WO2021201213A1 - 金属端子用接着性フィルム、金属端子用接着性フィルムの製造方法、金属端子用接着性フィルム付き金属端子、蓄電デバイス、及び蓄電デバイスの製造方法 - Google Patents

金属端子用接着性フィルム、金属端子用接着性フィルムの製造方法、金属端子用接着性フィルム付き金属端子、蓄電デバイス、及び蓄電デバイスの製造方法 Download PDF

Info

Publication number
WO2021201213A1
WO2021201213A1 PCT/JP2021/014139 JP2021014139W WO2021201213A1 WO 2021201213 A1 WO2021201213 A1 WO 2021201213A1 JP 2021014139 W JP2021014139 W JP 2021014139W WO 2021201213 A1 WO2021201213 A1 WO 2021201213A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage device
power storage
adhesive film
layer
polyolefin layer
Prior art date
Application number
PCT/JP2021/014139
Other languages
English (en)
French (fr)
Inventor
林 慎二
望月 洋一
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to EP21780967.2A priority Critical patent/EP4131616A1/en
Priority to JP2022512695A priority patent/JP7120491B2/ja
Priority to CN202180025890.XA priority patent/CN115362595A/zh
Priority to KR1020227024138A priority patent/KR20220162119A/ko
Publication of WO2021201213A1 publication Critical patent/WO2021201213A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/197Sealing members characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/02Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by a sequence of laminating steps, e.g. by adding new layers at consecutive laminating stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/80Gaskets; Sealings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/178Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for pouch or flexible bag cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/193Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/198Sealing members characterised by the material characterised by physical properties, e.g. adhesiveness or hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B37/1207Heat-activated adhesive
    • B32B2037/1215Hot-melt adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • B32B2250/242All polymers belonging to those covered by group B32B27/32
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/536Hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2405/00Adhesive articles, e.g. adhesive tapes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to an adhesive film for metal terminals, a method for manufacturing an adhesive film for metal terminals, a metal terminal with an adhesive film for metal terminals, a power storage device, and a method for manufacturing a power storage device.
  • the exterior material for the power storage device is an indispensable member for sealing the power storage device elements such as electrodes and electrolytes.
  • metal exterior materials for power storage devices have been widely used as exterior materials for power storage devices, but in recent years, with the increase in performance of electric vehicles, hybrid electric vehicles, personal computers, cameras, mobile phones, etc. , Various shapes are required, and thinning and weight reduction are required.
  • the metal exterior material for a power storage device which has been widely used in the past, has a drawback that it is difficult to keep up with the diversification of shapes and there is a limit to weight reduction.
  • a base material layer / adhesive layer / barrier layer / heat-sealing resin layer have been sequentially laminated as an exterior material for a power storage device that can be easily processed into various shapes and can be made thinner and lighter.
  • Laminated sheets have been proposed.
  • the peripheral edge of the exterior material for the power storage device is formed with the heat-sealing resin layers located in the innermost layer of the exterior material for the power storage device facing each other.
  • a metal terminal protrudes from the heat-sealed portion of the exterior material for the power storage device, and the power storage device element sealed by the exterior material for the power storage device is externally connected by the metal terminal electrically connected to the electrode of the power storage device element. Is electrically connected to. That is, among the heat-sealed portions of the exterior material for the power storage device, the portion where the metal terminal exists is heat-sealed with the metal terminal sandwiched between the heat-sealing resin layers. Since the metal terminal and the heat-sealing resin layer are made of different materials, the adhesion tends to decrease at the interface between the metal terminal and the heat-sealing resin layer.
  • an adhesive film may be arranged between the metal terminal and the heat-sealing resin layer for the purpose of enhancing their adhesion.
  • Examples of such an adhesive film include those described in Patent Document 1.
  • the present disclosure is for a metal terminal interposed between a metal terminal electrically connected to an electrode of the power storage device element and an exterior material for the power storage device that seals the power storage device element.
  • An adhesive film for metal terminals of a power storage device and for the power storage device until the power storage device reaches a high temperature for example, 100 ° C. to 130 ° C., preferably 110 ° C. to 130 ° C., particularly preferably 120 ° C. to 130 ° C.).
  • the main object of the present invention is to provide an adhesive film for metal terminals, which can open the energy storage device at the position of the adhesive film for metal terminals and release the gas generated inside the energy storage device to the outside.
  • a further object of the present disclosure is to provide a method for manufacturing an adhesive film for a metal terminal, a metal terminal with an adhesive film for a metal terminal, a power storage device, and a method for manufacturing the power storage device.
  • the inventors of the present disclosure have made diligent studies to solve the above problems.
  • the metal terminal in the adhesive film for metal terminals interposed between the metal terminal electrically connected to the electrode of the power storage device element and the exterior material for the power storage device that seals the power storage device element, the metal terminal.
  • the adhesive film for use is composed of a laminate including a first polyolefin layer arranged on the metal terminal side, a base material, and a second polyolefin layer arranged on the exterior material side for a power storage device in this order. Storage is stored by setting the melting peak temperature of at least one of the polyolefin layer and the second polyolefin layer to 105 ° C. or higher and 130 ° C.
  • the metal terminal of the power storage device and the heat-sealing resin layer of the exterior material of the power storage device are in close contact with each other.
  • the position of the adhesive film for terminals (specifically, the position of the first polyolefin layer or the second polyolefin layer having a melting peak temperature of 105 ° C. or higher and 130 ° C.
  • the power storage device is opened at the second polyolefin layer portion, the interface portion between the first polyolefin layer and the base material, or the interface portion between the second polyolefin layer and the base material, and the gas generated inside the power storage device is released to the outside. Found that it can be done. This disclosure has been completed by further studies based on such findings.
  • An adhesive film for metal terminals which is interposed between a metal terminal electrically connected to an electrode of a power storage device element and an exterior material for a power storage device that seals the power storage device element.
  • the adhesive film for metal terminals is formed from a laminate including a first polyolefin layer arranged on the metal terminal side, a base material, and a second polyolefin layer arranged on the exterior material side for a power storage device in this order. It is composed and At least one of the first polyolefin layer and the second polyolefin layer has a melting peak temperature of 105 ° C. or higher and 130 ° C. or lower.
  • An adhesive film for metal terminals having a surface hardness of 15 N / mm 2 or more as measured in an environment of a temperature of 110 ° C.
  • the adhesive film for metal terminals is interposed between the metal terminal electrically connected to the electrode of the power storage device element and the exterior material for the power storage device that seals the power storage device element. Therefore, until the power storage device reaches a high temperature (for example, 100 ° C. to 130 ° C., preferably 110 ° C. to 130 ° C., particularly preferably 120 ° C. to 130 ° C.), the metal terminals of the power storage device and the power storage device exterior material are thermally fused. When the power storage device comes into close contact with the adhesive resin layer and the temperature of the power storage device becomes high, the power storage device can be opened at the position of the adhesive film for metal terminals and the gas generated inside the power storage device can be released to the outside.
  • a high temperature for example, 100 ° C. to 130 ° C., preferably 110 ° C. to 130 ° C., particularly preferably 120 ° C. to 130 ° C.
  • a further object of the present disclosure is to provide a method for manufacturing an adhesive film for a metal terminal, a metal terminal with an adhesive film for a metal terminal, a power storage device, and a method for manufacturing the power storage device.
  • FIG. 5 is a schematic cross-sectional view taken along the line BB'in FIG.
  • It is a schematic cross-sectional view of the adhesive film for a metal terminal of this disclosure.
  • It is a schematic diagram for demonstrating the method of an opening test in an Example.
  • It is a schematic cross-sectional view of the exterior material for a power storage device of this disclosure.
  • the adhesive film for a metal terminal of the present disclosure is for a metal terminal interposed between a metal terminal electrically connected to an electrode of the power storage device element and an exterior material for the power storage device that seals the power storage device element.
  • the first polyolefin layer arranged on the metal terminal side, the base material, and the second polyolefin layer arranged on the exterior material side for the power storage device are arranged in this order.
  • At least one of the first polyolefin layer and the second polyolefin layer has a melting peak temperature of 105 ° C. or higher and 130 ° C. or lower, and the surface hardness of the base material measured in an environment of 110 ° C. , 15 N / mm 2 or more.
  • the power storage device has a high temperature (for example, 100 ° C. to 130 ° C., preferably 110 ° C. to 130 ° C., particularly preferably 120 ° C. to 130 ° C.). ), The metal terminal of the power storage device and the heat-sealing resin layer of the exterior material for the power storage device are in close contact with each other, and the power storage device is heated to the high temperature (for example, 100 ° C. to 130 ° C., preferably 110 ° C. to 130 ° C.). Particularly preferably, when the temperature reaches 120 ° C. to 130 ° C.), the power storage device can be opened at the position of the adhesive film for metal terminals, and the gas generated inside the power storage device can be discharged to the outside.
  • a high temperature for example, 100 ° C. to 130 ° C., preferably 110 ° C. to 130 ° C., particularly preferably 120 ° C. to 130 ° C.
  • the power storage device of the present disclosure is electrically connected to at least a power storage device element having a positive electrode, a negative electrode, and an electrolyte, an exterior material for the power storage device that seals the power storage device element, and a positive electrode and a negative electrode, respectively.
  • the power storage device is provided with a metal terminal protruding to the outside of the exterior material for the power storage device, and the adhesive film for the metal terminal of the present disclosure is interposed between the metal terminal and the exterior material for the power storage device. It is characterized by that.
  • a power storage device element including a positive electrode, a negative electrode, and an electrolyte, an exterior material for a power storage device that seals the power storage device element, and a positive electrode and a negative electrode are electrically connected to each other to store power.
  • a power storage device provided with a metal terminal projecting to the outside of the exterior material for the device, wherein an adhesive film for the metal terminal is interposed between the metal terminal and the exterior material for the power storage device, and the adhesiveness for the metal terminal is formed.
  • the film is composed of a laminate including a first polyolefin layer arranged on the metal terminal side, a base material, and a second polyolefin layer arranged on the exterior material side for a power storage device in this order, and has a temperature of 100 ° C.
  • the power storage device is opened from the position where the first polyolefin layer or the second polyolefin layer of the adhesive film for metal terminals is laminated (that is, the temperature is in the range of 100 ° C. or higher and 130 ° C. or lower).
  • the power storage device is opened from the position where the first polyolefin layer or the second polyolefin layer of the adhesive film for metal terminals is laminated), and the power storage device is also provided.
  • the numerical range indicated by “-” means “greater than or equal to” and “less than or equal to”.
  • the notation of 2 to 15 mm means 2 mm or more and 15 mm or less.
  • Adhesive film for metal terminals The adhesive film for metal terminals of the present disclosure is interposed between a metal terminal electrically connected to an electrode of a power storage device element and an exterior material for a power storage device that seals the power storage device element. Is to be done.
  • the adhesive film 1 for metal terminals of the present disclosure includes a metal terminal 2 electrically connected to an electrode of a power storage device element 4 and a power storage device. It is interposed between the exterior material 3 for a power storage device that seals the element 4.
  • the metal terminal 2 projects to the outside of the power storage device exterior material 3, and is used for the power storage device at the peripheral edge portion 3a of the heat-sealed power storage device exterior material 3 via the metal terminal adhesive film 1. It is sandwiched between the exterior materials 3.
  • the temporary bonding steps of the adhesive film for metal terminals to metal terminals are performed, for example, at a temperature of about 140 to 160 ° C., a pressure of about 0.01 to 1.0 MPa, a time of about 3 to 15 seconds, and a number of times 3.
  • the bonding process is performed under the conditions of about 6 times, for example, the temperature is about 160 to 240 ° C., the pressure is about 0.01 to 1.0 MPa, the time is about 3 to 15 seconds, and the number of times is about 1 to 3 times. Will be done.
  • the heating temperature when the metal terminal with the adhesive film for the metal terminal is interposed in the exterior material for the power storage device and heat-sealed is usually in the range of about 180 to 210 ° C., and the pressure is usually 1.0 to 2. It is carried out under the conditions of about 0.0 MPa, a time of about 3 to 5 seconds, and a number of times of about once.
  • the adhesive film 1 for metal terminals of the present disclosure is provided to enhance the adhesion between the metal terminals 2 and the exterior material 3 for a power storage device.
  • the sealing property of the power storage device element 4 is improved. As described above, when the power storage device element 4 is heat-sealed, the metal terminal 2 electrically connected to the electrode of the power storage device element 4 is projected to the outside of the power storage device exterior material 3 so that the power storage device element 4 is heat-sealed. The element is sealed.
  • the metal terminal 2 formed of metal and the heat-sealing resin layer 35 (layer formed of heat-sealing resin such as polyolefin) located in the innermost layer of the exterior material 3 for a power storage device are different from each other. Since it is formed of a material, when such an adhesive film is not used, the sealing property of the power storage device element tends to be low at the interface between the metal terminal 2 and the heat-sealing resin layer 35.
  • the adhesive film 1 for metal terminals of the present disclosure includes at least a structure in which the first polyolefin layer 12a, the base material 11, and the second polyolefin layer 12b are laminated in this order. ..
  • the first polyolefin layer 12a is arranged on the metal terminal 2 side.
  • the second polyolefin layer 12b is arranged on the exterior material 3 side for the power storage device.
  • the first polyolefin layer 12a and the second polyolefin layer 12b are located on the surfaces on both sides, respectively.
  • the first polyolefin layer 12a and the base material 11 are in contact with each other, and the second polyolefin layer 12b and the base material 11 are in contact with each other. ..
  • the first polyolefin layer 12a and the second polyolefin layer 12b are layers containing a polyolefin resin, respectively.
  • the polyolefin-based resin include polyolefins and acid-modified polyolefins.
  • the first polyolefin layer 12a preferably contains an acid-modified polyolefin, and more preferably a layer formed of an acid-modified polyolefin.
  • the second polyolefin layer 12b preferably contains a polyolefin or an acid-modified polyolefin among the polyolefin-based resins, more preferably contains a polyolefin, and further preferably a layer formed of a polyolefin.
  • the base material 11 preferably contains a polyolefin-based resin (that is, has a polyolefin skeleton), preferably contains a polyolefin, and more preferably a layer formed of a polyolefin.
  • the polyolefin-based resin is preferably polypropylene-based resin, respectively.
  • the polyolefin is preferably polypropylene
  • the acid-modified polyolefin is preferably acid-modified polypropylene.
  • the polyolefin-based resin such as polyolefin and acid-modified polyolefin may contain known additives, fillers and pigments described later.
  • a first polyolefin layer formed of acid-modified polypropylene / a base material formed of polypropylene / a second polyolefin formed of acid-modified polypropylene Three-layer structure in which the layers are laminated in this order; a three-layer structure in which a first polyolefin layer formed of acid-modified polypropylene / a base material formed of polypropylene / a second polyolefin layer formed of polypropylene are laminated in this order, etc.
  • the latter three-layer structure is particularly preferable from the viewpoint of adhesion between the heat-sealing resin layer 35 and the second polyolefin layer 12b of the exterior material 3 for a power storage device.
  • the adhesive film 1 for metal terminals of the present disclosure is arranged between the metal terminal 2 of the power storage device 10 and the exterior material 3 for the power storage device, the surface of the metal terminal 2 made of metal and the power storage device
  • the heat-sealing resin layer 35 (layer formed of a heat-sealing resin such as polyolefin) of the exterior material 3 is bonded via the adhesive film 1 for metal terminals.
  • the first polyolefin layer 12a of the adhesive film 1 for metal terminals is arranged on the metal terminal 2 side
  • the second polyolefin layer 12b is arranged on the exterior material 3 side for a power storage device, and the first polyolefin layer 12a is in close contact with the metal terminal 2.
  • the second polyolefin layer 12b comes into close contact with the heat-sealing resin layer 35 of the exterior material 3 for the power storage device.
  • the surface hardness of the base material 11 measured in a temperature 110 ° C. environment is 15 N / mm 2 or more, and at least one of the first polyolefin layer 12a and the second polyolefin layer 12b is The melting peak temperature is 105 ° C. or higher and 130 ° C. or lower.
  • the metal terminal of the power storage device and the heat-sealing resin layer of the exterior material for the power storage device are in close contact with each other, and the power storage device has a high temperature (for example, 100 ° C. to 130 ° C., preferably 110 ° C.).
  • the power storage device is opened at the position of the adhesive film for metal terminals when the temperature reaches 130 ° C., particularly preferably 120 ° C. to 130 ° C., and the gas generated inside the power storage device is released to the outside.
  • the melting peak temperature of at least one of the first polyolefin layer 12a and the second polyolefin layer 12b is 105 ° C. or higher and 130 ° C. or lower, the power storage device can be opened from the layer. As will be described later, if the surface hardness of the base material 11 at 110 ° C.
  • the melting peak temperature of at least one of the first polyolefin layer 12a and the second polyolefin layer 12b is 105 ° C. or higher and 130 ° C. or lower. Even so, when the power storage device becomes hot, it is difficult to open the power storage device at the position of the adhesive film for metal terminals. This is because when the surface hardness of the base material 11 in the 110 ° C. environment is low, in the step of heat-sealing the exterior material for the power storage device and the metal terminal with the adhesive film for the metal terminal at the peripheral edge portion 3a, the adhesive film for the metal terminal is the first.
  • the methods for measuring the surface hardness of the substrate and the method for measuring the melting peak temperature are as follows, respectively.
  • ⁇ Measurement of surface hardness of base material The base material is adhered to one side of the slide glass using double-sided adhesive tape to prepare a measurement sample. Next, a heating stage is installed in an ultra-micro hardness tester (for example, HM2000 manufactured by Fisher Instruments), and the surface of the measurement sample on the substrate side is placed in a temperature 110 ° C. environment (stage heating temperature 110 ° C.). Measure the surface hardness of.
  • an ultra-micro hardness tester for example, HM2000 manufactured by Fisher Instruments
  • the melting peak temperature is measured in accordance with JIS K7121: 2012 (Plastic transition temperature measurement method (Appendix 1 of JIS K7121: 1987)). The measurement is performed using a differential scanning calorimeter (DSC, for example, a differential scanning calorimeter Q200 manufactured by TA Instruments). After holding the measurement sample at ⁇ 50 ° C. for 15 minutes, the temperature was raised from ⁇ 50 ° C. to 210 ° C. at a heating rate of 10 ° C./min, and the first melting peak temperature P (° C.) was measured. Hold at 210 ° C. for 10 minutes. Next, the temperature is lowered from 210 ° C.
  • DSC differential scanning calorimeter
  • the temperature is raised from ⁇ 50 ° C. to 210 ° C. at a heating rate of 10 ° C./min, and the second melting peak temperature Q (° C.) is measured.
  • the flow rate of nitrogen gas is 50 ml / min.
  • the surface hardness of the base material 11 at a temperature 110 ° C. environment preferably about 20 N / mm 2 or more, more preferably about 25 N / mm 2 or more, more preferably about 30N / Mm 2 or more.
  • the surface hardness is preferably about 60 N / mm 2 or less, more preferably about 50 N / mm 2 or less, still more preferably about 45 N / mm 2 or less.
  • the preferred range of the surface hardness is about 15 to 60 N / mm 2, about 15 to 50 N / mm 2, about 15 to 45 N / mm 2, about 20 to 60 N / mm 2, about 20 to 50 N / mm 2 , and 20.
  • the melting peak temperature of the base material 11 is, for example, about 135 ° C. or higher, preferably about 150 ° C. or higher, more preferably about 155 ° C. or higher, still more preferably about 160 ° C. or higher. More preferably, it is about 163 ° C. or higher. From the same viewpoint, the melting peak temperature of the base material 11 is preferably about 180 ° C. or lower, more preferably about 175 ° C. or lower, still more preferably about 170 ° C. or lower.
  • the preferred range of the melting peak temperature is about 135 to 180 ° C., about 135 to 175 ° C., about 135 to 170 ° C., about 150 to 180 ° C., about 150 to 175 ° C., about 150 to 170 ° C., and about 155 to 180 ° C.
  • the melting peak temperature of the first polyolefin layer 12a arranged on the metal terminal 2 side is preferably 110 ° C. or higher, more preferably about 115 ° C. or higher, still more preferably about 120 ° C. It is above ° C. From the same viewpoint, the melting peak temperature is, for example, 150 ° C. or lower, preferably 140 ° C. or lower, more preferably 130 ° C. or lower, still more preferably about 128 ° C. or lower, still more preferably about 125 ° C. or lower.
  • the preferred range of the melting peak temperature is about 105 to 150 ° C., about 105 to 140 ° C., about 105 to 130 ° C., about 105 to 128 ° C., about 105 to 125 ° C., about 110 to 150 ° C., about 110 to 140 ° C.
  • At least one of the first polyolefin layer 12a and the second polyolefin layer 12b has a melting peak temperature of 105 ° C. or higher and 130 ° C. or lower.
  • the melting peak temperature of the second polyolefin layer 12b arranged on the exterior material 3 side for the power storage device is preferably about 110 ° C. or higher, more preferably about 115 ° C. or higher, still more preferably about 120 ° C. or higher. be.
  • the melting peak temperature is, for example, 150 ° C. or lower, preferably 140 ° C. or lower, more preferably 130 ° C. or lower, still more preferably about 128 ° C. or lower, still more preferably about 125 ° C. or lower.
  • the preferred range of the melting peak temperature is about 105 to 150 ° C., about 105 to 140 ° C., about 105 to 130 ° C., about 105 to 128 ° C., about 105 to 125 ° C., about 110 to 150 ° C., about 110 to 140 ° C.
  • At least one of the first polyolefin layer 12a and the second polyolefin layer 12b has a melting peak temperature of 105 ° C. or higher and 130 ° C. or lower.
  • the melting peak temperature of the second polyolefin layer 12b is 130 ° C. or higher.
  • the melting peak temperature of the first polyolefin layer 12a arranged on the metal terminal 2 side is 105 ° C. or higher and 130 ° C. or lower, and the melting of the second polyolefin layer 12b arranged on the exterior material 3 side for the power storage device.
  • the power storage device is heated to a high temperature (for example, 100 ° C. to 130 ° C., preferably 110 ° C.).
  • the metal terminal of the power storage device and the heat-sealing resin layer of the exterior material for the power storage device are brought into close contact with each other, and the power storage device is kept at the high temperature (for example, from 100 ° C.).
  • the temperature reaches 130 ° C., preferably 110 ° C. to 130 ° C., particularly preferably 120 ° C. to 130 ° C. the power storage device is opened at the position of the adhesive film for metal terminals, and the gas generated inside the power storage device is released. It can be released to the outside.
  • the melting peak temperature of the second polyolefin layer 12b is preferably 130 to 150 ° C.
  • the total thickness of the adhesive film 1 for metal terminals is, for example, about 60 ⁇ m or more, preferably about 70 ⁇ m or more, and more preferably about 80 ⁇ m or more.
  • the total thickness of the adhesive film 1 for metal terminals of the present disclosure is preferably about 150 ⁇ m or less, more preferably about 120 ⁇ m or less, still more preferably about 100 ⁇ m or less.
  • the preferred range of the total thickness of the adhesive film 1 for metal terminals of the present disclosure is about 60 to 150 ⁇ m, about 60 to 130 ⁇ m, about 60 to 100 ⁇ m, about 70 to 150 ⁇ m, about 70 to 130 ⁇ m, about 70 to 100 ⁇ m, 80. Examples thereof include about 150 ⁇ m, about 80 to 130 ⁇ m, and about 80 to 100 ⁇ m.
  • first polyolefin layer 12a the second polyolefin layer 12b, and the base material 11 will be described in detail.
  • the adhesive film 1 for metal terminals of the present disclosure includes a first polyolefin layer 12a on one side of the base material 11 and a second polyolefin layer 12b on the other side.
