WO2020230493A1 - Optical laminate and display device - Google Patents

Optical laminate and display device Download PDF

Info

Publication number
WO2020230493A1
WO2020230493A1 PCT/JP2020/016026 JP2020016026W WO2020230493A1 WO 2020230493 A1 WO2020230493 A1 WO 2020230493A1 JP 2020016026 W JP2020016026 W JP 2020016026W WO 2020230493 A1 WO2020230493 A1 WO 2020230493A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
sensitive adhesive
pressure
optical laminate
base material
Prior art date
Application number
PCT/JP2020/016026
Other languages
French (fr)
Japanese (ja)
Inventor
大山 姜
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN202080034958.6A priority Critical patent/CN113811799A/en
Priority to KR1020217036441A priority patent/KR20220006528A/en
Publication of WO2020230493A1 publication Critical patent/WO2020230493A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements

Definitions

  • the present invention relates to an optical laminate and a display device.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2017-054140 describes a touch panel laminate used in an optical display device.
  • the present invention provides an optical laminate including a front plate, a polarizing plate, and a touch sensor panel in this order, which has excellent impact resistance, and a display device including the optical laminate. The purpose.
  • the present invention provides the following optical laminate and display device.
  • An optical laminate including a front plate, a polarizing plate, a first adhesive layer, and a touch sensor panel in this order.
  • the polarizing plate is provided with a protective layer on the outermost surface on the side of the first pressure-sensitive adhesive layer.
  • a second adhesive layer provided on the surface of the touch sensor panel opposite to the first adhesive layer side is further provided.
  • the thickness of the first pressure-sensitive adhesive layer is t1 [ ⁇ m] and the thickness of the second pressure-sensitive adhesive layer is t2 [ ⁇ m]
  • the relationship of the following formula (2a) and the following formula (3a) is satisfied, according to [1].
  • an optical laminate having excellent impact resistance and a display device including the optical laminate.
  • FIG. 1 is a schematic cross-sectional view of an optical laminate according to an embodiment of the present invention.
  • the optical laminate 100 shown in FIG. 1 includes a front plate 10, a bonding layer 43, a polarizing plate 20, a first pressure-sensitive adhesive layer 41, a touch sensor panel 30, and a second pressure-sensitive adhesive layer 42 in this order.
  • the optical laminate 100 of the present invention may have a structure that does not have the second pressure-sensitive adhesive layer 42, or may have a structure that does not have the bonding layer 43.
  • the polarizing plate 20 is provided with a protective layer 201 on the outermost surface on the side of the first pressure-sensitive adhesive layer 41, and further includes a polarizing layer 200 including a polarizing element.
  • the touch sensor panel 30 includes a base material layer 32 and a transparent conductive layer 31 provided on the surface of the base material layer 32 on the side of the first pressure-sensitive adhesive layer 41.
  • the touch sensor panel 30 may have a configuration that does not have the base material layer 32.
  • the protective layer 201 of the polarizing plate 20 and the base material layer 32 of the touch sensor panel 30 are usually a single layer, they are composed of a plurality of layers including a surface treatment layer and a plurality of layers laminated without interposing a pressure-sensitive adhesive layer. As for the plurality of layers, it is assumed that the protective layer 201 or the base material layer 32 is formed by the entire multilayer.
  • toughness a [mJ / mm 3 ] is a value measured at room temperature (temperature 23 ° C.) by the method described in Examples described later.
  • the impact resistance can be improved by satisfying the relationship of the formula (1a) in the protective layer 201.
  • the protective layer 201 preferably satisfies the relationship of the formula (1b), and more preferably the relationship of the formula (1c).
  • the protective layer 201 may satisfy the relationship of the formula (1d).
  • the optical laminate may satisfy the relationship of the following formula (3b), further preferably the relationship of the following formula (3c), and the relationship of the following formula (3d). It is more preferable to satisfy.
  • the optical laminate may satisfy the relationship of the following formula (3e) or the following formula (3f).
  • the optical laminate 100 can be bent at least in the direction in which the front plate 10 is outward.
  • the term "flexible” means that the front plate 10 can be bent in the outward direction without causing cracks.
  • the optical laminate according to the present invention is excellent in impact resistance, and can be considered to be excellent in both impact resistance and bending resistance.
  • the shape of the optical laminate 100 in the plane direction may be, for example, a rectangular shape, preferably a rectangular shape having a long side and a short side, and more preferably a rectangle.
  • the length of the long side may be, for example, 10 mm or more and 1400 mm or less, preferably 50 mm or more and 600 mm or less.
  • the length of the short side is, for example, 5 mm or more and 800 mm or less, preferably 30 mm or more and 500 mm or less, and more preferably 50 mm or more and 300 mm or less.
  • Each layer constituting the optical laminate 100 may have corners R-processed, end portions notched, or perforated.
  • the thickness of the optical laminate 100 is not particularly limited because it varies depending on the functions required of the optical laminate, the application of the laminate, and the like, but is, for example, 20 ⁇ m or more and 1,000 ⁇ m or less, preferably 50 ⁇ m or more and 500 ⁇ m or less.
  • the optical laminate 100 can be used, for example, in a display device or the like.
  • the display device is not particularly limited, and examples thereof include an organic electroluminescence (organic EL) display device, an inorganic electroluminescence (inorganic EL) display device, a liquid crystal display device, and an electroluminescent display device.
  • the optical laminate 100 is suitable for a flexible display device.
  • the display device including the optical laminate of the present invention has excellent impact resistance.
  • the optical laminate 100 includes a front plate 10, a polarizing plate 20, and a touch sensor panel 30.
  • the optical laminate 100 preferably has a configuration that can be a part of the display device by being used in the display device, and the elements that the display device can have may be provided without limitation, for example, partial.
  • a colored layer, a protective film, a retardation film, etc. formed on the surface may be provided. These elements may be included in the polarizing layer 200 of the polarizing plate 20.
  • the material and thickness of the front plate 10 are not limited as long as it is a plate-like body capable of transmitting light, and the front plate 10 may be composed of only one layer or may be composed of two or more layers. Examples thereof include a resin plate-like body (for example, a resin plate, a resin sheet, a resin film, etc.), a glass plate-like body (for example, a glass plate, a glass film, etc.) and the like.
  • the front plate can be a layer constituting the outermost surface of the display device.
  • the front plate may be a laminate of a resin plate-like body and a glass plate-like body.
  • the thickness of the front plate 10 may be, for example, 30 ⁇ m or more and 500 ⁇ m or less, preferably 40 ⁇ m or more and 200 ⁇ m or less, and more preferably 50 ⁇ m or more and 100 ⁇ m or less.
  • the thickness of each layer can be measured according to the thickness measuring method described in Examples described later.
  • the resin plate-like body is not limited as long as it can transmit light.
  • the resin constituting the resin plate such as a resin film include triacetyl cellulose, acetyl cellulose butyrate, ethylene-vinyl acetate copolymer, propionyl cellulose, butyryl cellulose, acetyl propionyl cellulose, polyester, and polystyrene.
  • Polyamide polyetherimide, poly (meth) acrylic, polyimide, polyether sulfone, polysulfone, polyethylene, polypropylene, polymethylpentene, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, polyvinyl acetal, polyether ketone, polyether ether ketone , Polyether sulfone, polymethyl methacrylate, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polycarbonate, polyamideimide and the like. These polymers can be used alone or in combination of two or more. From the viewpoint of improving strength and transparency, a resin film formed of a polymer such as polyimide, polyamide, or polyamideimide is preferable.
  • the front plate 10 may be a film provided with a hard coat layer on at least one surface of the base film.
  • a film made of the above resin can be used as the base film.
  • the hard coat layer may be formed on one surface of the base film, or may be formed on both surfaces.
  • the hard coat layer is, for example, a cured layer of an ultraviolet curable resin.
  • the ultraviolet curable resin include acrylic resin, silicone resin, polyester resin, urethane resin, amide resin, epoxy resin and the like.
  • the hard coat layer may contain additives in order to improve the hardness. Additives are not limited and include inorganic fine particles, organic fine particles, or mixtures thereof.
  • the front plate 10 is a glass plate
  • tempered glass for a display is preferably used as the glass plate.
  • the thickness of the glass plate can be, for example, 10 ⁇ m or more and 1000 ⁇ m or less, 20 ⁇ m or more and 500 ⁇ m or less, or 50 ⁇ m or more and 500 ⁇ m or less.
  • the front plate 10 not only has a function of protecting the front surface (screen) of the display device (function as a window film), but also has a touch detected by the touch sensor panel 30. It may also have a function as an operation surface for performing the above, and may further have a blue light cut function, a viewing angle adjusting function, and the like.
  • the touch sensor panel 30 is a sensor capable of detecting the position touched by the front plate 10, and the detection method is not limited as long as it has the transparent conductive layer 31, and the resistance film method and the capacitance are not limited.
  • Examples of touch sensor panels include a capacitance method, an optical sensor method, an ultrasonic method, an electromagnetic induction coupling method, and a surface acoustic wave method.
  • the capacitance type touch sensor panel is preferably used in terms of low cost, fast reaction speed, and thin film formation.
  • the touch sensor panel 30 includes a base material layer 32 and a transparent conductive layer 31 provided on the surface of the base material layer 32 on the first adhesive layer 41 side from the viewpoint of improving impact resistance. It is preferably configured.
  • the base material layer 32 and the transparent conductive layer 31 may be in contact with each other (for example, the first described later).
  • the touch sensor panel manufactured by the method) the base material layer 32 and the transparent conductive layer 31 may not be in contact with each other (for example, the touch sensor panel manufactured by the second method described later).
  • the touch sensor panel 30 may include an adhesive layer, a separation layer, a protective layer, and the like in addition to the base material layer 32 and the transparent conductive layer 31.
  • the adhesive layer include an adhesive layer and an adhesive layer.
  • An example of a capacitance type touch sensor panel is composed of a base material layer, a transparent conductive layer for position detection provided on the surface of the base material layer, and a touch position detection circuit.
  • a display device provided with an optical laminate having a capacitance type touch sensor panel
  • the transparent conductive layer is grounded via the capacitance of the human body at the touched point. Will be done.
  • the touch position detection circuit detects the grounding of the transparent conductive layer, and the touched position is detected.
  • the transparent conductive layer may be a transparent conductive layer made of a metal oxide such as ITO, or may be a metal layer made of a metal such as aluminum, copper, silver, gold, or an alloy thereof.
  • the separation layer can be a layer formed on a substrate such as glass and for separating the transparent conductive layer formed on the separation layer from the substrate together with the separation layer.
  • the separation layer is preferably an inorganic layer or an organic layer. Examples of the material forming the inorganic layer include silicon oxide.
  • a (meth) acrylic resin composition, an epoxy resin composition, a polyimide resin composition, or the like can be used as the material for forming the organic material layer.
  • the touch sensor panel 30 may be provided with a protective layer that is in contact with the transparent conductive layer 31 and protects the conductive layer.
  • the protective layer contains at least one of an organic insulating film and an inorganic insulating film, and these films can be formed by a spin coating method, a sputtering method, a vapor deposition method or the like.
  • the touch sensor panel 30 can be manufactured, for example, as follows.
  • the base material layer 32 is first laminated on the glass substrate via the adhesive layer.
  • a transparent conductive layer 31 patterned by photolithography is formed on the base material layer 32.
  • the glass substrate and the base material layer 32 are separated to obtain a touch sensor panel 30 composed of the transparent conductive layer 31 and the base material layer 32.
  • a separation layer is first formed on the glass substrate, and if necessary, a protective layer is formed on the separation layer.
  • a transparent conductive layer 31 patterned by photolithography is formed on the separation layer (or protective layer).
  • a peelable protective film is laminated on the transparent conductive layer 31, and the transparent conductive layer 31 to the separation layer are transferred to separate the glass substrate.
  • the sensor panel 30 is obtained.
  • the laminated body composed of the transparent conductive layer 31 and the separation layer may be used as the touch sensor panel 30 without being bonded to the base material layer 32.
  • the base material layer 32 of the touch sensor panel includes triacetyl cellulose, polyethylene terephthalate, cycloolefin polymer, polyethylene naphthalate, polyolefin, polycycloolefin, polycarbonate, polyether sulfone, polyarylate, polyimide, polyamide, polystyrene, polynorbornene and the like. Resin film can be mentioned. Polyethylene terephthalate is preferably used from the viewpoint of easily forming a base material layer having a desired toughness.
  • the base material layer 32 of the touch sensor panel preferably has a thickness of 50 ⁇ m or less, and more preferably 30 ⁇ m or less, from the viewpoint of easily forming an optical laminate having excellent bending resistance.
  • the base material layer 32 of the touch sensor panel has a thickness of, for example, 5 ⁇ m or more.
  • Examples of the polarizing plate 20 include a stretched film on which a dichroic dye is adsorbed, a film containing a liquid crystal layer coated with a composition containing the dichroic dye and a polymerizable compound and cured as a polarizer, and the like.
  • the polarizing plate 20 includes a protective layer 201 in addition to a polarizing element, and further includes a retardation layer and the like.
  • dichroic dye specifically, iodine or a dichroic organic dye is used.
  • dichroic organic dyes C.I. I. Included are dichroic direct dyes consisting of disuazo compounds such as DIRECT RED 39 and dichroic direct dyes consisting of compounds such as trisazo and tetrakisazo.
  • the polarizer obtained by applying and curing the composition containing the dichroic dye and the polymerizable compound is, for example, a composition containing a dichroic dye having a liquid crystal property or a composition containing a dichroic dye and a polymerizable liquid crystal. Is applied and cured to form a liquid crystal layer.
  • a liquid crystal layer to which a composition containing a dichroic dye and a polymerizable compound is applied and cured is preferable because there is no limitation in the bending direction as compared with a stretched film on which a dichroic dye is adsorbed.
  • a polarizing plate having a stretched film having a dichroic dye adsorbed as a polarizing plate will be described.
  • a stretched film on which a dichroic dye, which is a polarizer, is adsorbed is usually bicolorized by a step of uniaxially stretching the polyvinyl alcohol-based resin film and dyeing the polyvinyl alcohol-based resin film with the bicolor dye. It is produced through a step of adsorbing a dye, a step of treating a polyvinyl alcohol-based resin film on which a bicolor dye is adsorbed with an aqueous boric acid solution, and a step of washing with water after the treatment with the aqueous boric acid solution.
  • Such a polarizing element may be used as it is as a polarizing plate, or a polarizing plate having a transparent protective film bonded to one side or both sides thereof may be used as a polarizing plate.
  • the thickness of the polarizer thus obtained is preferably 2 ⁇ m or more and 40 ⁇ m or less.
  • the polyvinyl alcohol-based resin is obtained by saponifying the polyvinyl acetate-based resin.
  • the polyvinyl acetate-based resin in addition to polyvinyl acetate which is a homopolymer of vinyl acetate, a copolymer of vinyl acetate and another monomer copolymerizable therewith is used.
  • examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and acrylamides having an ammonium group.
  • the degree of saponification of the polyvinyl alcohol-based resin is usually 85 mol% or more and 100 mol% or less, preferably 98 mol% or more.
  • the polyvinyl alcohol-based resin may be modified, and for example, polyvinyl formal or polyvinyl acetal modified with aldehydes can also be used.
  • the degree of polymerization of the polyvinyl alcohol-based resin is usually about 1,000 or more and 10,000 or less, and preferably 1,500 or more and 5,000 or less.
  • a film formed of such a polyvinyl alcohol-based resin is used as a raw film for a polarizer.
  • the method for forming the film of the polyvinyl alcohol-based resin is not particularly limited, and the film can be formed by a known method.
  • the film thickness of the polyvinyl alcohol-based raw film can be, for example, about 10 ⁇ m or more and 150 ⁇ m or less.
  • the uniaxial stretching of the polyvinyl alcohol-based resin film can be performed before dyeing with a dichroic dye, at the same time as dyeing, or after dyeing.
  • the uniaxial stretching may be performed before the boric acid treatment or during the boric acid treatment. It is also possible to perform uniaxial stretching at these multiple stages.
  • rolls having different peripheral speeds may be uniaxially stretched, or thermal rolls may be used to uniaxially stretch the rolls.
  • the uniaxial stretching may be a dry stretching in which stretching is performed in the atmosphere, or a wet stretching in which the polyvinyl alcohol-based resin film is swollen using a solvent.
  • the draw ratio is usually about 3 to 8 times.
  • the thickness of the polarizing plate provided with the stretched film as a polarizer may be, for example, 1 ⁇ m or more and 400 ⁇ m or less, and may be 5 ⁇ m or more and 100 ⁇ m or less.
  • the material of the protective film to be bonded to one side or both sides of the polarizer is not particularly limited, but is, for example, a cellulose acetate-based film made of a resin such as a cyclic polyolefin-based resin film, triacetyl cellulose, or diacetyl cellulose.
  • Films known in the art such as resin films, polyester resin films made of resins such as polyethylene terephthalate, polyethylene naphthalate, and polybutylene terephthalate, polycarbonate resin films, (meth) acrylic resin films, and polypropylene resin films. Can be mentioned.
  • the thickness of the protective film is usually 300 ⁇ m or less, preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less, and usually 5 ⁇ m or more, preferably 20 ⁇ m or more. ..
  • the protective film may or may not have a phase difference.
  • the liquid crystal layer formed by applying a composition containing a dichroic dye and a polymerizable compound used as a polarizer includes a composition containing a dichroic dye having liquid crystal properties, or a dichroic dye and a liquid crystal. Examples thereof include a liquid crystal layer obtained by applying a composition containing a compound to a substrate and curing the composition.
  • the liquid crystal layer may be used as a polarizing plate by peeling off the base material or together with the base material, or may be used as a polarizing plate in a configuration having a protective film on one side or both sides thereof.
  • the protective film include those having the same polarizing plate as the polarizing plate which is a stretched film.
  • the liquid crystal layer obtained by applying and curing a composition containing a dichroic dye and a polymerizable compound is preferably thin, but if it is too thin, the strength is lowered and the processability tends to be inferior.
  • the thickness of the liquid crystal layer is usually 20 ⁇ m or less, preferably 5 ⁇ m or less, and more preferably 0.5 ⁇ m or more and 3 ⁇ m or less.
  • the thickness of the polarizing plate having the liquid crystal layer as a polarizer may be, for example, 1 ⁇ m or more and 50 ⁇ m or less.
  • the polarizing plate can include one layer or two or more retardation layers.
  • the retardation layer is a layer that gives a predetermined phase difference to light, and examples thereof include optical compensation layers such as a 1/2 wavelength layer, a 1/4 wavelength layer, and a positive C layer.
  • the retardation layer may be a retardation layer having a positive wavelength dispersion or a retardation layer having a reverse wavelength dispersion.
  • the retardation layer may be an element in the retardation body that is configured together with other layers. Examples of the layer other than the retardation layer in the retardation body include a base material layer, an alignment layer, a protective layer, and the like.
  • the other layers can be those that do not affect the value of the phase difference.
  • the retardation layer examples include a liquid crystal layer containing a cured product of a polymerizable liquid crystal compound, or a stretched film.
  • the retardation layer which is a liquid crystal layer, is generally easier to thin than the retardation layer, which is a stretched film.
  • the thickness is preferably 0.5 ⁇ m to 10 ⁇ m, and more preferably 0.5 ⁇ m to 5 ⁇ m.
  • the configuration of the polarizing plate 20 As the configuration of the polarizing plate 20, the following configuration including two retardation layers together with a polarizing element is exemplified. From the side closest to the front plate 10 i) A combination of a polarizer, a 1/2 wavelength layer, and a 1/4 wavelength layer, ii) Polarizer, 1/4 wavelength layer, positive C layer combination, And so on.
  • the configurations of i) and ii) above can provide a circular polarizing plate.
  • the optical laminate can be prevented from reflecting external light by providing the polarizing plate 20 with a circular polarizing plate.
  • the in-plane retardation value of Re (550) at a wavelength of 550 nm preferably satisfies 210 nm ⁇ Re (550) ⁇ 300 nm. Further, it is more preferable to satisfy 220 nm ⁇ Re (550) ⁇ 290 nm.
  • the wavelength is 550 nm.
  • Re (550) which is an in-plane retardation value at a wavelength of 550 nm, satisfies 100 nm ⁇ Re (550) ⁇ 160 nm. Further, it is more preferable to satisfy 110 nm ⁇ Re (550) ⁇ 150 nm.
  • the inverse wavelength dispersibility is an optical characteristic in which the in-plane retardation value at a short wavelength is smaller than the in-plane retardation value at a long wavelength, and the following equation (4): Re (450) ⁇ Re (550) ⁇ Re (650) (4) To meet.
  • Examples of the optical compensation layer include a positive A layer and a positive C layer.
  • the positive A layer has Nx> Ny when the refractive index in the slow axis direction in the plane is Nx, the refractive index in the phase advance axis direction in the plane is Ny, and the refractive index in the thickness direction is Nz. Satisfy the relationship.
  • the positive A layer preferably satisfies the relationship of Nx> Ny ⁇ Nz.
  • the positive A layer can also function as a quarter wavelength layer.
  • the positive C layer satisfies the relationship of Nz> Nx ⁇ Ny.
  • the optical characteristics of the retardation layer can be adjusted by the orientation state of the liquid crystal compound constituting the retardation layer or the stretching method of the stretched film constituting the retardation layer. By appropriately adjusting the optical characteristics of the retardation layer in the polarizing plate 20, the polarizing plate 20 having antireflection performance can be obtained.
  • FIG. 2 is a schematic cross-sectional view schematically showing an example of a retardation body including a retardation layer which is a liquid crystal layer and another layer.
  • the retardation body 50 is formed by laminating a base material layer 51, an alignment layer 52, and a retardation layer 53 which is a liquid crystal layer in this order.
  • the retardation body 50 is not limited to the configuration shown in FIG. 2 as long as it includes the retardation layer 53 which is a liquid crystal layer, and only the alignment layer 52 and the retardation layer 53 are separated from the base material layer 51. It may be composed of only the retardation layer 53 which is a liquid crystal layer by peeling off the base material layer 51 and the alignment layer 52.
  • FIG. 3 is a schematic cross-sectional view schematically showing another example of a retardation body including a retardation layer which is a liquid crystal layer and another layer.
  • the retardation body 55 shown in FIG. 3 is formed by laminating a base material layer 56, an adhesive layer 57, and a retardation layer 53 in this order.
  • the retardation layer 53 of the retardation body 50 shown in FIG. 2 and another base material layer 56 are bonded to each other via an adhesive layer 57, and then the base material layer 51 or the base material layer 51 is bonded.
  • the alignment layer 52 is peeled off and formed.
  • the adhesive layer 57 include an adhesive layer and an adhesive layer.
  • the base material layer 51 has a function as a support layer for supporting the alignment layer 52 formed on the base material layer 51 and the retardation layer 53 which is a liquid crystal layer.
  • the base material layer 51 is preferably a film made of a resin material.
  • the resin material of the base material layer 51 for example, a resin material having excellent transparency, mechanical strength, thermal stability, stretchability, etc. is used.
  • polyolefin resins such as polyethylene and polypropylene; cyclic polyolefin resins such as norbornene polymers; polyester resins such as polyethylene terephthalate and polyethylene naphthalate; (meth) acrylic acid, poly (meth) methyl acrylate and the like.
  • (meth) acrylic acid means "at least one of acrylic acid and methacrylic acid”.
  • the base material layer 51 may be a single layer obtained by mixing one or more of the above resins, or may have a multi-layer structure of two or more layers.
  • any additive may be added to the resin material forming the resin film.
  • the additive include an ultraviolet absorber, an antioxidant, a lubricant, a plasticizer, a mold release agent, a colorant, a flame retardant, a nucleating agent, an antistatic agent, a pigment, and a colorant.
  • the thickness of the base material layer 51 is not particularly limited, but is generally preferably 5 to 200 ⁇ m, more preferably 10 to 200 ⁇ m, and 10 to 150 ⁇ m from the viewpoint of workability such as strength and handleability. It is more preferable to have.
  • At least the surface of the base layer 51 on the side where the alignment layer 52 is formed may be subjected to corona treatment, plasma treatment, flame treatment, or the like.
  • a primer layer or the like may be formed.
  • the alignment layer 52 has an orientation regulating force that orients the liquid crystal compound contained in the retardation layer 53 of the liquid crystal layer formed on the alignment layer 52 in a desired direction.
  • the oriented layer 52 include an oriented polymer layer formed of an oriented polymer, a photo-aligned polymer layer formed of a photo-aligned polymer, and a grub-aligned layer having an uneven pattern or a plurality of grubs (grooves) on the layer surface. Can be done.
  • the thickness of the alignment layer 52 is usually 0.01 to 10 ⁇ m, preferably 0.01 to 5 ⁇ m.
  • the oriented polymer layer can be formed by applying a composition in which the oriented polymer is dissolved in a solvent to the base material layer 51 to remove the solvent, and if necessary, rubbing treatment.
  • the orientation regulating force can be arbitrarily adjusted in the orientation polymer layer formed of the orientation polymer depending on the surface condition of the orientation polymer and the rubbing conditions.
  • the photoaligned polymer layer can be formed by applying a composition containing a polymer or monomer having a photoreactive group and a solvent to the base material layer 51 and irradiating it with polarized light.
  • the orientation-regulating force can be arbitrarily adjusted depending on the polarization irradiation conditions of the photo-alignment polymer.
  • the grub alignment layer is active on a plate-shaped master having grooves on the surface, for example, a method of forming an uneven pattern by exposure, development, etc. through an exposure mask having a pattern-shaped slit on the surface of a photosensitive polyimide film.
  • the retardation layer 53 which is a liquid crystal layer, is not particularly limited as long as it gives a predetermined phase difference to light, and for example, an optical compensation layer such as a 1/2 wavelength layer, a 1/4 wavelength layer, and a positive C layer can be used. Can be mentioned.
  • the retardation layer 53 which is a liquid crystal layer, can be formed by using a known liquid crystal compound.
  • the type of the liquid crystal compound is not particularly limited, and a rod-shaped liquid crystal compound, a disk-shaped liquid crystal compound, and a mixture thereof can be used.
