WO2021205507A1 - 撮像装置および内視鏡システム - Google Patents

撮像装置および内視鏡システム Download PDF

Info

Publication number
WO2021205507A1
WO2021205507A1 PCT/JP2020/015513 JP2020015513W WO2021205507A1 WO 2021205507 A1 WO2021205507 A1 WO 2021205507A1 JP 2020015513 W JP2020015513 W JP 2020015513W WO 2021205507 A1 WO2021205507 A1 WO 2021205507A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
voltage
transistor
power supply
state
Prior art date
Application number
PCT/JP2020/015513
Other languages
English (en)
French (fr)
Inventor
義雄 萩原
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2020/015513 priority Critical patent/WO2021205507A1/ja
Priority to JP2022513714A priority patent/JP7419500B2/ja
Publication of WO2021205507A1 publication Critical patent/WO2021205507A1/ja
Priority to US17/942,360 priority patent/US12108176B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/709Circuitry for control of the power supply
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/555Constructional details for picking-up images in sites, inaccessible due to their dimensions or hazardous conditions, e.g. endoscopes or borescopes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/771Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising storage means other than floating diffusion

Definitions

  • the present invention relates to an imaging device and an endoscopic system.
  • Physical quantity detection semiconductor devices in which sensors that are sensitive to electromagnetic waves (light, radiation, etc.) input from the outside are arranged are used in various fields. Physical quantities are converted into electrical signals by sensors. For example, a sensor in an imaging device is a pixel. Generally, reference level and signal level electrical signals are read from the sensor. For example, the reference level in the imaging device is the reset level.
  • a CCD type imaging device In an endoscope system that uses an imaging device, a CCD type imaging device was generally used. Since the CCD type image pickup device requires a plurality of power supply voltages, there is a limit to the miniaturization of the CCD type image pickup device. In recent years, in order to solve this problem, a CMOS image pickup device that can be driven by a single power supply voltage (for example, 3.3 [V]) has been used.
  • Patent Document 1 discloses an imaging device having a booster circuit that uses a charge pump.
  • the booster circuit has a plurality of capacitive elements and a plurality of diodes.
  • the amount of charge that can be stored in the photodiode and floating diffusion decreases. Therefore, the S / N ratio deteriorates and the image quality deteriorates.
  • a voltage higher than the power supply voltage for example, 3.3 [V]
  • a circuit for generating a voltage higher than the power supply voltage is required.
  • a circuit using a charge pump, such as the booster circuit shown in Patent Document 1 requires a large capacitive element. Therefore, it is difficult to miniaturize the imaging device.
  • An object of the present invention is to provide an imaging device and an endoscopic system capable of generating a voltage having an absolute value larger than the absolute value of the power supply voltage without using a large capacitive element.
  • the image pickup apparatus has two or more pixels, a voltage generation circuit, and an output circuit.
  • the two or more pixels are arranged in a matrix.
  • Each of the two or more pixels has a photodiode, a floating diffusion, a reset transistor, and a transfer transistor.
  • the photodiode generates an electric charge by photoelectric conversion.
  • the floating diffusion accumulates the charge generated by the photodiode.
  • the reset transistor has a first terminal, a second terminal, and a gate terminal. One of the first terminal and the second terminal is a source terminal. The other of the first terminal and the second terminal is a drain terminal.
  • the power supply voltage is input to the first terminal.
  • the second terminal is electrically connected to the floating diffusion.
  • the transfer transistor has a third terminal, a fourth terminal, and a gate terminal.
  • One of the third terminal and the fourth terminal is a source terminal.
  • the other of the third terminal and the fourth terminal is a drain terminal.
  • the third terminal is electrically connected to the photodiode.
  • the fourth terminal is electrically connected to the floating diffusion.
  • the voltage generation circuit has a first capacitive element having a fifth terminal.
  • the voltage generation circuit stores an electric charge in the first capacitive element by applying a first voltage corresponding to the power supply voltage to the fifth terminal.
  • the voltage generation circuit generates a control voltage having an absolute value larger than the absolute value of the power supply voltage by increasing the voltage of the fifth terminal by a second voltage corresponding to the power supply voltage.
  • the output circuit outputs the control voltage to at least one of the gate terminal of the reset transistor and the gate terminal of the transfer transistor.
  • the array of two or more pixels may have two or more rows.
  • the output circuit may sequentially select the rows and electrically connect the pixels included in the selected rows to the voltage generation circuit.
  • the output circuit is electrically connected to the gate terminal of the reset transistor and the voltage generation circuit in each of the two or more pixels. It may have a selection transistor. During the reset period in which the reset instruction signal is given to the selection transistor, the selection transistor may electrically conduct the gate terminal of the reset transistor and the voltage generation circuit with each other. The voltage generation circuit may generate the control voltage during the reset period.
  • the output circuit is electrically connected to the gate terminal of the transfer transistor and the voltage generation circuit in each of the two or more pixels. It may have a selection transistor. During the transfer period in which the transfer instruction signal is given to the selection transistor, the selection transistor may electrically conduct the gate terminal of the transfer transistor and the voltage generation circuit with each other. The voltage generation circuit may generate the control voltage during the transfer period.
  • the voltage generation circuit may include the first capacitive element, the second capacitive element, and a switch.
  • the first capacitive element may have the fifth terminal and the sixth terminal.
  • a DC voltage may be input to the sixth terminal.
  • the second capacitive element may have a seventh terminal and an eighth terminal.
  • the seventh terminal may be electrically connected to the fifth terminal.
  • the switch may have a ninth terminal and a tenth terminal.
  • the ninth terminal may be electrically connected to the fifth terminal.
  • the first voltage may be input to the tenth terminal.
  • the switch has either an on state in which the ninth terminal and the tenth terminal are electrically conductive with each other and an off state in which the ninth terminal and the tenth terminal are electrically insulated from each other.
  • the first voltage may be input to the fifth terminal.
  • a third voltage corresponding to the power supply voltage is input to the eighth terminal, so that the voltage of the fifth terminal becomes the second. You may increase only the voltage.
  • the voltage generation circuit may generate the control voltage after generating the first voltage.
  • the output circuit may output the first voltage to the gate terminal of the reset transistor and then output the control voltage to the gate terminal of the reset transistor.
  • the first voltage may be the power supply voltage.
  • the voltage generation circuit may generate the control voltage after generating the first voltage.
  • the output circuit may output the first voltage to the gate terminal of the transfer transistor and then output the control voltage to the gate terminal of the transfer transistor.
  • the first voltage may be the power supply voltage.
  • the endoscope system includes the image pickup device.
  • the imaging device and the endoscopic system can generate a voltage having an absolute value larger than the absolute value of the power supply voltage without using a large capacitive element.
  • the first circuit element when the first circuit element is electrically connected to the second circuit element, the first circuit element is directly connected to the second circuit element.
  • a third circuit element different from the second circuit element is arranged between the first circuit element and the second circuit element, the first circuit element is connected to the third circuit element, and the third circuit element is connected.
  • the circuit element of 3 is connected to the second circuit element.
  • FIG. 1 shows the configuration of the image pickup apparatus 1 according to the first embodiment of the present invention.
  • the image pickup apparatus 1 shown in FIG. 1 includes an image pickup unit 2, a vertical selection unit 4, a column circuit unit 5, a horizontal selection unit 6, an output unit 7, and a voltage generation circuit 9.
  • the imaging unit 2, the vertical selection unit 4, the column circuit unit 5, the horizontal selection unit 6, the output unit 7, and the voltage generation circuit 9 are arranged on the same substrate.
  • the image pickup section 2, the vertical selection section 4, the column circuit section 5, the horizontal selection section 6, the output section 7, and the voltage generation circuit 9 are mounted on the plurality of boards. It may be dispersed.
  • the imaging unit 2 has two or more pixels 3 arranged in a matrix. Two or more pixels 3 form an array of m rows and n columns. The number m and the number n are integers of 2 or more. The number of rows and columns does not have to be the same.
  • FIG. 1 shows an example in which the number of rows is 2 and the number of columns is 2. This is an example and is not limited to this.
  • Pixel 3 outputs a first pixel signal having a reset level and a second pixel signal having a signal level.
  • the vertical selection unit 4 selects pixels 3 arranged in the row direction in an array of two or more pixels 3.
  • the vertical selection unit 4 controls the operation of the selected pixel 3.
  • the vertical selection unit 4 outputs a control signal for controlling two or more pixels 3 for each row in an array of two or more pixels 3.
  • the control signal output from the vertical selection unit 4 includes a reset control signal Vrsi, a transfer control signal Vtxi, and a selection control signal Vseri.
  • the number i is 1 or 2.
  • the reset control signal Vrs1, the transfer control signal Vtx1, and the selection control signal Vsel1 are output to the pixel 3 in the first row.
  • the reset control signal Vrs2, the transfer control signal Vtx2, and the selection control signal Vsel2 are output to the pixel 3 in the second row.
  • the row circuit unit 5 has two or more row circuits 8.
  • the column circuit 8 is arranged for each column in an array of two or more pixels 3.
  • the column circuit 8 is connected to a vertical signal line 70 extending in the vertical direction, that is, in the column direction.
  • the vertical signal lines 70 are arranged for each row in an array of two or more pixels 3.
  • the vertical signal line 70 is connected to the pixels 3 in each row.
  • the column circuit 8 is electrically connected to the pixel 3 via the vertical signal line 70.
  • the column circuit 8 generates the first pixel signal of the reset level output from the pixel 3 and the second pixel signal of the signal level output from the pixel 3.
  • the column circuit 8 is connected to a first horizontal signal line 71 and a second horizontal signal line 72 extending in the horizontal direction, that is, in the row direction.
  • the selection pulse HSR [k] is output from the horizontal selection unit 6 to the column circuit 8 corresponding to the kth column.
  • the number k is 1 or 2.
  • the column circuit 8 selected based on the selection pulse HSR [k] outputs the first pixel signal to the first horizontal signal line 71 and outputs the second pixel signal to the second horizontal signal line 72. do.
  • One row circuit 8 may be arranged for every two or more rows in an array of two or more pixels 3, and one row circuit 8 may be used in two or more rows in a time division manner. Therefore, the row circuit 8 only needs to be arranged so as to correspond to one or more rows in an array of two or more pixels 3.
  • the first horizontal signal line 71 and the second horizontal signal line 72 are connected to the output unit 7.
  • the horizontal selection unit 6 sequentially selects the column circuit 8 by sequentially selecting the selection pulse HSR [1] and the selection pulse HSR [2] in the column circuit 8.
  • the first pixel signal and the second pixel signal output from the column circuit 8 selected by the horizontal selection unit 6 are transferred to the output unit 7.
  • the output unit 7 generates an output signal AOUT based on the first pixel signal and the second pixel signal.
  • the output signal AOUT is the difference between the first pixel signal and the second pixel signal.
  • the output unit 7 outputs the output signal AOUT to the subsequent circuit.
  • the voltage generation circuit 9 generates a control voltage having an absolute value larger than the absolute value of the power supply voltage.
  • the voltage generation circuit 9 outputs the generated control voltage to the vertical selection unit 4.
  • the vertical selection unit 4 outputs the control voltage to the selected pixel 3. Specifically, the vertical selection unit 4 outputs the control voltage to the pixel 3 as a reset control signal Vrsi.
  • FIG. 2 shows the configuration of pixel 3.
  • the pixel 3 shown in FIG. 2 has a photoelectric conversion unit 31, a transfer transistor 32, a charge storage unit 33, a reset transistor 34, an amplification transistor 35, and a selection transistor 36.
  • Each transistor shown in FIG. 2 is an NMOS transistor.
  • Each transistor shown in FIG. 2 has a source terminal, a drain terminal, and a gate terminal.
  • the photoelectric conversion unit 31 is a photodiode.
  • the photoelectric conversion unit 31 has a terminal T31a and a terminal T31b.
  • the terminal T31a of the photoelectric conversion unit 31 is connected to the ground.
  • the ground voltage GND is input to the terminal T31a of the photoelectric conversion unit 31.
  • the terminal T31b of the photoelectric conversion unit 31 is connected to the transfer transistor 32.
  • the source terminal T32s of the transfer transistor 32 is connected to the terminal T31b of the photoelectric conversion unit 31.
  • the drain terminal T32d of the transfer transistor 32 is connected to the charge storage unit 33.
  • the gate terminal T32g of the transfer transistor 32 is connected to the control signal line 82.
  • the control signal line 82 extends in the row direction in an array of two or more pixels 3 and is connected to the vertical selection unit 4.
  • the control signal line 82 transfers the transfer control signal Vtxi output from the vertical selection unit 4.
  • the drain terminal T34d of the reset transistor 34 is connected to the power supply line 80.
  • the power supply line 80 is connected to a power supply that outputs the power supply voltage VDD.
  • the source terminal T34s of the reset transistor 34 is connected to the charge storage unit 33.
  • the gate terminal T34g of the reset transistor 34 is connected to the control signal line 81.
  • the control signal line 81 extends in the row direction in an array of two or more pixels 3 and is connected to the vertical selection unit 4.
  • the control signal line 81 transfers the reset control signal Vrsi.
  • the drain terminal T35d of the amplification transistor 35 is connected to the power supply line 80.
  • the source terminal T35s of the amplification transistor 35 is connected to the selection transistor 36.
  • the gate terminal T35g of the amplification transistor 35 is connected to the charge storage unit 33.
  • the drain terminal T36d of the selection transistor 36 is connected to the source terminal T35s of the amplification transistor 35.
  • the source terminal T36s of the selection transistor 36 is connected to the vertical signal line 70.
  • the gate terminal T36g of the selection transistor 36 is connected to the control signal line 83.
  • the control signal line 83 extends in the row direction in an array of two or more pixels 3 and is connected to the vertical selection unit 4.
  • the control signal line 83 transfers the selection control signal Vseri.
  • the transfer transistor 32 is controlled based on the transfer control signal Vtxi output from the vertical selection unit 4.
  • the transfer transistor 32 of the pixel 3 in the first row is controlled based on the transfer control signal Vtx1, and the transfer transistor 32 of the pixel 3 in the second row is controlled based on the transfer control signal Vtx2.
  • the reset transistor 34 is controlled based on the reset control signal Vrsi output from the vertical selection unit 4.
  • the reset transistor 34 of the pixel 3 in the first row is controlled based on the reset control signal Vrs1, and the reset transistor 34 of the pixel 3 in the second row is controlled based on the reset control signal Vrs2.
  • the selection transistor 36 is controlled based on the selection control signal Vseri output from the vertical selection unit 4.
  • the selection transistor 36 of the pixel 3 in the first row is controlled based on the selection control signal Vsel1, and the selection transistor 36 of the pixel 3 in the second row is controlled based on the selection control signal Vsel2.
  • the photoelectric conversion unit 31 generates an electric charge based on the magnitude of the incident light.
  • the transfer transistor 32 transfers the electric charge generated by the photoelectric conversion unit 31 to the charge storage unit 33.
  • the charge storage unit 33 is a floating diffusion.
  • the charge storage unit 33 stores the charge transferred by the transfer transistor 32.
  • the reset transistor 34 resets the voltage of the charge storage unit 33 to a predetermined voltage.
  • the amplification transistor 35 generates a pixel signal by amplifying a signal based on the voltage of the charge storage unit 33.
  • the selection transistor 36 outputs a pixel signal to the vertical signal line 70.
  • the vertical signal lines 70 are arranged for each row in an array of two or more pixels 3. A first pixel signal having a reset level and a second pixel signal having a signal level are output from the pixel 3.
  • the drain terminal of the transfer transistor 32 may be connected to the terminal T31b of the photoelectric conversion unit 31, and the source terminal of the transfer transistor 32 may be connected to the charge storage unit 33.
  • the source terminal of the reset transistor 34 may be connected to the power supply line 80, and the drain terminal of the reset transistor 34 may be connected to the charge storage unit 33.
  • the source terminal of the amplification transistor 35 may be connected to the power supply line 80, and the drain terminal of the amplification transistor 35 may be connected to the selection transistor 36.
  • the source terminal of the selection transistor 36 may be connected to the drain terminal or the source terminal of the amplification transistor 35, and the drain terminal of the selection transistor 36 may be connected to the vertical signal line 70.
  • the above-mentioned image pickup apparatus 1 has two or more pixels 3 arranged in a matrix.
  • Each of the two or more pixels 3 has at least a photoelectric conversion unit 31 (photodiode), a charge storage unit 33 (floating diffusion), a reset transistor 34, and a transfer transistor 32.
  • the photoelectric conversion unit 31 generates an electric charge by photoelectric conversion.
  • the charge storage unit 33 stores the electric charge generated by the photoelectric conversion unit 31.
  • the power supply voltage VDD is input to the drain terminal T34d (first terminal) of the reset transistor 34.
  • the source terminal T34s (second terminal) of the reset transistor 34 is electrically connected to the charge storage unit 33.
  • the source terminal T32s (third terminal) of the transfer transistor 32 is electrically connected to the photoelectric conversion unit 31.
  • the drain terminal T32d (fourth terminal) of the transfer transistor 32 is electrically connected to the charge storage unit 33.
  • the power supply voltage VDD and the ground voltage GND are DC voltages.
  • the power supply voltage VDD is a positive voltage higher than the ground voltage GND.
  • FIG. 3 shows the configuration of the vertical selection unit 4 and the voltage generation circuit 9.
  • the voltage generation circuit 9 is a booster circuit.
  • a circuit for generating the reset control signal Vrs1 and the reset control signal Vrs2 is shown in the vertical selection unit 4 shown in FIG. 3.
  • a circuit for generating the transfer control signal Vtx1, the transfer control signal Vtx2, the selection control signal Vsel1, and the selection control signal Vsel2 is not shown.
  • the voltage generation circuit 9 shown in FIG. 3 has a first capacitive element 91, a second capacitive element 92, and a switch 93.
  • the first capacitive element 91 has a terminal T91a (sixth terminal) and a terminal T91b (fifth terminal), and accumulates electric charges according to the difference between the voltage of the terminal T91a and the voltage of the terminal T91b.
  • the second capacitive element 92 has a terminal T92a (seventh terminal) and a terminal T92b (eighth terminal), and accumulates electric charges according to the difference between the voltage of the terminal T92a and the voltage of the terminal T92b.
  • the power supply voltage VDD is input to the terminal T91a of the first capacitance element 91.
  • the terminal T91b of the first capacitive element 91 is electrically connected to the signal line 73.
  • the terminal T92a of the second capacitance element 92 is electrically connected to the terminal T91b of the first capacitance element 91.
  • the signal ⁇ CK is input to the terminal T92b of the second capacitance element 92.
  • the signal ⁇ CK has a low level or a high level. For example, the low level is the ground voltage GND and the high level is the power supply voltage VDD. Therefore, the ground voltage GND or the power supply voltage VDD is input to the terminal T92b of the second capacitance element 92.
  • the switch 93 has a terminal T93a (9th terminal) and a terminal T93b (10th terminal).
  • the terminal T93a of the switch 93 is electrically connected to the terminal T91b of the first capacitive element 91.
  • the power supply voltage VDD first voltage
  • the state of the switch 93 is either an on state or an off state. When the switch 93 is in the ON state, the terminals T93a and T93b are electrically conductive with each other. When the switch 93 is in the off state, the terminals T93a and T93b are electrically isolated from each other.
  • the state of the switch 93 is controlled based on the control signal ⁇ CKP.
  • the control signal ⁇ CKP has a low level or a high level.
  • the state of the switch 93 is the on state.
  • the power supply voltage VDD is input to the terminal T91b of the first capacitance element 91 via the switch 93.
  • the state of the switch 93 is an off state. Circuits not shown in FIG. 3 generate signal ⁇ CK and control signal ⁇ CKP.
  • the switch 93 is a epitaxial transistor.
  • the terminal T93a of the switch 93 is a drain terminal, and the terminal T93b of the switch 93 is a source terminal.
  • the control signal ⁇ CKP is input to the gate terminal of the switch 93.
  • the voltage generation circuit 9 may have a transistor for resetting the voltage of the terminal T91b of the first capacitance element 91 to the ground voltage GND.
  • a DC voltage different from the power supply voltage VDD may be input to the terminal T91a of the first capacitance element 91.
  • the ground voltage GND may be input to the terminal T91a of the first capacitance element 91.