  • the first polyolefin layer 12a is arranged on the metal terminal 2 side.
  • the second polyolefin layer 12b is arranged on the exterior material 3 side for the power storage device.
  • the first polyolefin layer 12a and the second polyolefin layer 12b are located on the surfaces on both sides, respectively.
  • the melting peak temperature of at least one of the first polyolefin layer 12a and the second polyolefin layer 12b is 105 ° C. or higher and 130 ° C. or lower.
  • the metal terminal 2 of the power storage device and the heat-sealing resin layer 35 of the exterior material 3 for the power storage device are in close contact with each other, and the power storage device is heated to a high temperature (for example, 100 ° C. to 130 ° C.). From the viewpoint that the power storage device is opened at the position of the adhesive film for metal terminals when the temperature reaches 110 to 130 ° C., and further 120 ° C.
  • the first polyolefin layer 12a and the second polyolefin layer 12b has a melting peak temperature of 105 ° C. or higher and 130 ° C. or lower
  • the first polyolefin layer 12a or the first polyolefin layer 12a or the first polyolefin layer 12a or lower has a melting peak temperature of 105 ° C. or higher and 130 ° C. or lower.
  • the power storage device can be opened from the polyolefin layer 12b.
  • the melting temperature of polyolefin can be adjusted by copolymerizing propylene and ethylene. Usually, the melting peak temperature can be lowered to about 130 ° C. by randomly copolymerizing ethylene with respect to propylene in an amount of 5% by mass or less. Further, polypropylene having a melting point of about 100 ° C. can be prepared by using the method described in Japanese Patent Publication No. 2016-524002.
  • the first polyolefin layer 12a and the second polyolefin layer 12b are layers containing a polyolefin resin, respectively.
  • the polyolefin-based resin include polyolefins and acid-modified polyolefins.
  • the first polyolefin layer 12a preferably contains an acid-modified polyolefin, and more preferably a layer formed of an acid-modified polyolefin.
  • the second polyolefin layer 12b preferably contains a polyolefin or an acid-modified polyolefin among the polyolefin-based resins, more preferably contains a polyolefin, and further preferably a layer formed of a polyolefin or an acid-modified polyolefin. .. Acid-modified polyolefins have a high affinity for metals. Further, the polyolefin and the acid-modified polyolefin each have a high affinity with a heat-sealing resin such as polyolefin.
  • the adhesive film 1 for metal terminals of the present disclosure by arranging the first polyolefin layer 12a formed of the acid-modified polyolefin on the metal terminal 2 side, the adhesive film 1 for metal terminals and the metal terminal 2 are formed. At the interface between the two, even better adhesion can be exhibited. Further, by arranging the second polyolefin layer 12b formed of polyolefin or acid-modified polyolefin on the heat-sealing resin layer 35 side of the exterior material 3 for the power storage device, the heat-sealing property with the adhesive film 1 for metal terminals 1 is obtained. Even better adhesion can be exhibited at the interface with the resin layer 35.
  • the adhesive film 1 for metal terminals of the present disclosure is formed of a first polyolefin layer formed of acid-modified polypropylene / a base material formed of polypropylene / acid-modified polypropylene.
  • the second polyolefin layer was laminated in this order; the first polyolefin layer formed of acid-modified polypropylene / the base material formed of polypropylene / the second polyolefin layer formed of polypropylene were laminated in this order.
  • a three-layer structure is mentioned, and among these, the latter three-layer structure is particularly preferable from the viewpoint of adhesion between the heat-sealing resin layer 35 of the exterior material 3 for a power storage device and the second polyolefin layer 12b.
  • the acid-modified polyolefin is not particularly limited as long as it is an acid-modified polyolefin, but preferably an unsaturated carboxylic acid or a polyolefin graft-modified with an anhydride thereof.
  • the acid-modified polyolefin examples include polyethylenes such as low-density polyethylene, medium-density polyethylene, high-density polyethylene, and linear low-density polyethylene; homopolypropylene and polypropylene block copolymers (for example, propylene and ethylene block copolymers). ), Polypropylene random copolymers (eg, propylene and ethylene random copolymers) and other crystalline or amorphous polypropylenes; polyethylene-butene-propylene tarpolymers and the like.
  • polyethylene and polypropylene are preferable, and polypropylene is particularly preferable.
  • the acid-modified polyolefin may be a cyclic polyolefin.
  • the carboxylic acid-modified cyclic polyolefin means that a part of the monomer constituting the cyclic polyolefin is copolymerized in place of ⁇ , ⁇ -unsaturated carboxylic acid or its anhydride, or ⁇ , with respect to the cyclic polyolefin. It is a polymer obtained by block-polymerizing or graft-polymerizing ⁇ -unsaturated carboxylic acid or its anhydride.
  • the acid-modified cyclic polyolefin is a copolymer of an olefin and a cyclic monomer
  • examples of the olefin that is a constituent monomer of the cyclic polyolefin include ethylene, propylene, 4-methyl-1-pentene, butadiene, and isoprene.
  • Examples of the cyclic monomer which is a constituent monomer of the cyclic polyolefin include cyclic alkenes such as norbornene; specific examples thereof include cyclic diene such as cyclopentadiene, dicyclopentadiene, cyclohexadiene, and norbornadiene.
  • cyclic alkene is preferable, and norbornene is more preferable.
  • Examples of the constituent monomer include styrene.
  • Examples of the carboxylic acid or its anhydride used for acid modification include maleic acid, acrylic acid, itaconic acid, crotonic acid, maleic anhydride, itaconic anhydride and the like.
  • a peak derived from maleic anhydride is detected.
  • a peak derived from maleic acid is detected in the vicinity of the wave number of 1760 cm -1 and near the wave number 1780 cm -1.
  • the first polyolefin layer 12a or the second polyolefin layer 12b is a layer composed of maleic anhydride-modified polyolefin
  • a peak derived from maleic anhydride is detected when measured by infrared spectroscopy.
  • the degree of acid denaturation is low, the peak may become small and may not be detected. In that case, it can be analyzed by nuclear magnetic resonance spectroscopy.
  • the first polyolefin layer 12a and the second polyolefin layer 12b may be formed by one kind of resin component alone, or may be formed by a blend polymer in which two or more kinds of resin components are combined. Further, the first polyolefin layer 12a and the second polyolefin layer 12b may each be formed of only one layer, or may be formed of two or more layers with the same or different resin components. From the viewpoint of film-forming properties of the first polyolefin layer 12a and the second polyolefin layer 12b, it is preferable that each of these layers is formed of a blend polymer in which two or more kinds of resin components are combined.
  • the first polyolefin layer 12a is preferably composed of acid-modified polypropylene as a main component (a component of 50% by mass or more) and 50% by mass or less of another resin (from the viewpoint of improving flexibility).
  • Polyethylene is preferable.
  • the second polyolefin layer 12b may contain polypropylene as a main component (a component of 50% by mass or more) and another resin (preferably polyethylene from the viewpoint of improving flexibility) in an amount of 50% by mass or less. preferable.
  • the first polyolefin layer 12a preferably contains acid-modified polypropylene alone as a resin
  • the second polyolefin layer 12b contains It is preferable that the resin contains acid-modified polypropylene or polypropylene alone.
  • first polyolefin layer 12a and the second polyolefin layer 12b may each contain a filler, if necessary.
  • the filler functions as a spacer, so that the metal terminal 2 and the barrier layer 33 of the exterior material 3 for the power storage device are separated from each other. It is possible to effectively suppress a short circuit.
  • the particle size of the filler may be in the range of about 0.1 to 35 ⁇ m, preferably about 5.0 to 30 ⁇ m, and more preferably about 10 to 25 ⁇ m.
  • the content of the filler is about 5 to 30 parts by mass, more preferably 10 to 20 parts by mass, respectively, with respect to 100 parts by mass of the resin component forming the first polyolefin layer 12a and the second polyolefin layer 12b.
  • the degree can be mentioned.
  • the filler either an inorganic type or an organic type can be used.
  • the inorganic filler include carbon (carbon, graphite), silica, aluminum oxide, barium titanate, iron oxide, silicon carbide, zirconium oxide, zirconium silicate, magnesium oxide, titanium oxide, calcium aluminate, and calcium hydroxide.
  • the organic filler include fluororesins, phenol resins, urea resins, epoxy resins, acrylic resins, benzoguanamine / formaldehyde condensates, melamine / formaldehyde condensates, polymethylmethacrylate crosslinked products, polyethylene crosslinked products and the like.
  • first polyolefin layer 12a and the second polyolefin layer 12b may each contain a pigment, if necessary.
  • the pigment various inorganic pigments can be used.
  • carbon (carbon, graphite) exemplified in the above filler can be preferably exemplified.
  • Carbon (carbon, graphite) is a material generally used inside a power storage device, and there is no risk of elution into an electrolytic solution.
  • a sufficient coloring effect can be obtained with an addition amount having a large coloring effect and not impairing the adhesiveness, and the added resin can be increased in apparent melt viscosity without being melted by heat.
  • the amount of the pigment added is, for example, when carbon black having a particle size of about 0.03 ⁇ m is used, the first polyolefin layer 12a and the second polyolefin are added. About 0.05 to 0.3 parts by mass, preferably about 0.1 to 0.2 parts by mass, respectively, with respect to 100 parts by mass of the resin component forming the layer 12b.
  • the filler and the pigment When the filler and the pigment are added to the first polyolefin layer 12a and the second polyolefin layer 12b, the filler and the pigment may be added to the same first polyolefin layer 12a and the second polyolefin layer 12b. From the viewpoint of not impairing the heat-sealing property of the adhesive film 1 for metal terminals, it is preferable to add the filler and the pigment separately to the first polyolefin layer 12a and the second polyolefin layer 12b.
  • the thickness of the first polyolefin layer 12a and the second polyolefin layer 12b is preferably about 10 ⁇ m or more, more preferably about 15 ⁇ m or more, still more preferably about 20 ⁇ m or more, respectively. Also, it is preferably about 60 ⁇ m or less, more preferably about 55 ⁇ m or less, still more preferably 50 ⁇ m or less, still more preferably 40 ⁇ m or less.
  • the preferable ranges of the thicknesses of the first polyolefin layer 12a and the second polyolefin layer 12b are about 10 to 60 ⁇ m, about 10 to 55 ⁇ m, about 10 to 50 ⁇ m, about 10 to 40 ⁇ m, about 15 to 60 ⁇ m, and about 15 to 55 ⁇ m, respectively.
  • the ratio of the thickness of the base material 11 to the total thickness of the first polyolefin layer 12a and the second polyolefin layer 12b is preferably about 0.3 or more, more preferably about 0.4 or more. Further, it is preferably about 1.0 or less, more preferably about 0.8 or less, and the preferable ranges are about 0.3 to 1.0, about 0.3 to 0.8, and 0.4 to 1. About 0 and about 0.4 to 0.8 can be mentioned.
  • the ratio of the total thickness of the first polyolefin layer 12a and the second polyolefin layer 12b is preferably about 30 to 80%, more preferably 50. It is about 70%.
  • the base material 11 is a layer that functions as a support for the metal terminal adhesive film 1.
  • the base material 11 has the above-mentioned surface hardness.
  • the material forming the base material 11 is not particularly limited.
  • the material forming the base material 11 include polyolefin resin, polyamide resin, polyester resin, epoxy resin, acrylic resin, fluororesin, silicon resin, phenol resin, polyetherimide, polyimide, polycarbonate, and a mixture thereof. , Copolymers and the like, and among these, polyolefin-based resins are particularly preferable. That is, the material forming the base material 11 is preferably a resin containing a polyolefin skeleton such as polyolefin or acid-modified polyolefin. The fact that the resin constituting the base material 11 contains a polyolefin skeleton can be analyzed by, for example, infrared spectroscopy, gas chromatography-mass spectrometry, or the like.
  • the base material 11 preferably contains a polyolefin-based resin, preferably contains polyolefin, and more preferably a layer formed of polyolefin.
  • the layer formed of the polyolefin may be a stretched polyolefin film or an unstretched polyolefin film, but is preferably an unstretched polyolefin film.
  • Specific examples of the polyolefin include low-density polyethylene, medium-density polyethylene, high-density polyethylene, linear low-density polyethylene, and other polyethylene; homopolypropylene, polypropylene block copolymers (for example, propylene and ethylene block copolymers), and polypropylene.
  • Crystalline or amorphous polypropylenes such as random copolymers (eg, random copolymers of propylene and ethylene); polyethylene-butene-propylene tarpolymers and the like.
  • polyethylene and polypropylene are preferable, and polypropylene is more preferable.
  • the base material 11 since the base material 11 is excellent in electrolytic solution resistance, the base material 11 preferably contains homopolypropylene, is more preferably formed of homopolypropylene, and further preferably an unstretched homopolypropylene film.
  • polyamide examples include an aliphatic polyamide such as nylon 6, nylon 66, nylon 610, nylon 12, nylon 46, and a copolymer of nylon 6 and nylon 66; derived from terephthalic acid and / or isophthalic acid.
  • Hexamethylenediamine-isophthalic acid-terephthalic acid copolymerized polyamide such as nylon 6I, nylon 6T, nylon 6IT, nylon 6I6T (I stands for isophthalic acid, T stands for terephthalic acid), polymethoxylylen adipamide.
  • Polyamide containing aromatics such as (MXD6); alicyclic polyamide such as polyaminomethylcyclohexylazipamide (PACM6); and a polyamide obtained by copolymerizing a lactam component and an isocyanate component such as 4,4'-diphenylmethane-diisocyanate.
  • Polyamide copolymer and polyether ester amide copolymer which are copolymers of copolymerized polyamide and polyester or polyalkylene ether glycol; these copolymers and the like can be mentioned. These polyamides may be used alone or in combination of two or more.
  • the polyester include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyethylene isophthalate, and ethylene terephthalate as the main constituents of the copolymerized polyester and butylene terephthalate as the main constituent of the repeating unit.
  • examples thereof include the copolymerized polyester.
  • the copolymerized polyester having ethylene terephthalate as the main body of the repeating unit specifically, a copolymer polyester having ethylene terephthalate as the main body of the repeating unit and polymerizing with ethylene isophthalate (hereinafter, polyethylene (terephthalate / isophthalate)).
  • the copolymerized polyester having butylene terephthalate as the main body of the repeating unit specifically, a copolymer polyester which polymerizes with butylene isophthalate using butylene terephthalate as the main body of the repeating unit (hereinafter, polybutylene (terephthalate / isophthalate)).
  • polybutylene (terephthalate / adipate) a copolymer polyester which polymerizes with butylene isophthalate using butylene terephthalate as the main body of the repeating unit
  • polybutylene (terephthalate / isophthalate) a copolymer polyester which polymerizes with butylene isophthalate using butylene terephthalate as the main body of the repeating unit
  • polybutylene (terephthalate / isophthalate) a copolymer polyester which polymerizes with butylene isophthalate using butylene terephthalate as the main body of the repeating
  • the base material 11 may be formed of a non-woven fabric formed of the above resin.
  • the base material 11 is preferably composed of the above-mentioned polyolefin resin, polyamide resin, or the like.
  • the base material 11 may be a single layer or a plurality of layers.
  • at least one layer may include a layer having a melting peak temperature of 135 ° C. or higher.
  • Specific examples of the multi-layer include a three-layer structure in which block polypropylene / homopolypropylene / block polypropylene are laminated in this order.
  • the base material 11 can be made into a layer containing the colorant. It is also possible to select a resin having low transparency and adjust the light transmittance.
  • a resin having low transparency can be used, or a film having low transparency can be used.
  • the base material 11 is a non-woven fabric, a non-woven fabric using fibers or binders containing a colorant or a non-woven fabric having low transparency can be used.
  • the surface of the base material 11 may be subjected to known easy-adhesion means such as corona discharge treatment, ozone treatment, and plasma treatment, if necessary.
  • the thickness of the base material 11 is preferably 120 ⁇ m or less, more preferably 110 ⁇ m or less, still more preferably about 100 ⁇ m or less, still more preferably about 90 ⁇ m or less.
  • the thickness of the base material 11 is preferably about 20 ⁇ m or more, more preferably about 30 ⁇ m or more, still more preferably about 40 ⁇ m or more.
  • the preferable range of the thickness of the base material 11 is about 20 to 120 ⁇ m, about 20 to 110 ⁇ m, about 20 to 100 ⁇ m, about 20 to 90 ⁇ m, about 30 to 120 ⁇ m, about 30 to 110 ⁇ m, about 30 to 100 ⁇ m, about 30 to 90 ⁇ m.
  • the adhesive film 1 for metal terminals of the present disclosure can be produced, for example, by laminating the first polyolefin layer 12a and the second polyolefin layer 12b on both surfaces of the base material 11.
  • the base material 11 and the first polyolefin layer 12a and the second polyolefin layer 12b can be laminated by a known method such as an extrusion lamination method, a T-die method, an inflation method, or a thermal lamination method.
  • the method of interposing the adhesive film 1 for the metal terminal between the metal terminal 2 and the exterior material 3 for the power storage device is not particularly limited.
  • the metal terminal 2 is the power storage device.
  • the adhesive film 1 for metal terminals may be wound around the metal terminals 2 at the portion sandwiched by the exterior material 3.
  • both sides of the metal terminal 2 are formed so that the adhesive film 1 for the metal terminal crosses the two metal terminals 2 at the portion where the metal terminal 2 is sandwiched by the exterior material 3 for the power storage device. It may be placed on the side.
  • the adhesive film 1 for metal terminals of the present disclosure is used by interposing it between the metal terminal 2 and the exterior material 3 for a power storage device.
  • the metal terminal 2 (tab) is a conductive member electrically connected to an electrode (positive electrode or negative electrode) of the power storage device element 4, and is made of a metal material.
  • the metal material constituting the metal terminal 2 is not particularly limited, and examples thereof include aluminum, nickel, and copper.
  • the metal terminal 2 connected to the positive electrode of the lithium ion power storage device is usually made of aluminum or the like.
  • the metal terminal 2 connected to the negative electrode of the lithium ion power storage device is usually made of copper, nickel or the like.
  • the surface of the metal terminal 2 is preferably subjected to chemical conversion treatment from the viewpoint of enhancing the electrolyte resistance.
  • specific examples of the chemical conversion treatment include known methods for forming a corrosion-resistant film such as a phosphate, a chromate, a fluoride, and a triazinethiol compound.
  • a phosphoric acid chromate treatment using a method composed of three components of a phenol resin, a chromium (III) fluoride compound, and phosphoric acid is preferable.
  • the size of the metal terminal 2 may be appropriately set according to the size of the power storage device used and the like.
  • the thickness of the metal terminal 2 is preferably about 50 to 1000 ⁇ m, more preferably about 70 to 800 ⁇ m.
  • the length of the metal terminal 2 is preferably about 1 to 200 mm, more preferably about 3 to 150 mm.
  • the width of the metal terminal 2 is preferably about 1 to 200 mm, more preferably about 3 to 150 mm.
  • Examples of the exterior material 3 for a power storage device include those having a laminated structure composed of at least a laminated body having a base material layer 31, a barrier layer 33, and a heat-sealing resin layer 35 in this order.
  • FIG. 6 shows, as an example of the cross-sectional structure of the exterior material 3 for a power storage device, a base material layer 31, an adhesive layer 32 provided as needed, a barrier layer 33, an adhesive layer 34 provided as needed, and heat melting. The mode in which the adhesive resin layer 35 is laminated in this order will be shown.
  • the base material layer 31 is on the outer layer side, and the heat-sealing resin layer 35 is the innermost layer.
  • FIGS. 1 to 3 show the power storage device 10 when the embossed type exterior material 3 for the power storage device is used, the exterior material 3 for the power storage device is molded. It may be a pouch type that is not embossed.
  • the pouch type includes a three-sided seal, a four-sided seal, a pillow type, and the like, but any type may be used.
  • the thickness of the laminate constituting the exterior material 3 for the power storage device is not particularly limited, but the upper limit is preferably about 180 ⁇ m or less, about 160 ⁇ m or less, and about 155 ⁇ m or less from the viewpoint of cost reduction, energy density improvement, and the like. , About 140 ⁇ m or less, about 130 ⁇ m or less, about 120 ⁇ m or less, and the lower limit is preferably about 35 ⁇ m or more, about 35 ⁇ m or more, from the viewpoint of maintaining the function of the exterior material 3 for the power storage device of protecting the power storage device element 4.
  • the base material layer 31 is a layer that functions as a base material for the power storage device exterior material, and is a layer that forms the outermost layer side.
  • the material forming the base material layer 31 is not particularly limited as long as it has an insulating property.
  • Examples of the material forming the base material layer 31 include polyester, polyamide, epoxy, acrylic resin, fluororesin, polyurethane, silicon resin, phenol, polyetherimide, polyimide, and a mixture or copolymer thereof. ..
  • Polyesters such as polyethylene terephthalate and polybutylene terephthalate have an advantage that they are excellent in electrolytic solution resistance and whitening is unlikely to occur due to adhesion of the electrolytic solution, and are preferably used as a material for forming the base material layer 31.
  • the polyamide film is excellent in stretchability, can prevent whitening due to resin cracking of the base material layer 31 during molding, and is suitably used as a material for forming the base material layer 31.
  • the base material layer 31 may be formed of a uniaxially or biaxially stretched resin film, or may be formed of an unstretched resin film. Among them, a uniaxially or biaxially stretched resin film, particularly a biaxially stretched resin film, is preferably used as a base material layer 31 because its heat resistance is improved by orientation crystallization.
  • examples of the resin film forming the base material layer 31 include nylon and polyester, and more preferably biaxially stretched nylon and biaxially stretched polyester.
  • the base material layer 31 can be laminated with resin films made of different materials in order to improve pinhole resistance and insulation when used as a packaging for a power storage device. Specific examples thereof include a multilayer structure in which a polyester film and a nylon film are laminated, a multilayer structure in which a biaxially stretched polyester and a biaxially stretched nylon are laminated, and the like.
  • each resin film may be adhered via an adhesive, or may be directly laminated without an adhesive.
  • a method of adhering in a heat-melted state such as a coextrusion method, a sand laminating method, and a thermal laminating method can be mentioned.
  • the base material layer 31 may have low friction in order to improve moldability.
  • the friction coefficient of the base material layer 31 is not particularly limited, and examples thereof include 1.0 or less.
  • Examples of reducing the friction of the base material layer 31 include matting treatment, formation of a thin film layer of a slip agent, and a combination thereof.
  • the thickness of the base material layer 31 is, for example, about 10 to 50 ⁇ m, preferably about 15 to 30 ⁇ m.
  • the adhesive layer 32 is a layer arranged on the base material layer 31 as necessary in order to impart adhesion to the base material layer 31. That is, the adhesive layer 32 is provided between the base material layer 31 and the barrier layer 33.
  • the adhesive layer 32 is formed by an adhesive capable of adhering the base material layer 31 and the barrier layer 33.
  • the adhesive used to form the adhesive layer 32 may be a two-component curable adhesive or a one-component curable adhesive.
  • the adhesive mechanism used for forming the adhesive layer 32 is not particularly limited, and may be any of a chemical reaction type, a solvent volatilization type, a heat melting type, a thermal pressure type and the like.
  • the resin component of the adhesive that can be used for forming the adhesive layer 32, it is excellent in spreadability, durability under high humidity conditions, yellowing suppressing action, heat deterioration suppressing action at the time of heat sealing, etc. From the viewpoint of suppressing a decrease in the lamination strength between the barrier layer 33 and effectively suppressing the occurrence of delamination, a polyurethane-based two-component curable adhesive is preferably used; a polyamide, polyester, or a modified polyolefin thereof. Blended resin can be mentioned.
  • the adhesive layer 32 may be multi-layered with different adhesive components.
  • the base layer is used as an adhesive component arranged on the base layer 31 side from the viewpoint of improving the lamination strength between the base layer 31 and the barrier layer 33. It is preferable to select a resin having excellent adhesiveness to 31 and to select an adhesive component having excellent adhesiveness to the barrier layer 33 as an adhesive component arranged on the barrier layer 33 side.
  • the adhesive component arranged on the barrier layer 33 side is preferably an acid-modified polyolefin, a metal-modified polyolefin, a polyester and an acid-modified polyolefin. Examples thereof include a mixed resin with and a resin containing a copolymerized polyester.
  • the thickness of the adhesive layer 32 is, for example, about 2 to 50 ⁇ m, preferably about 3 to 25 ⁇ m.
  • the barrier layer 33 is a layer having a function of improving the strength of the power storage device exterior material and preventing water vapor, oxygen, light, and the like from entering the power storage device.
  • the barrier layer 33 is preferably a metal layer, that is, a layer made of metal. Specific examples of the metal constituting the barrier layer 33 include aluminum, stainless steel, titanium, and the like, preferably aluminum.
  • the barrier layer 33 can be formed of, for example, a metal foil, a metal vapor deposition film, an inorganic oxide vapor deposition film, a carbon-containing inorganic oxide vapor deposition film, a film provided with these vapor deposition films, or the like, and is formed of a metal foil.