  • the liquid crystal compound may be a polymer liquid crystal compound, a polymerizable liquid crystal compound, or a mixture thereof. Examples of the liquid crystal compound include JP-A-11-513019, JP-A-2005-289980, JP-A-2007-108732, JP-A-2010-2404038, JP-A-2010-31223, and JP-A.
  • a composition containing the polymerizable liquid crystal compound is applied onto the alignment layer 52 to form a coating film, and the coating film is cured to form a retardation layer 53.
  • the retardation layer 53 formed in this way contains a cured product of the polymerizable liquid crystal compound.
  • the thickness of the retardation layer 53 is preferably 0.5 ⁇ m to 10 ⁇ m, and more preferably 0.5 to 5 ⁇ m.
  • the composition containing the polymerizable liquid crystal compound may contain a polymerization initiator, a polymerizable monomer, a surfactant, a solvent, an adhesion improver, a plasticizer, an orienting agent and the like in addition to the liquid crystal compound.
  • a polymerization initiator such as a die coating method.
  • a surfactant such as a surfactant, a solvent, an adhesion improver, a plasticizer, an orienting agent and the like in addition to the liquid crystal compound.
  • Examples of the method for applying the composition containing the polymerizable liquid crystal compound include known methods such as a die coating method.
  • Examples of the curing method of the composition containing the polymerizable liquid crystal compound include known methods such as irradiation with active energy rays (for example, ultraviolet rays).
  • the stretched film is usually obtained by stretching the base material.
  • a roll (winding body) in which the base material is wound on a roll is prepared, and the base material is continuously unwound and unwound from the winding body.
  • the base material is transferred to the heating furnace.
  • the set temperature of the heating furnace is in the range of the base material near the glass transition temperature (° C) to [glass transition temperature +100] (° C), preferably near the glass transition temperature (° C) to [glass transition temperature +50] (° C). The range of.
  • the transport direction and tension are adjusted to incline at an arbitrary angle to perform uniaxial or biaxial thermal stretching treatment.
  • the stretching ratio is usually 1.1 to 6 times, preferably 1.1 to 3.5 times.
  • the method of stretching in the oblique direction is not particularly limited as long as the orientation axis can be continuously tilted to a desired angle, and a known stretching method can be adopted.
  • a stretching method include the methods described in JP-A-50-83482 and JP-A-2-113920.
  • the thickness after stretching is determined by the thickness before stretching and the stretching ratio.
  • the base material is usually a transparent base material.
  • the transparent base material means a base material having transparency capable of transmitting light, particularly visible light, and the transparency means a characteristic that the transmittance for light having a wavelength of 380 to 780 nm is 80% or more.
  • Specific examples of the transparent base material include a translucent resin base material.
  • Resins constituting the translucent resin base material include polyolefins such as polyethylene and polypropylene; cyclic olefin resins such as norbornene-based polymers; polyvinyl alcohol; polyethylene terephthalate; polymethacrylic acid ester; polyacrylic acid ester; triacetylcellulose, Cellulose esters such as diacetyl cellulose and cellulose acetate propionate; polyethylene naphthalate; polycarbonate; polysulfone; polyethersulfone; polyether ketone; polyphenylene sulfide and polyphenylene oxide. From the viewpoint of availability and transparency, polyethylene terephthalate, polymethacrylic acid ester, cellulose ester, cyclic olefin resin or polycarbonate are preferable.
  • Cellulose ester is an esterified part or all of the hydroxyl groups contained in cellulose and can be easily obtained from the market. Cellulose ester substrates are also readily available on the market. Examples of commercially available cellulose ester base materials include "Fujitac (registered trademark) film” (FUJIFILM Corporation); “KC8UX2M”, “KC8UY” and “KC4UY” (Konica Minolta Opto Co., Ltd.). ..
  • polymethacrylic acid ester and polyacrylic acid ester may be collectively referred to as (meth) acrylic resin. ) Is readily available from the market.
  • Examples of the (meth) acrylic resin include homopolymers of methacrylic acid alkyl esters or acrylic acid alkyl esters, and copolymers of methacrylic acid alkyl esters and acrylic acid alkyl esters.
  • Specific examples of the methacrylic acid alkyl ester include methyl methacrylate, ethyl methacrylate and propyl methacrylate
  • specific examples of the acrylic acid alkyl ester include methyl acrylate, ethyl acrylate and propyl acrylate.
  • the (meth) acrylic resin those commercially available as general-purpose (meth) acrylic resins can be used.
  • As the (meth) acrylic resin what is called an impact resistant (meth) acrylic resin may be used.
  • the rubber particles are preferably acrylic particles.
  • the acrylic rubber particles have rubber elasticity obtained by polymerizing an acrylic monomer containing an acrylic acid alkyl ester as a main component, such as butyl acrylate or 2-ethylhexyl acrylate, in the presence of a polyfunctional monomer. It is a particle.
  • the acrylic rubber particles may be formed by forming such particles having rubber elasticity in a single layer, or may be a multilayer structure having at least one rubber elastic layer.
  • acrylic rubber particles having a multi-layer structure those having the above-mentioned particles having rubber elasticity as nuclei and covering them with a hard methacrylic acid alkyl ester polymer, and hard methacrylic acid alkyl ester polymers are used.
  • the rubber particles formed by the elastic layer usually have an average diameter in the range of about 50 to 400 nm.
  • the content of rubber particles in the (meth) acrylic resin is usually about 5 to 50 parts by mass per 100 parts by mass of the (meth) acrylic resin. Since the (meth) acrylic resin and the acrylic rubber particles are commercially available in a mixed state, the commercially available products can be used. Examples of commercially available (meth) acrylic resins containing acrylic rubber particles include "HT55X” and "Technoloy S001” sold by Sumitomo Chemical Co., Ltd. "Technoloy S001" is sold in the form of a film.
  • Cyclic olefin resin is easily available on the market.
  • Commercially available cyclic olefin resins include "Topas” (registered trademark) [Ticona (Germany)], “Arton” (registered trademark) [JSR Co., Ltd.], “ZEONOR” (registered trademark) [Japan. Zeon Co., Ltd.], “ZEONEX” (registered trademark) [Zeon Corporation] and "Apel” (registered trademark) [Mitsui Chemicals Co., Ltd.].
  • Such a cyclic olefin resin can be used as a base material by forming a film by a known means such as a solvent casting method or a melt extrusion method.
  • cyclic olefin resin base material can also be used.
  • Commercially available cyclic olefin resin base materials include "Sushina” (registered trademark) [Sekisui Chemical Co., Ltd.], "SCA40” (registered trademark) [Sekisui Chemical Co., Ltd.], and “Zeonor Film” (registered trademark). ) [Optes Co., Ltd.] and "Arton Film” (registered trademark) [JSR Co., Ltd.].
  • the cyclic olefin resin is a copolymer of a cyclic olefin and an aromatic compound having a chain olefin or a vinyl group
  • the content ratio of the structural unit derived from the cyclic olefin is the total structural unit of the copolymer. On the other hand, it is usually in the range of 50 mol% or less, preferably 15 to 50 mol%.
  • the chain olefin include ethylene and propylene
  • examples of the aromatic compound having a vinyl group include styrene, ⁇ -methylstyrene and alkyl-substituted styrene.
  • the cyclic olefin resin is a ternary copolymer of a cyclic olefin, a chain olefin, and an aromatic compound having a vinyl group
  • the content ratio of the structural unit derived from the chain olefin is the content of the copolymer.
  • the content ratio of the structural unit derived from the aromatic compound having a vinyl group is usually 5 to 80 mol% with respect to the total structural unit of the copolymer. Is.
  • Such a ternary copolymer has an advantage that the amount of expensive cyclic olefins used can be relatively small in the production thereof.
  • the protective layer 201 included in the polarizing plate 200 is not particularly limited as long as it satisfies the relational expression of the formula (1a).
  • the retardation body 50 shown in FIG. 2 or the retardation body 55 shown in FIG. 3 is included, and the base material layer 51 of the retardation body 50 or the base material layer 56 of the retardation body 55 is protected.
  • Examples include the configuration of layer 201. In this case, the above description of the base material layers 51 and 56 applies as it is to the description of the protective layer 201.
  • the protective layer 201 can be the base material layers 51 and 56 that support the 1/4 wavelength layer, and the first adhesive of the protective layer 201 can be formed.
  • a configuration in which a 1/4 wavelength layer is provided on the surface opposite to the agent layer 41 side can be mentioned.
  • the protective layer 201 can be the base material layers 51 and 56 that support the positive C layer, and the first pressure-sensitive adhesive layer of the protective layer 201 can be used.
  • a configuration in which a positive C layer is provided on the surface on the side opposite to the 41 side can be mentioned.
  • a retardation layer is provided on the surface of the protection layer 201, and the protection layer 201 and the retardation layer may be in contact with each other (for example, shown in FIG. 2).
  • the retardation body 50), the protective layer 201 and the retardation layer may not be in contact with each other (for example, the retardation body 55 shown in FIG. 3).
  • Another example of the configuration of the polarizing plate 200 is a configuration in which the protective film 201 is the protective film bonded to the surface of the polarizing element on the first pressure-sensitive adhesive layer 41 side.
  • the above description of the protective film is directly applied as the description of the protective layer 201.
  • the protective layer 201 is bonded to the surface of the polarizing plate 200 on the side of the first pressure-sensitive adhesive layer 41 to form a constituent element of the polarizing plate 200.
  • the protective layer 201 the above-mentioned base material layer 51 or the same one as described in the above-mentioned protective film can be used.
  • the first pressure-sensitive adhesive layer 41 is a layer interposed between the polarizing plate 20 and the touch sensor panel 30.
  • the second adhesive layer 42 is a layer provided on the surface of the touch sensor panel 30 opposite to the polarizing plate 20 side, and is used to bond the optical laminate 100 to another member such as a display panel. Can be used for.
  • a release film may be attached to the surface of the second pressure-sensitive adhesive layer 42.
  • the first pressure-sensitive adhesive layer 41 and the second pressure-sensitive adhesive layer 42 are mainly composed of resins such as (meth) acrylic resin, rubber resin, urethane resin, ester resin, silicone resin, and polyvinyl ether resin. It can be composed of a pressure-sensitive adhesive composition. Among them, a pressure-sensitive adhesive composition using a (meth) acrylic resin having excellent transparency, weather resistance, heat resistance and the like as a base polymer is preferable.
  • the pressure-sensitive adhesive composition may be an active energy ray-curable type or a thermosetting type.
  • Examples of the (meth) acrylic resin (base polymer) used in the pressure-sensitive adhesive composition include butyl (meth) acrylate, ethyl (meth) acrylate, isooctyl (meth) acrylate, and 2- (meth) acrylate.
  • a polymer or copolymer containing one or more (meth) acrylic acid esters such as ethylhexyl as a monomer is preferably used. It is preferable that the base polymer is copolymerized with a polar monomer.
  • Examples of the polar monomer include (meth) acrylic acid, 2-hydroxypropyl (meth) acrylate, hydroxyethyl (meth) acrylate, (meth) acrylamide, N, N-dimethylaminoethyl (meth) acrylate, and glycidyl ( Examples thereof include monomers having a carboxyl group, a hydroxyl group, an amide group, an amino group, an epoxy group and the like, such as meta) acrylate.
  • the pressure-sensitive adhesive composition may contain only the above-mentioned base polymer, but usually further contains a cross-linking agent.
  • the cross-linking agent is a divalent or higher metal ion that forms a carboxylic acid metal salt with a carboxyl group; a polyamine compound that forms an amide bond with a carboxyl group; poly.
  • Epoxy compounds and polyols that form an ester bond with a carboxyl group; polyisocyanate compounds that form an amide bond with a carboxyl group are exemplified. Of these, polyisocyanate compounds are preferable.
  • the active energy ray-curable pressure-sensitive adhesive composition has a property of being cured by being irradiated with active energy rays such as ultraviolet rays and electron beams, and has adhesiveness even before irradiation with active energy rays. It is a pressure-sensitive adhesive composition having the property of being able to adhere to an adherend such as, etc., and being cured by irradiation with active energy rays to adjust the adhesion force.
  • the active energy ray-curable pressure-sensitive adhesive composition is preferably an ultraviolet-curable type.
  • the active energy ray-curable pressure-sensitive adhesive composition further contains an active energy ray-polymerizable compound in addition to the base polymer and the cross-linking agent. Further, if necessary, a photopolymerization initiator, a photosensitizer, or the like may be contained.
  • the pressure-sensitive adhesive composition includes fine particles for imparting light scattering properties, beads (resin beads, glass beads, etc.), glass fibers, resins other than the base polymer, pressure-sensitive imparting agents, and fillers (metal powders and other inorganic powders). Etc.), antioxidants, UV absorbers, dyes, pigments, colorants, antifoaming agents, corrosion inhibitors, photopolymerization initiators and other additives can be included.
  • the formed pressure-sensitive adhesive layer can be irradiated with active energy rays to obtain a cured product having a desired degree of curing.
  • the first pressure-sensitive adhesive layer 41 and the second pressure-sensitive adhesive layer 42 may be made of the same material or different materials.
  • the thickness t1 of the first pressure-sensitive adhesive layer 41 and the thickness t2 of the second pressure-sensitive adhesive layer are not particularly limited, and are, for example, 3 ⁇ m or more and 100 ⁇ m or less, preferably 5 ⁇ m or more and 50 ⁇ m or less, and 20 ⁇ m or more. There may be.
  • the thickness t1 of the first pressure-sensitive adhesive layer 41 and the thickness t2 of the second pressure-sensitive adhesive layer are preferably selected so as to satisfy the above formulas (2a) and (3a).
  • the storage elastic modulus of the first pressure-sensitive adhesive layer 41 and the second pressure-sensitive adhesive layer 42 at a temperature of 25 ° C. is preferably 0.005 MPa or more and 1.0 MPa or less, and is 0.01 MPa or more and 0.5 MPa or less, respectively. Is more preferable, and 0.01 MPa or more and 0.2 MPa or less is further preferable.
  • the storage modulus is measured by the method described in Examples below.
  • the bonding layer 43 is a layer interposed between the polarizing plate 20 and the front plate 10.
  • the bonding layer 43 is not particularly limited, and can be formed from, for example, an adhesive layer, an aqueous adhesive layer, an active energy ray-curable adhesive layer, or the like.
  • the bonding layer 43 is formed from a pressure-sensitive adhesive, the pressure-sensitive adhesive composition described above can be used.
  • the thickness of the bonded layer 43 is preferably 0.1 ⁇ m to 50 ⁇ m, more preferably 0.1 ⁇ m to 10 ⁇ m, and even more preferably 0.5 ⁇ m to 5 ⁇ m.
  • the front plates A1, protective layers B1 to B4, polarizing plates C1 to C4, touch sensor panels D1 and D2, and adhesive sheets E1 to E5 shown below were prepared.
  • Front plate A1 A composition for a hard coat layer is coated on the surface of a transparent base film (polyamideimide film, thickness 50 ⁇ m), and then the solvent is dried and UV-cured to obtain a hard coat layer having a thickness of 10 ⁇ m on both surfaces of the base film.
  • a front plate A1 (thickness 70 ⁇ m, tensile elastic modulus 6 GPa, length 177 mm ⁇ width 105 mm) was produced.
  • the composition for the hard coat layer is 30 parts by weight of multifunctional acrylate (MIWON Specialty Chemical, MIRAMER M340), 50 parts by weight of nanosilica sol (average particle size 12 nm, solid content 40%) dispersed in propylene glycol monomethyl ether, ethyl acetate. 17 parts by weight of photopolymerization initiator (Ciba, I184), 2.7 parts by weight, and 0.3 parts by weight of fluorine-based additive (Shinetsu Chemical Industry Co., Ltd., KY1203) are blended using a stirrer to mix polypropylene (PP). )
  • a composition for a hard coat layer was produced by filtering using a filter made of a material.
  • Protective layer B1 As the protective layer B1, a polyethylene terephthalate (PET) film (manufactured by SKC, trade name: SH34) having a thickness of 23 ⁇ m was prepared. When the toughness of the PET film was measured by the method described later, it was 140 mJ / mm 3 .
  • PET polyethylene terephthalate
  • TAC triacetyl cellulose
  • TAC triacetyl cellulose
  • Protective layer B4 As the protective layer B4, a cyclic olefin resin (COP) film having a thickness of 40 ⁇ m (manufactured by Nippon Zeon Corporation, trade name: ZF-16) was prepared. When the toughness of the COP film was measured by the method described later, it was 4 mJ / mm 3 .
  • COP cyclic olefin resin
  • the toughness of the protective layer was measured as follows in accordance with JIS K7161. A rectangular piece having a long side of 110 mm and a short side of 10 mm was cut out from the protective layer using a super cutter. Next, the upper and lower grippers of the tensile tester [Autograph AG-Xplus tester manufactured by Shimadzu Corporation] sandwich both ends of the small piece in the long side direction so that the gap between the grippers is 5 cm, and the temperature is 23 ° C. In an environment with a relative humidity of 55%, the pieces were pulled in the long side direction at a tensile speed of 4 mm / min. The toughness was calculated as the integral value of the stress-strain curve from the initial stage to the fracture.
  • the polarizing plate C1 was produced as follows. A photoalignment layer was formed on a triacetyl cellulose (TAC) film (thickness 25 ⁇ m). A composition containing a dichroic dye and a polymerizable liquid crystal compound was applied onto an alignment layer, and the polymerizable liquid crystal compound was oriented and cured to obtain a polarizer having a thickness of 2 ⁇ m. A resin composition containing polyvinyl alcohol and water was applied onto the polarizer so that the thickness after drying was 1.0 ⁇ m. The coating film was dried at a temperature of 80 ° C. for 3 minutes to form an overcoat layer.
  • TAC triacetyl cellulose
  • the retardation laminates were bonded to the surface of the overcoat layer via an adhesive layer.
  • the retardation laminate is composed of a ⁇ / 4 plate (thickness 3 ⁇ m) / adhesive layer (thickness 5 ⁇ m) composed of a layer in which the polymerizable liquid crystal compound is cured and an orientation layer / a layer in which the polymerizable liquid crystal compound is cured and an orientation layer. It is composed of a positive C layer (thickness 3 ⁇ m) / base material layer.
  • the polarizing plate C1 was produced.
  • the polarizing plate C1 was a circular polarizing plate.
  • the base material layer in the retardation laminate corresponds to the base material layer 51 shown in FIG. 2 used for forming the second retardation layer (positive C layer), and corresponds to the protective layer 201 shown in FIG.
  • the protective layer B1 was used as the base material layer 51.
  • Touch sensor panel D1 A touch sensor panel D1 having a length of 177 mm and a width of 105 mm was prepared in which a transparent conductive layer, a separation layer, an adhesive layer, and a base material layer were laminated in this order.
  • the transparent conductive layer contained an ITO layer
  • the separation layer contained a cured layer of an acrylic resin composition, and the total thickness of both was 7 ⁇ m.
  • the adhesive layer had a thickness of 2 ⁇ m.
  • the base material layer was a polyethylene terephthalate film having a thickness of 20 ⁇ m, and the toughness was 69 mJ / mm 3 .
  • Touch sensor panel D2 A touch sensor panel D2 having a length of 177 mm and a width of 105 mm, in which the transparent conductive layer and the separation layer were laminated in this order, was prepared.
  • the transparent conductive layer contained an ITO layer
  • the separation layer contained a cured layer of an acrylic resin composition, and the total thickness of both was 7 ⁇ m.
  • a pressure-sensitive adhesive composition for forming a bonding layer was prepared at the ratio of each component shown in Table 1. This pressure-sensitive adhesive composition was applied to the release-treated surface of the release-treated polyethylene terephthalate film (thickness 38 ⁇ m) using an applicator so that the thickness after drying was 25 ⁇ m. The coating layer was dried at 100 ° C. for 1 minute to obtain a film having a bonding layer. Then, another release-treated polyethylene terephthalate film (thickness 38 ⁇ m) was laminated on the bonded layer. Then, it was cured for 7 days under the conditions of a temperature of 23 ° C. and a relative humidity of 50% RH.
  • Adhesive sheet E1 (Adhesive sheet E1) (1) Preparation of Acrylic Polymer An acrylic polymer was prepared by copolymerizing 54 parts by mass of n-butyl acrylate, 45 parts by mass of 2-ethylhexyl acrylate and 1 part by mass of 4-hydroxybutyl acrylate. The weight average molecular weight (Mw) of this acrylic polymer was 800,000.
  • Adhesive Composition 100 parts by mass of the acrylic polymer obtained in the above step (solid content conversion value; the same applies hereinafter) and trimethylolpropane-modified xylylene diisocyanate as a thermal cross-linking agent (manufactured by Soken Kagaku Co., Ltd.) Product name "TD-75”) 0.25 parts by mass and 3-glycidoxypropyltrimethoxysilane (manufactured by Shinetsu Chemical Industry Co., Ltd., product name "KBM403”) 0.2 parts by mass as a silane coupling agent.
  • a coating solution of the pressure-sensitive adhesive composition was obtained by mixing, stirring well, and diluting with methyl ethyl ketone.
  • Table 2 shows each formulation (solid content conversion value) of the pressure-sensitive adhesive composition when the acrylic polymer is 100 parts by mass (solid content conversion value).
  • the abbreviations and the like shown in Table 2 represent the following.
  • BA n-butyl acrylate 2EHA: 2-ethylhexyl acrylate 4HBA: 4-hydroxybutyl acrylate
  • An adhesive sheet E1 made of the above was produced.
  • the pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet E1 is designated as the pressure-sensitive adhesive layer E1.
  • Table 2 shows the measured storage elastic moduli of the adhesive sheet E1.
  • the thickness and storage elastic modulus of the pressure-sensitive adhesive layer E1 are values measured by a method described later.
  • Adhesive sheet E2 Using the same coating solution of the pressure-sensitive adhesive composition as the pressure-sensitive adhesive sheet E1, the structure of the light separator / pressure-sensitive adhesive layer (thickness: 25 ⁇ m) / heavy separator is formed by the same method as that of the pressure-sensitive adhesive sheet E1 except that only the coating thickness is different. An adhesive sheet E2 made of the above was prepared.
  • the pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet E2 is referred to as the pressure-sensitive adhesive layer E2. Since the pressure-sensitive adhesive sheet E2 is manufactured using the same pressure-sensitive adhesive composition as the pressure-sensitive adhesive sheet E1, its storage elastic modulus is the same value as that of the pressure-sensitive adhesive sheet E1.
  • Adhesive sheet E3 Using the same coating solution of the pressure-sensitive adhesive composition as the pressure-sensitive adhesive sheet E1, the structure of the light separator / pressure-sensitive adhesive layer (thickness: 50 ⁇ m) / heavy separator is formed by the same method as that of the pressure-sensitive adhesive sheet E1 except that only the coating thickness is different. An adhesive sheet E3 made of the above was prepared.
  • the pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet E3 is designated as the pressure-sensitive adhesive layer E3. Since the pressure-sensitive adhesive sheet E3 is manufactured using the same pressure-sensitive adhesive composition as the pressure-sensitive adhesive sheet E1, its storage elastic modulus is the same as that of the pressure-sensitive adhesive sheet E1.
  • Adhesive sheet E4 (1) Preparation of Acrylic Polymer
  • Acrylic polymer having a weight average molecular weight (Mw) shown in Table 2 was prepared by making the ratio of each monomer constituting the acrylic polymer the same as that of the pressure-sensitive adhesive sheet E1.
  • Adhesive Composition With 100 parts by mass of the acrylic polymer obtained in the above step and trimethylolpropane-modified xylylene diisocyanate (manufactured by Soken Kagaku Co., Ltd., product name "TD-75”) as a thermal cross-linking agent. , 3-glycidoxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Industry Co., Ltd., product name "KBM403”) as a silane coupling agent was mixed at the blending ratio shown in Table 2, stirred well, and diluted with methyl ethyl ketone. A coating solution of the pressure-sensitive adhesive composition was obtained.
  • Adhesive Sheet E4 Using the coating solution of the obtained pressure-sensitive adhesive composition, a light separator / pressure-sensitive adhesive layer (thickness: 5 ⁇ m) was used in the same manner as the pressure-sensitive adhesive sheet E1 except that only the coating thickness was different. ) / A pressure-sensitive adhesive sheet E4 having a structure of a heavy separator was produced.
  • the pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet E4 is referred to as the pressure-sensitive adhesive layer E4.
  • Table 2 shows the measured storage elastic moduli of the adhesive sheet E4.
  • the thickness and storage elastic modulus of the pressure-sensitive adhesive layer E4 are values measured by a method described later.
  • Adhesive sheet E5 Using a coating solution of the same pressure-sensitive adhesive composition as the pressure-sensitive adhesive sheet E4, a light separator / pressure-sensitive adhesive layer (thickness: 10 ⁇ m) / heavy separator was constructed by the same method as the pressure-sensitive adhesive sheet E1 except that only the coating thickness was different. An adhesive sheet E5 made of the above was prepared.
  • the pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet E5 is designated as the pressure-sensitive adhesive layer E5. Since the pressure-sensitive adhesive sheet E5 is manufactured using the same pressure-sensitive adhesive composition as the pressure-sensitive adhesive sheet E4, its storage elastic modulus is the same value as that of the pressure-sensitive adhesive sheet E4.
  • Example 1 The surface of one of the front plates A1 on the hard coat layer side, the surface of both the polarizing plate C1 and the surface of the touch sensor panel D1 on the transparent conductive layer side were subjected to corona treatment.
  • the corona treatment was performed under the conditions of frequency: 20 kHz, voltage: 8.6 kV, power: 2.5 kW, and speed: 6 m / min.
  • each layer is laminated so as to be "front plate A1 / bonding layer / polarizing plate C1 / adhesive layer E1 / touch sensor panel D1 / adhesive layer E3", and bonded using a roll joining machine.
  • the optical laminate of Example 1 having the same configuration as the optical laminate 100 shown in FIG. 1 was obtained by curing in an autoclave. The obtained optical laminate was subjected to an impact resistance test and a bending resistance test. The results are shown in Table 3.
  • Example 1 ⁇ Examples 2 to 7, Comparative Examples 1 and 2>
  • Example 1 the same as in Example 1 except that the polarizing plate, the touch sensor panel, and the pressure-sensitive adhesive layer (first pressure-sensitive adhesive layer, second pressure-sensitive adhesive layer) used as shown in Table 3 was used.
  • Optical laminates of Examples 2 to 7 and Comparative Examples 1 and 2 were obtained. The obtained optical laminate was subjected to an impact resistance test and a bending resistance test. The results are shown in Table 3.
  • the position of the pattern of the transparent conductive layer of the touch sensor panel was marked on the front plate of the small piece, and the evaluation pen was dropped so that the pen tip touched the position where the transparent conductive layer was arranged.
  • the evaluation pen a pen having a weight of 11 g and a pen tip diameter of 0.7 mm was used.
  • the small pieces after the evaluation pen was dropped were visually observed and the touch sensor panel function was confirmed, and the evaluation was performed according to the following criteria. Table 3 shows the evaluation results.
  • C There is a crack. No touch sensor panel function.
  • ⁇ Bending resistance test> The flexibility test was carried out at a temperature of 25 ° C. according to the following procedure.
  • the optical laminates obtained in each Example and Comparative Example are installed in a bending tester (CFT-720C, manufactured by Covotech) in a flat state (not bent) so that the touch sensor panel side is on the inside.
  • a bending operation was performed to return the optical laminate to the original flat state. When this bending operation was performed once, the number of times of bending was counted as one, and this bending operation was repeated.
  • the number of times of bending when cracks and / or floating of the adhesive layer occurred in the region bent by the bending operation was confirmed as the limit number of times of bending, and evaluated as follows. Table 3 shows the evaluation results. A: Even if the number of bends reached 200,000, the limit number of bends was not reached, B: The limit number of bends was reached when the number of bends was 100,000 or more and 200,000 or less. C: The limit number of bends was reached when the number of bends was 50,000 or more and less than 100,000. D: The limit number of bends was reached when the number of bends was less than 50,000.