  • the voltage generation circuit 9 stores an electric charge in the first capacitance element 91 by applying a power supply voltage VDD (first voltage) to the terminal T91b of the first capacitance element 91. After the electric charge corresponding to the power supply voltage VDD is accumulated in the first capacitance element 91, the voltage generation circuit 9 sets the terminal T91b of the first capacitance element 91 by the voltage (second voltage) corresponding to the power supply voltage VDD. Increase the voltage. As a result, the voltage generation circuit 9 generates a control voltage having an absolute value larger than the absolute value of the power supply voltage VDD.
  • the switch 93 when the switch 93 is in the ON state, the power supply voltage VDD (first voltage) is input to the terminal T91b of the first capacitance element 91.
  • the voltage of the terminal T91b of the first capacitance element 91 is input by inputting the power supply voltage VDD (third voltage) to the terminal T92b of the second capacitance element 92. Increases by the voltage (second voltage) corresponding to the power supply voltage VDD.
  • the switch 93 When the switch 93 is in the on state, the voltage of the signal ⁇ CK is at a low level. At this time, the ground voltage GND is input to the terminal T92b of the second capacitance element 92. After the state of the switch 93 is turned off, the voltage of the signal ⁇ CK changes to a high level. At this time, the power supply voltage VDD is input to the terminal T92b of the second capacitance element 92. Since the charges stored in the first capacitance element 91 and the second capacitance element 92 are stored and the voltage of the terminal T92b of the second capacitance element 92 increases, the terminals T92a and the terminal T92a of the second capacitance element 92 and the second capacitance element 92 increase. The voltage at the terminal T91b of the first capacitive element 91 increases.
  • the control voltage value Vh is expressed by the following equation (1).
  • the capacitance value of the first capacitance element 91 is C1
  • the capacitance value of the second capacitance element 92 is C2.
  • the value of the power supply voltage VDD is Vdd.
  • the voltage of the terminal T91b of the first capacitance element increases by the voltage (C2 / (C1 + C2)) ⁇ Vdd shown in the equation (1).
  • the capacitance value C1 is 2.8 [pF]
  • the capacitance value C2 is 0.5 [pF]
  • the voltage value Vdd is 3.3 [V]
  • the control voltage value Vh is 3. It is 8 [V].
  • a voltage lower than the power supply voltage VDD may be input to the terminal T91b of the first capacitance element 91 via the switch 93 instead of the power supply voltage VDD.
  • a voltage lower than the power supply voltage VDD may be input to the terminal T92b of the second capacitance element 92 instead of the power supply voltage VDD.
  • a voltage higher than the ground voltage GND may be input to the terminal T92b of the second capacitive element 92 instead of the ground voltage GND.
  • the vertical selection unit 4 (output circuit) outputs the control voltage generated by the voltage generation circuit 9 to the gate terminal T34g of the reset transistor 34.
  • the vertical selection unit 4 sequentially selects rows in an array of two or more pixels 3, and electrically connects the pixels 3 included in the selected rows and the voltage generation circuit 9.
  • the vertical selection unit 4 shown in FIG. 3 has a selection circuit 41 and a selection circuit 42.
  • the selection circuit 41 selects the first row in the array of two or more pixels 3 based on the reset instruction signal RST1, and electrically connects the pixels 3 included in the first row and the voltage generation circuit 9.
  • the selection circuit 42 selects the second row in the array of two or more pixels 3 based on the reset instruction signal RST2, and electrically connects the pixels 3 included in the second row and the voltage generation circuit 9.
  • the circuit not shown in FIG. 3 generates the reset instruction signal RST1 and the reset instruction signal RST2.
  • the selection circuit 41 has a transistor 411 and a transistor 412.
  • the transistor 411 is a NMOS transistor and the transistor 412 is an NMOS transistor.
  • Each of the transistors 411 and 412 has a source terminal, a drain terminal, and a gate terminal.
  • the letter “S” indicating the source terminal is displayed in the vicinity of the source terminal.
  • the letter “D” indicating the drain terminal is displayed in the vicinity of the drain terminal.
  • the letter “G” indicating the gate terminal is displayed in the vicinity of the gate terminal.
  • the source terminal of the transistor 411 is electrically connected to the signal line 73. Therefore, the source terminal of the transistor 411 is connected to the terminal T91b of the first capacitive element 91 via the signal line 73.
  • the power supply voltage VDD or control voltage output from the voltage generation circuit 9 is input to the source terminal of the transistor 411.
  • the drain terminal of the transistor 411 is electrically connected to the control signal line 81. Therefore, the drain terminal of the transistor 411 is connected to the gate terminal T34g of the reset transistor 34 in the pixel 3 via the control signal line 81.
  • the reset instruction signal RST1 is input to the gate terminal of the transistor 411.
  • Transistor 411 functions as a switch.
  • the state of the transistor 411 is either an on state or an off state.
  • the source terminal of the transistor 411 and the drain terminal of the transistor 411 are electrically conductive with each other.
  • the state of the transistor 411 is in the off state, the source terminal of the transistor 411 and the drain terminal of the transistor 411 are electrically isolated from each other.
  • the state of the transistor 411 is controlled based on the reset instruction signal RST1.
  • the reset instruction signal RST1 has a low level or a high level. When the voltage of the reset instruction signal RST1 is low, the state of the transistor 411 is on. At this time, the power supply voltage VDD or the control voltage output from the voltage generation circuit 9 is output from the drain terminal of the transistor 411. The control voltage is output to the control signal line 81 as the reset control signal Vrs1. When the voltage of the reset instruction signal RST1 is at a high level, the state of the transistor 411 is an off state.
  • the transistor 411 (selection transistor) is electrically connected to the gate terminal T34g of the reset transistor 34 in each of the two or more pixels 3 and the voltage generation circuit 9. During the reset period in which the low-level reset instruction signal RST1 is given to the transistor 411, the transistor 411 electrically conducts the gate terminal T34g of the reset transistor 34 and the voltage generation circuit 9 with each other. During the reset period, the voltage generation circuit 9 generates a control voltage.
  • the voltage generation circuit 9 generates a control voltage after generating a voltage (first voltage) corresponding to the power supply voltage VDD.
  • the selection circuit 41 outputs a voltage corresponding to the power supply voltage VDD to the gate terminal T34g of the reset transistor 34, and then outputs a control voltage to the gate terminal T34g of the reset transistor 34.
  • Transistor 411 may be an enhancement type transistor. When the difference between the control voltage and the power supply voltage VDD is within a predetermined range, the pixel 3 different from the pixel 3 to be selected is not erroneously selected.
  • the source terminal of the transistor 412 is connected to the ground.
  • the ground voltage GND is input to the source terminal of the transistor 412.
  • the drain terminal of the transistor 412 is electrically connected to the control signal line 81. Therefore, the drain terminal of the transistor 412 is connected to the gate terminal T34g of the reset transistor 34 in the pixel 3 via the control signal line 81.
  • the reset instruction signal RST1 is input to the gate terminal of the transistor 412.
  • Transistor 412 functions as a switch.
  • the state of the transistor 412 is either an on state or an off state.
  • the source terminal of the transistor 412 and the drain terminal of the transistor 412 are electrically conductive with each other.
  • the state of the transistor 412 is off, the source terminal of the transistor 412 and the drain terminal of the transistor 412 are electrically isolated from each other.
  • the state of the transistor 412 is controlled based on the reset instruction signal RST1.
  • the voltage of the reset instruction signal RST1 is high, the state of the transistor 412 is on.
  • the ground voltage GND is output from the drain terminal of the transistor 412. Therefore, the low-level reset control signal Vrs1 is output to the control signal line 81.
  • the voltage of the reset instruction signal RST1 is low level, the state of the transistor 412 is the off state.
  • the selection circuit 42 has a transistor 421 and a transistor 422.
  • the transistor 421 is configured in the same manner as the transistor 411, and the transistor 422 is configured in the same manner as the transistor 412.
  • the reset instruction signal RST2 is input to the respective gate terminals of the transistor 421 and the transistor 422.
  • the power supply voltage VDD or the control voltage output from the voltage generation circuit 9 is output to the control signal line 81 as the reset control signal Vrs2. .
  • the ground voltage GND is output to the control signal line 81 as the reset control signal Vrs2.
  • FIG. 4 shows the configuration of the column circuit 8.
  • the column circuit 8 shown in FIG. 4 includes a transistor M1, a sample transistor M2, a sample transistor M3, a column selection transistor M4, a column selection transistor M5, a capacitive element Cr, and a capacitive element Cs.
  • Each transistor shown in FIG. 4 is an NMOS transistor.
  • Each transistor shown in FIG. 4 has a source terminal, a drain terminal, and a gate terminal.
  • the drain terminal of the transistor M1 is connected to the vertical signal line 70.
  • the source terminal of the transistor M1 is connected to the ground.
  • the gate terminal of the transistor M1 is connected to the power supply line 84.
  • the power supply line 84 is connected to a power supply that outputs a predetermined voltage LMB.
  • the drain terminal of the sample transistor M2 is connected to the vertical signal line 70.
  • the source terminal of the sample transistor M2 is connected to the capacitive element Cr.
  • the gate terminal of the sample transistor M2 is connected to the control signal line 85.
  • the control signal line 85 extends in the row direction in an array of two or more pixels 3.
  • the control signal line 85 transfers the sample hold pulse ⁇ SHR.
  • the drain terminal of the sample transistor M3 is connected to the vertical signal line 70.
  • the source terminal of the sample transistor M3 is connected to the capacitive element Cs.
  • the gate terminal of the sample transistor M3 is connected to the control signal line 86.
  • the control signal line 86 extends in the row direction in an array of two or more pixels 3.
  • the control signal line 86 transfers the sample hold pulse ⁇ SHS.
  • Each of the capacitive element Cr and the capacitive element Cs has a first terminal and a second terminal.
  • the first terminal of the capacitive element Cr is connected to the source terminal of the sample transistor M2.
  • the second terminal of the capacitive element Cr is connected to the ground.
  • the first terminal of the capacitive element Cs is connected to the source terminal of the sample transistor M3.
  • the second terminal of the capacitive element Cs is connected to the ground.
  • the drain terminal of the column selection transistor M4 is connected to the first terminal of the capacitive element Cr.
  • the source terminal of the column selection transistor M4 is connected to the first horizontal signal line 71.
  • the gate terminal of the column selection transistor M4 is connected to the horizontal selection unit 6.
  • the drain terminal of the column selection transistor M5 is connected to the first terminal of the capacitive element Cs.
  • the source terminal of the column selection transistor M5 is connected to the second horizontal signal line 72.
  • the gate terminal of the column selection transistor M5 is connected to the horizontal selection unit 6.
  • the operation of the sample transistor M2 is controlled based on the sample hold pulse ⁇ SHR.
  • the operation of the sample transistor M3 is controlled based on the sample hold pulse ⁇ SHS.
  • the operation of each of the column selection transistor M4 and the column selection transistor M5 is controlled based on the selection pulse HSR [k] output from the horizontal selection unit 6.
  • the number k is 1 or 2.
  • Transistor M1 functions as a current source.
  • the sample transistor M2 samples the first pixel signal of the reset level output from the pixel 3 to the vertical signal line 70.
  • the sample transistor M3 samples a second pixel signal at the signal level output from the pixel 3 to the vertical signal line 70.
  • the capacitive element Cr holds the first pixel signal at the reset level sampled by the sample transistor M2.
  • the capacitive element Cs holds a second pixel signal at the signal level sampled by the sample transistor M3.
  • the capacitive element Cr and the capacitive element Cs are sample capacitances.
  • the column selection transistor M4 outputs the first pixel signal held by the capacitive element Cr to the first horizontal signal line 71.
  • the column selection transistor M5 outputs the second pixel signal held by the capacitive element Cs to the second horizontal signal line 72.
  • the column selection transistor M4 and the column selection transistor M5 in the first row are controlled based on the selection pulse HSR [1].
  • the column selection transistor M4 and the column selection transistor M5 in the second row are controlled based on the selection pulse HSR [2].
  • FIG. 5 shows the operation of the image pickup apparatus 1.
  • the signal reading operation executed by the image pickup apparatus 1 will be described.
  • an operation in which the image pickup apparatus 1 reads a pixel signal from the pixel 3 in the first row in an array of two or more pixels 3 will be described.
  • control signal ⁇ CKP signal ⁇ CK
  • reset instruction signal RST1 reset instruction signal RST2
  • selection control signal Vsel reset control signal Vrs1, transfer control signal Vtx1, selection control signal Vsel2, reset control signal Vrs2, transfer control signal Vtx2.
  • Sample hold pulse ⁇ SHR sample hold pulse ⁇ SHS, selection pulse HSR [1], and selection pulse HSR [2] are shown.
  • the horizontal direction in FIG. 5 indicates time, and the vertical direction in FIG. 5 indicates voltage.
  • the 1H period in which the pixel signal of one line is read includes the blanking period and the valid period. During the blanking period, the first pixel signal at the reset level and the second pixel signal at the signal level are read out.
  • signal ⁇ CK selection control signal Vsel1, reset control signal Vrs1, transfer control signal Vtx1, selection control signal Vsel2, reset control signal Vrs2, transfer control signal Vtx2, sample hold pulse ⁇ SHR, sample hold pulse ⁇ SHS.
  • Each voltage of the selective pulse HSR [1], and the selective pulse HSR [2] is at a low level.
  • the voltages of the control signal ⁇ CKP, the reset instruction signal RST1, and the reset instruction signal RST2 are at high levels. This is an example and is not limited to this.
  • the voltage of the selection control signal Vsel1 Before the blanking period begins, the voltage of the selection control signal Vsel1 is at a low level. Therefore, the state of the selection transistor 36 in the pixels 3 in all rows is the off state.
  • the voltage of the selection control signal Vsel1 changes from low level to high level. Therefore, the state of the selection transistor 36 in the pixel 3 in the first row is turned on. As a result, the pixel 3 in the first row is selected.
  • the voltage of the control signal ⁇ CKP Before the blanking period starts, the voltage of the control signal ⁇ CKP is at a high level. Therefore, the state of the switch 93 of the voltage generation circuit 9 is an off state.
  • the voltage of the control signal ⁇ CKP changes from high level to low level. Therefore, the state of the switch 93 is turned on.
  • the power supply voltage VDD is input to the terminal T91b of the first capacitance element 91 via the switch 93.
  • the electric charge corresponding to the power supply voltage VDD is accumulated in the first capacitance element 91.
  • the voltage generation circuit 9 outputs the power supply voltage VDD to the signal line 73.
  • the voltage of the reset instruction signal RST1 and the voltage of the reset instruction signal RST2 are at a high level. Therefore, the states of the transistor 411 and the transistor 421 in the vertical selection unit 4 are in the off state, and the states of the transistor 412 and the transistor 422 in the vertical selection unit 4 are in the on state.
  • the low-level reset control signal Vrs1 and the reset control signal Vrs2 are output to the control signal line 81.
  • the voltage of the reset instruction signal RST1 changes from a high level to a low level. Therefore, the state of the transistor 411 is turned on, and the state of the transistor 412 is turned off. As a result, the power supply voltage VDD output from the voltage generation circuit 9 is output from the drain terminal of the transistor 411.
  • the reset control signal Vrs1 having the power supply voltage VDD is output to the control signal line 81.
  • the reset control signal Vrs1 having the power supply voltage VDD is input to the gate terminal T34g of the reset transistor 34 in the pixel 3 of the first row via the control signal line 81. Therefore, the state of the reset transistor 34 is turned on. As a result, the reset transistor 34 resets the voltage of the charge storage unit 33.
  • the voltage of the control signal ⁇ CKP changes from the low level to the high level. Therefore, the state of the switch 93 is turned off.
  • the voltage of the control signal ⁇ CKP changes to a high level
  • the voltage of the signal ⁇ CK changes from a low level to a high level. Therefore, the power supply voltage VDD is input to the terminal T92b of the second capacitance element 92. At this time, the voltage of the terminal T91b of the first capacitance element 91 increases according to the equation (1).
  • the voltage generation circuit 9 outputs a control voltage higher than the power supply voltage VDD to the signal line 73.
  • the control voltage output from the voltage generation circuit 9 is output from the drain terminal of the transistor 411.
  • the reset control signal Vrs1 having the control voltage is output to the control signal line 81.
  • the reset control signal Vrs1 having a control voltage is input to the gate terminal T34g of the reset transistor 34 in the pixel 3 of the first row via the control signal line 81.
  • the reset transistor 34 resets the voltage of the charge storage unit 33 based on the control voltage. Since the control voltage is higher than the power supply voltage VDD, the voltage of the charge storage unit 33 is surely reset to the power supply voltage VDD. Therefore, the amount of charge that can be stored in the charge storage unit 33 increases. As a result, the decrease in the S / N ratio of the pixel signal is suppressed.
  • the voltage generation circuit 9 outputs the power supply voltage VDD to the signal line 73.
  • the reset control signal Vrs1 having the power supply voltage VDD is output to the control signal line 81.
  • the reset control signal Vrs1 having the power supply voltage VDD is input to the gate terminal T34g of the reset transistor 34 in the pixel 3 in the first row via the control signal line 81.
  • the voltage of the reset instruction signal RST1 changes from the low level to the high level. Therefore, the state of the transistor 411 is turned off, and the state of the transistor 412 is turned on. As a result, the ground voltage GND is output from the drain terminal of the transistor 412.
  • the low-level reset control signal Vrs1 is output to the control signal line 81.
  • the low-level reset control signal Vrs1 is input to the gate terminal T34g of the reset transistor 34 in the pixel 3 of the first row via the control signal line 81. Therefore, the state of the reset transistor 34 is turned off. As a result, the reset transistor 34 stops resetting the charge storage unit 33.
  • the first pixel signal at the reset level is output to the vertical signal line 70.
  • the voltage of the sample hold pulse ⁇ SHR changes from a low level to a high level.
  • the state of the sample transistor M2 is turned on.
  • the voltage of the sample hold pulse ⁇ SHR changes from a high level to a low level. Therefore, the state of the sample transistor M2 is turned off.
  • the first pixel signal at the reset level is held by the capacitive element Cr.
  • the voltage of the transfer control signal Vtx1 changes to the low level
  • the voltage of the sample hold pulse ⁇ SHS changes from the low level to the high level. Therefore, the state of the sample transistor M3 is turned on.
  • the voltage of the sample hold pulse ⁇ SHS changes from a high level to a low level. Therefore, the state of the sample transistor M3 is turned off. As a result, the second pixel signal of the signal level is held in the capacitive element Cs.
  • the voltage of the selection control signal Vsel1 changes from the high level to the low level. Therefore, the state of the selection transistor 36 in the pixel 3 in the first row is turned off. As a result, the selection of the pixel 3 in the first row is canceled, and the operation of reading the pixel signal from the pixel 3 in the first row ends. At this time, the blanking period ends and the validity period begins.
  • the voltage of the selected pulse HSR [1] changes from low level to high level. Therefore, each of the row selection transistor M4 and the row selection transistor M5 in the row circuit 8 in the first row is turned on. As a result, the first pixel signal of the reset level of the pixel 3 in the first row and the first column is output to the first horizontal signal line 71. At the same time, the second pixel signal of the signal level of the pixel 3 in the first row and the first column is output to the second horizontal signal line 72.
  • the voltage of the selected pulse HSR [1] changes from high level to low level. Therefore, each state of the column selection transistor M4 and the column selection transistor M5 is turned off.
  • the first pixel signal of the pixel 3 in the first row and the first column is read out, and the second pixel signal of the pixel 3 in the first row and the first column is read out.
  • the voltage level of the selection pulse HSR [2] changes from a low level to a high level.
  • the first pixel signal of the pixel 3 in the first row and the second column is read out, and the second pixel signal of the pixel 3 in the first row and the second column is read out in the same manner as the above operation. ..
  • the voltage of the selection pulse HSR [2] changes from a high level to a low level.
  • the image pickup apparatus 1 reads a pixel signal from the pixel 3 of the second row. This operation is the same as the operation in the 1H period of the first row.
  • the voltage of the reset instruction signal RST1 changes from high level to low level before the voltage of the signal ⁇ CK changes from low level to high level.
  • the voltage of the reset instruction signal RST1 may change from a high level to a low level at an arbitrary timing between the first timing and the second timing.
  • the first timing is the timing at which the voltage of the control signal ⁇ CKP changes from a high level to a low level.
  • the second timing is the timing at which the voltage of the signal ⁇ CK changes from a high level to a low level. This is an example and is not limited to this.
  • the voltage of the reset instruction signal RST1 changes from the low level to the high level after the voltage of the signal ⁇ CK changes from the high level to the low level.