  • the barrier layer is, for example, annealed aluminum (JIS H4160: 1994 A8021HO, JIS H4160). : 1994 A8079H-O, JIS H4000: 2014 A8021P-O, JIS H4000: 2014 A8079P-O) and the like are more preferably formed from soft aluminum foil.
  • the thickness of the barrier layer 33 is preferably about 10 to 200 ⁇ m, more preferably about 20 to 100 ⁇ m, from the viewpoint of making the exterior material for the power storage device thinner and making it difficult for pinholes to occur even by molding. Be done.
  • the barrier layer 33 is subjected to chemical conversion treatment in order to stabilize adhesion, prevent dissolution and corrosion, and the like.
  • the chemical conversion treatment refers to a treatment for forming a corrosion-resistant film on the surface of the barrier layer.
  • the adhesive layer 34 In the exterior material 3 for a power storage device, the adhesive layer 34 is provided as necessary between the barrier layer 33 and the heat-sealing resin layer 35 in order to firmly bond the heat-sealing resin layer 35. Is.
  • the adhesive layer 34 is formed by an adhesive capable of adhering the barrier layer 33 and the heat-sealing resin layer 35.
  • the composition of the adhesive used to form the adhesive layer is not particularly limited, and examples thereof include a resin composition containing an acid-modified polyolefin.
  • the acid-modified polyolefin the same ones as those exemplified in the first polyolefin layer 12a and the second polyolefin layer 12b can be exemplified.
  • the thickness of the adhesive layer 34 is, for example, about 1 to 40 ⁇ m, preferably about 2 to 30 ⁇ m.
  • the heat-sealing resin layer 35 corresponds to the innermost layer, and is a layer in which the heat-sealing resin layers are heat-sealed to each other when the power storage device is assembled to seal the power storage device element. ..
  • the resin component used in the heat-fusing resin layer 35 is not particularly limited as long as it can be heat-fused, and examples thereof include polyolefins and cyclic polyolefins.
  • polystyrene resin examples include polyethylene such as low-density polyethylene, medium-density polyethylene, high-density polyethylene, and linear low-density polyethylene; homopolypropylene, polypropylene block copolymer (for example, propylene and ethylene block copolymer), and polypropylene.
  • Polypropylene or amorphous polypropylene such as random copolymers of polyethylene (eg, random copolymers of propylene and ethylene); polyethylene-butene-propylene tarpolymers and the like.
  • polyethylene and polypropylene are preferable.
  • the cyclic polyolefin is a copolymer of an olefin and a cyclic monomer
  • examples of the olefin which is a constituent monomer of the cyclic polyolefin include ethylene, propylene, 4-methyl-1-pentene, butadiene, isoprene, and the like. Be done.
  • examples of the cyclic monomer which is a constituent monomer of the cyclic polyolefin include cyclic alkenes such as norbornene; specific examples thereof include cyclic diene such as cyclopentadiene, dicyclopentadiene, cyclohexadiene, and norbornadiene.
  • cyclic alkene is preferable, and norbornene is more preferable.
  • Examples of the constituent monomer include styrene.
  • these resin components preferably crystalline or amorphous polyolefins, cyclic polyolefins, and blend polymers thereof; more preferably polyethylene, polypropylene, ethylene and norbornene copolymers, and two or more of them. Blended polymers of.
  • the heat-sealing resin layer 35 may be formed of one type of resin component alone, or may be formed of a blended polymer in which two or more types of resin components are combined. Further, the heat-sealing resin layer 35 may be formed of only one layer, or may be formed of two or more layers with the same or different resin components. It is particularly preferable that the resin of the second polyolefin layer 12b and the heat-sealing resin layer 35 are common because the adhesion between these layers is improved.
  • the melting peak temperature of the heat-sealing resin layer 35 is, for example, about 120 ° C. or higher, preferably about 125 ° C. or higher, more preferably about 130 ° C. or higher, still more preferably 130 ° C. or higher, still more preferably 135 ° C. or higher. Further, it is preferably about 160 ° C. or lower, more preferably 155 ° C. or lower.
  • the preferred range of the melting peak temperature of the heat-sealing resin layer 35 is about 120 to 160 ° C., about 120 to 155 ° C., about 125 to 160 ° C., about 125 to 155 ° C., about 130 to 160 ° C., 130.
  • the temperature is about 155 ° C, 135 to 160 ° C, 135 to 155 ° C, 140 to 160 ° C, and 140 to 155 ° C.
  • the melting peak temperature of the first polyolefin layer 12a arranged on the metal terminal 2 side is 105 ° C. or higher and 130 ° C. or lower
  • the melting of the second polyolefin layer 12b arranged on the exterior material 3 side for the power storage device When both the peak temperature and the melting peak temperature of the heat-sealing resin layer 35 of the exterior material 3 for the power storage device are 130 ° C. or higher, the power storage device is heated to a high temperature (for example, 100 ° C. to 130 ° C., preferably 110 ° C.).
  • the metal terminal of the power storage device and the heat-sealing resin layer of the exterior material for the power storage device are brought into close contact with each other, and the power storage device is kept at the high temperature (for example, from 100 ° C.).
  • the power storage device is opened at the position of the adhesive film for metal terminals, and the gas generated inside the power storage device is released. It can be released to the outside.
  • the thickness of the heat-sealing resin layer 35 is not particularly limited, but may be about 2 to 2000 ⁇ m, preferably about 5 to 1000 ⁇ m, and more preferably about 10 to 500 ⁇ m.
  • the thickness of the heat-sealing resin layer 35 is, for example, about 100 ⁇ m or less, preferably about 85 ⁇ m or less, and more preferably about 15 to 85 ⁇ m.
  • the thickness of the heat-sealing resin layer 4 is preferably about 85 ⁇ m or less, more preferably about 15 to 45 ⁇ m, for example.
  • the thickness of the heat-sealing resin layer 4 is preferably about 20 ⁇ m or more, more preferably 35 to 85 ⁇ m. The degree can be mentioned.
  • the power storage device 10 of the present disclosure includes at least a power storage device element 4 having a positive electrode, a negative electrode, and an electrolyte, an exterior material 3 for a power storage device that seals the power storage device element 4, and a positive electrode and a negative electrode, respectively. It is electrically connected and includes a metal terminal 2 projecting to the outside of the exterior material 3 for a power storage device.
  • the power storage device 10 of the present disclosure is characterized in that the adhesive film 1 for metal terminals of the present disclosure is interposed between the metal terminal 2 and the exterior material 3 for the power storage device. That is, the power storage device 10 of the present disclosure can be manufactured by a method including a step of interposing the adhesive film 1 for the metal terminal of the present disclosure between the metal terminal 2 and the exterior material 3 for the power storage device.
  • the power storage device element 4 having at least a positive electrode, a negative electrode, and an electrolyte is provided with an exterior material 3 for the power storage device, with metal terminals 2 connected to each of the positive electrode and the negative electrode protruding outward.
  • the adhesive film 1 for metal terminals of the present disclosure is interposed between the metal terminals 2 and the heat-sealing resin layer 35, and the flange portion (heat-sealing property) of the exterior material 3 for power storage devices is placed on the peripheral edge of the power storage device element 4.
  • the power storage device 10 of the present disclosure electrically includes, at least, a power storage device element including a positive electrode, a negative electrode, and an electrolyte, an exterior material for the power storage device that seals the power storage device element, and the positive electrode and the negative electrode, respectively. It is a power storage device that is connected and has a metal terminal protruding to the outside of the exterior material for the power storage device. An adhesive film for the metal terminal is interposed between the metal terminal and the exterior material for the power storage device to form a metal.
  • the adhesive film for terminals is composed of a laminate including a first polyolefin layer arranged on the metal terminal side, a base material, and a second polyolefin layer arranged on the exterior material side for a power storage device in this order.
  • the power storage device may be a power storage device that opens from the position where the first polyolefin layer or the second polyolefin layer of the adhesive film for metal terminals is laminated.
  • the measurement is performed in an environment of a temperature of 110 ° C.
  • the surface hardness of the substrate 11 to be formed does not have to be 15 N / mm 2 or more, and the melting peak temperature of at least one of the first polyolefin layer 12a and the second polyolefin layer 12b is not 105 ° C. or higher and 130 ° C. or lower. May be good.
  • the surface hardness of the base material 11 measured in an environment of 110 ° C.
  • the melting peak temperature of at least one of the polyolefin layer 12b is 105 ° C. or higher and 130 ° C. or lower
  • the temperature is 100 ° C. or higher and 130 ° C. or lower, preferably 110 ° C. or higher and 130 ° C. or lower, and more preferably 120 ° C. or higher and 130 ° C. or lower.
  • the position where the first polyolefin layer 12a or the second polyolefin layer 12b of the adhesive film 1 for metal terminals is laminated (particularly, the interface portion between the first polyolefin layer 12a and the base material 11 or the second polyolefin layer 12b.
  • the power storage device can be suitably opened from the interface portion between the substrate 11 and the base material 11.
  • the power storage device 10 of the present disclosure includes at least the power storage device element including the positive electrode, the negative electrode, and the electrolyte, the exterior material for the power storage device that seals the power storage device element, and the positive electrode and the negative electrode, respectively.
  • the adhesive film for metal terminals comprises a first polyolefin layer arranged on the metal terminal side, a base material, and a second polyolefin layer arranged on the exterior material side for a power storage device.
  • the first polyolefin layer has a melting peak temperature of 105 ° C.
  • the second polyolefin layer has a melting peak temperature of 130 ° C. or higher
  • the power storage device The exterior material for use is composed of a laminate including at least a base material layer, a barrier layer, and a heat-sealing resin layer, and the melting peak temperature of the heat-sealing resin layer is 130 ° C. or higher. It may be a device. That is, in the power storage device, the melting peak temperature of the first polyolefin layer arranged on the metal terminal side is 105 ° C. or higher and 130 ° C. or lower, and the melting of the second polyolefin layer arranged on the exterior material side for the power storage device is melted.
  • Both the peak temperature and the melting peak temperature of the heat-sealing resin layer of the exterior material for the power storage device are 130 ° C. or higher.
  • the metal of the power storage device is metal until the power storage device reaches a high temperature (for example, 100 ° C. to 130 ° C., preferably 110 ° C. to 130 ° C., particularly preferably 120 ° C. to 130 ° C.).
  • the terminal and the heat-sealing resin layer of the exterior material for the power storage device are brought into close contact with each other, and the power storage device is heated to the high temperature (for example, 100 ° C to 130 ° C, preferably 110 ° C to 130 ° C, particularly preferably 120 ° C to 130 ° C).
  • the power storage device can be opened at the position of the adhesive film for the metal terminal, and the gas generated inside the power storage device can be discharged to the outside.
  • the exterior material for a power storage device of the present disclosure can be suitably used for a power storage device such as a battery (including a capacitor, a capacitor, etc.). Further, the exterior material for the power storage device of the present disclosure may be used for either a primary battery or a secondary battery, but is preferably a secondary battery.
  • the type of the secondary battery to which the exterior material for the power storage device of the present disclosure is applied is not particularly limited, and for example, a lithium ion battery, a lithium ion polymer battery, an all-solid-state battery, a lead storage battery, a nickel / hydrogen storage battery, and a nickel / hydrogen storage battery.
  • lithium ion batteries and lithium ion polymer batteries can be mentioned as suitable application targets of the exterior materials for power storage devices of the present disclosure.
  • Example 1 Manufacturing of adhesive film for metal terminals> Polypropylene having a melting peak temperature of 130 ° C. was synthesized using the method described in JP-A No. 10-502975. Next, by reacting with maleic anhydride in the presence of peroxide, maleic anhydride-modified polypropylene (PPa) having a melting peak temperature of 123 ° C. is synthesized, and a first polyolefin layer arranged on the metal terminal side and storage are stored. It was used as a second polyolefin layer (PPa) arranged on the device exterior material side.
  • PPa maleic anhydride-modified polypropylene
  • an unstretched polypropylene film (CPP, homopolypropylene, thickness 40 ⁇ m, melting peak temperature 163 ° C.) was prepared as a base material, and both sides of the unstretched polypropylene film were subjected to corona treatment (0.2 kW).
  • CPP homopolypropylene
  • corona treatment 0.2 kW.
  • maleic anhydride-modified polypropylene that forms a first polyolefin layer on one side of the unstretched polypropylene film, and acid-modified polypropylene that forms a second polyolefin layer on the other surface. was extruded at a temperature of 260 ° C.
  • first polyolefin layer PPa layer thickness 20 ⁇ m
  • base material CPP layer thickness 40 ⁇ m
  • second polyolefin layer PPa layer thickness 20 ⁇ m
  • the indenter was pushed into the surface of the measurement sample on the substrate side at a pushing speed of 0.1 ⁇ m / s to a depth of 1 ⁇ m, and the surface hardness was measured. The measured value was measured 10 times, and the average value was adopted. The measurement results are shown in Table 1.
  • the melting peak temperature of the produced polyolefin was measured in accordance with JIS K7121: 2012 (Plastic transition temperature measuring method (Appendix 1 of JIS K7121: 1987)). The measurement was performed using a differential scanning calorimeter (DSC, differential scanning calorimeter Q200 manufactured by TA Instruments). After holding the measurement sample at ⁇ 50 ° C. for 15 minutes, the temperature was raised from ⁇ 50 ° C. to 210 ° C. at a heating rate of 10 ° C./min, and the first melting peak temperature P (° C.) was measured. It was held at 210 ° C. for 10 minutes. Next, the temperature was lowered from 210 ° C.
  • ⁇ Opening test method> An aluminum plate having a width of 4 mm, a thickness of 70 ⁇ m, and a length of 40 mm was used as a metal terminal. Further, the adhesive film for metal terminals was cut into a size of 1 cm in length and 1 cm in width. Next, as shown in the schematic view of FIG. 5, the metal terminal is sandwiched between the two adhesive films for metal terminals so that the adhesive film for metal terminals and the long side of the metal terminals are orthogonal to each other. The adhesive film for metal terminals was heat-sealed to the metal terminals under the conditions of a pressure of 0.2 MPa, a temperature of 180 ° C., and a time of 3 seconds to obtain a metal terminal with an adhesive film for metal terminals.
  • the base material layer PET (thickness 12 ⁇ m) / adhesive (thickness 2 ⁇ m) / nylon (thickness 15 ⁇ m)) / adhesive layer (thickness 2 ⁇ m) / barrier layer (aluminum alloy foil thickness 40 ⁇ m) / adhesive layer (maleic anhydride).
  • An exterior material for a power storage device having a total thickness of 121 ⁇ m was prepared in which modified polypropylene (thickness 25 ⁇ m) / heat-sealing resin layer (polypropylene melting peak temperature 150 ° C., thickness 25 ⁇ m) was laminated in this order, and cut into a size of 8 cm ⁇ 19 cm. bottom.
  • thermocouple was attached to the metal terminal portion of the test sample, placed in an oven, and heated from room temperature (25 ° C.) at a heating rate of 6 ° C./min until the test sample temperature reached 140 ° C.
  • Evaluation A when opened at 120 ° C or higher and 130 ° C or lower
  • evaluation B when opened at 100 ° C or higher and lower than 120 ° C
  • the case where the package was not opened was evaluated as C. The results are shown in Table 1.
  • Example 2 Evaluation was carried out in the same manner as in Example 1 except that maleic anhydride-modified polypropylene having a melting peak temperature of 144 ° C. was used for the second polyolefin layer on the exterior side.
  • Example 3 Evaluation was carried out in the same manner as in Example 1 except that polypropylene having a melting peak temperature of 158 ° C. was used for the second polyolefin layer on the exterior side.
  • Example 4 Evaluation was carried out in the same manner as in Example 1 except that maleic anhydride-modified polypropylene having a melting peak temperature of 144 ° C. was used for the first polyolefin layer on the metal terminal side and polypropylene having a melting peak temperature of 120 ° C. was used for the second polyolefin layer on the exterior side. ..
  • CPP unstretched polypropylene film
  • Example 6 Evaluation was carried out in the same manner as in Example 1 except that maleic anhydride-modified polypropylene having a melting peak temperature of 110 ° C. was used for the first polyolefin layer on the metal terminal side and polypropylene having a melting peak temperature of 144 ° C. was used for the second polyolefin layer on the exterior side. ..
  • Example 7 Evaluation was carried out in the same manner as in Example 1 except that maleic anhydride-modified polypropylene having a melting peak temperature of 144 ° C. was used for the first polyolefin layer on the metal terminal side and polypropylene having a melting peak temperature of 110 ° C. was used for the second polyolefin layer on the exterior side. ..
  • Example 8 Evaluation was carried out in the same manner as in Example 1 except that maleic anhydride-modified polypropylene having a melting peak temperature of 105 ° C. was used for the first polyolefin layer on the metal terminal side and polypropylene having a melting peak temperature of 144 ° C. was used for the second polyolefin layer on the exterior side. ..
  • Example 9 Evaluation was carried out in the same manner as in Example 1 except that maleic anhydride-modified polypropylene having a melting peak temperature of 144 ° C. was used for the first polyolefin layer on the metal terminal side and polypropylene having a melting peak temperature of 105 ° C. was used for the second polyolefin layer on the exterior side. ..
  • Comparative Example 1 Evaluation was carried out in the same manner as in Example 1 except that maleic anhydride-modified polypropylene having a melting peak temperature of 144 ° C. was used for the first polyolefin layer on the metal terminal side and the second polyolefin layer on the exterior side.
  • Comparative Example 2 Evaluation was carried out in the same manner as in Example 1 except that maleic anhydride-modified polypropylene having a melting peak temperature of 144 ° C. was used for the first polyolefin layer on the metal terminal side and polypropylene having a melting peak temperature of 158 ° C. was used for the second polyolefin layer on the exterior side. ..
  • Comparative Example 3 Evaluation was carried out in the same manner as in Example 1 except that an unstretched polypropylene film (CPP, random polypropylene, thickness 40 ⁇ m, melting peak temperature 133 ° C.) was used as a base material.
  • CPP unstretched polypropylene film
  • Comparative Example 4 Evaluation was carried out in the same manner as in Example 1 except that an unstretched polypropylene film (CPP, random polypropylene, thickness 40 ⁇ m, melting peak temperature 143 ° C.) was used as a base material.
  • CPP unstretched polypropylene film
  • An adhesive film for metal terminals which is interposed between a metal terminal electrically connected to an electrode of a power storage device element and an exterior material for a power storage device that seals the power storage device element.
  • the adhesive film for metal terminals is formed from a laminate including a first polyolefin layer arranged on the metal terminal side, a base material, and a second polyolefin layer arranged on the exterior material side for a power storage device in this order. It is composed and At least one of the first polyolefin layer and the second polyolefin layer has a melting peak temperature of 105 ° C. or higher and 130 ° C. or lower.
  • An adhesive film for metal terminals having a surface hardness of 15 N / mm 2 or more as measured in an environment of a temperature of 110 ° C.
  • Item 2. The adhesive film for metal terminals according to Item 1, wherein at least one of the first polyolefin layer and the second polyolefin layer contains an acid-modified polyolefin.
  • Item 3. Item 2.
  • a method for manufacturing an adhesive film for metal terminals which is interposed between a metal terminal electrically connected to an electrode of a power storage device element and an exterior material for a power storage device that seals the power storage device element.
  • the adhesive film for metal terminals is formed from a laminate including a first polyolefin layer arranged on the metal terminal side, a base material, and a second polyolefin layer arranged on the exterior material side for a power storage device in this order. It is composed and A step of obtaining a laminate including the first polyolefin layer, the base material, and the second polyolefin layer in this order is provided.
  • At least one of the first polyolefin layer and the second polyolefin layer has a melting peak temperature of 105 ° C. or higher and 130 ° C. or lower.
  • a method for producing an adhesive film for metal terminals wherein the surface hardness of the base material measured in an environment of a temperature of 110 ° C. is 15 N / mm 2 or more.
  • Item 6. A metal terminal with an adhesive film for a metal terminal, wherein the adhesive film for the metal terminal according to any one of Items 1 to 4 is attached to the metal terminal.
  • the power storage device element provided with at least a positive electrode, a negative electrode, and an electrolyte, an exterior material for the power storage device that seals the power storage device element, and the positive electrode and the negative electrode are electrically connected to each other.
  • a power storage device including the metal terminal protruding to the outside of the exterior material for use.
  • Item 8 The power storage device element provided with at least a positive electrode, a negative electrode, and an electrolyte, an exterior material for the power storage device that seals the power storage device element, and the positive electrode and the negative electrode are electrically connected to each other.
  • a power storage device including the metal terminal protruding to the outside of the exterior material for use.
  • An adhesive film for metal terminals is interposed between the metal terminals and the exterior material for the power storage device.
  • the adhesive film for metal terminals is composed of a laminate including a first polyolefin layer arranged on the metal terminal side, a base material, and a second polyolefin layer arranged on the exterior material side for a power storage device in this order.
  • the power storage device is opened from a position where the first polyolefin layer or the second polyolefin layer of the adhesive film for metal terminals is laminated.
  • the power storage device element having a positive electrode, a negative electrode, and an electrolyte, an exterior material for the power storage device that seals the power storage device element, and the positive electrode and the negative electrode are electrically connected to each of the power storage device.
  • a power storage device including the metal terminal protruding to the outside of the exterior material.
  • An adhesive film for metal terminals is interposed between the metal terminals and the exterior material for the power storage device.
  • the adhesive film for metal terminals is composed of a laminate including a first polyolefin layer arranged on the metal terminal side, a base material, and a second polyolefin layer arranged on the exterior material side for a power storage device in this order.
  • the first polyolefin layer has a melting peak temperature of 105 ° C. or higher and 130 ° C. or lower.
  • the second polyolefin layer has a melting peak temperature of 130 ° C. or higher.
  • the exterior material for a power storage device is composed of a laminate including at least a base material layer, a barrier layer, and a heat-sealing resin layer. A power storage device in which the melting peak temperature of the heat-sealing resin layer is 130 ° C. or higher.
  • Item 10 An exterior material for a power storage device for use in a power storage device.
  • the power storage device is electrically connected to at least a power storage device element including a positive electrode, a negative electrode, and an electrolyte, an exterior material for the power storage device that seals the power storage device element, and the positive electrode and the negative electrode, respectively.
  • the metal terminal is provided so as to project to the outside of the exterior material for the power storage device, and an adhesive film for the metal terminal is interposed between the metal terminal and the exterior material for the power storage device.
  • the adhesive film for metal terminals is formed from a laminate including a first polyolefin layer arranged on the metal terminal side, a base material, and a second polyolefin layer arranged on the exterior material side for a power storage device in this order.
  • the exterior material for a power storage device is composed of a laminate including at least a base material layer, a barrier layer, and a heat-sealing resin layer, and the melting peak temperature of the heat-sealing resin layer is for the metal terminal.
  • An exterior material for a power storage device which is higher than the melting peak temperature of the first polyolefin layer of the adhesive film and is 130 ° C. or higher. Item 11.
  • the power storage device element provided with at least a positive electrode, a negative electrode, and an electrolyte, an exterior material for the power storage device that seals the power storage device element, and the positive electrode and the negative electrode are electrically connected to each other.
  • a method for manufacturing a power storage device including the metal terminal protruding to the outside of the exterior material for use.
  • the metal terminal adhesive film according to any one of Items 1 to 4 is interposed between the metal terminal and the exterior material for the power storage device, and the power storage device element is formed by the exterior material for the power storage device.
  • a method of manufacturing a power storage device which comprises a sealing step.
  • Adhesive film for metal terminals Metal terminals 3 Exterior material for power storage device 3a Peripheral part of exterior material for power storage device 4 Power storage device element 10 Power storage device 11 Base material 12a First polyolefin layer 12b Second polyolefin layer 31 Base material layer 32 Adhesive layer 33 Barrier layer 34 Adhesive layer 35 Heat-sealing resin layer

