-vinylphenyl group, an acryloyloxy group, a methacryloyloxy group, an oxylanyl group, an oxetanyl group and the like. Of these, an acryloyloxy group, a methacryloyloxy group, a vinyloxy group, an oxylanyl group and an oxetanyl group are preferable, and an acryloyloxy group is more preferable. The type of the polymerizable liquid crystal compound is not particularly limited, and a rod-shaped liquid crystal compound, a disk-shaped liquid crystal compound, and a mixture thereof can be used. The liquid crystal property of the polymerizable liquid crystal compound may be a thermotropic liquid crystal or a lyotropic liquid crystal, and the phase-ordered structure may be a nematic liquid crystal or a smectic liquid crystal.
 液晶層を用いた直線偏光層に用いられる二色性色素としては、300~700nmの範囲に吸収極大波長(λMAX)を有するものが好ましい。このような二色性色素としては、例えば、アクリジン色素、オキサジン色素、シアニン色素、ナフタレン色素、アゾ色素、及びアントラキノン色素等が挙げられるが、中でもアゾ色素が好ましい。アゾ色素としては、モノアゾ色素、ビスアゾ色素、トリスアゾ色素、テトラキスアゾ色素、及びスチルベンアゾ色素等が挙げられ、好ましくはビスアゾ色素、及びトリスアゾ色素である。二色性色素は単独でも、2種以上を組み合わせてもよいが、3種以上を組み合わせることが好ましい。特に、3種以上のアゾ化合物を組み合わせることがより好ましい。二色性色素の一部が反応性基を有していてもよく、また液晶性を有していてもよい。 The dichroic dye used in the linearly polarized light layer using the liquid crystal layer preferably has an absorption maximum wavelength (λMAX) in the range of 300 to 700 nm. Examples of such a bicolor dye include an acridine dye, an oxazine dye, a cyanine dye, a naphthalene dye, an azo dye, an anthraquinone dye and the like, and among them, the azo dye is preferable. Examples of the azo dye include a monoazo dye, a bisazo dye, a trisazo dye, a tetrakisazo dye, a stillbenazo dye and the like, and a bisazo dye and a trisazo dye are preferable. The dichroic dye may be used alone or in combination of two or more, but it is preferable to combine three or more. In particular, it is more preferable to combine three or more kinds of azo compounds. A part of the dichroic dye may have a reactive group or may have a liquid crystallinity.
 液晶層を用いた直線偏光層は、例えば基材上に形成した配向層上に、重合性液晶化合物及び二色性色素を含む偏光層形成用組成物を塗布し、重合性液晶化合物を重合して硬化させることによって形成することができる。あるいは、基材上に、偏光層形成用組成物を塗布して塗膜を形成し、この塗膜を基材層とともに延伸することによって、直線偏光層を形成してもよい。直線偏光層を形成するために用いる基材は、直線偏光層の保護層として用いてもよい。基材としては、樹脂フィルムを挙げることができ、例えば、上記した保護層をなす材料を用いて成形したフィルムが挙げられる。 For a linearly polarized light layer using a liquid crystal layer, for example, a composition for forming a polarizing layer containing a polymerizable liquid crystal compound and a dichroic dye is applied onto an orientation layer formed on a base material, and the polymerizable liquid crystal compound is polymerized. It can be formed by curing. Alternatively, a linear polarizing layer may be formed by applying a polarizing layer forming composition on a base material to form a coating film and stretching the coating film together with the base material layer. The base material used for forming the linearly polarized light layer may be used as a protective layer for the linearly polarized light layer. Examples of the base material include a resin film, and examples thereof include a film formed by using the material forming the protective layer described above.
 重合性液晶化合物及び二色性色素を含む偏光層形成用組成物、及びこの組成物を用いた直線偏光層の製造方法としては、特開2013-37353号公報、特開2013-33249号公報、特開2017-83843号公報等に記載のものを例示することができる。偏光層形成用組成物は、重合性液晶化合物及び二色性色素に加えて、溶媒、重合開始剤、架橋剤、レベリング剤、酸化防止剤、可塑剤、増感剤等の添加剤をさらに含んでいてもよい。これらの成分は、それぞれ、1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of a composition for forming a polarizing layer containing a polymerizable liquid crystal compound and a dichroic dye, and a method for producing a linear polarizing layer using this composition are JP-A-2013-373353 and JP-A-2013-33249. Examples thereof include those described in JP-A-2017-83843. The composition for forming a polarizing layer further contains additives such as a solvent, a polymerization initiator, a cross-linking agent, a leveling agent, an antioxidant, a plasticizer, and a sensitizer, in addition to the polymerizable liquid crystal compound and the dichroic dye. You may be. As each of these components, only one kind may be used, or two or more kinds may be used in combination.
 偏光層形成用組成物が含有していてもよい重合開始剤は、重合性液晶化合物の重合反応を開始し得る化合物であり、より低温条件下で、重合反応を開始できる点で、光重合性開始剤が好ましい。具体的には、光の作用により活性ラジカル又は酸を発生できる光重合開始剤が挙げられ、中でも、光の作用によりラジカルを発生する光重合開始剤が好ましい。
重合開始剤の含有量は、重合性液晶化合物の総量100質量部に対して、好ましくは1質量部~10質量部であり、より好ましくは3質量部~8質量部である。この範囲内であると、重合性基の反応が十分に進行し、かつ、液晶化合物の配向状態を安定化させやすい。
The polymerization initiator that may be contained in the polarizing layer forming composition is a compound that can initiate the polymerization reaction of the polymerizable liquid crystal compound, and is photopolymerizable in that the polymerization reaction can be initiated under lower temperature conditions. Initiators are preferred. Specific examples thereof include photopolymerization initiators capable of generating active radicals or acids by the action of light, and among them, photopolymerization initiators that generate radicals by the action of light are preferable.
The content of the polymerization initiator is preferably 1 part by mass to 10 parts by mass, and more preferably 3 parts by mass to 8 parts by mass with respect to 100 parts by mass of the total amount of the polymerizable liquid crystal compound. Within this range, the reaction of the polymerizable group proceeds sufficiently, and the orientation state of the liquid crystal compound is likely to be stabilized.
 液晶層を用いた直線偏光層の厚みは特に限定されないが、20μm以下であることが好ましく、10μm以下であることがより好ましく、5μm以下であることがさらに好ましい。 The thickness of the linearly polarizing layer using the liquid crystal layer is not particularly limited, but is preferably 20 μm or less, more preferably 10 μm or less, and further preferably 5 μm or less.
 液晶層を用いた直線偏光層は、直線偏光層の片面又は両面に保護層としてのオーバーコート層を有していてもよい。オーバーコート層は、直線偏光層の保護等を目的として設けることができる。オーバーコート層は、耐溶剤性、透明性、機械的強度、熱安定性、遮蔽性、及び等方性等に優れるものが好ましい。オーバーコート層は、例えば、直線偏光層上にオーバーコート層を形成するための材料(組成物)を塗布することによって形成することができる。オーバーコート層を構成する材料としては、例えば、光硬化性樹脂や水溶性ポリマー等が挙げられ、(メタ)アクリル系樹脂、ポリビニルアルコール系樹脂、ポリアミドエポキシ樹脂等を用いることができる。 The linearly polarized light layer using the liquid crystal layer may have an overcoat layer as a protective layer on one side or both sides of the linearly polarized light layer. The overcoat layer can be provided for the purpose of protecting the linearly polarized light layer and the like. The overcoat layer preferably has excellent solvent resistance, transparency, mechanical strength, thermal stability, shielding property, isotropic property, and the like. The overcoat layer can be formed, for example, by applying a material (composition) for forming the overcoat layer on the linearly polarized light layer. Examples of the material constituting the overcoat layer include a photocurable resin and a water-soluble polymer, and (meth) acrylic resin, polyvinyl alcohol resin, polyamide epoxy resin and the like can be used.
 オーバーコート層の厚みは特に限定されないが、20μm以下であることが好ましくは、15μm以下であることがより好ましく、10μm以下であることがさらに好ましく、5μm以下であってもよく、また、0.05μm以上であり、0.5μm以上であってもよい。 The thickness of the overcoat layer is not particularly limited, but is preferably 20 μm or less, more preferably 15 μm or less, further preferably 10 μm or less, 5 μm or less, and 0. It is 05 μm or more, and may be 0.5 μm or more.
 (第1位相差層、第2位相差層)
 第1位相差層は、重合性液晶化合物の硬化物層である第1液晶層を含む。重合性液晶化合物としては、例えば、上記で説明したものを用いることができる。第2位相差層が重合性液晶化合物の硬化物層である第2液晶層を含む場合、重合性液晶化合物としては、例えば、上記で説明したものを用いることができる。直線偏光層を形成する重合性液晶化合物と、第1位相差層を形成する重合性液晶化合物と、第2位相差層を形成する重合性液晶化合物とは、互いに同じであってもよいし、一部のみが同じであってもよく、すべて異なっていてもよい。
(1st retardation layer, 2nd retardation layer)
The first retardation layer includes a first liquid crystal layer which is a cured product layer of a polymerizable liquid crystal compound. As the polymerizable liquid crystal compound, for example, those described above can be used. When the second retardation layer contains a second liquid crystal layer which is a cured product layer of the polymerizable liquid crystal compound, as the polymerizable liquid crystal compound, for example, those described above can be used. The polymerizable liquid crystal compound forming the linearly polarized light layer, the polymerizable liquid crystal compound forming the first retardation layer, and the polymerizable liquid crystal compound forming the second retardation layer may be the same as each other. Only some may be the same or all may be different.
 第2位相差層が樹脂フィルムを延伸した延伸フィルムである場合、樹脂フィルムとしては、上記した保護層で例示した樹脂フィルムが挙げられる。 When the second retardation layer is a stretched film obtained by stretching a resin film, examples of the resin film include the resin film exemplified in the above-mentioned protective layer.
 第1位相差層及び第2位相差層(以下、両者をまとめて「位相差層」ということがある。)は、例えば、基材層上に重合性液晶化合物を含む位相差層形成用組成物を塗布し、重合性液晶化合物を重合して硬化させることによって形成することができる。位相差層を形成するために用いる基材層は、円偏光板に含まれていてもよい。基材層としては、例えば、上記した保護層で説明した樹脂フィルムを用いることができる。 The first retardation layer and the second retardation layer (hereinafter, both may be collectively referred to as "phase difference layer") are, for example, a composition for forming a retardation layer containing a polymerizable liquid crystal compound on a base material layer. It can be formed by applying a substance and polymerizing and curing a polymerizable liquid crystal compound. The base material layer used to form the retardation layer may be included in the circularly polarizing plate. As the base material layer, for example, the resin film described in the above-mentioned protective layer can be used.
 第1位相差層は、上記したように第1液晶層と第1配向層との積層体であってもよい。
第2位相差層が第2液晶層を含む場合、第2位相差層は、上記したように第2液晶層と第2配向層との積層体であってもよい。
The first retardation layer may be a laminate of the first liquid crystal layer and the first alignment layer as described above.
When the second retardation layer includes the second liquid crystal layer, the second retardation layer may be a laminate of the second liquid crystal layer and the second alignment layer as described above.
 (第1配向層、第2配向層)
 第1配向層及び第2配向層(以下、両者をまとめて「配向層」ということがある。)は、重合性液晶化合物を所望の方向に液晶配向させる、配向規制力を有する。配向層としては、配向性ポリマーで形成された配向性ポリマー層、光配向ポリマーで形成された光配向性ポリマー層、層表面に凹凸パターンや複数のグルブ(溝)を有するグルブ配向層を挙げることができる。配向層の厚みは、通常10~500nmであり、10~200nmであることが好ましい。
(1st oriented layer, 2nd oriented layer)
The first alignment layer and the second alignment layer (hereinafter, both may be collectively referred to as "alignment layer") have an orientation regulating force for aligning the polymerizable liquid crystal compound in a desired direction. Examples of the oriented layer include an oriented polymer layer formed of an oriented polymer, a photo-oriented polymer layer formed of a photo-aligned polymer, and a grub-oriented layer having an uneven pattern or a plurality of grubs (grooves) on the layer surface. Can be done. The thickness of the alignment layer is usually 10 to 500 nm, preferably 10 to 200 nm.
 (第1貼合層、第2貼合層、第3貼合層、第4貼合層)
 第1~第4貼合層は、粘着剤層又は接着剤硬化層である。粘着剤層は、公知の粘着剤組成物を用いて形成することができる。接着剤硬化層は、公知の接着剤組成物を用いて形成することができる。
(1st bonding layer, 2nd bonding layer, 3rd bonding layer, 4th bonding layer)
The first to fourth bonded layers are an adhesive layer or an adhesive cured layer. The pressure-sensitive adhesive layer can be formed by using a known pressure-sensitive adhesive composition. The adhesive cured layer can be formed by using a known adhesive composition.
 粘着剤組成物としては、(メタ)アクリル系、ゴム系、ウレタン系、エステル系、シリコーン系、ポリビニルエーテル系のような樹脂を主成分とする粘着剤組成物が挙げられる。中でも、透明性、耐候性、耐熱性等に優れる(メタ)アクリル系樹脂をベースポリマーとする粘着剤組成物が好適である。粘着剤組成物は、活性エネルギー線硬化型、熱硬化型であってもよい。 Examples of the pressure-sensitive adhesive composition include pressure-sensitive adhesive compositions containing resins such as (meth) acrylic, rubber, urethane, ester, silicone, and polyvinyl ether as main components. Among them, a pressure-sensitive adhesive composition using a (meth) acrylic resin having excellent transparency, weather resistance, heat resistance and the like as a base polymer is preferable. The pressure-sensitive adhesive composition may be an active energy ray-curable type or a thermosetting type.
 粘着剤組成物に用いられる(メタ)アクリル系樹脂(ベースポリマー)としては、例えば、(メタ)アクリル酸ブチル、(メタ)アクリル酸エチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸2-エチルヘキシルのような(メタ)アクリル酸エステルの1種又は2種以上をモノマーとする重合体又は共重合体が好適に用いられる。ベースポリマーには、極性モノマーを共重合させることが好ましい。極性モノマーとしては、例えば、(メタ)アクリル酸、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリルアミド、N,N-ジメチルアミノエチル(メタ)アクリレート、グリシジル(メタ)アクリレートのような、カルボキシル基、水酸基、アミド基、アミノ基、エポキシ基等を有するモノマーを挙げることができる。 Examples of the (meth) acrylic resin (base polymer) used in the pressure-sensitive adhesive composition include butyl (meth) acrylate, ethyl (meth) acrylate, isooctyl (meth) acrylate, and 2- (meth) acrylate. A polymer or copolymer having one or more (meth) acrylic acid esters such as ethylhexyl as a monomer is preferably used. It is preferable that the base polymer is copolymerized with a polar monomer. Examples of the polar monomer include (meth) acrylic acid, 2-hydroxypropyl (meth) acrylate, hydroxyethyl (meth) acrylate, (meth) acrylamide, N, N-dimethylaminoethyl (meth) acrylate, and glycidyl (). Examples thereof include monomers having a carboxyl group, a hydroxyl group, an amide group, an amino group, an epoxy group and the like, such as meta) acrylate.
 粘着剤組成物は、上記ベースポリマーのみを含むものであってもよいが、通常は架橋剤をさらに含有する。架橋剤としては、2価以上の金属イオンであって、カルボキシル基との間でカルボン酸金属塩を形成するもの;ポリアミン化合物であって、カルボキシル基との間でアミド結合を形成するもの;ポリエポキシ化合物やポリオールであって、カルボキシル基との間でエステル結合を形成するもの;ポリイソシアネート化合物であって、カルボキシル基との間でアミド結合を形成するものが例示される。中でも、ポリイソシアネート化合物が好ましい。 The pressure-sensitive adhesive composition may contain only the above-mentioned base polymer, but usually further contains a cross-linking agent. The cross-linking agent is a divalent or higher metal ion that forms a carboxylic acid metal salt with a carboxyl group; a polyamine compound that forms an amide bond with a carboxyl group; poly. Epoxy compounds and polyols that form an ester bond with a carboxyl group; polyisocyanate compounds that form an amide bond with a carboxyl group are exemplified. Of these, polyisocyanate compounds are preferable.