Abstract

The purpose of the present invention is to provide an optical laminate that is provided sequentially with a front surface plate, a polarizing plate, and a touch sensor panel and that has excellent shock resistance. This optical laminate is sequentially provided with: a front surface plate; a polarizing plate; a first adhesive layer; and a touch sensor panel. The polarizing plate is provided with a protective layer on the outermost surface on the first adhesive layer side. The protective layer satisfies formula (1a): a×b≥700, where a [mJ/mm3] represents toughness, and b [µm] represents thickness.

Description

光学積層体及び表示装置Optical laminate and display device
 本発明は、光学積層体及び表示装置に関する。 The present invention relates to an optical laminate and a display device.
 特開2017-054140号公報(特許文献1)には、光学的表示装置に用いられるタッチパネル積層体が記載されている。 Japanese Unexamined Patent Publication No. 2017-054140 (Patent Document 1) describes a touch panel laminate used in an optical display device.
特開2017-054140号公報Japanese Unexamined Patent Publication No. 2017-054140
 本発明は、前面板と、偏光板と、タッチセンサパネルとを順に備える光学積層体であって、耐衝撃性に優れた光学積層体、及び当該光学積層体を含む表示装置を提供することを目的とする。 The present invention provides an optical laminate including a front plate, a polarizing plate, and a touch sensor panel in this order, which has excellent impact resistance, and a display device including the optical laminate. The purpose.
 本発明は、以下に示す光学積層体及び表示装置を提供する。 The present invention provides the following optical laminate and display device.
 〔1〕 前面板、偏光板、第1粘着剤層、及びタッチセンサパネルをこの順に備える光学積層体であって、
 前記偏光板は、前記第1粘着剤層側の最表面に保護層を備え、
 前記保護層について、タフネスをa〔mJ/mm〕、厚みをb〔μm〕とすると、下記式(1a)の関係を満たす、光学積層体。
 a×b≧700   (1a)
[1] An optical laminate including a front plate, a polarizing plate, a first adhesive layer, and a touch sensor panel in this order.
The polarizing plate is provided with a protective layer on the outermost surface on the side of the first pressure-sensitive adhesive layer.
An optical laminate satisfying the relationship of the following formula (1a), where the toughness is a [mJ / mm 3 ] and the thickness is b [μm] for the protective layer.
a × b ≧ 700 (1a)
 〔2〕 前記タッチセンサパネルの前記第1粘着剤層側とは反対側の表面上に設けられた第2粘着剤層をさらに備え、
 前記第1粘着剤層の厚みをt1〔μm〕、前記第2粘着剤層の厚みをt2〔μm〕とすると、下記式(2a)及び下記式(3a)の関係を満たす、〔1〕に記載の光学積層体。
 t1/t2≧0.1   (2a)
 t1/t2≦2   (3a)
 〔3〕 前記保護層は、前記第1粘着剤層側とは反対側の表面上に位相差層が設けられている、〔1〕または〔2〕に記載の光学積層体。
 〔4〕 前記位相差層は、重合性液晶化合物の硬化物を含む、〔3〕に記載の光学積層体。
 〔5〕 前記位相差層は、ポジティブC層または1/4波長層である、〔1〕~〔4〕のいずれか1項に記載の光学積層体。
 〔6〕 前記タッチセンサパネルは、基材層と、前記基材層上に設けられた透明導電層とを備える、〔1〕~〔5〕のいずれか1項に記載の光学積層体。
 〔7〕 〔1〕~〔6〕のいずれか1項に記載の光学積層体を含む表示装置。
[2] A second adhesive layer provided on the surface of the touch sensor panel opposite to the first adhesive layer side is further provided.
Assuming that the thickness of the first pressure-sensitive adhesive layer is t1 [μm] and the thickness of the second pressure-sensitive adhesive layer is t2 [μm], the relationship of the following formula (2a) and the following formula (3a) is satisfied, according to [1]. The optical laminate according to the description.
t1 / t2 ≧ 0.1 (2a)
t1 / t2 ≦ 2 (3a)
[3] The optical laminate according to [1] or [2], wherein the protective layer is provided with a retardation layer on a surface opposite to the first pressure-sensitive adhesive layer side.
[4] The optical laminate according to [3], wherein the retardation layer contains a cured product of a polymerizable liquid crystal compound.
[5] The optical laminate according to any one of [1] to [4], wherein the retardation layer is a positive C layer or a quarter wavelength layer.
[6] The optical laminate according to any one of [1] to [5], wherein the touch sensor panel includes a base material layer and a transparent conductive layer provided on the base material layer.
[7] A display device including the optical laminate according to any one of [1] to [6].
 本発明によれば、耐衝撃性に優れた光学積層体、及び当該光学積層体を含む表示装置を提供することができる。 According to the present invention, it is possible to provide an optical laminate having excellent impact resistance and a display device including the optical laminate.
本発明の光学積層体の一例を示す概略断面図である。It is the schematic sectional drawing which shows an example of the optical laminated body of this invention. 液晶層である位相差層を含む位相差体の一例を模式的に示す概略断面図である。It is schematic cross-sectional view which shows typically an example of the retardation body including the retardation layer which is a liquid crystal layer. 液晶層である位相差層を含む位相差体の他の例を模式的に示す概略断面図である。It is a schematic sectional drawing schematically showing another example of the retardation body including the retardation layer which is a liquid crystal layer.
 以下、図面を参照しつつ本発明の実施形態を説明するが、本発明は以下の実施形態に限定されるものではない。以下の全ての図面においては、各構成要素を理解し易くするために縮尺を適宜調整して示しており、図面に示される各構成要素の縮尺と実際の構成要素の縮尺とは必ずしも一致しない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the following embodiments. In all the drawings below, the scale is appropriately adjusted to make it easier to understand each component, and the scale of each component shown in the drawings does not necessarily match the scale of the actual component.
 <光学積層体>
 図1は、本発明の一実施形態による光学積層体の概略断面図である。図1に示す光学積層体100は、前面板10、貼合層43、偏光板20、第1粘着剤層41、タッチセンサパネル30、及び第2粘着剤層42をこの順に備える。本発明の光学積層体100は、第2粘着剤層42を有しない構成であってもよく、貼合層43を有しない構成であってもよい。
<Optical laminate>
FIG. 1 is a schematic cross-sectional view of an optical laminate according to an embodiment of the present invention. The optical laminate 100 shown in FIG. 1 includes a front plate 10, a bonding layer 43, a polarizing plate 20, a first pressure-sensitive adhesive layer 41, a touch sensor panel 30, and a second pressure-sensitive adhesive layer 42 in this order. The optical laminate 100 of the present invention may have a structure that does not have the second pressure-sensitive adhesive layer 42, or may have a structure that does not have the bonding layer 43.
 偏光板20は、第1粘着剤層41側の最表面に保護層201を備え、さらに偏光子を含む偏光層200を備える。タッチセンサパネル30は、基材層32と、基材層32の第1粘着剤層41側の表面上に設けられた透明導電層31とを備える。タッチセンサパネル30は、基材層32を有しない構成であってもよい。 The polarizing plate 20 is provided with a protective layer 201 on the outermost surface on the side of the first pressure-sensitive adhesive layer 41, and further includes a polarizing layer 200 including a polarizing element. The touch sensor panel 30 includes a base material layer 32 and a transparent conductive layer 31 provided on the surface of the base material layer 32 on the side of the first pressure-sensitive adhesive layer 41. The touch sensor panel 30 may have a configuration that does not have the base material layer 32.
 偏光板20の保護層201、及びタッチセンサパネル30の基材層32は、通常は単層であるものの、表面処理層を含む複層、粘着剤層を介することなく積層された複数の層からなる複層については、複層全体で保護層201または基材層32を構成しているものとする。 Although the protective layer 201 of the polarizing plate 20 and the base material layer 32 of the touch sensor panel 30 are usually a single layer, they are composed of a plurality of layers including a surface treatment layer and a plurality of layers laminated without interposing a pressure-sensitive adhesive layer. As for the plurality of layers, it is assumed that the protective layer 201 or the base material layer 32 is formed by the entire multilayer.
 偏光板20の保護層201について、タフネスをa〔mJ/mm〕、厚みをb〔μm〕とすると、下記式(1a)の関係を満たす。本明細書において、タフネスa〔mJ/mm〕は、常温(温度23℃)において、後述の実施例に記載の方法によって測定される値とする。
 a×b≧700   (1a)
Assuming that the protective layer 201 of the polarizing plate 20 has a toughness of a [mJ / mm 3 ] and a thickness of b [μm], the relationship of the following formula (1a) is satisfied. In the present specification, toughness a [mJ / mm 3 ] is a value measured at room temperature (temperature 23 ° C.) by the method described in Examples described later.
a × b ≧ 700 (1a)
 光学積層体において、保護層201が式(1a)の関係を満たすことにより、耐衝撃性を向上させることができる。光学積層体において、耐衝撃性をさらに向上させる観点から、保護層201は式(1b)の関係を満たすことが好ましく、式(1c)の関係を満たすことがより好ましい。保護層201は式(1d)の関係を満たしていてもよい。
 a×b≧1000   (1b)
 a×b≧2000   (1c)
 a×b≦5000   (1d)
In the optical laminate, the impact resistance can be improved by satisfying the relationship of the formula (1a) in the protective layer 201. From the viewpoint of further improving the impact resistance of the optical laminate, the protective layer 201 preferably satisfies the relationship of the formula (1b), and more preferably the relationship of the formula (1c). The protective layer 201 may satisfy the relationship of the formula (1d).
a × b ≧ 1000 (1b)
a × b ≧ 2000 (1c)
a × b ≦ 5000 (1d)
 光学積層体において、耐屈曲性を向上させる観点から、第1粘着剤層41の厚みをt1〔μm〕、第2粘着剤層42の厚みをt2〔μm〕とすると、下記式(2a)及び下記式(3a)の関係を満たすことが好ましい。
 t1/t2≧0.1   (2a)
 t1/t2≦2   (3a)
Assuming that the thickness of the first pressure-sensitive adhesive layer 41 is t1 [μm] and the thickness of the second pressure-sensitive adhesive layer 42 is t2 [μm] from the viewpoint of improving the bending resistance in the optical laminate, the following formula (2a) and It is preferable to satisfy the relationship of the following formula (3a).
t1 / t2 ≧ 0.1 (2a)
t1 / t2 ≦ 2 (3a)
 光学積層体において、耐屈曲性をさらに向上させる観点から、下記式(3b)の関係を満たすことがより好ましく、下記式(3c)の関係を満たすことがさらに好ましく、下記式(3d)の関係を満たすことがさらに好ましい。光学積層体は、下記式(3e)や下記式(3f)の関係を満たしてもよい。
 t1/t2≦1.5   (3b)
 t1/t2≦1   (3c)
 t1/t2≦0.8   (3d)
 t1/t2≦0.5   (3e)
 t1/t2≧0.2   (3f)
From the viewpoint of further improving the bending resistance of the optical laminate, it is more preferable to satisfy the relationship of the following formula (3b), further preferably the relationship of the following formula (3c), and the relationship of the following formula (3d). It is more preferable to satisfy. The optical laminate may satisfy the relationship of the following formula (3e) or the following formula (3f).
t1 / t2 ≦ 1.5 (3b)
t1 / t2 ≦ 1 (3c)
t1 / t2 ≤ 0.8 (3d)
t1 / t2 ≤ 0.5 (3e)
t1 / t2 ≧ 0.2 (3f)
 光学積層体100は、少なくとも前面板10を外側にした方向に屈曲可能であることが好ましい。屈曲可能とは、前面板10を外側にした方向にクラックを生じさせることなく屈曲させ得ることを意味する。本発明に係る光学積層体は、耐衝撃性に優れており、耐衝撃性とともに耐屈曲性にも優れているものとすることができる。 It is preferable that the optical laminate 100 can be bent at least in the direction in which the front plate 10 is outward. The term "flexible" means that the front plate 10 can be bent in the outward direction without causing cracks. The optical laminate according to the present invention is excellent in impact resistance, and can be considered to be excellent in both impact resistance and bending resistance.
 光学積層体100の面方向の形状は、例えば方形形状であってよく、好ましくは長辺と短辺とを有する方形形状であり、より好ましくは長方形である。光学積層体100の面方向の形状が長方形である場合、長辺の長さは、例えば10mm以上1400mm以下であってよく、好ましくは50mm以上600mm以下である。短辺の長さは、例えば5mm以上800mm以下であり、好ましくは30mm以上500mm以下であり、より好ましくは50mm以上300mm以下である。光学積層体100を構成する各層は、角部がR加工されたり、端部が切り欠き加工されたり、穴あき加工されたりしていてもよい。 The shape of the optical laminate 100 in the plane direction may be, for example, a rectangular shape, preferably a rectangular shape having a long side and a short side, and more preferably a rectangle. When the shape of the optical laminate 100 in the plane direction is rectangular, the length of the long side may be, for example, 10 mm or more and 1400 mm or less, preferably 50 mm or more and 600 mm or less. The length of the short side is, for example, 5 mm or more and 800 mm or less, preferably 30 mm or more and 500 mm or less, and more preferably 50 mm or more and 300 mm or less. Each layer constituting the optical laminate 100 may have corners R-processed, end portions notched, or perforated.
 光学積層体100の厚みは、光学積層体に求められる機能及び積層体の用途等に応じて異なるため特に限定されないが、例えば20μm以上1,000μm以下であり、好ましくは50μm以上500μm以下である。 The thickness of the optical laminate 100 is not particularly limited because it varies depending on the functions required of the optical laminate, the application of the laminate, and the like, but is, for example, 20 μm or more and 1,000 μm or less, preferably 50 μm or more and 500 μm or less.
 光学積層体100は、例えば表示装置等に用いることができる。表示装置は特に限定されず、例えば有機エレクトロルミネッセンス(有機EL)表示装置、無機エレクトロルミネッセンス(無機EL)表示装置、液晶表示装置、電界発光表示装置等が挙げられる。光学積層体100は、可撓性を有する表示装置に好適である。本発明の光学積層体を含む表示装置は、優れた耐衝撃性を有する。 The optical laminate 100 can be used, for example, in a display device or the like. The display device is not particularly limited, and examples thereof include an organic electroluminescence (organic EL) display device, an inorganic electroluminescence (inorganic EL) display device, a liquid crystal display device, and an electroluminescent display device. The optical laminate 100 is suitable for a flexible display device. The display device including the optical laminate of the present invention has excellent impact resistance.
 光学積層体100は、前面板10、偏光板20、及びタッチセンサパネル30を備える。光学積層体100は、表示装置に用いられることにより、表示装置の一部となり得る構成であることが好ましく、表示装置が備え得る要素は限定されることなく備えていてもよく、例えば、部分的に形成された着色層、保護フィルム、位相差フィルム等を備えていてもよい。これらの要素は、偏光板20の偏光層200に含まれていてもよい。 The optical laminate 100 includes a front plate 10, a polarizing plate 20, and a touch sensor panel 30. The optical laminate 100 preferably has a configuration that can be a part of the display device by being used in the display device, and the elements that the display device can have may be provided without limitation, for example, partial. A colored layer, a protective film, a retardation film, etc. formed on the surface may be provided. These elements may be included in the polarizing layer 200 of the polarizing plate 20.
 [前面板]
 前面板10は、光を透過可能な板状体であれば、材料および厚みは限定されることはなく、また1層のみから構成されてよく、2層以上から構成されてもよい。その例としては、樹脂製の板状体(例えば樹脂板、樹脂シート、樹脂フィルム等)、ガラス製の板状体(例えばガラス板、ガラスフィルム等)等が挙げられる。前面板は、表示装置の最表面を構成する層であることができる。前面板は、樹脂製の板状体とガラス製の板状体との積層体であってもよい。
[Front plate]
The material and thickness of the front plate 10 are not limited as long as it is a plate-like body capable of transmitting light, and the front plate 10 may be composed of only one layer or may be composed of two or more layers. Examples thereof include a resin plate-like body (for example, a resin plate, a resin sheet, a resin film, etc.), a glass plate-like body (for example, a glass plate, a glass film, etc.) and the like. The front plate can be a layer constituting the outermost surface of the display device. The front plate may be a laminate of a resin plate-like body and a glass plate-like body.
 前面板10の厚みは、例えば30μm以上500μm以下であってよく、好ましくは40μm以上200μm以下であり、より好ましくは50μm以上100μm以下である。
本発明において、各層の厚みは、後述する実施例において説明する厚み測定方法にしたがって測定することができる。
The thickness of the front plate 10 may be, for example, 30 μm or more and 500 μm or less, preferably 40 μm or more and 200 μm or less, and more preferably 50 μm or more and 100 μm or less.
In the present invention, the thickness of each layer can be measured according to the thickness measuring method described in Examples described later.
 前面板10が樹脂製の板状体である場合、樹脂製の板状体は、光を透過可能なものであれば限定されることはない。樹脂フィルム等の樹脂製の板状体を構成する樹脂としては、例えばトリアセチルセルロース、アセチルセルロースブチレート、エチレン-酢酸ビニル共重合体、プロピオニルセルロース、ブチリルセルロース、アセチルプロピオニルセルロース、ポリエステル、ポリスチレン、ポリアミド、ポリエーテルイミド、ポリ(メタ)アクリル、ポリイミド、ポリエーテルスルホン、ポリスルホン、ポリエチレン、ポリプロピレン、ポリメチルペンテン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、ポリビニルアセタール、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルスルホン、ポリメチルメタアクリレート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリアミドイミドなどの高分子で形成されたフィルムが挙げられる。これらの高分子は、単独でまたは2種以上混合して用いることができる。強度および透明性向上の観点から好ましくはポリイミド、ポリアミド、ポリアミドイミドなどの高分子で形成された樹脂フィルムである。 When the front plate 10 is a resin plate-like body, the resin plate-like body is not limited as long as it can transmit light. Examples of the resin constituting the resin plate such as a resin film include triacetyl cellulose, acetyl cellulose butyrate, ethylene-vinyl acetate copolymer, propionyl cellulose, butyryl cellulose, acetyl propionyl cellulose, polyester, and polystyrene. Polyamide, polyetherimide, poly (meth) acrylic, polyimide, polyether sulfone, polysulfone, polyethylene, polypropylene, polymethylpentene, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, polyvinyl acetal, polyether ketone, polyether ether ketone , Polyether sulfone, polymethyl methacrylate, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polycarbonate, polyamideimide and the like. These polymers can be used alone or in combination of two or more. From the viewpoint of improving strength and transparency, a resin film formed of a polymer such as polyimide, polyamide, or polyamideimide is preferable.
 前面板10は、基材フィルムの少なくとも一方の面にハードコート層が設けられたフィルムであってもよい。基材フィルムとしては、上記樹脂からできたフィルムを用いることができる。ハードコート層は、基材フィルムの一方の面に形成されていてもよいし、両方の面に形成されていてもよい。ハードコート層を設けることにより、硬度および耐スクラッチ性を向上させた樹脂フィルムとすることができる。ハードコート層は、例えば紫外線硬化型樹脂の硬化層である。紫外線硬化型樹脂としては、例えばアクリル系樹脂、シリコーン系樹脂、ポリエステル系樹脂、ウレタン系樹脂、アミド系樹脂、エポキシ系樹脂等が挙げられる。ハードコート層は、硬度を向上させるために、添加剤を含んでいてもよい。添加剤は限定されることはなく、無機系微粒子、有機系微粒子、またはこれらの混合物が挙げられる。 The front plate 10 may be a film provided with a hard coat layer on at least one surface of the base film. As the base film, a film made of the above resin can be used. The hard coat layer may be formed on one surface of the base film, or may be formed on both surfaces. By providing the hard coat layer, a resin film having improved hardness and scratch resistance can be obtained. The hard coat layer is, for example, a cured layer of an ultraviolet curable resin. Examples of the ultraviolet curable resin include acrylic resin, silicone resin, polyester resin, urethane resin, amide resin, epoxy resin and the like. The hard coat layer may contain additives in order to improve the hardness. Additives are not limited and include inorganic fine particles, organic fine particles, or mixtures thereof.
 前面板10がガラス板である場合、ガラス板は、ディスプレイ用強化ガラスが好ましく用いられる。ガラス板の厚みは、例えば10μm以上1000μm以下であることができ、20μm以上500μm以下であってもよく、50μm以上500μm以下であってよい。
ガラス板を用いることにより、優れた機械的強度および表面硬度を有する前面板10を構成することができる。
When the front plate 10 is a glass plate, tempered glass for a display is preferably used as the glass plate. The thickness of the glass plate can be, for example, 10 μm or more and 1000 μm or less, 20 μm or more and 500 μm or less, or 50 μm or more and 500 μm or less.
By using the glass plate, the front plate 10 having excellent mechanical strength and surface hardness can be constructed.
 光学積層体100が表示装置に用いられる場合、前面板10は、表示装置の前面(画面)を保護する機能(ウィンドウフィルムとしての機能)を有するのみではなく、タッチセンサパネル30で検知されるタッチを行う操作面としての機能も有するものであってもよく、さらに、ブルーライトカット機能、視野角調整機能等を有するものであってもよい。 When the optical laminate 100 is used in a display device, the front plate 10 not only has a function of protecting the front surface (screen) of the display device (function as a window film), but also has a touch detected by the touch sensor panel 30. It may also have a function as an operation surface for performing the above, and may further have a blue light cut function, a viewing angle adjusting function, and the like.
 [タッチセンサパネル]
 タッチセンサパネル30としては、前面板10でタッチされた位置を検出可能なセンサであり、透明導電層31を有する構成であれば、検出方式は限定されることはなく、抵抗膜方式、静電容量方式、光センサ方式、超音波方式、電磁誘導結合方式、表面弾性波方式等のタッチセンサパネルが例示される。その中でも、低コスト、早い反応速度、薄膜化の面で、静電容量方式のタッチセンサパネルが好適に用いられる。タッチセンサパネル30は、耐衝撃性を向上させることができる観点から、基材層32と、基材層32の第1粘着材層41側の表面上に設けられた透明導電層31とを備える構成であることが好ましい。
基材層32の表面上に透明導電層31が設けられている構成においては、基材層32と透明導電層31とが互いに接している構成であってもよく(例えば、後述する第1の方法により製造されるタッチセンサパネル)、基材層32と透明導電層31とが互いに接していない構成であってもよい(例えば、後述する第2の方法により製造されるタッチセンサパネル)。タッチセンサパネル30は、基材層32、透明導電層31とは別に、接着層、分離層、保護層等を備えていてもよい。接着層としては、接着剤層、粘着剤層が挙げられる。
[Touch sensor panel]
The touch sensor panel 30 is a sensor capable of detecting the position touched by the front plate 10, and the detection method is not limited as long as it has the transparent conductive layer 31, and the resistance film method and the capacitance are not limited. Examples of touch sensor panels include a capacitance method, an optical sensor method, an ultrasonic method, an electromagnetic induction coupling method, and a surface acoustic wave method. Among them, the capacitance type touch sensor panel is preferably used in terms of low cost, fast reaction speed, and thin film formation. The touch sensor panel 30 includes a base material layer 32 and a transparent conductive layer 31 provided on the surface of the base material layer 32 on the first adhesive layer 41 side from the viewpoint of improving impact resistance. It is preferably configured.
In the configuration in which the transparent conductive layer 31 is provided on the surface of the base material layer 32, the base material layer 32 and the transparent conductive layer 31 may be in contact with each other (for example, the first described later). The touch sensor panel manufactured by the method), the base material layer 32 and the transparent conductive layer 31 may not be in contact with each other (for example, the touch sensor panel manufactured by the second method described later). The touch sensor panel 30 may include an adhesive layer, a separation layer, a protective layer, and the like in addition to the base material layer 32 and the transparent conductive layer 31. Examples of the adhesive layer include an adhesive layer and an adhesive layer.
 静電容量方式のタッチセンサパネルの一例は、基材層と、基材層の表面に設けられた位置検出用の透明導電層と、タッチ位置検知回路とにより構成されている。静電容量方式のタッチセンサパネルを有する光学積層体を設けた表示装置においては、前面板10の表面がタッチされると、タッチされた点で人体の静電容量を介して透明導電層が接地される。
タッチ位置検知回路が、透明導電層の接地を検知し、タッチされた位置が検出される。互いに離間した複数の透明導電層を有することにより、より詳細な位置の検出が可能となる。
An example of a capacitance type touch sensor panel is composed of a base material layer, a transparent conductive layer for position detection provided on the surface of the base material layer, and a touch position detection circuit. In a display device provided with an optical laminate having a capacitance type touch sensor panel, when the surface of the front plate 10 is touched, the transparent conductive layer is grounded via the capacitance of the human body at the touched point. Will be done.
The touch position detection circuit detects the grounding of the transparent conductive layer, and the touched position is detected. By having a plurality of transparent conductive layers separated from each other, more detailed position detection becomes possible.