Abstract

蓄電デバイス素子の電極に電気的に接続された金属端子と、前記蓄電デバイス素子を封止する蓄電デバイス用外装材との間に介在される、金属端子用接着性フィルムであって、 前記金属端子用接着性フィルムは、前記金属端子側に配置される第1ポリオレフィン層と、基材と、前記蓄電デバイス用外装材側に配置される第2ポリオレフィン層とをこの順に備える積層体から構成されており、 前記第1ポリオレフィン層及び前記第2ポリオレフィン層の少なくとも一方は、融解ピーク温度が105℃以上130℃以下であり、 温度110℃環境で測定される前記基材の表面硬度が、15N/mm2以上である、金属端子用接着性フィルム。

Description

金属端子用接着性フィルム、金属端子用接着性フィルムの製造方法、金属端子用接着性フィルム付き金属端子、蓄電デバイス、及び蓄電デバイスの製造方法
 本開示は、金属端子用接着性フィルム、金属端子用接着性フィルムの製造方法、金属端子用接着性フィルム付き金属端子、蓄電デバイス、及び蓄電デバイスの製造方法に関する。
 従来、様々なタイプの蓄電デバイスが開発されているが、あらゆる蓄電デバイスにおいて電極や電解質等の蓄電デバイス素子を封止するために蓄電デバイス用外装材が不可欠な部材になっている。従来、蓄電デバイス用外装材として金属製の蓄電デバイス用外装材が多用されていたが、近年、電気自動車、ハイブリッド電気自動車、パソコン、カメラ、携帯電話等の高性能化に伴い、蓄電デバイスには、多様な形状が要求されると共に、薄型化や軽量化が求められている。しかしながら、従来多用されていた金属製の蓄電デバイス用外装材では、形状の多様化に追従することが困難であり、しかも軽量化にも限界があるという欠点がある。
 そこで、近年、多様な形状に加工が容易で、薄型化や軽量化を実現し得る蓄電デバイス用外装材として、基材層/接着層/バリア層/熱融着性樹脂層が順次積層された積層シートが提案されている。このような積層フィルム状の蓄電デバイス用外装材を用いる場合、蓄電デバイス用外装材の最内層に位置する熱融着性樹脂層同士を対向させた状態で、蓄電デバイス用外装材の周縁部をヒートシールにて熱融着させることにより、蓄電デバイス用外装材によって蓄電デバイス素子が封止される。
 蓄電デバイス用外装材のヒートシール部分からは、金属端子が突出しており、蓄電デバイス用外装材によって封止された蓄電デバイス素子は、蓄電デバイス素子の電極に電気的に接続された金属端子によって外部と電気的に接続される。すなわち、蓄電デバイス用外装材がヒートシールされた部分のうち、金属端子が存在する部分は、金属端子が熱融着性樹脂層に挟持された状態でヒートシールされている。金属端子と熱融着性樹脂層とは、互いに異種材料により構成されているため、金属端子と熱融着性樹脂層との界面において、密着性が低下しやすい。
 このため、金属端子と熱融着性樹脂層との間には、これらの密着性を高めることなどを目的として、接着性フィルムが配されることがある。このような接着性フィルムとしては、例えば特許文献1に記載されたものが挙げられる。
特開2015-79638号公報 特開2002-8616号公報
 近年、スマートフォンの高速大容量データ通信化に伴い、消費する電気量も増大し、蓄電デバイスの高容量化が検討されている。しかしながら、バッテリーの高容量化は、容器サイズの増大や反応性物質の増加を伴い、蓄電デバイスが熱暴走した時(すなわち、蓄電デバイスの高温化時)に発生するガス量も増加し、蓄電デバイスの内圧上昇に伴う爆発リスクが増大する。金属製の外装材を用いた蓄電デバイス(例えば金属缶電池など)では、安全弁を取り付けることでガス発生時の安全性を確保している(特許文献2参照)。
 しかしながら、積層フィルム状の外装材を用いた蓄電デバイスでは、このような安全弁を取り付けることは難しく、高温になった蓄電デバイス内部で発生したガスによる、蓄電デバイスの膨張回避が課題となる。
 このような状況下、本開示は、蓄電デバイス素子の電極に電気的に接続された金属端子と、前記蓄電デバイス素子を封止する蓄電デバイス用外装材との間に介在される、金属端子用接着性フィルムであって、蓄電デバイスが高温(例えば100℃から130℃、好ましくは110℃から130℃、特に好ましくは120℃から130℃)になるまでは、蓄電デバイスの金属端子と蓄電デバイス用外装材の熱融着性樹脂層とを密着し、蓄電デバイスが当該高温(例えば100℃から130℃、好ましくは110℃から130℃、特に好ましくは120℃から130℃)になった場合に、金属端子用接着性フィルムの位置で蓄電デバイスが開封して、蓄電デバイス内部で発生したガスを外部に放出することができる、金属端子用接着性フィルムを提供することを主な目的とする。さらに、本開示は、当該金属端子用接着性フィルムの製造方法、金属端子用接着性フィルム付き金属端子、蓄電デバイス及び当該蓄電デバイスの製造方法を提供することも目的とする。
 本開示の発明者等は、上記の課題を解決すべく鋭意検討を行った。その結果、蓄電デバイス素子の電極に電気的に接続された金属端子と、前記蓄電デバイス素子を封止する蓄電デバイス用外装材との間に介在される、金属端子用接着性フィルムにおいて、金属端子用接着性フィルムは、金属端子側に配置される第1ポリオレフィン層と、基材と、蓄電デバイス用外装材側に配置される第2ポリオレフィン層とをこの順に備える積層体から構成し、第1ポリオレフィン層及び第2ポリオレフィン層の少なくとも一方の融解ピーク温度を105℃以上130℃以下とし、かつ、温度110℃環境で測定される基材の表面硬度を15N/mm2以上とすることにより、蓄電デバイスが高温(例えば100℃から130℃)になるまでは、蓄電デバイスの金属端子と蓄電デバイス外装材の熱融着性樹脂層とを密着し、蓄電デバイスが当該高温になった場合に、金属端子用接着性フィルムの位置(具体的には、融解ピーク温度が105℃以上130℃以下である、第1ポリオレフィン層又は第2ポリオレフィン層の位置、さらに具体的には、第1ポリオレフィン層部分、第2ポリオレフィン層部分、第1ポリオレフィン層と基材との界面部分、又は第2ポリオレフィン層と基材との界面部分)で蓄電デバイスが開封して、蓄電デバイス内部で発生したガスを外部に放出することができることを見出した。本開示は、かかる知見に基づいて更に検討を重ねることにより完成したものである。
 即ち、本開示は、下記に掲げる態様の発明を提供する。
 蓄電デバイス素子の電極に電気的に接続された金属端子と、前記蓄電デバイス素子を封止する蓄電デバイス用外装材との間に介在される、金属端子用接着性フィルムであって、
 前記金属端子用接着性フィルムは、前記金属端子側に配置される第1ポリオレフィン層と、基材と、前記蓄電デバイス用外装材側に配置される第2ポリオレフィン層とをこの順に備える積層体から構成されており、
 前記第1ポリオレフィン層及び前記第2ポリオレフィン層の少なくとも一方は、融解ピーク温度が105℃以上130℃以下であり、
 温度110℃環境で測定される前記基材の表面硬度が、15N/mm2以上である、金属端子用接着性フィルム。
 本開示によれば、蓄電デバイス素子の電極に電気的に接続された金属端子と、前記蓄電デバイス素子を封止する蓄電デバイス用外装材との間に介在される、金属端子用接着性フィルムであって、蓄電デバイスが高温(例えば100℃から130℃、好ましくは110℃から130℃、特に好ましくは120℃から130℃)になるまでは、蓄電デバイスの金属端子と蓄電デバイス外装材の熱融着性樹脂層とを密着し、蓄電デバイスが当該高温になった場合に、金属端子用接着性フィルムの位置で蓄電デバイスが開封して、蓄電デバイス内部で発生したガスを外部に放出することができる、金属端子用接着性フィルムを提供することができる。さらに、本開示は、当該金属端子用接着性フィルムの製造方法、金属端子用接着性フィルム付き金属端子、蓄電デバイス及び当該蓄電デバイスの製造方法を提供することも目的とする。
本開示の蓄電デバイスの略図的平面図である。 図1の線A-A’における略図的断面図である。 図1の線B-B’における略図的断面図である。 本開示の金属端子用接着性フィルムの略図的断面図である。 実施例において、開封試験の方法を説明するための模式図である。 本開示の蓄電デバイス用外装材の略図的断面図である。
 本開示の金属端子用接着性フィルムは、蓄電デバイス素子の電極に電気的に接続された金属端子と、蓄電デバイス素子を封止する蓄電デバイス用外装材との間に介在される、金属端子用接着性フィルムであって、金属端子用接着性フィルムは、金属端子側に配置される第1ポリオレフィン層と、基材と、蓄電デバイス用外装材側に配置される第2ポリオレフィン層とをこの順に備える積層体から構成されており、第1ポリオレフィン層及び第2ポリオレフィン層の少なくとも一方は、融解ピーク温度が105℃以上130℃以下であり、温度110℃環境で測定される基材の表面硬度が、15N/mm2以上であることを特徴とする。
 本開示の金属端子用接着性フィルムは、このような特徴を備えていることから、蓄電デバイスが高温(例えば100℃から130℃、好ましくは110℃から130℃、特に好ましくは120℃から130℃)になるまでは、蓄電デバイスの金属端子と蓄電デバイス用外装材の熱融着性樹脂層とを密着し、蓄電デバイスが当該高温(例えば100℃から130℃、好ましくは110℃から130℃、特に好ましくは120℃から130℃)になった場合に、金属端子用接着性フィルムの位置で蓄電デバイスが開封して、蓄電デバイス内部で発生したガスを外部に放出することができる。
 また、本開示の蓄電デバイスは、少なくとも、正極、負極、及び電解質を備えた蓄電デバイス素子と、当該蓄電デバイス素子を封止する蓄電デバイス用外装材と、正極及び負極のそれぞれに電気的に接続され、蓄電デバイス用外装材の外側に突出した金属端子とを備える蓄電デバイスであって、金属端子と蓄電デバイス用外装材との間に、本開示の金属端子用接着性フィルムが介在されてなることを特徴とする。
 また、本開示は、少なくとも、正極、負極、及び電解質を備えた蓄電デバイス素子と、当該蓄電デバイス素子を封止する蓄電デバイス用外装材と、正極及び負極のそれぞれに電気的に接続され、蓄電デバイス用外装材の外側に突出した金属端子とを備える蓄電デバイスであって、金属端子と蓄電デバイス用外装材との間に、金属端子用接着性フィルムが介在されてなり、金属端子用接着性フィルムは、金属端子側に配置される第1ポリオレフィン層と、基材と、蓄電デバイス用外装材側に配置される第2ポリオレフィン層とをこの順に備える積層体から構成されており、温度100℃以上130℃以下の環境において、蓄電デバイスは、金属端子用接着性フィルムの第1ポリオレフィン層又は第2ポリオレフィン層が積層されている位置から開封する(すなわち、温度100℃以上130℃以下の範囲のいずれかの温度環境において、蓄電デバイスは、金属端子用接着性フィルムの第1ポリオレフィン層又は第2ポリオレフィン層が積層されている位置から開封する)、蓄電デバイスも提供する。
 以下、本開示の金属端子用接着性フィルム及びその製造方法、蓄電デバイス及びその製造方法について詳述する。
 なお、本明細書において、数値範囲については、「~」で示される数値範囲は「以上」、「以下」を意味する。例えば、2~15mmとの表記は、2mm以上15mm以下を意味する。
1.金属端子用接着性フィルム
 本開示の金属端子用接着性フィルムは、蓄電デバイス素子の電極に電気的に接続された金属端子と、蓄電デバイス素子を封止する蓄電デバイス用外装材との間に介在されるものである。具体的には、例えば図1から図3に示されるように、本開示の金属端子用接着性フィルム1は、蓄電デバイス素子4の電極に電気的に接続されている金属端子2と、蓄電デバイス素子4を封止する蓄電デバイス用外装材3との間に介在されている。また、金属端子2は、蓄電デバイス用外装材3の外側に突出しており、ヒートシールされた蓄電デバイス用外装材3の周縁部3aにおいて、金属端子用接着性フィルム1を介して、蓄電デバイス用外装材3に挟持されている。
 なお、本開示において、金属端子用接着性フィルムの金属端子への仮接着工程は、例えば、温度140~160℃程度、圧力0.01~1.0MPa程度、時間3~15秒間程度、回数3~6回程度の条件で行われ、本接着工程は、例えば、温度160~240℃程度、圧力0.01~1.0MPa程度、時間3~15秒間程度、回数1~3回程度の条件で行われる。また、蓄電デバイス用外装材に金属端子用接着性フィルム付き金属端子を介在させてヒートシールする際の加熱温度としては、通常180~210℃程度の範囲、圧力としては、通常1.0~2.0MPa程度、時間3~5秒間程度、回数1回程度の条件で行われる。
 本開示の金属端子用接着性フィルム1は、金属端子2と蓄電デバイス用外装材3との密着性を高めるために設けられている。金属端子2と蓄電デバイス用外装材3との密着性が高められることにより、蓄電デバイス素子4の密封性が向上する。上述のとおり、蓄電デバイス素子4をヒートシールする際には、蓄電デバイス素子4の電極に電気的に接続された金属端子2が蓄電デバイス用外装材3の外側に突出するようにして、蓄電デバイス素子が封止される。このとき、金属により形成された金属端子2と、蓄電デバイス用外装材3の最内層に位置する熱融着性樹脂層35(ポリオレフィンなどの熱融着性樹脂により形成された層)とは異種材料により形成されているため、このような接着性フィルムを用いない場合には、金属端子2と熱融着性樹脂層35との界面において、蓄電デバイス素子の密封性が低くなりやすい。
 本開示の金属端子用接着性フィルム1は、図4に示すように、少なくとも、第1ポリオレフィン層12aと、基材11と、第2ポリオレフィン層12bとがこの順に積層された構成を含んでいる。第1ポリオレフィン層12aが金属端子2側に配置される。また、第2ポリオレフィン層12bが、蓄電デバイス用外装材3側に配置される。本開示の金属端子用接着性フィルム1においては、両面側の表面に、それぞれ第1ポリオレフィン層12a及び第2ポリオレフィン層12bが位置している。
 本発明の効果をより好適に奏する観点から、第1ポリオレフィン層12aと基材11とが接面しており、かつ、第2ポリオレフィン層12bと基材11とが接面していることが好ましい。
 本開示の金属端子用接着性フィルム1において、第1ポリオレフィン層12a及び第2ポリオレフィン層12bは、それぞれ、ポリオレフィン系樹脂を含む層である。ポリオレフィン系樹脂としては、ポリオレフィン、酸変性ポリオレフィンなどが挙げられる。第1ポリオレフィン層12aは、ポリオレフィン系樹脂の中でも、酸変性ポリオレフィンを含むことが好ましく、酸変性ポリオレフィンにより形成された層であることがより好ましい。また、第2ポリオレフィン層12bは、ポリオレフィン系樹脂の中でも、ポリオレフィンまたは酸変性ポリオレフィンを含むことが好ましく、ポリオレフィンを含むことがより好ましく、ポリオレフィンにより形成された層であることがさらに好ましい。
 また、基材11は、ポリオレフィン系樹脂を含む(すなわち、ポリオレフィン骨格を有する)ことが好ましく、ポリオレフィンを含むことが好ましく、ポリオレフィンにより形成された層であることがさらに好ましい。
 第1ポリオレフィン層12a、第2ポリオレフィン層12b、及び基材11において、それぞれ、ポリオレフィン系樹脂は、ポリプロピレン系樹脂であることが好ましい。ポリオレフィンは、ポリプロピレンであることが好ましく、酸変性ポリオレフィンは、酸変性ポリプロピレンであることが好ましい。なお、ポリオレフィン、酸変性ポリオレフィンなどのポリオレフィン系樹脂には、公知の添加剤や後述する充填剤、顔料などが含まれていてもよい。
 本開示の金属端子用接着性フィルム1の好ましい積層構成の具体例としては、酸変性ポリプロピレンにより形成された第1ポリオレフィン層/ポリプロピレンにより形成された基材/酸変性ポリプロピレンにより形成された第2ポリオレフィン層がこの順に積層された3層構成;酸変性ポリプロピレンにより形成された第1ポリオレフィン層/ポリプロピレンにより形成された基材/ポリプロピレンにより形成された第2ポリオレフィン層がこの順に積層された3層構成などが挙げられ、これらの中でも、蓄電デバイス用外装材3の熱融着性樹脂層35と第2ポリオレフィン層12bとの接着性の観点で後者の3層構成が特に好ましい。
 第1ポリオレフィン層12a、第2ポリオレフィン層12b、及び基材11を構成する素材の詳細については、後述する。
 蓄電デバイス10の金属端子2と蓄電デバイス用外装材3との間に、本開示の金属端子用接着性フィルム1が配置されると、金属により構成された金属端子2の表面と、蓄電デバイス用外装材3の熱融着性樹脂層35(ポリオレフィンなどの熱融着性樹脂により形成された層)とが、金属端子用接着性フィルム1を介して接着される。金属端子用接着性フィルム1の第1ポリオレフィン層12aが金属端子2側に配置され、第2ポリオレフィン層12bが蓄電デバイス用外装材3側に配置され、第1ポリオレフィン層12aが金属端子2と密着し、第2ポリオレフィン層12bが蓄電デバイス用外装材3の熱融着性樹脂層35と密着する。
 本開示の金属端子用接着性フィルム1において、温度110℃環境で測定される基材11の表面硬度が15N/mm2以上であり、第1ポリオレフィン層12a及び第2ポリオレフィン層12bの少なくとも一方は、融解ピーク温度が105℃以上130℃以下である。本開示の金属端子用接着性フィルムは、蓄電デバイスの金属端子と蓄電デバイス用外装材の熱融着性樹脂層とを密着し、蓄電デバイスが高温(例えば100℃から130℃、好ましくは110℃から130℃、特に好ましくは120℃から130℃)になった場合に、金属端子用接着性フィルムの位置で蓄電デバイスが開封して、蓄電デバイス内部で発生したガスを外部に放出する観点から、第1ポリオレフィン層12a及び第2ポリオレフィン層12bのうち、少なくとも一方の融解ピーク温度が105℃以上130℃以下であれば、当該層から蓄電デバイスを開封させることができる。なお、後述の通り、基材11の110℃における表面硬度が15N/mm2を下回ると、仮に第1ポリオレフィン層12a及び第2ポリオレフィン層12bの少なくとも一方の融解ピーク温度が105℃以上130℃以下であっても、蓄電デバイスが高温になった場合に、金属端子用接着性フィルムの位置で蓄電デバイスを開封させることは難しい。これは、110℃環境における基材11の表面硬度が低いと、蓄電デバイス用外装材と金属端子用接着性フィルム付き金属端子を周縁部3aでヒートシールする工程において、金属端子用接着フィルムの第1ポリオレフィン層12a及び第2ポリオレフィン層12bのみならず、基材11及び蓄電デバイス用外装材の熱融着性樹脂層35が溶融し第1ポリオレフィン層12a及び第2ポリオレフィン層12bと基材層11が混ざり合ってしまうことで、結果的にシール部の耐熱性が高まり、開封し難くなることが原因と考えられる。本開示において、基材の表面硬度の測定、及び融解ピーク温度の測定方法は、それぞれ、以下の通りである。
<基材の表面硬度の測定>
 基材を、両面粘着テープを用いてスライドガラスの片面に接着し、測定サンプルとする。次に、超微小硬度計(例えば、フィッシャー・インストルメンツ社製のHM2000)に加熱ステージを設置し、測定サンプルの基材側の表面について、温度110℃環境(ステージの加熱温度110℃)での表面硬度を測定する。
<融解ピーク温度の測定>
 各測定サンプルについて、JIS K7121:2012(プラスチックの転移温度測定方法(JIS K7121:1987の追補1))の規定に準拠して融解ピーク温度を測定する。測定は、示差走査熱量計(DSC、例えばティー・エイ・インスツルメント製の示差走査熱量計Q200)を用いて行う。測定サンプルを、-50℃で15分間保持した後、10℃/分の昇温速度で-50℃から210℃まで昇温させて、1回目の融解ピーク温度P(℃)を測定した後、210℃にて10分間保持する。次に、10℃/分の降温速度で210℃から-50℃まで降温させて15分間保持する。さらに、10℃/分の昇温速度で-50℃から210℃まで昇温させて2回目の融解ピーク温度Q(℃)を測定する。なお、窒素ガスの流量は50ml/分とする。以上の手順によって、1回目に測定される融解ピーク温度P(℃)と、2回目に測定される融解ピーク温度Q(℃)を求める。以上の手順によって、1回目に測定される融解ピーク温度P(℃)の値を採用する。
 本開示の効果をより好適に奏する観点から、温度110℃環境における基材11の表面硬度としては、好ましくは約20N/mm2以上、より好ましくは約25N/mm2以上、さらに好ましくは約30N/mm2以上である。同様の観点から、当該表面硬度は、好ましくは約60N/mm2以下、より好ましくは約50N/mm2以下、さらに好ましくは約45N/mm2以下である。当該表面硬度の好ましい範囲としては、15~60N/mm2程度、15~50N/mm2程度、15~45N/mm2程度、20~60N/mm2程度、20~50N/mm2程度、20~45N/mm2程度、25~60N/mm2程度、25~50N/mm2程度、25~45N/mm2程度、30~60N/mm2程度、30~50N/mm2程度、30~45N/mm2程度が挙げられる。