  • the voltage of the reset instruction signal RST1 may change from a low level to a high level at an arbitrary timing between the third timing and the fourth timing.
  • the third timing is the timing at which the voltage of the signal ⁇ CK changes from a low level to a high level.
  • the fourth timing is the timing at which the voltage of the sample hold pulse ⁇ SHR changes from a low level to a high level. This is an example and is not limited to this.
  • the imaging device of each aspect of the present invention does not have to have a configuration other than the configuration corresponding to each of the imaging unit 2, the voltage generation circuit 9, and the vertical selection unit 4.
  • the image pickup apparatus 1 can generate a control voltage having an absolute value larger than the absolute value of the power supply voltage VDD without using a large capacitance element. Since the reset transistor 34 resets the charge storage unit 33 based on the control voltage, the amount of charge that can be stored in the charge storage unit 33 increases, and the decrease in the S / N ratio of the pixel signal is suppressed.
  • the vertical selection unit 4 sequentially selects rows in an array of two or more pixels 3, and electrically connects the pixels 3 included in the selected rows and the voltage generation circuit 9. As a result, the image pickup apparatus 1 can commonly use one voltage generation circuit 9 between two or more rows. Therefore, the increase in the area of the image pickup apparatus 1 is suppressed.
  • the transistor 411 and the transistor 421 electrically conduct the gate terminal T34g of the reset transistor 34 and the voltage generation circuit 9 with each other. As a result, the control voltage is transferred from the voltage generation circuit 9 to the reset transistor 34. Therefore, the image pickup apparatus 1 can easily supply the control voltage to the reset transistor 34.
  • the voltage generation circuit 9 generates a control voltage by switching the state of the switch 93 and switching the voltage of the terminal T92b of the second capacitance element 92. Therefore, the voltage generation circuit 9 can easily generate a control voltage. Since the voltage generation circuit 9 is a simple circuit, the voltage generation circuit 9 is suitable for miniaturization of the image pickup apparatus 1.
  • the image pickup apparatus 1 does not require a new voltage to generate the control voltage.
  • FIG. 6 shows the configuration of the vertical selection unit 4 and the voltage generation circuit 9 in the image pickup apparatus 1 of the second embodiment of the present invention.
  • the voltage generation circuit 9 shown in FIG. 6 is the same as the voltage generation circuit 9 shown in FIG.
  • a circuit for generating the transfer control signal Vtx1 and the transfer control signal Vtx2 is shown.
  • a circuit for generating the reset control signal Vrs1, the reset control signal Vrs2, the selection control signal Vsel1, and the selection control signal Vsel2 is not shown.
  • the selection circuit 41 shown in FIG. 6 is the same as the selection circuit 41 shown in FIG.
  • the selection circuit 42 shown in FIG. 6 is the same as the selection circuit 42 shown in FIG.
  • a configuration different from the configuration shown in FIG. 3 will be described.
  • the drain terminal of the transistor 411 is electrically connected to the control signal line 82. Therefore, the drain terminal of the transistor 411 is connected to the gate terminal T32g of the transfer transistor 32 in the pixel 3 via the control signal line 82.
  • the transfer instruction signal TX1 is input to the gate terminal of the transistor 411.
  • the state of the transistor 411 is controlled based on the transfer instruction signal TX1.
  • the transfer instruction signal TX1 has a low level or a high level.
  • the state of the transistor 411 is the ON state.
  • the power supply voltage VDD or the control voltage output from the voltage generation circuit 9 is output from the drain terminal of the transistor 411.
  • the control voltage is output to the control signal line 82 as a transfer control signal Vtx1.
  • the state of the transistor 411 is an off state.
  • the transistor 411 (selection transistor) is electrically connected to the gate terminal T32g of the transfer transistor 32 in each of the two or more pixels 3 and the voltage generation circuit 9. During the transfer period in which the low-level transfer instruction signal TX1 is given to the transistor 411, the transistor 411 electrically conducts the gate terminal T32g of the transfer transistor 32 and the voltage generation circuit 9 with each other. During the transfer period, the voltage generation circuit 9 generates a control voltage.
  • the voltage generation circuit 9 generates a control voltage after generating a voltage (first voltage) corresponding to the power supply voltage VDD.
  • the selection circuit 41 outputs a voltage corresponding to the power supply voltage VDD to the gate terminal T32g of the transfer transistor 32, and then outputs a control voltage to the gate terminal T32g of the transfer transistor 32.
  • the drain terminal of the transistor 412 is electrically connected to the control signal line 82. Therefore, the drain terminal of the transistor 412 is connected to the gate terminal T32g of the transfer transistor 32 in the pixel 3 via the control signal line 82.
  • the transfer instruction signal TX1 is input to the gate terminal of the transistor 412.
  • the state of the transistor 412 is controlled based on the transfer instruction signal TX1.
  • the transfer instruction signal TX1 When the voltage of the transfer instruction signal TX1 is high, the state of the transistor 412 is on. At this time, the ground voltage GND is output from the drain terminal of the transistor 412. Therefore, the low-level transfer control signal Vtx1 is output to the control signal line 82.
  • the state of the transistor 412 When the voltage of the transfer instruction signal TX1 is low level, the state of the transistor 412 is the off state.
  • the transfer instruction signal TX2 is input to the respective gate terminals of the transistor 421 and the transistor 422.
  • the power supply voltage VDD or the control voltage output from the voltage generation circuit 9 is output to the control signal line 82 as the transfer control signal Vtx2. .
  • the ground voltage GND is output to the control signal line 82 as the transfer control signal Vtx2.
  • FIG. 7 shows the operation of the image pickup apparatus 1.
  • the signal reading operation executed by the image pickup apparatus 1 will be described.
  • an operation in which the image pickup apparatus 1 reads a pixel signal from the pixel 3 in the first row in an array of two or more pixels 3 will be described.
  • control signal ⁇ CKP signal ⁇ CK
  • Sample hold pulse ⁇ SHR, sample hold pulse ⁇ SHS, selection pulse HSR [1], and selection pulse HSR [2] are shown.
  • the horizontal direction in FIG. 7 indicates time, and the vertical direction in FIG. 7 indicates voltage.
  • the 1H period in which the pixel signal of one line is read includes the blanking period and the valid period. During the blanking period, the first pixel signal at the reset level and the second pixel signal at the signal level are read out.
  • signal ⁇ CK selection control signal Vsel1, reset control signal Vrs1, transfer control signal Vtx1, selection control signal Vsel2, reset control signal Vrs2, transfer control signal Vtx2, sample hold pulse ⁇ SHR, sample hold pulse ⁇ SHS.
  • Each voltage of the selective pulse HSR [1], and the selective pulse HSR [2] is at a low level.
  • the voltages of the control signal ⁇ CKP, the transfer instruction signal TX1, and the transfer instruction signal TX2 are at high levels. This is an example and is not limited to this.
  • the voltage of the selection control signal Vsel1 is at a low level. Therefore, the state of the selection transistor 36 in the pixels 3 in all rows is the off state.
  • the voltage of the selection control signal Vsel1 changes from low level to high level. Therefore, the state of the selection transistor 36 in the pixel 3 in the first row is turned on. As a result, the pixel 3 in the first row is selected.
  • the voltage of the control signal ⁇ CKP Before the blanking period starts, the voltage of the control signal ⁇ CKP is at a high level. Therefore, the state of the switch 93 of the voltage generation circuit 9 is an off state.
  • the voltage of the control signal ⁇ CKP changes from high level to low level. Therefore, the state of the switch 93 is turned on.
  • the power supply voltage VDD is input to the terminal T91b of the first capacitance element 91 via the switch 93.
  • the electric charge corresponding to the power supply voltage VDD is accumulated in the first capacitance element 91.
  • the voltage generation circuit 9 outputs the power supply voltage VDD to the signal line 73.
  • the voltage of the transfer instruction signal TX1 and the voltage of the transfer instruction signal TX2 are at a high level. Therefore, the states of the transistor 411 and the transistor 421 in the vertical selection unit 4 are in the off state, and the states of the transistor 412 and the transistor 422 in the vertical selection unit 4 are in the on state.
  • the low-level transfer control signal Vtx1 and transfer control signal Vtx2 are output to the control signal line 82.
  • the reset transistor 34 After the voltage of the control signal ⁇ CKP changes to a high level, the voltage of the reset control signal Vrs1 changes from a low level to a high level. Therefore, the state of the reset transistor 34 is turned on. As a result, the reset transistor 34 resets the voltage of the charge storage unit 33. After that, the voltage of the reset control signal Vrs1 changes from a high level to a low level. Therefore, the state of the reset transistor 34 is turned off. As a result, the reset transistor 34 stops resetting the charge storage unit 33.
  • the first pixel signal at the reset level is output to the vertical signal line 70.
  • the voltage of the sample hold pulse ⁇ SHR changes from a low level to a high level.
  • the state of the sample transistor M2 is turned on.
  • the voltage of the sample hold pulse ⁇ SHR changes from a high level to a low level.
  • the state of the sample transistor M2 is turned off. Therefore, the first pixel signal of the reset level is held by the capacitive element Cr.
  • the transfer control signal Vtx1 having the power supply voltage VDD is input to the gate terminal T32g of the transfer transistor 32 in the pixel 3 of the first row via the control signal line 82. Therefore, the state of the transfer transistor 32 is turned on. As a result, the charge of the photoelectric conversion unit 31 is transferred to the charge storage unit 33, and the second pixel signal at the signal level is output to the vertical signal line 70.
  • the voltage generation circuit 9 outputs a control voltage higher than the power supply voltage VDD to the signal line 73.
  • the control voltage output from the voltage generation circuit 9 is output from the drain terminal of the transistor 411.
  • the transfer control signal Vtx1 having a control voltage is output to the control signal line 82.
  • the transfer control signal Vtx1 having a control voltage is input to the gate terminal T32g of the transfer transistor 32 in the pixel 3 of the first row via the control signal line 82.
  • the transfer transistor 32 transfers the electric charge of the photoelectric conversion unit 31 to the charge storage unit 33 based on the control voltage. Since the control voltage is higher than the power supply voltage VDD, the charge of the photoelectric conversion unit 31 is surely transferred to the charge storage unit 33. Therefore, the amount of charge that can be stored in the charge storage unit 33 increases. As a result, the decrease in the S / N ratio of the pixel signal is suppressed.
  • the voltage generation circuit 9 outputs the power supply voltage VDD to the signal line 73.
  • the transfer instruction signal TX1 having the power supply voltage VDD is output to the control signal line 82.
  • the transfer instruction signal TX1 having the power supply voltage VDD is input to the gate terminal T32g of the transfer transistor 32 in the pixel 3 of the first line via the control signal line 82.
  • the voltage of the transfer instruction signal TX1 changes from the low level to the high level. Therefore, the state of the transistor 411 is turned off, and the state of the transistor 412 is turned on. As a result, the ground voltage GND is output from the source terminal of the transistor 412.
  • the low level transfer control signal Vtx1 is output to the control signal line 82.
  • the low-level transfer control signal Vtx1 is input to the gate terminal T32g of the transfer transistor 32 in the pixel 3 of the first row via the control signal line 82. Therefore, the state of the transfer transistor 32 is turned off. As a result, the transfer transistor 32 stops the transfer of electric charges.
  • the voltage of the sample hold pulse ⁇ SHS changes to the low level
  • the voltage of the selection control signal Vsel1 changes from the high level to the low level. Therefore, the state of the selection transistor 36 in the pixel 3 in the first row is turned off. As a result, the selection of the pixel 3 in the first row is canceled, and the operation of reading the pixel signal from the pixel 3 in the first row ends.
  • the blanking period ends and the validity period begins. The operation during the valid period is the same as the operation shown in FIG.
  • the image pickup apparatus 1 reads a pixel signal from the pixel 3 of the second row. This operation is the same as the operation in the 1H period of the first row.
  • the voltage of the transfer instruction signal TX1 changes from high level to low level before the voltage of the signal ⁇ CK changes from low level to high level.
  • the voltage of the transfer instruction signal TX1 may change from a high level to a low level at an arbitrary timing between the first timing and the second timing.
  • the first timing is the timing at which the voltage of the control signal ⁇ CKP changes from a high level to a low level.
  • the second timing is the timing at which the voltage of the signal ⁇ CK changes from a high level to a low level. This is an example and is not limited to this.
  • the voltage of the transfer instruction signal TX1 changes from the low level to the high level after the voltage of the signal ⁇ CK changes from the high level to the low level.
  • the voltage of the transfer instruction signal TX1 may change from a low level to a high level at an arbitrary timing between the third timing and the fourth timing.
  • the third timing is the timing at which the voltage of the signal ⁇ CK changes from a low level to a high level.
  • the fourth timing is the timing at which the voltage of the sample hold pulse ⁇ SHS changes from a low level to a high level. This is an example and is not limited to this.
  • the image pickup apparatus 1 can generate a control voltage having an absolute value larger than the absolute value of the power supply voltage VDD without using a large capacitance element. Since the transfer transistor 32 transfers the charge of the photoelectric conversion unit 31 to the charge storage unit 33 based on the control voltage, the amount of charge that can be stored in the charge storage unit 33 increases, and the S / N ratio of the pixel signal decreases. It is suppressed.
  • the transistor 411 and the transistor 421 electrically conduct the gate terminal T32g of the transfer transistor 32 and the voltage generation circuit 9 with each other. As a result, the control voltage is transferred from the voltage generation circuit 9 to the transfer transistor 32. Therefore, the image pickup apparatus 1 can easily supply the control voltage to the transfer transistor 32.
  • FIG. 8 shows the configuration of the voltage generation circuit 9a in the image pickup apparatus 1 according to the third embodiment of the present invention.
  • the voltage generation circuit 9 shown in FIG. 3 or FIG. 6 is changed to the voltage generation circuit 9a shown in FIG.
  • the voltage generation circuit 9a includes a switched capacitor circuit.
  • the voltage generation circuit 9a shown in FIG. 8 includes a first capacitance element 91, a second capacitance element 92, a power supply 94, a switch 95, a switch 96, a switch 97, and a switch 98.
  • the power supply 94 generates a power supply voltage VDD.
  • the first capacitive element 91 has a terminal T91a (sixth terminal) and a terminal T91b (fifth terminal), and accumulates electric charges according to the difference between the voltage of the terminal T91a and the voltage of the terminal T91b.
  • the second capacitive element 92 has a terminal T92a (seventh terminal) and a terminal T92b (eighth terminal), and accumulates electric charges according to the difference between the voltage of the terminal T92a and the voltage of the terminal T92b.
  • the ground voltage GND is input to the terminal T91a of the first capacitance element 91.
  • the terminal T91b of the first capacitive element 91 is electrically connected to the signal line 73.
  • the switch 95 has a terminal T95a (9th terminal) and a terminal T95b (10th terminal).
  • the switch 96 has a terminal T96a and a terminal T96b.
  • the switch 97 has a terminal T97a and a terminal T97b.
  • the switch 98 has a terminal T98a and a terminal T98b.
  • the state of each switch is either an on state or an off state. When the state of each switch is on, the two terminals of each switch are electrically conductive with each other. When the state of each switch is off, the two terminals of each switch are electrically isolated from each other.
  • the terminal T96a of the switch 96 is electrically connected to the terminal T91b of the first capacitance element 91. Since the state of the switch 96 is always on, the voltage generation circuit 9a does not have to have the switch 96.
  • the ground voltage GND is input to the terminal T98a of the switch 98.
  • the terminal T95a of the switch 95 is electrically connected to the terminal T96b of the switch 96. Since the state of the switch 96 is always on, the terminal T95a of the switch 95 is electrically connected to the terminal T91b of the first capacitance element 91.
  • the power supply voltage VDD (first voltage) is input to the terminal T95b of the switch 95.
  • the terminal T97a of the switch 97 is electrically connected to the terminal T98b of the switch 98.
  • the power supply voltage VDD is input to the terminal T97b of the switch 97.
  • the terminal T92a of the second capacitive element 92 is electrically connected to the terminal T96b of the switch 96. Since the state of the switch 96 is always on, the terminal T92a of the second capacitance element 92 is electrically connected to the terminal T91b of the first capacitance element 91. Further, the terminal T92a of the second capacitance element 92 is electrically connected to the terminal T95a of the switch 95.
  • the terminal T92b of the second capacitive element 92 is electrically connected to the terminal T97a of the switch 97 and the terminal T98b of the switch 98.
  • the ground voltage GND is input to the terminal T92b of the second capacitance element 92.
  • the power supply voltage VDD is input to the terminal T92b of the second capacitive element 92.
  • the voltage generation circuit 9a stores an electric charge in the first capacitance element 91 by applying a power supply voltage VDD (first voltage) to the terminal T91b of the first capacitance element 91. After the electric charge corresponding to the power supply voltage VDD is accumulated in the first capacitance element 91, the voltage generation circuit 9a of the terminal T91b of the first capacitance element 91 by the voltage (second voltage) corresponding to the power supply voltage VDD. Increase the voltage. As a result, the voltage generation circuit 9a generates a control voltage having an absolute value larger than the absolute value of the power supply voltage VDD.
  • the power supply voltage VDD (first voltage) is the first capacitance. It is input to the terminal T91b of the element 91 and the terminal T92a of the second capacitance element 92. Further, the ground voltage GND is input to the terminal T92b of the second capacitance element 92. After that, each state of the switch 95 and the switch 98 changes from the on state to the off state. Further, the state of the switch 97 changes from the off state to the on state. At this time, the power supply voltage VDD is input to the terminal T92b of the second capacitance element 92.
  • the terminals T92a and the terminal T92a of the second capacitance element 92 and the second capacitance element 92 increase.
  • the voltage of the terminal T91b of the first capacitance element 91 increases by a voltage (second voltage) corresponding to the power supply voltage VDD.
  • the image pickup apparatus 1 can generate a control voltage having an absolute value larger than the absolute value of the power supply voltage VDD without using a large capacitance element.
  • the reset transistor 34 resets the charge storage unit 33 based on the control voltage.
  • the transfer transistor 32 transfers the charge of the photoelectric conversion unit 31 to the charge storage unit 33 based on the control voltage. Therefore, the amount of charge that can be stored in the charge storage unit 33 is increased, and the decrease in the S / N ratio of the pixel signal is suppressed.
  • FIG. 9 shows the configuration of the endoscope system 100 according to the fourth embodiment of the present invention.
  • the endoscope system 100 has an imaging device 1 of any one of the first to third embodiments.
  • the endoscope system 100 shown in FIG. 9 has a scope 102 and a housing 107.
  • the scope 102 includes an imaging device 1, a lens 103, a lens 104, and a fiber 106.
  • the image pickup device 1, the lens 103, and the lens 104 are arranged at the tip of the scope 102.
  • the housing 107 includes an image processing unit 108, a light source device 109, and a setting unit 110.
  • the lens 103 forms an image of the reflected light from the subject 120 on the image pickup apparatus 1.
  • the fiber 106 transfers the illumination light applied to the subject 120.
  • the lens 104 irradiates the subject 120 with the illumination light transferred by the fiber 106.
  • the light source device 109 has a light source that generates illumination light to be applied to the subject 120.
  • the image processing unit 108 generates a captured image by performing a predetermined process on the signal output from the image pickup apparatus 1.
  • the setting unit 110 controls the imaging mode of the endoscope system 100.
  • the configuration of the endoscope system 100 is not limited to the above configuration.
  • the endoscope system of each aspect of the present invention does not have to have a configuration corresponding to at least one of a lens 103, a lens 104, a fiber 106, an image processing unit 108, a light source device 109, and a setting unit 110. ..
  • the endoscope system 100 of the fourth embodiment includes an imaging device 1 capable of generating a control voltage having an absolute value larger than the absolute value of the power supply voltage VDD without using a large capacitive element. Therefore, the endoscope system 100 can generate a control voltage having an absolute value larger than the absolute value of the power supply voltage VDD without using a large capacitance element.
  • the imaging device and the endoscopic system can generate a voltage having an absolute value larger than the absolute value of the power supply voltage without using a large capacitive element.
  • Imaging device 2 Imaging unit 3 pixels 4 Vertical selection unit 5 row circuit unit 6 Horizontal selection unit 7 Output unit 8 row circuit 9, 9a Voltage generation circuit 31
  • Photoelectric conversion unit 32 Transfer transistor 33
  • Charge storage unit 34
  • Reset transistor 35
  • Selection transistor 41, 42 Selection circuit 91
  • First capacitance element 92
  • Second capacitance element 93, 95, 96, 97, 98
  • Switch 94 Power supply 100
  • Endoscope system 102 Scope 103, 104 Lens 106 Fiber 107 Housing 108 Image processing Part 109 Light source device 110 Setting part 411,421,421,422 Transistor