 活性エネルギー線硬化型粘着剤組成物とは、紫外線や電子線のような活性エネルギー線の照射を受けて硬化する性質を有しており、活性エネルギー線照射前においても粘着性を有してフィルム等の被着体に密着させることができ、活性エネルギー線の照射によって硬化して密着力の調整ができる性質を有する粘着剤組成物である。活性エネルギー線硬化型粘着剤組成物は、紫外線硬化型であることが好ましい。活性エネルギー線硬化型粘着剤組成物は、ベースポリマー、架橋剤に加えて、活性エネルギー線重合性化合物をさらに含有する。さらに必要に応じて、光重合開始剤や光増感剤等を含有させることもある。 The active energy ray-curable pressure-sensitive adhesive composition has a property of being cured by being irradiated with active energy rays such as ultraviolet rays and electron beams, and has adhesiveness even before irradiation with active energy rays. It is a pressure-sensitive adhesive composition having the property of being able to adhere to an adherend such as, etc., and being cured by irradiation with active energy rays to adjust the adhesion force. The active energy ray-curable pressure-sensitive adhesive composition is preferably an ultraviolet-curable type. The active energy ray-curable pressure-sensitive adhesive composition further contains an active energy ray-polymerizable compound in addition to the base polymer and the cross-linking agent. Further, if necessary, a photopolymerization initiator, a photosensitizer, or the like may be contained.
 粘着剤組成物は、光散乱性を付与するための微粒子、ビーズ(樹脂ビーズ、ガラスビーズ等)、ガラス繊維、ベースポリマー以外の樹脂、粘着性付与剤、充填剤(金属粉やその他の無機粉末等)、酸化防止剤、紫外線吸収剤、染料、顔料、着色剤、消泡剤、腐食防止剤、光重合開始剤等の添加剤を含むことができる。 The pressure-sensitive adhesive composition includes fine particles for imparting light scattering, beads (resin beads, glass beads, etc.), glass fibers, resins other than the base polymer, pressure-sensitive adhesives, fillers (metal powders and other inorganic powders). Etc.), antioxidants, UV absorbers, dyes, pigments, colorants, antifoaming agents, corrosion inhibitors, photopolymerization initiators and other additives can be included.
 粘着剤層は、上記粘着剤組成物の有機溶剤希釈液を基材上に塗布し、乾燥させることにより形成することができる。活性エネルギー線硬化型粘着剤組成物を用いた場合は、形成された粘着剤層に、活性エネルギー線を照射することにより所望の硬化度を有する硬化物とすることができる。 The pressure-sensitive adhesive layer can be formed by applying an organic solvent diluent of the above-mentioned pressure-sensitive adhesive composition on a substrate and drying it. When the active energy ray-curable pressure-sensitive adhesive composition is used, the formed pressure-sensitive adhesive layer can be irradiated with active energy rays to obtain a cured product having a desired degree of curing.
 接着剤組成物としては、例えば、水系接着剤、活性エネルギー線硬化型接着剤、天然ゴム接着剤、α-オレフィン系接着剤、ウレタン樹脂系接着剤、エチレン-酢酸ビニル樹脂エマルション接着剤、エチレン-酢酸ビニル樹脂系ホットメルト接着剤、エポキシ樹脂系接着剤、塩化ビニル樹脂溶剤系接着剤、クロロプレンゴム系接着剤、シアノアクリレート系接着剤、シリコーン系接着剤、スチレン-ブタジエンゴム溶剤系接着剤、ニトリルゴム系接着剤、ニトロセルロース系接着剤、反応性ホットメルト接着剤、フェノール樹脂系接着剤、変性シリコーン系接着剤、ポリエステル系ホットメルト接着剤、ポリアミド樹脂ホットメルト接着剤、ポリイミド系接着剤、ポリウレタン樹脂ホットルト接着剤、ポリオレフィン樹脂ホットメルト接着剤、ポリ酢酸ビニル樹脂溶剤系接着剤、ポリスチレン樹脂溶剤系接着剤、ポリビニルアルコール系接着剤、ポリビニルピロリドン樹脂系接着剤、ポリビニルブチラール系接着剤、ポリベンズイミダゾール接着剤、ポリメタクリレート樹脂溶剤系接着剤、メラミン樹脂系接着剤、ユリア樹脂系接着剤、レゾルシノール系接着剤等が挙げられる。このような接着剤は、1種単独又は2種以上を混合して使用することができる。 Examples of the adhesive composition include water-based adhesives, active energy ray-curable adhesives, natural rubber adhesives, α-olefin adhesives, urethane resin adhesives, ethylene-vinyl acetate resin emulsion adhesives, and ethylene-. Vinyl acetate resin hot melt adhesive, epoxy resin adhesive, vinyl chloride resin solvent adhesive, chloroprene rubber adhesive, cyanoacrylate adhesive, silicone adhesive, styrene-butadiene rubber solvent adhesive, nitrile Rubber adhesives, nitrocellulose adhesives, reactive hot melt adhesives, phenol resin adhesives, modified silicone adhesives, polyester hot melt adhesives, polyamide resin hot melt adhesives, polyimide adhesives, polyurethane Resin Hotlt Adhesive, Polyolefin Resin Hot Melt Adhesive, Polyvinyl Acetate Resin Solvent Adhesive, Polystyrene Resin Solvent Adhesive, Polypoly Alcohol Adhesive, Polypolypyrrolidone Resin Adhesive, Polyvinyl Butyral Adhesive, Polybenzimidazole Examples thereof include adhesives, polymethacrylate resin solvent-based adhesives, melamine resin-based adhesives, urea resin-based adhesives, resorcinol-based adhesives, and the like. Such an adhesive can be used alone or in combination of two or more.
 水系接着剤としては、例えばポリビニルアルコール系樹脂水溶液、水系二液型ウレタン系エマルション接着剤等を挙げることができる。活性エネルギー線硬化型接着剤としては、紫外線等の活性エネルギー線を照射することによって硬化する接着剤であり、例えば重合性化合物及び光重合性開始剤を含むもの、光反応性樹脂を含むもの、バインダー樹脂及び光反応性架橋剤を含むもの等を挙げることができる。上記重合性化合物としては、光硬化性エポキシ系モノマー、光硬化性(メタ)アクリル系モノマー、光硬化性ウレタン系モノマー等の光重合性モノマーや、これらモノマーに由来するオリゴマー等を挙げることができる。上記光重合開始剤としては、紫外線等の活性エネルギー線を照射して中性ラジカル、アニオンラジカル、カチオンラジカルといった活性種を発生する物質を含むものを挙げることができる。 Examples of the water-based adhesive include a polyvinyl alcohol-based resin aqueous solution, a water-based two-component urethane-based emulsion adhesive, and the like. The active energy ray-curable adhesive is an adhesive that cures by irradiating with active energy rays such as ultraviolet rays, and includes, for example, a polymerizable compound and a photopolymerizable initiator, a photoreactive resin, and the like. Examples thereof include those containing a binder resin and a photoreactive cross-linking agent. Examples of the polymerizable compound include photopolymerizable monomers such as a photocurable epoxy monomer, a photocurable (meth) acrylic monomer, and a photocurable urethane monomer, and oligomers derived from these monomers. .. Examples of the photopolymerization initiator include substances that generate active species such as neutral radicals, anion radicals, and cationic radicals by irradiating with active energy rays such as ultraviolet rays.
 (前面板)
 前面板は、光を透過可能な板状体であれば、材料及び厚みは限定されることはない。前面板は、1層のみから構成されてもよく、2層以上から構成されてもよい。前面板としては、樹脂製の板状体(例えば樹脂板、樹脂シート、樹脂フィルム等)、ガラス製の板状体(例えばガラス板、ガラスフィルム等)が挙げられる。前面板は、表示装置の最表面を構成することができる。また、前面板は、樹脂フィルム、又は、樹脂フィルムの少なくとも一方の面にハードコート層を設けて硬度をより向上させたハードコート層付き樹脂フィルムであってもよい。ハードコート層付き樹脂フィルムを用いる場合、ハードコート層は表示装置の最表面に配置されるように設けることが好ましい。また、前面板は、ブルーライトカット機能、視野角調整機能等を有するものであってもよい。
(Front plate)
The material and thickness of the front plate are not limited as long as it is a plate-like body capable of transmitting light. The front plate may be composed of only one layer, or may be composed of two or more layers. Examples of the front plate include a resin plate-like body (for example, a resin plate, a resin sheet, a resin film, etc.) and a glass plate-like body (for example, a glass plate, a glass film, etc.). The front plate can form the outermost surface of the display device. Further, the front plate may be a resin film or a resin film with a hard coat layer in which a hard coat layer is provided on at least one surface of the resin film to further improve the hardness. When a resin film with a hard coat layer is used, it is preferable that the hard coat layer is provided so as to be arranged on the outermost surface of the display device. Further, the front plate may have a blue light cut function, a viewing angle adjusting function, and the like.
 前面板が樹脂フィルムを含む場合、光学積層体における第3貼合層は樹脂フィルムに接して設けられていることが好ましい。例えば、前面板が、樹脂フィルムの一方の面にハードコート層を有するハードコート層付き樹脂フィルムを含む場合、光学積層体における第3貼合層は、前面板の樹脂フィルムに接して設けられることが好ましい。 When the front plate contains a resin film, it is preferable that the third bonding layer in the optical laminate is provided in contact with the resin film. For example, when the front plate includes a resin film with a hard coat layer having a hard coat layer on one surface of the resin film, the third bonding layer in the optical laminate is provided in contact with the resin film of the front plate. Is preferable.
 前面板をなす樹脂フィルムとしては、光を透過可能な樹脂フィルムであれば限定されない。例えば、トリアセチルセルロース、アセチルセルロースブチレート、エチレン-酢酸ビニル共重合体、プロピオニルセルロース、ブチリルセルロース、アセチルプロピオニルセルロース、ポリエステル、ポリスチレン、ポリアミド、ポリエーテルイミド、ポリ(メタ)アクリル、ポリイミド、ポリエーテルスルホン、ポリスルホン、ポリエチレン、ポリプロピレン、ポリメチルペンテン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、ポリビニルアセタール、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルスルホン、ポリメチル(メタ)アクリレート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリアミドイミド等の高分子で形成されたフィルムが挙げられる。これらの高分子は、単独で又は2種以上を混合して用いることができる。表示装置がフレキシブルディスプレイである場合には、優れた可撓性を有し、高い強度及び高い透明性を有するように構成可能な、ポリイミド、ポリアミド、ポリアミドイミド等の高分子で形成された樹脂フィルムが好適に用いられる。 The resin film forming the front plate is not limited as long as it is a resin film capable of transmitting light. For example, triacetyl cellulose, acetyl cellulose butyrate, ethylene-vinyl acetate copolymer, propionyl cellulose, butyryl cellulose, acetyl propionyl cellulose, polyester, polystyrene, polyamide, polyetherimide, poly (meth) acrylic, polyimide, polyether. Sulfone, polysulfone, polyethylene, polypropylene, polymethylpentene, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, polyvinyl acetal, polyether ketone, polyether ether ketone, polyether sulfone, polymethyl (meth) acrylate, polyethylene terephthalate, polybutylene Examples thereof include films formed of polymers such as terephthalate, polyethylene naphthalate, polycarbonate and polyamideimide. These polymers can be used alone or in admixture of two or more. When the display device is a flexible display, a resin film made of a polymer such as polyimide, polyamide, or polyamide-imide, which has excellent flexibility and can be configured to have high strength and high transparency. Is preferably used.
 前面板は、硬度の観点からハードコート層を備えた樹脂フィルムであってもよい。ハードコート層は、樹脂フィルムの一方の面に形成されていてもよいし、両面に形成されていてもよい。ハードコート層を設けることにより、硬度及び耐スクラッチ性を向上させることができる。ハードコート層は、例えば紫外線硬化型樹脂の硬化層である。紫外線硬化型樹脂としては、例えば単官能(メタ)アクリル系樹脂、多官能(メタ)アクリル系樹脂、デンドリマー構造を有する多官能(メタ)アクリル系樹脂等の(メタ)アクリル系樹脂等の(メタ)アクリル系樹脂;シリコーン系樹脂;ポリエステル系樹脂;ウレタン系樹脂;アミド系樹脂;エポキシ系樹脂等が挙げられる。ハードコート層は、強度を向上させるために、添加剤を含んでいてもよい。添加剤は特に限定されることはなく、無機系微粒子、有機系微粒子、又はこれらの混合物が挙げられる。樹脂フィルムの両面にハードコート層を有する場合、各ハードコート層の組成や厚みは、互いに同じであってもよく、互いに異なっていてもよい。 The front plate may be a resin film having a hard coat layer from the viewpoint of hardness. The hard coat layer may be formed on one surface of the resin film or may be formed on both sides. By providing the hard coat layer, hardness and scratch resistance can be improved. The hard coat layer is, for example, a cured layer of an ultraviolet curable resin. Examples of the ultraviolet curable resin include (meth) acrylic resins such as monofunctional (meth) acrylic resins, polyfunctional (meth) acrylic resins, and polyfunctional (meth) acrylic resins having a dendrimer structure (meth). ) Acrylic resin; Silicone resin; Polyester resin; Urethane resin; Amid resin; Epoxy resin and the like. The hard coat layer may contain additives to improve strength. The additive is not particularly limited, and examples thereof include inorganic fine particles, organic fine particles, or a mixture thereof. When the hard coat layers are provided on both sides of the resin film, the composition and thickness of the hard coat layers may be the same as each other or different from each other.
 前面板がガラス板である場合、ガラス板は、ディスプレイ用強化ガラスが好ましく用いられる。ガラス板を用いることにより、優れた機械的強度及び表面硬度を有する前面板を構成することができる。 When the front plate is a glass plate, tempered glass for a display is preferably used as the glass plate. By using a glass plate, a front plate having excellent mechanical strength and surface hardness can be constructed.
 前面板の厚みは、例えば10μm以上300μm以下であってよく、好ましくは20μm以上200μm以下であり、より好ましくは30μm以上100μm以下であってもよい。 The thickness of the front plate may be, for example, 10 μm or more and 300 μm or less, preferably 20 μm or more and 200 μm or less, and more preferably 30 μm or more and 100 μm or less.
 (タッチセンサパネル)
 タッチセンサパネルは、タッチされた位置を検出可能なセンサである。タッチセンサパネルの検出方式は限定されることはなく、抵抗膜方式、静電容量結合方式、光センサ方式、超音波方式、電磁誘導結合方式、表面弾性波方式等のタッチセンサパネルが例示され、これらのうち低コストであることから、抵抗膜方式、静電容量結合方式のタッチセンサパネルが好適に用いられる。
(Touch sensor panel)
The touch sensor panel is a sensor that can detect the touched position. The detection method of the touch sensor panel is not limited, and touch sensor panels such as a resistive film method, a capacitance coupling method, an optical sensor method, an ultrasonic method, an electromagnetic induction coupling method, and a surface acoustic wave method are exemplified. Of these, the touch sensor panel of the resistance film type and the capacitance coupling type is preferably used because of its low cost.
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの例によって限定されるものではない。実施例、比較例中の「%」及び「部」は、特記しない限り、質量%及び質量部である。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these examples. Unless otherwise specified, "%" and "part" in Examples and Comparative Examples are mass% and parts by mass.
 [厚みの測定]
 直線偏光層、各配向層、及び各位相差層の厚みは、レーザー顕微鏡(オリンパス株式会社製、OLS3000)を用いて測定した。上記以外の厚みは、接触式膜厚測定装置(株式会社ニコン製、MS-5C)を用いて測定した。
[Measurement of thickness]
The thicknesses of the linearly polarized light layer, each oriented layer, and each retardation layer were measured using a laser microscope (OLS3000 manufactured by Olympus Corporation). Thicknesses other than the above were measured using a contact type film thickness measuring device (manufactured by Nikon Corporation, MS-5C).
 [弾性率の測定]
 (粘着剤層の弾性率の測定)
 第1貼合層及び第2貼合層が粘着剤層である場合の温度25℃における弾性率は、次の手順で行った。第1貼合層又は第2貼合層となる粘着剤層を備える粘着剤シートを、幅30mm×長さ30mmに裁断した後、軽セパレートフィルム(軽SPフィルム)を剥がして、厚みが150μmとなるように複数の粘着剤層を積層した。積層された粘着剤層をガラス板に貼合した。粘弾性測定装置(Anton Paar社、MCR-301)を用い、積層した粘着剤層と測定チップとを接合した状態で、-20℃から100℃の温度領域で周波数1.0Hz、変形量1%、昇温速度5℃/分の条件で測定を行って、温度25℃、相対湿度50%における貯蔵弾性率を弾性率として決定した。
[Measurement of elastic modulus]
(Measurement of elastic modulus of adhesive layer)
The elastic modulus at a temperature of 25 ° C. when the first bonding layer and the second bonding layer were adhesive layers was determined by the following procedure. After cutting the pressure-sensitive adhesive sheet provided with the pressure-sensitive adhesive layer to be the first bonding layer or the second bonding layer into a width of 30 mm and a length of 30 mm, the light separate film (light SP film) is peeled off to obtain a thickness of 150 μm. A plurality of pressure-sensitive adhesive layers were laminated so as to be. The laminated pressure-sensitive adhesive layer was attached to a glass plate. Using a viscoelasticity measuring device (Anton Parr, MCR-301), the laminated adhesive layer and the measuring chip are joined, and the frequency is 1.0 Hz and the deformation amount is 1% in the temperature range of -20 ° C to 100 ° C. The measurement was carried out under the condition of a temperature rising rate of 5 ° C./min, and the storage elastic modulus at a temperature of 25 ° C. and a relative humidity of 50% was determined as the elastic modulus.