 本開示の効果をより好適に奏する観点から、基材11の融解ピーク温度は、例えば約135℃以上、好ましくは約150℃以上、より好ましくは約155℃以上、さらに好ましくは約160℃以上、さらに好ましくは約163℃以上である。同様の観点から、基材11の融解ピーク温度は、好ましくは約180℃以下、より好ましくは約175℃以下、さらに好ましくは約170℃以下である。当該融解ピーク温度の好ましい範囲としては、135~180℃程度、135~175℃程度、135~170℃程度、150~180℃程度、150~175℃程度、150~170℃程度、155~180℃程度、155~175℃程度、155~170℃程度、160~180℃程度、160~175℃程度、160~170℃程度、163~180℃程度、163~175℃程度、163~170℃程度が挙げられる。
 本開示の効果をより好適に奏する観点から、金属端子2側に配置される第1ポリオレフィン層12aの融解ピーク温度は、好ましくは110℃以上、より好ましくは約115℃以上、さらに好ましくは約120℃以上である。同様の観点から、当該融解ピーク温度は、例えば150℃以下、好ましくは140℃以下、より好ましくは130℃以下、さらに好ましくは約128℃以下、さらに好ましくは約125℃以下である。当該融解ピーク温度の好ましい範囲としては、105~150℃程度、105~140℃程度、105~130℃程度、105~128℃程度、105~125℃程度、110~150℃程度、110~140℃程度、110~130℃程度、110~128℃程度、110~125℃程度、115~150℃程度、115~140℃程度、115~130℃程度、115~128℃程度、115~125℃程度、120~150℃程度、120~140℃程度、120~130℃程度、120~128℃程度、120~125℃程度が挙げられる。ただし、前記の通り、第1ポリオレフィン層12a及び第2ポリオレフィン層12bの少なくとも一方は、融解ピーク温度が105℃以上130℃以下である。
 同様の観点から、蓄電デバイス用外装材3側に配置される第2ポリオレフィン層12bの融解ピーク温度は、好ましくは約110℃以上、より好ましくは約115℃以上、さらに好ましくは約120℃以上である。同様の観点から、当該融解ピーク温度は、例えば150℃以下、好ましくは140℃以下、より好ましくは130℃以下、さらに好ましくは約128℃以下、さらに好ましくは約125℃以下である。当該融解ピーク温度の好ましい範囲としては、105~150℃程度、105~140℃程度、105~130℃程度、105~128℃程度、105~125℃程度、110~150℃程度、110~140℃程度、110~130℃程度、110~128℃程度、110~125℃程度、115~150℃程度、115~140℃程度、115~130℃程度、115~128℃程度、115~125℃程度、120~150℃程度、120~140℃程度、120~130℃程度、120~128℃程度、120~125℃程度が挙げられる。ただし、前記の通り、第1ポリオレフィン層12a及び第2ポリオレフィン層12bの少なくとも一方は、融解ピーク温度が105℃以上130℃以下である。
 また、第2ポリオレフィン層12bの融解ピーク温度は、130℃以上であることも好ましい。後述の通り、金属端子2側に配置される第1ポリオレフィン層12aの融解ピーク温度が105℃以上130℃以下であって、蓄電デバイス用外装材3側に配置される第2ポリオレフィン層12bの融解ピーク温度と、蓄電デバイス用外装材3の熱融着性樹脂層35の融解ピーク温度とが共に130℃以上であることにより、蓄電デバイスが高温(例えば100℃から130℃、好ましくは110℃から130℃、特に好ましくは120℃から130℃)になるまでは、蓄電デバイスの金属端子と蓄電デバイス用外装材の熱融着性樹脂層とを密着し、蓄電デバイスが当該高温(例えば100℃から130℃、好ましくは110℃から130℃、特に好ましくは120℃から130℃)になった場合に、金属端子用接着性フィルムの位置で蓄電デバイスが開封して、蓄電デバイス内部で発生したガスを外部に放出することができる。このような態様において、第2ポリオレフィン層12bの融解ピーク温度は、好ましくは130~150℃である。
 本開示の効果をより好適に奏する観点から、金属端子用接着性フィルム1の総厚みとしては、例えば約60μm以上、好ましくは約70μm以上、より好ましくは約80μm以上である。また、本開示の金属端子用接着性フィルム1の総厚みは、好ましくは約150μm以下、より好ましくは約120μm以下、さらに好ましくは約100μm以下である。本開示の金属端子用接着性フィルム1の総厚みの好ましい範囲としては、60~150μm程度、60~130μm程度、60~100μm程度、70~150μm程度、70~130μm程度、70~100μm程度、80~150μm程度、80~130μm程度、80~100μm程度が挙げられる。
 以下、第1ポリオレフィン層12a、第2ポリオレフィン層12b、及び基材11を構成する材料、厚みなどについて詳述する。
[第1ポリオレフィン層12a及び第2ポリオレフィン層12b]
 本開示の金属端子用接着性フィルム1は、図4に示すように、基材11の一方面側に第1ポリオレフィン層12aを備え、他方面側に第2ポリオレフィン層12bを備えている。第1ポリオレフィン層12aが金属端子2側に配置される。また、第2ポリオレフィン層12bが蓄電デバイス用外装材3側に配置される。本開示の金属端子用接着性フィルム1においては、両面側の表面に、それぞれ第1ポリオレフィン層12a及び第2ポリオレフィン層12bが位置している。
 本開示において、第1ポリオレフィン層12a及び第2ポリオレフィン層12bの少なくとも一方の融解ピーク温度は105℃以上130℃以下である。本開示の金属端子用接着性フィルム1は、蓄電デバイスの金属端子2と蓄電デバイス用外装材3の熱融着性樹脂層35とを密着し、蓄電デバイスが高温(例えば100℃から130℃、110~130℃、さらには120℃から130℃)になった場合に、金属端子用接着性フィルムの位置で蓄電デバイスが開封して、蓄電デバイス内部で発生したガスを外部に放出する観点から、第1ポリオレフィン層12a及び第2ポリオレフィン層12bのうち、少なくとも一方の融解ピーク温度が105℃以上130℃以下であれば、融解ピーク温度が105℃以上130℃以下である第1ポリオレフィン層12a又は第2ポリオレフィン層12bから蓄電デバイスを開封させることができる。ポリオレフィンの融解温度の調整は、プロピレンとエチレンとを共重合させることで可能である。通常、プロピレンに対してエチレンを5質量%以下でランダム共重合させることで融解ピーク温度を130℃程度まで下げることができる。また、特表2016-524002号公報に記載の方法を用いれば、融点が100℃程度のポリプロピレンを調製することができる。
 本開示の金属端子用接着性フィルム1において、第1ポリオレフィン層12a及び第2ポリオレフィン層12bは、それぞれ、ポリオレフィン系樹脂を含む層である。ポリオレフィン系樹脂としては、ポリオレフィン、酸変性ポリオレフィンなどが挙げられる。第1ポリオレフィン層12aは、ポリオレフィン系樹脂の中でも、酸変性ポリオレフィンを含むことが好ましく、酸変性ポリオレフィンにより形成された層であることがより好ましい。また、第2ポリオレフィン層12bは、ポリオレフィン系樹脂の中でも、ポリオレフィンまたは酸変性ポリオレフィンを含むことが好ましく、ポリオレフィンを含むことがより好ましく、ポリオレフィンまたは酸変性ポリオレフィンにより形成された層であることがさらに好ましい。酸変性ポリオレフィンは、金属との親和性が高い。また、ポリオレフィン及び酸変性ポリオレフィンは、それぞれ、ポリオレフィンなどの熱融着性樹脂との親和性が高い。従って、本開示の金属端子用接着性フィルム1においては、酸変性ポリオレフィンにより形成された第1ポリオレフィン層12aを金属端子2側に配置することにより、金属端子用接着性フィルム1と金属端子2との界面において、より一層優れた密着性を発揮することができる。また、ポリオレフィン又は酸変性ポリオレフィンにより形成された第2ポリオレフィン層12bを蓄電デバイス用外装材3の熱融着性樹脂層35側に配置することにより、金属端子用接着性フィルム1と熱融着性樹脂層35との界面において、より一層優れた密着性を発揮することができる。
 前記の通り、本開示の金属端子用接着性フィルム1の好ましい積層構成の具体例としては、酸変性ポリプロピレンにより形成された第1ポリオレフィン層/ポリプロピレンにより形成された基材/酸変性ポリプロピレンにより形成された第2ポリオレフィン層がこの順に積層された3層構成;酸変性ポリプロピレンにより形成された第1ポリオレフィン層/ポリプロピレンにより形成された基材/ポリプロピレンにより形成された第2ポリオレフィン層がこの順に積層された3層構成などが挙げられ、これらの中でも、蓄電デバイス用外装材3の熱融着性樹脂層35と第2ポリオレフィン層12bとの接着性の観点で後者の3層構成が特に好ましい。
 酸変性ポリオレフィンとしては、酸変性されたポリオレフィンであれば特に制限されないが、好ましくは不飽和カルボン酸またはその無水物でグラフト変性されたポリオレフィンが挙げられる。
 酸変性されるポリオレフィンとしては、具体的には、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン等のポリエチレン;ホモポリプロピレン、ポリプロピレンのブロックコポリマー(例えば、プロピレンとエチレンのブロックコポリマー)、ポリプロピレンのランダムコポリマー(例えば、プロピレンとエチレンのランダムコポリマー)等の結晶性又は非晶性のポリプロピレン;エチレン-ブテン-プロピレンのターポリマー等が挙げられる。これらのポリオレフィンの中でも、好ましくはポリエチレン及びポリプロピレンが挙げられ、特に好ましくはポリプロピレンである。
 また、酸変性されるポリオレフィンは、環状ポリオレフィンであってもよい。例えば、カルボン酸変性環状ポリオレフィンとは、環状ポリオレフィンを構成するモノマーの一部を、α,β-不飽和カルボン酸又はその無水物に代えて共重合することにより、或いは環状ポリオレフィンに対してα,β-不飽和カルボン酸又はその無水物をブロック重合又はグラフト重合することにより得られるポリマーである。
 酸変性される環状ポリオレフィンは、オレフィンと環状モノマーとの共重合体であり、前記環状ポリオレフィンの構成モノマーであるオレフィンとしては、例えば、エチレン、プロピレン、4-メチル-1-ペンテン、ブタジエン、イソプレン等が挙げられる。また、前記環状ポリオレフィンの構成モノマーである環状モノマーとしては、例えば、ノルボルネン等の環状アルケン;具体的には、シクロペンタジエン、ジシクロペンタジエン、シクロヘキサジエン、ノルボルナジエン等の環状ジエン等が挙げられる。これらのポリオレフィンの中でも、好ましくは環状アルケン、さらに好ましくはノルボルネンが挙げられる。構成モノマーとしては、スチレンも挙げられる。
 酸変性に使用されるカルボン酸またはその無水物としては、例えば、マレイン酸、アクリル酸、イタコン酸、クロトン酸、無水マレイン酸、無水イタコン酸等が挙げられる。第1ポリオレフィン層12aは、赤外分光法で分析すると、無水マレイン酸に由来するピークが検出されることが好ましい。例えば、赤外分光法にて無水マレイン酸変性ポリオレフィンを測定すると、波数1760cm-1付近と波数1780cm-1付近に無水マレイン酸由来のピークが検出される。第1ポリオレフィン層12a又は第2ポリオレフィン層12bが無水マレイン酸変性ポリオレフィンより構成された層である場合、赤外分光法にて測定すると、無水マレイン酸由来のピークが検出される。ただし、酸変性度が低いとピークが小さくなり検出されない場合がある。その場合は核磁気共鳴分光法にて分析可能である。
 第1ポリオレフィン層12a及び第2ポリオレフィン層12bは、それぞれ、1種の樹脂成分単独で形成してもよく、また2種以上の樹脂成分を組み合わせたブレンドポリマーにより形成してもよい。さらに、第1ポリオレフィン層12a及び第2ポリオレフィン層12bは、それぞれ、1層のみで形成されていてもよく、同一又は異なる樹脂成分によって2層以上で形成されていてもよい。第1ポリオレフィン層12a及び第2ポリオレフィン層12bの製膜性の観点からは、これらの層は、それぞれ、2種以上の樹脂成分を組み合わせたブレンドポリマーにより形成することが好ましい。ブレンドポリマーとする場合、第1ポリオレフィン層12aについては、酸変性ポリプロピレンを主成分(50質量%以上の成分)とし、50質量%以下を他の樹脂(柔軟性を向上させる観点からは、好ましくはポリエチレン)とすることが好ましい。また、第2ポリオレフィン層12bについては、ポリプロピレンを主成分(50質量%以上の成分)とし、50質量%以下を他の樹脂(柔軟性を向上させる観点からは、好ましくはポリエチレン)とすることが好ましい。一方、第1ポリオレフィン層12a及び第2ポリオレフィン層12bの耐電解液性の観点からは、第1ポリオレフィン層12aは、樹脂として酸変性ポリプロピレンを単独で含むことが好ましく、第2ポリオレフィン層12bは、樹脂として酸変性ポリプロピレン又はポリプロピレンを単独で含むことが好ましい。
 さらに、第1ポリオレフィン層12a及び第2ポリオレフィン層12bは、それぞれ、必要に応じて充填剤を含んでいてもよい。第1ポリオレフィン層12a及び第2ポリオレフィン層12bが充填剤を含むことにより、充填剤がスペーサー(Spacer)として機能するために、金属端子2と蓄電デバイス用外装材3のバリア層33との間の短絡を効果的に抑制することが可能となる。充填剤の粒径としては、0.1~35μm程度、好ましくは5.0~30μm程度、さらに好ましくは10~25μm程度の範囲が挙げられる。また、充填剤の含有量としては、第1ポリオレフィン層12a及び第2ポリオレフィン層12bを形成する樹脂成分100質量部に対して、それぞれ、5~30質量部程度、より好ましくは10~20質量部程度が挙げられる。
 充填剤としては、無機系、有機系のいずれも用いることができる。無機系充填剤としては、例えば、炭素(カーボン、グラファイト)、シリカ、酸化アルミニウム、チタン酸バリウム、酸化鉄、シリコンカーバイド、酸化ジルコニウム、珪酸ジルコニウム、酸化マグネシウム、酸化チタン、アルミ酸カルシウム、水酸化カルシウム、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム等が挙げられる。また、有機系充填剤としては、例えば、フッ素樹脂、フェノール樹脂、ユリア樹脂、エポキシ樹脂、アクリル樹脂、ベンゾグアナミン・ホルムアルデヒド縮合物、メラミン・ホルムアルデヒド縮合物、ポリメタクリル酸メチル架橋物、ポリエチレン架橋物等が挙げられる。形状の安定性、剛性、内容物耐性の点から、酸化アルミニウム、シリカ、フッ素樹脂、アクリル樹脂、ベンゾグアナミン・ホルムアルデヒド縮合物が好ましく、特にこの中でも球状の酸化アルミニウム、シリカがより好ましい。第1ポリオレフィン層12a及び第2ポリオレフィン層12bを形成する樹脂成分への充填剤の混合方法としては、予めバンバリーミキサー等で両者をメルトブレンドし、マスターバッチ化したものを所定の混合比にする方法、樹脂成分との直接混合方法などを採用することができる。
 また、第1ポリオレフィン層12a及び第2ポリオレフィン層12bは、それぞれ、必要に応じて顔料を含んでいてもよい。顔料としては、無機系の各種顔料を用いることができる。顔料の具体例としては、上記充填剤で例示した炭素(カーボン、グラファイト)が好ましく例示できる。炭素(カーボン、グラファイト)は、一般に蓄電デバイスの内部に使用されている材料であり、電解液に対する溶出の虞がない。また、着色効果が大きく接着性を阻害しない程度の添加量で充分な着色効果を得られると共に、熱で溶融することがなく、添加した樹脂の見かけの溶融粘度を高くすることができる。さらに、熱接着時(ヒートシール時)に加圧部が薄肉となることを防止して、蓄電デバイス用外装材と金属端子の間における優れた密封性を付与できる。
 第1ポリオレフィン層12a、第2ポリオレフィン層12bに顔料を添加する場合、その添加量としては、たとえば、粒径が約0.03μmのカーボンブラックを使用した場合、第1ポリオレフィン層12a、第2ポリオレフィン層12bを形成する樹脂成分100質量部に対して、それぞれ、0.05~0.3質量部程度、好ましくは0.1~0.2質量部程度が挙げられる。第1ポリオレフィン層12a、第2ポリオレフィン層12bに顔料を添加することにより、金属端子用接着性フィルム1の有無をセンサーで検知可能なもの、または目視で検査可能なものとすることができる。なお、第1ポリオレフィン層12a、第2ポリオレフィン層12bに充填剤と顔料とを添加する場合、同一の第1ポリオレフィン層12a、第2ポリオレフィン層12bに充填剤と顔料を添加してもよいが、金属端子用接着性フィルム1の熱融着性を阻害しない観点からは、充填剤及び顔料は、第1ポリオレフィン層12a、第2ポリオレフィン層12bに分けて添加することが好ましい。
 本開示の効果をより好適に奏する観点から、第1ポリオレフィン層12a及び第2ポリオレフィン層12bの厚さは、それぞれ、好ましくは約10μm以上、より好ましくは約15μm以上、さらに好ましくは約20μm以上であり、また、好ましくは約60μm以下、より好ましくは約55μm以下、さらに好ましくは50μm以下、さらに好ましくは40μm以下である。第1ポリオレフィン層12a及び第2ポリオレフィン層12bの厚さの好ましい範囲としては、それぞれ、10~60μm程度、10~55μm程度、10~50μm程度、10~40μm程度、15~60μm程度、15~55μm程度、15~50μm程度、15~40μm程度、20~60μm程度、20~55μm程度、20~50μm程度、20~40μm程度が挙げられる。
 同様の観点から、第1ポリオレフィン層12a及び第2ポリオレフィン層12bの合計厚みに対する、基材11の厚みの比としては、好ましくは約0.3以上、より好ましくは約0.4以上であり、また、好ましくは約1.0以下、より好ましくは約0.8以下であり、好ましい範囲としては、0.3~1.0程度、0.3~0.8程度、0.4~1.0程度、0.4~0.8程度が挙げられる。
 また、金属端子用接着性フィルム1の総厚みを100%とした場合、第1ポリオレフィン層12a及び第2ポリオレフィン層12bの合計厚みの割合としては、好ましくは30~80%程度、より好ましくは50~70%程度である。
[基材11]
 金属端子用接着性フィルム1において、基材11は、金属端子用接着性フィルム1の支持体として機能する層である。
 基材11は、前記の表面硬度を有する。
 基材11を形成する素材については、特に制限されるものではない。基材11を形成する素材としては、例えば、ポリオレフィン系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、エポキシ樹脂、アクリル樹脂、フッ素樹脂、珪素樹脂、フェノール樹脂、ポリエーテルイミド、ポリイミド、ポリカーボネート及びこれらの混合物や共重合物等が挙げられ、これらの中でも、特にポリオレフィン系樹脂が好ましい。すなわち、基材11を形成する素材は、ポリオレフィン、酸変性ポリオレフィンなどのポリオレフィン骨格を含む樹脂が好ましい。基材11を構成している樹脂がポリオレフィン骨格を含むことは、例えば、赤外分光法、ガスクロマトグラフィー質量分析法などにより分析可能である。
 前記の通り、基材11は、ポリオレフィン系樹脂を含むことが好ましく、ポリオレフィンを含むことが好ましく、ポリオレフィンにより形成された層であることがさらに好ましい。ポリオレフィンにより形成された層は、延伸ポリオレフィンフィルムであってもよいし、未延伸ポリオレフィンフィルムであってもよいが、未延伸ポリオレフィンフィルムであることが好ましい。ポリオレフィンとしては、具体的には、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン等のポリエチレン;ホモポリプロピレン、ポリプロピレンのブロックコポリマー(例えば、プロピレンとエチレンのブロックコポリマー)、ポリプロピレンのランダムコポリマー(例えば、プロピレンとエチレンのランダムコポリマー)等の結晶性又は非晶性のポリプロピレン;エチレン-ブテン-プロピレンのターポリマー等が挙げられる。これらのポリオレフィンの中でも、好ましくはポリエチレン及びポリプロピレンが挙げられ、より好ましくはポリプロピレンが挙げられる。また、耐電解液性に優れることから、基材11は、ホモポリプロピレンを含むことが好ましく、ホモポリプロピレンにより形成されていることがより好ましく、未延伸ホモポリプロピレンフィルムであることがさらに好ましい。