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

撮像装置は、電圧生成回路および出力回路を有する。前記電圧生成回路は、第5の端子を有する第1の容量素子を有する。前記電圧生成回路は、電源電圧に応じた第1の電圧を前記第5の端子に与えることにより電荷を前記第1の容量素子に蓄積する。前記電圧生成回路は、前記電源電圧に応じた第2の電圧だけ前記第5の端子の電圧を増加させることにより、前記電源電圧の絶対値よりも大きな絶対値を持つ制御電圧を生成する。前記出力回路は、前記制御電圧を画素のリセットトランジスタのゲート端子および画素の転送トランジスタのゲート端子の少なくとも一方に出力する。

Description

撮像装置および内視鏡システム
 本発明は、撮像装置および内視鏡システムに関する。
 外部から入力される電磁波(光および放射線など)に対して感応性を有するセンサーが配置された物理量検知半導体装置が様々な分野で使われている。物理量はセンサーによって電気信号に変換される。例えば、撮像装置におけるセンサーは画素である。一般的に、基準レベルおよび信号レベルの各電気信号がセンサーから読み出される。例えば、撮像装置における基準レベルはリセットレベルである。
 撮像装置を使用する内視鏡システムにおいて、一般的にCCD型撮像装置が使用されていた。CCD型撮像装置は複数の電源電圧を必要とするため、CCD型撮像装置の小型化には限界がある。近年、これを解決するために、単一の電源電圧(例えば、3.3[V])で駆動できるCMOS型撮像装置が使用されるようになった。
 例えば、特許文献1には、チャージポンプを使用する昇圧回路を有する撮像装置が開示されている。その昇圧回路は、複数の容量素子および複数のダイオードを有する。
日本国特開2006-129127号公報
 しかしながら、単一の電源電圧で駆動できるCMOS型撮像装置を小型化することに伴い、以下の問題が発生する。以下では、従来のCMOS型撮像装置の問題を説明する。
 画素サイズが小さくなると、フォトダイオードおよびフローティングディフュージョンに蓄積できる電荷の量が減少する。そのため、S/N比が劣化し、かつ画質が低下する。蓄積できる電荷の量を増やすためには、画素サイズを大きくするのではなく、電源電圧(例えば、3.3[V])よりも高い電圧を使用することが考えられる。
 これを実現するためには、電源電圧よりも高い電圧を生成するための回路が必要である。特許文献1に示す昇圧回路のようにチャージポンプを使用する回路では大きな容量素子が必要である。そのため、撮像装置の小型化が困難である。
 本発明は、大きな容量素子を使用せずに電源電圧の絶対値よりも大きな絶対値を持つ電圧を生成することができる撮像装置および内視鏡システムを提供することを目的とする。
 本発明の第1の態様によれば、撮像装置は、2つ以上の画素、電圧生成回路、および出力回路を有する。前記2つ以上の画素は、行列状に配置されている。前記2つ以上の画素の各々は、フォトダイオード、フローティングディフュージョン、リセットトランジスタ、および転送トランジスタを有する。前記フォトダイオードは、光電変換によって電荷を生成する。前記フローティングディフュージョンは、前記フォトダイオードによって生成された前記電荷を蓄積する。前記リセットトランジスタは、第1の端子、第2の端子、およびゲート端子を有する。前記第1の端子および前記第2の端子の一方はソース端子である。前記第1の端子および前記第2の端子の他方はドレイン端子である。電源電圧が前記第1の端子に入力される。前記第2の端子は前記フローティングディフュージョンに電気的に接続されている。前記転送トランジスタは、第3の端子、第4の端子、およびゲート端子を有する。前記第3の端子および前記第4の端子の一方はソース端子である。前記第3の端子および前記第4の端子の他方はドレイン端子である。前記第3の端子は前記フォトダイオードに電気的に接続されている。前記第4の端子は前記フローティングディフュージョンに電気的に接続されている。前記電圧生成回路は、第5の端子を有する第1の容量素子を有する。前記電圧生成回路は、前記電源電圧に応じた第1の電圧を前記第5の端子に与えることにより電荷を前記第1の容量素子に蓄積する。前記電圧生成回路は、前記電源電圧に応じた第2の電圧だけ前記第5の端子の電圧を増加させることにより、前記電源電圧の絶対値よりも大きな絶対値を持つ制御電圧を生成する。前記出力回路は、前記制御電圧を前記リセットトランジスタの前記ゲート端子および前記転送トランジスタの前記ゲート端子の少なくとも一方に出力する。
 本発明の第2の態様によれば、第1の態様において、前記2つ以上の画素の配列は、2つ以上の行を有してもよい。前記出力回路は、前記行を順次選択し、かつ選択された前記行に含まれる前記画素と前記電圧生成回路とを電気的に接続してもよい。
 本発明の第3の態様によれば、第2の態様において、前記出力回路は、前記2つ以上の画素の各々における前記リセットトランジスタの前記ゲート端子と前記電圧生成回路とに電気的に接続された選択トランジスタを有してもよい。リセット指示信号が前記選択トランジスタに与えられるリセット期間において、前記選択トランジスタは、前記リセットトランジスタの前記ゲート端子と前記電圧生成回路とを互いに電気的に導通させてもよい。前記リセット期間において前記電圧生成回路は前記制御電圧を生成してもよい。
 本発明の第4の態様によれば、第2の態様において、前記出力回路は、前記2つ以上の画素の各々における前記転送トランジスタの前記ゲート端子と前記電圧生成回路とに電気的に接続された選択トランジスタを有してもよい。転送指示信号が前記選択トランジスタに与えられる転送期間において、前記選択トランジスタは、前記転送トランジスタの前記ゲート端子と前記電圧生成回路とを互いに電気的に導通させてもよい。前記転送期間において前記電圧生成回路は前記制御電圧を生成してもよい。
 本発明の第5の態様によれば、第1の態様において、前記電圧生成回路は、前記第1の容量素子、第2の容量素子、およびスイッチを有してもよい。前記第1の容量素子は、前記第5の端子および第6の端子を有してもよい。直流電圧が前記第6の端子に入力されてもよい。前記第2の容量素子は、第7の端子および第8の端子を有してもよい。前記第7の端子は前記第5の端子に電気的に接続されてもよい。前記スイッチは、第9の端子および第10の端子を有してもよい。前記第9の端子は前記第5の端子に電気的に接続されてもよい。前記第1の電圧が前記第10の端子に入力されてもよい。前記スイッチは、前記第9の端子および前記第10の端子が互いに電気的に導通するオン状態と前記第9の端子および前記第10の端子が互いに電気的に絶縁されるオフ状態とのいずれか一方になってもよい。前記スイッチの状態が前記オン状態であるとき、前記第1の電圧が前記第5の端子に入力されてもよい。前記スイッチの状態が前記オン状態から前記オフ状態に変化した後、前記電源電圧に応じた第3の電圧を前記第8の端子に入力することにより前記第5の端子の電圧が前記第2の電圧だけ増加してもよい。
 本発明の第6の態様によれば、第1の態様において、前記電圧生成回路は、前記第1の電圧を生成した後、前記制御電圧を生成してもよい。前記出力回路は、前記第1の電圧を前記リセットトランジスタの前記ゲート端子に出力した後、前記制御電圧を前記リセットトランジスタの前記ゲート端子に出力してもよい。
 本発明の第7の態様によれば、第6の態様において、前記第1の電圧は前記電源電圧であってもよい。
 本発明の第8の態様によれば、第1の態様において、前記電圧生成回路は、前記第1の電圧を生成した後、前記制御電圧を生成してもよい。前記出力回路は、前記第1の電圧を前記転送トランジスタの前記ゲート端子に出力した後、前記制御電圧を前記転送トランジスタの前記ゲート端子に出力してもよい。
 本発明の第9の態様によれば、第8の態様において、前記第1の電圧は前記電源電圧であってもよい。
 本発明の第10の態様によれば、内視鏡システムは、前記撮像装置を有する。
 上記の各態様によれば、撮像装置および内視鏡システムは、大きな容量素子を使用せずに電源電圧の絶対値よりも大きな絶対値を持つ電圧を生成することができる。
本発明の第1の実施形態の撮像装置の構成を示すブロック図である。 本発明の第1の実施形態の撮像装置における画素の構成を示す回路図である。 本発明の第1の実施形態の撮像装置における垂直選択部および電圧生成回路の構成を示す回路図である。 本発明の第1の実施形態の撮像装置における列回路の構成を示す回路図である。 本発明の第1の実施形態の撮像装置の動作を示すタイミングチャートである。 本発明の第2の実施形態の撮像装置における垂直選択部および電圧生成回路の構成を示す回路図である。 本発明の第2の実施形態の撮像装置の動作を示すタイミングチャートである。 本発明の第3の実施形態の撮像装置における電圧生成回路の構成を示す回路図である。 本発明の第4の実施形態の内視鏡システムの構成を示すブロック図である。
 図面を参照し、本発明の実施形態を説明する。以下の説明において第1の回路要素が第2の回路要素と電気的に接続されている場合、第1の回路要素は第2の回路要素と直接接続されている。あるいは、第1の回路要素と第2の回路要素との間に第2の回路要素と異なる第3の回路要素が配置され、第1の回路要素は第3の回路要素と接続され、かつ第3の回路要素は第2の回路要素と接続されている。
 (第1の実施形態)
 図1は、本発明の第1の実施形態の撮像装置1の構成を示す。図1に示す撮像装置1は、撮像部2、垂直選択部4、列回路部5、水平選択部6、出力部7、および電圧生成回路9を有する。例えば、撮像部2、垂直選択部4、列回路部5、水平選択部6、出力部7、および電圧生成回路9は、同一の基板に配置されている。撮像装置1が配置されたチップが複数の基板を有する場合、撮像部2、垂直選択部4、列回路部5、水平選択部6、出力部7、および電圧生成回路9は、複数の基板に分散してもよい。
 撮像部2は、行列状に配置された2つ以上の画素3を有する。2つ以上の画素3は、m行かつn列の配列を形成する。数字mおよび数字nは、2以上の整数である。行数および列数が同一でなくてもよい。図1において、行数が2であり、かつ列数が2である例が示されている。これは一例であって、これに限らない。画素3は、リセットレベルを持つ第1の画素信号と信号レベルを持つ第2の画素信号とを出力する。
 垂直選択部4は、2つ以上の画素3の配列における行方向に配置された画素3を選択する。垂直選択部4は、選択された画素3の動作を制御する。垂直選択部4は、2つ以上の画素3を制御するための制御信号を2つ以上の画素3の配列における行毎に出力する。垂直選択部4から出力される制御信号は、リセット制御信号Vrsi、転送制御信号Vtxi、および選択制御信号Vseliを含む。数字iは、1または2である。図1において、リセット制御信号Vrs1、転送制御信号Vtx1、および選択制御信号Vsel1は、第1行の画素3に出力される。図1において、リセット制御信号Vrs2、転送制御信号Vtx2、および選択制御信号Vsel2は、第2行の画素3に出力される。
 列回路部5は、2つ以上の列回路8を有する。列回路8は、2つ以上の画素3の配列における列毎に配置されている。列回路8は、垂直方向すなわち列方向に伸びる垂直信号線70に接続されている。垂直信号線70は、2つ以上の画素3の配列における列毎に配置されている。垂直信号線70は、各列の画素3に接続されている。列回路8は、垂直信号線70を経由して画素3と電気的に接続されている。列回路8は、画素3から出力されたリセットレベルの第1の画素信号を生成し、かつ画素3から出力された信号レベルの第2の画素信号を生成する。
 列回路8は、水平方向すなわち行方向に伸びる第1の水平信号線71および第2の水平信号線72に接続されている。選択パルスHSR[k]が水平選択部6から第kの列に対応する列回路8に出力される。数字kは1または2である。選択パルスHSR[k]に基づいて選択された列回路8は、第1の画素信号を第1の水平信号線71に出力し、かつ第2の画素信号を第2の水平信号線72に出力する。
 2つ以上の画素3の配列における2つ以上の列毎に1つの列回路8が配置され、かつ1つの列回路8が2つ以上の列において時分割で使用されてもよい。したがって、列回路8は、2つ以上の画素3の配列における1つ以上の列に対応するように配置されてさえいればよい。
 第1の水平信号線71および第2の水平信号線72は、出力部7に接続されている。水平選択部6は、選択パルスHSR[1]および選択パルスHSR[2]を列回路8に順次することにより列回路8を順次選択する。水平選択部6によって選択された列回路8から出力された第1の画素信号および第2の画素信号は出力部7に転送される。
 出力部7は、第1の画素信号および第2の画素信号に基づいて出力信号AOUTを生成する。例えば、出力信号AOUTは、第1の画素信号および第2の画素信号の差分である。出力部7は、出力信号AOUTを後段の回路に出力する。
 電圧生成回路9は、電源電圧の絶対値よりも大きな絶対値を持つ制御電圧を生成する。電圧生成回路9は、生成された制御電圧を垂直選択部4に出力する。
 垂直選択部4は、制御電圧を選択された画素3に出力する。具体的には、垂直選択部4は、制御電圧をリセット制御信号Vrsiとして画素3に出力する。
 図2は、画素3の構成を示す。図2に示す画素3は、光電変換部31、転送トランジスタ32、電荷蓄積部33、リセットトランジスタ34、増幅トランジスタ35、および選択トランジスタ36を有する。図2に示す各トランジスタは、NMOSトランジスタである。図2に示す各トランジスタは、ソース端子、ドレイン端子、およびゲート端子を有する。
 光電変換部31は、フォトダイオードである。光電変換部31は、端子T31aおよび端子T31bを有する。光電変換部31の端子T31aはグランドに接続されている。グランド電圧GNDが光電変換部31の端子T31aに入力される。光電変換部31の端子T31bは転送トランジスタ32に接続されている。
 転送トランジスタ32のソース端子T32sは、光電変換部31の端子T31bに接続されている。転送トランジスタ32のドレイン端子T32dは、電荷蓄積部33に接続されている。転送トランジスタ32のゲート端子T32gは、制御信号線82に接続されている。制御信号線82は、2つ以上の画素3の配列における行方向に伸び、かつ垂直選択部4に接続されている。制御信号線82は、垂直選択部4から出力された転送制御信号Vtxiを転送する。
 リセットトランジスタ34のドレイン端子T34dは、電源線80に接続されている。電源線80は、電源電圧VDDを出力する電源に接続されている。リセットトランジスタ34のソース端子T34sは、電荷蓄積部33に接続されている。リセットトランジスタ34のゲート端子T34gは、制御信号線81に接続されている。制御信号線81は、2つ以上の画素3の配列における行方向に伸び、かつ垂直選択部4に接続されている。制御信号線81は、リセット制御信号Vrsiを転送する。
 増幅トランジスタ35のドレイン端子T35dは、電源線80に接続されている。増幅トランジスタ35のソース端子T35sは、選択トランジスタ36に接続されている。増幅トランジスタ35のゲート端子T35gは、電荷蓄積部33に接続されている。
 選択トランジスタ36のドレイン端子T36dは、増幅トランジスタ35のソース端子T35sに接続されている。選択トランジスタ36のソース端子T36sは、垂直信号線70に接続されている。選択トランジスタ36のゲート端子T36gは、制御信号線83に接続されている。制御信号線83は、2つ以上の画素3の配列における行方向に伸び、かつ垂直選択部4に接続されている。制御信号線83は、選択制御信号Vseliを転送する。
 転送トランジスタ32は、垂直選択部4から出力された転送制御信号Vtxiに基づいて制御される。第1行の画素3の転送トランジスタ32は、転送制御信号Vtx1に基づいて制御され、かつ第2行の画素3の転送トランジスタ32は、転送制御信号Vtx2に基づいて制御される。リセットトランジスタ34は、垂直選択部4から出力されたリセット制御信号Vrsiに基づいて制御される。第1行の画素3のリセットトランジスタ34は、リセット制御信号Vrs1に基づいて制御され、かつ第2行の画素3のリセットトランジスタ34は、リセット制御信号Vrs2に基づいて制御される。選択トランジスタ36は、垂直選択部4から出力された選択制御信号Vseliに基づいて制御される。第1行の画素3の選択トランジスタ36は、選択制御信号Vsel1に基づいて制御され、かつ第2行の画素3の選択トランジスタ36は、選択制御信号Vsel2に基づいて制御される。
 光電変換部31は、入射光の大きさに基づく電荷を生成する。転送トランジスタ32は、光電変換部31で生成された電荷を電荷蓄積部33に転送する。電荷蓄積部33は、フローティングディフュージョンである。電荷蓄積部33は、転送トランジスタ32によって転送された電荷を蓄積する。リセットトランジスタ34は、電荷蓄積部33の電圧を所定の電圧にリセットする。増幅トランジスタ35は、電荷蓄積部33の電圧に基づく信号を増幅することにより、画素信号を生成する。選択トランジスタ36は、垂直信号線70に画素信号を出力する。垂直信号線70は、2つ以上の画素3の配列における列毎に配置されている。リセットレベルを持つ第1の画素信号および信号レベルを持つ第2の画素信号が画素3から出力される。