 透明導電層は、ITO等の金属酸化物からなる透明導電層であってもよく、アルミニウムや銅、銀、金、またはこれらの合金等の金属からなる金属層であってもよい。 The transparent conductive layer may be a transparent conductive layer made of a metal oxide such as ITO, or may be a metal layer made of a metal such as aluminum, copper, silver, gold, or an alloy thereof.
 分離層は、ガラス等の基板上に形成されて、分離層上に形成された透明導電層を分離層とともに、基板から分離するための層であることができる。分離層は、無機物層又は有機物層であることが好ましい。無機物層を形成する材料としては、例えばシリコン酸化物が挙げられる。有機物層を形成する材料としては、例えば(メタ)アクリル系樹脂組成物、エポキシ系樹脂組成物、ポリイミド系樹脂組成物等を用いることができる。 The separation layer can be a layer formed on a substrate such as glass and for separating the transparent conductive layer formed on the separation layer from the substrate together with the separation layer. The separation layer is preferably an inorganic layer or an organic layer. Examples of the material forming the inorganic layer include silicon oxide. As the material for forming the organic material layer, for example, a (meth) acrylic resin composition, an epoxy resin composition, a polyimide resin composition, or the like can be used.
 タッチセンサパネル30は、透明導電層31に接して導電層を保護する保護層を備えていてもよい。保護層は有機絶縁膜及び無機絶縁膜のうちの少なくとも一つを含み、これらの膜は、スピンコート法、スパッタリング法、蒸着法等によって形成することができる。 The touch sensor panel 30 may be provided with a protective layer that is in contact with the transparent conductive layer 31 and protects the conductive layer. The protective layer contains at least one of an organic insulating film and an inorganic insulating film, and these films can be formed by a spin coating method, a sputtering method, a vapor deposition method or the like.
 タッチセンサパネル30は例えば、以下のようにして製造することができる。第1の方法では、まずガラス基板へ接着層を介して基材層32を積層する。基材層32上に、フォトリソグラフィによりパターン化された透明導電層31を形成する。熱を加えることにより、ガラス基板と基材層32とを分離して、透明導電層31と基材層32とからなるタッチセンサパネル30が得られる。 The touch sensor panel 30 can be manufactured, for example, as follows. In the first method, the base material layer 32 is first laminated on the glass substrate via the adhesive layer. A transparent conductive layer 31 patterned by photolithography is formed on the base material layer 32. By applying heat, the glass substrate and the base material layer 32 are separated to obtain a touch sensor panel 30 composed of the transparent conductive layer 31 and the base material layer 32.
 第2の方法では、まずガラス基板上に分離層を形成し、必要に応じて、分離層上に保護層を形成する。分離層(または保護層)上に、フォトリソグラフィによりパターン化された透明導電層31を形成する。透明導電層31上に、剥離可能な保護フィルムを積層し、透明導電層31から分離層までを転写して、ガラス基板を分離する。接着層を介して基材層32と分離層とを貼合し、剥離可能な保護フィルムを剥離することで、透明導電層31と分離層と接着層と基材層32とをこの順に有するタッチセンサパネル30が得られる。
なお、透明導電層31と分離層とからなる積層体を、基材層32に貼合することなく、タッチセンサパネル30として用いてもよい。
In the second method, a separation layer is first formed on the glass substrate, and if necessary, a protective layer is formed on the separation layer. A transparent conductive layer 31 patterned by photolithography is formed on the separation layer (or protective layer). A peelable protective film is laminated on the transparent conductive layer 31, and the transparent conductive layer 31 to the separation layer are transferred to separate the glass substrate. A touch having the transparent conductive layer 31, the separation layer, the adhesive layer, and the base material layer 32 in this order by adhering the base material layer 32 and the separation layer via the adhesive layer and peeling off the peelable protective film. The sensor panel 30 is obtained.
The laminated body composed of the transparent conductive layer 31 and the separation layer may be used as the touch sensor panel 30 without being bonded to the base material layer 32.
 タッチセンサパネルの基材層32としては、トリアセチルセルロース、ポリエチレンテレフタレート、シクロオレフィンポリマー、ポリエチレンナフタレート、ポリオレフィン、ポリシクロオレフィン、ポリカーボネート、ポリエーテルスルホン、ポリアリレート、ポリイミド、ポリアミド、ポリスチレン、ポリノルボルネンなどの樹脂フィルムが挙げられる。所望のタフネスを有する基材層を構成しやすい観点から、ポリエチレンテレフタレートが好ましく用いられる。 The base material layer 32 of the touch sensor panel includes triacetyl cellulose, polyethylene terephthalate, cycloolefin polymer, polyethylene naphthalate, polyolefin, polycycloolefin, polycarbonate, polyether sulfone, polyarylate, polyimide, polyamide, polystyrene, polynorbornene and the like. Resin film can be mentioned. Polyethylene terephthalate is preferably used from the viewpoint of easily forming a base material layer having a desired toughness.
 タッチセンサパネルの基材層32は、優れた耐屈曲性を有する光学積層体を構成しやすい観点から、厚みが50μm以下であることが好ましく、30μm以下であることがさらに好ましい。タッチセンサパネルの基材層32は、厚みが、例えば5μm以上である。 The base material layer 32 of the touch sensor panel preferably has a thickness of 50 μm or less, and more preferably 30 μm or less, from the viewpoint of easily forming an optical laminate having excellent bending resistance. The base material layer 32 of the touch sensor panel has a thickness of, for example, 5 μm or more.
 [偏光板]
 偏光板20としては、二色性色素を吸着させた延伸フィルム、又は二色性色素および重合性化合物を含む組成物を塗布し硬化させた液晶層を偏光子として含むフィルム等が挙げられる。偏光板20は、偏光子に加えて、保護層201を含み、位相差層等をさらに含む。
[Polarizer]
Examples of the polarizing plate 20 include a stretched film on which a dichroic dye is adsorbed, a film containing a liquid crystal layer coated with a composition containing the dichroic dye and a polymerizable compound and cured as a polarizer, and the like. The polarizing plate 20 includes a protective layer 201 in addition to a polarizing element, and further includes a retardation layer and the like.
 (偏光子)
 二色性色素として、具体的には、ヨウ素や二色性の有機染料が用いられる。二色性有機染料には、C.I. DIRECT RED 39などのジスアゾ化合物からなる二色性直接染料、トリスアゾ、テトラキスアゾなどの化合物からなる二色性直接染料が包含される。二色性色素および重合性化合物を含む組成物を塗布し硬化させた偏光子は、例えば、液晶性を有する二色性色素を含む組成物又は二色性色素と重合性液晶とを含む組成物を塗布し硬化させて液晶層である。二色性色素および重合性化合物を含む組成物を塗布し硬化させた液晶層は、二色性色素を吸着させた延伸フィルムに比べて、屈曲方向に制限がないため好ましい。
(Polarizer)
As the dichroic dye, specifically, iodine or a dichroic organic dye is used. For dichroic organic dyes, C.I. I. Included are dichroic direct dyes consisting of disuazo compounds such as DIRECT RED 39 and dichroic direct dyes consisting of compounds such as trisazo and tetrakisazo. The polarizer obtained by applying and curing the composition containing the dichroic dye and the polymerizable compound is, for example, a composition containing a dichroic dye having a liquid crystal property or a composition containing a dichroic dye and a polymerizable liquid crystal. Is applied and cured to form a liquid crystal layer. A liquid crystal layer to which a composition containing a dichroic dye and a polymerizable compound is applied and cured is preferable because there is no limitation in the bending direction as compared with a stretched film on which a dichroic dye is adsorbed.
 (1)偏光子が延伸フィルムである偏光板
 二色性色素を吸着させた延伸フィルムを偏光子として備える偏光板について説明する。偏光子である、二色性色素を吸着させた延伸フィルムは、通常、ポリビニルアルコール系樹脂フィルムを一軸延伸する工程、ポリビニルアルコール系樹脂フィルムを二色性色素で染色することにより、その二色性色素を吸着させる工程、二色性色素が吸着されたポリビニルアルコール系樹脂フィルムをホウ酸水溶液で処理する工程、及びホウ酸水溶液による処理後に水洗する工程を経て製造される。かかる偏光子をそのまま偏光板として用いてもよく、その片面又は両面に透明保護フィルムを貼合したものを偏光板として用いてもよい。こうして得られる偏光子の厚みは、好ましくは2μm以上40μm以下である。
(1) Polarizing Plate with Polarizer as Stretched Film A polarizing plate having a stretched film having a dichroic dye adsorbed as a polarizing plate will be described. A stretched film on which a dichroic dye, which is a polarizer, is adsorbed is usually bicolorized by a step of uniaxially stretching the polyvinyl alcohol-based resin film and dyeing the polyvinyl alcohol-based resin film with the bicolor dye. It is produced through a step of adsorbing a dye, a step of treating a polyvinyl alcohol-based resin film on which a bicolor dye is adsorbed with an aqueous boric acid solution, and a step of washing with water after the treatment with the aqueous boric acid solution. Such a polarizing element may be used as it is as a polarizing plate, or a polarizing plate having a transparent protective film bonded to one side or both sides thereof may be used as a polarizing plate. The thickness of the polarizer thus obtained is preferably 2 μm or more and 40 μm or less.
 ポリビニルアルコール系樹脂は、ポリ酢酸ビニル系樹脂をケン化することによって得られる。ポリ酢酸ビニル系樹脂としては、酢酸ビニルの単独重合体であるポリ酢酸ビニルのほか、酢酸ビニルとそれに共重合可能な他の単量体との共重合体が用いられる。酢酸ビニルに共重合可能な他の単量体としては、例えば、不飽和カルボン酸類、オレフィン類、ビニルエーテル類、不飽和スルホン酸類、アンモニウム基を有するアクリルアミド類などが挙げられる。 The polyvinyl alcohol-based resin is obtained by saponifying the polyvinyl acetate-based resin. As the polyvinyl acetate-based resin, in addition to polyvinyl acetate which is a homopolymer of vinyl acetate, a copolymer of vinyl acetate and another monomer copolymerizable therewith is used. Examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and acrylamides having an ammonium group.
 ポリビニルアルコール系樹脂のケン化度は、通常85モル%以上100モル%以下であり、好ましくは98モル%以上である。ポリビニルアルコール系樹脂は変性されていてもよく、例えば、アルデヒド類で変性されたポリビニルホルマールやポリビニルアセタールも使用することができる。ポリビニルアルコール系樹脂の重合度は、通常1,000以上10,000以下程度であり、好ましくは1,500以上5,000以下の範囲である。 The degree of saponification of the polyvinyl alcohol-based resin is usually 85 mol% or more and 100 mol% or less, preferably 98 mol% or more. The polyvinyl alcohol-based resin may be modified, and for example, polyvinyl formal or polyvinyl acetal modified with aldehydes can also be used. The degree of polymerization of the polyvinyl alcohol-based resin is usually about 1,000 or more and 10,000 or less, and preferably 1,500 or more and 5,000 or less.
 このようなポリビニルアルコール系樹脂を製膜したものが、偏光子の原反フィルムとして用いられる。ポリビニルアルコール系樹脂を製膜する方法は、特に限定されるものでなく、公知の方法で製膜することができる。ポリビニルアルコール系原反フィルムの膜厚は、例えば、10μm以上150μm以下程度とすることができる。 A film formed of such a polyvinyl alcohol-based resin is used as a raw film for a polarizer. The method for forming the film of the polyvinyl alcohol-based resin is not particularly limited, and the film can be formed by a known method. The film thickness of the polyvinyl alcohol-based raw film can be, for example, about 10 μm or more and 150 μm or less.
 ポリビニルアルコール系樹脂フィルムの一軸延伸は、二色性色素による染色の前、染色と同時、又は染色の後で行うことができる。一軸延伸を染色の後で行う場合、この一軸延伸は、ホウ酸処理の前に行ってもよいし、ホウ酸処理中に行ってもよい。また、これらの複数の段階で一軸延伸を行うことも可能である。一軸延伸にあたっては、周速の異なるロール間で一軸に延伸してもよいし、熱ロールを用いて一軸に延伸してもよい。また一軸延伸は、大気中で延伸を行う乾式延伸であってもよいし、溶剤を用い、ポリビニルアルコール系樹脂フィルムを膨潤させた状態で延伸を行う湿式延伸であってもよい。延伸倍率は、通常3~8倍程度である。 The uniaxial stretching of the polyvinyl alcohol-based resin film can be performed before dyeing with a dichroic dye, at the same time as dyeing, or after dyeing. When the uniaxial stretching is performed after staining, the uniaxial stretching may be performed before the boric acid treatment or during the boric acid treatment. It is also possible to perform uniaxial stretching at these multiple stages. In uniaxial stretching, rolls having different peripheral speeds may be uniaxially stretched, or thermal rolls may be used to uniaxially stretch the rolls. Further, the uniaxial stretching may be a dry stretching in which stretching is performed in the atmosphere, or a wet stretching in which the polyvinyl alcohol-based resin film is swollen using a solvent. The draw ratio is usually about 3 to 8 times.
 延伸フィルムを偏光子として備える偏光板の厚みは、例えば1μm以上400μm以下であってよく、5μm以上100μm以下であってもよい。 The thickness of the polarizing plate provided with the stretched film as a polarizer may be, for example, 1 μm or more and 400 μm or less, and may be 5 μm or more and 100 μm or less.
 偏光子の片面又は両面に貼合される保護フィルムの材料としては、特に限定されるものではないが、例えば、環状ポリオレフィン系樹脂フィルム、トリアセチルセルロース、ジアセチルセルロースのような樹脂からなる酢酸セルロース系樹脂フィルム、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレートのような樹脂からなるポリエステル系樹脂フィルム、ポリカーボネート系樹脂フィルム、(メタ)アクリル系樹脂フィルム、ポリプロピレン系樹脂フィルムなど、当分野において公知のフィルムを挙げることができる。保護フィルムの厚みは、薄型化の観点から、通常300μm以下であり、200μm以下であることが好ましく、100μm以下であることがより好ましく、また、通常5μm以上であり、20μm以上であることが好ましい。保護フィルムは位相差を有していても、有していなくてもよい。 The material of the protective film to be bonded to one side or both sides of the polarizer is not particularly limited, but is, for example, a cellulose acetate-based film made of a resin such as a cyclic polyolefin-based resin film, triacetyl cellulose, or diacetyl cellulose. Films known in the art such as resin films, polyester resin films made of resins such as polyethylene terephthalate, polyethylene naphthalate, and polybutylene terephthalate, polycarbonate resin films, (meth) acrylic resin films, and polypropylene resin films. Can be mentioned. From the viewpoint of thinning, the thickness of the protective film is usually 300 μm or less, preferably 200 μm or less, more preferably 100 μm or less, and usually 5 μm or more, preferably 20 μm or more. .. The protective film may or may not have a phase difference.
 (2)偏光子が液晶層である偏光板
 液晶層を偏光子として備える偏光板について説明する。偏光子として用いられる、二色性色素および重合性化合物を含む組成物を塗布して形成された液晶層としては、液晶性を有する二色性色素を含む組成物、又は二色性色素と液晶化合物とを含む組成物を基材に塗布し硬化して得られる液晶層等が挙げられる。当該液晶層は、基材を剥離してまたは基材とともに偏光板として用いてもよく、またはその片面又は両面に保護フィルムを有する構成で偏光板として用いてもよい。当該保護フィルムとしては、上記した偏光子が延伸フィルムである偏光板と同一のものが挙げられる。
(2) Polarizing Plate with Polarizer as Liquid Crystal Layer A polarizing plate having a liquid crystal layer as a polarizing element will be described. The liquid crystal layer formed by applying a composition containing a dichroic dye and a polymerizable compound used as a polarizer includes a composition containing a dichroic dye having liquid crystal properties, or a dichroic dye and a liquid crystal. Examples thereof include a liquid crystal layer obtained by applying a composition containing a compound to a substrate and curing the composition. The liquid crystal layer may be used as a polarizing plate by peeling off the base material or together with the base material, or may be used as a polarizing plate in a configuration having a protective film on one side or both sides thereof. Examples of the protective film include those having the same polarizing plate as the polarizing plate which is a stretched film.
 二色性色素および重合性化合物を含む組成物を塗布し硬化して得られた液晶層は薄い方が好ましいが、薄すぎると強度が低下し、加工性に劣る傾向がある。当該液晶層の厚さは、通常20μm以下であり、好ましくは5μm以下であり、より好ましくは0.5μm以上3μm以下である。 The liquid crystal layer obtained by applying and curing a composition containing a dichroic dye and a polymerizable compound is preferably thin, but if it is too thin, the strength is lowered and the processability tends to be inferior. The thickness of the liquid crystal layer is usually 20 μm or less, preferably 5 μm or less, and more preferably 0.5 μm or more and 3 μm or less.
 液晶層を偏光子として備える偏光板の厚みは、例えば1μm以上50μm以下であってよい。 The thickness of the polarizing plate having the liquid crystal layer as a polarizer may be, for example, 1 μm or more and 50 μm or less.
 (位相差層)
 偏光板は、1層または2層以上の位相差層を含むことができる。位相差層は、光に所定の位相差を与える層であり、1/2波長層、1/4波長層、ポジティブC層等の光学補償層が例示される。位相差層は、正波長分散性の位相差層であっても、逆波長分散性の位相差層であってもよい。位相差層は、他の層とともに構成されている位相差体中の要素であってもよい。位相差体中の位相差層以外の層としては、例えば、基材層、配向層、保護層等が挙げられる。なお、他の層は位相差の値には影響を及ぼさないものであることができる。
(Phase difference layer)
The polarizing plate can include one layer or two or more retardation layers. The retardation layer is a layer that gives a predetermined phase difference to light, and examples thereof include optical compensation layers such as a 1/2 wavelength layer, a 1/4 wavelength layer, and a positive C layer. The retardation layer may be a retardation layer having a positive wavelength dispersion or a retardation layer having a reverse wavelength dispersion. The retardation layer may be an element in the retardation body that is configured together with other layers. Examples of the layer other than the retardation layer in the retardation body include a base material layer, an alignment layer, a protective layer, and the like. The other layers can be those that do not affect the value of the phase difference.
 位相差層としては、重合性液晶化合物の硬化物を含む液晶層、又は延伸フィルムが挙げられる。液晶層である位相差層の方が、延伸フィルムである位相差層よりも、一般的に薄膜化が容易である。 Examples of the retardation layer include a liquid crystal layer containing a cured product of a polymerizable liquid crystal compound, or a stretched film. The retardation layer, which is a liquid crystal layer, is generally easier to thin than the retardation layer, which is a stretched film.
 位相差層が液晶層である場合は、厚さは0.5μm~10μmであることが好ましく、0.5μm~5μmであることがより好ましい。 When the retardation layer is a liquid crystal layer, the thickness is preferably 0.5 μm to 10 μm, and more preferably 0.5 μm to 5 μm.
 偏光板20の構成として、偏光子とともに、二つの位相差層を備える以下の構成が例示される。前面板10に近い側から順に、
i)偏光子、1/2波長層、1/4波長層の組み合わせ、
ii)偏光子、1/4波長層、ポジティブC層の組み合わせ、
等が挙げられる。上記i)及びii)の構成は円偏光板を提供しうる。光学積層体は、偏光板20として円偏光板を備える構成とすることにより、外部光の反射を防止することができる。
As the configuration of the polarizing plate 20, the following configuration including two retardation layers together with a polarizing element is exemplified. From the side closest to the front plate 10
i) A combination of a polarizer, a 1/2 wavelength layer, and a 1/4 wavelength layer,
ii) Polarizer, 1/4 wavelength layer, positive C layer combination,
And so on. The configurations of i) and ii) above can provide a circular polarizing plate. The optical laminate can be prevented from reflecting external light by providing the polarizing plate 20 with a circular polarizing plate.
 1/2波長層は、入射光の電界振動方向(偏光面)にπ(=λ/2)の位相差を与えるものであり、直線偏光の向き(偏光方位)を変える機能を有している。また、円偏光の光を入射させると、円偏光の回転方向を反対回りにすることができる。 The 1/2 wavelength layer gives a phase difference of π (= λ / 2) to the electric field vibration direction (polarization plane) of the incident light, and has a function of changing the direction of linear polarization (polarization direction). .. Further, when the circularly polarized light is incident, the rotation direction of the circularly polarized light can be reversed.
 1/2波長層は、特定の波長λnmにおける面内レターデーション値であるRe(λ)がRe(λ)=λ/2を満足する層である。可視光域の何れの波長においてRe(λ)=λ/2を達成されていればよいが、なかでも波長550nmにおいて達成されることが好ましい。波長550nmにおける面内レターデーション値であるRe(550)は、210nm≦Re(550)≦300nmを満足することが好ましい。また、220nm≦Re(550)≦290nmを満足することがより好ましい。 The 1/2 wavelength layer is a layer in which Re (λ), which is an in-plane retardation value at a specific wavelength λ nm, satisfies Re (λ) = λ / 2. Re (λ) = λ / 2 may be achieved at any wavelength in the visible light region, but it is particularly preferable that it is achieved at a wavelength of 550 nm. The in-plane retardation value of Re (550) at a wavelength of 550 nm preferably satisfies 210 nm ≦ Re (550) ≦ 300 nm. Further, it is more preferable to satisfy 220 nm ≦ Re (550) ≦ 290 nm.
 1/4波長層は、入射光の電界振動方向(偏光面)にπ/2(=λ/4)の位相差を与えるものであり、ある特定の波長の直線偏光を円偏光に(又は円偏光を直線偏光に)変換する機能を有している。 The 1/4 wavelength layer gives a phase difference of π / 2 (= λ / 4) to the electric field vibration direction (polarization plane) of the incident light, and linearly polarized light of a specific wavelength is circularly polarized (or circularly polarized). It has the function of converting polarized light (to linearly polarized light).
 1/4波長層は、特定の波長λnmにおける面内レターデーション値であるRe(λ)がRe(λ)=λ/4を満足する層であり、可視光域の何れかの波長において達成されていればよいが、なかでも波長550nmで達成されることが好ましい。波長550nmにおける面内レターデーション値であるRe(550)が、100nm≦Re(550)≦160nmを満足することが好ましい。また、110nm≦Re(550)≦150nmを満足することがより好ましい。 The 1/4 wavelength layer is a layer in which Re (λ), which is an in-plane retardation value at a specific wavelength λ nm, satisfies Re (λ) = λ / 4, and is achieved at any wavelength in the visible light region. However, it is preferable that the wavelength is 550 nm. It is preferable that Re (550), which is an in-plane retardation value at a wavelength of 550 nm, satisfies 100 nm ≦ Re (550) ≦ 160 nm. Further, it is more preferable to satisfy 110 nm ≦ Re (550) ≦ 150 nm.
 逆波長分散性とは、短波長での面内レタデーション値の方が長波長での面内レタデーション値よりも小さくなる光学特性であり、好ましくは、下記式(4):
 Re(450)≦Re(550)≦Re(650)   (4)
を満たすことである。
The inverse wavelength dispersibility is an optical characteristic in which the in-plane retardation value at a short wavelength is smaller than the in-plane retardation value at a long wavelength, and the following equation (4):
Re (450) ≤ Re (550) ≤ Re (650) (4)
To meet.
 光学補償層としては、例えば、ポジティブA層、ポジティブC層等が挙げられる。ポジティブA層は、その面内における遅相軸方向の屈折率をNx、その面内における進相軸方向の屈折率をNy、その厚み方向における屈折率をNzとしたときに、Nx>Nyの関係を満足するものである。ポジティブA層は、Nx>Ny≧Nzの関係を満足することが好ましい。また、ポジティブA層は1/4波長層としても機能することができる。ポジティブC層は、Nz>Nx≧Nyの関係を満足するものである。 Examples of the optical compensation layer include a positive A layer and a positive C layer. The positive A layer has Nx> Ny when the refractive index in the slow axis direction in the plane is Nx, the refractive index in the phase advance axis direction in the plane is Ny, and the refractive index in the thickness direction is Nz. Satisfy the relationship. The positive A layer preferably satisfies the relationship of Nx> Ny ≧ Nz. The positive A layer can also function as a quarter wavelength layer. The positive C layer satisfies the relationship of Nz> Nx ≧ Ny.
 位相差層の光学特性は、位相差層を構成する液晶化合物の配向状態、又は位相差層を構成する延伸フィルムの延伸方法により調節することができる。偏光板20中の位相差層の光学特性を適宜調節することにより、反射防止性能を有する偏光板20とすることができる。 The optical characteristics of the retardation layer can be adjusted by the orientation state of the liquid crystal compound constituting the retardation layer or the stretching method of the stretched film constituting the retardation layer. By appropriately adjusting the optical characteristics of the retardation layer in the polarizing plate 20, the polarizing plate 20 having antireflection performance can be obtained.
 (1)液晶層である位相差層
 位相差層が液晶層である場合について説明する。図2は、液晶層である位相差層と他の層とを含む位相差体の一例を模式的に示す概略断面図である。図2に示すように、位相差体50は、基材層51、配向層52、液晶層である位相差層53がこの順に積層されてなる。位相差体50は、液晶層である位相差層53を含む構成であれば図2に示す構成に限定されることはなく、基材層51が剥離されて配向層52と位相差層53のみからなる構成であってもよく、基材層51と配向層52が剥離されて液晶層である位相差層53のみからなる構成であってもよい。
(1) Phase difference layer which is a liquid crystal layer A case where the retardation layer is a liquid crystal layer will be described. FIG. 2 is a schematic cross-sectional view schematically showing an example of a retardation body including a retardation layer which is a liquid crystal layer and another layer. As shown in FIG. 2, the retardation body 50 is formed by laminating a base material layer 51, an alignment layer 52, and a retardation layer 53 which is a liquid crystal layer in this order. The retardation body 50 is not limited to the configuration shown in FIG. 2 as long as it includes the retardation layer 53 which is a liquid crystal layer, and only the alignment layer 52 and the retardation layer 53 are separated from the base material layer 51. It may be composed of only the retardation layer 53 which is a liquid crystal layer by peeling off the base material layer 51 and the alignment layer 52.