 (接着剤硬化層の弾性率の測定)
 第1貼合層及び第2貼合層が接着剤硬化層である場合の温度25℃における弾性率は、次の手順で行った。第1貼合層又は第2貼合層となる接着剤硬化層を形成するための接着剤組成物をガラス(厚み1.0mm)に塗工して得られた塗膜の上に、COPフィルム(日本ゼオン株式会社製、厚み50μm)を積層した。その後、塗膜に対して、紫外線照射装置(フュージョンUVシステムズ社製、無電極紫外線ランプのHバルブを備えるもの)を用いて光照射強度が400mW/cm、波長280~320nmでの積算光量が1500mJ/cmとなるよう紫外線を照射し、接着剤組成物を硬化させて、ガラス/接着剤硬化層(厚み2μm)/COPフィルムの層構造を有する積層構造体を得た。積層構造体からCOPフィルムを剥がした後、露出した接着剤硬化層をNano Indenter(HM-500、フィッシャー・インスツルメンツ社製)を用いて、温度25℃、相対湿度50%、圧力1mNの条件で圧縮弾性率の測定を行い、これを弾性率とした。圧子には、Berkovich三角錘圧子を用いた。
(Measurement of elastic modulus of adhesive cured layer)
The elastic modulus at a temperature of 25 ° C. when the first bonded layer and the second bonded layer were adhesive cured layers was determined by the following procedure. A COP film is applied onto a coating film obtained by applying an adhesive composition for forming an adhesive curing layer to be a first bonding layer or a second bonding layer to glass (thickness 1.0 mm). (Made by Nippon Zeon Co., Ltd., thickness 50 μm) was laminated. After that, the coating film was subjected to a light irradiation intensity of 400 mW / cm 2 and an integrated light amount at a wavelength of 280 to 320 nm using an ultraviolet irradiation device (manufactured by Fusion UV Systems Co., Ltd., equipped with an H valve of an electrodeless ultraviolet lamp). The adhesive composition was cured by irradiating ultraviolet rays so as to be 1500 mJ / cm 2, and a laminated structure having a layer structure of glass / adhesive cured layer (thickness 2 μm) / COP film was obtained. After peeling the COP film from the laminated structure, the exposed adhesive cured layer is compressed using Nano Indicator (HM-500, manufactured by Fisher Instruments) at a temperature of 25 ° C., a relative humidity of 50%, and a pressure of 1 mN. The elastic modulus was measured and used as the elastic modulus. A Berkovich triangular weight indenter was used as the indenter.
 [屈曲性の評価]
 各実施例及び比較例において得られた光学積層体から円偏光板側の重セパレートフィルム(重SPフィルム)を剥離して露出した粘着剤層、及び、表示装置の表示積層体を想定した厚み100μmのポリエチレンテレフタレート(PET)フィルムの表面に、コロナ処理(出力0.3kW、処理速度3m/分)を行った後、コロナ処理面同士を貼合して試験片100を得た。この試験片100を用いて、以下のように屈曲試験を行った。図4(a)及び(b)は、屈曲試験の方法を模式的に示す図である。2つのステージ501、502を備えた屈曲装置(Science Town社製、STS-VRT-500)を準備した。ステージ501、502の上に試験片100を、前面板側が上向きになるように載せた(図4(a))。2つのステージ501、502を間隙C1で配置し、間隙C1の中心に幅方向の中心が位置するように試験片100を固定して配置した(図4(a))。
このステージ501、502は揺動可能であり、初期は2つのステージ501、502が同一平面を構成する。2つのステージ501,502を位置P1及び位置P2を回転軸の中心として上方に90度回転させて、対向する試験片100同士の間隔C2が5mmとなるように(この状態において湾曲した部分の半径はおおよそ2.5Rとなる。)2つのステージ501、502を閉じ(図4(b))、再びステージ501、502を開く動作を1回の屈曲と定義する。この動作を繰り返し、試験片100へ最初にクラックが生じるまでの屈曲回数を数えて屈曲性を評価した。評価の基準は次のとおりである。
  A:クラックが生じるまでの屈曲回数が30万回以上
  B:クラックが生じるまでの屈曲回数が20万回以上30万回未満
  C:クラックが生じるまでの屈曲回数が10万回以上20万回未満
  D:クラックが生じるまでの屈曲回数が5万回以上10万回未満
[Evaluation of flexibility]
A pressure-sensitive adhesive layer exposed by peeling a heavy separate film (heavy SP film) on the circularly polarizing plate side from the optical laminates obtained in each Example and Comparative Example, and a thickness of 100 μm assuming a display laminate of a display device. The surface of the polyethylene terephthalate (PET) film of No. 1 was subjected to corona treatment (output 0.3 kW, treatment speed 3 m / min), and then the corona treated surfaces were bonded to each other to obtain a test piece 100. Using this test piece 100, a bending test was performed as follows. 4 (a) and 4 (b) are diagrams schematically showing a method of bending test. A bending device (STS-VRT-500 manufactured by Science Town) equipped with two stages 501 and 502 was prepared. The test piece 100 was placed on the stages 501 and 502 so that the front plate side was facing upward (FIG. 4A). The two stages 501 and 502 were arranged in the gap C1, and the test piece 100 was fixedly arranged so that the center in the width direction was located at the center of the gap C1 (FIG. 4A).
The stages 501 and 502 are swingable, and initially the two stages 501 and 502 form the same plane. The two stages 501 and 502 are rotated 90 degrees upward with position P1 and position P2 as the center of the rotation axis so that the distance C2 between the opposing test pieces 100 is 5 mm (radius of the curved portion in this state). Is approximately 2.5R.) The operation of closing the two stages 501 and 502 (FIG. 4B) and opening the stages 501 and 502 again is defined as one bending. This operation was repeated, and the flexibility was evaluated by counting the number of times of bending until the test piece 100 was first cracked. The evaluation criteria are as follows.
A: Bending number of 300,000 times or more until crack occurs B: Bending number of 200,000 times or more and less than 300,000 times until crack occurs C: Bending number of 100,000 times or more and less than 200,000 times until crack occurs D: The number of bends before cracking occurs is 50,000 or more and less than 100,000.
 [ΔSの測定]
 各実施例及び比較例において得られた光学積層体から、上記した屈曲性の評価の手順で試験片100を作製し、この試験片100について上記した屈曲性の評価の手順で20万回の屈曲操作を行う屈曲試験を行った。屈曲試験後の試験片100における円偏光板の屈曲部分(上記した2つのステージの間隙C1の範囲)の断面を走査型電子顕微鏡で観察した。屈曲部分の断面は、屈曲前の円偏光板の平面において、屈曲試験における回転軸(揺動軸)に直交する方向に平行な方向の断面(図4(a)において紙面に平行な断面)とした。屈曲試験後の試験片断面の顕微鏡画像において、円偏光板の屈曲部分について、第1位相差層の第1貼合層側の表面のうちの光学層(偏光板)側に最も近い位置と光学層(偏光板)側から最も遠い位置との間の円偏光板の厚み(積層)方向(円偏光板の平面に直交する方向)における距離をΔSとして測定した。
[Measurement of ΔS]
From the optical laminates obtained in each Example and Comparative Example, a test piece 100 was prepared by the procedure for evaluating the flexibility described above, and the test piece 100 was bent 200,000 times by the procedure for evaluating the flexibility described above. A bending test was performed to perform the operation. The cross section of the bent portion of the circularly polarizing plate (the range of the gap C1 between the two stages described above) in the test piece 100 after the bending test was observed with a scanning electron microscope. The cross section of the bent portion is the cross section of the circular polarizing plate before bending in the direction parallel to the direction orthogonal to the rotation axis (swing axis) in the bending test (cross section parallel to the paper surface in FIG. 4A). bottom. In the microscopic image of the cross section of the test piece after the bending test, the position and optics of the bent portion of the circularly polarizing plate closest to the optical layer (polarizing plate) side of the surface of the first retardation layer on the first bonding layer side. The distance between the position farthest from the layer (polarizing plate) side in the thickness (lamination) direction of the circular polarizing plate (direction orthogonal to the plane of the circular polarizing plate) was measured as ΔS.
 [目視評価]
 上記したΔSの測定の手順で屈曲試験を行った試験片100(20万回の屈曲操作を行ったもの)を屈曲前の状態(図4(a)に示すような平坦な状態)とし、試験片100の前面板側において、正面から観察した場合の反射光の色相(色味)と、試験片100の平面に対して角度40°の斜め方向(正面の方向を0°としたとき角度50°の方向)から観察した場合の反射光の色相(色味)とを、目視で確認し両者を対比して評価した。
  a:対比の結果、反射光の色相の違いは見られなかった。
  b:対比の結果、反射光の色相に少し違いが見られた。
  c:対比の結果、反射光の色相に違いが見られた。
  d:第1位相差層にクラックが発生した。
[Visual evaluation]
The test piece 100 (which has been subjected to the bending operation 200,000 times) subjected to the bending test in the above-mentioned procedure for measuring ΔS is set to the state before bending (the flat state as shown in FIG. 4A) and tested. On the front plate side of the piece 100, the hue (hue) of the reflected light when observed from the front and the oblique direction of an angle of 40 ° with respect to the plane of the test piece 100 (when the front direction is 0 °, the angle is 50). The hue (hue) of the reflected light when observed from the direction of °) was visually confirmed and evaluated by comparing the two.
a: As a result of comparison, no difference in hue of reflected light was observed.
b: As a result of comparison, a slight difference was found in the hue of the reflected light.
c: As a result of comparison, a difference was observed in the hue of the reflected light.
d: A crack occurred in the first retardation layer.
 各実施例及び比較例で用いた材料は次の手順で準備した。
 [偏光板(1)の準備]
 (保護層形成用組成物の作製)
 保護層としてのオーバーコート(OC)層を形成するための保護層形成用組成物は、水100部、ポリビニルアルコール樹脂粉末(KL-318、(株)クラレ製、平均重合度18000)3部、架橋剤としてのポリアミドエポキシ樹脂(SR650(30)、住化ケムテックス(株)製)1.5部を混合して調製した。
The materials used in each Example and Comparative Example were prepared by the following procedure.
[Preparation of polarizing plate (1)]
(Preparation of composition for forming protective layer)
The composition for forming the protective layer for forming the overcoat (OC) layer as the protective layer is 100 parts of water, 3 parts of polyvinyl alcohol resin powder (KL-318, manufactured by Kuraray Co., Ltd., average degree of polymerization 18000), It was prepared by mixing 1.5 parts of a polyamide epoxy resin (SR650 (30), manufactured by Sumika Chemtex Co., Ltd.) as a cross-linking agent.
 (偏光板(1)の作製)
 保護層としての厚み25μmのトリアセチルセルロース(TAC)フィルムに、配向層形成用組成物を塗布して塗膜を形成した。この塗膜に偏光UVを照射して、厚み100nmの配向層(光配向層)を形成した。配向層(TACフィルム側とは反対側)上に、重合性液晶化合物及びアゾ色素を含む偏光層形成用組成物を塗布して塗膜を形成した。この塗膜を乾燥させた後、紫外線を照射して、厚み1.8μmの直線偏光層(1)を形成した。
直線偏光層(1)(TACフィルム側とは反対側)上に、保護層形成用組成物を塗布して乾燥し、保護層としての厚み1.0μmのOC層を形成し、光学層としての偏光板(1)を得た。偏光板(1)は、TACフィルム、配向層、直線偏光層(1)、OC層がこの順に積層されたものであった。
(Preparation of polarizing plate (1))
A composition for forming an orientation layer was applied to a triacetyl cellulose (TAC) film having a thickness of 25 μm as a protective layer to form a coating film. This coating film was irradiated with polarized UV to form an alignment layer (photoalignment layer) having a thickness of 100 nm. A composition for forming a polarizing layer containing a polymerizable liquid crystal compound and an azo dye was applied onto the alignment layer (the side opposite to the TAC film side) to form a coating film. After the coating film was dried, it was irradiated with ultraviolet rays to form a linearly polarized light layer (1) having a thickness of 1.8 μm.
A composition for forming a protective layer is applied onto the linearly polarizing layer (1) (on the side opposite to the TAC film side) and dried to form an OC layer having a thickness of 1.0 μm as a protective layer, which serves as an optical layer. A polarizing plate (1) was obtained. The polarizing plate (1) was a TAC film, an alignment layer, a linearly polarized light layer (1), and an OC layer laminated in this order.
 [偏光板(2)の準備]
 (直線偏光層(2)の作製)
 厚み30μmの長尺のポリビニルアルコール(PVA)原反フィルム(平均重合度2400、ケン化度99.9モル%以上)を、純水からなる膨潤浴に浸漬させた(膨潤工程)後、ヨウ素を含む染色浴に浸漬させ(染色工程)、ヨウ化カリウム及びホウ酸を含む架橋浴に浸漬させた(架橋工程)。染色工程及び架橋工程において、浴中でのロール間延伸により縦一軸延伸を行った。原反フィルムを基準とする総延伸倍率は5.4倍とした。次に、架橋浴から引き出したフィルムを純水からなる洗浄浴に浸漬させた(洗浄工程)後、湿度調節が可能な加熱炉に導入することにより高温高湿処理を行って(高温高湿処理工程)、厚み12.1μmの直線偏光層(2)を得た。
[Preparation of polarizing plate (2)]
(Preparation of linearly polarized light layer (2))
A long polyvinyl alcohol (PVA) raw film having a thickness of 30 μm (average degree of polymerization 2400, saponification degree 99.9 mol% or more) was immersed in a swelling bath made of pure water (swelling step), and then iodine was added. It was immersed in a dyeing bath containing (dyeing step) and a cross-linking bath containing potassium iodide and boric acid (cross-linking step). In the dyeing step and the cross-linking step, longitudinal uniaxial stretching was performed by stretching between rolls in a bath. The total draw ratio based on the raw film was 5.4 times. Next, the film drawn from the crosslinked bath was immersed in a washing bath made of pure water (washing step), and then introduced into a heating furnace capable of controlling humidity to perform high-temperature and high-humidity treatment (high-temperature and high-humidity treatment). Step), a linearly polarized light layer (2) having a thickness of 12.1 μm was obtained.
 (偏光板(2)の作製)
 保護層としての厚み23μmの環状ポリオレフィン(COP)フィルムと、直線偏光層(2)にそれぞれコロナ処理(出力0.3kW、処理速度3m/分)を行った。上記[偏光板(1)の準備]で作製した保護層形成用組成物を接着剤組成物として用い、COPフィルムのコロナ処理面と直線偏光層(2)のコロナ処理面とを貼合し、温度60℃で2分間乾燥して、光学層としての偏光板(2)を得た。偏光板(2)は、COPフィルム、直線偏光層(2)がこの順に積層されたものであった。
(Preparation of polarizing plate (2))
A cyclic polyolefin (COP) film having a thickness of 23 μm as a protective layer and a linearly polarized light layer (2) were subjected to corona treatment (output 0.3 kW, treatment speed 3 m / min), respectively. Using the protective layer forming composition prepared in the above [Preparation of polarizing plate (1)] as an adhesive composition, the corona-treated surface of the COP film and the corona-treated surface of the linearly polarized light layer (2) are bonded together. It was dried at a temperature of 60 ° C. for 2 minutes to obtain a polarizing plate (2) as an optical layer. The polarizing plate (2) was a COP film and a linearly polarizing layer (2) laminated in this order.
 [第1位相差層の準備]
 (第1配向層形成用組成物)
 第1配向層を形成するための第1配向層形成用組成物は、以下の構造式で表される光反応性基を有するポリマーを、濃度5%で、シクロペンタノンに溶解することにより調製した。
[Preparation of the first retardation layer]
(Composition for Forming First Orientation Layer)
The composition for forming the first oriented layer for forming the first oriented layer is prepared by dissolving a polymer having a photoreactive group represented by the following structural formula in cyclopentanone at a concentration of 5%. bottom.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 (第1液晶層形成用組成物)
 第1液晶層を形成するための第1液晶層形成用組成物は、以下に示す各成分を混合し、得られた混合物を80℃で1時間撹拌することにより調製した。
・下記の構造式で表される化合物:80部
(Composition for Forming First Liquid Crystal Layer)
The composition for forming the first liquid crystal layer for forming the first liquid crystal layer was prepared by mixing each of the following components and stirring the obtained mixture at 80 ° C. for 1 hour.
-Compound represented by the following structural formula: 80 parts
Figure JPOXMLDOC01-appb-C000002