 転送トランジスタ32のドレイン端子が光電変換部31の端子T31bに接続され、かつ転送トランジスタ32のソース端子が電荷蓄積部33に接続されてもよい。リセットトランジスタ34のソース端子が電源線80に接続され、かつリセットトランジスタ34のドレイン端子が電荷蓄積部33に接続されてもよい。増幅トランジスタ35のソース端子が電源線80に接続され、かつ増幅トランジスタ35のドレイン端子が選択トランジスタ36に接続されてもよい。選択トランジスタ36のソース端子が増幅トランジスタ35のドレイン端子またはソース端子に接続され、かつ選択トランジスタ36のドレイン端子が垂直信号線70に接続されてもよい。
 上記の撮像装置1は、行列状に配置された2つ以上の画素3を有する。2つ以上の画素3の各々は、少なくとも光電変換部31(フォトダイオード)、電荷蓄積部33(フローティングディフュージョン)、リセットトランジスタ34、および転送トランジスタ32を有する。光電変換部31は、光電変換によって電荷を生成する。電荷蓄積部33は、光電変換部31によって生成された電荷を蓄積する。電源電圧VDDがリセットトランジスタ34のドレイン端子T34d(第1の端子)に入力される。リセットトランジスタ34のソース端子T34s(第2の端子)は電荷蓄積部33に電気的に接続されている。転送トランジスタ32のソース端子T32s(第3の端子)は光電変換部31に電気的に接続されている。転送トランジスタ32のドレイン端子T32d(第4の端子)は電荷蓄積部33に電気的に接続されている。
 電源電圧VDDおよびグランド電圧GNDは、直流電圧である。電源電圧VDDは、グランド電圧GNDよりも高い正電圧である。
 図3は、垂直選択部4および電圧生成回路9の構成を示す。電圧生成回路9は昇圧回路である。図3に示す垂直選択部4において、リセット制御信号Vrs1およびリセット制御信号Vrs2を生成する回路が示されている。図3に示す垂直選択部4において、転送制御信号Vtx1、転送制御信号Vtx2、選択制御信号Vsel1、および選択制御信号Vsel2を生成する回路は示されていない。
 図3に示す電圧生成回路9は、第1の容量素子91、第2の容量素子92、およびスイッチ93を有する。第1の容量素子91は、端子T91a(第6の端子)および端子T91b(第5の端子)を有し、端子T91aの電圧と端子T91bの電圧との差に応じた電荷を蓄積する。第2の容量素子92は、端子T92a(第7の端子)および端子T92b(第8の端子)を有し、端子T92aの電圧と端子T92bの電圧との差に応じた電荷を蓄積する。
 電源電圧VDDが第1の容量素子91の端子T91aに入力される。第1の容量素子91の端子T91bは信号線73に電気的に接続されている。第2の容量素子92の端子T92aは第1の容量素子91の端子T91bに電気的に接続されている。信号φCKが第2の容量素子92の端子T92bに入力される。信号φCKは、ローレベルまたはハイレベルを持つ。例えば、ローレベルはグランド電圧GNDであり、ハイレベルは電源電圧VDDである。したがって、グランド電圧GNDまたは電源電圧VDDが第2の容量素子92の端子T92bに入力される。
 スイッチ93は、端子T93a(第9の端子)および端子T93b(第10の端子)を有する。スイッチ93の端子T93aは第1の容量素子91の端子T91bに電気的に接続されている。電源電圧VDD(第1の電圧)がスイッチ93の端子T93bに入力される。スイッチ93の状態は、オン状態およびオフ状態のいずれか一方になる。スイッチ93の状態がオン状態であるとき、端子T93aおよび端子T93bが互いに電気的に導通する。スイッチ93の状態がオフ状態であるとき、端子T93aおよび端子T93bが互いに電気的に絶縁される。
 スイッチ93の状態は、制御信号φCKPに基づいて制御される。制御信号φCKPは、ローレベルまたはハイレベルを持つ。制御信号φCKPの電圧がローレベルであるとき、スイッチ93の状態はオン状態である。このとき、電源電圧VDDがスイッチ93を経由して第1の容量素子91の端子T91bに入力される。制御信号φCKPの電圧がハイレベルであるとき、スイッチ93の状態はオフ状態である。図3に示されていない回路は信号φCKおよび制御信号φCKPを生成する。
 図3に示す例では、スイッチ93はPMOSトランジスタである。スイッチ93の端子T93aはドレイン端子であり、スイッチ93の端子T93bはソース端子である。制御信号φCKPはスイッチ93のゲート端子に入力される。
 電圧生成回路9は、第1の容量素子91の端子T91bの電圧をグランド電圧GNDにリセットするためのトランジスタを有してもよい。電源電圧VDDと異なる直流電圧が第1の容量素子91の端子T91aに入力されてもよい。例えば、グランド電圧GNDが第1の容量素子91の端子T91aに入力されてもよい。
 電圧生成回路9の概略動作を説明する。電圧生成回路9は、電源電圧VDD(第1の電圧)を第1の容量素子91の端子T91bに与えることにより電荷を第1の容量素子91に蓄積する。電源電圧VDDに応じた電荷が第1の容量素子91に蓄積された後、電圧生成回路9は、電源電圧VDDに応じた電圧(第2の電圧)だけ第1の容量素子91の端子T91bの電圧を増加させる。これにより、電圧生成回路9は、電源電圧VDDの絶対値よりも大きな絶対値を持つ制御電圧を生成する。
 具体的には、スイッチ93の状態がオン状態であるとき、電源電圧VDD(第1の電圧)が第1の容量素子91の端子T91bに入力される。スイッチ93の状態がオン状態からオフ状態に変化した後、電源電圧VDD(第3の電圧)を第2の容量素子92の端子T92bに入力することにより第1の容量素子91の端子T91bの電圧が電源電圧VDDに応じた電圧(第2の電圧)だけ増加する。
 スイッチ93の状態がオン状態であるとき、信号φCKの電圧はローレベルである。このとき、グランド電圧GNDが第2の容量素子92の端子T92bに入力される。スイッチ93の状態がオフ状態になった後、信号φCKの電圧はハイレベルに変化する。このとき、電源電圧VDDが第2の容量素子92の端子T92bに入力される。第1の容量素子91および第2の容量素子92に蓄積されている電荷が保存され、かつ第2の容量素子92の端子T92bの電圧が増加するため、第2の容量素子92の端子T92aおよび第1の容量素子91の端子T91bの電圧は増加する。
 制御電圧の値Vhは以下の式(1)で表される。式(1)において第1の容量素子91の容量値はC1であり、第2の容量素子92の容量値はC2である。式(1)において電源電圧VDDの値はVddである。
Figure JPOXMLDOC01-appb-M000001
 電源電圧VDDが第2の容量素子92の端子T92bに入力されたとき、第1の容量素子の端子T91bの電圧は式(1)に示す電圧(C2/(C1+C2))×Vddだけ増加する。例えば、容量値C1が2.8[pF]であり、容量値C2が0.5[pF]であり、電圧値Vddが3.3[V]であるとき、制御電圧の値Vhは3.8[V]である。
 電源電圧VDDよりも高い制御電圧が生成される限り、電源電圧VDDの代わりに電源電圧VDDよりも低い電圧がスイッチ93を経由して第1の容量素子91の端子T91bに入力されてもよい。電源電圧VDDよりも高い制御電圧が生成される限り、電源電圧VDDの代わりに電源電圧VDDよりも低い電圧が第2の容量素子92の端子T92bに入力されてもよい。電源電圧VDDよりも高い制御電圧が生成される限り、グランド電圧GNDの代わりにグランド電圧GNDよりも高い電圧が第2の容量素子92の端子T92bに入力されてもよい。
 垂直選択部4(出力回路)は、電圧生成回路9によって生成された制御電圧をリセットトランジスタ34のゲート端子T34gに出力する。垂直選択部4は、2つ以上の画素3の配列における行を順次選択し、かつ選択された行に含まれる画素3と電圧生成回路9とを電気的に接続する。
 図3に示す垂直選択部4は、選択回路41および選択回路42を有する。選択回路41は、リセット指示信号RST1に基づいて2つ以上の画素3の配列における第1行を選択し、かつ第1行に含まれる画素3と電圧生成回路9とを電気的に接続する。選択回路42は、リセット指示信号RST2に基づいて2つ以上の画素3の配列における第2行を選択し、かつ第2行に含まれる画素3と電圧生成回路9とを電気的に接続する。図3に示されていない回路は、リセット指示信号RST1およびリセット指示信号RST2を生成する。
 選択回路41は、トランジスタ411およびトランジスタ412を有する。図3に示す例では、トランジスタ411はPMOSトランジスタであり、かつトランジスタ412はNMOSトランジスタである。トランジスタ411およびトランジスタ412の各々は、ソース端子、ドレイン端子、およびゲート端子を有する。図3においてソース端子を示す文字“S”がソース端子の近傍に表示されている。図3においてドレイン端子を示す文字“D”がドレイン端子の近傍に表示されている。図3においてゲート端子を示す文字“G”がゲート端子の近傍に表示されている。
 トランジスタ411のソース端子は信号線73に電気的に接続されている。したがって、トランジスタ411のソース端子は、信号線73を経由して第1の容量素子91の端子T91bに接続されている。電圧生成回路9から出力された電源電圧VDDまたは制御電圧がトランジスタ411のソース端子に入力される。トランジスタ411のドレイン端子は制御信号線81に電気的に接続されている。したがって、トランジスタ411のドレイン端子は、制御信号線81を経由して画素3におけるリセットトランジスタ34のゲート端子T34gに接続されている。リセット指示信号RST1がトランジスタ411のゲート端子に入力される。
 トランジスタ411は、スイッチとして機能する。トランジスタ411の状態は、オン状態およびオフ状態のいずれか一方になる。トランジスタ411の状態がオン状態であるとき、トランジスタ411のソース端子およびトランジスタ411のドレイン端子が互いに電気的に導通する。トランジスタ411の状態がオフ状態であるとき、トランジスタ411のソース端子およびトランジスタ411のドレイン端子が互いに電気的に絶縁される。
 トランジスタ411の状態は、リセット指示信号RST1に基づいて制御される。リセット指示信号RST1は、ローレベルまたはハイレベルを持つ。リセット指示信号RST1の電圧がローレベルであるとき、トランジスタ411の状態はオン状態である。このとき、電圧生成回路9から出力された電源電圧VDDまたは制御電圧がトランジスタ411のドレイン端子から出力される。制御電圧は、リセット制御信号Vrs1として制御信号線81に出力される。リセット指示信号RST1の電圧がハイレベルであるとき、トランジスタ411の状態はオフ状態である。
 トランジスタ411(選択トランジスタ)は、2つ以上の画素3の各々におけるリセットトランジスタ34のゲート端子T34gと電圧生成回路9とに電気的に接続されている。ローレベルのリセット指示信号RST1がトランジスタ411に与えられるリセット期間において、トランジスタ411は、リセットトランジスタ34のゲート端子T34gと電圧生成回路9とを互いに電気的に導通させる。リセット期間において電圧生成回路9は制御電圧を生成する。
 電圧生成回路9は、電源電圧VDDに応じた電圧(第1の電圧)を生成した後、制御電圧を生成する。選択回路41は、電源電圧VDDに応じた電圧をリセットトランジスタ34のゲート端子T34gに出力した後、制御電圧をリセットトランジスタ34のゲート端子T34gに出力する。
 トランジスタ411はエンハンスメント型のトランジスタであってもよい。制御電圧と電源電圧VDDとの差が所定の範囲内にある場合、選択されるべき画素3と異なる画素3が誤って選択されない。
 トランジスタ412のソース端子はグランドに接続されている。グランド電圧GNDがトランジスタ412のソース端子に入力される。トランジスタ412のドレイン端子は制御信号線81に電気的に接続されている。したがって、トランジスタ412のドレイン端子は、制御信号線81を経由して画素3におけるリセットトランジスタ34のゲート端子T34gに接続されている。リセット指示信号RST1がトランジスタ412のゲート端子に入力される。
 トランジスタ412は、スイッチとして機能する。トランジスタ412の状態は、オン状態およびオフ状態のいずれか一方になる。トランジスタ412の状態がオン状態であるとき、トランジスタ412のソース端子およびトランジスタ412のドレイン端子が互いに電気的に導通する。トランジスタ412の状態がオフ状態であるとき、トランジスタ412のソース端子およびトランジスタ412のドレイン端子が互いに電気的に絶縁される。
 トランジスタ412の状態は、リセット指示信号RST1に基づいて制御される。リセット指示信号RST1の電圧がハイレベルであるとき、トランジスタ412の状態はオン状態である。このとき、グランド電圧GNDがトランジスタ412のドレイン端子から出力される。そのため、ローレベルのリセット制御信号Vrs1が制御信号線81に出力される。リセット指示信号RST1の電圧がローレベルであるとき、トランジスタ412の状態はオフ状態である。
 選択回路42は、トランジスタ421およびトランジスタ422を有する。トランジスタ421はトランジスタ411と同様に構成され、トランジスタ422はトランジスタ412と同様に構成されている。リセット指示信号RST2がトランジスタ421およびトランジスタ422の各々のゲート端子に入力される。トランジスタ421の状態がオン状態であり、かつトランジスタ422の状態がオフ状態であるとき、電圧生成回路9から出力された電源電圧VDDまたは制御電圧がリセット制御信号Vrs2として制御信号線81に出力される。トランジスタ421の状態がオフ状態であり、かつトランジスタ422の状態がオン状態であるとき、グランド電圧GNDがリセット制御信号Vrs2として制御信号線81に出力される。
 図4は、列回路8の構成を示す。図4に示す列回路8は、トランジスタM1、サンプルトランジスタM2、サンプルトランジスタM3、列選択トランジスタM4、列選択トランジスタM5、容量素子Cr、および容量素子Csを有する。図4に示す各トランジスタは、NMOSトランジスタである。図4に示す各トランジスタは、ソース端子、ドレイン端子、およびゲート端子を有する。
 トランジスタM1のドレイン端子は、垂直信号線70に接続されている。トランジスタM1のソース端子は、グランドに接続されている。トランジスタM1のゲート端子は、電源線84に接続されている。電源線84は、所定の電圧LMBを出力する電源に接続されている。
 サンプルトランジスタM2のドレイン端子は、垂直信号線70に接続されている。サンプルトランジスタM2のソース端子は、容量素子Crに接続されている。サンプルトランジスタM2のゲート端子は、制御信号線85に接続されている。制御信号線85は、2つ以上の画素3の配列における行方向に伸びる。制御信号線85は、サンプルホールドパルスφSHRを転送する。
 サンプルトランジスタM3のドレイン端子は、垂直信号線70に接続されている。サンプルトランジスタM3のソース端子は、容量素子Csに接続されている。サンプルトランジスタM3のゲート端子は、制御信号線86に接続されている。制御信号線86は、2つ以上の画素3の配列における行方向に伸びる。制御信号線86は、サンプルホールドパルスφSHSを転送する。
 容量素子Crおよび容量素子Csの各々は、第1の端子および第2の端子を有する。容量素子Crの第1の端子は、サンプルトランジスタM2のソース端子に接続されている。容量素子Crの第2の端子は、グランドに接続されている。容量素子Csの第1の端子は、サンプルトランジスタM3のソース端子に接続されている。容量素子Csの第2の端子は、グランドに接続されている。
 列選択トランジスタM4のドレイン端子は、容量素子Crの第1の端子に接続されている。列選択トランジスタM4のソース端子は、第1の水平信号線71に接続されている。列選択トランジスタM4のゲート端子は、水平選択部6に接続されている。
 列選択トランジスタM5のドレイン端子は、容量素子Csの第1の端子に接続されている。列選択トランジスタM5のソース端子は、第2の水平信号線72に接続されている。列選択トランジスタM5のゲート端子は、水平選択部6に接続されている。
 サンプルトランジスタM2の動作は、サンプルホールドパルスφSHRに基づいて制御される。サンプルトランジスタM3の動作は、サンプルホールドパルスφSHSに基づいて制御される。列選択トランジスタM4および列選択トランジスタM5の各々の動作は、水平選択部6から出力される選択パルスHSR[k]に基づいて制御される。数字kは、1または2である。
 トランジスタM1は、電流源として機能する。サンプルトランジスタM2は、画素3から垂直信号線70に出力されたリセットレベルの第1の画素信号をサンプルする。サンプルトランジスタM3は、画素3から垂直信号線70に出力された信号レベルの第2の画素信号をサンプルする。容量素子Crは、サンプルトランジスタM2によってサンプルされたリセットレベルの第1の画素信号を保持する。容量素子Csは、サンプルトランジスタM3によってサンプルされた信号レベルの第2の画素信号を保持する。容量素子Crおよび容量素子Csは、サンプル容量である。
 列選択トランジスタM4は、容量素子Crに保持された第1の画素信号を第1の水平信号線71に出力する。列選択トランジスタM5は、容量素子Csに保持された第2の画素信号を第2の水平信号線72に出力する。第1列の列選択トランジスタM4および列選択トランジスタM5は、選択パルスHSR[1]に基づいて制御される。第2列の列選択トランジスタM4および列選択トランジスタM5は、選択パルスHSR[2]に基づいて制御される。
 撮像装置1の動作について説明する。図5は、撮像装置1の動作を示す。以下では、撮像装置1が実行する信号読み出し動作を説明する。代表として、撮像装置1が2つ以上の画素3の配列における第1行の画素3から画素信号を読み出す動作を説明する。