 図3は、液晶層である位相差層と他の層とを含む位相差体の他の例を模式的に示す概略断面図である。図3に示す位相差体55は、基材層56、接着層57、位相差層53がこの順に積層されてなる。位相差体55は、図2に示す位相差体50の位相差層53と別の基材層56とを、接着層57を介して貼合し、その後基材層51、または基材層51及び配向層52を剥離して形成される。接着層57としては、接着剤層、粘着剤層が挙げられる。 FIG. 3 is a schematic cross-sectional view schematically showing another example of a retardation body including a retardation layer which is a liquid crystal layer and another layer. The retardation body 55 shown in FIG. 3 is formed by laminating a base material layer 56, an adhesive layer 57, and a retardation layer 53 in this order. In the retardation body 55, the retardation layer 53 of the retardation body 50 shown in FIG. 2 and another base material layer 56 are bonded to each other via an adhesive layer 57, and then the base material layer 51 or the base material layer 51 is bonded. And the alignment layer 52 is peeled off and formed. Examples of the adhesive layer 57 include an adhesive layer and an adhesive layer.
 基材層51は、基材層51上に形成される配向層52、及び液晶層である位相差層53を支持する支持層として機能を有する。基材層51は、樹脂材料で形成されたフィルムであることが好ましい。 The base material layer 51 has a function as a support layer for supporting the alignment layer 52 formed on the base material layer 51 and the retardation layer 53 which is a liquid crystal layer. The base material layer 51 is preferably a film made of a resin material.
 基材層51の樹脂材料としては、例えば、透明性、機械的強度、熱安定性、延伸性等に優れる樹脂材料が用いられる。具体的には、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂;ノルボルネン系ポリマー等の環状ポリオレフィン系樹脂;ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂;(メタ)アクリル酸、ポリ(メタ)アクリル酸メチル等の(メタ)アクリル酸系樹脂;トリアセチルセルロース、ジアセチルセルロース及びセルロースアセテートプロピオネート等のセルロースエステル系樹脂;ポリビニルアルコール及びポリ酢酸ビニル等のビニルアルコール系樹脂;ポリカーボネート系樹脂;ポリスチレン系樹脂;ポリアリレート系樹脂;ポリスルホン系樹脂;ポリエーテルスルホン系樹脂;ポリアミド系樹脂;ポリイミド系樹脂;ポリエーテルケトン系樹脂;ポリフェニレンスルフィド系樹脂;ポリフェニレンオキシド系樹脂、及びこれらの混合物、共重合物等を挙げることができる。これらの樹脂のうち、環状ポリオレフィン系樹脂、ポリエステル系樹脂、セルロースエステル系樹脂及び(メタ)アクリル酸系樹脂のいずれか又はこれらの混合物を用いることが好ましい。なお、上記「(メタ)アクリル酸」とは、「アクリル酸及びメタクリル酸の少なくとも1種」を意味する。 As the resin material of the base material layer 51, for example, a resin material having excellent transparency, mechanical strength, thermal stability, stretchability, etc. is used. Specifically, polyolefin resins such as polyethylene and polypropylene; cyclic polyolefin resins such as norbornene polymers; polyester resins such as polyethylene terephthalate and polyethylene naphthalate; (meth) acrylic acid, poly (meth) methyl acrylate and the like. (Meta) acrylic acid resin; cellulose ester resin such as triacetyl cellulose, diacetyl cellulose and cellulose acetate propionate; vinyl alcohol resin such as polyvinyl alcohol and polyvinyl acetate; polycarbonate resin; polystyrene resin; poly Arilate-based resin; polysulfone-based resin; polyethersulfone-based resin; polyamide-based resin; polyimide-based resin; polyetherketone-based resin; polyphenylene sulfide-based resin; polyphenylene oxide-based resin, and mixtures and copolymers thereof. Can be done. Among these resins, it is preferable to use any one of cyclic polyolefin-based resin, polyester-based resin, cellulose ester-based resin and (meth) acrylic acid-based resin, or a mixture thereof. The above-mentioned "(meth) acrylic acid" means "at least one of acrylic acid and methacrylic acid".
 基材層51は、上記の樹脂1種類又は2種以上を混合した単層であってもよく、2層以上の複層構造を有していてもよい。 The base material layer 51 may be a single layer obtained by mixing one or more of the above resins, or may have a multi-layer structure of two or more layers.
 樹脂フィルムをなす樹脂材料には、任意の添加剤が添加されていてもよい。添加剤としては、例えば、紫外線吸収剤、酸化防止剤、滑剤、可塑剤、離型剤、着色防止剤、難燃剤、核剤、帯電防止剤、顔料、及び着色剤等が挙げられる。 Any additive may be added to the resin material forming the resin film. Examples of the additive include an ultraviolet absorber, an antioxidant, a lubricant, a plasticizer, a mold release agent, a colorant, a flame retardant, a nucleating agent, an antistatic agent, a pigment, and a colorant.
 基材層51の厚さは、特に限定されないが、一般には強度や取扱い性等の作業性の点から5~200μmであることが好ましく、10~200μmであることがより好ましく、10~150μmであることがさらに好ましい。 The thickness of the base material layer 51 is not particularly limited, but is generally preferably 5 to 200 μm, more preferably 10 to 200 μm, and 10 to 150 μm from the viewpoint of workability such as strength and handleability. It is more preferable to have.
 基材層51と配向層52との密着性を向上させるために、少なくとも基材層51の配向層52が形成される側の表面にコロナ処理、プラズマ処理、火炎処理等を行ってもよく、プライマー層等を形成してもよい。なお、基材層51、又は基材層51及び配向層52を剥離して位相差層とする場合には、剥離界面での密着力を調整することによって剥離を容易とすることができる。基材層56の材料、厚さ、処理等については、基材層51の説明が適用される。 In order to improve the adhesion between the base layer 51 and the alignment layer 52, at least the surface of the base layer 51 on the side where the alignment layer 52 is formed may be subjected to corona treatment, plasma treatment, flame treatment, or the like. A primer layer or the like may be formed. When the base material layer 51, or the base material layer 51 and the alignment layer 52 are peeled off to form a retardation layer, the peeling can be facilitated by adjusting the adhesion at the peeling interface. The description of the base material layer 51 is applied to the material, thickness, treatment, etc. of the base material layer 56.
 配向層52は、これらの配向層52上に形成される液晶層の位相差層53に含まれる液晶化合物を所望の方向に配向させる、配向規制力を有する。配向層52としては、配向性ポリマーで形成された配向性ポリマー層、光配向ポリマーで形成された光配向ポリマー層、層表面に凹凸パターンや複数のグルブ(溝)を有するグルブ配向層を挙げることができる。配向層52の厚みは、通常0.01~10μmであり、0.01~5μmであることが好ましい。 The alignment layer 52 has an orientation regulating force that orients the liquid crystal compound contained in the retardation layer 53 of the liquid crystal layer formed on the alignment layer 52 in a desired direction. Examples of the oriented layer 52 include an oriented polymer layer formed of an oriented polymer, a photo-aligned polymer layer formed of a photo-aligned polymer, and a grub-aligned layer having an uneven pattern or a plurality of grubs (grooves) on the layer surface. Can be done. The thickness of the alignment layer 52 is usually 0.01 to 10 μm, preferably 0.01 to 5 μm.
 配向性ポリマー層は、配向性ポリマーを溶剤に溶解した組成物を基材層51に塗布して溶剤を除去し、必要に応じてラビング処理をして形成することができる。この場合、配向規制力は、配向性ポリマーで形成された配向性ポリマー層では、配向性ポリマーの表面状態やラビング条件によって任意に調整することが可能である。 The oriented polymer layer can be formed by applying a composition in which the oriented polymer is dissolved in a solvent to the base material layer 51 to remove the solvent, and if necessary, rubbing treatment. In this case, the orientation regulating force can be arbitrarily adjusted in the orientation polymer layer formed of the orientation polymer depending on the surface condition of the orientation polymer and the rubbing conditions.
 光配向ポリマー層は、光反応性基を有するポリマー又はモノマーと溶剤とを含む組成物を基材層51に塗布し、偏光を照射することによって形成することができる。この場合、配向規制力は、光配向ポリマー層では、光配向ポリマーに対する偏光照射条件等によって任意に調整することが可能である。 The photoaligned polymer layer can be formed by applying a composition containing a polymer or monomer having a photoreactive group and a solvent to the base material layer 51 and irradiating it with polarized light. In this case, in the photo-alignment polymer layer, the orientation-regulating force can be arbitrarily adjusted depending on the polarization irradiation conditions of the photo-alignment polymer.
 グルブ配向層は、例えば感光性ポリイミド膜表面にパターン形状のスリットを有する露光用マスクを介して露光、現像等を行って凹凸パターンを形成する方法、表面に溝を有する板状の原盤に、活性エネルギー線硬化性樹脂の未硬化の層を形成し、この層を基材層51に転写して硬化する方法、基材層51に活性エネルギー線硬化性樹脂の未硬化の層を形成し、この層に、凹凸を有するロール状の原盤を押し当てる等により凹凸を形成して硬化させる方法等によって形成することができる。 The grub alignment layer is active on a plate-shaped master having grooves on the surface, for example, a method of forming an uneven pattern by exposure, development, etc. through an exposure mask having a pattern-shaped slit on the surface of a photosensitive polyimide film. A method of forming an uncured layer of an energy ray-curable resin and transferring this layer to a base material layer 51 for curing, forming an uncured layer of an active energy ray-curable resin on the base material layer 51, and this It can be formed by a method of forming irregularities and curing by pressing a roll-shaped master having irregularities against the layer.
 液晶層である位相差層53は、光に所定の位相差を与えるものであれば特に限定されず、例えば、1/2波長層、1/4波長層、ポジティブC層などの光学補償層を挙げることができる。 The retardation layer 53, which is a liquid crystal layer, is not particularly limited as long as it gives a predetermined phase difference to light, and for example, an optical compensation layer such as a 1/2 wavelength layer, a 1/4 wavelength layer, and a positive C layer can be used. Can be mentioned.
 液晶層である位相差層53は、公知の液晶化合物を用いて形成することができる。液晶化合物の種類は特に限定されず、棒状液晶化合物、円盤状液晶化合物、及びこれらの混合物を用いることができる。また、液晶化合物は、高分子液晶化合物であってもよく、重合性液晶化合物であってもよく、これらの混合物であってもよい。液晶化合物としては、例えば、特表平11-513019号公報、特開2005-289980号公報、特開2007-108732号公報、特開2010-244038号公報、特開2010-31223号公報、特開2010-270108号公報、特開2011-6360号公報、特開2011-207765号公報、特開2016-81035号公報、国際公開第2017/043438号及び特表2011-207765号公報に記載の液晶化合物が挙げられる。 The retardation layer 53, which is a liquid crystal layer, can be formed by using a known liquid crystal compound. The type of the liquid crystal compound is not particularly limited, and a rod-shaped liquid crystal compound, a disk-shaped liquid crystal compound, and a mixture thereof can be used. Further, the liquid crystal compound may be a polymer liquid crystal compound, a polymerizable liquid crystal compound, or a mixture thereof. Examples of the liquid crystal compound include JP-A-11-513019, JP-A-2005-289980, JP-A-2007-108732, JP-A-2010-2404038, JP-A-2010-31223, and JP-A. Liquid crystal compounds described in JP-A-2010-270108, JP-A-2011-6360, JP-A-2011-207765, JP-A-2016-81035, WO2017 / 043438 and JP-A-2011-207765. Can be mentioned.
 例えば、重合性液晶化合物を用いる場合には、重合性液晶化合物を含む組成物を、配向層52上に塗布して塗膜を形成し、この塗膜を硬化させることによって、位相差層53を形成することができる。このようにして形成される位相差層53は、重合性液晶化合物の硬化物を含むものとなる。位相差層53の厚みは、0.5μm~10μmであることが好ましく、0.5~5μmであることがさらに好ましい。 For example, when a polymerizable liquid crystal compound is used, a composition containing the polymerizable liquid crystal compound is applied onto the alignment layer 52 to form a coating film, and the coating film is cured to form a retardation layer 53. Can be formed. The retardation layer 53 formed in this way contains a cured product of the polymerizable liquid crystal compound. The thickness of the retardation layer 53 is preferably 0.5 μm to 10 μm, and more preferably 0.5 to 5 μm.
 重合性液晶化合物を含む組成物は、液晶化合物以外に、重合開始剤、重合性モノマー、界面活性剤、溶剤、密着改良剤、可塑剤、配向剤等が含まれていてもよい。重合性液晶化合物を含む組成物の塗布方法としては、ダイコーティング法等の公知の方法が挙げられる。重合性液晶化合物を含む組成物の硬化方法としては、活性エネルギー線(例えば紫外線)を照射する等の公知の方法が挙げられる。 The composition containing the polymerizable liquid crystal compound may contain a polymerization initiator, a polymerizable monomer, a surfactant, a solvent, an adhesion improver, a plasticizer, an orienting agent and the like in addition to the liquid crystal compound. Examples of the method for applying the composition containing the polymerizable liquid crystal compound include known methods such as a die coating method. Examples of the curing method of the composition containing the polymerizable liquid crystal compound include known methods such as irradiation with active energy rays (for example, ultraviolet rays).
 (2)延伸フィルムである位相差層
 位相差層が延伸フィルムである場合について説明する。延伸フィルムは通常、基材を延伸することで得られる。基材を延伸する方法としては、例えば、基材がロールに巻き取られているロール(巻き取り体)を準備し、かかる巻き取り体から、基材を連続的に巻き出し、巻き出された基材を加熱炉へと搬送する。加熱炉の設定温度は、基材のガラス転移温度近傍(℃)~[ガラス転移温度+100](℃)の範囲、好ましくは、ガラス転移温度近傍(℃)~[ガラス転移温度+50](℃)の範囲とする。当該加熱炉においては、基材の進行方向へ、又は進行方向と直交する方向へ延伸する際に、搬送方向や張力を調整し任意の角度に傾斜をつけて一軸又は二軸の熱延伸処理を行う。延伸の倍率は、通常1.1~6倍であり、好ましくは1.1~3.5倍である。
(2) Phase Difference Layer as Stretched Film A case where the retardation layer is a stretched film will be described. The stretched film is usually obtained by stretching the base material. As a method of stretching the base material, for example, a roll (winding body) in which the base material is wound on a roll is prepared, and the base material is continuously unwound and unwound from the winding body. The base material is transferred to the heating furnace. The set temperature of the heating furnace is in the range of the base material near the glass transition temperature (° C) to [glass transition temperature +100] (° C), preferably near the glass transition temperature (° C) to [glass transition temperature +50] (° C). The range of. In the heating furnace, when the base material is stretched in the traveling direction or in the direction orthogonal to the traveling direction, the transport direction and tension are adjusted to incline at an arbitrary angle to perform uniaxial or biaxial thermal stretching treatment. Do. The stretching ratio is usually 1.1 to 6 times, preferably 1.1 to 3.5 times.
 また、斜め方向に延伸する方法としては、連続的に配向軸を所望の角度に傾斜させることができるものであれば、特に限定されず、公知の延伸方法が採用できる。このような延伸方法は例えば、特開昭50-83482号公報や特開平2-113920号公報に記載された方法を挙げることができる。延伸することでフィルムに位相差性を付与する場合、延伸後の厚みは、延伸前の厚みや延伸倍率によって決定される。 Further, the method of stretching in the oblique direction is not particularly limited as long as the orientation axis can be continuously tilted to a desired angle, and a known stretching method can be adopted. Examples of such a stretching method include the methods described in JP-A-50-83482 and JP-A-2-113920. When imparting retardation to a film by stretching, the thickness after stretching is determined by the thickness before stretching and the stretching ratio.
 前記基材は通常透明基材である。透明基材とは、光、特に可視光を透過し得る透明性を有する基材を意味し、透明性とは、波長380~780nmにわたる光線に対しての透過率が80%以上となる特性をいう。具体的な透明基材としては、透光性樹脂基材が挙げられる。透光性樹脂基材を構成する樹脂としては、ポリエチレン、ポリプロピレンなどのポリオレフィン;ノルボルネン系ポリマーなどの環状オレフィン系樹脂;ポリビニルアルコール;ポリエチレンテレフタレート;ポリメタクリル酸エステル;ポリアクリル酸エステル;トリアセチルセルロース、ジアセチルセルロース、セルロースアセテートプロピオネートなどのセルロースエステル;ポリエチレンナフタレート;ポリカーボネート;ポリスルホン;ポリエーテルスルホン;ポリエーテルケトン;ポリフェニレンスルフィドおよびポリフェニレンオキシドが挙げられる。入手のしやすさや透明性の観点から、ポリエチレンテレフタレート、ポリメタクリル酸エステル、セルロースエステル、環状オレフィン系樹脂またはポリカーボネートが好ましい。 The base material is usually a transparent base material. The transparent base material means a base material having transparency capable of transmitting light, particularly visible light, and the transparency means a characteristic that the transmittance for light having a wavelength of 380 to 780 nm is 80% or more. Say. Specific examples of the transparent base material include a translucent resin base material. Resins constituting the translucent resin base material include polyolefins such as polyethylene and polypropylene; cyclic olefin resins such as norbornene-based polymers; polyvinyl alcohol; polyethylene terephthalate; polymethacrylic acid ester; polyacrylic acid ester; triacetylcellulose, Cellulose esters such as diacetyl cellulose and cellulose acetate propionate; polyethylene naphthalate; polycarbonate; polysulfone; polyethersulfone; polyether ketone; polyphenylene sulfide and polyphenylene oxide. From the viewpoint of availability and transparency, polyethylene terephthalate, polymethacrylic acid ester, cellulose ester, cyclic olefin resin or polycarbonate are preferable.
 セルロースエステルは、セルロースに含まれる水酸基の一部または全部が、エステル化されたものであり、市場から容易に入手することができる。また、セルロースエステル基材も市場から容易に入手することができる。市販のセルロースエステル基材としては、例えば、“フジタック(登録商標)フィルム”(富士フイルム(株));“KC8UX2M”、“KC8UY”及び“KC4UY”(コニカミノルタオプト(株))などが挙げられる。 Cellulose ester is an esterified part or all of the hydroxyl groups contained in cellulose and can be easily obtained from the market. Cellulose ester substrates are also readily available on the market. Examples of commercially available cellulose ester base materials include "Fujitac (registered trademark) film" (FUJIFILM Corporation); "KC8UX2M", "KC8UY" and "KC4UY" (Konica Minolta Opto Co., Ltd.). ..
 ポリメタクリル酸エステル及びポリアクリル酸エステル(以下、ポリメタクリル酸エステル及びポリアクリル酸エステルをまとめて(メタ)アクリル系樹脂ということがある。
)は、市場から容易に入手できる。
Polymethacrylic acid ester and polyacrylic acid ester (hereinafter, polymethacrylic acid ester and polyacrylic acid ester may be collectively referred to as (meth) acrylic resin.
) Is readily available from the market.
 (メタ)アクリル系樹脂としては、例えば、メタクリル酸アルキルエステル又はアクリル酸アルキルエステルの単独重合体や、メタクリル酸アルキルエステルとアクリル酸アルキルエステルとの共重合体などが挙げられる。メタクリル酸アルキルエステルとして具体的には、メチルメタクリレート、エチルメタクリレート、プロピルメタクリレートなどが、またアクリル酸アルキルエステルとして具体的には、メチルアクリレート、エチルアクリレート、プロピルアクリレートなどがそれぞれ挙げられる。かかる(メタ)アクリル系樹脂には、汎用の(メタ)アクリル系樹脂として市販されているものが使用できる。(メタ)アクリル系樹脂として、耐衝撃(メタ)アクリル樹脂と呼ばれるものを使用してもよい。 Examples of the (meth) acrylic resin include homopolymers of methacrylic acid alkyl esters or acrylic acid alkyl esters, and copolymers of methacrylic acid alkyl esters and acrylic acid alkyl esters. Specific examples of the methacrylic acid alkyl ester include methyl methacrylate, ethyl methacrylate and propyl methacrylate, and specific examples of the acrylic acid alkyl ester include methyl acrylate, ethyl acrylate and propyl acrylate. As the (meth) acrylic resin, those commercially available as general-purpose (meth) acrylic resins can be used. As the (meth) acrylic resin, what is called an impact resistant (meth) acrylic resin may be used.
 さらなる機械的強度向上のために、(メタ)アクリル系樹脂にゴム粒子を含有させることも好ましい。ゴム粒子は、アクリル系のものが好ましい。ここで、アクリル系ゴム粒子とは、ブチルアクリレートや2-エチルヘキシルアクリレートのようなアクリル酸アルキルエステルを主成分とするアクリル系モノマーを、多官能モノマーの存在下に重合させて得られるゴム弾性を有する粒子である。アクリル系ゴム粒子は、このようなゴム弾性を有する粒子が単層で形成されたものであってもよいし、ゴム弾性層を少なくとも一層有する多層構造体であってもよい。多層構造のアクリル系ゴム粒子としては、上記のようなゴム弾性を有する粒子を核とし、その周りを硬質のメタクリル酸アルキルエステル系重合体で覆ったもの、硬質のメタクリル酸アルキルエステル系重合体を核とし、その周りを上記のようなゴム弾性を有するアクリル系重合体で覆ったもの、また硬質の核の周りをゴム弾性のアクリル系重合体で覆い、さらにその周りを硬質のメタクリル酸アルキルエステル系重合体で覆ったものなどが挙げられる。弾性層で形成されるゴム粒子は、その平均直径が通常50~400nm程度の範囲にある。 It is also preferable to include rubber particles in the (meth) acrylic resin in order to further improve the mechanical strength. The rubber particles are preferably acrylic particles. Here, the acrylic rubber particles have rubber elasticity obtained by polymerizing an acrylic monomer containing an acrylic acid alkyl ester as a main component, such as butyl acrylate or 2-ethylhexyl acrylate, in the presence of a polyfunctional monomer. It is a particle. The acrylic rubber particles may be formed by forming such particles having rubber elasticity in a single layer, or may be a multilayer structure having at least one rubber elastic layer. As the acrylic rubber particles having a multi-layer structure, those having the above-mentioned particles having rubber elasticity as nuclei and covering them with a hard methacrylic acid alkyl ester polymer, and hard methacrylic acid alkyl ester polymers are used. A core made of an acrylic polymer having rubber elasticity as described above, or a hard core covered with an acrylic polymer having rubber elasticity, and a hard alkyl methacrylic acid ester around the core. Examples thereof include those covered with a system polymer. The rubber particles formed by the elastic layer usually have an average diameter in the range of about 50 to 400 nm.
 (メタ)アクリル系樹脂におけるゴム粒子の含有量は、(メタ)アクリル系樹脂100質量部あたり、通常5~50質量部程度である。(メタ)アクリル系樹脂及びアクリル系ゴム粒子は、それらを混合した状態で市販されているので、その市販品を用いることができる。アクリル系ゴム粒子が配合された(メタ)アクリル系樹脂の市販品の例として、住友化学(株)から販売されている“HT55X”や“テクノロイ S001”などが挙げられる。“テクノロイ S001”は、フィルムの形で販売されている。 The content of rubber particles in the (meth) acrylic resin is usually about 5 to 50 parts by mass per 100 parts by mass of the (meth) acrylic resin. Since the (meth) acrylic resin and the acrylic rubber particles are commercially available in a mixed state, the commercially available products can be used. Examples of commercially available (meth) acrylic resins containing acrylic rubber particles include "HT55X" and "Technoloy S001" sold by Sumitomo Chemical Co., Ltd. "Technoloy S001" is sold in the form of a film.
 環状オレフィン系樹脂は、市場から容易に入手できる。市販の環状オレフィン系樹脂としては、“Topas”(登録商標)[Ticona社(独)]、“アートン”(登録商標)[JSR(株)]、“ゼオノア(ZEONOR)”(登録商標)[日本ゼオン(株)]、“ゼオネックス(ZEONEX)”(登録商標)[日本ゼオン(株)]および“アペル”(登録商標)[三井化学(株)]が挙げられる。このような環状オレフィン系樹脂を、例えば、溶剤キャスト法、溶融押出法などの公知の手段により製膜して、基材とすることができる。また、市販されている環状オレフィン系樹脂基材を用いることもできる。市販の環状オレフィン系樹脂基材としては、“エスシーナ”(登録商標)[積水化学工業(株)]、“SCA40”(登録商標)[積水化学工業(株)]、“ゼオノアフィルム”(登録商標)[オプテス(株)]および“アートンフィルム”(登録商標)[JSR(株)]が挙げられる。 Cyclic olefin resin is easily available on the market. Commercially available cyclic olefin resins include "Topas" (registered trademark) [Ticona (Germany)], "Arton" (registered trademark) [JSR Co., Ltd.], "ZEONOR" (registered trademark) [Japan. Zeon Co., Ltd.], "ZEONEX" (registered trademark) [Zeon Corporation] and "Apel" (registered trademark) [Mitsui Chemicals Co., Ltd.]. Such a cyclic olefin resin can be used as a base material by forming a film by a known means such as a solvent casting method or a melt extrusion method. Further, a commercially available cyclic olefin resin base material can also be used. Commercially available cyclic olefin resin base materials include "Sushina" (registered trademark) [Sekisui Chemical Co., Ltd.], "SCA40" (registered trademark) [Sekisui Chemical Co., Ltd.], and "Zeonor Film" (registered trademark). ) [Optes Co., Ltd.] and "Arton Film" (registered trademark) [JSR Co., Ltd.].
 環状オレフィン系樹脂が、環状オレフィンと、鎖状オレフィンやビニル基を有する芳香族化合物との共重合体である場合、環状オレフィンに由来する構造単位の含有割合は、共重合体の全構造単位に対して、通常50モル%以下、好ましくは15~50モル%の範囲である。鎖状オレフィンとしては、エチレンおよびプロピレンが挙げられ、ビニル基を有する芳香族化合物としては、スチレン、α-メチルスチレンおよびアルキル置換スチレンが挙げられる。環状オレフィン系樹脂が、環状オレフィンと、鎖状オレフィンと、ビニル基を有する芳香族化合物との三元共重合体である場合、鎖状オレフィンに由来する構造単位の含有割合は、共重合体の全構造単位に対して、通常5~80モル%であり、ビニル基を有する芳香族化合物に由来する構造単位の含有割合は、共重合体の全構造単位に対して、通常5~80モル%である。このような三元共重合体は、その製造において、高価な環状オレフィンの使用量を比較的少なくすることができるという利点がある。 When the cyclic olefin resin is a copolymer of a cyclic olefin and an aromatic compound having a chain olefin or a vinyl group, the content ratio of the structural unit derived from the cyclic olefin is the total structural unit of the copolymer. On the other hand, it is usually in the range of 50 mol% or less, preferably 15 to 50 mol%. Examples of the chain olefin include ethylene and propylene, and examples of the aromatic compound having a vinyl group include styrene, α-methylstyrene and alkyl-substituted styrene. When the cyclic olefin resin is a ternary copolymer of a cyclic olefin, a chain olefin, and an aromatic compound having a vinyl group, the content ratio of the structural unit derived from the chain olefin is the content of the copolymer. The content ratio of the structural unit derived from the aromatic compound having a vinyl group is usually 5 to 80 mol% with respect to the total structural unit of the copolymer. Is. Such a ternary copolymer has an advantage that the amount of expensive cyclic olefins used can be relatively small in the production thereof.