 ポリアミドとしては、具体的には、ナイロン6、ナイロン66、ナイロン610、ナイロン12、ナイロン46、ナイロン6とナイロン66との共重合体等の脂肪族系ポリアミド;テレフタル酸及び/又はイソフタル酸に由来する構成単位を含むナイロン6I、ナイロン6T、ナイロン6IT、ナイロン6I6T(Iはイソフタル酸、Tはテレフタル酸を表す)等のヘキサメチレンジアミン-イソフタル酸-テレフタル酸共重合ポリアミド、ポリメタキシリレンアジパミド(MXD6)等の芳香族を含むポリアミド;ポリアミノメチルシクロヘキシルアジパミド(PACM6)等の脂環系ポリアミド;さらにラクタム成分や、4,4’-ジフェニルメタン-ジイソシアネート等のイソシアネート成分を共重合させたポリアミド、共重合ポリアミドとポリエステルやポリアルキレンエーテルグリコールとの共重合体であるポリエステルアミド共重合体やポリエーテルエステルアミド共重合体;これらの共重合体等が挙げられる。これらのポリアミドは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
 ポリエステルとしては、具体的には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリエチレンイソフタレート、エチレンテレフタレートを繰り返し単位の主体とした共重合ポリエステル、ブチレンテレフタレートを繰り返し単位の主体とした共重合ポリエステル等が挙げられる。また、エチレンテレフタレートを繰り返し単位の主体とした共重合ポリエステルとしては、具体的には、エチレンテレフタレートを繰り返し単位の主体としてエチレンイソフタレートと重合する共重合体ポリエステル(以下、ポリエチレン(テレフタレート/イソフタレート)にならって略す)、ポリエチレン(テレフタレート/イソフタレート)、ポリエチレン(テレフタレート/アジペート)、ポリエチレン(テレフタレート/ナトリウムスルホイソフタレート)、ポリエチレン(テレフタレート/ナトリウムイソフタレート)、ポリエチレン(テレフタレート/フェニル-ジカルボキシレート)、ポリエチレン(テレフタレート/デカンジカルボキシレート)等が挙げられる。また、ブチレンテレフタレートを繰り返し単位の主体とした共重合ポリエステルとしては、具体的には、ブチレンテレフタレートを繰り返し単位の主体としてブチレンイソフタレートと重合する共重合体ポリエステル(以下、ポリブチレン(テレフタレート/イソフタレート)にならって略す)、ポリブチレン(テレフタレート/アジペート)、ポリブチレン(テレフタレート/セバケート)、ポリブチレン(テレフタレート/デカンジカルボキシレート)、ポリブチレンナフタレート等が挙げられる。これらのポリエステルは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
 また、基材11は、上記の樹脂で形成された不織布により形成されていてもよい。基材11が不織布である場合、基材11は、前述のポリオレフィン系樹脂、ポリアミド樹脂等で構成されていることが好ましい。
 基材11は、単層であってもよいし、複層であってもよい。基材11が複層である場合、少なくとも1つの層に、前記融解ピーク温度135℃以上である層が含まれていればよい。複層の具体例としては、例えば、ブロックポリプロピレン/ホモポリプロピレン/ブロックポリプロピレンが順に積層された3層構成などが挙げられる。
 また、基材11に着色剤を配合することにより、基材11を、着色剤を含む層とすることもできる。また、透明度の低い樹脂を選択して、光透過度を調整することもできる。基材11がフィルムの場合は、着色フィルムを用いることや、透明度の低いフィルムを用いることもできる。また、基材11が不織布の場合は、着色剤を含む繊維やバインダーを用いた不織布や、透明度の低い不織布を用いることができる。
 基材11が樹脂フィルムにより構成されている場合、基材11の表面には、必要に応じて、コロナ放電処理、オゾン処理、プラズマ処理等の公知の易接着手段が施されていてもよい。
 本開示の効果をより好適に奏する観点から、基材11の厚さは、好ましくは120μm以下、より好ましくは110μm以下、さらに好ましくは約100μm以下、さらに好ましくは約90μm以下である。また、基材11の厚さは、好ましくは約20μm以上、より好ましくは約30μm以上、さらに好ましくは約40μm以上である。基材11の厚さの好ましい範囲としては、20~120μm程度、20~110μm程度、20~100μm程度、20~90μm程度、30~120μm程度、30~110μm程度、30~100μm程度、30~90μm程度、40~120μm程度、40~110μm程度、40~100μm程度、40~90μm程度が挙げられる。
 本開示の金属端子用接着性フィルム1は、例えば、基材11の両表面上に、それぞれ、第1ポリオレフィン層12a及び第2ポリオレフィン層12bを積層することにより製造することができる。基材11と第1ポリオレフィン層12a及び第2ポリオレフィン層12bとの積層は、押出ラミネート法、Tダイ法、インフレーション法、サーマルラミネート法などの公知の方法により積層することができる。
 金属端子用接着性フィルム1を金属端子2と蓄電デバイス用外装材3との間に介在させる方法としては、特に制限されず、例えば、図1~3に示すように、金属端子2が蓄電デバイス用外装材3によって挟持される部分において、金属端子2に金属端子用接着性フィルム1を巻き付けてもよい。また、図示を省略するが、金属端子2が蓄電デバイス用外装材3によって挟持される部分において、金属端子用接着性フィルム1が2つの金属端子2を横断するようにして、金属端子2の両面側に配置されてもよい。
[金属端子2]
 本開示の金属端子用接着性フィルム1は、金属端子2と蓄電デバイス用外装材3との間に介在させて使用される。金属端子2(タブ)は、蓄電デバイス素子4の電極(正極または負極)に電気的に接続される導電部材であり、金属材料により構成されている。金属端子2を構成する金属材料としては、特に制限されず、例えば、アルミニウム、ニッケル、銅などが挙げられる。例えば、リチウムイオン蓄電デバイスの正極に接続される金属端子2は、通常、アルミニウムなどにより構成されている。また、リチウムイオン蓄電デバイスの負極に接続される金属端子2は、通常、銅、ニッケルなどにより構成されている。
 金属端子2の表面は、耐電解液性を高める観点から、化成処理が施されていることが好ましい。例えば、金属端子2がアルミニウムにより形成されている場合、化成処理の具体例としては、リン酸塩、クロム酸塩、フッ化物、トリアジンチオール化合物などの耐食性皮膜を形成する公知の方法が挙げられる。耐食性皮膜を形成する方法の中でも、フェノール樹脂、フッ化クロム(III)化合物、リン酸の3成分から構成されたものを用いるリン酸クロメート処理が好適である。
 金属端子2の大きさは、使用される蓄電デバイスの大きさなどに応じて適宜設定すればよい。金属端子2の厚さとしては、好ましくは50~1000μm程度、より好ましくは70~800μm程度が挙げられる。また、金属端子2の長さとしては、好ましくは1~200mm程度、より好ましくは3~150mm程度が挙げられる。また、金属端子2の幅としては、好ましくは1~200mm程度、より好ましくは3~150mm程度が挙げられる。
[蓄電デバイス用外装材3]
 蓄電デバイス用外装材3としては、少なくとも、基材層31、バリア層33、及び熱融着性樹脂層35をこの順に有する積層体からなる積層構造を有するものが挙げられる。図6に、蓄電デバイス用外装材3の断面構造の一例として、基材層31、必要に応じて設けられる接着剤層32、バリア層33、必要に応じて設けられる接着層34、及び熱融着性樹脂層35がこの順に積層されている態様について示す。蓄電デバイス用外装材3においては、基材層31が外層側になり、熱融着性樹脂層35が最内層になる。蓄電デバイスの組み立て時に、蓄電デバイス素子4の周縁に位置する熱融着性樹脂層35同士を接面させて熱融着することにより蓄電デバイス素子4が密封され、蓄電デバイス素子4が封止される。なお、図1から図3には、エンボス成形などによって成形されたエンボスタイプの蓄電デバイス用外装材3を用いた場合の蓄電デバイス10を図示しているが、蓄電デバイス用外装材3は成形されていないパウチタイプであってもよい。なお、パウチタイプには、三方シール、四方シール、ピロータイプなどが存在するが、何れのタイプであってもよい。
 蓄電デバイス用外装材3を構成する積層体の厚みとしては、特に制限されないが、上限については、コスト削減、エネルギー密度向上等の観点からは、好ましくは約180μm以下、約160μm以下、約155μm以下、約140μm以下、約130μm以下、約120μm以下が挙げられ、下限については、蓄電デバイス素子4を保護するという蓄電デバイス用外装材3の機能を維持する観点からは、好ましくは約35μm以上、約45μm以上、約60μm以上、約80μm以上が挙げられ、好ましい範囲については、例えば、35~180μm程度、35~160μm程度、35~155μm程度、35~140μm程度、35~130μm程度、35~120μm程度、45~180μm程度、45~160μm程度、45~155μm程度、45~140μm程度、45~130μm程度、45~120μm程度、60~180μm程度、60~160μm程度、60~155μm程度、60~140μm程度、60~130μm程度、60~120μm程度、80~180μm程度、80~160μm程度、80~155μm程度、80~140μm程度、80~130μm程度、80~120μm程度が挙げられる。
(基材層31)
 蓄電デバイス用外装材3において、基材層31は、蓄電デバイス用外装材の基材として機能する層であり、最外層側を形成する層である。
 基材層31を形成する素材については、絶縁性を備えるものであることを限度として特に制限されるものではない。基材層31を形成する素材としては、例えば、ポリエステル、ポリアミド、エポキシ、アクリル樹脂、フッ素樹脂、ポリウレタン、珪素樹脂、フェノール、ポリエーテルイミド、ポリイミド、及びこれらの混合物や共重合物等が挙げられる。ポリエチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステルは、耐電解液性に優れ、電解液の付着に対して白化等が発生し難いという利点があり、基材層31の形成素材として好適に使用される。また、ポリアミドフィルムは延伸性に優れており、成形時の基材層31の樹脂割れによる白化の発生を防ぐことができ、基材層31の形成素材として好適に使用される。
 基材層31は、1軸又は2軸延伸された樹脂フィルムで形成されていてもよく、また未延伸の樹脂フィルムで形成してもよい。中でも、1軸又は2軸延伸された樹脂フィルム、とりわけ2軸延伸された樹脂フィルムは、配向結晶化することにより耐熱性が向上しているので、基材層31として好適に使用される。
 これらの中でも、基材層31を形成する樹脂フィルムとして、好ましくはナイロン、ポリエステル、更に好ましくは2軸延伸ナイロン、2軸延伸ポリエステルが挙げられる。
 基材層31は、耐ピンホール性及び蓄電デバイスの包装体とした時の絶縁性を向上させるために、異なる素材の樹脂フィルムを積層化することも可能である。具体的には、ポリエステルフィルムとナイロンフィルムとを積層させた多層構造や、2軸延伸ポリエステルと2軸延伸ナイロンとを積層させた多層構造等が挙げられる。基材層31を多層構造にする場合、各樹脂フィルムは接着剤を介して接着してもよく、また接着剤を介さず直接積層させてもよい。接着剤を介さず接着させる場合には、例えば、共押出し法、サンドラミネート法、サーマルラミネート法等の熱溶融状態で接着させる方法が挙げられる。
 また、基材層31は、成形性を向上させるために低摩擦化させておいてもよい。基材層31を低摩擦化させる場合、その表面の摩擦係数については特に制限されないが、例えば1.0以下が挙げられる。基材層31を低摩擦化するには、例えば、マット処理、スリップ剤の薄膜層の形成、これらの組み合わせ等が挙げられる。
 基材層31の厚さについては、例えば、10~50μm程度、好ましくは15~30μm程度が挙げられる。
(接着剤層32)
 蓄電デバイス用外装材3において、接着剤層32は、基材層31に密着性を付与させるために、必要に応じて、基材層31上に配置される層である。即ち、接着剤層32は、基材層31とバリア層33の間に設けられる。
 接着剤層32は、基材層31とバリア層33とを接着可能である接着剤によって形成される。接着剤層32の形成に使用される接着剤は、2液硬化型接着剤であってもよく、また1液硬化型接着剤であってもよい。また、接着剤層32の形成に使用される接着剤の接着機構についても、特に制限されず、化学反応型、溶剤揮発型、熱溶融型、熱圧型等のいずれであってもよい。
 接着剤層32の形成に使用できる接着剤の樹脂成分としては、展延性、高湿度条件下における耐久性や黄変抑制作用、ヒートシール時の熱劣化抑制作用等が優れ、基材層31とバリア層33との間のラミネート強度の低下を抑えてデラミネーションの発生を効果的に抑制するという観点から、好ましくはポリウレタン系2液硬化型接着剤;ポリアミド、ポリエステル、又はこれらと変性ポリオレフィンとのブレンド樹脂が挙げられる。
 また、接着剤層32は異なる接着剤成分で多層化してもよい。接着剤層32を異なる接着剤成分で多層化する場合、基材層31とバリア層33とのラミネート強度を向上させるという観点から、基材層31側に配される接着剤成分として基材層31との接着性に優れる樹脂を選択し、バリア層33側に配される接着剤成分としてバリア層33との接着性に優れる接着剤成分を選択することが好ましい。接着剤層32は異なる接着剤成分で多層化する場合、具体的には、バリア層33側に配置される接着剤成分としては、好ましくは、酸変性ポリオレフィン、金属変性ポリオレフィン、ポリエステルと酸変性ポリオレフィンとの混合樹脂、共重合ポリエステルを含む樹脂等が挙げられる。
 接着剤層32の厚さについては、例えば、2~50μm程度、好ましくは3~25μm程度が挙げられる。
(バリア層33)
 蓄電デバイス用外装材3において、バリア層33は、蓄電デバイス用外装材の強度向上の他、蓄電デバイス内部に水蒸気、酸素、光などが侵入することを防止する機能を有する層である。バリア層33は、金属層、すなわち、金属で形成されている層であることが好ましい。バリア層33を構成する金属としては、具体的には、アルミニウム、ステンレス、チタンなどが挙げられ、好ましくはアルミニウムが挙げられる。バリア層33は、例えば、金属箔や金属蒸着膜、無機酸化物蒸着膜、炭素含有無機酸化物蒸着膜、これらの蒸着膜を設けたフィルムなどにより形成することができ、金属箔により形成することが好ましく、アルミニウム箔により形成することがさらに好ましい。蓄電デバイス用外装材の製造時に、バリア層33にしわやピンホールが発生することを防止する観点からは、バリア層は、例えば、焼きなまし処理済みのアルミニウム(JIS H4160:1994 A8021H-O、JIS H4160:1994 A8079H-O、JIS H4000:2014 A8021P-O、JIS H4000:2014 A8079P-O)など軟質アルミニウム箔により形成することがより好ましい。
 バリア層33の厚さについては、蓄電デバイス用外装材を薄型化しつつ、成形によってもピンホールの発生し難いものとする観点から、好ましくは10~200μm程度、より好ましくは20~100μm程度が挙げられる。
 また、バリア層33は、接着の安定化、溶解や腐食の防止などのために、少なくとも一方の面、好ましくは両面が化成処理されていることが好ましい。ここで、化成処理とは、バリア層の表面に耐食性皮膜を形成する処理をいう。
(接着層34)
 蓄電デバイス用外装材3において、接着層34は、熱融着性樹脂層35を強固に接着させるために、バリア層33と熱融着性樹脂層35の間に、必要に応じて設けられる層である。
 接着層34は、バリア層33と熱融着性樹脂層35を接着可能である接着剤によって形成される。接着層の形成に使用される接着剤の組成については、特に制限されないが、例えば、酸変性ポリオレフィンを含む樹脂組成物が挙げられる。酸変性ポリオレフィンとしては、第1ポリオレフィン層12a及び第2ポリオレフィン層12bで例示したものと同じものが例示できる。
 接着層34の厚さについては、例えば、1~40μm程度、好ましくは2~30μm程度が挙げられる。
(熱融着性樹脂層35)
 蓄電デバイス用外装材3において、熱融着性樹脂層35は、最内層に該当し、蓄電デバイスの組み立て時に熱融着性樹脂層同士が熱融着して蓄電デバイス素子を密封する層である。
 熱融着性樹脂層35に使用される樹脂成分については、熱融着可能であることを限度として特に制限されないが、例えば、ポリオレフィン、環状ポリオレフィンが挙げられる。
 前記ポリオレフィンとしては、具体的には、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン等のポリエチレン;ホモポリプロピレン、ポリプロピレンのブロックコポリマー(例えば、プロピレンとエチレンのブロックコポリマー)、ポリプロピレンのランダムコポリマー(例えば、プロピレンとエチレンのランダムコポリマー)等の結晶性又は非晶性のポリプロピレン;エチレン-ブテン-プロピレンのターポリマー等が挙げられる。これらのポリオレフィンの中でも、好ましくはポリエチレン及びポリプロピレンが挙げられる。
 前記環状ポリオレフィンは、オレフィンと環状モノマーとの共重合体であり、前記環状ポリオレフィンの構成モノマーであるオレフィンとしては、例えば、エチレン、プロピレン、4-メチル-1-ペンテン、ブタジエン、イソプレン、等が挙げられる。また、前記環状ポリオレフィンの構成モノマーである環状モノマーとしては、例えば、ノルボルネン等の環状アルケン;具体的には、シクロペンタジエン、ジシクロペンタジエン、シクロヘキサジエン、ノルボルナジエン等の環状ジエン等が挙げられる。これらのポリオレフィンの中でも、好ましくは環状アルケン、さらに好ましくはノルボルネンが挙げられる。構成モノマーとしては、スチレンも挙げられる。
 これらの樹脂成分の中でも、好ましくは結晶性又は非晶性のポリオレフィン、環状ポリオレフィン、及びこれらのブレンドポリマー;さらに好ましくはポリエチレン、ポリプロピレン、エチレンとノルボルネンの共重合体、及びこれらの中の2種以上のブレンドポリマーが挙げられる。
 熱融着性樹脂層35は、1種の樹脂成分単独で形成してもよく、また2種以上の樹脂成分を組み合わせたブレンドポリマーにより形成してもよい。さらに、熱融着性樹脂層35は、1層のみで形成されていてもよいが、同一又は異なる樹脂成分によって2層以上形成されていてもよい。第2ポリオレフィン層12bと熱融着性樹脂層35の樹脂が共通していると、これらの層間の密着性が向上することから、特に好ましい。
 熱融着性樹脂層35の融解ピーク温度としては、例えば約120℃以上、好ましくは約125℃以上、さらに好ましくは約130℃以上、さらに好ましくは130℃以上、さらに好ましくは135℃以上であり、また、好ましくは約160℃以下、より好ましくは155℃以下である。また、熱融着性樹脂層35の融解ピーク温度の好ましい範囲としては、120~160℃程度、120~155℃程度、125~160℃程度、125~155℃程度、130~160℃程度、130~155℃程度、135~160℃程度、135~155℃程度、140~160℃程度、140~155℃程度である。前記の通り、金属端子2側に配置される第1ポリオレフィン層12aの融解ピーク温度が105℃以上130℃以下であって、蓄電デバイス用外装材3側に配置される第2ポリオレフィン層12bの融解ピーク温度と、蓄電デバイス用外装材3の熱融着性樹脂層35の融解ピーク温度とが共に130℃以上であることにより、蓄電デバイスが高温(例えば100℃から130℃、好ましくは110℃から130℃、特に好ましくは120℃から130℃)になるまでは、蓄電デバイスの金属端子と蓄電デバイス用外装材の熱融着性樹脂層とを密着し、蓄電デバイスが当該高温(例えば100℃から130℃、好ましくは110℃から130℃、特に好ましくは120℃から130℃)になった場合に、金属端子用接着性フィルムの位置で蓄電デバイスが開封して、蓄電デバイス内部で発生したガスを外部に放出することができる。