 図5において、制御信号φCKP、信号φCK、リセット指示信号RST1、リセット指示信号RST2、選択制御信号Vsel1、リセット制御信号Vrs1、転送制御信号Vtx1、選択制御信号Vsel2、リセット制御信号Vrs2、転送制御信号Vtx2、サンプルホールドパルスφSHR、サンプルホールドパルスφSHS、選択パルスHSR[1]、および選択パルスHSR[2]の各々の波形が示されている。図5における横方向は時間を示し、かつ図5における縦方向は電圧を示す。
 1行の画素信号が読み出される1H期間は、ブランキング期間および有効期間を含む。ブランキング期間において、リセットレベルの第1の画素信号と、信号レベルの第2の画素信号とが読み出される。1H期間が開始される前、信号φCK、選択制御信号Vsel1、リセット制御信号Vrs1、転送制御信号Vtx1、選択制御信号Vsel2、リセット制御信号Vrs2、転送制御信号Vtx2、サンプルホールドパルスφSHR、サンプルホールドパルスφSHS、選択パルスHSR[1]、および選択パルスHSR[2]の各々の電圧は、ローレベルである。1H期間が開始される前、制御信号φCKP、リセット指示信号RST1、およびリセット指示信号RST2の各々の電圧は、ハイレベルである。これは一例であり、これに限らない。
 (制御電圧の生成)
 ブランキング期間が開始される前、選択制御信号Vsel1の電圧はローレベルである。そのため、全ての行の画素3における選択トランジスタ36の状態はオフ状態である。ブランキング期間が開始されたとき、選択制御信号Vsel1の電圧がローレベルからハイレベルに変化する。そのため、第1行の画素3における選択トランジスタ36の状態がオン状態になる。これにより、第1行の画素3が選択される。
 ブランキング期間が開始される前、制御信号φCKPの電圧はハイレベルである。そのため、電圧生成回路9のスイッチ93の状態はオフ状態である。ブランキング期間が開始されたとき、制御信号φCKPの電圧はハイレベルからローレベルに変化する。そのため、スイッチ93の状態はオン状態になる。これにより、電源電圧VDDがスイッチ93を経由して第1の容量素子91の端子T91bに入力される。電源電圧VDDに応じた電荷が第1の容量素子91に蓄積される。電圧生成回路9は、電源電圧VDDを信号線73に出力する。
 ブランキング期間が開始される前、リセット指示信号RST1の電圧およびリセット指示信号RST2の電圧はハイレベルである。そのため、垂直選択部4におけるトランジスタ411およびトランジスタ421の状態はオフ状態であり、かつ垂直選択部4におけるトランジスタ412およびトランジスタ422の状態はオン状態である。ローレベルのリセット制御信号Vrs1およびリセット制御信号Vrs2が制御信号線81に出力される。
 電荷が第1の容量素子91に蓄積された後、リセット指示信号RST1の電圧はハイレベルからローレベルに変化する。そのため、トランジスタ411の状態はオン状態になり、かつトランジスタ412の状態はオフ状態になる。これにより、電圧生成回路9から出力された電源電圧VDDがトランジスタ411のドレイン端子から出力される。電源電圧VDDを持つリセット制御信号Vrs1が制御信号線81に出力される。
 電源電圧VDDを持つリセット制御信号Vrs1は、制御信号線81を経由して第1行の画素3におけるリセットトランジスタ34のゲート端子T34gに入力される。そのため、リセットトランジスタ34の状態がオン状態になる。これにより、リセットトランジスタ34は電荷蓄積部33の電圧をリセットする。
 リセット指示信号RST1の電圧がローレベルに変化した後、制御信号φCKPの電圧はローレベルからハイレベルに変化する。そのため、スイッチ93の状態はオフ状態になる。制御信号φCKPの電圧がハイレベルに変化した後、信号φCKの電圧はローレベルからハイレベルに変化する。そのため、電源電圧VDDが第2の容量素子92の端子T92bに入力される。このとき、第1の容量素子91の端子T91bの電圧は、式(1)に従って増加する。電圧生成回路9は、電源電圧VDDよりも高い制御電圧を信号線73に出力する。
 電圧生成回路9から出力された制御電圧がトランジスタ411のドレイン端子から出力される。制御電圧を持つリセット制御信号Vrs1が制御信号線81に出力される。
 制御電圧を持つリセット制御信号Vrs1は、制御信号線81を経由して第1行の画素3におけるリセットトランジスタ34のゲート端子T34gに入力される。リセットトランジスタ34は、制御電圧に基づいて電荷蓄積部33の電圧をリセットする。制御電圧が電源電圧VDDよりも高いため、電荷蓄積部33の電圧が確実に電源電圧VDDにリセットされる。そのため、電荷蓄積部33に蓄積できる電荷の量が増加する。その結果、画素信号のS/N比の低下が抑制される。
 その後、信号φCKの電圧はハイレベルからローレベルに変化する。そのため、グランド電圧GNDが第2の容量素子92の端子T92bに入力される。このとき、第1の容量素子91の端子T91bの電圧は電源電圧VDDになる。電圧生成回路9は、電源電圧VDDを信号線73に出力する。
 トランジスタ411の状態がオン状態であるため、電圧生成回路9から出力された電源電圧VDDがトランジスタ411のドレイン端子から出力される。電源電圧VDDを持つリセット制御信号Vrs1が制御信号線81に出力される。電源電圧VDDを持つリセット制御信号Vrs1は、制御信号線81を経由して第1行の画素3におけるリセットトランジスタ34のゲート端子T34gに入力される。
 信号φCKの電圧がローレベルに変化した後、リセット指示信号RST1の電圧はローレベルからハイレベルに変化する。そのため、トランジスタ411の状態はオフ状態になり、かつトランジスタ412の状態はオン状態になる。これにより、グランド電圧GNDがトランジスタ412のドレイン端子から出力される。ローレベルのリセット制御信号Vrs1が制御信号線81に出力される。
 ローレベルのリセット制御信号Vrs1は、制御信号線81を経由して第1行の画素3におけるリセットトランジスタ34のゲート端子T34gに入力される。そのため、リセットトランジスタ34の状態はオフ状態になる。これにより、リセットトランジスタ34は電荷蓄積部33のリセットを停止する。
 (リセットレベルの読み出し)
 電荷蓄積部33がリセットされている間、リセットレベルの第1の画素信号が垂直信号線70に出力される。電荷蓄積部33のリセットが停止された後、サンプルホールドパルスφSHRの電圧がローレベルからハイレベルに変化する。これにより、サンプルトランジスタM2の状態がオン状態になる。その後、サンプルホールドパルスφSHRの電圧がハイレベルからローレベルに変化する。そのため、サンプルトランジスタM2の状態がオフ状態になる。これにより、リセットレベルの第1の画素信号が容量素子Crに保持される。
 (信号レベルの読み出し)
 サンプルホールドパルスφSHRの電圧がローレベルに変化した後、転送制御信号Vtx1の電圧がローレベルからハイレベルに変化する。そのため、転送トランジスタ32の状態がオン状態になる。これにより、光電変換部31の電荷が電荷蓄積部33に転送され、かつ信号レベルの第2の画素信号が垂直信号線70に出力される。その後、転送制御信号Vtx1の電圧がハイレベルからローレベルに変化する。そのため、転送トランジスタ32の状態がオフ状態になる。これにより、転送トランジスタ32は電荷の転送を停止する。
 転送制御信号Vtx1の電圧がローレベルに変化した後、サンプルホールドパルスφSHSの電圧がローレベルからハイレベルに変化する。そのため、サンプルトランジスタM3の状態がオン状態になる。その後、サンプルホールドパルスφSHSの電圧がハイレベルからローレベルに変化する。そのため、サンプルトランジスタM3の状態がオフ状態になる。これにより、信号レベルの第2の画素信号が容量素子Csに保持される。
 サンプルホールドパルスφSHSの電圧がローレベルに変化するのと同時に選択制御信号Vsel1の電圧がハイレベルからローレベルに変化する。そのため、第1行の画素3における選択トランジスタ36の状態がオフ状態になる。これにより、第1行の画素3の選択が解除され、かつ第1行の画素3から画素信号を読み出す動作が終了する。このとき、ブランキング期間が終了し、かつ有効期間が開始される。
 有効期間が開始されたとき、選択パルスHSR[1]の電圧がローレベルからハイレベルに変化する。そのため、第1列の列回路8における列選択トランジスタM4および列選択トランジスタM5の各々の状態がオン状態になる。これにより、第1行かつ第1列の画素3のリセットレベルの第1の画素信号が第1の水平信号線71に出力される。同時に、第1行かつ第1列の画素3の信号レベルの第2の画素信号が第2の水平信号線72に出力される。
 その後、選択パルスHSR[1]の電圧がハイレベルからローレベルに変化する。そのため、列選択トランジスタM4および列選択トランジスタM5の各々の状態がオフ状態になる。上記の動作により、第1行かつ第1列の画素3の第1の画素信号が読み出され、第1行かつ第1列の画素3の第2の画素信号が読み出される。
 選択パルスHSR[1]の電圧レベルがローレベルに変化した後、選択パルスHSR[2]の電圧レベルがローレベルからハイレベルに変化する。これにより、上記の動作と同様に、第1行かつ第2列の画素3の第1の画素信号が読み出され、第1行かつ第2列の画素3の第2の画素信号が読み出される。その後、選択パルスHSR[2]の電圧がハイレベルからローレベルに変化する。
 その後、第1行の1H期間が終了し、かつ第2行の1H期間が開始される。第2行の1H期間において撮像装置1は第2行の画素3から画素信号を読み出す。この動作は、第1行の1H期間における動作と同様である。
 図5に示す例では、信号φCKの電圧がローレベルからハイレベルに変化する前にリセット指示信号RST1の電圧がハイレベルからローレベルに変化する。リセット指示信号RST1の電圧は、第1のタイミングと第2のタイミングとの間の任意のタイミングでハイレベルからローレベルに変化してもよい。第1のタイミングは、制御信号φCKPの電圧がハイレベルからローレベルに変化するタイミングである。第2のタイミングは、信号φCKの電圧がハイレベルからローレベルに変化するタイミングである。これは一例であり、これに限らない。
 図5に示す例では、信号φCKの電圧がハイレベルからローレベルに変化した後にリセット指示信号RST1の電圧がローレベルからハイレベルに変化する。リセット指示信号RST1の電圧は、第3のタイミングと第4のタイミングとの間の任意のタイミングでローレベルからハイレベルに変化してもよい。第3のタイミングは、信号φCKの電圧がローレベルからハイレベルに変化するタイミングである。第4のタイミングは、サンプルホールドパルスφSHRの電圧がローレベルからハイレベルに変化するタイミングである。これは一例であり、これに限らない。
 本発明の各態様の撮像装置は、撮像部2、電圧生成回路9、および垂直選択部4の各々に対応する構成以外の構成を有していなくてもよい。
 第1の実施形態において撮像装置1は、大きな容量素子を使用せずに電源電圧VDDの絶対値よりも大きな絶対値を持つ制御電圧を生成することができる。リセットトランジスタ34が制御電圧に基づいて電荷蓄積部33をリセットするため、電荷蓄積部33に蓄積できる電荷の量が増加し、かつ画素信号のS/N比の低下が抑制される。
 垂直選択部4は、2つ以上の画素3の配列における行を順次選択し、かつ選択された行に含まれる画素3と電圧生成回路9とを電気的に接続する。これにより、撮像装置1は、2つ以上の行の間で1つの電圧生成回路9を共通に使用することができる。そのため、撮像装置1の面積の増加が抑制される。
 リセット期間において、トランジスタ411およびトランジスタ421は、リセットトランジスタ34のゲート端子T34gと電圧生成回路9とを互いに電気的に導通させる。これにより、制御電圧が電圧生成回路9からリセットトランジスタ34に転送される。そのため、撮像装置1は制御電圧をリセットトランジスタ34に容易に供給することができる。
 電圧生成回路9は、スイッチ93の状態を切り替え、かつ第2の容量素子92の端子T92bの電圧を切り替えることにより制御電圧を生成する。そのため、電圧生成回路9は制御電圧を容易に生成することができる。電圧生成回路9が簡単な回路であるため、電圧生成回路9は撮像装置1の小型化に適している。
 スイッチ93の状態がオン状態であるとき、電源電圧VDDが第1の容量素子91の端子T91bに入力される。また、スイッチ93の状態がオン状態からオフ状態に変化した後、電源電圧VDDが第2の容量素子92の端子T92bに入力される。そのため、撮像装置1は、制御電圧を生成するために新たな電圧を必要としない。
 (第2の実施形態)
 図6は、本発明の第2の実施形態の撮像装置1における垂直選択部4および電圧生成回路9の構成を示す。図6に示す電圧生成回路9は、図3に示す電圧生成回路9と同じである。図6に示す垂直選択部4において、転送制御信号Vtx1および転送制御信号Vtx2を生成する回路が示されている。図6に示す垂直選択部4において、リセット制御信号Vrs1、リセット制御信号Vrs2、選択制御信号Vsel1、および選択制御信号Vsel2を生成する回路は示されていない。
 図6に示す選択回路41は、図3に示す選択回路41と同様である。図6に示す選択回路42は、図3に示す選択回路42と同様である。以下では、図3に示す構成と異なる構成を説明する。
 トランジスタ411のドレイン端子は制御信号線82に電気的に接続されている。したがって、トランジスタ411のドレイン端子は、制御信号線82を経由して画素3における転送トランジスタ32のゲート端子T32gに接続されている。転送指示信号TX1がトランジスタ411のゲート端子に入力される。
 トランジスタ411の状態は、転送指示信号TX1に基づいて制御される。転送指示信号TX1は、ローレベルまたはハイレベルを持つ。転送指示信号TX1の電圧がローレベルであるとき、トランジスタ411の状態はオン状態である。このとき、電圧生成回路9から出力された電源電圧VDDまたは制御電圧がトランジスタ411のドレイン端子から出力される。制御電圧は、転送制御信号Vtx1として制御信号線82に出力される。転送指示信号TX1の電圧がハイレベルであるとき、トランジスタ411の状態はオフ状態である。
 トランジスタ411(選択トランジスタ)は、2つ以上の画素3の各々における転送トランジスタ32のゲート端子T32gと電圧生成回路9とに電気的に接続されている。ローレベルの転送指示信号TX1がトランジスタ411に与えられる転送期間において、トランジスタ411は、転送トランジスタ32のゲート端子T32gと電圧生成回路9とを互いに電気的に導通させる。転送期間において電圧生成回路9は制御電圧を生成する。
 電圧生成回路9は、電源電圧VDDに応じた電圧(第1の電圧)を生成した後、制御電圧を生成する。選択回路41は、電源電圧VDDに応じた電圧を転送トランジスタ32のゲート端子T32gに出力した後、制御電圧を転送トランジスタ32のゲート端子T32gに出力する。
 トランジスタ412のドレイン端子は制御信号線82に電気的に接続されている。したがって、トランジスタ412のドレイン端子は、制御信号線82を経由して画素3における転送トランジスタ32のゲート端子T32gに接続されている。転送指示信号TX1がトランジスタ412のゲート端子に入力される。
 トランジスタ412の状態は、転送指示信号TX1に基づいて制御される。転送指示信号TX1の電圧がハイレベルであるとき、トランジスタ412の状態はオン状態である。このとき、グランド電圧GNDがトランジスタ412のドレイン端子から出力される。そのため、ローレベルの転送制御信号Vtx1が制御信号線82に出力される。転送指示信号TX1の電圧がローレベルであるとき、トランジスタ412の状態はオフ状態である。
 選択回路42において転送指示信号TX2がトランジスタ421およびトランジスタ422の各々のゲート端子に入力される。トランジスタ421の状態がオン状態であり、かつトランジスタ422の状態がオフ状態であるとき、電圧生成回路9から出力された電源電圧VDDまたは制御電圧が転送制御信号Vtx2として制御信号線82に出力される。トランジスタ421の状態がオフ状態であり、かつトランジスタ422の状態がオン状態であるとき、グランド電圧GNDが転送制御信号Vtx2として制御信号線82に出力される。
 撮像装置1の動作について説明する。図7は、撮像装置1の動作を示す。以下では、撮像装置1が実行する信号読み出し動作を説明する。代表として、撮像装置1が2つ以上の画素3の配列における第1行の画素3から画素信号を読み出す動作を説明する。
 図7において、制御信号φCKP、信号φCK、転送指示信号TX1、転送指示信号TX2、選択制御信号Vsel1、リセット制御信号Vrs1、転送制御信号Vtx1、選択制御信号Vsel2、リセット制御信号Vrs2、転送制御信号Vtx2、サンプルホールドパルスφSHR、サンプルホールドパルスφSHS、選択パルスHSR[1]、および選択パルスHSR[2]の各々の波形が示されている。図7における横方向は時間を示し、かつ図7における縦方向は電圧を示す。