・下記の構造式で表される化合物:20部
Figure JPOXMLDOC01-appb-C000002

-Compound represented by the following structural formula: 20 parts
Figure JPOXMLDOC01-appb-C000003

・重合開始剤(Irgacure369、2-ジメチルアミノ-2-ベンジル-1-(4-モルホリノフェニル)ブタン-1-オン、BASF社製):6部
・レベリング剤(BYK-361N、ポリアクリレート化合物、BYK-Chemie社製):0.1部
・溶剤(シクロペンタノン):400部
Figure JPOXMLDOC01-appb-C000003

-Initiator (Irgacure369, 2-dimethylamino-2-benzyl-1- (4-morpholinophenyl) butane-1-one, manufactured by BASF): 6 parts-Leveling agent (BYK-361N, polyacrylate compound, BYK) -Chemie): 0.1 parts, solvent (cyclopentanone): 400 parts
 (基材層付き第1位相差層の作製)
 基材層としての厚み100μmのポリエチレンテレフタレートフィルム(PET)上に第1配向層形成用組成物をバーコート法により塗布し、80℃の乾燥オーブン中で1分間加熱乾燥した。得られた乾燥被膜に、積算光量100mJ/cm(365nm基準)で偏光UV照射処理(「SPOT CURE SP-9」、ウシオ電機株式会社製)を施して第1配向層を形成した。偏光UVの偏光方向は、直線偏光層の吸収軸に対して45°となるように行った。
(Preparation of first retardation layer with base material layer)
The composition for forming a first alignment layer was applied on a polyethylene terephthalate film (PET) having a thickness of 100 μm as a base material layer by a bar coating method, and dried by heating in a drying oven at 80 ° C. for 1 minute. The obtained dry film was subjected to polarized UV irradiation treatment (“SPOT CURE SP-9”, manufactured by Ushio, Inc.) at an integrated light intensity of 100 mJ / cm 2 (365 nm standard) to form a first oriented layer. The polarization direction of the polarized UV was set to 45 ° with respect to the absorption axis of the linearly polarized light layer.
 第1配向層(PETフィルム側とは反対側)上に、第1液晶層形成用組成物をバーコート法により塗布し、120℃の乾燥オーブンで1分間加熱乾燥した後、室温まで冷却した。得られた乾燥被膜に、積算光量1000mJ/cm(365nm基準)の紫外線を照射することにより、厚み2.0μmの第1液晶層を形成した。第1液晶層は、面内方向にλ/4の位相差値を示すλ/4板であり、逆波長分散性を有するものであった。これにより、PETフィルム、第1位相差層(第1配向層、第1液晶層)がこの順に積層された基材層付き第1位相差層を得た。 The composition for forming the first liquid crystal layer was applied onto the first alignment layer (the side opposite to the PET film side) by the bar coating method, heated and dried in a drying oven at 120 ° C. for 1 minute, and then cooled to room temperature. The obtained dry film was irradiated with ultraviolet rays having an integrated light intensity of 1000 mJ / cm 2 (365 nm standard) to form a first liquid crystal layer having a thickness of 2.0 μm. The first liquid crystal layer was a λ / 4 plate showing a phase difference value of λ / 4 in the in-plane direction, and had anti-wavelength dispersibility. As a result, a first retardation layer with a base material layer in which the PET film and the first retardation layer (first alignment layer, first liquid crystal layer) were laminated in this order was obtained.
 [第2位相差層の準備]
 (第2配向層形成用組成物)
 第2配向層を形成するための第2配向層形成用組成物は、2-フェノキシエチルアクリレートと、テトラヒドロフルフリルアクリレートと、ジペンタエリスリトールトリアクリレートと、ビス(2-ビニルオキシエチル)エーテルとを、質量比で1:1:4:5の割合で混合し、この混合物に、重合開始剤としてLUCIRIN TPOを4%の割合で添加して調製した。
[Preparation of second retardation layer]
(Composition for forming a second orientation layer)
The composition for forming the second oriented layer for forming the second oriented layer is composed of 2-phenoxyethyl acrylate, tetrahydrofurfuryl acrylate, dipentaerythritol triacrylate, and bis (2-vinyloxyethyl) ether. , A ratio of 1: 1: 4: 5 was mixed, and LUCIRIN TPO was added as a polymerization initiator to this mixture at a ratio of 4%.
 (第2液晶層形成用組成物)
 第2液晶層を形成するための第2液晶層形成用組成物は、光重合性ネマチック液晶化合物(メルク社製、RMM28B)と溶媒とを、固形分が1~1.5gとなるようにして調製した。溶媒は、メチルエチルケトン(MEK)と、メチルイソブチルケトン(MIBK)と、シクロヘキサノン(CHN)とを、質量比(MEK:MIBK:CHN)で35:30:35の割合で混合させた混合溶媒を用いた。
(Composition for Forming Second Liquid Crystal Layer)
The composition for forming the second liquid crystal layer for forming the second liquid crystal layer contains a photopolymerizable nematic liquid crystal compound (manufactured by Merck & Co., Inc., RMM28B) and a solvent so that the solid content is 1 to 1.5 g. Prepared. As the solvent, a mixed solvent was used in which methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), and cyclohexanone (CHN) were mixed at a mass ratio (MEK: MIBK: CHN) of 35:30:35. ..
 (基材層付き第2位相差層の作製)
 基材層としての厚み38μmのポリエチレンテレフタレート(PET)フィルム上に、第2配向層形成用組成物を厚みが3μmになるように塗布し、200mJ/cmの紫外線を照射して、垂直配向層としての第2配向層を形成した。
(Preparation of second retardation layer with base material layer)
A composition for forming a second alignment layer is applied onto a polyethylene terephthalate (PET) film having a thickness of 38 μm as a base material layer so as to have a thickness of 3 μm, and is irradiated with ultraviolet rays of 200 mJ / cm 2 to form a vertically oriented layer. A second oriented layer was formed.
 第2配向層(PETフィルム側とは反対側)上に、第2液晶層形成用組成物を、ダイコーティングにより塗工量を4~5g(wet)として塗工して塗膜を形成した。乾燥温度を75℃、乾燥時間を120秒間として、塗膜を乾燥させた後、紫外線を照射して、厚み3μmの第2液晶層を形成した。第2液晶層はポジティブCプレートであった。これにより、PETフィルム、第2位相差層(第2配向層、第2液晶層)がこの順に積層された基材層付き第2位相差層を得た。 A coating film was formed by applying a composition for forming a second liquid crystal layer on the second alignment layer (the side opposite to the PET film side) with a coating amount of 4 to 5 g (wet) by die coating. The coating film was dried at a drying temperature of 75 ° C. and a drying time of 120 seconds, and then irradiated with ultraviolet rays to form a second liquid crystal layer having a thickness of 3 μm. The second liquid crystal layer was a positive C plate. As a result, a second retardation layer with a base material layer in which the PET film and the second retardation layer (second orientation layer, second liquid crystal layer) were laminated in this order was obtained.
 [粘着剤層の準備]
 下記粘着剤組成物A~Dを準備し、この粘着剤を用いて粘着剤層A~C,D1及びD2を準備した。
[Preparation of adhesive layer]
The following pressure-sensitive adhesive compositions A to D were prepared, and the pressure-sensitive adhesive layers A to C, D1 and D2 were prepared using this pressure-sensitive adhesive.
 (粘着剤組成物A及び粘着剤シートAの作製)
 アクリル酸n-ブチル70部、アクリル酸メチル20部、アクリル酸1.0部を共重合させて、アクリル系ポリマー(A)を調製した。アクリル系ポリマー(A)の分子量を測定したところ、重量平均分子量Mwが150万であった。
(Preparation of Adhesive Composition A and Adhesive Sheet A)
An acrylic polymer (A) was prepared by copolymerizing 70 parts of n-butyl acrylate, 20 parts of methyl acrylate, and 1.0 part of acrylic acid. When the molecular weight of the acrylic polymer (A) was measured, the weight average molecular weight Mw was 1.5 million.
 アクリル系ポリマー(A)100部に、架橋剤(日本ポリウレタン工業(株)「コロネートL」)0.3部、シランカップリング剤(信越化学工業株式会社製「X-12-981」)0.5部を混合し、全体固形分濃度が10%になるように酢酸エチルを添加して、粘着剤組成物Aを得た。得られた粘着剤組成物Aを離型処理されたポリエチレンテレフタレートフィルム(重セパレートフィルム(重SPフィルム)、厚み38μm)の離型処理面に、アプリケーターを利用して乾燥後の厚みが25μmになるように塗布した。塗布層を100℃で1分間乾燥して粘着剤層Aを形成した。その後、粘着剤層Aの露出面上に、離型処理された別のポリエチレンテレフタレートフィルム(軽セパレートフィルム(軽SPフィルム)、厚み38μm)を貼合した。その後、温度23℃、相対湿度50%RHの条件で7日間養生させた。これにより、重SPフィルム/粘着剤層A/軽SPフィルムからなる粘着剤シートAを作製した。粘着剤シートAが有する粘着剤層Aの25℃における弾性率を測定した。結果を表1に示す。 100 parts of acrylic polymer (A), 0.3 parts of cross-linking agent (Nippon Polyurethane Industry Co., Ltd. "Coronate L"), silane coupling agent ("X-12-981" manufactured by Shin-Etsu Chemical Co., Ltd.) 0. Five parts were mixed and ethyl acetate was added so that the total solid content concentration became 10% to obtain a pressure-sensitive adhesive composition A. The release-treated surface of the obtained polyethylene terephthalate film (heavy separate film (heavy SP film), thickness 38 μm) from which the obtained pressure-sensitive adhesive composition A has been release-treated has a thickness of 25 μm after drying using an applicator. Was applied. The coating layer was dried at 100 ° C. for 1 minute to form the pressure-sensitive adhesive layer A. Then, another polyethylene terephthalate film (light separate film (light SP film), thickness 38 μm) that had been released from the mold was attached onto the exposed surface of the pressure-sensitive adhesive layer A. Then, it was cured for 7 days under the conditions of a temperature of 23 ° C. and a relative humidity of 50% RH. As a result, a pressure-sensitive adhesive sheet A composed of a heavy SP film / pressure-sensitive adhesive layer A / light SP film was produced. The elastic modulus of the pressure-sensitive adhesive layer A contained in the pressure-sensitive adhesive sheet A at 25 ° C. was measured. The results are shown in Table 1.
 (粘着剤組成物B及び粘着剤シートBの作製)
 アクリル酸n-ブチル98.9部、アクリル酸1.1部を共重合させて、アクリル系ポリマー(B)を調製した。アクリル系ポリマー(B)の分子量を測定したところ、重量平均分子量Mwが136万であった。
(Preparation of Adhesive Composition B and Adhesive Sheet B)
An acrylic polymer (B) was prepared by copolymerizing 98.9 parts of n-butyl acrylate and 1.1 parts of acrylic acid. When the molecular weight of the acrylic polymer (B) was measured, the weight average molecular weight Mw was 1.36 million.
 アクリル系ポリマー(B)100部に、第1の架橋剤(日本ポリウレタン工業(株)の「コロネートL」)2部、第2の架橋剤(相互薬工(株)の「TAZM」)0.02部、シランカップリング剤(信越化学工業株式会社製「KBM403」)0.5部を混合し、全体固形分濃度が10%になるように酢酸エチルを添加して、粘着剤組成物Bを得た。粘着剤組成物Bを用いたこと以外は、粘着剤シートAの作製と同様の手順で、重SPフィルム/粘着剤層B/軽SPフィルムからなる粘着剤シートBを作製した。粘着剤シートBが有する粘着剤層Bの25℃における弾性率を測定した。結果を表1に示す。 100 parts of acrylic polymer (B), 2 parts of the first cross-linking agent (“Coronate L” of Nippon Polyurethane Industry Co., Ltd.), and 2 parts of the second cross-linking agent (“TAZM” of Mutual Yakuko Co., Ltd.) 0. 02 parts and 0.5 part of a silane coupling agent (“KBM403” manufactured by Shin-Etsu Chemical Co., Ltd.) were mixed, and ethyl acetate was added so that the total solid content concentration became 10% to obtain the pressure-sensitive adhesive composition B. Obtained. A pressure-sensitive adhesive sheet B composed of a heavy SP film / a pressure-sensitive adhesive layer B / a light SP film was prepared in the same procedure as the preparation of the pressure-sensitive adhesive sheet A except that the pressure-sensitive adhesive composition B was used. The elastic modulus of the pressure-sensitive adhesive layer B contained in the pressure-sensitive adhesive sheet B at 25 ° C. was measured. The results are shown in Table 1.
 (粘着剤組成物C及び粘着剤シートCの作製)
 アクリル酸n-ブチル70.4部、アクリル酸2-エチルヘキシル45部、アクリル酸4-ヒドロキシブチル1部を共重合させて、アクリル系ポリマー(C)を調製した。アクリル系ポリマー(C)の分子量を測定したところ、重量平均分子量Mwが80万であった。
(Preparation of Adhesive Composition C and Adhesive Sheet C)
An acrylic polymer (C) was prepared by copolymerizing 70.4 parts of n-butyl acrylate, 45 parts of 2-ethylhexyl acrylate, and 1 part of 4-hydroxybutyl acrylate. When the molecular weight of the acrylic polymer (C) was measured, the weight average molecular weight Mw was 800,000.
 アクリル系ポリマー(C)100部に、架橋剤(日本ポリウレタン工業(株)「コロネートL」)0.4部、シランカップリング剤(信越化学工業株式会社製「KBM403」)0.5部を混合し、全体固形分濃度が10%になるように酢酸エチルを添加して、粘着剤組成物Cを得た。粘着剤組成物Cを用いたこと以外は、粘着剤シートAの作製と同様の手順で、重SPフィルム/粘着剤層C/軽SPフィルムからなる粘着剤シートCを作製した。粘着剤シートCが有する粘着剤層Cの25℃における弾性率を測定した。結果を表1に示す。 A cross-linking agent (Nippon Polyurethane Industry Co., Ltd. "Coronate L") 0.4 part and a silane coupling agent (Shin-Etsu Chemical Co., Ltd. "KBM403") 0.5 part are mixed with 100 parts of acrylic polymer (C). Then, ethyl acetate was added so that the total solid content concentration became 10% to obtain a pressure-sensitive adhesive composition C. A pressure-sensitive adhesive sheet C composed of a heavy SP film / a pressure-sensitive adhesive layer C / a light SP film was prepared in the same procedure as the preparation of the pressure-sensitive adhesive sheet A except that the pressure-sensitive adhesive composition C was used. The elastic modulus of the pressure-sensitive adhesive layer C of the pressure-sensitive adhesive sheet C at 25 ° C. was measured. The results are shown in Table 1.
 (粘着剤組成物D、並びに、粘着剤シートD1及びD2の作製)
 アクリル酸n-ブチル68部、アクリル酸メチル30部、アクリル酸2-ヒドロキシエチル1部、アクリル酸1部を共重合させて、アクリル系ポリマー(D)を調製した。アクリル系ポリマー(D)の分子量を測定したところ、重量平均分子量Mwが135万であった。
(Preparation of Adhesive Composition D and Adhesive Sheets D1 and D2)
An acrylic polymer (D) was prepared by copolymerizing 68 parts of n-butyl acrylate, 30 parts of methyl acrylate, 1 part of 2-hydroxyethyl acrylate, and 1 part of acrylic acid. When the molecular weight of the acrylic polymer (D) was measured, the weight average molecular weight Mw was 1.35 million.
 アクリル系ポリマー(D)100部に、架橋剤(日本ポリウレタン工業(株)「コロネートL」)3部、シランカップリング剤(信越シリコン株式会社製「KBM403」)0.5部を混合し、全体固形分濃度が10%になるように酢酸エチルを添加して、粘着剤組成物Dを得た。 100 parts of acrylic polymer (D) is mixed with 3 parts of a cross-linking agent (Nippon Polyurethane Industry Co., Ltd. "Coronate L") and 0.5 part of a silane coupling agent ("KBM403" manufactured by Shinetsu Silicon Co., Ltd.). Ethyl acetate was added so that the solid content concentration became 10% to obtain a pressure-sensitive adhesive composition D.
 粘着剤組成物Dを用い、乾燥後の厚みが15μmとなるように粘着剤組成物Dを塗布したこと以外は、粘着剤シートAの作製と同様の手順で、重SPフィルム/粘着剤層D1/軽SPフィルムからなる粘着剤シートD1を作製した。また、粘着剤組成物Dを用い、乾燥後の厚みが5μmとなるように粘着剤組成物Dを塗布したこと以外は、粘着剤シートAの作製と同様の手順で、重SPフィルム/粘着剤層D2/軽SPフィルムからなる粘着剤シートD2を作製した。粘着剤シートD1及びD2がそれぞれ有する粘着剤層D1及びD2の25℃における弾性率を測定した。結果を表1に示す。 The heavy SP film / pressure-sensitive adhesive layer D1 was prepared in the same procedure as the preparation of the pressure-sensitive adhesive sheet A, except that the pressure-sensitive adhesive composition D was used and the pressure-sensitive adhesive composition D was applied so that the thickness after drying was 15 μm. / An adhesive sheet D1 made of a light SP film was produced. Further, the heavy SP film / adhesive was prepared in the same procedure as the preparation of the pressure-sensitive adhesive sheet A, except that the pressure-sensitive adhesive composition D was used and the pressure-sensitive adhesive composition D was applied so that the thickness after drying was 5 μm. An adhesive sheet D2 made of layer D2 / light SP film was prepared. The elastic moduli of the pressure-sensitive adhesive layers D1 and D2 of the pressure-sensitive adhesive sheets D1 and D2 at 25 ° C. were measured. The results are shown in Table 1.