 また、熱融着性樹脂層35の厚さとしては、特に制限されないが、2~2000μm程度、好ましくは5~1000μm程度、さらに好ましくは10~500μm程度が挙げられる。また、熱融着性樹脂層35の厚さとしては、例えば約100μm以下、好ましくは約85μm以下、より好ましくは15~85μm程度が挙げられる。なお、例えば、後述の接着層5の厚みが10μm以上である場合には、熱融着性樹脂層4の厚みとしては、好ましくは約85μm以下、より好ましくは15~45μm程度が挙げられ、例えば後述の接着層5の厚みが10μm未満である場合や接着層5が設けられていない場合には、熱融着性樹脂層4の厚みとしては、好ましくは約20μm以上、より好ましくは35~85μm程度が挙げられる。
2.蓄電デバイス
 本開示の蓄電デバイス10は、少なくとも、正極、負極、及び電解質を備えた蓄電デバイス素子4と、当該蓄電デバイス素子4を封止する蓄電デバイス用外装材3と、正極及び負極のそれぞれに電気的に接続され、蓄電デバイス用外装材3の外側に突出した金属端子2とを備えている。本開示の蓄電デバイス10においては、金属端子2と蓄電デバイス用外装材3との間に、本開示の金属端子用接着性フィルム1が介在されてなることを特徴とする。すなわち、本開示の蓄電デバイス10は、金属端子2と蓄電デバイス用外装材3との間に、本開示の金属端子用接着性フィルム1が介在する工程を備える方法により製造することができる。
 具体的には、少なくとも正極、負極、及び電解質を備えた蓄電デバイス素子4を、蓄電デバイス用外装材3で、正極及び負極の各々に接続された金属端子2を外側に突出させた状態で、本開示の金属端子用接着性フィルム1を金属端子2と熱融着性樹脂層35との間に介在させ、蓄電デバイス素子4の周縁に蓄電デバイス用外装材3のフランジ部(熱融着性樹脂層35同士が接触する領域であり、蓄電デバイス用外装材3の周縁部3a)が形成できるようにして被覆し、フランジ部の熱融着性樹脂層35同士をヒートシールして密封させることによって、蓄電デバイス用外装材3を使用した蓄電デバイス10が提供される。なお、蓄電デバイス用外装材3を用いて蓄電デバイス素子4を収容する場合、蓄電デバイス用外装材3の熱融着性樹脂層35が内側(蓄電デバイス素子4と接する面)になるようにして用いられる。
 また、本開示の蓄電デバイス10は、少なくとも、正極、負極、及び電解質を備えた蓄電デバイス素子と、当該蓄電デバイス素子を封止する蓄電デバイス用外装材と、正極及び負極のそれぞれに電気的に接続され、蓄電デバイス用外装材の外側に突出した金属端子とを備える蓄電デバイスであって、金属端子と蓄電デバイス用外装材との間に、金属端子用接着性フィルムが介在されてなり、金属端子用接着性フィルムは、金属端子側に配置される第1ポリオレフィン層と、基材と、蓄電デバイス用外装材側に配置される第2ポリオレフィン層とをこの順に備える積層体から構成されており、温度100℃以上130℃以下の環境において、蓄電デバイスは、金属端子用接着性フィルムの第1ポリオレフィン層又は第2ポリオレフィン層が積層されている位置から開封する、蓄電デバイスであってもよい。すなわち、当該蓄電デバイスにおいては、蓄電デバイスが金属端子用接着性フィルム1の第1ポリオレフィン層12a又は第2ポリオレフィン層12bが積層されている位置から開封するものであれば、温度110℃環境で測定される基材11の表面硬度は15N/mm2以上でなくてもよく、さらに、第1ポリオレフィン層12a及び第2ポリオレフィン層12bの少なくとも一方の融解ピーク温度は105℃以上130℃以下でなくてもよい。前記した本開示の金属端子用接着性フィルム1のように、基材11の温度110℃環境で測定される表面硬度が15N/mm2以上であって、かつ、第1ポリオレフィン層12a及び第2ポリオレフィン層12bの少なくとも一方の融解ピーク温度が105℃以上130℃以下であれば、温度100℃以上130℃以下、好ましくは110℃以上130℃以下、より好ましくは120℃以上130℃以下の環境において、金属端子用接着性フィルム1の第1ポリオレフィン層12a又は第2ポリオレフィン層12bが積層されている位置(特に、第1ポリオレフィン層12aと基材11との界面部分、又は、第2ポリオレフィン層12bと基材11との界面部分)から蓄電デバイスを好適に開封させることができる。
 さらに、本開示の蓄電デバイス10は、少なくとも、正極、負極、及び電解質を備えた前記蓄電デバイス素子と、当該蓄電デバイス素子を封止する蓄電デバイス用外装材と、前記正極及び前記負極のそれぞれに電気的に接続され、前記蓄電デバイス用外装材の外側に突出した前記金属端子とを備える蓄電デバイスであって、前記金属端子と前記蓄電デバイス用外装材との間に、金属端子用接着性フィルムが介在されてなり、金属端子用接着性フィルムは、前記金属端子側に配置される第1ポリオレフィン層と、基材と、前記蓄電デバイス用外装材側に配置される第2ポリオレフィン層とをこの順に備える積層体から構成されており、前記第1ポリオレフィン層は、融解ピーク温度が105℃以上130℃以下であり、前記第2ポリオレフィン層は、融解ピーク温度が130℃以上であり、前記蓄電デバイス用外装材は、少なくとも、基材層、バリア層、及び熱融着性樹脂層を備える積層体から構成されており、前記熱融着性樹脂層の融解ピーク温度が130℃以上である、蓄電デバイスであってもよい。すなわち、当該蓄電デバイスにおいては、金属端子側に配置される第1ポリオレフィン層の融解ピーク温度は105℃以上130℃以下であって、蓄電デバイス用外装材側に配置される第2ポリオレフィン層の融解ピーク温度と、蓄電デバイス用外装材の熱融着性樹脂層の融解ピーク温度とが共に130℃以上である。蓄電デバイスがこのような構成を備えることにより、蓄電デバイスが高温(例えば100℃から130℃、好ましくは110℃から130℃、特に好ましくは120℃から130℃)になるまでは、蓄電デバイスの金属端子と蓄電デバイス用外装材の熱融着性樹脂層とを密着し、蓄電デバイスが当該高温(例えば100℃から130℃、好ましくは110℃から130℃、特に好ましくは120℃から130℃)になった場合に、金属端子用接着性フィルムの位置で蓄電デバイスが開封して、蓄電デバイス内部で発生したガスを外部に放出することができる。
 本開示の蓄電デバイス用外装材は、電池(コンデンサー、キャパシター等を含む)などの蓄電デバイスに好適に使用することができる。また、本開示の蓄電デバイス用外装材は、一次電池、二次電池のいずれに使用してもよいが、好ましくは二次電池である。本開示の蓄電デバイス用外装材が適用される二次電池の種類については、特に制限されず、例えば、リチウムイオン電池、リチウムイオンポリマー電池、全固体電池、鉛蓄電池、ニッケル・水素蓄電池、ニッケル・カドミウム蓄電池、ニッケル・鉄蓄電池、ニッケル・亜鉛蓄電池、酸化銀・亜鉛蓄電池、金属空気電池、多価カチオン電池、コンデンサー、キャパシター等が挙げられる。これらの二次電池の中でも、本開示の蓄電デバイス用外装材の好適な適用対象として、リチウムイオン電池及びリチウムイオンポリマー電池が挙げられる。
 以下に実施例及び比較例を示して本開示を詳細に説明する。但し、本開示は実施例に限定されるものではない。
実施例1
<金属端子用接着性フィルムの製造>
 特表平10-502975号公報に記載の方法を用いて、融解ピーク温度130℃のポリプロピレンを合成した。次に過酸化物の存在下、無水マレイン酸と反応させることで、融解ピーク温度123℃の無水マレイン酸変性ポリプロピレン(PPa)を合成し、金属端子側に配置される第1ポリオレフィン層、および蓄電デバイス用外装材側に配置される第2ポリオレフィン層(PPa)とした。さらに基材として未延伸ポリプロピレンフィルム(CPP、ホモポリプロピレン、厚み40μm、融解ピーク温度163℃)を用意し、未延伸ポリプロピレンフィルムの両面にコロナ処理(0.2kW)を施した。次に、押出機及びTダイキャスティング装置を用いて、未延伸ポリプロピレンフィルムの一方面に、第1ポリオレフィン層を形成する無水マレイン酸変性ポリプロピレン、他方面に、第2ポリオレフィン層を形成する酸変性ポリプロピレンを、温度260℃、厚み20μmで押出し、それぞれ、第1ポリオレフィン層(PPa層 厚み20μm)/基材(CPP層 厚み40μm)/第2ポリオレフィン層(PPa層 厚み20μm)が順に積層された金属端子用接着性フィルムを得た。
<基材の表面硬度の測定>
 基材の表面硬度としては、マルテンス硬度を採用した。基材として用いた未延伸ポリプロピレンフィルム(CPP)を、両面粘着テープを用いてスライドガラス(76mm×26mm×1mm)の片面に接着し、測定サンプルとした。次に、ビッカース圧子を取り付けた超微小硬度計(例えば、フィッシャー・インストルメンツ社製のHM2000)に加熱ステージを設置し、ステージ温度を110℃に設定してサンプルを5分加熱した。次に測定サンプルの基材側の表面について圧子を押込速度0.1μm/sで深さ1μmまで押込み、表面硬度を測定した。測定値は10回測定し、その平均値を採用した。測定結果を表1に示す。
<融解ピーク温度の測定>
 作製したポリオレフィンについて、JIS K7121:2012(プラスチックの転移温度測定方法(JIS K7121:1987の追補1))の規定に準拠して融解ピーク温度を測定した。測定は、示差走査熱量計(DSC、ティー・エイ・インスツルメント製の示差走査熱量計Q200)を用いて行った。測定サンプルを、-50℃で15分間保持した後、10℃/分の昇温速度で-50℃から210℃まで昇温させて、1回目の融解ピーク温度P(℃)を測定した後、210℃にて10分間保持した。次に、10℃/分の降温速度で210℃から-50℃まで降温させて15分間保持した。さらに、10℃/分の昇温速度で-50℃から210℃まで昇温させて2回目の融解ピーク温度Q(℃)を測定した。なお、窒素ガスの流量は50ml/分とした。以上の手順によって、1回目に測定される融解ピーク温度P(℃)と、2回目に測定される融解ピーク温度Q(℃)を求め、1回目に測定された融解ピーク温度を融解ピーク温度とした。測定結果を表1に示す。
<開封試験方法>
 幅4mm、厚み70μm、長さ40mmのアルミニウム板を金属端子とした。また、金属端子用接着性フィルムを、長さ1cm、幅1cmのサイズに裁断した。次に、図5の模式図に示すように、金属端子用接着性フィルムと金属端子の長辺とが直交するようにして、金属端子用接着性フィルム2枚の間に、金属端子を挟み込み、圧力0.2MPa、温度180℃、時間3秒の条件で金属端子用接着性フィルムを金属端子に熱融着させて、金属端子用接着性フィルム付き金属端子を得た。また、基材層(PET(厚み12μm)/接着剤(厚み2μm)/ナイロン(厚み15μm))/接着剤層(厚み2μm)/バリア層(アルミニウム合金箔 厚み40μm)/接着層(無水マレイン酸変性ポリプロピレン 厚み25μm)/熱融着性樹脂層(ポリプロピレン 融解ピーク温度150℃、厚み25μm)がこの順に積層された、総厚121μmの蓄電デバイス用外装材を用意し、8cm×19cmのサイズに裁断した。次に、蓄電デバイス用外装材の短辺側に、金属端子用接着性フィルム付き金属端子2個を2cmの間隔を空けて設置し、蓄電デバイス用外装材の長辺を折り返した。次に、圧力0.5MPa、温度190℃、シール幅3mmの条件で、金属端子用接着性フィルム付き金属端子を配置した短辺側をヒートシールした。さらに、一方の長辺側を同様にしてヒートシールし、袋状となったサンプルに水1gを入れた後、開口辺(長辺側)を同様にヒートシールして、水を密封した試験サンプルとした。試験サンプルの金属端子部分に熱電対を取付け、オーブン内に設置し、室温(25℃)から昇温速度6℃/分で試験サンプル温度を140℃になるまで加熱した。120℃以上130℃以下の間で開封した場合は評価A、100℃以上120℃未満で開封した場合は評価B、130℃を超えて140℃以下で開封した又は130℃を超えて140℃でも開封しなかった場合を評価Cとした。結果を表1に示す。
実施例2
 外装側の第2ポリオレフィン層に融解ピーク温度144℃の無水マレイン酸変性ポリプロピレンを用いた以外は実施例1と同様に評価した。
実施例3
 外装側の第2ポリオレフィン層に融解ピーク温度158℃のポリプロピレンを用いた以外は実施例1と同様に評価した。
実施例4
 金属端子側の第1ポリオレフィン層に融解ピーク温度144℃の無水マレイン酸変性ポリプロピレンを、外装側の第2ポリオレフィン層に融解ピーク温度120℃のポリプロピレンを用いた以外は実施例1と同様に評価した。
実施例5
 基材として未延伸ポリプロピレンフィルム(CPP、ホモポリプロピレン、厚み40μm、融解ピーク温度138℃)を用いた以外は実施例1と同様に評価した。
実施例6
 金属端子側の第1ポリオレフィン層に融解ピーク温度110℃の無水マレイン酸変性ポリプロピレンを、外装側の第2ポリオレフィン層に融解ピーク温度144℃のポリプロピレンを用いた以外は実施例1と同様に評価した。
実施例7
 金属端子側の第1ポリオレフィン層に融解ピーク温度144℃の無水マレイン酸変性ポリプロピレンを、外装側の第2ポリオレフィン層に融解ピーク温度110℃のポリプロピレンを用いた以外は実施例1と同様に評価した。
実施例8
 金属端子側の第1ポリオレフィン層に融解ピーク温度105℃の無水マレイン酸変性ポリプロピレンを、外装側の第2ポリオレフィン層に融解ピーク温度144℃のポリプロピレンを用いた以外は実施例1と同様に評価した。
実施例9
 金属端子側の第1ポリオレフィン層に融解ピーク温度144℃の無水マレイン酸変性ポリプロピレンを、外装側の第2ポリオレフィン層に融解ピーク温度105℃のポリプロピレンを用いた以外は実施例1と同様に評価した。
比較例1
 金属端子側の第1ポリオレフィン層と、外装側の第2ポリオレフィン層に融解ピーク温度144℃の無水マレイン酸変性ポリプロピレンを用いた以外は実施例1と同様に評価した。
比較例2
 金属端子側の第1ポリオレフィン層に融解ピーク温度144℃の無水マレイン酸変性ポリプロピレンを、外装側の第2ポリオレフィン層に融解ピーク温度158℃のポリプロピレンを用いた以外は実施例1と同様に評価した。
比較例3
 基材として未延伸ポリプロピレンフィルム(CPP、ランダムポリプロピレン、厚み40μm、融解ピーク温度133℃)を用いた以外は実施例1と同様に評価した。
比較例4
 基材として未延伸ポリプロピレンフィルム(CPP、ランダムポリプロピレン、厚み40μm、融解ピーク温度143℃)を用いた以外は実施例1と同様に評価した。
Figure JPOXMLDOC01-appb-T000001
 以上のとおり、本開示は、下記に掲げる態様の発明を提供する。
項1. 蓄電デバイス素子の電極に電気的に接続された金属端子と、前記蓄電デバイス素子を封止する蓄電デバイス用外装材との間に介在される、金属端子用接着性フィルムであって、
 前記金属端子用接着性フィルムは、前記金属端子側に配置される第1ポリオレフィン層と、基材と、前記蓄電デバイス用外装材側に配置される第2ポリオレフィン層とをこの順に備える積層体から構成されており、
 前記第1ポリオレフィン層及び前記第2ポリオレフィン層の少なくとも一方は、融解ピーク温度が105℃以上130℃以下であり、
 温度110℃環境で測定される前記基材の表面硬度が、15N/mm2以上である、金属端子用接着性フィルム。
項2. 前記第1ポリオレフィン層及び前記第2ポリオレフィン層の少なくとも一方は、酸変性ポリオレフィンを含む、項1に記載の金属端子用接着性フィルム。
項3. 前記基材は、ポリオレフィン骨格を含む、項1又は2に記載の金属端子用接着性フィルム。
項4. 前記第1ポリオレフィン層と前記基材とが接面しており、かつ、前記第2ポリオレフィン層と前記基材とが接面している、項1~3のいずれか1項に記載の金属端子用接着性フィルム。
項5. 蓄電デバイス素子の電極に電気的に接続された金属端子と、前記蓄電デバイス素子を封止する蓄電デバイス用外装材との間に介在される、金属端子用接着性フィルムの製造方法であって、
 前記金属端子用接着性フィルムは、前記金属端子側に配置される第1ポリオレフィン層と、基材と、前記蓄電デバイス用外装材側に配置される第2ポリオレフィン層とをこの順に備える積層体から構成されており、
 前記第1ポリオレフィン層、前記基材、及び前記第2ポリオレフィン層をこの順に備える積層体を得る工程を備えており、
 前記第1ポリオレフィン層及び前記第2ポリオレフィン層の少なくとも一方は、融解ピーク温度が105℃以上130℃以下であり、
 温度110℃環境で測定される前記基材の表面硬度が、15N/mm2以上である、金属端子用接着性フィルムの製造方法。
項6. 金属端子に、項1~4のいずれか1項に記載の金属端子用接着性フィルムが取り付けられてなる、金属端子用接着性フィルム付き金属端子。
項7. 少なくとも、正極、負極、及び電解質を備えた前記蓄電デバイス素子と、当該蓄電デバイス素子を封止する前記蓄電デバイス用外装材と、前記正極及び前記負極のそれぞれに電気的に接続され、前記蓄電デバイス用外装材の外側に突出した前記金属端子とを備える蓄電デバイスであって、
 前記金属端子と前記蓄電デバイス用外装材との間に、項1~4のいずれか1項に記載の金属端子用接着性フィルムが介在されてなる、蓄電デバイス。
項8. 少なくとも、正極、負極、及び電解質を備えた前記蓄電デバイス素子と、当該蓄電デバイス素子を封止する前記蓄電デバイス用外装材と、前記正極及び前記負極のそれぞれに電気的に接続され、前記蓄電デバイス用外装材の外側に突出した前記金属端子とを備える蓄電デバイスであって、
 前記金属端子と前記蓄電デバイス用外装材との間に、金属端子用接着性フィルムが介在されてなり、
 金属端子用接着性フィルムは、前記金属端子側に配置される第1ポリオレフィン層と、基材と、前記蓄電デバイス用外装材側に配置される第2ポリオレフィン層とをこの順に備える積層体から構成されており、
 温度100℃以上130℃以下の環境において、前記蓄電デバイスは、金属端子用接着性フィルムの前記第1ポリオレフィン層又は前記第2ポリオレフィン層が積層されている位置から開封する、蓄電デバイス。
項9. 少なくとも、正極、負極、及び電解質を備えた前記蓄電デバイス素子と、当該蓄電デバイス素子を封止する蓄電デバイス用外装材と、前記正極及び前記負極のそれぞれに電気的に接続され、前記蓄電デバイス用外装材の外側に突出した前記金属端子とを備える蓄電デバイスであって、
 前記金属端子と前記蓄電デバイス用外装材との間に、金属端子用接着性フィルムが介在されてなり、
 金属端子用接着性フィルムは、前記金属端子側に配置される第1ポリオレフィン層と、基材と、前記蓄電デバイス用外装材側に配置される第2ポリオレフィン層とをこの順に備える積層体から構成されており、
 前記第1ポリオレフィン層は、融解ピーク温度が105℃以上130℃以下であり、
 前記第2ポリオレフィン層は、融解ピーク温度が130℃以上であり、
 前記蓄電デバイス用外装材は、少なくとも、基材層、バリア層、及び熱融着性樹脂層を備える積層体から構成されており、
 前記熱融着性樹脂層の融解ピーク温度が130℃以上である、蓄電デバイス。
項10. 蓄電デバイスに用いるための蓄電デバイス用外装材であって、
 前記蓄電デバイスは、少なくとも、正極、負極、及び電解質を備えた蓄電デバイス素子と、当該蓄電デバイス素子を封止する前記蓄電デバイス用外装材と、前記正極及び前記負極のそれぞれに電気的に接続され、前記蓄電デバイス用外装材の外側に突出した前記金属端子とを備え、前記金属端子と前記蓄電デバイス用外装材との間に、金属端子用接着性フィルムが介在されてなり、
 前記金属端子用接着性フィルムは、前記金属端子側に配置される第1ポリオレフィン層と、基材と、前記蓄電デバイス用外装材側に配置される第2ポリオレフィン層とをこの順に備える積層体から構成されており、温度100℃以上130℃以下の環境において、前記金属端子用接着性フィルムの前記第1ポリオレフィン層又は前記第2ポリオレフィン層が積層されている位置から開封する機能を備えており、
 前記蓄電デバイス用外装材は、少なくとも、基材層、バリア層、及び熱融着性樹脂層を備える積層体から構成されており、前記熱融着性樹脂層の融解ピーク温度が前記金属端子用接着性フィルムの前記第1ポリオレフィン層の融解ピーク温度より高く且つ130℃以上である、蓄電デバイス用外装材。
項11. 少なくとも、正極、負極、及び電解質を備えた前記蓄電デバイス素子と、当該蓄電デバイス素子を封止する前記蓄電デバイス用外装材と、前記正極及び前記負極のそれぞれに電気的に接続され、前記蓄電デバイス用外装材の外側に突出した前記金属端子とを備える蓄電デバイスの製造方法であって、
 前記金属端子と前記蓄電デバイス用外装材との間に、項1~4のいずれか1項に記載の金属端子用接着性フィルムを介在させて、前記蓄電デバイス素子を前記蓄電デバイス用外装材で封止する工程を備える、蓄電デバイスの製造方法。
1 金属端子用接着性フィルム
2 金属端子
3 蓄電デバイス用外装材
3a 蓄電デバイス用外装材の周縁部
4 蓄電デバイス素子
10 蓄電デバイス
11 基材
12a 第1ポリオレフィン層
12b 第2ポリオレフィン層
31 基材層
32 接着剤層
33 バリア層
34 接着層
35 熱融着性樹脂層