 (保護層)
 偏光板200に含まれる保護層201は、式(1a)の関係式を満たすものであれば特に限定されない。偏光板200の構成の一例として、図2に示す位相差体50または図3に示す位相差体55を含み、位相差体50の基材層51または位相差体55の基材層56が保護層201である構成が挙げられる。この場合、上述の基材層51,56の説明がそのまま保護層201の説明として当てはまる。例えば、偏光板200が上記i)の構成の円偏光板である場合、保護層201を1/4波長層を支持する基材層51,56とすることができ、保護層201の第1粘着剤層41側とは反対側の表面上に1/4波長層が設けられている構成が挙げられる。また、偏光板200が上記ii)の構成の円偏光板である場合、保護層201をポジティブC層を支持する基材層51,56とすることができ、保護層201の第1粘着剤層41側とは反対側の表面上にポジティブC層が設けられている構成が挙げられる。上記の構成においては、保護層201の表面上に位相差層が設けられている構成であり、保護層201と位相差層とが互いに接している構成であってもよく(例えば図2に示す位相差体50)、保護層201と位相差層とが互いに接していない構成であってもよい(例えば図3に示す位相差体55)。
(Protective layer)
The protective layer 201 included in the polarizing plate 200 is not particularly limited as long as it satisfies the relational expression of the formula (1a). As an example of the configuration of the polarizing plate 200, the retardation body 50 shown in FIG. 2 or the retardation body 55 shown in FIG. 3 is included, and the base material layer 51 of the retardation body 50 or the base material layer 56 of the retardation body 55 is protected. Examples include the configuration of layer 201. In this case, the above description of the base material layers 51 and 56 applies as it is to the description of the protective layer 201. For example, when the polarizing plate 200 is a circular polarizing plate having the configuration of i), the protective layer 201 can be the base material layers 51 and 56 that support the 1/4 wavelength layer, and the first adhesive of the protective layer 201 can be formed. A configuration in which a 1/4 wavelength layer is provided on the surface opposite to the agent layer 41 side can be mentioned. Further, when the polarizing plate 200 is a circular polarizing plate having the above ii) configuration, the protective layer 201 can be the base material layers 51 and 56 that support the positive C layer, and the first pressure-sensitive adhesive layer of the protective layer 201 can be used. A configuration in which a positive C layer is provided on the surface on the side opposite to the 41 side can be mentioned. In the above configuration, a retardation layer is provided on the surface of the protection layer 201, and the protection layer 201 and the retardation layer may be in contact with each other (for example, shown in FIG. 2). The retardation body 50), the protective layer 201 and the retardation layer may not be in contact with each other (for example, the retardation body 55 shown in FIG. 3).
 偏光板200の構成の他の例として、偏光子の第1粘着剤層41側の表面に貼合される保護フィルムが保護層201である構成が挙げられる。この場合、上述の保護フィルムの説明がそのまま保護層201の説明として当てはまる。また、偏光板200の構成の他の例として、偏光板200の第1粘着剤層41側の表面に保護層201を貼合して偏光板200の構成要素とする構成が挙げられる。この場合、保護層201としては、上述の基材層51、または上述の保護フィルムで説明したものと同様のものを用いることができる。 Another example of the configuration of the polarizing plate 200 is a configuration in which the protective film 201 is the protective film bonded to the surface of the polarizing element on the first pressure-sensitive adhesive layer 41 side. In this case, the above description of the protective film is directly applied as the description of the protective layer 201. Further, as another example of the configuration of the polarizing plate 200, there is a configuration in which the protective layer 201 is bonded to the surface of the polarizing plate 200 on the side of the first pressure-sensitive adhesive layer 41 to form a constituent element of the polarizing plate 200. In this case, as the protective layer 201, the above-mentioned base material layer 51 or the same one as described in the above-mentioned protective film can be used.
 [粘着剤層]
 第1粘着剤層41は、偏光板20とタッチセンサパネル30との間に介在する層である。第2粘着剤層42は、タッチセンサパネル30の偏光板20側とは反対側の表面上に設けられている層であり、光学積層体100を表示パネル等の他の部材に貼合するために用いることができる。第2粘着剤層42の表面には離型フィルムが貼合されていてもよい。
[Adhesive layer]
The first pressure-sensitive adhesive layer 41 is a layer interposed between the polarizing plate 20 and the touch sensor panel 30. The second adhesive layer 42 is a layer provided on the surface of the touch sensor panel 30 opposite to the polarizing plate 20 side, and is used to bond the optical laminate 100 to another member such as a display panel. Can be used for. A release film may be attached to the surface of the second pressure-sensitive adhesive layer 42.
 第1粘着剤層41及び第2粘着剤層42は、(メタ)アクリル系樹脂、ゴム系樹脂、ウレタン系樹脂、エステル系樹脂、シリコーン系樹脂、ポリビニルエーテル系樹脂のような樹脂を主成分とする粘着剤組成物で構成することができる。中でも、透明性、耐候性、耐熱性等に優れる(メタ)アクリル系樹脂をベースポリマーとする粘着剤組成物が好適である。粘着剤組成物は、活性エネルギー線硬化型、熱硬化型であってもよい。 The first pressure-sensitive adhesive layer 41 and the second pressure-sensitive adhesive layer 42 are mainly composed of resins such as (meth) acrylic resin, rubber resin, urethane resin, ester resin, silicone resin, and polyvinyl ether resin. It can be composed of a pressure-sensitive adhesive composition. Among them, a pressure-sensitive adhesive composition using a (meth) acrylic resin having excellent transparency, weather resistance, heat resistance and the like as a base polymer is preferable. The pressure-sensitive adhesive composition may be an active energy ray-curable type or a thermosetting type.
 粘着剤組成物に用いられる(メタ)アクリル系樹脂(ベースポリマー)としては、例えば、(メタ)アクリル酸ブチル、(メタ)アクリル酸エチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸2-エチルヘキシルのような(メタ)アクリル酸エステルの1種又は2種以上をモノマーとする重合体又は共重合体が好適に用いられる。ベースポリマーには、極性モノマーを共重合させることが好ましい。極性モノマーとしては、例えば、(メタ)アクリル酸、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリルアミド、N,N-ジメチルアミノエチル(メタ)アクリレート、グリシジル(メタ)アクリレートのような、カルボキシル基、水酸基、アミド基、アミノ基、エポキシ基等を有するモノマーを挙げることができる。 Examples of the (meth) acrylic resin (base polymer) used in the pressure-sensitive adhesive composition include butyl (meth) acrylate, ethyl (meth) acrylate, isooctyl (meth) acrylate, and 2- (meth) acrylate. A polymer or copolymer containing one or more (meth) acrylic acid esters such as ethylhexyl as a monomer is preferably used. It is preferable that the base polymer is copolymerized with a polar monomer. Examples of the polar monomer include (meth) acrylic acid, 2-hydroxypropyl (meth) acrylate, hydroxyethyl (meth) acrylate, (meth) acrylamide, N, N-dimethylaminoethyl (meth) acrylate, and glycidyl ( Examples thereof include monomers having a carboxyl group, a hydroxyl group, an amide group, an amino group, an epoxy group and the like, such as meta) acrylate.
 粘着剤組成物は、上記ベースポリマーのみを含むものであってもよいが、通常は架橋剤をさらに含有する。架橋剤としては、2価以上の金属イオンであって、カルボキシル基との間でカルボン酸金属塩を形成するもの;ポリアミン化合物であって、カルボキシル基との間でアミド結合を形成するもの;ポリエポキシ化合物やポリオールであって、カルボキシル基との間でエステル結合を形成するもの;ポリイソシアネート化合物であって、カルボキシル基との間でアミド結合を形成するものが例示される。中でも、ポリイソシアネート化合物が好ましい。 The pressure-sensitive adhesive composition may contain only the above-mentioned base polymer, but usually further contains a cross-linking agent. The cross-linking agent is a divalent or higher metal ion that forms a carboxylic acid metal salt with a carboxyl group; a polyamine compound that forms an amide bond with a carboxyl group; poly. Epoxy compounds and polyols that form an ester bond with a carboxyl group; polyisocyanate compounds that form an amide bond with a carboxyl group are exemplified. Of these, polyisocyanate compounds are preferable.
 活性エネルギー線硬化型粘着剤組成物とは、紫外線や電子線のような活性エネルギー線の照射を受けて硬化する性質を有しており、活性エネルギー線照射前においても粘着性を有してフィルム等の被着体に密着させることができ、活性エネルギー線の照射によって硬化して密着力の調整ができる性質を有する粘着剤組成物である。活性エネルギー線硬化型粘着剤組成物は、紫外線硬化型であることが好ましい。活性エネルギー線硬化型粘着剤組成物は、ベースポリマー、架橋剤に加えて、活性エネルギー線重合性化合物をさらに含有する。さらに必要に応じて、光重合開始剤や光増感剤等を含有させることもある。 The active energy ray-curable pressure-sensitive adhesive composition has a property of being cured by being irradiated with active energy rays such as ultraviolet rays and electron beams, and has adhesiveness even before irradiation with active energy rays. It is a pressure-sensitive adhesive composition having the property of being able to adhere to an adherend such as, etc., and being cured by irradiation with active energy rays to adjust the adhesion force. The active energy ray-curable pressure-sensitive adhesive composition is preferably an ultraviolet-curable type. The active energy ray-curable pressure-sensitive adhesive composition further contains an active energy ray-polymerizable compound in addition to the base polymer and the cross-linking agent. Further, if necessary, a photopolymerization initiator, a photosensitizer, or the like may be contained.
 粘着剤組成物は、光散乱性を付与するための微粒子、ビーズ(樹脂ビーズ、ガラスビーズ等)、ガラス繊維、ベースポリマー以外の樹脂、粘着性付与剤、充填剤(金属粉やその他の無機粉末等)、酸化防止剤、紫外線吸収剤、染料、顔料、着色剤、消泡剤、腐食防止剤、光重合開始剤等の添加剤を含むことができる。 The pressure-sensitive adhesive composition includes fine particles for imparting light scattering properties, beads (resin beads, glass beads, etc.), glass fibers, resins other than the base polymer, pressure-sensitive imparting agents, and fillers (metal powders and other inorganic powders). Etc.), antioxidants, UV absorbers, dyes, pigments, colorants, antifoaming agents, corrosion inhibitors, photopolymerization initiators and other additives can be included.
 上記粘着剤組成物の有機溶剤希釈液を基材上に塗布し、乾燥させることにより形成することができる。活性エネルギー線硬化型粘着剤組成物を用いた場合は、形成された粘着剤層に、活性エネルギー線を照射することにより所望の硬化度を有する硬化物とすることができる。 It can be formed by applying an organic solvent diluent of the above pressure-sensitive adhesive composition on a base material and drying it. When the active energy ray-curable pressure-sensitive adhesive composition is used, the formed pressure-sensitive adhesive layer can be irradiated with active energy rays to obtain a cured product having a desired degree of curing.
 第1粘着剤層41と第2粘着剤層42とは、同じ材料からなるものであっても、異なる材料からなるものであってもよい。第1粘着剤層41の厚みt1、及び第2粘着剤層の厚みt2は、特に限定されることはなく、例えば3μm以上100μm以下であり、5μm以上50μm以下であることが好ましく、20μm以上であってもよい。第1粘着剤層41の厚みt1、及び第2粘着剤層の厚みt2は、上記した式(2a)及び式(3a)を満たすように選択されることが好ましい。 The first pressure-sensitive adhesive layer 41 and the second pressure-sensitive adhesive layer 42 may be made of the same material or different materials. The thickness t1 of the first pressure-sensitive adhesive layer 41 and the thickness t2 of the second pressure-sensitive adhesive layer are not particularly limited, and are, for example, 3 μm or more and 100 μm or less, preferably 5 μm or more and 50 μm or less, and 20 μm or more. There may be. The thickness t1 of the first pressure-sensitive adhesive layer 41 and the thickness t2 of the second pressure-sensitive adhesive layer are preferably selected so as to satisfy the above formulas (2a) and (3a).
 第1粘着剤層41および第2粘着剤層42は、温度25℃における貯蔵弾性率が、それぞれ0.005MPa以上1.0MPa以下であることが好ましく、0.01MPa以上0.5MPa以下であることがより好ましく、0.01MPa以上0.2MPa以下であることがさらに好ましい。貯蔵弾性率は、後述の実施例に記載された方法で測定される。 The storage elastic modulus of the first pressure-sensitive adhesive layer 41 and the second pressure-sensitive adhesive layer 42 at a temperature of 25 ° C. is preferably 0.005 MPa or more and 1.0 MPa or less, and is 0.01 MPa or more and 0.5 MPa or less, respectively. Is more preferable, and 0.01 MPa or more and 0.2 MPa or less is further preferable. The storage modulus is measured by the method described in Examples below.
 [貼合層]
 貼合層43は、偏光板20と前面板10の間に介在する層である。貼合層43は、特に限定されることはなく、例えば、粘着剤層、水系接着剤層、活性エネルギー線硬化型接着剤層等から形成することができる。貼合層43が粘着剤から形成される場合、上記した粘着剤組成物を用いることができる。貼合層43の厚さは、0.1μm~50μmであることが好ましく、0.1μm~10μmであることがより好ましく、0.5μm~5μmであることがさらに好ましい。
[Lated layer]
The bonding layer 43 is a layer interposed between the polarizing plate 20 and the front plate 10. The bonding layer 43 is not particularly limited, and can be formed from, for example, an adhesive layer, an aqueous adhesive layer, an active energy ray-curable adhesive layer, or the like. When the bonding layer 43 is formed from a pressure-sensitive adhesive, the pressure-sensitive adhesive composition described above can be used. The thickness of the bonded layer 43 is preferably 0.1 μm to 50 μm, more preferably 0.1 μm to 10 μm, and even more preferably 0.5 μm to 5 μm.
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの例によって限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these examples.
 以下に示す、前面板A1、保護層B1~B4、偏光板C1~C4、タッチセンサパネルD1,D2、粘着剤シートE1~E5を準備した。 The front plates A1, protective layers B1 to B4, polarizing plates C1 to C4, touch sensor panels D1 and D2, and adhesive sheets E1 to E5 shown below were prepared.
 [前面板]
 (前面板A1)
 透明の基材フィルム(ポリアミドイミドフィルム、厚み50μm)の表面にハードコート層用組成物をコーティングした後、溶剤を乾燥させUV硬化することで、基材フィルムの両表面に厚み10μmのハードコート層が形成された前面板A1(厚み70μm、引張弾性率6GPa、縦177mm×横105mm)を作製した。
[Front plate]
(Front plate A1)
A composition for a hard coat layer is coated on the surface of a transparent base film (polyamideimide film, thickness 50 μm), and then the solvent is dried and UV-cured to obtain a hard coat layer having a thickness of 10 μm on both surfaces of the base film. A front plate A1 (thickness 70 μm, tensile elastic modulus 6 GPa, length 177 mm × width 105 mm) was produced.
 ハードコート層用組成物は、多機能アクリレート(MIWONスペシャルティーケミカル、MIRAMER M340)30重量部、プロピレングリコールモノメチルエーテルに分散したナノシリカゾル(平均粒径12nm、固形分40%)50重量部、エチルアセテート17重量部、光重合開始剤(Ciba社、I184)2.7重量部、フッ素系添加剤(信越化学工業株式会社、KY1203)0.3重量部を攪拌機を利用して配合し、ポリプロピレン(PP)材質のフィルターを用いて濾過することでハードコート層用組成物を製造した。 The composition for the hard coat layer is 30 parts by weight of multifunctional acrylate (MIWON Specialty Chemical, MIRAMER M340), 50 parts by weight of nanosilica sol (average particle size 12 nm, solid content 40%) dispersed in propylene glycol monomethyl ether, ethyl acetate. 17 parts by weight of photopolymerization initiator (Ciba, I184), 2.7 parts by weight, and 0.3 parts by weight of fluorine-based additive (Shinetsu Chemical Industry Co., Ltd., KY1203) are blended using a stirrer to mix polypropylene (PP). ) A composition for a hard coat layer was produced by filtering using a filter made of a material.
 [保護層]
 (保護層B1)
 保護層B1として、厚み23μmのポリエチレンテレフタレート(PET)フィルム(SKC社製、商品名:SH34)を準備した。かかるPETフィルムのタフネスを後述の方法により測定したところ、140mJ/mmであった。
[Protective layer]
(Protective layer B1)
As the protective layer B1, a polyethylene terephthalate (PET) film (manufactured by SKC, trade name: SH34) having a thickness of 23 μm was prepared. When the toughness of the PET film was measured by the method described later, it was 140 mJ / mm 3 .
 (保護層B2)
 保護層B2として、厚み40μmのトリアセチルセルロース(TAC)フィルム(コニカミノルタ株式会社製、商品名:KC4UAW)を準備した。かかるTACフィルムのタフネスを後述の方法により測定したところ、20mJ/mmであった。
(Protective layer B2)
As the protective layer B2, a triacetyl cellulose (TAC) film having a thickness of 40 μm (manufactured by Konica Minolta Co., Ltd., trade name: KC4UAW) was prepared. When the toughness of the TAC film was measured by the method described later, it was 20 mJ / mm 3 .
 (保護層B3)
 保護層B3として、厚み60μmのトリアセチルセルロース(TAC)フィルム(コニカミノルタ株式会社製、商品名:KC6UAW)を準備した。かかるTACフィルムのタフネスを後述の方法により測定したところ、18mJ/mmであった。
(Protective layer B3)
As the protective layer B3, a triacetyl cellulose (TAC) film having a thickness of 60 μm (manufactured by Konica Minolta Co., Ltd., trade name: KC6UAW) was prepared. The toughness of the TAC film was measured by the method described below and found to be 18 mJ / mm 3 .
 (保護層B4)
 保護層B4として、厚み40μmの 環状オレフィン系樹脂(COP)フィルム(日本ゼオン株式会社製、商品名:ZF-16)を準備した。かかるCOPフィルムのタフネスを後述の方法により測定したところ、4mJ/mmであった。
(Protective layer B4)
As the protective layer B4, a cyclic olefin resin (COP) film having a thickness of 40 μm (manufactured by Nippon Zeon Corporation, trade name: ZF-16) was prepared. When the toughness of the COP film was measured by the method described later, it was 4 mJ / mm 3 .
 (タフネスの測定)
 保護層のタフネスは、JIS K7161に準拠して、次のように測定した。保護層から長辺110mm×短辺10mmの長方形の小片をスーパーカッターを用いて切り出した。次いで、引張試験機〔(株)島津製作所製 オートグラフ AG-Xplus試験機〕の上下つかみ具で、つかみ具の間隔が5cmとなるように上記小片の長辺方向両端を挟み、温度23℃、相対湿度55%の環境下、引張速度4mm/分で小片の長辺方向に引張った。タフネスは、初期から破断までの間における、応力-ひずみ曲線の積分値として算出した。
(Measurement of toughness)
The toughness of the protective layer was measured as follows in accordance with JIS K7161. A rectangular piece having a long side of 110 mm and a short side of 10 mm was cut out from the protective layer using a super cutter. Next, the upper and lower grippers of the tensile tester [Autograph AG-Xplus tester manufactured by Shimadzu Corporation] sandwich both ends of the small piece in the long side direction so that the gap between the grippers is 5 cm, and the temperature is 23 ° C. In an environment with a relative humidity of 55%, the pieces were pulled in the long side direction at a tensile speed of 4 mm / min. The toughness was calculated as the integral value of the stress-strain curve from the initial stage to the fracture.
 [偏光板]
 (偏光板C1)
 偏光板C1を次のようにして作製した。トリアセチルセルロース(TAC)フィルム(厚み25μm)上に光配向層を形成した。二色性色素と重合性液晶化合物とを含む組成物を、配向層上に塗布し、重合性液晶化合物を配向、硬化させて、厚み2μmの偏光子を得た。偏光子上にポリビニルアルコールと水とを含む樹脂組成物を、乾燥後の厚みが1.0μmとなるように塗工した。塗膜を温度80℃で3分間乾燥して、オーバーコート層を形成した。オーバーコート層の表面に粘着剤層を介して以下の位相差積層体を貼合した。位相差積層体は、重合性液晶化合物が硬化した層及び配向層からなるλ/4板(厚さ3μm)/粘着剤層(厚さ5μm)/重合性液晶化合物が硬化した層及び配向層からなるポジティブC層(厚さ3μm)/基材層からなる。このようにして、偏光板C1を作製した。偏光板C1は、円偏光板であった。位相差積層体における基材層は、第2位相差層(ポジティブC層)を形成するために用いた図2に示す基材層51に相当し、図1に示す保護層201に相当する。偏光板C1においては、基材層51として、保護層B1を用いた。
[Polarizer]
(Polarizer C1)
The polarizing plate C1 was produced as follows. A photoalignment layer was formed on a triacetyl cellulose (TAC) film (thickness 25 μm). A composition containing a dichroic dye and a polymerizable liquid crystal compound was applied onto an alignment layer, and the polymerizable liquid crystal compound was oriented and cured to obtain a polarizer having a thickness of 2 μm. A resin composition containing polyvinyl alcohol and water was applied onto the polarizer so that the thickness after drying was 1.0 μm. The coating film was dried at a temperature of 80 ° C. for 3 minutes to form an overcoat layer. The following retardation laminates were bonded to the surface of the overcoat layer via an adhesive layer. The retardation laminate is composed of a λ / 4 plate (thickness 3 μm) / adhesive layer (thickness 5 μm) composed of a layer in which the polymerizable liquid crystal compound is cured and an orientation layer / a layer in which the polymerizable liquid crystal compound is cured and an orientation layer. It is composed of a positive C layer (thickness 3 μm) / base material layer. In this way, the polarizing plate C1 was produced. The polarizing plate C1 was a circular polarizing plate. The base material layer in the retardation laminate corresponds to the base material layer 51 shown in FIG. 2 used for forming the second retardation layer (positive C layer), and corresponds to the protective layer 201 shown in FIG. In the polarizing plate C1, the protective layer B1 was used as the base material layer 51.
 (偏光板C2~C4)
 基材層51として、保護層B1の代わりにそれぞれ保護層B2~B4を用いて、偏光板C1と同様にして偏光板C2~C4を作製した。
(Polarizers C2 to C4)
As the base material layer 51, protective layers B2 to B4 were used instead of the protective layer B1, and polarizing plates C2 to C4 were produced in the same manner as the polarizing plate C1.
 [タッチセンサパネル]
 (タッチセンサパネルD1)
 透明導電層、分離層、接着剤層、及び基材層がこの順に積層された縦177mm×横105mmのタッチセンサパネルD1を準備した。透明導電層はITO層を含み、分離層はアクリル系樹脂組成物の硬化層を含むものであり、両者の厚みの合計は7μmであった。
接着剤層は厚みが2μmであった。基材層は、厚み20μmのポリエチレンテレフタレートフィルムであり、タフネスが69mJ/mmであった。
[Touch sensor panel]
(Touch sensor panel D1)
A touch sensor panel D1 having a length of 177 mm and a width of 105 mm was prepared in which a transparent conductive layer, a separation layer, an adhesive layer, and a base material layer were laminated in this order. The transparent conductive layer contained an ITO layer, and the separation layer contained a cured layer of an acrylic resin composition, and the total thickness of both was 7 μm.
The adhesive layer had a thickness of 2 μm. The base material layer was a polyethylene terephthalate film having a thickness of 20 μm, and the toughness was 69 mJ / mm 3 .
 (タッチセンサパネルD2)
 透明導電層、分離層がこの順に積層された縦177mm×横105mmのタッチセンサパネルD2を準備した。透明導電層はITO層を含み、分離層はアクリル系樹脂組成物の硬化層を含むものであり、両者の厚みの合計は7μmであった。
(Touch sensor panel D2)
A touch sensor panel D2 having a length of 177 mm and a width of 105 mm, in which the transparent conductive layer and the separation layer were laminated in this order, was prepared. The transparent conductive layer contained an ITO layer, and the separation layer contained a cured layer of an acrylic resin composition, and the total thickness of both was 7 μm.
 [貼合層]
 表1に示す各成分の割合にて貼合層を形成する粘着剤組成物を調製した。この粘着剤組成物を離型処理されたポリエチレンテレフタレートフィルム(厚み38μm)の離型処理面に、アプリケータを利用して乾燥後の厚みが25μmになるように塗布した。塗布層を100℃で1分間乾燥して、貼合層を備えるフィルムを得た。その後、貼合層上に、離型処理された別のポリエチレンテレフタレートフィルム(厚み38μm)を貼合した。その後、温度23℃、相対湿度50%RHの条件で7日間養生させた。
[Lated layer]
A pressure-sensitive adhesive composition for forming a bonding layer was prepared at the ratio of each component shown in Table 1. This pressure-sensitive adhesive composition was applied to the release-treated surface of the release-treated polyethylene terephthalate film (thickness 38 μm) using an applicator so that the thickness after drying was 25 μm. The coating layer was dried at 100 ° C. for 1 minute to obtain a film having a bonding layer. Then, another release-treated polyethylene terephthalate film (thickness 38 μm) was laminated on the bonded layer. Then, it was cured for 7 days under the conditions of a temperature of 23 ° C. and a relative humidity of 50% RH.
Figure JPOXMLDOC01-appb-T000001