 [接着剤組成物の準備]
 硬化性成分としての商品名「CEL2021P」(Daicel社製)50部及び商品名「OXT-221」(東亜合成社製)50部、光重合開始剤としての商品名「CPI-100」(San-apro社製)2.25部、増感剤としての1,4-ジエトキシナフタレン2部を混合して接着剤組成物を作製した。
[Preparation of adhesive composition]
50 parts of the product name "CEL2021P" (manufactured by Daicel) as a curable component, 50 parts of the product name "OXT-221" (manufactured by Toa Synthetic Co., Ltd.), and the product name "CPI-100" (San-) as a photopolymerization initiator. 2.25 parts (manufactured by apro) and 2 parts of 1,4-diethoxynaphthalene as a sensitizer were mixed to prepare an adhesive composition.
 [前面板の準備]
 前面板として、厚み50μmのポリイミド(PI)系樹脂フィルムの片面に、厚み10μmのハードコート(HC)層が形成されたHC層付きフィルムを用いた。HC層は、末端に多官能アクリル基を有するデンドリマー化合物を含む組成物から形成された層であった。
[Preparation of front plate]
As the front plate, a film with an HC layer in which a hard coat (HC) layer having a thickness of 10 μm was formed on one side of a polyimide (PI) resin film having a thickness of 50 μm was used. The HC layer was a layer formed from a composition containing a dendrimer compound having a polyfunctional acrylic group at the terminal.
 〔実施例1〕
 (位相差積層体(1)の作製)
 上記で準備した基材層付き第1位相差層の第1位相差層側、及び、上記で準備した基材層付き第2位相差層の第2位相差層側にコロナ処理(出力0.3kW、処理速度3m/分)を行った。基材層付き第1位相差層のコロナ処理面に、上記で準備した接着剤組成物を塗工し、基材層付き第2位相差層のコロナ処理面と貼合した。紫外線照射装置(紫外線ランプはフュージョンUVシステム社製造の「Hバルブ」を使用)を用い、光照射強度が400mW/cm、波長280~320nmでの積算光量が400mJ/cmとなるよう紫外線を照射して接着剤組成物を硬化させて、第2貼合層としての厚み2μmの接着剤硬化層を形成した。これにより、PETフィルム、第1位相差層(第1配向層、第1液晶層)、第2貼合層(接着剤硬化層)、第2位相差層(第2液晶層、第2配向層)、PETフィルムがこの順に積層された位相差積層体(1)を得た。
[Example 1]
(Preparation of phase difference laminate (1))
Corona treatment (output 0. 3 kW, processing speed 3 m / min). The adhesive composition prepared above was applied to the corona-treated surface of the first retardation layer with a base material layer, and bonded to the corona-treated surface of the second retardation layer with a base material layer. Using an ultraviolet irradiation device (ultraviolet lamp uses "H valve" manufactured by Fusion UV System Co., Ltd.), ultraviolet rays are emitted so that the light irradiation intensity is 400 mW / cm 2 and the integrated light amount at wavelengths of 280 to 320 nm is 400 mJ / cm 2. The adhesive composition was cured by irradiation to form an adhesive cured layer having a thickness of 2 μm as a second bonding layer. As a result, the PET film, the first retardation layer (first alignment layer, first liquid crystal layer), the second bonding layer (adhesive curing layer), and the second retardation layer (second liquid crystal layer, second alignment layer). ), A retardation laminate (1) in which PET films were laminated in this order was obtained.
 (円偏光板(1)の作製)
 上記で準備した粘着剤シートAの軽SPフィルムを剥離して露出した粘着剤層A、及び、上記で準備した偏光板(1)のOC層に、コロナ処理(出力0.3kW、処理速度3m/分)を行った後、コロナ処理面同士を貼合した。次に、粘着剤シートAの重SPフィルムを剥離して露出した粘着剤層A、及び、位相差積層体(1)の第1位相差層側のPETフィルムを剥離して露出した表面に、コロナ処理(出力0.3kW、処理速度3m/分)を行った後、コロナ処理面同士を貼合し、この粘着剤層Aを第1貼合層とした。その後、第2位相差層側のPETフィルムを剥離して円偏光板(1)を得た。円偏光板(1)は、偏光板(1)(TACフィルム、配向層、直線偏光層(1)、OC層)、第1貼合層(粘着剤層A)、第1位相差層、第2貼合層(接着剤硬化層)、第2位相差層がこの順に積層されたものであった。
(Preparation of circularly polarizing plate (1))
The pressure-sensitive adhesive layer A exposed by peeling off the light SP film of the pressure-sensitive adhesive sheet A prepared above and the OC layer of the polarizing plate (1) prepared above are subjected to corona treatment (output 0.3 kW, processing speed 3 m). After performing (/ min), the corona-treated surfaces were pasted together. Next, the pressure-sensitive adhesive layer A exposed by peeling off the heavy SP film of the pressure-sensitive adhesive sheet A and the PET film on the first retardation layer side of the retardation laminate (1) were peeled off and exposed on the surface. After corona treatment (output 0.3 kW, treatment speed 3 m / min), the corona treated surfaces were bonded to each other, and the pressure-sensitive adhesive layer A was used as the first bonded layer. Then, the PET film on the second retardation layer side was peeled off to obtain a circularly polarizing plate (1). The circular polarizing plate (1) includes a polarizing plate (1) (TAC film, alignment layer, linearly polarized light layer (1), OC layer), a first bonding layer (adhesive layer A), a first retardation layer, and a first. The two bonding layers (adhesive-cured layer) and the second retardation layer were laminated in this order.
 なお、第1基材層の剥離とともに第1配向層が剥離される場合もあり、同様に第2基材層の剥離とともに第2基材層が剥離される場合もあるため、円偏光板(1)における第1位相差層及び第2位相差層の層構造は、位相差積層体(1)における第1位相差層及び第2位相差層の層構造と必ずしも一致しない。以下の実施例及び比較例においても同様である。 In addition, since the first alignment layer may be peeled off at the same time as the first base material layer is peeled off, and the second base material layer may be peeled off at the same time as the second base material layer is peeled off, the circularly polarizing plate ( The layer structures of the first retardation layer and the second retardation layer in 1) do not necessarily match the layer structures of the first retardation layer and the second retardation layer in the retardation laminate (1). The same applies to the following examples and comparative examples.
 (光学積層体(1)の作製)
 円偏光板(1)の第2位相差層側、及び、上記で準備した粘着剤シートAの軽SPフィルムを剥離して露出した粘着剤層Aに、コロナ処理(出力0.3kW、処理速度3m/分)を行った後、コロナ処理面同士を貼合して、粘着剤層付き円偏光板(1)を得た。
(Preparation of optical laminate (1))
Corona treatment (output 0.3 kW, processing speed) on the second retardation layer side of the circularly polarizing plate (1) and the pressure-sensitive adhesive layer A exposed by peeling off the light SP film of the pressure-sensitive adhesive sheet A prepared above. After performing (3 m / min), the corona-treated surfaces were bonded to each other to obtain a circularly polarizing plate (1) with an adhesive layer.
 上記で準備した前面板のPI系樹脂フィルム側、及び、上記で準備した粘着剤シートAの軽SPフィルムを剥離して露出した粘着剤層Aに、コロナ処理(出力0.3kW、処理速度3m/分)を行った後、コロナ処理面同士を貼合して、粘着剤層付き前面板を得た。 Corona treatment (output 0.3 kW, processing speed 3 m) was applied to the PI-based resin film side of the front plate prepared above and the pressure-sensitive adhesive layer A exposed by peeling off the light SP film of the pressure-sensitive adhesive sheet A prepared above. After performing (/ min), the corona-treated surfaces were bonded to each other to obtain a front plate with an adhesive layer.
 次に、粘着剤層付き前面板の重SPフィルムを剥離して露出した粘着剤層A、及び、粘着剤層付き円偏光板(1)の偏光板(1)側に、コロナ処理(出力0.3kW、処理速度3m/分)を行った後、コロナ処理面同士を貼合して光学積層体(1)を得た。光学積層体(1)は、前面板(HC層、PI系樹脂フィルム)、粘着剤層A、円偏光板(1)、粘着剤層A、重SPフィルムがこの順に積層されたものであった。 Next, the adhesive layer A exposed by peeling off the heavy SP film of the front plate with the adhesive layer and the polarizing plate (1) side of the circularly polarizing plate (1) with the adhesive layer are subjected to corona treatment (output 0). After performing .3 kW and processing speed of 3 m / min), the corona-treated surfaces were bonded to each other to obtain an optical laminate (1). The optical laminate (1) was formed by laminating a front plate (HC layer, PI resin film), an adhesive layer A, a circularly polarizing plate (1), an adhesive layer A, and a heavy SP film in this order. ..
 得られた光学積層体(1)を用いて屈曲性の評価、ΔSの測定、目視評価を行った。結果を表1に示す。 Using the obtained optical laminate (1), flexibility was evaluated, ΔS was measured, and visual evaluation was performed. The results are shown in Table 1.
 〔実施例2〕
 (位相差積層体(2)の作製)
 上記で準備した基材層付き第1位相差層の第1位相差層側、及び、上記で準備した粘着剤シートD2の軽SPフィルムを剥離して露出した粘着剤層D2に、コロナ処理(出力0.3kW、処理速度3m/分)を行った後、コロナ処理面同士を貼合した。次に、粘着剤シートD2の重SPフィルムを剥離して露出した粘着剤層D2、及び、上記で準備した基材層付き第2位相差層の第2位相差層側にコロナ処理(出力0.3kW、処理速度3m/分)を行った後、コロナ処理面同士を貼合し、この粘着剤層D2を第2貼合層として、位相差積層体(2)を得た。位相差積層体(2)は、PETフィルム、第1位相差層(第1配向層、第1液晶層)、第2貼合層(粘着剤層D2)、第2位相差層(第2液晶層、第2配向層)、PETフィルムがこの順に積層されたものであった。
[Example 2]
(Preparation of phase difference laminate (2))
Corona treatment (corona treatment) was applied to the first retardation layer side of the first retardation layer with the base material layer prepared above and the pressure-sensitive adhesive layer D2 exposed by peeling off the light SP film of the pressure-sensitive adhesive sheet D2 prepared above. After the output was 0.3 kW and the processing speed was 3 m / min), the corona-processed surfaces were bonded to each other. Next, the pressure-sensitive adhesive layer D2 exposed by peeling off the heavy SP film of the pressure-sensitive adhesive sheet D2 and the second retardation layer side of the second retardation layer with the base material layer prepared above are subjected to corona treatment (output 0). After performing .3 kW, processing speed 3 m / min), the corona-treated surfaces were bonded to each other, and the pressure-sensitive adhesive layer D2 was used as the second bonded layer to obtain a retardation laminate (2). The retardation laminate (2) includes a PET film, a first retardation layer (first alignment layer, first liquid crystal layer), a second bonding layer (adhesive layer D2), and a second retardation layer (second liquid crystal display). The layer, the second oriented layer), and the PET film were laminated in this order.
 (円偏光板(2)の作製)
 粘着剤シートAに代えて粘着剤シートD1を用い、位相差積層体(1)に代えて位相差積層体(2)を用いたこと以外は、円偏光板(1)の作製と同様の手順で円偏光板(2)を得た。円偏光板(2)は、偏光板(1)(TACフィルム、配向層、直線偏光層(1)、OC層)、第1貼合層(粘着剤層D1)、第1位相差層、第2貼合層(粘着剤層D2)、第2位相差層がこの順に積層されたものであった。
(Preparation of circularly polarizing plate (2))
The procedure is the same as that for producing the circularly polarizing plate (1), except that the pressure-sensitive adhesive sheet D1 is used instead of the pressure-sensitive adhesive sheet A and the retardation laminate (2) is used instead of the retardation laminate (1). Obtained a circularly polarizing plate (2). The circular polarizing plate (2) includes a polarizing plate (1) (TAC film, alignment layer, linearly polarized light layer (1), OC layer), a first bonding layer (adhesive layer D1), a first retardation layer, and a first. The two bonding layers (adhesive layer D2) and the second retardation layer were laminated in this order.
 (光学積層体(2)の作製)
 円偏光板(1)に代えて円偏光板(2)を用いたこと以外は、光学積層体(1)の作製と同様の手順で光学積層体(2)を得た。光学積層体(2)は、前面板(HC層、PI系樹脂フィルム)、粘着剤層A、円偏光板(2)、粘着剤層A、重SPフィルムがこの順に積層されたものであった。得られた光学積層体(2)を用いて屈曲性の評価、ΔSの測定、目視評価を行った。結果を表1に示す。
(Preparation of optical laminate (2))
An optical laminate (2) was obtained in the same procedure as in the production of the optical laminate (1) except that the circular polarizing plate (2) was used instead of the circular polarizing plate (1). The optical laminate (2) was formed by laminating a front plate (HC layer, PI resin film), an adhesive layer A, a circularly polarizing plate (2), an adhesive layer A, and a heavy SP film in this order. .. The obtained optical laminate (2) was used for evaluation of flexibility, measurement of ΔS, and visual evaluation. The results are shown in Table 1.
 〔実施例3〕
 (位相差積層体(3)の作製)
 粘着剤シートD2に代えて上記で準備した粘着剤シートCを用いたこと以外は、位相差積層体(2)の作製と同様の手順で位相差積層体(3)を得た。位相差積層体(3)は、PETフィルム、第1位相差層(第1配向層、第1液晶層)、第2貼合層(粘着剤層C)、第2位相差層(第2液晶層、第2配向層)、PETフィルムがこの順に積層されたものであった。
[Example 3]
(Preparation of phase difference laminate (3))
A retardation laminate (3) was obtained in the same procedure as in the production of the retardation laminate (2) except that the pressure-sensitive adhesive sheet C prepared above was used instead of the pressure-sensitive adhesive sheet D2. The retardation laminate (3) includes a PET film, a first retardation layer (first alignment layer, first liquid crystal layer), a second bonding layer (adhesive layer C), and a second retardation layer (second liquid crystal display). The layer, the second oriented layer), and the PET film were laminated in this order.
 (円偏光板(3)の作製)
 粘着剤シートAに代えて上記で準備した粘着剤シートBを用い、位相差積層体(1)に代えて位相差積層体(3)を用いたこと以外は、円偏光板(1)の作製と同様の手順で円偏光板(3)を得た。円偏光板(3)は、偏光板(1)(TACフィルム、配向層、直線偏光層(1)、OC層)、第1貼合層(粘着剤層B)、第1位相差層、第2貼合層(粘着剤層C)、第2位相差層がこの順に積層されたものであった。
(Preparation of circularly polarizing plate (3))
Fabrication of circularly polarizing plate (1) except that the pressure-sensitive adhesive sheet B prepared above was used instead of the pressure-sensitive adhesive sheet A and the retardation laminate (3) was used instead of the retardation laminate (1). A circularly polarizing plate (3) was obtained in the same procedure as in the above. The circular polarizing plate (3) includes a polarizing plate (1) (TAC film, alignment layer, linearly polarized light layer (1), OC layer), a first bonding layer (adhesive layer B), a first retardation layer, and a first. The two bonding layers (adhesive layer C) and the second retardation layer were laminated in this order.
 (光学積層体(3)の作製)
 円偏光板(1)に代えて円偏光板(3)を用いたこと以外は、光学積層体(1)の作製と同様の手順で光学積層体(3)を得た。光学積層体(3)は、前面板(HC層、PI系樹脂フィルム)、粘着剤層A、円偏光板(3)、粘着剤層A、重SPフィルムがこの順に積層されたものであった。得られた光学積層体(3)を用いて屈曲性の評価、ΔSの測定、目視評価を行った。結果を表1に示す。
(Preparation of optical laminate (3))
An optical laminate (3) was obtained in the same procedure as in the production of the optical laminate (1) except that the circular polarizing plate (3) was used instead of the circular polarizing plate (1). The optical laminate (3) was formed by laminating a front plate (HC layer, PI resin film), an adhesive layer A, a circularly polarizing plate (3), an adhesive layer A, and a heavy SP film in this order. .. The obtained optical laminate (3) was used for evaluation of flexibility, measurement of ΔS, and visual evaluation. The results are shown in Table 1.