Claims (11)

  1.  蓄電デバイス素子の電極に電気的に接続された金属端子と、前記蓄電デバイス素子を封止する蓄電デバイス用外装材との間に介在される、金属端子用接着性フィルムであって、
     前記金属端子用接着性フィルムは、前記金属端子側に配置される第1ポリオレフィン層と、基材と、前記蓄電デバイス用外装材側に配置される第2ポリオレフィン層とをこの順に備える積層体から構成されており、
     前記第1ポリオレフィン層及び前記第2ポリオレフィン層の少なくとも一方は、融解ピーク温度が105℃以上130℃以下であり、
     温度110℃環境で測定される前記基材の表面硬度が、15N/mm2以上である、金属端子用接着性フィルム。
  2.  前記第1ポリオレフィン層及び前記第2ポリオレフィン層の少なくとも一方は、酸変性ポリオレフィンを含む、請求項1に記載の金属端子用接着性フィルム。
  3.  前記基材は、ポリオレフィン骨格を含む、請求項1又は2に記載の金属端子用接着性フィルム。
  4.  前記第1ポリオレフィン層と前記基材とが接面しており、かつ、前記第2ポリオレフィン層と前記基材とが接面している、請求項1~3のいずれか1項に記載の金属端子用接着性フィルム。
  5.  蓄電デバイス素子の電極に電気的に接続された金属端子と、前記蓄電デバイス素子を封止する蓄電デバイス用外装材との間に介在される、金属端子用接着性フィルムの製造方法であって、
     前記金属端子用接着性フィルムは、前記金属端子側に配置される第1ポリオレフィン層と、基材と、前記蓄電デバイス用外装材側に配置される第2ポリオレフィン層とをこの順に備える積層体から構成されており、
     前記第1ポリオレフィン層、前記基材、及び前記第2ポリオレフィン層をこの順に備える積層体を得る工程を備えており、
     前記第1ポリオレフィン層及び前記第2ポリオレフィン層の少なくとも一方は、融解ピーク温度が105℃以上130℃以下であり、
     温度110℃環境で測定される前記基材の表面硬度が、15N/mm2以上である、金属端子用接着性フィルムの製造方法。
  6.  金属端子に、請求項1~4のいずれか1項に記載の金属端子用接着性フィルムが取り付けられてなる、金属端子用接着性フィルム付き金属端子。
  7.  少なくとも、正極、負極、及び電解質を備えた蓄電デバイス素子と、当該蓄電デバイス素子を封止する蓄電デバイス用外装材と、前記正極及び前記負極のそれぞれに電気的に接続され、前記蓄電デバイス用外装材の外側に突出した前記金属端子とを備える蓄電デバイスであって、
     前記金属端子と前記蓄電デバイス用外装材との間に、請求項1~4のいずれか1項に記載の金属端子用接着性フィルムが介在されてなる、蓄電デバイス。
  8.  少なくとも、正極、負極、及び電解質を備えた蓄電デバイス素子と、当該蓄電デバイス素子を封止する蓄電デバイス用外装材と、前記正極及び前記負極のそれぞれに電気的に接続され、前記蓄電デバイス用外装材の外側に突出した前記金属端子とを備える蓄電デバイスであって、
     前記金属端子と前記蓄電デバイス用外装材との間に、金属端子用接着性フィルムが介在されてなり、
     金属端子用接着性フィルムは、前記金属端子側に配置される第1ポリオレフィン層と、基材と、前記蓄電デバイス用外装材側に配置される第2ポリオレフィン層とをこの順に備える積層体から構成されており、
     温度100℃以上130℃以下の環境において、前記蓄電デバイスは、金属端子用接着性フィルムの前記第1ポリオレフィン層又は前記第2ポリオレフィン層が積層されている位置から開封する、蓄電デバイス。
  9.  少なくとも、正極、負極、及び電解質を備えた蓄電デバイス素子と、当該蓄電デバイス素子を封止する蓄電デバイス用外装材と、前記正極及び前記負極のそれぞれに電気的に接続され、前記蓄電デバイス用外装材の外側に突出した前記金属端子とを備える蓄電デバイスであって、
     前記金属端子と前記蓄電デバイス用外装材との間に、金属端子用接着性フィルムが介在されてなり、
     金属端子用接着性フィルムは、前記金属端子側に配置される第1ポリオレフィン層と、基材と、前記蓄電デバイス用外装材側に配置される第2ポリオレフィン層とをこの順に備える積層体から構成されており、
     前記第1ポリオレフィン層は、融解ピーク温度が105℃以上130℃以下であり、
     前記第2ポリオレフィン層は、融解ピーク温度が130℃以上であり、
     前記蓄電デバイス用外装材は、少なくとも、基材層、バリア層、及び熱融着性樹脂層を備える積層体から構成されており、
     前記熱融着性樹脂層の融解ピーク温度が130℃以上である、蓄電デバイス。
  10.  蓄電デバイスに用いるための蓄電デバイス用外装材であって、
     前記蓄電デバイスは、少なくとも、正極、負極、及び電解質を備えた蓄電デバイス素子と、当該蓄電デバイス素子を封止する前記蓄電デバイス用外装材と、前記正極及び前記負極のそれぞれに電気的に接続され、前記蓄電デバイス用外装材の外側に突出した前記金属端子とを備え、前記金属端子と前記蓄電デバイス用外装材との間に、金属端子用接着性フィルムが介在されてなり、
     前記金属端子用接着性フィルムは、前記金属端子側に配置される第1ポリオレフィン層と、基材と、前記蓄電デバイス用外装材側に配置される第2ポリオレフィン層とをこの順に備える積層体から構成されており、温度100℃以上130℃以下の環境において、前記金属端子用接着性フィルムの前記第1ポリオレフィン層又は前記第2ポリオレフィン層が積層されている位置から開封する機能を備えており、
     前記蓄電デバイス用外装材は、少なくとも、基材層、バリア層、及び熱融着性樹脂層を備える積層体から構成されており、前記熱融着性樹脂層の融解ピーク温度が前記金属端子用接着性フィルムの前記第1ポリオレフィン層の融解ピーク温度より高く且つ130℃以上である、蓄電デバイス用外装材。
  11.  少なくとも、正極、負極、及び電解質を備えた蓄電デバイス素子と、当該蓄電デバイス素子を封止する前記蓄電デバイス用外装材と、前記正極及び前記負極のそれぞれに電気的に接続され、前記蓄電デバイス用外装材の外側に突出した前記金属端子とを備える蓄電デバイスの製造方法であって、
     前記金属端子と前記蓄電デバイス用外装材との間に、請求項1~4のいずれか1項に記載の金属端子用接着性フィルムを介在させて、前記蓄電デバイス素子を前記蓄電デバイス用外装材で封止する工程を備える、蓄電デバイスの製造方法。
PCT/JP2021/014139 2020-04-02 2021-04-01 金属端子用接着性フィルム、金属端子用接着性フィルムの製造方法、金属端子用接着性フィルム付き金属端子、蓄電デバイス、及び蓄電デバイスの製造方法 WO2021201213A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21780967.2A EP4131616A1 (en) 2020-04-02 2021-04-01 Adhesive film for metal terminal, production method for adhesive film for metal terminal, metal terminal with adhesive film for metal terminal, power storage device, and production method for power storage device
JP2022512695A JP7120491B2 (ja) 2020-04-02 2021-04-01 金属端子用接着性フィルム、金属端子用接着性フィルムの製造方法、金属端子用接着性フィルム付き金属端子、蓄電デバイス、及び蓄電デバイスの製造方法
CN202180025890.XA CN115362595A (zh) 2020-04-02 2021-04-01 金属端子用粘合性膜、金属端子用粘合性膜的制造方法、附带金属端子用粘合性膜的金属端子、蓄电器件和蓄电器件的制造方法
KR1020227024138A KR20220162119A (ko) 2020-04-02 2021-04-01 금속단자용 접착성 필름, 금속단자용 접착성 필름의 제조 방법, 금속단자용 접착성 필름 부착 금속단자, 축전 디바이스, 및 축전 디바이스의 제조 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-066732 2020-04-02
JP2020066732 2020-04-02
JP2021033515 2021-03-03
JP2021-033515 2021-03-03

Publications (1)

Publication Number Publication Date
WO2021201213A1 true WO2021201213A1 (ja) 2021-10-07

Family

ID=77927323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014139 WO2021201213A1 (ja) 2020-04-02 2021-04-01 金属端子用接着性フィルム、金属端子用接着性フィルムの製造方法、金属端子用接着性フィルム付き金属端子、蓄電デバイス、及び蓄電デバイスの製造方法

Country Status (5)

Country Link
EP (1) EP4131616A1 (ja)
JP (1) JP7120491B2 (ja)
KR (1) KR20220162119A (ja)
CN (1) CN115362595A (ja)
WO (1) WO2021201213A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023058733A1 (ja) * 2021-10-06 2023-04-13 大日本印刷株式会社 接着性フィルム、接着性フィルムの製造方法、蓄電デバイス、及び蓄電デバイスの製造方法
WO2023058735A1 (ja) * 2021-10-06 2023-04-13 大日本印刷株式会社 金属端子用接着性フィルム、金属端子用接着性フィルムの製造方法、金属端子用接着性フィルム付き金属端子、蓄電デバイス、及び蓄電デバイスの製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10502975A (ja) 1994-05-24 1998-03-17 エクソン・ケミカル・パテンツ・インク 低融点プロピレンポリマーを含む繊維及び布
JP2001093489A (ja) * 1999-01-20 2001-04-06 Matsushita Electric Ind Co Ltd 扁平電池
JP2001229904A (ja) * 2000-02-21 2001-08-24 Yuasa Corp 密閉形電池
JP2002008616A (ja) 2000-06-16 2002-01-11 Mitsubishi Heavy Ind Ltd 非水電解質二次電池の安全弁の形成方法及び非水電解質二次電池
JP2005116474A (ja) * 2003-10-10 2005-04-28 Toyota Motor Corp フィルム型電池
JP2015079638A (ja) 2013-10-17 2015-04-23 大倉工業株式会社 接着用テープ付き端子、接着用テープ付き端子の製造方法及び薄型電池
JP2016524002A (ja) 2013-05-23 2016-08-12 ボスティック,インコーポレイテッド 低融点ポリプロピレンホモポリマーを基剤とするホットメルト接着剤
WO2020004412A1 (ja) * 2018-06-27 2020-01-02 凸版印刷株式会社 端子用樹脂フィルム及びこれを用いた蓄電装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4508199B2 (ja) 2007-02-05 2010-07-21 ソニー株式会社 リード用シーラントフィルム及び非水電解質電池
JP2014225378A (ja) 2013-05-16 2014-12-04 株式会社日立製作所 タブリード用シール材、タブリードおよびリチウムイオン二次電池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10502975A (ja) 1994-05-24 1998-03-17 エクソン・ケミカル・パテンツ・インク 低融点プロピレンポリマーを含む繊維及び布
JP2001093489A (ja) * 1999-01-20 2001-04-06 Matsushita Electric Ind Co Ltd 扁平電池
JP2001229904A (ja) * 2000-02-21 2001-08-24 Yuasa Corp 密閉形電池
JP2002008616A (ja) 2000-06-16 2002-01-11 Mitsubishi Heavy Ind Ltd 非水電解質二次電池の安全弁の形成方法及び非水電解質二次電池
JP2005116474A (ja) * 2003-10-10 2005-04-28 Toyota Motor Corp フィルム型電池
JP2016524002A (ja) 2013-05-23 2016-08-12 ボスティック,インコーポレイテッド 低融点ポリプロピレンホモポリマーを基剤とするホットメルト接着剤
JP2015079638A (ja) 2013-10-17 2015-04-23 大倉工業株式会社 接着用テープ付き端子、接着用テープ付き端子の製造方法及び薄型電池
WO2020004412A1 (ja) * 2018-06-27 2020-01-02 凸版印刷株式会社 端子用樹脂フィルム及びこれを用いた蓄電装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023058733A1 (ja) * 2021-10-06 2023-04-13 大日本印刷株式会社 接着性フィルム、接着性フィルムの製造方法、蓄電デバイス、及び蓄電デバイスの製造方法
WO2023058735A1 (ja) * 2021-10-06 2023-04-13 大日本印刷株式会社 金属端子用接着性フィルム、金属端子用接着性フィルムの製造方法、金属端子用接着性フィルム付き金属端子、蓄電デバイス、及び蓄電デバイスの製造方法
JP7276642B1 (ja) 2021-10-06 2023-05-18 大日本印刷株式会社 接着性フィルム、接着性フィルムの製造方法、蓄電デバイス、及び蓄電デバイスの製造方法

Also Published As

Publication number Publication date
JPWO2021201213A1 (ja) 2021-10-07
EP4131616A1 (en) 2023-02-08
JP7120491B2 (ja) 2022-08-17
KR20220162119A (ko) 2022-12-07
CN115362595A (zh) 2022-11-18

Similar Documents

Publication Publication Date Title
WO2021201213A1 (ja) 金属端子用接着性フィルム、金属端子用接着性フィルムの製造方法、金属端子用接着性フィルム付き金属端子、蓄電デバイス、及び蓄電デバイスの製造方法
JPWO2019021997A1 (ja) 金属端子用接着性フィルム、金属端子用接着性フィルム付き金属端子、当該金属端子用接着性フィルムを用いた電池、及び電池の製造方法
JP2023139019A (ja) 電池、その製造方法、及び金属端子用接着性フィルム付き金属端子、当該金属端子用接着性フィルムの巻取体
JP6950857B2 (ja) 金属端子用接着性フィルム、金属端子用接着性フィルム付き金属端子、当該金属端子用接着性フィルムを用いた蓄電デバイス、及び蓄電デバイスの製造方法
WO2021090950A1 (ja) 金属端子用接着性フィルム、金属端子用接着性フィルムの製造方法、金属端子用接着性フィルム付き金属端子、当該金属端子用接着性フィルムを用いた蓄電デバイス、及び蓄電デバイスの製造方法
WO2021090952A1 (ja) 金属端子用接着性フィルム、金属端子用接着性フィルムの製造方法、金属端子用接着性フィルム付き金属端子、当該金属端子用接着性フィルムを用いた蓄電デバイス、及び蓄電デバイスの製造方法
JP2021132041A (ja) 金属端子用接着性フィルム、金属端子用接着性フィルム付き金属端子、当該金属端子用接着性フィルムを用いた蓄電デバイス、及び蓄電デバイスの製造方法
WO2021201214A1 (ja) 金属端子用接着性フィルム、金属端子用接着性フィルムの製造方法、金属端子用接着性フィルム付き金属端子、蓄電デバイス、及び蓄電デバイスの製造方法
JP6954437B2 (ja) 金属端子用接着性フィルム、金属端子用接着性フィルムの製造方法、金属端子用接着性フィルム付き金属端子、当該金属端子用接着性フィルムを用いた蓄電デバイス、及び蓄電デバイスの製造方法
JP7460852B2 (ja) 接着性フィルム、接着性フィルムの製造方法、蓄電デバイス、及び蓄電デバイスの製造方法
WO2023058735A1 (ja) 金属端子用接着性フィルム、金属端子用接着性フィルムの製造方法、金属端子用接着性フィルム付き金属端子、蓄電デバイス、及び蓄電デバイスの製造方法
JP7255763B2 (ja) 接着性フィルム、蓄電デバイス、及び蓄電デバイスの製造方法
JP2023103307A (ja) 接着性フィルム、接着性フィルムの製造方法、蓄電デバイス、及び蓄電デバイスの製造方法
CN117223155A (zh) 粘接性树脂膜、蓄电器件和蓄电器件的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21780967

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022512695

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 17914105

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021780967

Country of ref document: EP

Effective date: 20221102