BA:アクリル酸ブチル
EHA:アクリル酸2-エチルヘキシル
AA:アクリル酸
架橋剤及びシランカップリング剤は以下のものを用いた。
架橋剤:コロネートL(東ソー株式会社製)
シランカップリング(SC)剤:KBM-403(信越化学工業株式会社製)
Figure JPOXMLDOC01-appb-T000001

BA: Butyl acrylate EHA: 2-Ethylhexyl acrylate AA: Acrylic acid The following cross-linking agent and silane coupling agent were used.
Crosslinking agent: Coronate L (manufactured by Tosoh Corporation)
Silane coupling (SC) agent: KBM-403 (manufactured by Shin-Etsu Chemical Co., Ltd.)
 [粘着剤シート]
 (粘着シートE1)
 (1)アクリル系ポリマーの調製
 アクリル酸n-ブチル54質量部、アクリル酸2-エチルヘキシル45質量部およびアクリル酸4-ヒドロキシブチル1質量部を共重合させて、アクリル系ポリマーを調製した。このアクリル系ポリマーの重量平均分子量(Mw)は80万であった。
[Adhesive sheet]
(Adhesive sheet E1)
(1) Preparation of Acrylic Polymer An acrylic polymer was prepared by copolymerizing 54 parts by mass of n-butyl acrylate, 45 parts by mass of 2-ethylhexyl acrylate and 1 part by mass of 4-hydroxybutyl acrylate. The weight average molecular weight (Mw) of this acrylic polymer was 800,000.
 (2)粘着剤組成物の調製
 上記工程で得られたアクリル系ポリマー100質量部(固形分換算値;以下同じ)と、熱架橋剤としてのトリメチロールプロパン変性キシリレンジイソシアネート(綜研化学社製、製品名「TD-75」)0.25質量部、およびシランカップリング剤としての3-グリシドキシプロピルトリメトキシシラン(信越化学工業社製、製品名「KBM403」)0.2質量部とを混合し、十分に撹拌して、メチルエチルケトンで希釈することにより、粘着剤組成物の塗布溶液を得た。アクリル系ポリマーを100質量部(固形分換算値)とした場合の粘着剤組成物の各配合(固形分換算値)を表2に示す。なお、表2に記載の略号等は以下を表す。
 BA:アクリル酸n-ブチル
 2EHA:アクリル酸2-エチルヘキシル
 4HBA:アクリル酸4-ヒドロキシブチル
(2) Preparation of Adhesive Composition 100 parts by mass of the acrylic polymer obtained in the above step (solid content conversion value; the same applies hereinafter) and trimethylolpropane-modified xylylene diisocyanate as a thermal cross-linking agent (manufactured by Soken Kagaku Co., Ltd.) Product name "TD-75") 0.25 parts by mass and 3-glycidoxypropyltrimethoxysilane (manufactured by Shinetsu Chemical Industry Co., Ltd., product name "KBM403") 0.2 parts by mass as a silane coupling agent. A coating solution of the pressure-sensitive adhesive composition was obtained by mixing, stirring well, and diluting with methyl ethyl ketone. Table 2 shows each formulation (solid content conversion value) of the pressure-sensitive adhesive composition when the acrylic polymer is 100 parts by mass (solid content conversion value). The abbreviations and the like shown in Table 2 represent the following.
BA: n-butyl acrylate 2EHA: 2-ethylhexyl acrylate 4HBA: 4-hydroxybutyl acrylate
 (3)粘着シートE1の製造
 得られた粘着剤組成物の塗布溶液を、軽セパレータ(リンテック社製,製品名「SP-PET752150」)の剥離処理面に、ナイフコーターで塗布した。そして、塗布層に対し、90℃で1分間加熱処理して塗布層を形成した。次いで、上記で得られた軽セパレータ上の塗布層と、重セパレータ(リンテック社製、製品名「SP-PET382120」)とを、当該セパレータの剥離処理面が塗布層に接触するように貼合し、23℃、50%RHの条件下で7日間養生することにより、厚さ10μmの粘着剤層を有する粘着シートE1、すなわち、軽セパレータ/粘着剤層(厚さ:10μm)/重セパレータの構成からなる粘着シートE1を作製した。粘着シートE1の粘着剤層を粘着剤層E1とする。粘着シートE1について、測定された貯蔵弾性率を表2に示す。なお、粘着剤層E1の厚さ及び貯蔵弾性率は、後述する方法で測定した値である。
(3) Production of Adhesive Sheet E1 The coating solution of the obtained pressure-sensitive adhesive composition was applied to the peeling-treated surface of a light separator (manufactured by Lintec Corporation, product name "SP-PET752150") with a knife coater. Then, the coating layer was heat-treated at 90 ° C. for 1 minute to form a coating layer. Next, the coating layer on the light separator obtained above and the heavy separator (manufactured by Lintec Corporation, product name "SP-PET382120") are bonded so that the peeled surface of the separator is in contact with the coating layer. , 23 ° C., 50% RH for 7 days to form a pressure-sensitive adhesive sheet E1 having a pressure-sensitive adhesive layer having a thickness of 10 μm, that is, a light separator / pressure-sensitive adhesive layer (thickness: 10 μm) / heavy separator. An adhesive sheet E1 made of the above was produced. The pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet E1 is designated as the pressure-sensitive adhesive layer E1. Table 2 shows the measured storage elastic moduli of the adhesive sheet E1. The thickness and storage elastic modulus of the pressure-sensitive adhesive layer E1 are values measured by a method described later.
 (粘着シートE2)
 粘着シートE1と同じ粘着剤組成物の塗布溶液を用いて、塗布厚さのみが異なる点以外は、粘着シートE1と同じ方法により軽セパレータ/粘着剤層(厚さ:25μm)/重セパレータの構成からなる粘着シートE2を作製した。粘着シートE2の粘着剤層を粘着剤層E2とする。粘着シートE2は、粘着シートE1と同じ粘着剤組成物を用いて作製しているため、その貯蔵弾性率は粘着シートE1と同じ値である。
(Adhesive sheet E2)
Using the same coating solution of the pressure-sensitive adhesive composition as the pressure-sensitive adhesive sheet E1, the structure of the light separator / pressure-sensitive adhesive layer (thickness: 25 μm) / heavy separator is formed by the same method as that of the pressure-sensitive adhesive sheet E1 except that only the coating thickness is different. An adhesive sheet E2 made of the above was prepared. The pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet E2 is referred to as the pressure-sensitive adhesive layer E2. Since the pressure-sensitive adhesive sheet E2 is manufactured using the same pressure-sensitive adhesive composition as the pressure-sensitive adhesive sheet E1, its storage elastic modulus is the same value as that of the pressure-sensitive adhesive sheet E1.
 (粘着シートE3)
 粘着シートE1と同じ粘着剤組成物の塗布溶液を用いて、塗布厚さのみが異なる点以外は、粘着シートE1と同じ方法により軽セパレータ/粘着剤層(厚さ:50μm)/重セパレータの構成からなる粘着シートE3を作製した。粘着シートE3の粘着剤層を粘着剤層E3とする。粘着シートE3は、粘着シートE1と同じ粘着剤組成物を用いて作製しているため、その貯蔵弾性率は粘着シートE1と同じ値である。
(Adhesive sheet E3)
Using the same coating solution of the pressure-sensitive adhesive composition as the pressure-sensitive adhesive sheet E1, the structure of the light separator / pressure-sensitive adhesive layer (thickness: 50 μm) / heavy separator is formed by the same method as that of the pressure-sensitive adhesive sheet E1 except that only the coating thickness is different. An adhesive sheet E3 made of the above was prepared. The pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet E3 is designated as the pressure-sensitive adhesive layer E3. Since the pressure-sensitive adhesive sheet E3 is manufactured using the same pressure-sensitive adhesive composition as the pressure-sensitive adhesive sheet E1, its storage elastic modulus is the same as that of the pressure-sensitive adhesive sheet E1.
 (粘着シートE4)
 (1)アクリル系ポリマーの調製
 アクリル系ポリマーを構成する各モノマーの割合は粘着シートE1と同じにして、表2に示す重量平均分子量(Mw)のアクリル系ポリマーを調製した。
(Adhesive sheet E4)
(1) Preparation of Acrylic Polymer Acrylic polymer having a weight average molecular weight (Mw) shown in Table 2 was prepared by making the ratio of each monomer constituting the acrylic polymer the same as that of the pressure-sensitive adhesive sheet E1.
 (2)粘着剤組成物の調製
 上記工程で得られたアクリル系ポリマー100質量部と、熱架橋剤としてのトリメチロールプロパン変性キシリレンジイソシアネート(綜研化学社製、製品名「TD-75」)と、シランカップリング剤としての3-グリシドキシプロピルトリメトキシシラン(信越化学工業社製、製品名「KBM403」)とを表2に示す配合割合で混合し、十分に撹拌して、メチルエチルケトンで希釈することにより、粘着剤組成物の塗布溶液を得た。
(2) Preparation of Adhesive Composition With 100 parts by mass of the acrylic polymer obtained in the above step and trimethylolpropane-modified xylylene diisocyanate (manufactured by Soken Kagaku Co., Ltd., product name "TD-75") as a thermal cross-linking agent. , 3-glycidoxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Industry Co., Ltd., product name "KBM403") as a silane coupling agent was mixed at the blending ratio shown in Table 2, stirred well, and diluted with methyl ethyl ketone. A coating solution of the pressure-sensitive adhesive composition was obtained.
 (3)粘着シートE4の製造
 得られた粘着剤組成物の塗布溶液を用いて、塗布厚さのみが異なる点以外は、粘着シートE1と同じ方法により軽セパレータ/粘着剤層(厚さ:5μm)/重セパレータの構成からなる粘着シートE4を作製した。粘着シートE4の粘着剤層を粘着剤層E4とする。
粘着シートE4について、測定された貯蔵弾性率を表2に示す。なお、粘着剤層E4の厚さ及び貯蔵弾性率は、後述する方法で測定した値である。
(3) Production of Adhesive Sheet E4 Using the coating solution of the obtained pressure-sensitive adhesive composition, a light separator / pressure-sensitive adhesive layer (thickness: 5 μm) was used in the same manner as the pressure-sensitive adhesive sheet E1 except that only the coating thickness was different. ) / A pressure-sensitive adhesive sheet E4 having a structure of a heavy separator was produced. The pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet E4 is referred to as the pressure-sensitive adhesive layer E4.
Table 2 shows the measured storage elastic moduli of the adhesive sheet E4. The thickness and storage elastic modulus of the pressure-sensitive adhesive layer E4 are values measured by a method described later.
 (粘着シートE5)
 粘着シートE4と同じ粘着剤組成物の塗布溶液を用いて、塗布厚さのみが異なる点以外は、粘着シートE1と同じ方法により軽セパレータ/粘着剤層(厚さ:10μm)/重セパレータの構成からなる粘着シートE5を作製した。粘着シートE5の粘着剤層を粘着剤層E5とする。粘着シートE5は、粘着シートE4と同じ粘着剤組成物を用いて作製しているため、その貯蔵弾性率は粘着シートE4と同じ値である。
(Adhesive sheet E5)
Using a coating solution of the same pressure-sensitive adhesive composition as the pressure-sensitive adhesive sheet E4, a light separator / pressure-sensitive adhesive layer (thickness: 10 μm) / heavy separator was constructed by the same method as the pressure-sensitive adhesive sheet E1 except that only the coating thickness was different. An adhesive sheet E5 made of the above was prepared. The pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet E5 is designated as the pressure-sensitive adhesive layer E5. Since the pressure-sensitive adhesive sheet E5 is manufactured using the same pressure-sensitive adhesive composition as the pressure-sensitive adhesive sheet E4, its storage elastic modulus is the same value as that of the pressure-sensitive adhesive sheet E4.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 (粘着剤層の厚み測定)
 接触式膜厚測定装置(株式会社ニコン製「MS-5C」)を用いて測定した。
(Measurement of thickness of adhesive layer)
The measurement was performed using a contact type film thickness measuring device (“MS-5C” manufactured by Nikon Corporation).
 (貯蔵弾性率の測定)
 粘着剤層を150μmとなるように積層したサンプルを、5mm×30mmの大きさに裁断し、レオメーター(MCR-301、 Anton Parr 社製)を用いて、温度25°、応力1%、周波数1Hzにおける貯蔵弾性率を測定した。測定結果を表2に示す。
(Measurement of storage elastic modulus)
A sample in which the pressure-sensitive adhesive layer was laminated to a size of 150 μm was cut into a size of 5 mm × 30 mm, and using a rheometer (MCR-301, manufactured by Antonio Parr), the temperature was 25 °, the stress was 1%, and the frequency was 1 Hz. The storage elastic modulus in. The measurement results are shown in Table 2.
 <実施例1>
 前面板A1の一方のハードコート層側の表面と、偏光板C1の両方の表面と、タッチセンサパネルD1の透明導電層側の表面にコロナ処理を施した。コロナ処理は、周波数:20kHz、電圧:8.6kV、パワー:2.5kW、速度:6m/分の条件で行った。そして、「前面板A1/貼合層/偏光板C1/粘着剤層E1/タッチセンサパネルD1/粘着剤層E3」となるように各層を積層して、ロール接合機を用いて貼合して、オートクレーブにて養生を行い、図1に示す光学積層体100と同様の構成の実施例1の光学積層体を得た。得られた光学積層体について、耐衝撃性試験及び耐屈曲性試験を行った。結果を表3に示す。
<Example 1>
The surface of one of the front plates A1 on the hard coat layer side, the surface of both the polarizing plate C1 and the surface of the touch sensor panel D1 on the transparent conductive layer side were subjected to corona treatment. The corona treatment was performed under the conditions of frequency: 20 kHz, voltage: 8.6 kV, power: 2.5 kW, and speed: 6 m / min. Then, each layer is laminated so as to be "front plate A1 / bonding layer / polarizing plate C1 / adhesive layer E1 / touch sensor panel D1 / adhesive layer E3", and bonded using a roll joining machine. , The optical laminate of Example 1 having the same configuration as the optical laminate 100 shown in FIG. 1 was obtained by curing in an autoclave. The obtained optical laminate was subjected to an impact resistance test and a bending resistance test. The results are shown in Table 3.
 <実施例2~7、比較例1,2>
 実施例1において、偏光板、タッチセンサパネル、粘着剤層(第1粘着剤層、第2粘着剤層)として、表3に示すものを用いた点以外は、実施例1と同様にして実施例2~7、比較例1,2の光学積層体を得た。得られた光学積層体について、耐衝撃性試験及び耐屈曲性試験を行った。結果を表3に示す。
<Examples 2 to 7, Comparative Examples 1 and 2>
In Example 1, the same as in Example 1 except that the polarizing plate, the touch sensor panel, and the pressure-sensitive adhesive layer (first pressure-sensitive adhesive layer, second pressure-sensitive adhesive layer) used as shown in Table 3 was used. Optical laminates of Examples 2 to 7 and Comparative Examples 1 and 2 were obtained. The obtained optical laminate was subjected to an impact resistance test and a bending resistance test. The results are shown in Table 3.
 <耐衝撃性試験>
 各実施例および比較例で得られた光学積層体から、長辺150mm×短辺70mmの長方形の大きさの小片をスーパーカッターを用いて切り出し、小片の第2粘着剤層を介してアクリル板に貼合した。そして、23℃、相対湿度55%の環境下で、小片に対して、評価用ペンを小片の前面板の最表面から10cmの高さにペン先が位置しかつペン先が下向きとなるように保持し、その位置から評価用ペンを落下させた。小片の前面板には、タッチセンサパネルの透明導電層のパターンの位置を表記し、評価用ペンはペン先が透明導電層が配置されている位置に接触するように落下させた。評価用ペンとして、重量が11gであり、ペン先の直径が0.7mmのペンを用いた。評価用ペンを落下させた後の小片について、目視での観察及びタッチセンサパネル機能の確認を行い、以下の基準で評価を行った。
表3に評価結果を示す。
A:クラックなし。タッチセンサパネル機能維持。
B:クラックあり。タッチセンサパネル機能維持。
C:クラックあり。タッチセンサパネル機能なし。
<Impact resistance test>
From the optical laminates obtained in each Example and Comparative Example, a small piece having a rectangular size of 150 mm on the long side and 70 mm on the short side was cut out using a super cutter and formed into an acrylic plate via the second adhesive layer of the small piece. It was pasted together. Then, in an environment of 23 ° C. and 55% relative humidity, the evaluation pen is placed at a height of 10 cm from the outermost surface of the front plate of the small piece so that the pen tip is positioned and the pen tip faces downward. It was held and the evaluation pen was dropped from that position. The position of the pattern of the transparent conductive layer of the touch sensor panel was marked on the front plate of the small piece, and the evaluation pen was dropped so that the pen tip touched the position where the transparent conductive layer was arranged. As the evaluation pen, a pen having a weight of 11 g and a pen tip diameter of 0.7 mm was used. The small pieces after the evaluation pen was dropped were visually observed and the touch sensor panel function was confirmed, and the evaluation was performed according to the following criteria.
Table 3 shows the evaluation results.
A: No cracks. Touch sensor panel function maintenance.
B: There is a crack. Touch sensor panel function maintenance.
C: There is a crack. No touch sensor panel function.
 <耐屈曲性試験>
 温度25℃において、次に示す手順で屈曲性試験を行った。屈曲試験機(CFT-720C、Covotech社製)に、各実施例及び比較例で得られた光学積層体を平坦な状態(屈曲していない状態)で設置し、タッチセンサパネル側が内側となるようにして屈曲させたときに対向するタッチセンサパネル間の距離が4.0mmとなるように光学積層体を屈曲させた後、元の平坦な状態に戻す屈曲操作を行った。この屈曲操作を1回行ったときを屈曲回数1回と数え、この屈曲操作を繰返し行った。屈曲操作で屈曲した領域においてクラック及び/又は粘着剤層の浮きが発生したときの屈曲回数を限界屈曲回数として確認し、以下のように評価した。表3に評価結果を示す。
A:屈曲回数が20万回に達しても限界屈曲回数に達しなかった、
B:屈曲回数が10万回以上20万回以下で限界屈曲回数に達した、
C:屈曲回数が5万回以上10万回未満で限界屈曲回数に達した、
D:屈曲回数が5万回未満で限界屈曲回数に達した。
<Bending resistance test>
The flexibility test was carried out at a temperature of 25 ° C. according to the following procedure. The optical laminates obtained in each Example and Comparative Example are installed in a bending tester (CFT-720C, manufactured by Covotech) in a flat state (not bent) so that the touch sensor panel side is on the inside. After bending the optical laminate so that the distance between the touch sensor panels facing each other would be 4.0 mm when the optical laminate was bent, a bending operation was performed to return the optical laminate to the original flat state. When this bending operation was performed once, the number of times of bending was counted as one, and this bending operation was repeated. The number of times of bending when cracks and / or floating of the adhesive layer occurred in the region bent by the bending operation was confirmed as the limit number of times of bending, and evaluated as follows. Table 3 shows the evaluation results.
A: Even if the number of bends reached 200,000, the limit number of bends was not reached,
B: The limit number of bends was reached when the number of bends was 100,000 or more and 200,000 or less.
C: The limit number of bends was reached when the number of bends was 50,000 or more and less than 100,000.
D: The limit number of bends was reached when the number of bends was less than 50,000.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 10 前面板、20 偏光板、30 タッチセンサパネル、31 透明導電層、32 基材層、41 第1粘着剤層、42 第2粘着剤層、43 貼合層、50,55 位相差体、51,56 基材層、52 配向層、53 位相差層、200 偏光層、201 保護層。 10 front plate, 20 polarizing plate, 30 touch sensor panel, 31 transparent conductive layer, 32 base material layer, 41 first adhesive layer, 42 second adhesive layer, 43 bonded layer, 50, 55 retardation body, 51 , 56 base material layer, 52 alignment layer, 53 retardation layer, 200 polarizing layer, 201 protective layer.