 〔実施例4〕
 (円偏光板(4)の作製)
 偏光板(1)に代えて上記で準備した偏光板(2)を用い、位相差積層体(1)に代えて位相差積層体(2)を用い、粘着剤シートAに代えて上記で準備した粘着剤シートD1を用い、偏光板(2)の直線偏光層(2)と第1貼合層としての粘着剤層D1とをコロナ処理(出力0.3kW、処理速度3m/分)して貼合したこと以外は、円偏光板(1)の作製と同様の手順で円偏光板(4)を得た。円偏光板(4)は、偏光板(2)(COPフィルム、接着剤硬化層、直線偏光層(2)(COPフィルム、接着剤層、直線偏光層(2))、第1貼合層(粘着剤層D1)、第1位相差層、第2貼合層(粘着剤層D2)、第2位相差層がこの順に積層されたものであった。
[Example 4]
(Preparation of circularly polarizing plate (4))
The polarizing plate (2) prepared above is used instead of the polarizing plate (1), the retardation laminate (2) is used instead of the retardation laminate (1), and the pressure-sensitive adhesive sheet A is replaced by the above preparation. The linearly polarizing layer (2) of the polarizing plate (2) and the pressure-sensitive adhesive layer D1 as the first bonding layer were corona-treated (output 0.3 kW, processing speed 3 m / min) using the pressure-sensitive adhesive sheet D1. A circularly polarizing plate (4) was obtained in the same procedure as in the preparation of the circularly polarizing plate (1) except that it was bonded. The circular polarizing plate (4) includes a polarizing plate (2) (COP film, adhesive curing layer, linearly polarized light layer (2) (COP film, adhesive layer, linearly polarized light layer (2)), and a first bonded layer (COP film, adhesive layer, linearly polarized light layer (2)). The pressure-sensitive adhesive layer D1), the first retardation layer, the second bonding layer (adhesive layer D2), and the second retardation layer were laminated in this order.
 (光学積層体(4)の作製)
 円偏光板(1)に代えて円偏光板(4)を用いたこと以外は、光学積層体(1)の作製と同様の手順で光学積層体(4)を得た。光学積層体(4)は、前面板(HC層、PI系樹脂フィルム)、粘着剤層A、円偏光板(4)、粘着剤層A、重SPフィルムがこの順に積層されたものであった。得られた光学積層体(4)を用いて屈曲性の評価、ΔSの測定、目視評価を行った。結果を表1に示す。
(Preparation of optical laminate (4))
An optical laminate (4) was obtained in the same procedure as in the production of the optical laminate (1) except that the circular polarizing plate (4) was used instead of the circular polarizing plate (1). The optical laminate (4) was formed by laminating a front plate (HC layer, PI resin film), an adhesive layer A, a circularly polarizing plate (4), an adhesive layer A, and a heavy SP film in this order. .. The obtained optical laminate (4) was used for evaluation of flexibility, measurement of ΔS, and visual evaluation. The results are shown in Table 1.
 〔比較例1〕
 (円偏光板(C1)の作製)
 位相差積層体(1)に代えて位相差積層体(2)を用い、粘着剤シートAに代えて上記で準備した粘着剤シートD2を用いたこと以外は、円偏光板(1)の作製と同様の手順で円偏光板(C1)を得た。円偏光板(C1)は、偏光板(1)(TACフィルム、配向層、直線偏光層(1)、OC層)、第1貼合層(粘着剤層D2)、第1位相差層、第2貼合層(粘着剤層D2)、第2位相差層がこの順に積層されたものであった。
[Comparative Example 1]
(Preparation of circularly polarizing plate (C1))
Fabrication of circularly polarizing plate (1) except that the retardation laminate (2) was used instead of the retardation laminate (1) and the pressure-sensitive adhesive sheet D2 prepared above was used instead of the pressure-sensitive adhesive sheet A. A circularly polarizing plate (C1) was obtained in the same procedure as in the above. The circular polarizing plate (C1) includes a polarizing plate (1) (TAC film, alignment layer, linearly polarized light layer (1), OC layer), a first bonding layer (adhesive layer D2), a first retardation layer, and a first. The two bonding layers (adhesive layer D2) and the second retardation layer were laminated in this order.
 (光学積層体(C1)の作製)
 円偏光板(1)に代えて円偏光板(C1)を用いたこと以外は、光学積層体(1)の作製と同様の手順で光学積層体(C1)を得た。光学積層体(C1)は、前面板(HC層、PI系樹脂フィルム)、粘着剤層A、円偏光板(C1)、粘着剤層A、重SPフィルムがこの順に積層されたものであった。得られた光学積層体(C1)を用いて屈曲性の評価、ΔSの測定、目視評価を行った。結果を表1に示す。
(Preparation of optical laminate (C1))
An optical laminate (C1) was obtained in the same procedure as in the production of the optical laminate (1) except that the circular polarizing plate (C1) was used instead of the circular polarizing plate (1). The optical laminate (C1) consisted of a front plate (HC layer, PI-based resin film), an adhesive layer A, a circularly polarizing plate (C1), an adhesive layer A, and a heavy SP film laminated in this order. .. The obtained optical laminate (C1) was used for evaluation of flexibility, measurement of ΔS, and visual evaluation. The results are shown in Table 1.
 〔比較例2〕
 (位相差積層体(C2)の作製)
 粘着剤シートD2に代えて上記で準備した粘着剤シートBを用いたこと以外は、位相差積層体(2)の作製と同様の手順で位相差積層体(C2)を得た。位相差積層体(C2)は、PETフィルム、第1位相差層(第1配向層、第1液晶層)、第2貼合層(粘着剤層B)、第2位相差層(第2液晶層、第2配向層)、PETフィルムがこの順に積層されたものであった。
[Comparative Example 2]
(Preparation of phase difference laminate (C2))
A retardation laminate (C2) was obtained in the same procedure as in the production of the retardation laminate (2) except that the pressure-sensitive adhesive sheet B prepared above was used instead of the pressure-sensitive adhesive sheet D2. The retardation laminate (C2) includes a PET film, a first retardation layer (first alignment layer, first liquid crystal layer), a second bonding layer (adhesive layer B), and a second retardation layer (second liquid crystal display). The layer, the second oriented layer), and the PET film were laminated in this order.
 (円偏光板(C2)の作製)
 粘着剤シートAに代えて上記で準備した粘着剤シートCを用い、位相差積層体(1)に代えて位相差積層体(C2)を用いたこと以外は、円偏光板(1)の作製と同様の手順で円偏光板(C2)を得た。円偏光板(C2)は、偏光板(1)(TACフィルム、配向層、直線偏光層(1)、OC層)、第1貼合層(粘着剤層C)、第1位相差層、第2貼合層(粘着剤層B)、第2位相差層がこの順に積層されたものであった。
(Preparation of circularly polarizing plate (C2))
Fabrication of circularly polarizing plate (1) except that the pressure-sensitive adhesive sheet C prepared above was used instead of the pressure-sensitive adhesive sheet A and the retardation laminate (C2) was used instead of the retardation laminate (1). A circularly polarizing plate (C2) was obtained in the same procedure as in the above. The circular polarizing plate (C2) includes a polarizing plate (1) (TAC film, alignment layer, linearly polarized light layer (1), OC layer), a first bonding layer (adhesive layer C), a first retardation layer, and a first. The two bonding layers (adhesive layer B) and the second retardation layer were laminated in this order.
 (光学積層体(C2)の作製)
 円偏光板(1)に代えて円偏光板(C2)を用いたこと以外は、光学積層体(1)の作製と同様の手順で光学積層体(C2)を得た。光学積層体(C2)は、前面板(HC層、PI系樹脂フィルム)、粘着剤層A、円偏光板(C2)、粘着剤層A、重SPフィルムがこの順に積層されたものであった。得られた光学積層体(C2)を用いて屈曲性の評価、ΔSの測定、目視評価を行った。結果を表1に示す。
(Preparation of optical laminate (C2))
An optical laminate (C2) was obtained in the same procedure as in the production of the optical laminate (1) except that the circular polarizing plate (C2) was used instead of the circular polarizing plate (1). The optical laminate (C2) consisted of a front plate (HC layer, PI-based resin film), an adhesive layer A, a circularly polarizing plate (C2), an adhesive layer A, and a heavy SP film laminated in this order. .. The obtained optical laminate (C2) was used for evaluation of flexibility, measurement of ΔS, and visual evaluation. The results are shown in Table 1.
 〔比較例3〕
 (位相差積層体(C3)の作製)
 粘着剤シートD2に代えて上記で準備した粘着剤シートD1を用いたこと以外は、位相差積層体(2)の作製と同様の手順で位相差積層体(C3)を得た。位相差積層体(C3)は、PETフィルム、第1位相差層(第1配向層、第1液晶層)、第2貼合層(粘着剤層D1)、第2位相差層(第2液晶層、第2配向層)、PETフィルムがこの順に積層されたものであった。
[Comparative Example 3]
(Preparation of phase difference laminate (C3))
A retardation laminate (C3) was obtained in the same procedure as in the production of the retardation laminate (2) except that the pressure-sensitive adhesive sheet D1 prepared above was used instead of the pressure-sensitive adhesive sheet D2. The retardation laminate (C3) includes a PET film, a first retardation layer (first alignment layer, first liquid crystal layer), a second bonding layer (adhesive layer D1), and a second retardation layer (second liquid crystal display). The layer, the second oriented layer), and the PET film were laminated in this order.
 (円偏光板(C3)の作製)
 粘着剤シートAに代えて上記で準備した粘着剤シートD2を用い、位相差積層体(1)に代えて位相差積層体(C3)を用いたこと以外は、円偏光板(1)の作製と同様の手順で円偏光板(C3)を得た。円偏光板(C3)は、偏光板(1)(TACフィルム、配向層、直線偏光層(1)、OC層)、第1貼合層(粘着剤層D2)、第1位相差層、第2貼合層(粘着剤層D1)、第2位相差層がこの順に積層されたものであった。
(Preparation of circularly polarizing plate (C3))
Fabrication of circularly polarizing plate (1) except that the pressure-sensitive adhesive sheet D2 prepared above was used instead of the pressure-sensitive adhesive sheet A and the retardation laminate (C3) was used instead of the retardation laminate (1). A circularly polarizing plate (C3) was obtained in the same procedure as in the above. The circular polarizing plate (C3) includes a polarizing plate (1) (TAC film, alignment layer, linearly polarized light layer (1), OC layer), a first bonding layer (adhesive layer D2), a first retardation layer, and a first. The two bonding layers (adhesive layer D1) and the second retardation layer were laminated in this order.
 (光学積層体(C3)の作製)
 円偏光板(1)に代えて円偏光板(C3)を用いたこと以外は、光学積層体(1)の作製と同様の手順で光学積層体(C3)を得た。光学積層体(C3)は、前面板(HC層、PI系樹脂フィルム)、粘着剤層A、円偏光板(C3)、粘着剤層A、重SPフィルムがこの順に積層されたものであった。得られた光学積層体(C3)を用いて屈曲性の評価、目視評価を行った。屈曲試験によりクラックが発生したため、ΔSの測定は行わなかった。結果を表1に示す。
(Preparation of optical laminate (C3))
An optical laminate (C3) was obtained in the same procedure as in the production of the optical laminate (1) except that the circular polarizing plate (C3) was used instead of the circular polarizing plate (1). The optical laminate (C3) consisted of a front plate (HC layer, PI-based resin film), an adhesive layer A, a circularly polarizing plate (C3), an adhesive layer A, and a heavy SP film laminated in this order. .. Flexibility and visual evaluation were performed using the obtained optical laminate (C3). Since cracks were generated in the bending test, ΔS was not measured. The results are shown in Table 1.
 〔比較例4〕
 (位相差積層体(C4)の作製)
 粘着剤シートD2に代えて上記で準備した粘着剤シートAを用いたこと以外は、位相差積層体(2)の作製と同様の手順で位相差積層体(C4)を得た。位相差積層体(C4)は、PETフィルム、第1位相差層(第1配向層、第1液晶層)、第2貼合層(粘着剤層A)、第2位相差層(第2液晶層、第2配向層)、PETフィルムがこの順に積層されたものであった。
[Comparative Example 4]
(Preparation of phase difference laminate (C4))
A retardation laminate (C4) was obtained in the same procedure as in the production of the retardation laminate (2) except that the pressure-sensitive adhesive sheet A prepared above was used instead of the pressure-sensitive adhesive sheet D2. The retardation laminate (C4) includes a PET film, a first retardation layer (first alignment layer, first liquid crystal layer), a second bonding layer (adhesive layer A), and a second retardation layer (second liquid crystal display). The layer, the second oriented layer), and the PET film were laminated in this order.
 (円偏光板(C4)の作製)
 位相差積層体(C4)の第1位相差層側のPETフィルムを剥離して露出した表面、及び、上記で準備した偏光板(1)のOC層に、コロナ処理(出力0.3kW、処理速度3m/分)を行った。第1位相差層側のコロナ処理面に、上記で準備した接着剤組成物を塗工し、偏光板(1)のコロナ処理面と貼合した。紫外線照射装置(紫外線ランプはフュージョンUVシステム社製造の「Hバルブ」を使用)を用い、光照射強度が400mW/cm、波長280~320nmでの積算光量が800mJ/cmとなるよう紫外線を照射して接着剤組成物を硬化させて、第1貼合層としての厚み2μmの接着剤硬化層を形成して円偏光板(C4)を得た。円偏光板(C4)は、偏光板(1)(TACフィルム、配向層、直線偏光層(1)、OC層)、第1貼合層(接着剤硬化層)、第1位相差層、第2貼合層(粘着剤層A)、第2位相差層がこの順に積層されたものであった。
(Preparation of circularly polarizing plate (C4))
The surface of the retardation laminate (C4) exposed by peeling off the PET film on the first retardation layer side and the OC layer of the polarizing plate (1) prepared above are subjected to corona treatment (output 0.3 kW, treatment). The speed was 3 m / min). The adhesive composition prepared above was applied to the corona-treated surface on the first retardation layer side and bonded to the corona-treated surface of the polarizing plate (1). Using an ultraviolet irradiation device (ultraviolet lamp uses "H valve" manufactured by Fusion UV System Co., Ltd.), ultraviolet rays are emitted so that the light irradiation intensity is 400 mW / cm 2 and the integrated light amount at wavelengths of 280 to 320 nm is 800 mJ / cm 2. The adhesive composition was cured by irradiation to form an adhesive cured layer having a thickness of 2 μm as the first bonding layer, and a circular ultraviolet plate (C4) was obtained. The circular polarizing plate (C4) includes a polarizing plate (1) (TAC film, alignment layer, linearly polarized light layer (1), OC layer), a first bonding layer (adhesive curing layer), a first retardation layer, and a first. The two bonding layers (adhesive layer A) and the second retardation layer were laminated in this order.
 (光学積層体(C4)の作製)
 円偏光板(1)に代えて円偏光板(C4)を用いたこと以外は、光学積層体(1)の作製と同様の手順で光学積層体(C4)を得た。光学積層体(C4)は、前面板(HC層、PI系樹脂フィルム)、粘着剤層A、円偏光板(C4)、粘着剤層A、重SPフィルムがこの順に積層されたものであった。得られた光学積層体(C4)を用いて屈曲性の評価、目視評価を行った。屈曲試験によりクラックが発生したため、ΔSの測定は行わなかった。結果を表1に示す。
(Preparation of optical laminate (C4))
An optical laminate (C4) was obtained in the same procedure as in the production of the optical laminate (1) except that the circular polarizing plate (C4) was used instead of the circular polarizing plate (1). The optical laminate (C4) consisted of a front plate (HC layer, PI-based resin film), an adhesive layer A, a circularly polarizing plate (C4), an adhesive layer A, and a heavy SP film laminated in this order. .. Flexibility and visual evaluation were performed using the obtained optical laminate (C4). Since cracks were generated in the bending test, ΔS was not measured. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 1 円偏光板、5 光学積層体、11 第1位相差層、12 第2位相差層、21 第1貼合層、22 第2貼合層、23 第3貼合層、30 光学層、31 直線偏光層、32,33 保護層、40 前面板、100 試験片、501,502 ステージ。 1 circularly polarizing plate, 5 optical laminate, 11 1st retardation layer, 12 2nd retardation layer, 21 1st bonding layer, 22 2nd bonding layer, 23 3rd bonding layer, 30 optical layer, 31 Linear polarizing layer, 32, 33 protective layer, 40 front plate, 100 test piece, 501,502 stage.