 1行の画素信号が読み出される1H期間は、ブランキング期間および有効期間を含む。ブランキング期間において、リセットレベルの第1の画素信号と、信号レベルの第2の画素信号とが読み出される。1H期間が開始される前、信号φCK、選択制御信号Vsel1、リセット制御信号Vrs1、転送制御信号Vtx1、選択制御信号Vsel2、リセット制御信号Vrs2、転送制御信号Vtx2、サンプルホールドパルスφSHR、サンプルホールドパルスφSHS、選択パルスHSR[1]、および選択パルスHSR[2]の各々の電圧は、ローレベルである。1H期間が開始される前、制御信号φCKP、転送指示信号TX1、および転送指示信号TX2の各々の電圧は、ハイレベルである。これは一例であり、これに限らない。
 ブランキング期間が開始される前、選択制御信号Vsel1の電圧はローレベルである。そのため、全ての行の画素3における選択トランジスタ36の状態はオフ状態である。ブランキング期間が開始されたとき、選択制御信号Vsel1の電圧がローレベルからハイレベルに変化する。そのため、第1行の画素3における選択トランジスタ36の状態がオン状態になる。これにより、第1行の画素3が選択される。
 ブランキング期間が開始される前、制御信号φCKPの電圧はハイレベルである。そのため、電圧生成回路9のスイッチ93の状態はオフ状態である。ブランキング期間が開始されたとき、制御信号φCKPの電圧はハイレベルからローレベルに変化する。そのため、スイッチ93の状態はオン状態になる。これにより、電源電圧VDDがスイッチ93を経由して第1の容量素子91の端子T91bに入力される。電源電圧VDDに応じた電荷が第1の容量素子91に蓄積される。電圧生成回路9は、電源電圧VDDを信号線73に出力する。
 ブランキング期間が開始される前、転送指示信号TX1の電圧および転送指示信号TX2の電圧はハイレベルである。そのため、垂直選択部4におけるトランジスタ411およびトランジスタ421の状態はオフ状態であり、かつ垂直選択部4におけるトランジスタ412およびトランジスタ422の状態はオン状態である。ローレベルの転送制御信号Vtx1および転送制御信号Vtx2が制御信号線82に出力される。
 その後、制御信号φCKPの電圧はローレベルからハイレベルに変化する。そのため、スイッチ93の状態はオフ状態になる。
 制御信号φCKPの電圧がハイレベルに変化した後、リセット制御信号Vrs1の電圧がローレベルからハイレベルに変化する。そのため、リセットトランジスタ34の状態がオン状態になる。これにより、リセットトランジスタ34は電荷蓄積部33の電圧をリセットする。その後、リセット制御信号Vrs1の電圧がハイレベルからローレベルに変化する。そのため、リセットトランジスタ34の状態がオフ状態になる。これにより、リセットトランジスタ34は電荷蓄積部33のリセットを停止する。
 (リセットレベルの読み出し)
 電荷蓄積部33がリセットされている間、リセットレベルの第1の画素信号が垂直信号線70に出力される。電荷蓄積部33のリセットが停止された後、サンプルホールドパルスφSHRの電圧がローレベルからハイレベルに変化する。これにより、サンプルトランジスタM2の状態がオン状態になる。その後、サンプルホールドパルスφSHRの電圧がハイレベルからローレベルに変化する。これにより、サンプルトランジスタM2の状態がオフ状態になる。そのため、リセットレベルの第1の画素信号が容量素子Crに保持される。
 (制御電圧の生成)
 サンプルホールドパルスφSHRの電圧がローレベルに変化した後、転送指示信号TX1の電圧はハイレベルからローレベルに変化する。そのため、トランジスタ411の状態はオン状態になり、かつトランジスタ412の状態はオフ状態になる。これにより、電圧生成回路9から出力された電源電圧VDDがトランジスタ411のドレイン端子から出力される。電源電圧VDDを持つ転送制御信号Vtx1が制御信号線82に出力される。
 電源電圧VDDを持つ転送制御信号Vtx1は、制御信号線82を経由して第1行の画素3における転送トランジスタ32のゲート端子T32gに入力される。そのため、転送トランジスタ32の状態がオン状態になる。これにより、光電変換部31の電荷が電荷蓄積部33に転送され、かつ信号レベルの第2の画素信号が垂直信号線70に出力される。
 転送指示信号TX1の電圧がローレベルに変化した後、信号φCKの電圧はローレベルからハイレベルに変化する。そのため、電源電圧VDDが第2の容量素子92の端子T92bに入力される。このとき、第1の容量素子91の端子T91bの電圧は、式(1)に従って増加する。電圧生成回路9は、電源電圧VDDよりも高い制御電圧を信号線73に出力する。
 電圧生成回路9から出力された制御電圧がトランジスタ411のドレイン端子から出力される。制御電圧を持つ転送制御信号Vtx1が制御信号線82に出力される。
 制御電圧を持つ転送制御信号Vtx1は、制御信号線82を経由して第1行の画素3における転送トランジスタ32のゲート端子T32gに入力される。転送トランジスタ32は、制御電圧に基づいて光電変換部31の電荷を電荷蓄積部33に転送する。制御電圧が電源電圧VDDよりも高いため、光電変換部31の電荷が確実に電荷蓄積部33に転送される。そのため、電荷蓄積部33に蓄積できる電荷の量が増加する。その結果、画素信号のS/N比の低下が抑制される。
 その後、信号φCKの電圧はハイレベルからローレベルに変化する。そのため、グランド電圧GNDが第2の容量素子92の端子T92bに入力される。このとき、第1の容量素子91の端子T91bの電圧は電源電圧VDDになる。電圧生成回路9は、電源電圧VDDを信号線73に出力する。
 トランジスタ411の状態がオン状態であるため、電圧生成回路9から出力された電源電圧VDDがトランジスタ411のドレイン端子から出力される。電源電圧VDDを持つ転送指示信号TX1が制御信号線82に出力される。電源電圧VDDを持つ転送指示信号TX1は、制御信号線82を経由して第1行の画素3における転送トランジスタ32のゲート端子T32gに入力される。
 信号φCKの電圧がローレベルに変化した後、転送指示信号TX1の電圧はローレベルからハイレベルに変化する。そのため、トランジスタ411の状態はオフ状態になり、かつトランジスタ412の状態はオン状態になる。これにより、グランド電圧GNDがトランジスタ412のソース端子から出力される。ローレベルの転送制御信号Vtx1が制御信号線82に出力される。
 ローレベルの転送制御信号Vtx1は、制御信号線82を経由して第1行の画素3における転送トランジスタ32のゲート端子T32gに入力される。そのため、転送トランジスタ32の状態がオフ状態になる。これにより、転送トランジスタ32は電荷の転送を停止する。
 (信号レベルの読み出し)
 転送制御信号Vtx1の電圧がローレベルに変化した後、サンプルホールドパルスφSHSの電圧がローレベルからハイレベルに変化する。そのため、サンプルトランジスタM3の状態がオン状態になる。その後、サンプルホールドパルスφSHSの電圧がハイレベルからローレベルに変化する。そのため、サンプルトランジスタM3の状態がオフ状態になる。これにより、信号レベルの第2の画素信号が容量素子Csに保持される。
 サンプルホールドパルスφSHSの電圧がローレベルに変化するのと同時に選択制御信号Vsel1の電圧がハイレベルからローレベルに変化する。そのため、第1行の画素3における選択トランジスタ36の状態がオフ状態になる。これにより、第1行の画素3の選択が解除され、かつ第1行の画素3から画素信号を読み出す動作が終了する。このとき、ブランキング期間が終了し、かつ有効期間が開始される。有効期間における動作は、図5に示す動作と同様である。
 その後、第1行の1H期間が終了し、かつ第2行の1H期間が開始される。第2行の1H期間において撮像装置1は第2行の画素3から画素信号を読み出す。この動作は、第1行の1H期間における動作と同様である。
 図7に示す例では、信号φCKの電圧がローレベルからハイレベルに変化する前に転送指示信号TX1の電圧がハイレベルからローレベルに変化する。転送指示信号TX1の電圧は、第1のタイミングと第2のタイミングとの間の任意のタイミングでハイレベルからローレベルに変化してもよい。第1のタイミングは、制御信号φCKPの電圧がハイレベルからローレベルに変化するタイミングである。第2のタイミングは、信号φCKの電圧がハイレベルからローレベルに変化するタイミングである。これは一例であり、これに限らない。
 図7に示す例では、信号φCKの電圧がハイレベルからローレベルに変化した後に転送指示信号TX1の電圧がローレベルからハイレベルに変化する。転送指示信号TX1の電圧は、第3のタイミングと第4のタイミングとの間の任意のタイミングでローレベルからハイレベルに変化してもよい。第3のタイミングは、信号φCKの電圧がローレベルからハイレベルに変化するタイミングである。第4のタイミングは、サンプルホールドパルスφSHSの電圧がローレベルからハイレベルに変化するタイミングである。これは一例であり、これに限らない。
 第2の実施形態において撮像装置1は、大きな容量素子を使用せずに電源電圧VDDの絶対値よりも大きな絶対値を持つ制御電圧を生成することができる。転送トランジスタ32が制御電圧に基づいて光電変換部31の電荷を電荷蓄積部33に転送するため、電荷蓄積部33に蓄積できる電荷の量が増加し、かつ画素信号のS/N比の低下が抑制される。
 転送期間において、トランジスタ411およびトランジスタ421は、転送トランジスタ32のゲート端子T32gと電圧生成回路9とを互いに電気的に導通させる。これにより、制御電圧が電圧生成回路9から転送トランジスタ32に転送される。そのため、撮像装置1は制御電圧を転送トランジスタ32に容易に供給することができる。
 (第3の実施形態)
 図8は、本発明の第3の実施形態の撮像装置1における電圧生成回路9aの構成を示す。図3または図6に示す電圧生成回路9は、図8に示す電圧生成回路9aに変更される。電圧生成回路9aは、スイッチトキャパシタ回路を含む。図8に示す電圧生成回路9aは、第1の容量素子91、第2の容量素子92、電源94、スイッチ95、スイッチ96、スイッチ97、およびスイッチ98を有する。
 電源94は電源電圧VDDを生成する。第1の容量素子91は、端子T91a(第6の端子)および端子T91b(第5の端子)を有し、端子T91aの電圧と端子T91bの電圧との差に応じた電荷を蓄積する。第2の容量素子92は、端子T92a(第7の端子)および端子T92b(第8の端子)を有し、端子T92aの電圧と端子T92bの電圧との差に応じた電荷を蓄積する。
 グランド電圧GNDが第1の容量素子91の端子T91aに入力される。第1の容量素子91の端子T91bは信号線73に電気的に接続されている。
 スイッチ95は、端子T95a(第9の端子)および端子T95b(第10の端子)を有する。スイッチ96は、端子T96aおよび端子T96bを有する。スイッチ97は、端子T97aおよび端子T97bを有する。スイッチ98は、端子T98aおよび端子T98bを有する。各スイッチの状態は、オン状態およびオフ状態のいずれか一方になる。各スイッチの状態がオン状態であるとき、各スイッチの2つの端子が互いに電気的に導通する。各スイッチの状態がオフ状態であるとき、各スイッチの2つの端子が互いに電気的に絶縁される。
 スイッチ96の端子T96aは第1の容量素子91の端子T91bに電気的に接続されている。スイッチ96の状態は常にオン状態であるため、電圧生成回路9aはスイッチ96を有していなくてもよい。グランド電圧GNDがスイッチ98の端子T98aに入力される。
 スイッチ95の端子T95aはスイッチ96の端子T96bに電気的に接続されている。スイッチ96の状態は常にオン状態であるため、スイッチ95の端子T95aは第1の容量素子91の端子T91bに電気的に接続されている。電源電圧VDD(第1の電圧)がスイッチ95の端子T95bに入力される。
 スイッチ97の端子T97aはスイッチ98の端子T98bに電気的に接続されている。電源電圧VDDがスイッチ97の端子T97bに入力される。
 第2の容量素子92の端子T92aはスイッチ96の端子T96bに電気的に接続されている。スイッチ96の状態は常にオン状態であるため、第2の容量素子92の端子T92aは第1の容量素子91の端子T91bに電気的に接続されている。また、第2の容量素子92の端子T92aはスイッチ95の端子T95aに電気的に接続されている。
 第2の容量素子92の端子T92bはスイッチ97の端子T97aおよびスイッチ98の端子T98bに電気的に接続されている。スイッチ97の状態がオフ状態であり、かつスイッチ98の状態がオン状態であるとき、グランド電圧GNDが第2の容量素子92の端子T92bに入力される。スイッチ97の状態がオン状態であり、かつスイッチ98の状態がオフ状態であるとき、電源電圧VDDが第2の容量素子92の端子T92bに入力される。
 電圧生成回路9aの概略動作を説明する。電圧生成回路9aは、電源電圧VDD(第1の電圧)を第1の容量素子91の端子T91bに与えることにより電荷を第1の容量素子91に蓄積する。電源電圧VDDに応じた電荷が第1の容量素子91に蓄積された後、電圧生成回路9aは、電源電圧VDDに応じた電圧(第2の電圧)だけ第1の容量素子91の端子T91bの電圧を増加させる。これにより、電圧生成回路9aは、電源電圧VDDの絶対値よりも大きな絶対値を持つ制御電圧を生成する。
 具体的には、スイッチ95、スイッチ96、およびスイッチ98の各々の状態がオン状態であり、かつスイッチ97の状態がオフ状態であるとき、電源電圧VDD(第1の電圧)が第1の容量素子91の端子T91bおよび第2の容量素子92の端子T92aに入力される。また、グランド電圧GNDが第2の容量素子92の端子T92bに入力される。その後、スイッチ95およびスイッチ98の各々の状態がオン状態からオフ状態に変化する。さらに、スイッチ97の状態がオフ状態からオン状態に変化する。このとき、電源電圧VDDが第2の容量素子92の端子T92bに入力される。第1の容量素子91および第2の容量素子92に蓄積されている電荷が保存され、かつ第2の容量素子92の端子T92bの電圧が増加するため、第2の容量素子92の端子T92aおよび第1の容量素子91の端子T91bの電圧は、電源電圧VDDに応じた電圧(第2の電圧)だけ増加する。
 第3の実施形態において撮像装置1は、大きな容量素子を使用せずに電源電圧VDDの絶対値よりも大きな絶対値を持つ制御電圧を生成することができる。図3に示す電圧生成回路9が図8に示す電圧生成回路9aに変更された場合、リセットトランジスタ34は制御電圧に基づいて電荷蓄積部33をリセットする。図6に示す電圧生成回路9が図8に示す電圧生成回路9aに変更された場合、転送トランジスタ32は制御電圧に基づいて光電変換部31の電荷を電荷蓄積部33に転送する。したがって、電荷蓄積部33に蓄積できる電荷の量が増加し、かつ画素信号のS/N比の低下が抑制される。
 (第4の実施形態)
 図9は、本発明の第4の実施形態の内視鏡システム100の構成を示す。内視鏡システム100は、第1から第3の実施形態のうちのいずれか1つの撮像装置1を有する。図9に示す内視鏡システム100は、スコープ102および筐体107を有する。スコープ102は、撮像装置1、レンズ103、レンズ104、およびファイバー106を有する。撮像装置1、レンズ103、およびレンズ104は、スコープ102の先端部に配置されている。筐体107は、画像処理部108、光源装置109、および設定部110を有する。
 レンズ103は、被写体120からの反射光を撮像装置1に結像する。ファイバー106は、被写体120に照射される照明光を転送する。レンズ104は、ファイバー106によって転送された照明光を被写体120に照射する。光源装置109は、被写体120に照射される照明光を生成する光源を有する。画像処理部108は、撮像装置1から出力される信号に所定の処理を行うことにより撮影画像を生成する。設定部110は、内視鏡システム100の撮影モードを制御する。
 内視鏡システム100の構成は、上記の構成に限らない。本発明の各態様の内視鏡システムは、レンズ103、レンズ104、ファイバー106、画像処理部108、光源装置109、および設定部110の少なくとも1つに対応する構成を有していなくてもよい。
 第4の実施形態の内視鏡システム100は、大きな容量素子を使用せずに電源電圧VDDの絶対値よりも大きな絶対値を持つ制御電圧を生成することができる撮像装置1を有する。このため、内視鏡システム100は、大きな容量素子を使用せずに電源電圧VDDの絶対値よりも大きな絶対値を持つ制御電圧を生成することができる。
 以上、本発明の好ましい実施形態を説明したが、本発明はこれら実施形態およびその変形例に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。また、本発明は前述した説明によって限定されることはなく、添付のクレームの範囲によってのみ限定される。
 本発明の各実施形態によれば、撮像装置および内視鏡システムは、大きな容量素子を使用せずに電源電圧の絶対値よりも大きな絶対値を持つ電圧を生成することができる。
 1 撮像装置
 2 撮像部
 3 画素
 4 垂直選択部
 5 列回路部
 6 水平選択部
 7 出力部
 8 列回路
 9,9a 電圧生成回路
 31 光電変換部
 32 転送トランジスタ
 33 電荷蓄積部
 34 リセットトランジスタ
 35 増幅トランジスタ
 36 選択トランジスタ
 41,42 選択回路
 91 第1の容量素子
 92 第2の容量素子
 93,95,96,97,98 スイッチ
 94 電源
 100 内視鏡システム
 102 スコープ
 103,104 レンズ
 106 ファイバー
 107 筐体
 108 画像処理部
 109 光源装置
 110 設定部
 411,412,421,422 トランジスタ