Claims (7)

  1.  前面板、偏光板、第1粘着剤層、及びタッチセンサパネルをこの順に備える光学積層体であって、
     前記偏光板は、前記第1粘着剤層側の最表面に保護層を備え、
     前記保護層について、タフネスをa〔mJ/mm〕、厚みをb〔μm〕とすると、下記式(1a)の関係を満たす、光学積層体。
     a×b≧700   (1a)
    An optical laminate including a front plate, a polarizing plate, a first adhesive layer, and a touch sensor panel in this order.
    The polarizing plate is provided with a protective layer on the outermost surface on the side of the first pressure-sensitive adhesive layer.
    An optical laminate satisfying the relationship of the following formula (1a), where the toughness is a [mJ / mm 3 ] and the thickness is b [μm] for the protective layer.
    a × b ≧ 700 (1a)
  2.  前記タッチセンサパネルの前記第1粘着剤層側とは反対側の表面上に設けられた第2粘着剤層をさらに備え、
     前記第1粘着剤層の厚みをt1〔μm〕、前記第2粘着剤層の厚みをt2〔μm〕とすると、下記式(2a)及び下記式(3a)の関係を満たす、請求項1に記載の光学積層体。
     t1/t2≧0.1   (2a)
     t1/t2≦2   (3a)
    A second adhesive layer provided on the surface of the touch sensor panel opposite to the first adhesive layer side is further provided.
    Claim 1 satisfies the relationship of the following formulas (2a) and (3a), where t1 [μm] is the thickness of the first pressure-sensitive adhesive layer and t2 [μm] is the thickness of the second pressure-sensitive adhesive layer. The optical laminate according to the description.
    t1 / t2 ≧ 0.1 (2a)
    t1 / t2 ≦ 2 (3a)
  3.  前記保護層は、前記第1粘着剤層側とは反対側の表面上に位相差層が設けられている、請求項1または2に記載の光学積層体。 The optical laminate according to claim 1 or 2, wherein the protective layer is provided with a retardation layer on a surface opposite to the first pressure-sensitive adhesive layer side.
  4.  前記位相差層は、重合性液晶化合物の硬化物を含む、請求項3に記載の光学積層体。 The optical laminate according to claim 3, wherein the retardation layer contains a cured product of a polymerizable liquid crystal compound.
  5.  前記位相差層は、ポジティブC層または1/4波長層である、請求項1~4のいずれか1項に記載の光学積層体。 The optical laminate according to any one of claims 1 to 4, wherein the retardation layer is a positive C layer or a 1/4 wavelength layer.
  6.  前記タッチセンサパネルは、基材層と、前記基材層上に設けられた透明導電層とを備える、請求項1~5のいずれか1項に記載の光学積層体。 The optical laminate according to any one of claims 1 to 5, wherein the touch sensor panel includes a base material layer and a transparent conductive layer provided on the base material layer.
  7.  請求項1~6のいずれか1項に記載の光学積層体を含む表示装置。 A display device including the optical laminate according to any one of claims 1 to 6.
PCT/JP2020/016026 2019-05-15 2020-04-09 Optical laminate and display device WO2020230493A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080034958.6A CN113811799A (en) 2019-05-15 2020-04-09 Optical laminate and display device
KR1020217036441A KR20220006528A (en) 2019-05-15 2020-04-09 Optical laminate and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019092334A JP7312013B2 (en) 2019-05-15 2019-05-15 Optical laminate and display device
JP2019-092334 2019-05-15

Publications (1)

Publication Number Publication Date
WO2020230493A1 true WO2020230493A1 (en) 2020-11-19

Family

ID=73221820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/016026 WO2020230493A1 (en) 2019-05-15 2020-04-09 Optical laminate and display device

Country Status (5)

Country Link
JP (1) JP7312013B2 (en)
KR (1) KR20220006528A (en)
CN (1) CN113811799A (en)
TW (1) TW202106504A (en)
WO (1) WO2020230493A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021149359A1 (en) * 2020-01-24 2021-07-29 住友化学株式会社 Optical stack and display device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016200956A (en) * 2015-04-09 2016-12-01 日本ゼオン株式会社 Display device with capacitance touch panel
JP2018072995A (en) * 2016-10-26 2018-05-10 日東電工株式会社 Transparent conductivity film and display device with touch function
JP2018116543A (en) * 2017-01-19 2018-07-26 日東電工株式会社 Film laminate for touch panel

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4691205B1 (en) 2010-09-03 2011-06-01 日東電工株式会社 Method for producing optical film laminate including thin high-performance polarizing film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016200956A (en) * 2015-04-09 2016-12-01 日本ゼオン株式会社 Display device with capacitance touch panel
JP2018072995A (en) * 2016-10-26 2018-05-10 日東電工株式会社 Transparent conductivity film and display device with touch function
JP2018116543A (en) * 2017-01-19 2018-07-26 日東電工株式会社 Film laminate for touch panel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021149359A1 (en) * 2020-01-24 2021-07-29 住友化学株式会社 Optical stack and display device

Also Published As

Publication number Publication date
JP7312013B2 (en) 2023-07-20
JP2020187595A (en) 2020-11-19
KR20220006528A (en) 2022-01-17
TW202106504A (en) 2021-02-16
CN113811799A (en) 2021-12-17

Similar Documents

Publication Publication Date Title
WO2020195540A1 (en) Laminate and display device
JP6797163B2 (en) Optical laminate and display device
JP7469889B2 (en) Optical laminate and method for manufacturing display device
KR20200081288A (en) Flexible laminate and image display device having the same
KR20200081287A (en) Flexible laminate and image display device having the same
TW202138851A (en) Circular polarizing sheet and optical laminate
WO2021085000A1 (en) Optical laminate and display device
WO2020230493A1 (en) Optical laminate and display device
JP6887222B2 (en) Polarizing plate set
WO2020170726A1 (en) Flexible layered body and image display device provided with same
WO2021193348A1 (en) Laminate
WO2021182056A1 (en) Optical laminate
WO2021200365A1 (en) Laminated body
WO2021187098A1 (en) Circular polarizing sheet and optical laminate
WO2020195699A1 (en) Layered body and display device
KR20210157340A (en) Laminate, image display device and manufacturing method
KR20210157339A (en) Laminate, image display device and manufacturing method
TW202321036A (en) Laminate
JP2022059255A (en) Flexible laminate
KR20220015404A (en) An image display device comprising an optical laminate and a polarizing plate with a retardation layer of the optical laminate
JP2021152640A (en) Circularly polarizing plate and optical laminate
TW202306212A (en) Laminate
JP2021152649A (en) Laminate
JP2021152645A (en) Flexible laminate and image display device having the same
TW202132825A (en) Optical laminate and display device having same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20805995

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20805995

Country of ref document: EP

Kind code of ref document: A1