Claims (11)

  1. 少なくとも直線偏光層を含む光学層、第1貼合層、第1位相差層、第2貼合層、及び第2位相差層をこの順に含む円偏光板であって、
    前記第1位相差層は、重合性液晶化合物の硬化物層である第1液晶層を含み、
    前記第1貼合層及び前記第2貼合層の温度25℃における弾性率がそれぞれG’1[kPa]及びG’2[kPa]であり、前記第1貼合層及び前記第2貼合層の厚みがそれぞれd1[μm]及びd2[μm]であるとき、下記式(1)の関係を満たす、円偏光板。
      G’1/d1<G’2/d2  (1)
    A circularly polarizing plate including at least an optical layer including a linearly polarized light layer, a first bonded layer, a first retarded layer, a second bonded layer, and a second retarded layer in this order.
    The first retardation layer includes a first liquid crystal layer which is a cured product layer of a polymerizable liquid crystal compound.
    The elastic moduli of the first bonding layer and the second bonding layer at a temperature of 25 ° C. are G'1 [kPa] and G'2 [kPa], respectively, and the first bonding layer and the second bonding layer are bonded. A circular polarizing plate satisfying the relationship of the following formula (1) when the thicknesses of the layers are d1 [μm] and d2 [μm], respectively.
    G'1 / d1 <G'2 / d2 (1)
  2. 前記第1位相差層の厚みがt[μm]であり、
    屈曲試験後の前記円偏光板の屈曲部分の断面において、前記第1位相差層の前記第1貼合層側の表面のうちの前記光学層側に最も近い位置と前記光学層側から最も遠い位置との間の厚み方向の距離がΔS[μm]であるとき、下記式(2)の関係を満たす、請求項1に記載の円偏光板。
      ΔS≦2t  (2)
    The thickness of the first retardation layer is t [μm], and the thickness is t [μm].
    In the cross section of the bent portion of the circularly polarizing plate after the bending test, the position closest to the optical layer side and the farthest from the optical layer side of the surface of the first retardation layer on the first bonding layer side. The circularly polarizing plate according to claim 1, which satisfies the relationship of the following formula (2) when the distance in the thickness direction from the position is ΔS [μm].
    ΔS ≦ 2t (2)
  3. 少なくとも直線偏光層を含む光学層、第1貼合層、第1位相差層、第2貼合層、及び第2位相差層をこの順に含む円偏光板であって、
    前記第1位相差層は、重合性液晶化合物の硬化物層である第1液晶層を含み、
    前記第1位相差層の厚みがt[μm]であり、
    屈曲試験後の前記円偏光板の屈曲部分の断面において、前記第1位相差層の前記第1貼合層側の表面のうちの前記光学層側に最も近い位置と前記光学層側から最も遠い位置との間の厚み方向の距離がΔS[μm]であるとき、下記式(2)の関係を満たす、円偏光板。
      ΔS≦2t  (2)
    A circularly polarizing plate including at least an optical layer including a linearly polarized light layer, a first bonded layer, a first retarded layer, a second bonded layer, and a second retarded layer in this order.
    The first retardation layer includes a first liquid crystal layer which is a cured product layer of a polymerizable liquid crystal compound.
    The thickness of the first retardation layer is t [μm], and the thickness is t [μm].
    In the cross section of the bent portion of the circularly polarizing plate after the bending test, the position closest to the optical layer side and the farthest from the optical layer side of the surface of the first retardation layer on the first bonding layer side. A circularly polarizing plate that satisfies the relationship of the following equation (2) when the distance from the position in the thickness direction is ΔS [μm].
    ΔS ≦ 2t (2)
  4. 前記第2位相差層は、重合性液晶化合物の硬化物層である第2液晶層を含む、請求項1~3のいずれか1項に記載の円偏光板。 The circularly polarizing plate according to any one of claims 1 to 3, wherein the second retardation layer includes a second liquid crystal layer which is a cured product layer of a polymerizable liquid crystal compound.
  5. 前記第1位相差層の厚みは、5μm以下である、請求項1~4のいずれか1項に記載の円偏光板。 The circularly polarizing plate according to any one of claims 1 to 4, wherein the thickness of the first retardation layer is 5 μm or less.
  6. 前記直線偏光層は、重合性液晶化合物の硬化物及び二色性色素を含む、請求項1~5のいずれか1項に記載の円偏光板。 The circular polarizing plate according to any one of claims 1 to 5, wherein the linearly polarizing layer contains a cured product of a polymerizable liquid crystal compound and a dichroic dye.
  7. 前記光学層は、前記直線偏光層の片面又は両面に保護層を有する偏光板である、請求項1~6のいずれか1項に記載の円偏光板。 The circular polarizing plate according to any one of claims 1 to 6, wherein the optical layer is a polarizing plate having a protective layer on one side or both sides of the linearly polarizing layer.
  8. 前記第1位相差層及び前記第2位相差層は、下記[a]又は[b]:
     [a]前記第1位相差層が1/2波長板であり、前記第2位相差層が1/4波長板である、
     [b]前記第1位相差層及び前記第2位相差層のうちの一方が逆波長分散性の1/4波長板であり、他方がポジティブCプレートである、
    の関係を満たす、請求項1~7のいずれか1項に記載の円偏光板。
    The first retardation layer and the second retardation layer are described in the following [a] or [b]:
    [A] The first retardation layer is a 1/2 wavelength plate, and the second retardation layer is a 1/4 wavelength plate.
    [B] One of the first retardation layer and the second retardation layer is a 1/4 wave plate having a reverse wavelength dispersion, and the other is a positive C plate.
    The circularly polarizing plate according to any one of claims 1 to 7, which satisfies the above relationship.
  9. 前記第1位相差層は、逆波長分散性の1/4波長板であり、
    前記第2位相差層は、ポジティブCプレートである、請求項1~8のいずれか1項に記載の円偏光板。
    The first retardation layer is a 1/4 wave plate having anti-wavelength dispersibility.
    The circularly polarizing plate according to any one of claims 1 to 8, wherein the second retardation layer is a positive C plate.
  10. 請求項1~9のいずれか1項に記載の円偏光板と、
    前記円偏光板の前記光学層側に積層された前面板と、を有する、光学積層体。
    The circularly polarizing plate according to any one of claims 1 to 9,
    An optical laminate having a front plate laminated on the optical layer side of the circularly polarizing plate.
  11. 請求項10に記載の光学積層体を備えた表示装置。 A display device including the optical laminate according to claim 10.
PCT/JP2021/008085 2020-03-19 2021-03-03 Circular polarizing sheet and optical laminate WO2021187098A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020227026846A KR20220150282A (en) 2020-03-19 2021-03-03 Circular Polarizer and Optical Laminate
CN202180021860.1A CN115280203A (en) 2020-03-19 2021-03-03 Circularly polarizing plate and optical laminate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020049391 2020-03-19
JP2020-049391 2020-03-19
JP2021021641A JP2021152640A (en) 2020-03-19 2021-02-15 Circularly polarizing plate and optical laminate
JP2021-021641 2021-02-15