Claims (10)

  1.  行列状に配置され、各々が、
      光電変換によって電荷を生成するフォトダイオードと、
      前記フォトダイオードによって生成された前記電荷を蓄積するフローティングディフュージョンと、
      第1の端子、第2の端子、およびゲート端子を有し、前記第1の端子および前記第2の端子の一方はソース端子であり、前記第1の端子および前記第2の端子の他方はドレイン端子であり、電源電圧が前記第1の端子に入力され、前記第2の端子は前記フローティングディフュージョンに電気的に接続されたリセットトランジスタと、
      第3の端子、第4の端子、およびゲート端子を有し、前記第3の端子および前記第4の端子の一方はソース端子であり、前記第3の端子および前記第4の端子の他方はドレイン端子であり、前記第3の端子は前記フォトダイオードに電気的に接続され、前記第4の端子は前記フローティングディフュージョンに電気的に接続された転送トランジスタと、
     を有する2つ以上の画素と、
     第5の端子を有する第1の容量素子を有し、前記電源電圧に応じた第1の電圧を前記第5の端子に与えることにより電荷を前記第1の容量素子に蓄積し、前記電源電圧に応じた第2の電圧だけ前記第5の端子の電圧を増加させることにより、前記電源電圧の絶対値よりも大きな絶対値を持つ制御電圧を生成する電圧生成回路と、
     前記制御電圧を前記リセットトランジスタの前記ゲート端子および前記転送トランジスタの前記ゲート端子の少なくとも一方に出力する出力回路と、
     を有する撮像装置。
  2.  前記2つ以上の画素の配列は、2つ以上の行を有し、
     前記出力回路は、前記行を順次選択し、かつ選択された前記行に含まれる前記画素と前記電圧生成回路とを電気的に接続する
     請求項1に記載の撮像装置。
  3.  前記出力回路は、前記2つ以上の画素の各々における前記リセットトランジスタの前記ゲート端子と前記電圧生成回路とに電気的に接続された選択トランジスタを有し、
     リセット指示信号が前記選択トランジスタに与えられるリセット期間において、前記選択トランジスタは、前記リセットトランジスタの前記ゲート端子と前記電圧生成回路とを互いに電気的に導通させ、
     前記リセット期間において前記電圧生成回路は前記制御電圧を生成する
     請求項2に記載の撮像装置。
  4.  前記出力回路は、前記2つ以上の画素の各々における前記転送トランジスタの前記ゲート端子と前記電圧生成回路とに電気的に接続された選択トランジスタを有し、
     転送指示信号が前記選択トランジスタに与えられる転送期間において、前記選択トランジスタは、前記転送トランジスタの前記ゲート端子と前記電圧生成回路とを互いに電気的に導通させ、
     前記転送期間において前記電圧生成回路は前記制御電圧を生成する
     請求項2に記載の撮像装置。
  5.  前記電圧生成回路は、
     前記第5の端子および第6の端子を有し、直流電圧が前記第6の端子に入力される前記第1の容量素子と、
     第7の端子および第8の端子を有し、前記第7の端子は前記第5の端子に電気的に接続された第2の容量素子と、
     第9の端子および第10の端子を有し、前記第9の端子は前記第5の端子に電気的に接続され、前記第1の電圧が前記第10の端子に入力され、前記第9の端子および前記第10の端子が互いに電気的に導通するオン状態と前記第9の端子および前記第10の端子が互いに電気的に絶縁されるオフ状態とのいずれか一方になるスイッチと、
     を有し、
     前記スイッチの状態が前記オン状態であるとき、前記第1の電圧が前記第5の端子に入力され、
     前記スイッチの状態が前記オン状態から前記オフ状態に変化した後、前記電源電圧に応じた第3の電圧を前記第8の端子に入力することにより前記第5の端子の電圧が前記第2の電圧だけ増加する
     請求項1に記載の撮像装置。
  6.  前記電圧生成回路は、前記第1の電圧を生成した後、前記制御電圧を生成し、
     前記出力回路は、前記第1の電圧を前記リセットトランジスタの前記ゲート端子に出力した後、前記制御電圧を前記リセットトランジスタの前記ゲート端子に出力する
     請求項1に記載の撮像装置。
  7.  前記第1の電圧は前記電源電圧である
     請求項6に記載の撮像装置。
  8.  前記電圧生成回路は、前記第1の電圧を生成した後、前記制御電圧を生成し、
     前記出力回路は、前記第1の電圧を前記転送トランジスタの前記ゲート端子に出力した後、前記制御電圧を前記転送トランジスタの前記ゲート端子に出力する
     請求項1に記載の撮像装置。
  9.  前記第1の電圧は前記電源電圧である
     請求項8に記載の撮像装置。
  10.  請求項1に記載の撮像装置を有する内視鏡システム。
PCT/JP2020/015513 2020-04-06 2020-04-06 撮像装置および内視鏡システム WO2021205507A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2020/015513 WO2021205507A1 (ja) 2020-04-06 2020-04-06 撮像装置および内視鏡システム
JP2022513714A JP7419500B2 (ja) 2020-04-06 2020-04-06 撮像装置および内視鏡システム
US17/942,360 US12108176B2 (en) 2020-04-06 2022-09-12 Imaging device and endoscope system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/015513 WO2021205507A1 (ja) 2020-04-06 2020-04-06 撮像装置および内視鏡システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/942,360 Continuation US12108176B2 (en) 2020-04-06 2022-09-12 Imaging device and endoscope system

Publications (1)

Publication Number Publication Date
WO2021205507A1 true WO2021205507A1 (ja) 2021-10-14

Family

ID=78023171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015513 WO2021205507A1 (ja) 2020-04-06 2020-04-06 撮像装置および内視鏡システム

Country Status (3)

Country Link
US (1) US12108176B2 (ja)
JP (1) JP7419500B2 (ja)
WO (1) WO2021205507A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02272742A (ja) * 1989-04-14 1990-11-07 Toshiba Corp 電荷転送装置
JP2006191623A (ja) * 2004-12-30 2006-07-20 Magnachip Semiconductor Ltd Cmosイメージセンサ
JP2010171869A (ja) * 2009-01-26 2010-08-05 Fujifilm Corp 固体撮像素子、撮像装置、及び固体撮像素子の信号読み出し方法
JP2010273146A (ja) * 2009-05-21 2010-12-02 Sharp Corp 固体撮像装置および電子情報機器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006129127A (ja) 2004-10-29 2006-05-18 Olympus Corp 電圧供給回路及びそれを用いた固体撮像装置
JP2010200025A (ja) * 2009-02-25 2010-09-09 Panasonic Corp 固体撮像装置
TWI527450B (zh) * 2012-05-01 2016-03-21 Sony Corp Image sensor, and image sensor control method
TW202101527A (zh) * 2019-03-15 2021-01-01 日商索尼半導體解決方案公司 攝像裝置及攝像裝置之製造方法以及半導體裝置
US11218659B2 (en) * 2019-12-09 2022-01-04 Omnivision Technologies, Inc. Image sensor with voltage supply grid clamping

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02272742A (ja) * 1989-04-14 1990-11-07 Toshiba Corp 電荷転送装置
JP2006191623A (ja) * 2004-12-30 2006-07-20 Magnachip Semiconductor Ltd Cmosイメージセンサ
JP2010171869A (ja) * 2009-01-26 2010-08-05 Fujifilm Corp 固体撮像素子、撮像装置、及び固体撮像素子の信号読み出し方法
JP2010273146A (ja) * 2009-05-21 2010-12-02 Sharp Corp 固体撮像装置および電子情報機器

Also Published As

Publication number Publication date
JP7419500B2 (ja) 2024-01-22
US20230007196A1 (en) 2023-01-05
JPWO2021205507A1 (ja) 2021-10-14
US12108176B2 (en) 2024-10-01

Similar Documents

Publication Publication Date Title
EP1343310B1 (en) Correlated double sampling circuit and CMOS image sensor including the same
CN106993141B (zh) 摄像装置
US9113102B2 (en) Method of acquiring physical information and physical information acquiring device
US7554591B2 (en) Photoelectric conversion apparatus and image sensing system using the same
US7595827B2 (en) Imaging device
JP6546457B2 (ja) 固体撮像装置およびその駆動方法、電子機器
US7352400B2 (en) Solid-state image pickup apparatus having a differential output
EP2099215A1 (en) Solid-state imaging device, method for driving solid-state imaging device, and imaging device
US8125550B2 (en) Correlation double sampling circuit for image sensor
US20090046187A1 (en) Solid-state imaging device
TW200903787A (en) Image sensor with gain control
WO2021205507A1 (ja) 撮像装置および内視鏡システム
JP4720275B2 (ja) 撮像装置
WO2023002566A1 (ja) 撮像装置、スコープ、および内視鏡システム
JP2017118373A (ja) 固体撮像素子、固体撮像素子の駆動方法、及び、電子機器
US9854191B2 (en) Solid-state image sensor and driving method
US11653117B2 (en) Imaging device
JP2019050632A (ja) 固体撮像装置およびその駆動方法、電子機器
US11425319B2 (en) Solid-state imaging device and imaging system
US20230353141A1 (en) Voltage generation circuit, image sensor, scope, and voltage generation method
US20120002091A1 (en) Solid-state image pickup device
EP2254330A1 (en) Method and system for operating an image data collection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20930513

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022513714

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20930513

Country of ref document: EP

Kind code of ref document: A1