Publications (1)

Publication Number Publication Date
WO2021187098A1 true WO2021187098A1 (en) 2021-09-23

Family

ID=77768116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008085 WO2021187098A1 (en) 2020-03-19 2021-03-03 Circular polarizing sheet and optical laminate

Country Status (4)

Country Link
KR (1) KR20220150282A (en)
CN (1) CN115280203A (en)
TW (1) TW202136874A (en)
WO (1) WO2021187098A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019022156A1 (en) * 2017-07-26 2019-01-31 富士フイルム株式会社 Organic electroluminescence display device
WO2019093474A1 (en) * 2017-11-10 2019-05-16 住友化学株式会社 Circularly polarizing plate and display device
JP2019091029A (en) * 2017-11-10 2019-06-13 住友化学株式会社 Composite retardation plate, optical laminate, and image display device
JP2019091030A (en) * 2017-11-10 2019-06-13 住友化学株式会社 Composite retardation plate, optical laminate, and image display device
WO2019216076A1 (en) * 2018-05-10 2019-11-14 住友化学株式会社 Optical laminate and display apparatus
JP2020003520A (en) * 2018-06-25 2020-01-09 住友化学株式会社 Laminate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019091091A (en) 2013-02-07 2019-06-13 日東電工株式会社 Circularly polarizing plate and bendable display device
JP6605682B2 (en) 2017-11-10 2019-11-13 住友化学株式会社 Circular polarizer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019022156A1 (en) * 2017-07-26 2019-01-31 富士フイルム株式会社 Organic electroluminescence display device
WO2019093474A1 (en) * 2017-11-10 2019-05-16 住友化学株式会社 Circularly polarizing plate and display device
JP2019091029A (en) * 2017-11-10 2019-06-13 住友化学株式会社 Composite retardation plate, optical laminate, and image display device
JP2019091030A (en) * 2017-11-10 2019-06-13 住友化学株式会社 Composite retardation plate, optical laminate, and image display device
WO2019216076A1 (en) * 2018-05-10 2019-11-14 住友化学株式会社 Optical laminate and display apparatus
JP2020003520A (en) * 2018-06-25 2020-01-09 住友化学株式会社 Laminate

Also Published As

Publication number Publication date
CN115280203A (en) 2022-11-01
TW202136874A (en) 2021-10-01
KR20220150282A (en) 2022-11-10

Similar Documents

Publication Publication Date Title
WO2021187099A1 (en) Circular polarizing sheet and optical laminate
JP6797163B2 (en) Optical laminate and display device
WO2021230010A1 (en) Circularly polarizing plate
WO2021085000A1 (en) Optical laminate and display device
JP2021152641A (en) Circularly polarizing plate and optical laminate
WO2021187098A1 (en) Circular polarizing sheet and optical laminate
WO2021149358A1 (en) Optical stack and production method therefor
WO2021176853A1 (en) Optical stack and flexible image display device
KR102312028B1 (en) Optical laminate and display device
WO2021176870A1 (en) Optical laminate and flexible image display device
WO2020230493A1 (en) Optical laminate and display device
JP2021144209A (en) Optical laminate
JP2021152640A (en) Circularly polarizing plate and optical laminate
WO2021182030A1 (en) Optical multilayer body
WO2021182056A1 (en) Optical laminate
WO2021149359A1 (en) Optical stack and display device
KR102345851B1 (en) Optical laminate and display device
WO2021166434A1 (en) Optical laminate and display device having same
WO2020195631A1 (en) Multilayer body and image display device
WO2021193348A1 (en) Laminate
WO2022255154A1 (en) Laminate
JP2022148467A (en) optical laminate
KR20210157340A (en) Laminate, image display device and manufacturing method
KR20210157339A (en) Laminate, image display device and manufacturing method
KR20210114868A (en) Optical laminate and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21770567

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21770567

Country of ref document: EP

Kind code of ref document: A1